US20170167076A1 - Adhesive agent composition for organic fiber and method of treating organic fiber - Google Patents
Adhesive agent composition for organic fiber and method of treating organic fiber Download PDFInfo
- Publication number
- US20170167076A1 US20170167076A1 US15/116,121 US201515116121A US2017167076A1 US 20170167076 A1 US20170167076 A1 US 20170167076A1 US 201515116121 A US201515116121 A US 201515116121A US 2017167076 A1 US2017167076 A1 US 2017167076A1
- Authority
- US
- United States
- Prior art keywords
- organic fiber
- treating
- fiber
- agent composition
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 97
- 239000000853 adhesive Substances 0.000 title claims abstract description 56
- 239000000203 mixture Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000003822 epoxy resin Substances 0.000 claims abstract description 25
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 25
- 229920000126 latex Polymers 0.000 claims abstract description 17
- -1 imidazole compound Chemical class 0.000 claims description 41
- 229920000728 polyester Polymers 0.000 claims description 18
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 10
- 229920006231 aramid fiber Polymers 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 abstract description 28
- 238000001556 precipitation Methods 0.000 abstract description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 38
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 22
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 21
- 239000007787 solid Substances 0.000 description 15
- 239000002253 acid Substances 0.000 description 13
- 239000012948 isocyanate Substances 0.000 description 11
- 150000002513 isocyanates Chemical class 0.000 description 11
- 229920001971 elastomer Polymers 0.000 description 10
- 239000005060 rubber Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 9
- 229960001755 resorcinol Drugs 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 5
- 150000001735 carboxylic acids Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229920000223 polyglycerol Polymers 0.000 description 5
- 239000000600 sorbitol Substances 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- HQWKKEIVHQXCPI-UHFFFAOYSA-L disodium;phthalate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C([O-])=O HQWKKEIVHQXCPI-UHFFFAOYSA-L 0.000 description 3
- VIQSRHWJEKERKR-UHFFFAOYSA-L disodium;terephthalate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=C(C([O-])=O)C=C1 VIQSRHWJEKERKR-UHFFFAOYSA-L 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CUGZWHZWSVUSBE-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxy)ethanol Chemical compound OCCOCC1CO1 CUGZWHZWSVUSBE-UHFFFAOYSA-N 0.000 description 2
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 2
- UIDDPPKZYZTEGS-UHFFFAOYSA-N 3-(2-ethyl-4-methylimidazol-1-yl)propanenitrile Chemical compound CCC1=NC(C)=CN1CCC#N UIDDPPKZYZTEGS-UHFFFAOYSA-N 0.000 description 2
- SESYNEDUKZDRJL-UHFFFAOYSA-N 3-(2-methylimidazol-1-yl)propanenitrile Chemical compound CC1=NC=CN1CCC#N SESYNEDUKZDRJL-UHFFFAOYSA-N 0.000 description 2
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- KVBYPTUGEKVEIJ-UHFFFAOYSA-N benzene-1,3-diol;formaldehyde Chemical compound O=C.OC1=CC=CC(O)=C1 KVBYPTUGEKVEIJ-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- VEGNIXCUDMQGFZ-UHFFFAOYSA-N 1-[3-[3-[2,3-bis(oxiran-2-ylmethoxy)propoxy]-2-hydroxypropoxy]-2-(oxiran-2-ylmethoxy)propoxy]-3-(oxiran-2-ylmethoxy)propan-2-ol Chemical compound C1OC1COCC(OCC1OC1)COCC(O)COCC(OCC1OC1)COCC(O)COCC1CO1 VEGNIXCUDMQGFZ-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- JVYDLYGCSIHCMR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butanoic acid Chemical compound CCC(CO)(CO)C(O)=O JVYDLYGCSIHCMR-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WKJICCKTDQDONB-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxycarbonyl)cyclohexane-1-carboxylic acid Chemical compound OC(=O)C1CCCCC1C(=O)OCC1OC1 WKJICCKTDQDONB-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-CCEZHUSRSA-N 2-[(E)-pentadec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-CCEZHUSRSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- XACKAZKMZQZZDT-MDZDMXLPSA-N 2-[(e)-octadec-9-enyl]butanedioic acid Chemical compound CCCCCCCC\C=C\CCCCCCCCC(C(O)=O)CC(O)=O XACKAZKMZQZZDT-MDZDMXLPSA-N 0.000 description 1
- PQAMFDRRWURCFQ-UHFFFAOYSA-N 2-ethyl-1h-imidazole Chemical compound CCC1=NC=CN1 PQAMFDRRWURCFQ-UHFFFAOYSA-N 0.000 description 1
- RLHGFJMGWQXPBW-UHFFFAOYSA-N 2-hydroxy-3-(1h-imidazol-5-ylmethyl)benzamide Chemical compound NC(=O)C1=CC=CC(CC=2NC=NC=2)=C1O RLHGFJMGWQXPBW-UHFFFAOYSA-N 0.000 description 1
- BKCCAYLNRIRKDJ-UHFFFAOYSA-N 2-phenyl-4,5-dihydro-1h-imidazole Chemical compound N1CCN=C1C1=CC=CC=C1 BKCCAYLNRIRKDJ-UHFFFAOYSA-N 0.000 description 1
- BVYPJEBKDLFIDL-UHFFFAOYSA-N 3-(2-phenylimidazol-1-yl)propanenitrile Chemical compound N#CCCN1C=CN=C1C1=CC=CC=C1 BVYPJEBKDLFIDL-UHFFFAOYSA-N 0.000 description 1
- SZUPZARBRLCVCB-UHFFFAOYSA-N 3-(2-undecylimidazol-1-yl)propanenitrile Chemical compound CCCCCCCCCCCC1=NC=CN1CCC#N SZUPZARBRLCVCB-UHFFFAOYSA-N 0.000 description 1
- 229940018563 3-aminophenol Drugs 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- AHIPJALLQVEEQF-UHFFFAOYSA-N 4-(oxiran-2-ylmethoxy)-n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1COC(C=C1)=CC=C1N(CC1OC1)CC1CO1 AHIPJALLQVEEQF-UHFFFAOYSA-N 0.000 description 1
- HCJMNOSIAGSZBM-UHFFFAOYSA-N 6-methylsalicylic acid Chemical compound CC1=CC=CC(O)=C1C(O)=O HCJMNOSIAGSZBM-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 229910001573 adamantine Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- QUEICCDHEFTIQD-UHFFFAOYSA-N buta-1,3-diene;2-ethenylpyridine;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=N1 QUEICCDHEFTIQD-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- CCQPAEQGAVNNIA-UHFFFAOYSA-N cyclobutane-1,1-dicarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCC1 CCQPAEQGAVNNIA-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- NZGGUIFHFVGRKD-UHFFFAOYSA-N n,n,2-tribromo-3,4-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CC1=C(Br)C(N(Br)Br)=CC=C1CC1CO1 NZGGUIFHFVGRKD-UHFFFAOYSA-N 0.000 description 1
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 229920006173 natural rubber latex Polymers 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- BTLSLHNLDQCWKS-UHFFFAOYSA-N oxocan-2-one Chemical compound O=C1CCCCCCO1 BTLSLHNLDQCWKS-UHFFFAOYSA-N 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/55—Epoxy resins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/184—Carboxylic acids; Anhydrides, halides or salts thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/35—Heterocyclic compounds
- D06M13/352—Heterocyclic compounds having five-membered heterocyclic rings
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/39—Aldehyde resins; Ketone resins; Polyacetals
- D06M15/41—Phenol-aldehyde or phenol-ketone resins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/693—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C2009/0035—Reinforcements made of organic materials, e.g. rayon, cotton or silk
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/184—Carboxylic acids; Anhydrides, halides or salts thereof
- D06M13/188—Monocarboxylic acids; Anhydrides, halides or salts thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/395—Isocyanates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/32—Polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
- D06M2101/36—Aromatic polyamides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16G—BELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
- F16G1/00—Driving-belts
- F16G1/04—Driving-belts made of fibrous material, e.g. textiles, whether rubber-covered or not
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16G—BELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
- F16G1/00—Driving-belts
- F16G1/06—Driving-belts made of rubber
- F16G1/08—Driving-belts made of rubber with reinforcement bonded by the rubber
- F16G1/10—Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/02—Hoses, i.e. flexible pipes made of fibres or threads, e.g. of textile
Definitions
- the present invention relates to an adhesive agent composition for an organic fiber, the adhesive agent composition bonding rubber and the organic fiber and being used to produce the organic fiber used to reinforce rubber products, such as tires, various hoses, and belts (timing belts, conveyor belts, V belts, and the like) and also relates to a method of treating the organic fiber.
- an organic fiber such as a polyester fiber is used as a reinforcing material.
- a water-based treating agent basically containing epoxy resin and blocked isocyanate onto a polyester fiber for the purpose of bonding the rubber and the polyester fiber
- dip in the water-based treating agent has been performed (PTL 1).
- the blocked isocyanate needs to be a water dispersion.
- the dispersion tends to cause precipitation or cohesion.
- a treatment device especially a squeezing roll
- sticking and solidification (so-called gum-up) of the blocked isocyanate occur at a treatment device (especially a squeezing roll) in addition to the precipitation and cohesion in a treatment bath, a manufacturing line needs to be stopped, and stuck and solidified matters need to be removed. This has been a cause of deterioration of treatment efficiency.
- the present invention was made under these circumstances, and an object of the present invention is to provide an adhesive agent composition for an organic fiber, the adhesive agent composition hardly causing precipitation or cohesion, facilitating chemical liquid management, and having stable and high adhesive force.
- a first aspect of the present invention relates to an adhesive agent composition for an organic fiber, the adhesive agent composition including epoxy resin and a water soluble curing agent.
- the water soluble curing agent be an imidazole compound or a carboxylate compound.
- the organic fiber be a polyester fiber or an aramid fiber.
- a second aspect of the present invention relates to a method of treating an organic fiber, the method including the steps of:
- the organic fiber be a polyester fiber or an aramid fiber.
- a third aspect of the present invention relates to an organic fiber treated by the above method.
- a fourth aspect of the present invention relates to a tire, hose, or belt using the organic fiber treated by the above treating method.
- the present invention provides an adhesive agent composition for an organic fiber, the adhesive agent composition hardly causing precipitation or cohesion, facilitating chemical liquid management, and having stable and high adhesive force, and also provides a method of treating an organic fiber using the adhesive agent composition for the organic fiber.
- the present invention further provides an organic fiber that can be used as a reinforcing material for a rubber article since the organic fiber has high adhesive force with respect to the rubber article.
- An adhesive agent composition for an organic fiber according to the present invention contains epoxy resin and a water soluble curing agent.
- the epoxy resin used in the present invention is an epoxy compound having two or more epoxy groups as functional groups in its molecule.
- epoxy resin examples include: glycidyl ether, such as ethylene glycol glycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, bisphenol-A diglycidyl ether, bisphenol-S diglycidyl ether, novolak glycidyl ether, and brominated bisphenol-A diglycidyl ether; glycidyl ester, such as hexahydrophthalic glycidyl ester and dimer acid glycidyl ester; glycidyl amine, such as triglycidyl isocyanurate, glycidyl hydantoin, tetraglycidyl diaminodiphenyl methane, triglycidyl p-aminophenol, triglycidy
- ethylene glycol glycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, and polyglycerol polyglycidyl ether are especially preferable since these are high in water solubility.
- the concentration of the epoxy resin in the present invention is preferably 0.5 to 10 wt. % in a solution or dispersion, more preferably 0.7 to 5 wt. %. This is because: if the concentration is less than 0.5 wt. %, adhesive force decreases; and if the concentration exceeds 10 wt. %, the epoxy resin is gelatinized, and this becomes a cause of, for example, the gum-up.
- the water soluble curing agent used in the present invention is not especially limited as long as it has water solubility and can promote a curing reaction of the epoxy resin.
- the water solubility means that an agent dissolves in water by 1 mass % or more under ordinary temperature and normal pressure.
- the content of the water soluble curing agent used in the present invention is preferably 1 to 300 parts by weight per 100 parts by weight of the epoxy resin, more preferably 5 to 100 parts by weight. This is because: if the content is less than 1 part by weight, the reaction is inadequate, and the adhesive force decreases; and if the content exceeds 300 parts by weight, the curing agent is excessive, and a crosslink density decreases.
- water soluble curing agent used in the present invention examples include: water soluble imidazole compounds, such as 2-methyl imidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methyl imidazole, 1-cyanoethyl-2-methyl imidazole, 1-cyanoethyl-2-undecyl imidazole, 1-cyanoethyl-2-ethyl-4-methyl imidazole, 1-cyanoethyl-2-phenyl imidazole, 1-cyanoethyl-2-phenyl imidazolium trimellitate, 2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine, and 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine; imidazolines, such as 2-phenyl imidazoline; and salt compounds
- aromatic carboxylic acids examples include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, p-oxybenzoic acid, dioxybenzoic acid, trioxybenzoic acid, benzoic acid, methylsalicylic acid, oxyphthalic acid, dioxyphthalic acid, and oxyterephthalic acid.
- unsaturated carboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, dodecenyl succinic acid, pentadecenyl succinic acid, and octadecenyl succinic acid.
- saturated carboxylic acids examples include succinic acid, adipic acid, sebacic acid, azelaic acid, 1,2,3,4-butanetetracarboxylic acid, cyclobutane dicarboxylic acid, cyclohexane dicarboxylic acid, adamantine dicarboxylic acid, and dimethylol butanoic acid.
- 2-methyl imidazole, 2-ethyl imidazole, 2-ethyl-4-methyl imidazole, 1-cyanoethyl-2-methyl-imidazole, and 1-cyanoethyl-2-ethyl-4-methyl-imidazole are preferable as the water soluble imidazole compound since these are high in water solubility.
- Each of these examples may be used alone, or a mixture of two or more of these examples may be used.
- the content thereof is preferably 1 to 50 parts by weight per 100 parts by weight of the epoxy resin, more preferably 3 to 20 parts by weight. This is because: of the content is less than 1 part by weight, the curing may become inadequate; and if the content exceeds 50 parts by weight, the imidazole compound may remain, and the adhesive force may decrease.
- the carboxylate compound is a salt compound constituted by carboxylic acid and metal.
- the carboxylate compound it may be a partial salt, a perfect salt, or a carboxylate compound obtained by hydrolysis of acid anhydride in a treatment bath.
- the partial salt of the carboxylate compound is a salt in which a part of carboxylic acid groups of a carboxylic acid compound are neutralized
- the perfect salt of the carboxylate compound is a salt in which all the carboxylic acid groups of the carboxylic acid compound are neutralized.
- isophthalic acid salt compound isophthalic acid salt compound, terephthalic acid salt compound, trimellitic acid salt compound, pyromellitic acid salt compound, p-oxybenzoic acid salt compound, dioxybenzoic acid salt compound, trioxybenzoic acid salt compound, benzoic acid salt compound, methylsalicylic acid salt compound, oxyphthalic acid salt compound, dioxyphthalic acid salt compound, and oxyterephthalic acid salt compound are preferable since excellent heat resistance can be obtained. Further, to increase the water solubility, sodium salt and potassium salt are preferable. Each of these examples may be used alone, or a mixture of two or more of these examples may be used.
- the content thereof is preferably 1 to 300 parts by weight per 100 parts by weight of the epoxy resin, more preferably 10 to 150 parts by weight. This is because: if the content is less than 1 part by weight, a crosslinked structure may become inadequate; and if the content exceeds 300 parts by weight, the carboxylic acid compound may remain, and the adhesive force may decrease.
- the adhesive agent composition for the organic fiber according to the present invention be a water-based composition, that is, contain water or a solvent containing water as a major component.
- the water or the solvent containing the water serves as a solvent that allows dissolution of the water soluble curing agent and is used in a reaction system of the epoxy resin and the water soluble curing agent.
- the adhesive agent composition for the organic fiber according to the present invention may contain the following optional component(s) according to need as long as the object and effects of the present invention are not inhibited.
- the optional component include resin copolymerizable with the epoxy resin, a curing agent other than the water soluble curing agent, an organic thickener, an antioxidant, a light stabilizer, an adhesive property improver, a reinforcing agent, a softening agent, a coloring agent, a leveling agent, a flame retardant, an antistatic agent, an antifoaming agent, and a rubber latex.
- Examples of the resin copolymerizable with the epoxy resin include polyvinyl alcohol (PVA), aqueous acrylic resin, and aqueous polyurethane resin. To increase adhesive force and cohesive force of an adhesive layer, polyvinyl alcohol is preferable.
- the curing agent other than the water soluble curing agent is an agent generally used as the curing agent for the epoxy resin, and examples thereof include modified polyamine, polyamide resin, polymercaptan resin, and polysulfide resin.
- a method of treating an organic fiber according to the present invention includes the steps of: treating an organic fiber with the adhesive agent composition for the organic fiber according to the present invention as a first treating agent; and treating the organic fiber, having been treated with the first treating agent, with a second treating agent containing a resorcin-formalin-rubber latex (RFL).
- RTL resorcin-formalin-rubber latex
- the adhesive agent composition for the organic fiber according to the present invention it is preferable to prepare the adhesive agent composition by dissolving the epoxy resin and the water soluble curing agent in water.
- the total solid content of the first treating agent is preferably 1 to 20 wt. %, more preferably 2 to 10 wt. %. This is because: if the total solid content is less than 1 wt. %, the amount of components of the first treating agent sticking to the organic fiber may become inadequate, and adequate adhesive force may not be obtained; and if the total solid content exceeds 30 wt. %, the amount of components of the first treating agent sticking to the organic fiber may become too large, and as a result, the obtained fiber may become too hard, or a gelled matter may be formed at the fiber or the treatment device.
- the second treating agent is a composition containing the resorcin-formalin-rubber latex (RFL).
- the resorcin-formalin-rubber latex can be prepared by mixing and aging of: an initial condensate of resorcin and formalin; and rubber latex.
- the initial condensate of resorcin and formalin is obtained by a condensation reaction between a resorcin monomer and a formaldehyde monomer in water in the presence of: acid catalyst, such as hydrochloric acid or sulfuric acid; alkali metal hydroxide, such as sodium hydroxide; or ammonia.
- acid catalyst such as hydrochloric acid or sulfuric acid
- alkali metal hydroxide such as sodium hydroxide
- ammonia ammonia
- the mole ratio of the resorcin monomer to the formaldehyde monomer is preferably 1:0.1 to 1:8, more preferably 1:0.5 to 1:5, and further preferably 1:1 to 1:4.
- the rubber latex examples include natural rubber latex, styrene-butadiene copolymer latex, and styrene-butadiene-vinylpyridine copolymer latex.
- a solid content ratio of the initial condensate of resorcin and formalin to the rubber latex is preferably 1:1 to 1:15, more preferably 1:3 to 1:12.
- styrene-butadiene-vinylpyridine copolymer latex is preferable since high adhesive force with respect to natural rubber and SBR (styrene butadiene rubber) can be obtained.
- the initial condensate of resorcin and formalin may contain the resorcin monomer, the formaldehyde monomer, a minute amount of molecular weight regulator (calcium chloride, for example), a solvent (methyl ethyl ketone (MEK), for example), and the like.
- a minute amount of molecular weight regulator calcium chloride, for example
- a solvent methyl ethyl ketone (MEK), for example
- the total solid content of the second treating agent is preferably 5 to 50 wt. %, more preferably 10 to 35 wt. %. This is because: if the total solid content is less than 5 wt. %, the amount of components of the second treating agent sticking to the organic fiber may become small, and adequate adhesive force may not be obtained; and if the total solid content exceeds 50 wt. %, the obtained fiber may become hard, and bending fatigue strength and the like may become low.
- vulcanization regulator In addition to the initial condensate of resorcin and formalin and the rubber latex, vulcanization regulator, zinc oxide, antioxidant, and the like may be added to the second treating agent.
- treating the organic fiber with the first treating agent denotes a treatment of sticking the first treating agent to the organic fiber, and this can be performed by using an arbitrary method, such as an application using a roller, spraying from a nozzle, or dip in a solution (first treating agent).
- the organic fiber to which the first treating agent has stuck may be subjected to a drying treatment at 100 to 250° C. for one to five minutes, and then, may be subjected to a heat treatment at 150 to 250° C. for one to five minutes.
- the heat treatment is performed preferably at 180 to 240° C. for one minute. If the temperature of the heat treatment is too low, the adhesive force may become inadequate. If the temperature of the heat treatment is too high, the organic fiber may deteriorate, and this may become a cause of strength degradation.
- the amount of first treating agent sticking to the organic fiber is preferably 0.1 to 10 wt. %, more preferably 1 to 7 wt. % on the solid content basis.
- treating the organic fiber with the second treating agent denotes a treatment of sticking the second treating agent to the organic fiber which has been treated with the first treating agent, and this treatment may be performed using the same means and conditions as the process of treating the organic fiber with the first treating agent.
- the amount of second treating agent sticking to the organic fiber is preferably 0.1 to 10 wt. %, more preferably 0.5 to 5 wt. % on the solid content basis.
- each of the step of treating the organic fiber with the first treating agent and the step of treating the organic fiber with the second treating agent may further adopt a means, such as pressing by a press-contact roller, scraping by a scraper, blow-off by air blowing, suction, or beating by a beater.
- the adhesive agent composition for the organic fiber according to the present invention can be used for organic fibers normally used as reinforcing cords of tires, hoses, belts, and the like.
- organic fibers include nylon fiber, rayon fiber, vinylon fiber, polyester fiber (such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN)), aramid fiber, and polyurethane fiber.
- the organic fiber treated by the method of treating the organic fiber according to the present invention has an excellent adhesive property regarding adhesion between the rubber and the organic fiber.
- the adhesive agent component is preferably used for polyester fiber and aramid fiber among the above organic fibers especially since: the adhesion between the rubber and each of polyester fiber and aramid fiber by a conventional method is relatively difficult; and the mechanical strength of the obtained fiber becomes excellent.
- the organic fiber according to the present invention may have any form, such as filament yarn, cord, woven stuff, or woven fabric.
- polyester fiber used as the polyester fiber is fiber prepared in such a manner that: polyethylene terephthalate having yarn viscosity of 0.95 is subjected to melt spinning and stretching to become multifilaments having 1,500 denier; the multifilaments are firstly twisted 40 times per 10 cm to become a primary twisted cord; two primary twisted cords are finally twisted 40 times per 10 cm in an opposite direction to the primary twisted cord.
- aramid fiber used as the aramid fiber is fiber prepared in such a manner that: 1,000 aromatic polyamide multifilaments (Kevlar produced by Du Pont Kabushiki Kaisha) having nominal fineness of 1,500 denier are firstly twisted 35 times per 10 cm to become a primary twisted cord; and two primary twisted cords are finally twisted 35 times per 10 cm in an opposite direction to the primary twisted cord.
- 1,000 aromatic polyamide multifilaments Kevlar produced by Du Pont Kabushiki Kaisha
- two primary twisted cords are finally twisted 35 times per 10 cm in an opposite direction to the primary twisted cord.
- the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- the adhesive agent composition prepared as the first treating agent was put into a glass tube, and the time-lapse change of the appearance of the treating agent was visually confirmed (immediately after the preparation, an hour after the preparation, and hourly until five hours after the preparation). Thus, the stability was evaluated based on the degree of precipitation.
- Nipol 2518FS vinylpyridine-styrene-butadiene terpolymer water emulsion liquid produced by Zeon Corporation, total solid content of 40.5%
- Nipol LX-112 styrene-butadiene copolymer 41% water emulsion liquid produced by Zeon Corporation, total solid content of 40.5%
- a resorcin-formalin initial condensate dispersing liquid (mole ratio of resorcin to formaldehyde of 1:1.5, total solid content of 6.5%) was added as resorcin-formalin to this diluent while slowly stirring the diluent.
- a RFL liquid was prepared.
- the obtained RFL liquid was diluted in 591 g of water.
- the second treating agent total solid content of 10%
- polyester fiber As the polyester fiber, a polyester cord (1,500 denier, two twisted cords, primary twisting of 40 times per 10 cm, final twisting of 40 times per 10 cm) was dipped in the first treating agent. The polyester cord was then dried at 150° C. for 130 seconds and was further subjected to a heat treatment at 240° C. for 130 seconds. Next, the polyester cord was dipped in the second treating agent. The polyester cord was then dried at 150° C. for 130 seconds and was further subjected to the heat treatment at 240° C. for 70 seconds.
- the treated polyester cord was embedded in unvulcanized rubber containing natural rubber as a major component and was subjected to press vulcanization at 150° C. for 30 minutes. Next, the polyester cord was pulled out from a rubber block at a speed of 350 mm/minute. Force required for the pulling-out was shown by N/cm. Thus, the adhesive property was evaluated. Results are shown in Table 2.
- EX-313 glycerol polyglycidyl ether produced by Nagase ChemteX Corporation
- 21 g of sodium terephthalate was added thereto as the water soluble curing agent.
- the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- EX-313 glycerol polyglycidyl ether produced by Nagase ChemteX Corporation
- 21 g of sodium phthalate was added thereto as the water soluble curing agent.
- the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- EX-512 polyglycerol polyglycidyl ether produced by Nagase ChemteX Corporation
- 21 g of sodium trimellitate was added thereto as the water soluble curing agent.
- the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- EX-313 glycerol polyglycidyl ether produced by Nagase ChemteX Corporation
- 37 g of c-caprolactam block diphenyl methane diisocyanate water dispersion (total solid content of 50.5%) was added thereto as the blocked isocyanate.
- the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- Example 2 Example 3
- Example 4 Example 1 First sorbitol polyglycidyl ether 45 0 0 0 0 treating glycerol polyglycidyl ether 0 29 29 0 13 agent polyglycerol polyglycidyl ether 0 0 0 29 0 2-ethyl-4-methyl imidazole 5 0 0 0 0 0 sodium terephthalate 0 21 0 0 0 sodium phthalate 0 0 21 0 0 sodium trimellitate 0 0 0 21 0 ⁇ -caprolactam block diphenyl methane diisocyanate 0 0 0 0 0 37 water dispersion (blocked isocyanate) Stability Immediately after preparation Good Good Good Good Good Good Good Good 1 hour after preparation Good Good Good Good Good Not so good 2 hours after preparation Good Good Good Good Good Not so good 3 hours after preparation Good Good Good Good Good Not so good 4 hours after preparation Good Good Good Good Good Good Good Poor 5 hours after preparation Good Good Good Good
- Example 2 Example 3
- Example 4 Example 1 First treating agent sorbitol polyglycidyl ether 45 0 0 0 0 glycerol polyglycidyl ether 0 29 29 0 13 polyglycerol polyglycidyl ether 0 0 0 29 0 2-ethyl-4-methyl imidazole 5 0 0 0 0 0 sodium terephthalate 0 21 0 0 0 sodium phthalate 0 0 21 0 0 sodium trimellitate 0 0 0 21 0 ⁇ -caprolactam block diphenyl methane 0 0 0 0 0 37 diisocyanate water dispersion (blocked isocyanate) Total solid content resorcin-formalin-rubber latex 10 10 10 10 10 10 10 10 10 10 of second treating agent (wt. %)
- Adhesive property Adhesive force (N/cm) 150 145 155 170 140
- the adhesive agent composition using the water soluble curing agent is high in adhesive force and excellent in adhesive property.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Epoxy Resins (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
An object of the present invention is to provide an adhesive agent composition for an organic fiber, the adhesive agent composition hardly causing precipitation or cohesion and having stable adhesive force.
The present invention provides an adhesive agent composition for an organic fiber, the adhesive agent composition including epoxy resin and a water soluble curing agent, and also provides to a method of treating an organic fiber, the method including the steps of: (i) treating the organic fiber with the adhesive agent composition as a first treating agent; and (ii) treating the organic fiber, having been treated with the first treating agent, with a second treating agent containing a resorcin-formalin-rubber latex (RFL).
Description
- The present invention relates to an adhesive agent composition for an organic fiber, the adhesive agent composition bonding rubber and the organic fiber and being used to produce the organic fiber used to reinforce rubber products, such as tires, various hoses, and belts (timing belts, conveyor belts, V belts, and the like) and also relates to a method of treating the organic fiber.
- In rubber used for tires, various hoses, belts (timing belts, conveyor belts, V belts, and the like), and the like, an organic fiber such as a polyester fiber is used as a reinforcing material. For example, as a conventional treatment of sticking a water-based treating agent basically containing epoxy resin and blocked isocyanate onto a polyester fiber for the purpose of bonding the rubber and the polyester fiber, dip in the water-based treating agent has been performed (PTL 1).
- PTL 1: Japanese Laid-Open Patent Application Publication No. 08-035179
- To use the blocked isocyanate in the water-based treating agent, the blocked isocyanate needs to be a water dispersion. However, the dispersion tends to cause precipitation or cohesion. Each time sticking and solidification (so-called gum-up) of the blocked isocyanate occur at a treatment device (especially a squeezing roll) in addition to the precipitation and cohesion in a treatment bath, a manufacturing line needs to be stopped, and stuck and solidified matters need to be removed. This has been a cause of deterioration of treatment efficiency.
- Since the blocked isocyanate exists in the water-based treating agent as the dispersion, it is difficult to apply the blocked isocyanate uniformly to the organic fiber. To obtain stable adhesive force, an excess amount of treating agent needs to be used. This has been a cause of a cost increase.
- The present invention was made under these circumstances, and an object of the present invention is to provide an adhesive agent composition for an organic fiber, the adhesive agent composition hardly causing precipitation or cohesion, facilitating chemical liquid management, and having stable and high adhesive force.
- A first aspect of the present invention relates to an adhesive agent composition for an organic fiber, the adhesive agent composition including epoxy resin and a water soluble curing agent.
- It is preferable that the water soluble curing agent be an imidazole compound or a carboxylate compound.
- It is preferable that the organic fiber be a polyester fiber or an aramid fiber.
- A second aspect of the present invention relates to a method of treating an organic fiber, the method including the steps of:
- (i) treating the organic fiber with the above adhesive agent composition as a first treating agent; and
- (ii) treating the organic fiber, having been treated with the first treating agent, with a second treating agent containing a resorcin-formalin-rubber latex (RFL).
- It is preferable that the organic fiber be a polyester fiber or an aramid fiber.
- A third aspect of the present invention relates to an organic fiber treated by the above method.
- A fourth aspect of the present invention relates to a tire, hose, or belt using the organic fiber treated by the above treating method.
- The present invention provides an adhesive agent composition for an organic fiber, the adhesive agent composition hardly causing precipitation or cohesion, facilitating chemical liquid management, and having stable and high adhesive force, and also provides a method of treating an organic fiber using the adhesive agent composition for the organic fiber. The present invention further provides an organic fiber that can be used as a reinforcing material for a rubber article since the organic fiber has high adhesive force with respect to the rubber article.
- Hereinafter, one example of a preferred embodiment of the present invention will be specifically explained.
- An adhesive agent composition for an organic fiber according to the present invention contains epoxy resin and a water soluble curing agent.
- Epoxy Resin
- The epoxy resin used in the present invention is an epoxy compound having two or more epoxy groups as functional groups in its molecule.
- Examples of the epoxy resin include: glycidyl ether, such as ethylene glycol glycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, bisphenol-A diglycidyl ether, bisphenol-S diglycidyl ether, novolak glycidyl ether, and brominated bisphenol-A diglycidyl ether; glycidyl ester, such as hexahydrophthalic glycidyl ester and dimer acid glycidyl ester; glycidyl amine, such as triglycidyl isocyanurate, glycidyl hydantoin, tetraglycidyl diaminodiphenyl methane, triglycidyl p-aminophenol, triglycidyl m-aminophenol, diglycidyl aniline, diglycidyl toluidine, tetraglycidyl m-xylylenediamine, diglycidyl tribromo aniline, and tetraglycidyl bisamino methyl cyclohexane; and alicyclic or aliphatic epoxide, such as 3,4-epoxy cyclohexyl methyl carboxylate, epoxidized polybutadiene, and epoxidized soybean oil. Each of these examples may be used alone, or two or more of these examples may be used in combination.
- Among these examples, ethylene glycol glycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, and polyglycerol polyglycidyl ether are especially preferable since these are high in water solubility.
- The concentration of the epoxy resin in the present invention is preferably 0.5 to 10 wt. % in a solution or dispersion, more preferably 0.7 to 5 wt. %. This is because: if the concentration is less than 0.5 wt. %, adhesive force decreases; and if the concentration exceeds 10 wt. %, the epoxy resin is gelatinized, and this becomes a cause of, for example, the gum-up.
- Water Soluble Curing Agent
- The water soluble curing agent used in the present invention is not especially limited as long as it has water solubility and can promote a curing reaction of the epoxy resin. In the present invention, the water solubility means that an agent dissolves in water by 1 mass % or more under ordinary temperature and normal pressure.
- The content of the water soluble curing agent used in the present invention is preferably 1 to 300 parts by weight per 100 parts by weight of the epoxy resin, more preferably 5 to 100 parts by weight. This is because: if the content is less than 1 part by weight, the reaction is inadequate, and the adhesive force decreases; and if the content exceeds 300 parts by weight, the curing agent is excessive, and a crosslink density decreases.
- Examples of the water soluble curing agent used in the present invention include: water soluble imidazole compounds, such as 2-methyl imidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methyl imidazole, 1-cyanoethyl-2-methyl imidazole, 1-cyanoethyl-2-undecyl imidazole, 1-cyanoethyl-2-ethyl-4-methyl imidazole, 1-cyanoethyl-2-phenyl imidazole, 1-cyanoethyl-2-phenyl imidazolium trimellitate, 2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine, and 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine; imidazolines, such as 2-phenyl imidazoline; and salt compounds (carboxylate compounds) of carboxylic acids, such as aromatic carboxylic acids, unsaturated carboxylic acids, and saturated carboxylic acids. Examples of the aromatic carboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, p-oxybenzoic acid, dioxybenzoic acid, trioxybenzoic acid, benzoic acid, methylsalicylic acid, oxyphthalic acid, dioxyphthalic acid, and oxyterephthalic acid. Examples of the unsaturated carboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, dodecenyl succinic acid, pentadecenyl succinic acid, and octadecenyl succinic acid. Examples of the saturated carboxylic acids include succinic acid, adipic acid, sebacic acid, azelaic acid, 1,2,3,4-butanetetracarboxylic acid, cyclobutane dicarboxylic acid, cyclohexane dicarboxylic acid, adamantine dicarboxylic acid, and dimethylol butanoic acid.
- Among these examples, 2-methyl imidazole, 2-ethyl imidazole, 2-ethyl-4-methyl imidazole, 1-cyanoethyl-2-methyl-imidazole, and 1-cyanoethyl-2-ethyl-4-methyl-imidazole are preferable as the water soluble imidazole compound since these are high in water solubility. Each of these examples may be used alone, or a mixture of two or more of these examples may be used.
- When the water soluble curing agent used in the present invention is the water soluble imidazole compound, the content thereof is preferably 1 to 50 parts by weight per 100 parts by weight of the epoxy resin, more preferably 3 to 20 parts by weight. This is because: of the content is less than 1 part by weight, the curing may become inadequate; and if the content exceeds 50 parts by weight, the imidazole compound may remain, and the adhesive force may decrease.
- In the present invention, the carboxylate compound is a salt compound constituted by carboxylic acid and metal.
- In the case of using the carboxylate compound, it may be a partial salt, a perfect salt, or a carboxylate compound obtained by hydrolysis of acid anhydride in a treatment bath. It should be noted that the partial salt of the carboxylate compound is a salt in which a part of carboxylic acid groups of a carboxylic acid compound are neutralized, and the perfect salt of the carboxylate compound is a salt in which all the carboxylic acid groups of the carboxylic acid compound are neutralized.
- As the carboxylate compound, isophthalic acid salt compound, terephthalic acid salt compound, trimellitic acid salt compound, pyromellitic acid salt compound, p-oxybenzoic acid salt compound, dioxybenzoic acid salt compound, trioxybenzoic acid salt compound, benzoic acid salt compound, methylsalicylic acid salt compound, oxyphthalic acid salt compound, dioxyphthalic acid salt compound, and oxyterephthalic acid salt compound are preferable since excellent heat resistance can be obtained. Further, to increase the water solubility, sodium salt and potassium salt are preferable. Each of these examples may be used alone, or a mixture of two or more of these examples may be used.
- When the water soluble curing agent used in the present invention is the carboxylate compound, the content thereof is preferably 1 to 300 parts by weight per 100 parts by weight of the epoxy resin, more preferably 10 to 150 parts by weight. This is because: if the content is less than 1 part by weight, a crosslinked structure may become inadequate; and if the content exceeds 300 parts by weight, the carboxylic acid compound may remain, and the adhesive force may decrease.
- Components Other Than Epoxy Resin and Water Soluble Curing Agent
- It is preferable that the adhesive agent composition for the organic fiber according to the present invention be a water-based composition, that is, contain water or a solvent containing water as a major component. The water or the solvent containing the water serves as a solvent that allows dissolution of the water soluble curing agent and is used in a reaction system of the epoxy resin and the water soluble curing agent.
- The adhesive agent composition for the organic fiber according to the present invention may contain the following optional component(s) according to need as long as the object and effects of the present invention are not inhibited. Examples of the optional component include resin copolymerizable with the epoxy resin, a curing agent other than the water soluble curing agent, an organic thickener, an antioxidant, a light stabilizer, an adhesive property improver, a reinforcing agent, a softening agent, a coloring agent, a leveling agent, a flame retardant, an antistatic agent, an antifoaming agent, and a rubber latex.
- Examples of the resin copolymerizable with the epoxy resin include polyvinyl alcohol (PVA), aqueous acrylic resin, and aqueous polyurethane resin. To increase adhesive force and cohesive force of an adhesive layer, polyvinyl alcohol is preferable.
- The curing agent other than the water soluble curing agent is an agent generally used as the curing agent for the epoxy resin, and examples thereof include modified polyamine, polyamide resin, polymercaptan resin, and polysulfide resin.
- Treating Method
- A method of treating an organic fiber according to the present invention includes the steps of: treating an organic fiber with the adhesive agent composition for the organic fiber according to the present invention as a first treating agent; and treating the organic fiber, having been treated with the first treating agent, with a second treating agent containing a resorcin-formalin-rubber latex (RFL).
- When using the adhesive agent composition for the organic fiber according to the present invention as the first treating agent, it is preferable to prepare the adhesive agent composition by dissolving the epoxy resin and the water soluble curing agent in water.
- The total solid content of the first treating agent is preferably 1 to 20 wt. %, more preferably 2 to 10 wt. %. This is because: if the total solid content is less than 1 wt. %, the amount of components of the first treating agent sticking to the organic fiber may become inadequate, and adequate adhesive force may not be obtained; and if the total solid content exceeds 30 wt. %, the amount of components of the first treating agent sticking to the organic fiber may become too large, and as a result, the obtained fiber may become too hard, or a gelled matter may be formed at the fiber or the treatment device.
- Next, the second treating agent is a composition containing the resorcin-formalin-rubber latex (RFL).
- The resorcin-formalin-rubber latex (RFL) can be prepared by mixing and aging of: an initial condensate of resorcin and formalin; and rubber latex.
- The initial condensate of resorcin and formalin is obtained by a condensation reaction between a resorcin monomer and a formaldehyde monomer in water in the presence of: acid catalyst, such as hydrochloric acid or sulfuric acid; alkali metal hydroxide, such as sodium hydroxide; or ammonia.
- In the initial condensate, the mole ratio of the resorcin monomer to the formaldehyde monomer is preferably 1:0.1 to 1:8, more preferably 1:0.5 to 1:5, and further preferably 1:1 to 1:4.
- Examples of the rubber latex include natural rubber latex, styrene-butadiene copolymer latex, and styrene-butadiene-vinylpyridine copolymer latex. In the resorcin-formalin-rubber latex (RFL), a solid content ratio of the initial condensate of resorcin and formalin to the rubber latex is preferably 1:1 to 1:15, more preferably 1:3 to 1:12.
- Each of these examples may be used alone, or a mixture of two or more of these examples may be used. Especially, styrene-butadiene-vinylpyridine copolymer latex is preferable since high adhesive force with respect to natural rubber and SBR (styrene butadiene rubber) can be obtained.
- The initial condensate of resorcin and formalin may contain the resorcin monomer, the formaldehyde monomer, a minute amount of molecular weight regulator (calcium chloride, for example), a solvent (methyl ethyl ketone (MEK), for example), and the like.
- The total solid content of the second treating agent is preferably 5 to 50 wt. %, more preferably 10 to 35 wt. %. This is because: if the total solid content is less than 5 wt. %, the amount of components of the second treating agent sticking to the organic fiber may become small, and adequate adhesive force may not be obtained; and if the total solid content exceeds 50 wt. %, the obtained fiber may become hard, and bending fatigue strength and the like may become low.
- In addition to the initial condensate of resorcin and formalin and the rubber latex, vulcanization regulator, zinc oxide, antioxidant, and the like may be added to the second treating agent.
- In the present invention, treating the organic fiber with the first treating agent denotes a treatment of sticking the first treating agent to the organic fiber, and this can be performed by using an arbitrary method, such as an application using a roller, spraying from a nozzle, or dip in a solution (first treating agent). After the treatment using the first treating agent, the organic fiber to which the first treating agent has stuck may be subjected to a drying treatment at 100 to 250° C. for one to five minutes, and then, may be subjected to a heat treatment at 150 to 250° C. for one to five minutes. The heat treatment is performed preferably at 180 to 240° C. for one minute. If the temperature of the heat treatment is too low, the adhesive force may become inadequate. If the temperature of the heat treatment is too high, the organic fiber may deteriorate, and this may become a cause of strength degradation.
- To prevent the obtained fiber from becoming too hard while obtaining adequate adhesive force, the amount of first treating agent sticking to the organic fiber is preferably 0.1 to 10 wt. %, more preferably 1 to 7 wt. % on the solid content basis.
- In the present invention, treating the organic fiber with the second treating agent denotes a treatment of sticking the second treating agent to the organic fiber which has been treated with the first treating agent, and this treatment may be performed using the same means and conditions as the process of treating the organic fiber with the first treating agent.
- To prevent the obtained fiber form becoming too hard while obtaining adequate adhesive force, the amount of second treating agent sticking to the organic fiber is preferably 0.1 to 10 wt. %, more preferably 0.5 to 5 wt. % on the solid content basis.
- To adjust the amount of agent sticking to the organic fiber, each of the step of treating the organic fiber with the first treating agent and the step of treating the organic fiber with the second treating agent may further adopt a means, such as pressing by a press-contact roller, scraping by a scraper, blow-off by air blowing, suction, or beating by a beater.
- Organic Fiber
- The adhesive agent composition for the organic fiber according to the present invention can be used for organic fibers normally used as reinforcing cords of tires, hoses, belts, and the like. Examples of such organic fibers include nylon fiber, rayon fiber, vinylon fiber, polyester fiber (such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN)), aramid fiber, and polyurethane fiber.
- The organic fiber treated by the method of treating the organic fiber according to the present invention has an excellent adhesive property regarding adhesion between the rubber and the organic fiber. Thus, the adhesive agent component is preferably used for polyester fiber and aramid fiber among the above organic fibers especially since: the adhesion between the rubber and each of polyester fiber and aramid fiber by a conventional method is relatively difficult; and the mechanical strength of the obtained fiber becomes excellent.
- The organic fiber according to the present invention may have any form, such as filament yarn, cord, woven stuff, or woven fabric.
- For example, used as the polyester fiber is fiber prepared in such a manner that: polyethylene terephthalate having yarn viscosity of 0.95 is subjected to melt spinning and stretching to become multifilaments having 1,500 denier; the multifilaments are firstly twisted 40 times per 10 cm to become a primary twisted cord; two primary twisted cords are finally twisted 40 times per 10 cm in an opposite direction to the primary twisted cord.
- Further, for example, used as the aramid fiber is fiber prepared in such a manner that: 1,000 aromatic polyamide multifilaments (Kevlar produced by Du Pont Kabushiki Kaisha) having nominal fineness of 1,500 denier are firstly twisted 35 times per 10 cm to become a primary twisted cord; and two primary twisted cords are finally twisted 35 times per 10 cm in an opposite direction to the primary twisted cord.
- Use
- By using the organic fiber treated with the adhesive agent composition for the organic fiber according to the present invention in tires, hoses, and belts, fracture resistance, fatigue resistance, and durability can be improved.
- The present invention will be explained in more detail using Examples below. However, the present invention is not limited to these Examples. In the following explanation, “part(s)” and “%” denote “part(s) by weight” and “wt. %”, respectively unless otherwise specified.
- 45 g of EX-614B (sorbitol polyglycidyl ether produced by Nagase ChemteX Corporation) was added as the epoxy resin to 950 g of water while stirring the water. Then, 5 g of 2-ethyl-4-methyl imidazole was added thereto as the water soluble curing agent. Thus, the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- Evaluation of Stability
- The adhesive agent composition prepared as the first treating agent was put into a glass tube, and the time-lapse change of the appearance of the treating agent was visually confirmed (immediately after the preparation, an hour after the preparation, and hourly until five hours after the preparation). Thus, the stability was evaluated based on the degree of precipitation.
- The evaluations are made as below, and results are shown in Table 1.
- Good: Precipitation was not observed.
- Not so good: Precipitation was slightly observed.
- Poor: A large amount of precipitated matters were observed.
- Evaluation of Adhesive Property
- 172 g of Nipol 2518FS (vinylpyridine-styrene-butadiene terpolymer water emulsion liquid produced by Zeon Corporation, total solid content of 40.5%) and 73 g of Nipol LX-112 (styrene-butadiene copolymer 41% water emulsion liquid produced by Zeon Corporation, total solid content of 40.5%) were diluted as the rubber latex in 76 g of water. 270 g of a resorcin-formalin initial condensate dispersing liquid (mole ratio of resorcin to formaldehyde of 1:1.5, total solid content of 6.5%) was added as resorcin-formalin to this diluent while slowly stirring the diluent. Thus, a RFL liquid was prepared. The obtained RFL liquid was diluted in 591 g of water. Thus, the second treating agent (total solid content of 10%) was prepared.
- As the polyester fiber, a polyester cord (1,500 denier, two twisted cords, primary twisting of 40 times per 10 cm, final twisting of 40 times per 10 cm) was dipped in the first treating agent. The polyester cord was then dried at 150° C. for 130 seconds and was further subjected to a heat treatment at 240° C. for 130 seconds. Next, the polyester cord was dipped in the second treating agent. The polyester cord was then dried at 150° C. for 130 seconds and was further subjected to the heat treatment at 240° C. for 70 seconds.
- Based on “Test methods for chemical fiber tire cords” of JIS L 1017, the treated polyester cord was embedded in unvulcanized rubber containing natural rubber as a major component and was subjected to press vulcanization at 150° C. for 30 minutes. Next, the polyester cord was pulled out from a rubber block at a speed of 350 mm/minute. Force required for the pulling-out was shown by N/cm. Thus, the adhesive property was evaluated. Results are shown in Table 2.
- 29 g of EX-313 (glycerol polyglycidyl ether produced by Nagase ChemteX Corporation) was added as the epoxy resin to 950 g of water while stirring the water. Then, 21 g of sodium terephthalate was added thereto as the water soluble curing agent. Thus, the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- The stability and the adhesive property were evaluated in the same manner as in Example 1. Results are shown in Tables 1 and 2.
- 29 g of EX-313 (glycerol polyglycidyl ether produced by Nagase ChemteX Corporation) was added as the epoxy resin to 950 g of water while stirring the water. Then, 21 g of sodium phthalate was added thereto as the water soluble curing agent. Thus, the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- The stability and the adhesive property were evaluated in the same manner as in Example 1. Results are shown in Tables 1 and 2.
- 29 g of EX-512 (polyglycerol polyglycidyl ether produced by Nagase ChemteX Corporation) was added as the epoxy resin to 950 g of water while stirring the water. Then, 21 g of sodium trimellitate was added thereto as the water soluble curing agent. Thus, the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- The stability and the adhesive property were evaluated in the same manner as in Example 1. Results are shown in Tables 1 and 2.
- 13 g of EX-313 (glycerol polyglycidyl ether produced by Nagase ChemteX Corporation) was added as the epoxy resin to 950 g of water while stirring the water. Then, 37 g of c-caprolactam block diphenyl methane diisocyanate water dispersion (total solid content of 50.5%) was added thereto as the blocked isocyanate. Thus, the adhesive agent composition for the organic fiber was prepared as the first treating agent.
- The stability and the adhesive property were evaluated in the same manner as in Example 1. Results are shown in Tables 1 and 2.
-
TABLE 1 Comparative Example 1 Example 2 Example 3 Example 4 Example 1 First sorbitol polyglycidyl ether 45 0 0 0 0 treating glycerol polyglycidyl ether 0 29 29 0 13 agent polyglycerol polyglycidyl ether 0 0 0 29 0 2-ethyl-4-methyl imidazole 5 0 0 0 0 sodium terephthalate 0 21 0 0 0 sodium phthalate 0 0 21 0 0 sodium trimellitate 0 0 0 21 0 ε-caprolactam block diphenyl methane diisocyanate 0 0 0 0 37 water dispersion (blocked isocyanate) Stability Immediately after preparation Good Good Good Good Good 1 hour after preparation Good Good Good Good Not so good 2 hours after preparation Good Good Good Good Not so good 3 hours after preparation Good Good Good Good Not so good 4 hours after preparation Good Good Good Good Not so good 5 hours after preparation Good Good Good Good Poor -
TABLE 2 Comparative Example 1 Example 2 Example 3 Example 4 Example 1 First treating agent sorbitol polyglycidyl ether 45 0 0 0 0 glycerol polyglycidyl ether 0 29 29 0 13 polyglycerol polyglycidyl ether 0 0 0 29 0 2-ethyl-4-methyl imidazole 5 0 0 0 0 sodium terephthalate 0 21 0 0 0 sodium phthalate 0 0 21 0 0 sodium trimellitate 0 0 0 21 0 ε-caprolactam block diphenyl methane 0 0 0 0 37 diisocyanate water dispersion (blocked isocyanate) Total solid content resorcin-formalin-rubber latex 10 10 10 10 10 of second treating agent (wt. %) Adhesive property Adhesive force (N/cm) 150 145 155 170 140 - As is clear from Table 1, as compared to a case (Comparative Example 1) where the blocked isocyanate is used, the adhesive agent composition using the water soluble curing agent does not cause precipitation and is extremely stable.
- As is clear from Table 2, as compared to a case (Comparative Example 1) where the blocked isocyanate is used, the adhesive agent composition using the water soluble curing agent is high in adhesive force and excellent in adhesive property.
Claims (7)
1. An adhesive agent composition for an organic fiber,
the adhesive agent composition comprising epoxy resin and a water soluble curing agent.
2. The adhesive agent composition according to claim 1 , wherein the water soluble curing agent is an imidazole compound or a carboxylate compound.
3. The adhesive agent composition according to claim 1 , wherein the organic fiber is a polyester fiber or an aramid fiber.
4. A method of treating an organic fiber,
the method comprising the steps of:
(i) treating the organic fiber with the adhesive agent composition according to claim 1 as a first treating agent; and
(ii) treating the organic fiber, having been treated with the first treating agent, with a second treating agent containing a resorcin-formalin-rubber latex (RFL).
5. The method according to claim 4 , wherein the organic fiber is a polyester fiber or an aramid fiber.
6. An organic fiber treated by the method according to claim 4 .
7. A tire, hose, or belt using the organic fiber according to claim 6 .
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014018733A JP6402888B2 (en) | 2014-02-03 | 2014-02-03 | Adhesive composition for organic fiber and method for treating organic fiber |
| JP2014-018733 | 2014-02-03 | ||
| PCT/JP2015/000468 WO2015115118A1 (en) | 2014-02-03 | 2015-02-03 | Adhesive composition for organic fibers, and method for treating organic fibers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170167076A1 true US20170167076A1 (en) | 2017-06-15 |
Family
ID=53756696
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/116,121 Abandoned US20170167076A1 (en) | 2014-02-03 | 2015-02-03 | Adhesive agent composition for organic fiber and method of treating organic fiber |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20170167076A1 (en) |
| EP (1) | EP3103915A4 (en) |
| JP (1) | JP6402888B2 (en) |
| KR (1) | KR20160108302A (en) |
| CN (1) | CN105874118B (en) |
| WO (1) | WO2015115118A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210324938A1 (en) * | 2018-10-12 | 2021-10-21 | Mitsubishi Hitachi Tool Engineering, ltd | Friction transmission belt and production method therefor |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20190037194A (en) * | 2016-06-30 | 2019-04-05 | 나가세케무텍쿠스가부시키가이샤 | Organic fiber treating composition and method of treating organic fiber |
| WO2023189712A1 (en) * | 2022-03-31 | 2023-10-05 | 明成化学工業株式会社 | Cross-linker composition, fiber treatment agent for rubber reinforcement, fiber treatment agent kit for rubber reinforcement, method for producing fiber for rubber reinforcement, fiber for rubber reinforcement, and rubber product |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030027920A1 (en) * | 2001-01-26 | 2003-02-06 | Takashi Kinoshita | Rubber composition, a method of making the rubber composition, a power transmission belt made from rubber composition and a method of making the power transmission belt |
| US20100178482A1 (en) * | 2006-09-28 | 2010-07-15 | Nitto Denko Corporation | Reinforcing material for vehicle ceiling material |
| WO2012114967A1 (en) * | 2011-02-24 | 2012-08-30 | ゲイツ・ユニッタ・アジア株式会社 | Toothed belt |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0107887B2 (en) * | 1982-11-02 | 1994-08-17 | Akzo Nobel N.V. | Adhesive-coated multifilament yarn of an aromatic polyamide and a method for the manufacture thereof |
| JPS62149978A (en) * | 1985-12-24 | 1987-07-03 | 東邦レーヨン株式会社 | Special treated carbon fiber cord for reinforcing rubber |
| JPS6426784A (en) * | 1987-04-28 | 1989-01-30 | Kanebo Ltd | Method for processing silk fiber |
| JPH0835179A (en) | 1994-05-19 | 1996-02-06 | Teijin Ltd | Method for treating polyester fiber |
| ES2388534T3 (en) * | 1998-12-28 | 2012-10-16 | Bridgestone Corporation | Composition of adhesive, resin material, rubber article and pneumatic cover |
| JP2000303044A (en) * | 1999-04-19 | 2000-10-31 | Yokohama Rubber Co Ltd:The | Adhesive for polyester fiber-rubber, and procedure for gluing between polyester fiber and rubber |
| US6908676B2 (en) * | 2001-01-25 | 2005-06-21 | Unitta Company | Transmission belt and method of treatment for bonding with poly-p-phenylene benzobisoxazole fiber |
| JP2002317855A (en) * | 2001-01-25 | 2002-10-31 | Gates Unitta Asia Co | Transmission belt and adhesion method of poly-phenylene benzobisoxazole fiber |
-
2014
- 2014-02-03 JP JP2014018733A patent/JP6402888B2/en not_active Expired - Fee Related
-
2015
- 2015-02-03 EP EP15743190.9A patent/EP3103915A4/en not_active Withdrawn
- 2015-02-03 WO PCT/JP2015/000468 patent/WO2015115118A1/en not_active Ceased
- 2015-02-03 US US15/116,121 patent/US20170167076A1/en not_active Abandoned
- 2015-02-03 CN CN201580003450.9A patent/CN105874118B/en not_active Expired - Fee Related
- 2015-02-03 KR KR1020167013136A patent/KR20160108302A/en not_active Withdrawn
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030027920A1 (en) * | 2001-01-26 | 2003-02-06 | Takashi Kinoshita | Rubber composition, a method of making the rubber composition, a power transmission belt made from rubber composition and a method of making the power transmission belt |
| US20100178482A1 (en) * | 2006-09-28 | 2010-07-15 | Nitto Denko Corporation | Reinforcing material for vehicle ceiling material |
| WO2012114967A1 (en) * | 2011-02-24 | 2012-08-30 | ゲイツ・ユニッタ・アジア株式会社 | Toothed belt |
| US20140080647A1 (en) * | 2011-02-24 | 2014-03-20 | The Gates Corporation | Toothed belt |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210324938A1 (en) * | 2018-10-12 | 2021-10-21 | Mitsubishi Hitachi Tool Engineering, ltd | Friction transmission belt and production method therefor |
| US11796034B2 (en) * | 2018-10-12 | 2023-10-24 | Mitsuboshi Belting Ltd. | Friction transmission belt and production method therefor |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105874118B (en) | 2018-12-21 |
| WO2015115118A1 (en) | 2015-08-06 |
| EP3103915A4 (en) | 2017-10-18 |
| EP3103915A1 (en) | 2016-12-14 |
| CN105874118A (en) | 2016-08-17 |
| KR20160108302A (en) | 2016-09-19 |
| JP6402888B2 (en) | 2018-10-10 |
| JP2015145544A (en) | 2015-08-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018003572A1 (en) | Adhesive for organic fiber and method for treating organic fiber | |
| JP2010053465A (en) | Polyester fiber cord for rubber reinforcement | |
| US20170167076A1 (en) | Adhesive agent composition for organic fiber and method of treating organic fiber | |
| WO2015115119A1 (en) | Adhesive composition for organic fibers, and method for treating organic fibers | |
| JP7760832B2 (en) | Adhesive treatment agent for rubber and fiber and synthetic fiber cord for rubber reinforcement using the same | |
| JP2019178294A (en) | Adhesive composition for organic fiber, method of treating organic fiber, organic fiber, and tire | |
| JP2010053469A (en) | Method for producing reinforcing fiber | |
| JP2002309220A (en) | Treating liquid for adhering rubber to fiber and treating method of rubber-reinforcing fiber | |
| TW202206671A (en) | Treatment agent, synthetic fiber cord treated using said treatment agent, and rubber product | |
| WO2018003570A1 (en) | Organic fiber treatment composition and method for treating organic fiber | |
| JP2021155870A (en) | Polyparaphenylene terephthalamide fiber complex, code using it | |
| JP5584050B2 (en) | Hybrid cord for reinforcing rubber and method for manufacturing the same | |
| JP2017150106A (en) | Polyester fiber cord | |
| JP2021134445A (en) | Aramid fibers, cords using them, and methods for manufacturing them | |
| JP5519401B2 (en) | Method for producing rubber reinforcing fiber | |
| JP7088701B2 (en) | Composite fiber cord for rubber reinforcement and its manufacturing method | |
| JP5145264B2 (en) | Method for producing rubber reinforcing fiber | |
| JP2011026743A (en) | Polyester fiber cord for rubber reinforcement and tire | |
| JP5080512B2 (en) | Manufacturing method of reinforcing fiber | |
| JP2009299220A (en) | Synthetic fiber for reinforcing rubber | |
| JP2005023481A (en) | Carbon fiber cord for rubber reinforcement and fiber-reinforced rubber material | |
| JP2025138042A (en) | Synthetic fiber cord for rubber reinforcement | |
| JP2021042503A (en) | Hybrid cord for rubber reinforcement | |
| JP2012167391A (en) | Rubber-reinforcing polyester slit yarn and method for manufacturing the same | |
| JP2006200076A (en) | Polyester fiber cord for rubber reinforcement and method for producing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NAGASE CHEMTEX CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJII, SATORU;HOSOMI, TETSUYA;FUSHIKI, MASATO;SIGNING DATES FROM 20160817 TO 20160819;REEL/FRAME:039674/0640 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |