[go: up one dir, main page]

US20170158773A1 - Immunoglobulin variants and uses thereof - Google Patents

Immunoglobulin variants and uses thereof Download PDF

Info

Publication number
US20170158773A1
US20170158773A1 US15/217,838 US201615217838A US2017158773A1 US 20170158773 A1 US20170158773 A1 US 20170158773A1 US 201615217838 A US201615217838 A US 201615217838A US 2017158773 A1 US2017158773 A1 US 2017158773A1
Authority
US
United States
Prior art keywords
antibody
cells
antibodies
binding
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/217,838
Inventor
Camellia W. Adams
Andrew C. Chan
Craig W. Crowley
Henry B. Lowman
Gerald R. Nakamura
Leonard G. Presta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32685285&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20170158773(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to US15/217,838 priority Critical patent/US20170158773A1/en
Publication of US20170158773A1 publication Critical patent/US20170158773A1/en
Priority to US15/905,406 priority patent/US20190071511A1/en
Priority to US17/235,805 priority patent/US20220002430A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • A61P5/40Mineralocorticosteroids, e.g. aldosterone; Drugs increasing or potentiating the activity of mineralocorticosteroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the invention relates to anti-CD20 antibodies and their use in the treatment of B-cell related diseases.
  • Lymphocytes are one of several populations of white blood cells; they specifically recognize and respond to foreign antigen.
  • the three major classes of lymphocytes are B lymphocytes (B cells), lymphocytes (T cells) and natural killer (NK) cells.
  • B lymphocytes are the cells responsible for antibody production and provide humoral immunity.
  • B cells mature within the bone marrow and leave the marrow expressing an antigen-binding antibody on their cell surface.
  • a naive B cell first encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide rapidly and its progeny differentiate into memory B cells and effector cells called “plasma cells”.
  • Memory B cells have a longer life span and continue: to express membrane-bound antibody with the same specificity as the original parent cell. Plasma cells do not produce membrane-bound antibody but instead produce secreted form of the antibody. Secreted antibodies are the major effector molecules of humoral immunity.
  • the CD20 antigen also called human B-lymphocyte-restricted differentiation antigen, Bp35
  • Bp35 human B-lymphocyte-restricted differentiation antigen
  • CD20 is thought to regulate an early step(s) in the activation process for cell cycle initiation and differentiation (Tedder et al., supra) and possibly functions as a calcium ion channel (Tedder et al. J. Cell. Biochem. 14D:195 (1990)).
  • CD20 in B cell lymphomas this antigen has been a useful therapeutic target to treat such lymphomas.
  • the rituximab (RITUXAN®) antibody which is a genetically engineered chimeric; murine human monoclonal antibody directed against human CD20 antigen (commercially available from Genentech, Inc., South San Francisco, Calif., U.S.) is used for the treatment of patients with relapsed or refractory low-grade or follicular, CD20 positive, B cell non-Hodgkin's lymphoma.
  • Rituximab is the antibody referred to as “C2B8” in U.S. Pat. No. 5,736,137 issued Apr. 7, 1998 (Anderson at al.) and in U.S. Pat. No. 5,776,456.
  • RITUXAN® binds human complement and lyses lymphoid B cell lines through complement-dependent cytotoxicity (CDC) (Reff et al. Blood 83(2):435-445 (1994)). Additionally, it has significant activity in assays for antibody-dependent cellular cytotoxicity (ADCC).
  • RITUXAN® depletes B cells from the peripheral blood, lymph nodes, and bone marrow of cynomolgus monkeys, presumably through complement and cell-mediated processes (Reff et al. Blood 83(2):435-445 (1994)).
  • Other anti-CD20 antibodies indicated for the treatment of NHL include the murine antibody ZevalinTM which is linked to the radioisotope, Yttrium-90 (IDEC Pharmaceuticals. San Diego, Calif.), BexxarTM which is a another fully murine antibody conjugated to 1-131 (Corixa, Wash.).
  • HAMA human anti-mouse antibody
  • the present invention satisfies this and other needs.
  • the present invention provides anti-CD20 antibodies that overcome the limitations of current therapeutic compositions as well as offer additional advantages that will be apparent from the detailed description below.
  • the present invention provides CD20 binding antibodies or functional fragments thereof, and their use in the treatment of B-cell associated diseases. These antibodies are monoclonal antibodies.
  • the antibodies that bind CD20 are humanized or chimeric.
  • the humanized 2H7 variants include those that have amino acid substitutions in the FR and affinity maturation variants with changes in the grafted CDRs.
  • the substituted amino acids in the CDR or FR are not limited to those present in the donor or recipient antibody.
  • the anti-CD20 antibodies of the invention further comprise changes in amino acid residues in the Fc region that lead to improved effector function including enhanced CDC and/or ADCC function and B-cell killing (also referred to herein as B-cell depletion).
  • anti-CD20 antibodies of the invention include those having specific changes that improve stability.
  • the humanized 2H7 variants with increased stability are as described in example 6 below. Fucose deficient variants having improved ADCC function in vivo are also provided.
  • the chimeric anti-CD20 antibody has murine V regions and human C region.
  • One such specific chimeric anti-CD20 antibody is Rituxan® (Rituximab®; Genentech, Inc.).
  • the humanized CD20 binding antibody is 2H7.v16 having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, as shown in FIG. 6 and FIG. 7 .
  • the polypeptide sequences in FIGS. 6, 7 and 8 it should be understood that the first 19 or so amino acids that form the secretory signal sequence are not present in the mature polypeptide.
  • the V region of all other variants based on version 16 will have the amino acid sequences of v16 except at the positions of amino acid substitutions which are indicated in the disclosure. Unless otherwise indicated, the 2H7 variants will have the same L chain as that of v16.
  • the invention provides a humanized antibody that binds human CD20, or an antigen-binding fragment thereof, wherein the antibody is effective to deplete primate B cells in vivo, the antibody comprising in the H chain Variable region (V H ) at least a CDR3 sequence of SEQ ID NO. 12 from an anti-human CD20 antibody and substantially the human consensus framework (FR) residues of human heavy chain subgroup III (V H III).
  • the primate B cells are from human and Cynornolgus monkey.
  • the antibody further comprises the H chain CDR1 sequence of SEQ ID NO. 10 and CDR2 sequence of SEQ ID NO. 11.
  • the preceding antibody comprises the L chain CDR1 sequence of SEQ ID NO.
  • V ⁇ I human consensus framework residues of human light chain ⁇ subgroup I
  • the FR region in V L has a donor antibody residue at position 46; in a specific embodiment, FR2 in V L has an amino acid substitution of leuL46pro (Leu in the human 1 ⁇ I consensus sequence changed to pro which is present in the corresponding position in m2H7).
  • the VH region further comprises a donor antibody residue at at least amino acid positions 49, 71 and 73 in the framework.
  • the following FR positions in the human heavy chain subgroup III are substituted: AlaH49Gly in FR2; ArgH71Val and AsnH73Lys in FR3.
  • the CDR regions in the humanized antibody further comprise amino acid substitutions where the residues are neither from donor nor recipient antibody.
  • the antibody of the preceding embodiments can comprise the V H sequence of SEQ ID NO.8 of v16, as shown in FIG. 1B .
  • the antibody further comprises the V L L sequence of SEQ ID NO.2 of v16, as shown in FIG. 1A .
  • the humanized antibody is 2H7.v31 having the tight and heavy chain amino acid sequence of SEQ ID NO. 21 and 23, respectively, as shown in FIG. 6 and FIG. 8 ; 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO. 23 as shown in FIG. 8 ; 2H7.v96 with the amino acid substitutions of D56A and N100A in the H chain and S92A in the L chain of v16.
  • the antibody of any of the preceding embodiments further comprises at least one amino acid substitution in the Fc region that improves ADCC and/or CDC activity over the original or parent antibody from which it was derived, v.16 being the parent antibody being compared to in most cases, and Rituxan in other cases.
  • One such antibody with improved activity comprises the triple Alanine substitution of S298.A/E333A/K334A in the Pc region.
  • One antibody having 8298A/E333A/K334A substitution is 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO. 23.
  • Antibody 2H7.v114 and 2H7.v115 show at least 10-fold improved ADCC activity as compared to Rituxan.
  • the antibody further comprises at least one amino acid substitution in the Fc region that decreases CDC activity as compared to the parent antibody from which it was derived which is v16 in most cases.
  • One such antibody with decreased CDC activity as compared to v16 comprises at least the substitution K322A in the II chain. The comparison of ADCC and CDC activity can be assayed as described in the examples.
  • the antibodies of the invention are full length antibodies wherein the V H region is joined to a human IgG heavy chain constant region.
  • the IgG is human IgG1 or IgG3.
  • the CD20 binding antibody is conjugated to a cytotoxic agent.
  • the cytotoxic agent is a toxin or a radioactive isotope.
  • the antibodies of the invention for use in therapeutic or diagnostic purposes are produced in CHO cells.
  • compositions comprising an antibody of any one of the preceding embodiments, and a carrier.
  • the carrier is a pharmaceutically acceptable carrier.
  • the invention also provided a liquid formulation comprising a humanized 2H7 antibody at 20 mg/mL antibody, 10 mM histidine sulfate pH5.8, 60 mg/ml sucrose (6%), 0.2 mg/ml polysorbate 20 (0.02%).
  • the invention also provides an isolated nucleic acid that encodes any of the antibodies disclosed herein, including an expression vector for expressing the antibody.
  • host cells comprising the preceding nucleic acids,and host cells that produce the antibody.
  • the host cell is a CHO cell.
  • a method of producing these antibodies is provided, the method comprising culturing the host cell that produces the antibody and recovering the antibody from the cell culture.
  • Yet another aspect of the invention is an article of manufacture comprising a container and a composition contained therein, wherein the composition comprises an antibody of any of the preceding embodiments.
  • the article of manufacture further comprises a package insert indicating that the composition is used to treat non-Hodgkin's lymphoma.
  • a further aspect of the invention is a method of inducing apoptosis in B cells in vivo, comprising contacting B cells with the antibody of any of the preceding, thereby killing the B cells.
  • the invention also provides methods of treating the diseases disclosed herein by administration of a CD20 binding antibody or functional fragment thereof, to a mammal such as a human patient suffering from the disease.
  • a CD20 binding antibody or functional fragment thereof in any of the methods for treating an autoimmune disease or a CD20 positive cancer, in one embodiment, the antibody is 2H7.v16 having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, as shown in FIGS. 6 and FIG. 7 .
  • one embodiment is a method of treating a CD20 positive cancer, comprising administering to a patient suffering from the cancer, a therapeutically effective amount of a humanized CD20 binding antibody of the invention.
  • the CD20 positive cancer is a B cell lymphoma or leukemia including non-Hodgkin's lymphoma (NHL) or lymphocyte predominant Hodgkin's disease (LPHD), chronic lymphocytic leukemia (CLL) or SLL.
  • the antibody is administered at a dosage range of about 275-375 mg/m 2 .
  • the treatment method further comprises administering to the patient at least one chemotherapeutic agent, wherein for non-Hodgkin's lymphoma (NHL), the chemotherapeutic agent is selected from the group consisting of doxorubicin, cyclophosphamide, vincristine and prednisolone.
  • NTL non-Hodgkin's lymphoma
  • a method of treating an autoimmune disease comprising administering to patient suffering from the autoimmune disease, a therapeutically effective amount of the humanized CD20 binding antibody of any one of the preceding claims.
  • the autoimmune disease is selected from the group consisting of rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), autoimmune thrombocytopenia, multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Sjorgen's syndrome and glomerulonephritis.
  • the antibody can be administered in conjunction with rheumatoid arthritis
  • the CD20 binding antibodies can he administered alone or in conjunction with a second therapeutic agent such as a second antibody, or a chemotherapeutic agent or an immunosuppressive agent.
  • the second antibody can he one that binds CD20 or a different B cell antigen, or a NK or T cell antigen.
  • the second antibody is a radiolabeled anti-CD20 antibody.
  • the CD20 binding antibody is conjugated to a cytotoxic agent including a toxin or a radioactive isotope.
  • the invention provides a method of treating an autoimmune disease selected from the group consisting, of Dermatomyositis, Wegner's granulomatosis, ANCA, Aplastic anemia, Autoimmune hemolytic anemia (AIHA), factor VIII deficiency, hemophilia A, Autoimmune neutropenia, Castleman's syndrome, Goodpasture's syndrome, solid organ transplant rejection, graft versus host disease (GVHD), IgM mediated, thrombotic thrombocytopenic purpura (TTP), Hashimoto's Thyroiditis, autoimmune hepatitis, lymphoid interstitial pneumonitis (HIV), bronchiolitis obliterans (non-transplant) vs.
  • an autoimmune disease selected from the group consisting, of Dermatomyositis, Wegner's granulomatosis, ANCA, Aplastic anemia, Autoimmune hemolytic anemia (AIHA), factor VIII deficiency, hemophilia A
  • NSIP Guillain-Barre Syndrome
  • large vessel vasculitis giant cell (Takayasu's) arteritis
  • medium vessel vasculitis Kawasaki's Disease
  • polyarteritis nodosa comprising administering to a patient suffering from the disease, a therapeutically effective amount of a CD20 binding antibody.
  • the CD20 binding antibody is Rituxan®.
  • the invention also provides an isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO.: 24 of the Cynomolgus monkey CD20 (shown in FIG. 19 ), or a degenerate variant of this sequence.
  • One embodiment is an isolated nucleic acid comprising a sequence that encodes a polypeptide with the amino acid sequence of SEQ ID NO. 25 (shown FIG. 20 ), or SEQ ID NO. 25 ( FIG. 20 ) with conservative amino acid substitutions.
  • Another embodiment is a vector comprising the preceding nucleic acid, including an expression vector for expression in a host cell. Included as well is a host cell comprising the vector.
  • a isolated polypeptide comprising the amino acid sequence [SEQ ID NO. 25; FIG. 20 ] of the Cynomolgus monkey CD20.
  • FIG. 1A is a sequence alignment comparing the amino acid sequences of the light chain variable domain (V L ) of each of murine 2H7 (SEQ ID NO. 1), humanized 2H7. v16 variant (SEQ ID NO. 2), and human kappa light chain subgroup I (SEQ ID NO. 3).
  • the CDRs of V L of 2H7 and hu2H7.v16 are follows: CDR1 (SEQ ID NO.4), CDR2 (SEQ ID NO.5), and CDR3 (SEQ ID NO.6).
  • FIG. 1B is a sequence alignment which compares the V H sequences of murine 2H7 (SEQ ID NO. 7), humanized 2H7.v16 variant (SEQ ID NO. 8), and the human consensus sequence of heavy chain subgroup III (SEQ ID NO. 9).
  • the CDRs of V H of 2H7 and hu2H7.v16 are as follow: CDR1 (SEQ ID NO.10), CDR2 (SEQ ID NO.11), and CDR3 (SEQ ID NO.12).
  • FIG. 1A and FIG. 1B the CDR1, CDR2 and CDR3 in each chain are enclosed within brackets, flanked by the framework regions, FR1-FR4, as indicated.
  • 2H7 refers to the murine 2H7 antibody.
  • the asterisks in between two rows of sequences indicate the positions that are different between the two sequences. Residue numbering is according to Kabat et al., Sequences of Immunological Interest. 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), with insertions shown as a, b, c, d, and e.
  • FIG. 2A-2E show the sequence of phagemid pVX4 (SEQ II) NO.13) used for construction of 2H7 Fab plasmids (see Example 1) as well as the amino acid sequences of the L chain (SEQ ID NO.14) and H chain (SEQ ID NO.15) of the Fab for the CDR grafted anti-IFN- ⁇ humanized antibody.
  • FIG. 3A-3E show the sequence of the expression plasmid which encodes the chimeric 2H7.v6.8 Fab (SEQ ID NO.16). The amino acid sequences of the L chain (SEQ ID NO.17) and H chain (SEQ ID NO.18) are shown.
  • FIG. 4A and 4B show the sequence of the plasmid pDR1 (SEQ ID NO.19; 5391 bp) for expression of immunoglobulin light chains as described in Example 1.
  • pDR1 contains sequences encoding an irrelevant antibody, the light chain of a humanized anti-CD3 antibody (Shalaby et al., J. Exp. Med. 175: 217-225 (1992)), the start and stop codons for which are indicated in bold and underlined.
  • FIG. 5A and 5B show the sequence of plasmid pDR2 (SEQ ID NO.20; 6135 bp) for expression of immunoglobulin heavy chains as described in Example 1.
  • pDR2 contains sequences encoding an irrelevant antibody, the heavy chain of a humanized anti-CD3 antibody (Shalaby et al., supra), the start and stop codons for which are indicated in bold and underlined.
  • FIG. 6 shows the amino acid sequence of the 2H7.v16 complete L chain (SEQ ID NO.21). The first 19 amino acids before DIQ are the secretory signal sequence not present in the mature polypeptide chain.
  • FIG. 7 shows the amino acid sequence of the 2H7.v16 complete H chain (SEQ ID NO.22).
  • the first 19 amino acids before EVQ before are the secretory signal sequence not present in the mature polypeptide chain.
  • Aligning, the V H sequence in FIG. 1B (SEQ ID NO. 8) with the complete H chain sequence, the human ⁇ 1 constant region is from amino acid position 114-471 in SEQ ID NO. 22.
  • FIG. 8 shows the amino acid sequence of the 2H7.v31 complete H chain (SEQ ID NO.23).
  • the first 19 amino acids before EVQ before are the secretory signal sequence not present in the mature polypeptide chain.
  • the L chain is the same as for 2H7.v16 (see FIG. 6 ).
  • FIG. 9 shows the relative stability of 2H7.v.16 and 2H7.v73 IgG variants as described in Example 6. Assay results were normalized to the values prior to incubation and reported as percent remaining after incubation.
  • FIG. 10 is a flow chart summarizing the amino acid changes from the murine 2H7 to a subset of humanized versions up to v75.
  • FIG. 11 is a summary of mean absolute B-cell count [CD3 ⁇ /CD40+] in all groups (2H7 study and Rituxan study combined), as described in Example 10.
  • FIG. 12 shows the results of a representative ADCC assay on fucose deficient 2H7 variants as described in Example 11.
  • FIG. 13 shows the results of the Annexin V staining plotted as a function of antibody concentration.
  • Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles), Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS.
  • FIGS. 13-15 are described in Example 13.
  • FIG. 14 shows the results of the Annexin V and propidium iodide double-staining are plotted as a function of antibody concentration.
  • Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles).
  • Rituximab squares
  • rhuMAb 2H7.v16 triangles
  • FIG. 15 shows the counts (per 10 s) of live, unstained cells are plotted as a function of antibody concentration.
  • Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles), Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS.
  • an irrelevant IgG1 control antibody Herceptin®; circles
  • Rituximab squares
  • rhuMAb 2H7.v16 triangles
  • FIG. 19 shows the nucleotide (SEQ ID NO. 24) and amino acid (SEQ ID NO. 25) sequences of Cynomolgus monkey CD20, as described in Example 15.
  • FIG. 20 shows the amino acid sequence for cynomolgus monkey CD20 (SEQ ID NO. 25). Residues that differ from human CD20 are underlined and the human residues (SEQ ID NO. 26) are indicated directly below the monkey residue. The putative extracellular domain of the monkey CD20 is in bold type.
  • FIG. 21 shows the results of Cynomolgus monkey cells expressing CD20 binding to hu2H7.v16,.v31, and Rituxan, as described in Example 15.
  • the antibodies were assayed for the ability to bind and displace FITC-conjugated murine 2H7 binding to cynomolgus CD20.
  • FIG. 22 shows dose escalation schema for rheumatoid arthritis phase clinical trial.
  • FIG. 23 shows the vector for expression of 2H7.v16 in CHO cells.
  • the “CD20” antigen is a non-glycosylated, transmembrane phosphoprotein with a molecular weight of approximately 35 kD that is found on the surface of greater than 90% of B cells from peripheral blood or lymphoid organs. CD20 is expressed during early pre-B cell development and remains until plasma cell differentiation; it is not found on human stem cells, lymphoid progenitor cells or normal plasma cells. CD20 is present on both normal B cells as well as malignant B cells. Other names for CD20 in the literature include “B-lymphocyte-restricted differentiation antigen” and “Bp35”. The CD20 antigen is described in, for example, Clark and Ledbetter, Adv. Can. Res. 52:81-149 (1989) and Valentine et al. J. Biol. Chem. 264(19):11282-11287(1989).
  • antibody is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), multispecific antibodies (e.g.., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity or function.
  • the biological activity of the CD20 binding and humanized CD20 binding antibodies of the invention will include at least binding of the antibody to human CD20, more preferably binding to human and other primate CD20 (including cynomolgus monkey, rhesus monkey, chimpanzees).
  • the antibodies would bind CD20 with a K d value of no higher than 1 ⁇ 10 ⁇ 8 , preferably a K d value no higher than about 1 ⁇ 10 ⁇ , and be able to kill or deplete B cells in vivo, preferably by at least 20% when compared to the appropriate negative control which is not treated with such an antibody.
  • B cell depletion can be a result of one or more of ADCC, CDC, apoptosis, or other mechanism.
  • specific effector functions or mechanisms may be desired over others and certain variants of the humanized 2H7 are preferred to achieve those biological functions, such as ADCC.
  • Antibody fragments comprise a portion of a full length antibody, generally the antigen binding or variable region thereof.
  • Examples of antibody fragments include Fab, Fab′, F(ab′) 2 , and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • the term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567).
  • the “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991), for example.
  • “Functional fragments” of the CD20 binding antibodies of the invention are those fragments that retain binding to CD20 with substantially the same affinity as the intact fall length molecule from which they are derived and show biological activity including depleting B cells as measured by in vitro or in vivo assays such as those described herein.
  • variable refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies.
  • the V domain mediates antigen binding and defines specificity of a particular antibody for its particular antigen.
  • variability is not evenly distributed across the 110-amino acid span of the variable domains.
  • the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called “hypervariable regions” that are each 9-12 amino acids long.
  • FRs framework regions
  • hypervariable regions that are each 9-12 amino acids long.
  • the variable domains of native heavy and light chains each comprise four FRs, largely adopting a ⁇ -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
  • the hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
  • hypervariable region when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding.
  • the hypervariable region generally comprises amino acid residues front a “complementarity determining region” or “CDR” (e.g. around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the V L , and around about 31-35B (H1), 50-65 (H2) and 95-102 (H3) in the V H (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.
  • CDR complementarity determining region
  • residues from a “hypervariable loop” e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the V L , and 26-32 (H1), 52A-55 (H2) and 96-101 (H3) in the V H (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)).
  • the “consensus sequence” or consensus V domain sequence is an artificial sequence derived from a comparison of the amino acid sequences of known human immunoglobulin variable region sequences. Based on these comparisons, recombinant nucleic acid sequences encoding the V domain amino acids that are a consensus of the sequences derived from the human K and the human H chain subgroup III V domains were prepared. The consensus V sequence does not have any known antibody binding specificity or affinity.
  • “Chimeric” antibodies have a portion of the heavy and/or light chain identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Prot. Natl. Acad. Sci. USA 81:6851-6855 (1984)).
  • Humanized antibody as used herein is a subset of chimeric antibodies.
  • “Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies which contain minimal sequence derived from non-human immunoglobulin.
  • humanized antibodies are human immunoglobulins (recipient or acceptor antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity, in some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • donor antibody such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity
  • Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance such as binding affinity.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence although the FR regions may include one or more amino acid substitutions that improve binding affinity.
  • the number of these anti no acid substitutions in the FR is typically no more than 6 in the H chain, and in the L chain, no more than 3.
  • the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • Antibody effector functions refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor); and B cell activation.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • FcRs Fc receptors
  • cytotoxic cells e.g. Natural Killer (NK) cells, neutrophils, and macrophages
  • NK cells Natural Killer cells
  • neutrophils neutrophils
  • macrophages e.g., neutrophils, and macrophages
  • the antibodies “arm” the cytotoxic cells and are absolutely required for such killing.
  • the primary cells for mediating ADCC, NK cells express Fcy ⁇ RIII only, whereas monocytes express Fc ⁇ R1, Fc ⁇ RIII and Fc ⁇ RIII.
  • ADCC activity of a molecule of interest is assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS ( USA ) 95:652-656 (1998).
  • Fc receptor or “FcR” describes a receptor that binds to the Fc region of an antibody.
  • the preferred FcR is a native sequence human FcR.
  • a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the Fc ⁇ RI, Fc ⁇ RII, and Fc ⁇ RIII subclasses, including allelic variants and alternatively spliced forms of these receptors.
  • Fc ⁇ RII receptors include Fc ⁇ RIIA (an “activating receptor”) and Fc ⁇ RIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof.
  • Activating receptor Fcy ⁇ IIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain.
  • Inhibiting receptor Fc ⁇ RIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain.
  • ITAM immunoreceptor tyrosine-based activation motif
  • ITIM immunoreceptor tyrosine-based inhibition motif
  • FcR FcR
  • FcRn neonatal receptor
  • WO00/42072 (Presto) describes antibody variants with improved or diminished binding to FcRs.
  • the content of that patent publication is specifically incorporated herein by reference. See, also, Shieids et al. J. Riot. Chem. 9(2): 6591-6604 (2001).
  • Human effector cells are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least Fc ⁇ RIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred.
  • PBMC peripheral blood mononuclear cells
  • NK natural killer cells
  • monocytes cytotoxic T cells and neutrophils
  • the effector cells may be isolated from a native source, e.g. from blood.
  • “Complement dependent cytotoxicity” or “CDC” refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen.
  • C1q the first component of the complement system
  • a CDC assay e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
  • the N-glycosylation site in IgG is at Asa297 in the CH2 domain.
  • the present invention also provides compositions of a CD20-binding, humanized antibody having a Fc region. wherein about 80-100% (and preferably about 90-99%) of the antibody in the composition comprises a mature core carbohydrate structure which lacks fucose, attached to the Fc region of the glycoprotein.
  • Such compositions were demonstrated herein to exhibit a surprising improvement in binding to Fc(RIIIA(F158), which is not as effective as Fc(RIIIA (V158) in interacting with human IgG.
  • the compositions herein are anticipated to be superior to previously described anti-CD20 antibody compositions, especially for therapy of human patients who express Fc(RIIIA (F158).
  • Fc(RIIIA (F158) is more common than Fc(RIIIA (V158) in normal, healthy African Americans and Caucasians. See Lehrnbecher et al. Blood 94:4220 (1999).
  • the present application further demonstrates the synergistic increase in Fc(RIII binding and/or ADCC function that results from combining the glycosylation variations herein with amino acid sequence modification(s) in the Fc region of the glycoprotein.
  • an “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nortreducing conditions using Coomassie blue or, preferably, silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily however, isolated antibody will be prepared by at least one purification step.
  • an “isolated” nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the antibody nucleic acid.
  • An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells.
  • an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
  • control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
  • the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
  • Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • Vector includes shuttle and expression vectors.
  • the plasmid construct will also include an origin of replication (e.g., the ColE1 origin of replication) and a selectable marker (e.g. ampicillin or tetracycline resistance), for replication and selection, respectively, of the plasmids in bacteria.
  • An “expression vector” refers to a vector that contains the necessary control sequences or regulatory elements for expression of the antibodies including antibody fragment of the invention, in bacterial or eukaryotic cells. Suitable vectors are disclosed below.
  • the cell that produces a humanized CD20 binding antibody of the invention will include the bacterial and eukaryotic host cells into which nucleic acid encoding the antibodies have been introduced. Suitable host cells are disclosed below.
  • label when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody.
  • the label may itself be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.
  • autoimmune disease herein is a non-malignant disease or disorder arising from and directed against individual's own (self) antigens and/or tissues.
  • B cell depletion refers to a reduction in B cell levels in an animal or human after drug or antibody treatment, as compared to the B cell level before treatment. B cell levels are measurable using well known assays such as those described in the Experimental Examples. B cell depletion can be complete or partial. In one embodiment, the depletion of CD20 expressing B cells is at least 25%. Not to be limited by any one mechanism, possible mechanisms of B-cell depletion include ADCC, CDC, apoptosis, modulation of calcium flux or a combination of two or more of the preceding.
  • cytotoxic agent refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells.
  • the term is intended to include radioactive isotopes (e.g., I 131 , I 125 , Y 90 and Re 186 ), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.
  • chemotherapeutic agent is a chemical compound useful in the treatment of cancer.
  • examples of chemotherapeutic agents include alkalyzing or alkylating agents such as thiotepa and cyclosphospharnide (CYTOXANTM); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethyienethiophosphaoramide and trimethyloiornelamine; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine,
  • 5-FU 5-FU
  • androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone
  • anti-adrenals such as aminoglutethimide, mitotane, trilostane
  • folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyliinic acid; 2-ethy
  • paclitaxel TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.J.
  • doxetaxel TAXOTERE®, Rhone-Poulenc Rorer, Antony, France
  • chlorambucil gemcitabine
  • 6-thioguanine mercaptopurine
  • methotrexate platinum analogs such as cisplatin and carboplatin; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinblastine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylomithine (DMFO); retinoic acid; esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
  • anti-hormonal agents that act to regulate or inhibit hormone action on tumors
  • anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelia; other chemotherapeutic agents such as prednisolone, Pharmaceutically acceptable salts, acids or derivatives of any of the above are included.
  • Treating” or “treatment” or “alleviation” refers to both therapeutic treatment and prophylactic: or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder.
  • a subject is successfully “treated” for a CD20 positive cancer or an autoimmune disease if, after receiving a therapeutic amount of a CD20 binding antibody of the invention according to the methods of the present invention, the subject shows observable and/or measurable reduction in or absence of one or more signs and symptoms of the particular disease.
  • a “therapeutically effective amount” refers to an amount of an antibody or a drug effective to “treat” a disease or disorder in a subject.
  • the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See preceding definition of “treating”.
  • Chronic administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time.
  • Intermittent administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
  • the invention provides humanized antibodies that bind human CD20, and preferably other primate CD20 as well, comprising a H chain having at least one, preferably two or all of the H chain CDRs of a non-human species anti-human CD20 antibody (donor antibody), and substantially all of the framework residues of a human consensus antibody as the recipient antibody.
  • the donor antibody can be from various non-human species including mouse, rat, guinea pig, goat, rabbit, horse, primate but most frequently will be a murine antibody. “Substantially all” in this context is meant that the recipient FR regions in the humanized antibody may include one or more amino acid substitutions not originally present in the human consensus FR sequence. These FR changes may comprise residues not found in the recipient or the donor antibody.
  • the donor antibody is the murine 2H7 antibody, the V region including the CDR and FR sequences of each of the H and L chains of which are shown in FIGS. 1A and 1B .
  • the residues for the human Fab framework correspond to the consensus sequence of human V ⁇ subgroup I and of V H subgroup III, these consensus sequences are shown in FIG. 1A and FIG. 1B , respectively.
  • the humanized 2H7 antibody of the invention will have at least one of the CDRs in the H chain of the murine donor antibody.
  • the humanized 2H7 antibody that binds human CD20 comprises the CDRs of both the H and L chains of the donor antibody.
  • the humanized CD20 binding antibody of the invention will comprise a humanized V domain joined to a C domain of a human immunoglobulin.
  • the H chain C region is from human IgG, preferably IgG1 or IgG3.
  • the L chain C domain is preferably from human ⁇ chain.
  • a humanized 2H7 antibody version herein will have the V and C domain sequences of 2H7.v16 L chain ( FIG. 6 , SEQ. ID NO. 21) and H chain ( FIG. 7 ., SEQ ID NO. 22) except at the positions of amino acid substitutions or changes indicated in the experimental examples below.
  • the humanized CD20 binding antibodies will bind at least human CD20 and preferably hind other primate CD20 such as that of monkeys including cynomolgus and rhesus monkeys, and chimpanzees.
  • the sequence of the cynomolgus monkey CD20 is disclosed in Example 15 and FIG. 19
  • the biological activity of the CD20 binding antibodies and humanized CD20 binding antibodies of the invention will include at least binding of the antibody to human CD20, more preferably binding to human and primate CD20 (including cynomolgus monkey, rhesus monkey, chimpanzees), with a K 4 value of no higher than 1 ⁇ 10 ⁇ 8 , preferably a K d value no higher than about 1 ⁇ 10 ⁇ 9 , even more preferably a K d value no higher than about 1 ⁇ 10 ⁇ 10 , and be able to kill or deplete B cells in vitro or in vivo, preferably by at least 20% when compared to the baseline level or appropriate negative control which is not treated with such an antibody.
  • the desired level of B cell depletion will depend on the disease. For the treatment of a CD20 positive cancer, it may be desirable to maximize the depletion of the B cells which are the target of the anti-CD20 antibodies of the invention. Thus, for the treatment of a CD20 positive B cell neoplasm, it is desirable that the B cell depletion be sufficient to at least prevent progression of the disease which can be assessed by the physician of skill in the art, e.g., by monitoring tumor growth (size), proliferation of the cancerous cell type, metastasis, other signs and symptoms of the particular cancer.
  • the B cell depletion is sufficient to prevent progression of disease for at least 2 months, more preferably 3 months, even more preferably 4 months, more preferably 5 months, even more preferably 6 or more months. In even more preferred embodiments, the B cell depletion is sufficient to increase the time in remission by at least 6 months, more preferably 9 months, more preferably one year, more preferably 2 years, more preferably 3 years, even more preferably 5 or more years. In a most preferred embodiment, the B cell depletion is sufficient to cure the disease. In preferred embodiments, the B cell depletion in a cancer patient is at least about 75% and more preferably, 80%, 85%, 90%, 95% , 99% and even 100% of the baseline level before treatment.
  • B cell depletion can but does not have to be complete. Or, total B cell depletion iay be desired in initial treatment but in subsequent treatments, the dosage may be adjusted to achieve only partial depletion.
  • the B cell depletion is at least 20%, i.e., 80% or less of CD20 positive B cells remain as compared to the baseline level before treatment. In other embodiments, B cell depletion is 25%, 30%, 40%, 50%, 60%, 70% or greater.
  • the B cell depletion is sufficient to halt progression of the disease, more preferably to alleviate the signs and symptoms of the particular disease under treatment, even more preferably to cure the disease.
  • the invention also provides bispecific CD20 binding antibodies wherein one arm of the antibody has a humanized H and L chain of the humanized CD20 binding antibody of the invention, and the other arm has V region binding specificity for a second antigen.
  • the second antigen is selected from the group consisting of CD3, CD64, CD32A, CD16, NKG2D or other NK activating ligands.
  • v16 In comparison with Rituxan (rituximab), v16 exhibits about 2 to 5 fold increased ADCC potency, ⁇ 3-4 fold decreased CDC than Rituxan.
  • Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
  • lymphocytes In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as described above to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization.
  • lymphocytes may be immunized in vitro. After immunization, lymphocytes are isolated and then fused with a myeloma cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium which medium preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner).
  • a suitable culture medium which medium preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner).
  • the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT)
  • HGPRT or HPRT the selective culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred fusion partner myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a selective medium that selects against the unfused parental cells.
  • Preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 and derivatives e.g., X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA.
  • Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)),
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunosorbent assay
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis described in Munson et al., Anal. Biochem., 107:220 (1980).
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal e.g, by i.p. injection of the cells into mice.
  • the monoclonal antibodies secreted by the subclones are suitably separated front the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, affinity chromatography (e.g., using protein A or protein G-Sepharose) or ion exchange chromatography, hydroxylapatite chromatography, gel electrophoresis, dialysis, etc.
  • affinity chromatography e.g., using protein A or protein G-Sepharose
  • ion exchange chromatography e.g., hydroxylapatite chromatography
  • gel electrophoresis e.g., dialysis, etc.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein.
  • Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skean et al., Curr. Opinion in Immunol., 5:256-262
  • monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352;624-628 (1997; and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries.
  • the DNA that encodes the antibody may be modified to produce chimeric or fusion antibody polypeptides, for example, by substituting human heavy chain and light chain constant domain (C H and C L ) sequences for the homologous murine sequences (U.S. Pat. No, 4,816,567; and Morrison, et al, Proc. Natl. Acad. Sci. USA, 81:6851 (1984)), or by fusing the immunoglobulin coding sequence with all or part of the coding sequence for a non-immunoglobulin polypeptide (heterologous polypeptide).
  • C H and C L constant domain
  • the non-immunoglobulin polypeptide sequences can substitute for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Reichmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody.
  • humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • HAMA response human anti-mouse antibody
  • the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences.
  • the human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)).
  • Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., Immunol., 151:2623 (1993)).
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using, three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can he selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
  • the hypervariable region residues are directly and most substantially involved in influencing antigen binding.
  • the humanized antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate.
  • the humanized antibody may be an full length antibody, such as an full length IgG1 antibody.
  • human antibodies can be generated.
  • transgenic animals e.g., mice
  • transgenic animals e.g., mice
  • J H antibody heavy-chain joining region
  • the homozygous deletion of the antibody heavy-chain joining region (J H ) gene is chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production.
  • Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci.
  • phage display technology can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors.
  • V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties.
  • the phage mimics some of the properties of the B-cell.
  • Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993).
  • V-gene segments can be used for phage display. Clackson et al., Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice.
  • a repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S. Pat. Nos. 5,565,332 and 5,573,905.
  • human antibodies may also be generated by in vitro activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275).
  • F(ab′) 2 fragments can be isolated directly from recombinant host cell culture.
  • Fab and F(ab′) 2 fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Pat. No. 5,869,046.
  • Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.
  • the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Pat. No. 5,571,894; and U.S. Pat. No.
  • FV and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use.
  • sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck, supra.
  • the antibody fragment may also be a “linear antibody”, e.g., as described in U.S. Pat. No. 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.
  • Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the CD20 protein. Other such antibodies may combine a CD20 binding site with a binding site for another protein. Alternatively, an anti-CD20 arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD3), or Fc receptors for IgG (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and Fc ⁇ RIII (CD16), or NKG2D) or other NK cell activating ligand, so as to focus and localize cellular defense mechanisms to the CD20-expressing cell.
  • a triggering molecule such as a T-cell receptor molecule (e.g. CD3), or Fc receptors for IgG (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and Fc
  • Bispecific antibodies may Aso be used to localize cytotoxic agents to cells which express CD20. These antibodies possess a CD20-binding arm and an arm which hinds the cytotoxic agent (e.g. saporin, anti-interferon- ⁇ , vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′) 2 bispecific antibodies).
  • WO 96/16673 describes a bispecific anti-ErbB2/anti-Fc ⁇ RIII antibody and U.S. Pat. No. 5,837,234 discloses a bispecific anti-ErbB2/anti-Fc ⁇ RI antibody. A bispecific anti-ErbB2/Fc ⁇ antibody is shown in WO98/02463. U.S. Pat. No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody.
  • bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • antibody variable domains with the desired binding specificities are fused to immunoglobulin constant domain sequences.
  • the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, C H 2, and C H 3 regions. It is preferred to have the first heavy-chain constant region (C H 1) containing the site necessary for light chain bonding, present in at least one of the fusions.
  • DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co-transfected into a suitable host cell.
  • the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94104690. For further details of generating bispecific antibodies see, for example. Suresh et al., Methods in Enzymology, 121:210 (1986).
  • the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture.
  • the preferred interface comprises at least a part of the C H 3 domain.
  • one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).
  • Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies include cross-linked or “heteroconjugate” antibodies.
  • one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin.
  • Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089).
  • Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a moaner of cross-linking techniques.
  • bispecific antibodies can be prepared using chemical linkage.
  • Brennan et. al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′) 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation.
  • the Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody.
  • the bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
  • bispecific antibodies have been produced using leucine zippers.
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers.
  • the fragments comprise a V H connected to a V L by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al. J. Immunol., 152:5368 (1994).
  • Antibodies with more than two valencies are contemplated.
  • tispecific antibodies can be prepared, Tutt et al. J. Immunol. 147: 60 (1991).
  • a multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind.
  • the antibodies of the present invention can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody.
  • the multivalent antibody can comprise a dimerization domain and three or more antigen binding sites.
  • the preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region.
  • the preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites.
  • the multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains.
  • the polypeptide chain(s) may comprise VD1-(X1) n -VD2-(X2) u -Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1.
  • the polypeptide chain(s) may comprise: VH—CH1-flexible linker-VH—CH1-Fc region chain; or VH—CH1-VH—CH1-Fc region chain.
  • the multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable domain polypeptides.
  • the multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides.
  • the light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL, domain.
  • Amino acid sequence modification(s) of the CD20 binding antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody.
  • Amino acid sequence variants of the anti-CD20 antibody are prepared by introducing appropriate nucleotide changes into the anti-CD20 antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the anti-CD20 antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
  • the amino acid changes also may alter post-translational processes of the anti-CD20 antibody, such as changing the number or position of glycosylation sites.
  • a useful method for identification of certain residues or regions of the anti-CD20 antibody that are preferred locations for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells in Science, 244:1081-1085 (1989).
  • a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and gin) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction, of the amino acids with CD20 antigen.
  • Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution.
  • the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined.
  • ala scanning or random mutagenesis is conducted at the target codon or region and the expressed anti-CD20 antibody variants are screened for the desired activity.
  • Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
  • terminal insertions include an anti-CD20 antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide.
  • Other insertional variants of the anti-CD20 antibody molecule include the fusion to the N- or C-terminus of the anti-CD20 antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
  • variants are an amino acid substitution variant. These variants have at least one amino acid residue in the anti-CD20 antibody molecule replaced by a different residue.
  • the sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in the Table below under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in the Table, or as further described below in reference to amino acid classes, may be introduced and the products screened.
  • Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • Naturally occurring residues are divided into groups based on common side-chain properties:
  • hydrophobic norleucine, met, ala, vat, leu, ile
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
  • cysteine residues not involved in maintaining the proper conformation of the anti-CD20 antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
  • cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
  • a particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody).
  • a parent antibody e.g. a humanized or human antibody
  • the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated.
  • a convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site.
  • the antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as herein disclosed.
  • alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding.
  • Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
  • N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • the tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • X is any amino acid except proline
  • O-linked glycosylation refers to the attachment of one of the sugars N-aceylalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
  • glycosylation antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
  • the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
  • Nucleic acid molecules encoding amino acid sequence variants of the anti-GD20 antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-CD20 antibody.
  • ADCC antigen-dependent cell-mediated cyotoxicity
  • CDC complement dependent cytotoxicity
  • This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody.
  • cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region.
  • the homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 76:1191-1195 (1992) and Hopes, B. J.
  • Homodimeric antibodies with enhanced anti-tumor activity may also he prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993).
  • an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement mediated lysis and ADCC capabilities. See Stevenson et al. Anti - Cancer Drug Design 3:219-230 (1989).
  • a salvage receptor binding epitope refers to an epitope of the Fc region of an IgG molecule (e.g., IgG 1 , IgG 2 , IgG 3 , or IgG 4 ) that is responsible for increasing the in coo serum half-life of the IgG molecule.
  • the antibody may be linked to one of a variety of nonpoteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol.
  • the antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
  • Antibodies with certain biological characteristics may be selected as described in the Experimental Examples.
  • an anti-CD20 antibody of the invention may be assessed by methods known in the art, e.g., using cells which express CD20 either endogenously or following transfection with the CD20 gene.
  • tumor cell lines and CD20-transfected cells may treated with an anti-CD20 monoclonal antibody of the invention at various concentrations for a few days (e.g., 2-7) days and stained with crystal violet or MTT or analyzed by some other colorimetric assay.
  • Another method of measuring proliferation would be by comparing 3 H-thymidine uptake by the cells treated in the presence or absence an anti-CD20 antibody of the invention. After antibody treatment, the cells are harvested and the amount of radioactivity incorporated into the DNA quantitated in a scintillation counter.
  • Appropriate positive controls include treatment of a selected cell line with a growth inhibitory antibody known to inhibit growth of that cell line.
  • PI uptake assay can be performed in the absence of complement and immune effector cells.
  • CD20-expressing tumor cells are incubated with medium alone or medium containing of the appropriate monoclonal antibody at e.g, about 10 ⁇ g/ml. The cells are incubated for a 3 day time period. Following each treatment, cells are washed and aliquoted into 35 mm strainer-capped 12 ⁇ 75 tubes (1 ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10 ⁇ g/ml).
  • Samples may be analyzed using a FACSCANTM flow cytometer and FACSCONVERTTM CellQuest software (Becton Dickinson). Those antibodies which induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing antibodies.
  • a routinecross-blocking assay such as that described in Antibodies, A laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test antibody hinds same site or epitope as an anti CD20 antibody of the invention.
  • epitope mapping can be performed by methods known in the art .
  • the antibody sequence can be mutagenized such as by alanine scanning, to identify contact residues. The mutant antibody is initially tested for binding with polyclonal antibody to ensure proper folding.
  • peptides corresponding to different regions of CD20 can be used in competition assays with the test antibodies or with a test antibody and an antibody with a characterized or known epitope.
  • the invention also provides an isolated nucleic acid encoding a humanized CD20 binding antibody, vectors and host cells comprising the nucleic acid, and recombinant techniques for the production of the antibody.
  • the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression.
  • DNA encoding the monoclonal antibody is readily isolated and sequenced using conventional procedures (e.g., by using oligortucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).
  • Many vectors are available.
  • the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • the CD20 binding antibody of this invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • a heterologous polypeptide which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • the heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell.
  • the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders.
  • a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders.
  • yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, ⁇ factor leader (including, Saccharomyces and Kluyveromyces ⁇ -factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646.
  • mammalian signal sequences as well as viral secretory leaders for example, the herpes simplex gD signal, are available.
  • the DNA for such precursor region is ligated in reading frame to DNA encoding the CD20 binding antibody.
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells.
  • this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences.
  • origins of replication or autonomously replicating sequences are well known for a variety of bacteria, yeast, and viruses.
  • the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 ⁇ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.
  • the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
  • Selection genes may contain a selection gene, also termed a selectable marker.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g. the gene encoding D-alanine racemase for Bacilli.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring, drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
  • Suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the CD20 binding antibody nucleic acid, such as DHFR, thymidine kinase, metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.
  • cells transformed with the DHFR selection gene are first identified by culturing all of transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR.
  • Mtx methotrexate
  • An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity (e.g., ATCC CRL-9096).
  • host cells transformed or co-transformed with DNA sequences encoding CD20 binding antibody, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3′-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.
  • APH aminoglycoside 3′-phosphotransferase
  • a suitable selection gene for use in yeast is the trpl gene present in the yeast plasmid YRp7 (Stinchcomb et al.. Nature, 282:39 (1979)).
  • the trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85:12 (1977).
  • the presence of the tip1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.
  • Leu2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.
  • vectors derived from the 1.6 ⁇ m circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts.
  • an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis. Van den Berg, Bio/Technology, 8:135 (1990).
  • Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. Fleer et a;., Bio/Technology, 9:968-975 (1991).
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the nucleic acid encoding the CD20 binding antibody.
  • Promoters suitable for use with prokaryotic hosts include the phoA promoter , ⁇ -lactamase and lactose promoter systems, alkaline phosphatase promoter, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter.
  • phoA promoter phoA promoter
  • ⁇ -lactamase and lactose promoter systems alkaline phosphatase promoter
  • trp tryptophan
  • hybrid promoters such as the tac promoter.
  • other known bacterial promoters are suitable
  • Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the CD20 binding antibody.
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
  • suitable promoter sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
  • 3-phosphoglycerate kinase or other glycolytic enzymes such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate
  • yeast promoters which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.
  • Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.
  • Yeast enhancers also are advantageously used with yeast promoters.
  • CD20 binding antibody transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems.
  • viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (
  • the early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication.
  • the immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment.
  • a system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978, See also Reyes et al., Nature 297:598-601 (1982) on expression of human ⁇ -interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus.
  • the Rous Sarcoma Virus long terminal repeat can be used as the promoter.
  • Enhancer sequences are now known from, mammalian genes (globin, elastase, albumin, ⁇ -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
  • the enhancer may he spliced into the vector at a position 5′ or 3′ to the CD20 binding antibody-encoding sequence, but is preferably located at a site 5′ from the promoter.
  • Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding CD20 binding antibody.
  • One useful transcription termination component is the bovine growth hormone polyadenylation region. See WO94/11026 and the expression vector disclosed therein.
  • Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above.
  • Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example. Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B.
  • E. coli 294 ATCC 31,446
  • E. coli B E. coli X1776
  • E. coli. W3110 ATCC 27,325
  • Full length antibody, antibody fragments, and antibody fusion proteins can be produced in bacteria, in particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is corqugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in tumor cell destruction.
  • Full length antibodies have greater half life in circulation. Production in E. coli is faster and more cost efficient.
  • cytotoxic agent e.g., a toxin
  • the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out similar to the process for purifying antibody expressed e.g in CHO cells.
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for CD20 binding antibody-encoding vectors.
  • Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
  • a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluvveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K.
  • waltii ATCC 56,500
  • K. drosophilarum ATCC 36,906
  • K. thermotolerans K. marxianus
  • yarrowia EP 402,226
  • Pichia pastoris EP 183,070
  • Candida Trichoderma reesia
  • Neurospora crassa Schwanniomyces such as Schwanniomyces occidentalis
  • filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.
  • Suitable host cells for the expression of glycosylated CD20 binding antibody are derived from multicellular organisms.
  • invertebrate cells include plant and insect cells.
  • Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified.
  • a variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, tomato, and tobacco can also be utilized as hosts.
  • vertebrate cells have been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure.
  • useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl, Acad. Sci, USA 77:4216 (1980)) ; mouse sertoli cells (TM4, Mather, Bial. Reprod.
  • monkey kidney cells (CV1 ATCC CCE 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRE 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transformed with the above-described expression or cloning vectors for CD20 binding antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • the host cells used to produce the CD20 binding antibody of this invention may be cultured in a variety of media.
  • Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCINTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et of, Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phetlylmethylsuifonylfluoride (PMSE) over about 30 min.
  • sodium acetate pH 3.5
  • EDTA EDTA
  • PMSE phetlylmethylsuifonylfluoride
  • Cell debris can be removed by centrifugation.
  • supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
  • a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • the antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.
  • affinity chromatography is the preferred purification technique.
  • the suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can he used to purify antibodies that are based on human ⁇ 1, ⁇ 2, or ⁇ 4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human ⁇ 3 (Guss et al., EMBO J. 5:15671575 (1986)).
  • the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C H 3 domain, the Bakerbond ABXTM resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification.
  • the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).
  • the antibody may be conjugated to a cytotoxic agent such as a toxin or a radioactive isotope.
  • a cytotoxic agent such as a toxin or a radioactive isotope.
  • the toxin is calicheamicin, a maytansinoid, a dolastatin, auristatin F and analogs or derivatives thereof, are preferable.
  • Preferred drugs/toxins include DNA damaging agents, inhibitors of microtubule polymerization or depolymerization and antimetabolites.
  • Preferred classes of cytotoxic agents include, for example, the enzyme inhibitors such as dihydrofolate reductase inhibitors, and thymidylate synthase inhibitors, DNA intercalators, DNA cleavers, topoisomerase inhibitors, the anthracycline family of drugs, the vinca drugs, the mitornycins, the bleomycins, the cytotoxic nucleosides, the pteridine family of drugs, diynenes, the podophyllotoxins and differentiation inducers.
  • the enzyme inhibitors such as dihydrofolate reductase inhibitors, and thymidylate synthase inhibitors
  • DNA intercalators DNA cleavers, topoisomerase inhibitors, the anthracycline family of drugs, the vinca drugs, the mitornycins, the bleomycins,
  • Particularly useful members of those classes include, for example, methotrexate, methopterin, dichloromethotrexate, 5-fluorouracil, 6-mercaptopurine, cytosine arabinoside, melphalan, leurosine, leurosideine, actinomycin, daunorubicin, doxoruhicin, N-(5,5-diacetoxypentyl)doxorubicin, morpholino-doxorubicin, 1-(2-choroehthyl)-1,2-dimethanesulfonyl hydrazide, N 8 -acetyl spermidine, aminopterin methopterin, esperamicin, mitomycin C, mitomycin A, actinomycin, bleomycin, carminomycin, aminopterin, tallysomycin, podophyllotoxin and podophyllotoxin derivatives such as etoposide or etoposide phosphate, vin
  • cephalostatins such as cephalostatin 1, cephalostatin 2, cephalostatin 3, cephalostatin 4, cephalostatin 5, cephalostatin 6, cephalostatin 7, 25′-epi-cephalostatin 7, 20-epi-cephalostatin 7, cephalostatin 8, cephalostatin cephalostatin 10, cephalostatin 11,cephalostatin 12,cephalostatin 13,
  • Maytansinoids are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Pat. No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Pat. No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Pat. Nos.
  • Maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens.
  • Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Pat. Nos. 5,208,020, 5,416,064 and European Patent EP 0 425 235 B I, the disclosures of which are hereby expressly incorporated by reference.
  • the conjugate was found to he highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an ivivo tumor growth assay.
  • Chari et al. Cancer Research 52:127-131 (1992) describe immunoconjugates in which a maytansinoid was conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to another murine monoclonal antibody TA.1 that binds the HER-2/neu oncogene.
  • There are many linking groups known in the art for making antibody-maytansinoid conjugates including, for example, those disclosed in U.S. Pat. No. 5,208,020 or EP Patent 0 425 235 B1, and Chari et al.
  • the linking groups include disulfide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred.
  • Conjugates of the antibody and maytansinoid may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and his-active fluorine compounds (such as 1,5-
  • Particularly preferred coupling agents include N-succinimidyl-3-2-pyridyldithiol propionate (SPDP) (Carlsson et al.. Biochem. J. 173:723-737 [1978]) and N-succinimidyl-4-(2-pyridylthio)pentanoate (SPP) to provide for a disulfide linkage.
  • SPDP N-succinimidyl-3-2-pyridyldithiol propionate
  • SPP N-succinimidyl-4-(2-pyridylthio)pentanoate
  • the linker may be attached to the maytansinoid molecule at various positions, depending on the type of the link.
  • an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques. The reaction may occur at the C-3 position having a hydroxyl group, the C-14 position modified with hyrdoxymethyl, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group.
  • the linkage is formed at the C-3 position of maytansinol or a maytansinol analogue.
  • Another immunoconjugate of interest comprises an CD20 binding antibody conjugated to one or more calicheamicin molecules.
  • the calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations.
  • For the preparation of conjugates of the calicheamicin family see U.S. Pat. Nos. 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company).
  • Structural analogues of calicheamicin which may be used include, but are not limited to, ⁇ 1 I , ⁇ 2 I , ⁇ 3 I , N-acetyl- ⁇ 1 I (Hiaman et al. Cancer Research 53: 3336-3342 (1993), Lode et al. Cancer Research 58: 2925-2928 (1998) and the aforementioned U.S. patents to American Cyanamid).
  • Another anti-tumor drug that the antibody can be conjugated is QFA which is an antifolate.
  • QFA is an antifolate.
  • Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.
  • the antibody may comprise a highly radioactive atom.
  • radioactive isotopes are available for the production of radioconjugated anti CD20 antibodies. Examples include At 211 , I 131 , I 125 , Y 90 , Re 188 Sm 153 , Bi 212 , P 32 , Pb 212 and radioactive isotopes of Lu.
  • the conjugate When used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example tc 99m or I 123 , or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
  • NMR nuclear magnetic resonance
  • the radio- or other labels may be incorporated in the conjugate in known ways.
  • the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen.
  • Labels such as tc 99m or I 123 , Re 186 , Re 188 and In 111 can be attached via a cysteine residue in the peptide.
  • Yttrium-90 can be attached via a lysine residue.
  • the IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. “Monoclonal Antibodies in Immunoscintigraphy” (Chatal, CRC Press 1989) describes other methods in detail.
  • Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cycloltexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-diflu
  • a ricin immunotoxin can be prepared as described in Vitetta et al. Science 238: 1098 (1987).
  • Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.
  • the linker may be a “cleavable linker” facilitating release of the cytotoxic drug in the cell.
  • an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al. Cancer Research 52: 127-131 (1992); U.S. Pat. No. 5,208,020) may be used.
  • the CD20 binding antibodies of the invention are useful to treat a number of malignant and non-malignant diseases including autoimmune diseases and related conditions, and CD20 positive cancers including B cell lymphomas and leukemias.
  • Stern cells progenitors in bone marrow lack the CD20 antigen, allowing healthy B-cells to regenerate after treatment and return to normal levels within several months.
  • Autoimmune diseases or autoimmune related conditions include arthritis (rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), psoriasis, dermatitis including atopic dermatitis; chronic autoimmune urticaria, polymyositistdermatomyositis, toxic epidermal necrolysis, systemic scleroderma and sclerosis, responses associated with inflammatory bowel disease (IBD) (Crohn's disease, ulcerative colitis), respiratory distress syndrome, adult respiratory distress syndrome (ARDS), meningitis, allergic rhinitis, encephalitis, uveitis, colitis, glomerulonephritis, allergic conditions, eczema, asthma, conditions involving infiltration of T cells and chronic inflammatory responses, atherosclerosis, autoimmune rnyocardias, leukocyte adhesion deficiency, systemic lupus erythematosus (SLE),
  • CD20 positive cancers are those comprising abnormal proliferation of cells that express CD20 on cell surface.
  • the CD20 positive B cell neoplasms include CD20-positive Hodgkin's disease including lymphocyte predominant Hodgkin's disease (LPHD); non-Hodgkin's lymphoma (NHL); follicular center cell (FCC) lymphomas; acute lymphocytic leukemia (ALL); chronic lymphocytic leukemia (CLL); Hairy cell leukemia.
  • LPHD lymphocyte predominant Hodgkin's disease
  • NHL non-Hodgkin's lymphoma
  • FCC follicular center cell lymphomas
  • ALL acute lymphocytic leukemia
  • CLL chronic lymphocytic leukemia
  • the non-Hodgkins lymphoma include low grade/follicular non-Hodgkin's lymphoma (NHL), small lymphocytic lymphoma (SLL), intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high made lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, plasmacytoid lymphocytic lymphoma, mantle cell lymphom, AIDS-related lymphoma and Waldenstrom's macroglobulinemia. Treatment of relapses of these cancers are also contemplated.
  • NHL low grade/follicular non-Hodgkin's lymphoma
  • SLL small lymphocytic lymphoma
  • intermediate grade/follicular NHL intermediate grade diffuse NHL
  • high grade immunoblastic NHL high made lymphoblastic NHL
  • high grade small non-cleaved cell NHL high grade small non-cleaved cell NHL
  • bulky disease NHL plasmacytoid lymphocytic lymph
  • LPHD is a type of Hodgkin's disease that tends to relapse frequently despite radiation or chemotherapy treatment and is characterized by CD20-positive malignant cells.
  • CLL is one of four major types of leukemia.
  • a cancer of mature B-cells called lymphocytes, CLL is manifested by progressive accumulation of cells in blood, bone marrow and lymphatic tissues.
  • the humanized CD20 binding antibodies and functional fragments thereof are used to treat non-Hodgkin's lymphoma (NHL), lymphocyte predominant Hodgkin's disease (LPHD), small lymphocytic lymphoma (SLL), chronic lymphocyte leukemia, rheumatoid arthritis and juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE) including lupus nephritis, Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic throbocytopenic purpura (TTP), autoimmune thrombocytopenia, multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Sjorgen's syndrome and glomerulonephritis.
  • NHL non-
  • the humanized CD20 binding antibodies or functional fragments thereof are useful as a single-agent treatment in, e.g., for relapsed or refractory low-grade or follicular, CD20-positive, B-cell NHL, or can be administered to patients in conjunction with other drugs in a multi drug regimen.
  • Indolent lymphoma is a slow-growing, incurable disease in which the average patient survives between six and 10 years following numerous periods of remission and relapse.
  • the humanized CD20 binding antibodies or functional fragments thereof are used to treat indolent NHL.
  • the parameters for assessing efficacy or success of treatment of the neoplasm will be known to the physician of skill in the appropriate disease. Generally, the physician of skill will look for reduction in the signs and symptoms of the specific disease. Parameters can include median time to disease progression, time in remission, stable disease.
  • lymphomas and CLL their diagnoses, treatment and standard medical procedures for measuring treatment efficacy
  • Canellos G P Lister, T A, Sklar J L: The Lymphomas. W.B.Saunders Company, Philadelphia, 1998
  • van Besien K and. Cabanillas, F Clinical Manifestations, Staging and Treatment of Non-Hodgkin's Lymphoma, Chap. 70, pp 1293-1338, in: Hematology Basic Principles and Practice, 3rd ed. Hoffman et al. (editors). Churchill Livingstone, Philadelphia, 2000; and Rai, K and Patel, D:Chronic Lymphocytic Leukemia, Chap. 72, pp 1350-1362, in: Hematology, Basic Principles and Practice. 3rd ed, Hoffman et al (editors). Churchill Livingstone, Philadelphia, 2000.
  • the parameters for assessing efficacy or success of treatment of an autoimmune or autoimmune related disease will be known to the physician of skill in the appropriate disease. Generally, the physician of skill will look for reduction in the signs and symptoms of the specific disease. The following are by way of examples.
  • the antibodies of the invention are useful to treat rheumatoid arthritis.
  • RA is characterized by inflammation of multiple joints, cartilage loss and bone erosion that leads to joint destruction and ultimately reduced joint function. Additionally, since RA is a systemic disease, it can have effects in other tissues such as the lungs, eyes and bone marrow. Fewer than 50 percent of patients who have had RA for more than 10 years can continue to work or function normally on a day-to-day basis.
  • the antibodies can be used as first-line therapy in patients with early RA (i.e., methotrexate (MTX) naive) and as monotherapy, or in combination with, e.g., MTX or cyclophosphamide. Or, the antibodies can be used in treatment as second-line therapy for patients who were DMARD and/or MTX refractory, and as monotherapy or in combination with, e,g., MTX.
  • the humanized CD20 binding antibodies are useful to prevent and control joint damage, delay structural damage, decrease pain associated with inflammation in RA, and generally reduce the signs and symptoms in moderate to severe RA.
  • the RA patient can be treated with the humanized CD20 antibody prior to, after or together with treatment with other drugs used in treating RA (see combination therapy below).
  • patients who had previously failed disease-modifying antirheumatic drugs and/or had an inadequate response to methotrexate alone are treated with a humanized CD20 binding antibody of the invention.
  • the patients are in a 17-day treatment regimen receiving humanized CD20 binding antibody alone (1 g iv infusions on days 1 and 15); CD20 binding antibody plus cyclophosphamide (750 mg iv infusion days 3 and 17); or CD20 binding antibody plus methotrexate.
  • ACR American College of Rheumatology
  • the RA patient can be scored at for example, ACR 20 (20 percent improvement) compared with no antibody treatment (e.g baseline before treatment) or treatment with placebo.
  • Other ways of evaluating the efficacy of antibody treatment include X-ray scoring such as the Sharp X-ray score used to score structural damage such as bone erosion and joint space narrowing.
  • Patients can also he evaluated for the prevention of or improvement in disability based on Health Assessment Questionnaire [HAQ] score, AIMS score, SF-36 at time periods during or after treatment.
  • the ACR 20 criteria may include 20% improvement in both tender (painful) joint count and swollen joint count plus a 20% improvement in at least 3 of 5 additional measures:
  • Psoriatic arthritis hay unique and distinct radiographic features.
  • joint erosion and joint space narrowing can be evaluated by the Sharp score as well.
  • the humanized CD20 binding antibodies of the invention can be used to prevent the joint damage as well as reduce disease signs and symptoms of the disorder.
  • Yet another aspect of the invention is a method of treating Lupus or SLE by administering to the patient suffering from SLE, a therapeutically effective amount of a humanized CD20 binding antibody of the invention.
  • SLEDAI scores provide a numerical quantitation of disease activity.
  • the SLEDAI is a weighted index of 24 clinical and laboratory parameters known to correlate with disease activity, with a numerical range of 0-103. see Bryan Gescuk & John Davis, “Novel therapeutic agent for systemic lupus erythematosus” in Current Opinion in Rheumatology 2002, 14:515-521. Antibodies to double-stranded DNA are believed to cause renal flares and other manifestations of lupus.
  • Patients undergoing antibody treatment can he monitored for time to renal flare, which is defined as a significant, reproducible increase in serum creatinine, urine protein or blood in the urine. Alternatively or in addition, patients can be monitored for levels of antinuclear antibodies and antibodies to double-stranded DNA.
  • Treatments for SLE include high-dose corticosteroids and/or cyclophosphamide (HDCC).
  • Spondyloarthropathies are a group of disorders of the joints, including ankylosing spondylitis, psoriatic arthritis and Crohn's disease. Treatment success can be determined by validated patient and physician global assessment measuring tools.
  • Various medications are used to treat psoriasis; treatment differs directly in relation to disease severity.
  • Patients with a more mild form of psoriasis typically utilize topical treatments, such as topical steroids, anthralin, calcipotriene, clobetasol, and tazarotene, to manage the disease while patients with moderate and severe psoriasis are more likely to employ systemic (methotrexate, retinoids, cyclosporine, PUVA and ITVB) therapies. Tars are also used.
  • These therapies have a combination of safety concerns, time consuming regimens, or inconvenient processes of treatment. Furthermore, some require expensive equipment and dedicated space in the office setting.
  • Systemic medications can produce serious side effects, including hypertension, hyperlipidemia, bone marrow suppression, liver disease, kidney disease and gastrointestinal upset. Also, the use of phototherapy can increase the incidence of skin cancers. In addition to the inconvenience and discomfort associated with the use of topical therapies, phototherapy and systemic treatments require cycling patients on and off therapy and monitoring lifetime exposure due to their side effects.
  • Treatment efficacy for psoriasis is assessed by monitoring changes in clinical signs and symptoms of the disease including Physician's Global Assessment (PGA) changes and Psoriasis Area and Severity Index (PASI) scores, Psoriasis Symptom Assessment (PSA), compared with the baseline condition.
  • PGA Physician's Global Assessment
  • PASI Psoriasis Area and Severity Index
  • PSA Psoriasis Symptom Assessment
  • the patient can be measured periodically throughout treatment on the Visual analog scale used to indicate the degree of itching experienced at specific time points.
  • Patients may experience an infusion reaction or infusion-related symptoms with their first infusion of a therapeutic antibody. These symptoms vary in severity and generally are reversible with medical intervention. These symptoms include but are not limited to, flu-like fever, chills/rigors, nausea, urticaria, headache, bronchospasm, angioedema. It would be desirable for the disease treatment methods of the present invention to minimize infusion reactions.
  • another aspect of the invention is a method of treating the diseases disclosed by administering a humanized CD20 binding antibody wherein the antibody has reduced or no complement dependent cytotoxicity and results in reduced infusion related symptoms as compared to treatment with Rituxan®.
  • the humanized CD20 binding antibody is 2H7.v116.
  • the antibodies of the invention will be administered at a dosage that is efficacious for the treatment of that indication while minimizing toxicity and side effects.
  • the therapeutically effective dosage will be in the range of about 250 m g/m 2 to about 400 mg/m 2 or 500 mg/m 2 , preferably about 250-375mg/m 2 . In one embodiment, the dosage range is 275-375 mg/m 2 . In one embodiment of the treatment of a CD20 positive B cell neoplasm, the antibody is administered at a range of 300-375 mg/m 2 .
  • the anti-CD20 antibodies and humanized anti-CD20 antibodies of the invention will be administered to a human patient at a dosage of 10 mg/kg or 375 mg/m 2 .
  • one dosing regimen would be to administer one dose of the antibody composition a dosage of 10 mg/kg in the first week of treatment, followed by a 2 week interval, then a second dose of the same amount of antibody is administered.
  • NHL patients receive such treatment once during a year but upon recurrence of the lymphoma, such treatment can be repeated.
  • patients treated with low-grade NHL receive four weeks of a version of humanized 2H7, preferably v16 (375 mg/m2 weekly) followed at week five by three additional courses of the antibody plus standard CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or CVP (cyclophosphamide, vincristine, prednisone) chemotherapy, which was given every three weeks for three cycles.
  • CHOP cyclophosphamide, doxorubicin, vincristine and prednisone
  • CVP cyclophosphamide, vincristine, prednisone
  • the dosage range for the humanized antibody is 125 mg/m 2 (equivalent to about 200 mg/dose) to 600mg/m 2 , given in two doses, e.g., the first dose of 200 mg is administered on day one followed by a second dose of 200 mg on day 15.
  • the dosage is 250 mg/dose, 275 mg, 300 mg, 325 mg, 350 mg, 375 mg, 400 mg, 425 mg, 450 mg, 475 mg, 500 mg, 525 mg, 550 mg, 575 mg, 600 mg.
  • the CD20 binding antibodies of the invention can be administered to the patient chronically or intermittently, as determined by the physician of skill in the disease.
  • a patient administered a drug by intravenous infusion or subcutaneously may experience adverse events such as fever, chills, burning sensation, asthenia and headache.
  • the patient may receive an initial conditioning dose(s) of the antibody followed by a therapeutic dose.
  • the conditioning dose(s) will be lower than the therapeutic dose to condition the patient to tolerate higher dosages.
  • the CD20 binding antibodies are administered to a human patient in accord with known methods, such as by intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by subcutaneous, intramuscular, intraperitoneal, intracerobrospinal, intra-articular, intrasynovial, intrathecal, or inhalation routes, generally by intravenous or subcutaneous administration.
  • intravenous administration e.g., as a bolus or by continuous infusion over a period of time
  • subcutaneous, intramuscular, intraperitoneal, intracerobrospinal, intra-articular, intrasynovial, intrathecal, or inhalation routes generally by intravenous or subcutaneous administration.
  • the humanized 2H7 antibody is administered by intravenous infusion with 0.9% sodium chloride solution as an infusion vehicle.
  • the patient can be treated with the CD20 binding antibodies of the present invention in conjunction with one or more therapeutic agents such as a chemotherapeutic agent in a multidrug regimen.
  • the CD20 binding antibody can be administered concurrently, sequentially, or alternating with the chemotherapeutic agent, or after non-responsiveness with other therapy.
  • Standard chemotherapy for lymphoma treatment may include cyclophosphamide, cytarabine, melphalan and mitoxantrone plus melphalan.
  • CHOP is one of the most common chemotherapy regimens for treating Non-Hodgkin's lymphoma.
  • the drugs used in the CHOP regimen are the drugs used in the CHOP regimen: cyclophosphamide (brand names cytoxan, neosar); adriamycin (doxorubicin/hydroxydoxoruhicin); vincristine (Oncovin); and prednisolone (sometimes called Deltasone or Orasone).
  • the CD20 binding antibody is administered to a patient in need thereof in combination with one or more of the following chemotherapeutic agents of doxorubicin, cyclophosphamide, vincristine and prednisolone.
  • a patient suffering from a lymphoma is treated with an anti-CD20 antibody of the present invention in conjunction with CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) therapy.
  • the cancer patient can be treated with a humanized CD20 binding antibody of the invention in combination with CVP (cyclophosphamide, vincristine, and prednisone) chemotherapy.
  • the patient suffering from CD20-positive NHL is treated with humanized 2H7.v16 in conjunction with CVP.
  • the CD20 binding antibody is administered in conjunction with chemotherapy with one or both of fludarabine and cytoxan.
  • the patient can be treated with the CD20 binding antibodies of the present invention in conjunction with a second therapeutic agent, such as an immunosuppressive agent, such as in a multi drug regimen.
  • a second therapeutic agent such as an immunosuppressive agent
  • the CD20 binding antibody can be administered concurrently, sequentially or alternating with the immunosuppressive agent or upon non-responsiveness with other therapy.
  • the immunosuppressive agent can be administered at the same or lesser dosages than as set forth in the art.
  • the preferred adjunct immunosuppressive agent will depend on many factors, including the type of disorder being treated as well as the patient's history.
  • Immunosuppressive agent refers to substances that act to suppress or mask the immune system of a patient. Such agents would include substances that suppress cytokine production, down regulate or suppress self-antigen expression, or mask the MHC antigens. Examples of such agents include steroids such as glucocorticosteroids, e.g., prednisone, methylprednisolone, and dexamethasone; 2-amino-6-aryl-5 substituted pyrimidines (see U.S. Pat.
  • azathioprine or cyclophosphamide, if there is an adverse reaction to azathioprine
  • bromocryptine bromocryptine
  • glutaraldehyde which masks the MHC antigens, as described in U.S. Pat. No.
  • anti-idiotypic antibodies for MHC antigens and MHC fragments include cyclosporin A; cytokine or cytokine receptor antagonists including anti-interferon- ⁇ , - ⁇ , or - ⁇ antibodies; anti-tumor necrosis factor- ⁇ antibodies; anti-tumor necrosis factor- ⁇ antibodies; anti-interleukin-2 antibodies and anti-IL-2 receptor antibodies; anti-L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, preferably anti-CD3 or anti-CD4/CD4a, antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published Jul.
  • TGF- ⁇ streptokinase
  • streptodornase RNA or DNA from the host
  • FK506 RS-61443
  • deoxyspergualin rapamycin
  • T-cell receptor U.S. Pat. No. 5,114.721
  • T-cell receptor fragments Offner et al., Science 251:430-432 (1991); WO 90/11294; and WO 91/01133
  • T cell receptor antibodies EP 340, 109 such as T10B9.
  • the patient can be treated with a CD20 antibody of the invention in conjunction with any one or more of the following drugs: DMARDS (disease modifying anti-rheumatic drugs (e.g., methotrexate), NSAI or NSALD (non-steroidal anti-inflammatory drugs), HUMIRATM (adalimumab; Abbott Laboratories), ARAVA® (leflunomide), REMICADE® (infliximab; Centocor Inc., of Malvern, Pa.), ENBREL (etanercept; Immunex, WA), COX-2 inhibitors.
  • DMARDS disease modifying anti-rheumatic drugs
  • NSAI or NSALD non-steroidal anti-inflammatory drugs
  • HUMIRATM adalimumab; Abbott Laboratories
  • ARAVA® leflunomide
  • REMICADE® infliximab; Centocor Inc., of Malvern, Pa.
  • ENBREL etanercept; Immunex, WA
  • DMARDs commonly used in RA are hydroxycloroquine, sulfasalazine, methotrexate, leflunomide, etatiercept, azathioprine, D penicillamine, Gold (oral), Gold (intramuscular), minocycline, cyclosporine,
  • Adahmnurnab is a human monoclonal antibody that binds to TNF ⁇ .
  • Infliximab is a chimeric monoclonal antibody that binds to INF ⁇ .
  • Etanercept is an “immunoadhesin” fusion protein consisting of the extracellular ligand binding portion of the human 75 kD (p75) tumor necrosis factor receptor (TNFR) linked to the Fc portion of a human IgG1.
  • p75 tumor necrosis factor receptor
  • the RA patient is treated with a CD20 antibody of the invention in conjunction with methotrexate (MTX).
  • MTX methotrexate
  • An exemplary dosage of MIX is about 7.5-25 mg/kg/wk. MIX can be administered orally and subcutaneously.
  • the patient can be treated with a CD20 binding antibody of the invention in conjunction with, for example, Remicadeg (infliximab; from Centocor Inc., of Malvern, Pa.), ENBREL (eumercept; Immunex, WA).
  • Treatments for SLE include high-dose corticosteroids and/or cyclophosphamide (HDCC).
  • HDCC cyclophosphamide
  • patients can he administered a CD20 binding antibody in conjunction with topical treatments, such as topical steroids, arithralin, calcipotriene, clobetasol, and tazarotene, or with methotrexate, retinoids, cyclosporine, PUVA and UVB therapies.
  • topical treatments such as topical steroids, arithralin, calcipotriene, clobetasol, and tazarotene, or with methotrexate, retinoids, cyclosporine, PUVA and UVB therapies.
  • the psoriasis patient is treated with the CD20 binding antibody sequentially or concurrently with cyclosporine.
  • Therapeutic formulations of the CD20-binding antibodies used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers ( Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
  • Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkordum chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as olyvinylpyrroliaone; amino acids such as glycine, glutamine, asparagine, hist
  • anti-CD20 antibody formulations are described in WO98/56418, expressly incorporated herein by reference.
  • Another formulation is a liquid multidose formulation comprising the anti-CD20 antibody at 40 mg/mL, 25 mM acetate, 150 mM trehalose, 0.9% benzyl alcohol, 0.02% polysorbate 20 at PH 5.0 that has a minimum shelf life of two years storage at 2-8° C.
  • Another anti-CD20 formulation of interest comprises 10 mg/mL, antibody in 9.0 mg/mL sodium chloride, 7.35 mg/mL sodium citrate dihydrate, 0.7 mg/mL polysorbate 80, and Sterile Water for Injection, pH 6.5.
  • Yet another aqueous pharmaceutical formulation comprises 10-30 mM sodium acetate from about pH 4.8 to about pH 5.5, preferably at pH5.5, polysorbate as a surfactant in a an amount of about 0.01-0.1% v/v, trehalose at an amount of about 2-10% w/v, and benzyl alcohol as a preservative (U.S. Pat. No. 6,171,586).
  • Lyophilized formulations adapted for subcutaneous administration are described in WO97/04801. Such lyophilized formulations may be reconstituted with a suitable diluent to a high protein concentration and the reconstituted formulation may be administered subcutaneously to the mammal to be treated herein.
  • One formulation for the humanized 2H7 variants is antibody at 12-14 mg/mL in 10 mM histidine, 6% sucrose, 0.02% polysorbate 20, pH 5.8.
  • 2H7 variants and in particular 2H7.v16 is formulated at 20 mg/mL antibody in 10 mM histidine sulfate, 60 mg/ml sucrose., 0.2 mg/ml polysorbate 20, and Sterile Water for Injection, at pH5.8.
  • the formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
  • a cytotoxic agent, chemotherapeutic agent, cytokine or immunosuppressive agent e.g. one which acts on T cells, such as cyclosporin or an antibody that binds T cells, e.g. one which binds LFA-1).
  • the effective amount of such other agents depends on the amount of antibody present in the formulation, the type of disease or disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein or about from 1 to 99% of the heretofore employed dosages.
  • the active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nattocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nattocapsules
  • Sustained-release preparations may he prepared.
  • suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antagonist, which matrices are in the form of shaped articles, e.g. films, or microcapsules.
  • sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No.
  • copolymers of L-glutamic acid and ethyl-L-glutamate non: degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D- ⁇ - ⁇ -3-hydroxybutyric acid.
  • the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • Another embodiment of the invention is an article of manufacture containing materials useful for the treatment of autoimmune diseases and related conditions and CD20 positive cancers such as non-Hodgkin's lymphoma.
  • the article of manufacture comprises a container and a label or package insert on or associated with the container.
  • Suitable containers include, for example, bottles, vials, syringes, etc.
  • the containers may be formed from a variety of materials such as glass or plastic.
  • the container holds a composition which is effective for treating the condition and may have a sterile access port (for example the container may he an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
  • At least one active agent in the composition is a CD20 binding antibody of the invention.
  • the label or package insert indicates that the composition is used for treating the particular condition.
  • the label or package insert will further comprise instructions for administering the antibody composition, to the patient.
  • Package insert refers to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
  • the package insert indicates that the composition is used for treating non-Hodgkins' lymphoma.
  • the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • a pharmaceutically-acceptable buffer such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution.
  • Kits are also provided that are useful for various purposes , e.g., for B-cell killing assays, as a positive control for apoptosis assays, for purification or immunoprecipitation of CD20 from cells.
  • the kit can contain an anti-CD20 antibody coupled to beads (e.g., sepharose beads).
  • Kits can be provided which contain, the antibodies for detection and quantitation of CD20 in vitro, e.g. in an ELISA or a Western blot,
  • the kit comprises a container and a label or package insert on or associated with the container.
  • the container holds a composition comprising at least one anti-CD20 antibody of the invention. Additional containers may be included that contain, e.g., diluents and buffers, control antibodies.
  • the label or package insert may provide a description of the composition as well as instructions for the intended in vitro or diagnostic use.
  • the invention also provides an isolated nucleicacid comprising the nucleotide sequence of SEQ ID NO.: 24 of the Cynomolgus monkey CD20 as shown in FIG. 19 .
  • the nucleic acid is a cDNA.
  • the nucleic acid encoding the monkey CD20 is in an expression vector for expression in a host cell.
  • the nucleotide sequence of SEQ ID NO.: 24 in the expression vector is operably linked to an expression control sequence such as a promoter or promoter and enhancer.
  • the expression control sequence can be can be the native sequence normally associated with the Cynomolgus CD20 gene, or heterologous to the gene.
  • an isolated polypeptide comprising the amino acid sequence [SEQ ID NO. 25; FIG.
  • the Cynomolgus monkey CD20 as well as host cells containing the Cynomoigus CD20 nucleic acid.
  • the host cells are eukaryotic cells, e.g., CHO cells. Fusion proteins comprising the Cynomoigus CD20 amino acid sequence or fragments of the sequence are also contemplated.
  • 2H7 Humanization of the murine anti-human CD20 antibody, 2H7 (also referred to herein as in2H7, m for murine), was carried out in a series of site-directed mutagenesis steps.
  • the murine 2H7 antibody variable region sequences and the chimeric 2H7 with the mouse V and human C have been described, see, e.g., U.S. Pat. Nos. 5,846,818 and 6,204,023.
  • the CDR residues of 2H7 were identified by comparing the amino acid sequence of the murine 2H7 variable domains (disclosed in U.S. Pat. No. 5,846,818) with the sequences of known antibodies (Kabat et al., Sequences of proteins of immunological interest, Ed. 5.
  • the phagemid pVX4 ( FIG. 2 ) was used for mutagenesis as well as for expression of F(ab,s in E. coli.
  • pVX4 contains a DNA fragment encoding a humanized consensus ⁇ -subgroup I light chain (V L ⁇ I-C L ) and a humanized consensus subgroup III heavy chain (V H III-C H 1) anti-IFN- ⁇ (interferon ⁇ ) antibody
  • pVX4 also has an alkaline phosphatase promotor and Shine-Daigamo sequence both derived from another previously described pUC119-based plasmid, pAK2 (Carter et al., Proc.
  • Table 1 shows the oligonucleotide sequence used to create each of the murine 2H7 (m2H7) CDRs in the H and L chain.
  • the CDR-H1 oligonucleotide was used to recreate the m2H7 H chain CDR1, CDR-H1, CDR-H2 and CDR-H3 refers to the H chain CDR1, CDR2 and CDR3, respectively; similarly, CDR-L1, CDR-L2 and CDR-L3 refers to each of the L chain CDRs.
  • the substitutions in CDR-H2 were done in two steps with two oligonucleotides, CDR-H2A and CDR-H2B.
  • a plasmid expressing a chimeric 2H7 Fab (containing murine V L and V H domains, and human C L and CH 1 domains) was constructed by site-directed mutagenesis (Kunkel, supra) using synthetic oligonucleotides to introduce the murine framework residues into 2H7.v2.
  • the sequence of the resulting plasmid construct for expression of the chimeric Fah known as 2H7.v6.8, is shown in FIG. 3 ,
  • Each encoded chain of the Fab has a 23 amino acid StII secretion signal sequence as described for pVX4 ( FIG. 2 ) above.
  • Version 3 contained V H (R71V, N73K), version 4 contained V H (R71V), version 5 contained V H (R71V, N73K) and V L (LA6P), and version 6 contained V H (R71V, N73K) and V L (L46P, L47W).
  • E. coli Humanized and chimeric Fab versions of m2H7 antibody were expressed in E. coli and purified as follows. Plasmids were transformed into E. coli strain XL-1 Blue (Stratagene, San Diego, Calif.) for preparation of double-and single-stranded DNA. For each variant, both light and heavy chains were completely sequenced using the dideoxynucleotide method (Sequenase, U.S. Biochemical Corp.). Plasmids were transformed into E. coli strain 16C9, a derivative of MM294, plated onto 1_,I3 plates containing 5 ⁇ g/ml carbenicillin, and a single colony selected for protein expression.
  • the single colony was grown in 5 ml LB-100 ⁇ g/ml carbenicillin for 5-8 h at 37 C.
  • the 5 ml culture was added to 500 ml AP5-100 ⁇ g/ml carbenicillin and allowed to grow for 16 h in a 4 L baffled shake flask at 37° C.
  • AP5 media consists of: 1.5 g, glucose, 11.0 Hycase SF, 0.6 g yeast extract (certified), 0.19 g anhydrous MgSO 4 , 1.07 g NH 4 CI, 3.73 g KCl, 1.2 g NaCl, 120 ml 1 M triethanolamine, pH 7.4, to 1 L water and then sterile filtered through 0.1 ⁇ m Sealkeen filter.
  • Cells were harvested by centrifugation in a 1 L centrifuge bottle (Nalgene) at 3000 ⁇ g and the supernatant removed. After freezing for 1 h, the pellet was resuspended in 25 ml cold 10 mM MES-10 mM EDTA, pH 5.0 (buffer A). 250 ⁇ l of 0.1M PMSF (Sigma) was added to inhibit proteolysis and 3.5 ml of stock 10 mg/ml hen egg white lysozyme (Sigma) was added to aid lysis of the bacterial cell wall. After gentle shaking on ice for 1 h, the sample was centrifuged at 40,000 ⁇ g for 15 min.
  • the supernatant was brought to 50 ml with buffer A and loaded onto a 2 ml DEAL column equilibrated with buffer A.
  • the flow-through was then applied to a protein G-Sepharose CL 4B (Pharmacia) column (0.5 ml bed volume) equilibrated with buffer A.
  • the column was washed with 10 ml buffer A and eluted with 3 ml 0.3 M glycine, pH 3,0, into 1.25 ml 1 M Tris, pH 8.0.
  • the F(ab) was then buffer exchanged into PBS using a Centricon-30 (Amicon) and concentrated to a final volume of 0.5 ml. SDS-PAGE gels of all F(ab)s were run to ascertain purity and the molecular weight of each variant was verified by electrospray mass spectrometry.
  • Plasmids for expression of full-length IgG's were constructed by subcloning the V L , and V H domains of chimeric 2H7 (v6.8) Fab as well as humanized Fab versions 2 to 6 into previously described pRK vectors for mammalian cell expression (Gorman et al., DNA Prot. Eng. Tech. 2:3-10 (19901). Briefly, each Fab construct was digested with FcoRV and BlpI to excise a V L fragment, which was cloned into the EcoRV/BlpI sites of plasmid pDR1 ( FIG. 4 ) for expression of the complete light chain (V L -C L , domains). Additionally.
  • each Fab construct was digested with PvuII and ApaI to excise a V H fragment, which was cloned into the PvuII/ApaI sites of plasmid pDR2 ( FIG. 5 ) for expression of the complete heavy chain (VH—CH 1 -hinge-CH 2 —CH 3 domains).
  • transient transfections were performed by cotransfecting a light-chain expressing plasmic' and a heavy-chain expressing plasmid into an adenovirus-transformed human embryonic kidney cell line, 293 (Graham et al., J. Gen. Virol., 36:59-74, (1977)).
  • a cell-bases ELISA assay was developed.
  • Human B-lymphoblastoid WIL2-S cells (ATCC CRL 8885, American Type Culture Collection, Rockville, MD.) were grown in RPMI 1640 supplemented with 2 mM L-glutamine, 20 mM HEPES, pH 7.2 and 10% heat inactivated fetal bovine serum in a humidified 5% CO 2 incubator. The cells were washed with PBS containing 1% PBS (assay buffer) and seeded at 250-300,000 cell/well in 96-well round bottom plates (Nunc, Roskilde, Denmark).
  • TMB substrate (3,3′,5,5′-tetramethyl benzidine; Kirkegaard & Perry Laboratories, Gaithersburg, Md.) was added to the plates. The reaction was stopped by adding 1 M phosphoric acid. Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (KaleidaGraph, Synergy software, Reading, PA). The absorbance at the midpoint of the titration curve (mid-OD) and its corresponding concentration of the standard were determined. Then the concentration of each variant at this mid-OD was determined, and the concentration of the standard was divided by that of each variant. Hence the values are a ratio of the binding of each variant relative to the standard. Standard deviations in relative affinity (equivalent concentration) were generally ⁇ 10% between experiments.
  • S298A/E333A/K334A also referred to herein as a triple Ala mutant or variant; numbering in the Fc region is according to the ECT numbering system; Kabat et al., supra) as described (Idusogie et al, supra (2001); Shields et al., supra).
  • a triple Ala mutant of the 2H7 Fc was constructed.
  • a humanized variant of the anti-HER2 antibody 4d5 has been produced with mutations S298A/E333A/K334A and is known as 4D5Fc110 (i.e, anti-p 185 HER2 IgG1 (S298A/E333A/K334A); Shields et al, supra).
  • a plasmid, p4D5Fc110 encoding antibody 4D5Fc110 (Shields et al., supra) was digested with ApaI and HindIII, and the Fc fragment (containing mutations S298A/E333A/K334A) was ligated into the ApaI/HindIII sites of the 2H7 heavy-chain vector pDR2-v16, to produce pDR2-v31.
  • the amino acid sequence of the version 31 complete H chain is shown in FIG. 8 .
  • the L chain is the same as that of v16.
  • 2H7.v16 and 2H7.v73 were formulated at 12-14 mg/ML in 10 mM histidine, 6% sucrose, 0.02% polysorbate 20, pH 5.8 and incubated at 40° C. for 16 days. The incubated samples were then assayed for changes in charge variants by ion exchange chromatography, aggregation and fragmentation by size exclusion chromatography, and relative binding by testing in a cell-based (WIL2-S) assay.
  • WIL2-S cell-based
  • K d Equilibrium dissociation constants
  • 2H7 IgG variants binding to WIL2-S cells using radiolabeled 2H7 IgG.
  • IgG variants were produced in CHO cells.
  • Rituxan® source for all experiments is Genentech, S. San Francisco, Calif.
  • murine 2H7 BD PharMingen, San Diego, Calif.
  • the murine 2H7 antibody is also available from other sources, e.g., eBioscience, and Calbiochem (both of San Diego, Calif.), Accurate Chemical & Scientific Corp., (Westbury, N.Y.), Ancell (Bayport, Minn.), and Vinci-Biochem (Vinci, Italy).
  • binding assay buffer DMEM media containing 1% bovine serum albumin, 25 mM HEPES pH 7.2, and 0.01% sodium azide.
  • Aliquots (0.025 mL) of 125 I-2H7.v16 (iodinated with lactoperoxidase) at a concentration of 0.8 nM were dispensed into wells of a V-bottom 96-well microassay plate, and serial dilutions (0.05 mL) of cold antibody were added and mixed.
  • WIL2-S cells 60,000 cells in 0.025 mL were then added. The plate was sealed and incubated at room temperature for 24 h, then centrifuged for 15 min at 3,500 RPM.
  • 2H7 IgG variants were assayed for their ability to mediate complement-dependent lysis of WIL2-S cells, a CD20 expressing lymphoblastoid B-cell line, essentially as described (Ichisogie et al., J. Immunol. 164:4178-4184 (2000); Idusogie et al., J. Immunol. 166:2,571-2575 (2001)), Antibodies were serially diluted 1:3 from a 0.1 mg/mL stock solution.
  • Antibody variant n EC 50 (variant)/EC 50 (Rituxan) Rituxan ® 4 -1- 2H7.v16 4 3.72; 4.08 2H7.v31* 4 .21 2H7.v73 4 1.05 2H7.v75 4 0.33 2H7.v96* 4 0.956 2H7.v114* 4 0.378 2H7.v115* 4 0.475 2H7.v116* 1 >100 2H7.v135* 2 0.42
  • ADCC Antibody Dependent Cellular Cytotoxicity
  • NK cell Natural-Killer cell
  • WIL2-S cells a CD20 expressing lymphoblastoid B-cell line
  • LDH lactate dehydrogenase
  • the NK cells were from human donors heterozygous for CD16 (F158/V158).
  • the diluted blood was layered over 15 mL of lymphocyte separation medium (ICN Biochemical, Aurora, Ohio) and centrifuged for 20 min at 2000 RPM.
  • White cells at the interface between layers were dispensed to 4 clean 50-mL tubes, which were filled with RPMI medium containing 15% fetal calf serum. Tubes were centrifuged for 5 min at 1400 RPM and the supernatant discarded.
  • NK cells were purified using beads (NK Cell Isolation Kit, 130-046-502) according to the manufacturer's protocol (Miltenyi Biotech,). NK cells were diluted in MACS buffer to 2 ⁇ 10 6 cells/mL.
  • the ADCC reaction was initiated by adding 0.1 mL of NK cells to each well. In control wells, 2% Triton X-100 was added. The plate was then incubated for 4 h at 37° C. Levels of LDH released were measured using a cytotoxicity (LDH) detection kit (Kit#1644793, Roche Diagnostics, Indianapolis, Ind.) following the manufacturers instructions. 0.1 mL of LDH developer was added to each well, followed by mixing for 10 s. The plate was then covered with aluminum foil and incubated in the dark at room temperature for 15 min. Optical density at 490 nm was then read and use to calculate % lysis by dividing by the total LDH measured in control wells. Lysis was plotted as a function of antibody concentration, and a 4-parameter curve fit (KaleidaGraph) was used to determine EC 50 concentrations.
  • LDH cytotoxicity
  • 2H7 variants produced by transient transfection of CHO cells, were tested in normal male cynomolgus ( Macaca fascicularis ) monkeys in order to evaluate their in vivo activities.
  • Other anti-CD20 antibodies such as C2B8 (Rituxan®) have demonstrated an ability to deplete B-cells in normal primates (Reff et al., Blood 83: 435-445 (1994)).
  • the first day of closing is designated day 1 and the previous day is designated day ⁇ 1; the first day of recovery (for 2 animals in each group) is designated as day 11.
  • Blood samples were collected on days ⁇ 19, ⁇ 12, 1 (prior to dosing), and at 6 h, 24 h, and 72 h following the first dose. Additional samples were taken on day 8 (prior to dosing), day 10 (prior to sacrifice of 2 animals/group), and on days 36 and 67 (for recovery animals).
  • Peripheral B-cell concentrations were determined by a FACS method that counted CD3 ⁇ /CD40+ cells.
  • the percent of CD3 ⁇ CD40+ B cells of total lymphocytes in monkey samples were obtained by the following gating strategy.
  • the lymphocyte population was marked on the forward scatter/side scatter scattergram to define Region 1 (R1).
  • R1 Region 1
  • fluorescence intensity dot plots were displayed for CD40 and CD3 markers.
  • Fluorescently labeled isotype controls were used to determine respective cutoff points for CD40 and CD3 positivity.
  • both 2H7.v16 and 2H7.v31 were capable of producing full peripheral B-cell depletion at the 10 mg/kg dose and partial peripheral B-cell depletion at the 0.05 mg/kg dose ( FIG. 11 ).
  • the time course and extent of B-cell depletion measured during the first 72 h of dosing were similar for the two antibodies.
  • Subsequent analysis of the recovery animals indicated that animals treated with 2H7.v31 showed a prolonged depletion of B-cells as compared to those dosed with 2H7.v16.
  • recovery animals treated with 10 mg/kg 2H7.v16, B-cells showed substantial B-cell recovery at some time between sampling on Day 10 and on Day 36.
  • DP12 a dihydrofolate reductase minus (DHFR ⁇ ) CHO cell line that is fucosylation competent
  • Lec13 a cell line that is deficient in protein fucosylation were used to produce antibodies for this study.
  • the CHO cell nine Pro-Lec13.6a (Lec13) was obtained front Professor Pamela Stanley of Albert Einstein College of Medicine of Yeshiva University.
  • Parental lines are Pro- (proline auxotroplo and Gat- (glycine, adenosine, thymidine auxotroph).
  • the CHO-DP12 cell line is a derivative of the CHO-K1 cell line (ATCC #CCL-61), which is dihydrofolate reductase deficient, and has a reduced requirement for insulin.
  • Cell lines were transfected with cDNA using the Superfect method (Qiagen, Valencia, Calif.).
  • Lec13 cells expressing transfected antibodies was performed using puromycin dihydrochloride (Calbiochem, San Diego, Calif.) at 10 ⁇ g/ml in growth medium containing: MEM Alpha Medium with L-glutamine, ribonucleosides and deoxyribonucleosides (GIBCO-BRL, Gaithersburg, Md.), supplemented with 10% inactivated FBS (GIBCO), 10 mM HEPES, and 1 ⁇ penicillin/streptomycin (GIBCO).
  • the CHO cells were similarly selected in growth medium containing Ham's F12 without GHT: Low Glucose DMEM without Glycine with NaHCO3 supplemented with 5% FBS (GIBCO), 10 HEPES, 2 nM L-glutamine, 1 ⁇ GHT(glycine, hypoxanthine, thymidine), and 1 ⁇ penicillin/streptomycin.
  • Colonies formed within two to three weeks and were pooled for expansion and protein expression.
  • the cell pools were seeded initially at 3 ⁇ 10 6 cells/10 cm plate for small batch protein expression.
  • the cells were converted to serum-free media once they grew to 90-95% confluency and after 3-5 days cell supernatants were collected and tested in an Fc IgG- and intact IgG-ELISA to estimate protein expression levels.
  • Lec13 and CHO cells were seeded at approximately 8 ⁇ 10 6 cells/15 cm plate one day prior to converting to PS24 production medium, supplemented with 10 mg/L recombinant human insulin and 1 mg/L trace elements.
  • Lec13 cells and DP12 cells remained in serum-free production medium for 3-5 days.
  • Supernatants were collected and clarified by centrifugation in 150 ml conical tubes to remove cells and debris.
  • the protease inhibitors PMSF and aprotinin (Sigma, St. Louis, Mo.) were added and the supernatants were concentrated 5-fold on stirred cells using MWCO30 filters (Amicon, Beverly, Mass.) prior to immediate purification using protein G chromatography (Amersham Pharmacia Biotech, Piscataway, N.J.)).
  • the CHO cells were transfected with vectors expressing humanized 2H7v16, 2H7v.31 and selected as described.
  • the 2H7v.16 antibody retains the wild type Fc region While v.31 (see Example 5, Table 7 above) has an Fc region wherein 3 amino acid changes were made (S298A, E333A, K334A) which results in higher affinity for the Fc ⁇ RIIIa receptor (Shields et al. J. Biol. Chem. 276 (9):6591-6604 (2001)).
  • N-linked oligosaccharides were released from recombinant glycoproteins using the procedure of Papac et al., Glycobiology 8, 445-454 (1998). Briefly, the wells of a 96 well PVDF-lined microtitre plate (Millipore, Bedford, Mass.) were conditioned with 100 ⁇ l methanol that was drawn through the PDVF membranes by applying vacuum to the Millipore Multiscreen vacuum manifold. The conditioned PVDF membranes were washed with 3 ⁇ 250 ⁇ l water.
  • the PVP-360 solution was removed by gentle vacuum and the wells were washed 4 ⁇ 250 ⁇ l water.
  • the PNGase F (New England Biolabs, Beverly, Mass.) digest solution 25 ⁇ l of a 25 Unit/ml solution in 10 mM Tris acetate, pH 8.4, was added to each well and the digest proceeded for 3 hr at 37′C. After digestion, the samples were transferred to 500 ⁇ l Eppendorf tubes and 2.5 ⁇ lL of a 1.5 M acetic acid solution was added to each sample. The acidified samples were incubated for 3 hr at ambient temperature to convert the oligosaccharides from glycosylamines to the hydroxyl form.
  • the released oligosaccharides Prior to MALIN-TOF mass spectral analysis, the released oligosaccharides were desalted using a 0.7-ml bed of cation exchange resin (AG50W-X8 resin in the hydrogen form) (Bio-Rad, :Hercules, Calif.) slurried packed into compact reaction tubes (US Biochemical, Cleveland, Ohio).
  • AG50W-X8 resin in the hydrogen form Bio-Rad, :Hercules, Calif.
  • the desalted oligosaccharides were applied to the stainless target with 0.5 ⁇ l of the 2,5 dihydroxybenzoic acid matrix (sDHB) that was prepared by dissolving 2 mg 2,5 dihydroxybenzoic acid with 0.1 mg of 5-methoxyslicylic acid in 1 ml of ethanol/10 mM sodium chloride 1:1 (v/v).
  • sDHB 2,5 dihydroxybenzoic acid matrix
  • the desalted N-linked oligosaccharides were applied to the stainless target along with 0.5 ⁇ l 2′,4′,6′-trihydroxyacetophenone matrix (TRAP) prepared in 1:3 (v/v) acetonitrile/13.3 mM ammonium citrate buffer.
  • the sample/matrix mixture was vacuum dried and then allowed to absorb atmospheric moisture prior to analysis.
  • Released oligosaccharides were analyzed by MALDI-TOF on a PerSeptive BioSystems Voyager-DE mass spectrometer. The mass spectrometer was operated at 20 kV either in the positive or negative mode with the linear configuration and utilizing delayed extraction.
  • ADCC assays were performed as described in Example 9. NK to target cell (WIL2-S) ratio was 4 to 1, assays were run for 4 hours, and toxicity was measured as before using lactose dehydrogenase assay. Target cells were opsonized with the concentrations of antibody indicated for 30 min prior to addition of NK cells.
  • the Rituxan® antibody used was from Genentech (S. San Francisco, Calif.).
  • FIG. 12 shows the results of a representative ADCC assay.
  • underfucosylated antbodies mediate NK cell target cell killing more efficiently than do antibodies with a full complement of fucose.
  • the underfucosylated antibody, 2H7v.31 is most efficient at mediating target cell killing. This antibody is effective at lower concentrations and is capable of mediating killing of a greater percentage of target cells at higher concentrations than are the other antibodies.
  • the protein and carbohydrate alterations are additive.
  • This example describes ADCC activity in vivo of the fucose-deficient humanized 2H7 variants including v.16 and v.31 produced in Lec13 compared to normal fucosylated counterparts produced in DP12, in mice expressing human CD16 [FcR ⁇ III] and human CD20.
  • Human CD20 transgenic mice were generated from human CD20 BAC DNA (Itivitrogen, Carlsbad, Calif.). Mice were screened based on the FACS analysis of human CD20 expression. HuCD20 Tg + mice were then crossed with huCD16Tg + mCD16 ⁇ / ⁇ mice to generate huCD20Tg + huCD16Tg + mCD16 ⁇ / ⁇ mice.
  • Mouse lymphocytes from whole blood, spleen, lymph nodes and bone marrow are prepared according to standard protocol described in “Current Protocols in Immunology, edited by John Coligan, Ada Kruisbeek, David Margulies, Ethan Shevach and Warren Strober, 1994”.
  • FACS buffer which is phosphate buffered saline with 1% BSA, containing 5 ⁇ l of staining or control antibody. All the staining antibodies, including isotype controls, are obtained from PharMingen, San Diego, Calif. Human CD20 expression is assessed by staining with Rituxan® along with FITC-conjugated anti-human IgG1 secondary antibody. FACS analysis is conducted using FACScan and Cell Quest (Becton Dickinson Immunocytometry Systems, San Jose, Calif.): All the lymphocytes are defined in the forward and side light scatterings, while all the B lymphocytes are defined with the expression of B220 on the cell surface.
  • B cell depletion and recovery are assessed by analyzing peripheral B cell counts and analysis of hCD20+ B cells by FACS in the spleen, lymph node and bone marrow on a daily basis for the first week after injection and thereafter on a weekly basis. Serum levels of the injected 2H7 variant antibody are monitored.
  • Anti CD20 antibodies including Rituxim® have been shown to induce apopiosis in vitro when crosslinked by a secondary antibody or by chemical means (Shan et al., Blood 9:1644-1652 (1998); Byrd et al., Blood 99:1038-43 (2002); Pederson et al:, Blood 99:1314,-19 (2002)).
  • murine 2H7 dimers induced apoptosis of Daudi cells ((Gietie et al:, Proc Natl Acad Sci USA 94:7509-14 (1997)).
  • Crosslinking with a secondary antibody also induced apoptosis with the urine 2H7 antibody (Shan et al, 1998). These activities are believed to he physiologically relevant because a variety of mechanisms could lead to crosslinking of anti-CD20 antibodies bound to cell-surface CD20 in vivo.
  • RhuMAb 2H7.v16 [humanized 2H7 v16; RhuMAb stands for recombinant human monoclonal antibody] and Rituxan® were compared in apoptosis assays in vitro using a secondary crosslinking antibody.
  • Ramos cells (CRL-1596ATCC, Manassas, Va.), a CD20-expressing, human B lymphocyte cell line, were used to measure the ability of the anti-CD20 monoclonal antibodies rhuMAb 2H7.v16 and Rituximab versus a negative-control antibody, Trastuzumab (Herceptin®, Genentech, South San Francisco, Calif.), to induce apoptosis as measured through Annexin V staining and propidium iodide dye exclusion (Vybrant® Apoptosis Assay Kit, Molecular Probes, Seattle, Wash.).
  • the Ramos cells were cultured in RPMI-1640 medium (Gibco, Rockville, Md.) containing 10% fetal bovine serum (Biosource International, Camarillo, Calif.) and 2 mM L-glutamine (Gibco). Prior to being assayed, the cells were washed twice in fresh media and then adjusted to a cell concentration of 2 ⁇ 10 6 per mL.
  • Cells (150 ⁇ L) were added to 96-well assay plates (Becton Dickinson, Palo Alto, Calif.) which contained 150 ⁇ L of a predetermined amount of control IgG1, rhuMAb 2H7.v16, or Rituximab, along with F(ab)′2 goat anti-human Fc (Pierce Biotechnology, Rockford, Ill.).
  • the final IgG concentrations were 100, 10, 1.0, 0.1, 0.01 and 0.001 nM, and the F(ab)′2 goat anti-human Fc antibody concentration was set at twice the respective sample antibody concentration. Each dilution was set up in triplicate.
  • the cells were washed twice with PBS and then stained with Annexin V and propidium iodide according to the manufacturer's recommendations.
  • the staining patterns of the Ramos cells were analyzed by flow cytometry using a FACscan Flow Cytometer (Becton Dickinson, San Jose, Calif.), and data were collected for 10 s-periods. The data were reduced using the Cellquest Pro software (Becton Dickinson).
  • Both rhuMAb 2H7.v16 and Rituximab induced apoptosis of Ramos cells when crosslinked with anti-human Fc and as compared to an irrelevant IgG1 control antibody ( FIGS. 13-15 ).
  • the apoptotic activity of (rhuMAb 2H7) was slightly lower than that of Rituximab.
  • fractions of Annexin V stained cells were 18.5, 16.5, 2.5%, respectively, fractions of doubly labeled cells were 29, 38, and 16%, and numbers of live cells counted per 10 s were 5200, 3100, and 8600.
  • rhuMAb 2H7.v16 The ability of rhuMAb 2H7.v16 to inhibit the growth of the Raji human B-cells, a lymphoma cell line (ATCC CCL 86), was evaluated in Balb/c nude (athymic) mice.
  • the Raji cells express CD20 and have been reported to grow in nude mice, producing metastatic disease; tumor growth is inhibited by Rituxan® (Clynes et al., Nature Medicine 6, 443-446 (2000)).
  • Rituxan® Clynes et al., Nature Medicine 6, 443-446 (2000).
  • Fifty-six 8-10 week old, Balb/c nude mice were divided into 7 groups (A-G) with each group consisting of 8 mice. On day 0, each mouse received a subcutaneous injection of 5 ⁇ 10 6 Raji B-lymphoma cells in the flank.
  • each mouse received either 100 uL of the negative-control solution (PBS; phosphate-buffered saline), Rituxan® or 2H7.v16. Dosage was dependent on weight and drug delivery was intravenously via the tail vein, Group A mice received PBS. Groups B-D received Rituxan® at 5.0, mg/kg, 0.5 mg/kg, and 0.05 mg/kg respectively. Groups E-G mice received 2H7 v.16 at 5.0 mg/kg, 0.5 mg/kg, and 0.05 mg/kg respectively. The injections were repeated every week for 6 weeks. At weekly intervals during treatment, each mouse was inspected for the presence of palpable tumors at the site of injection, and the volume of the tumors if present were measured and recorded. A final inspection was made at week 8 (after a two-week interval of no treatments).
  • PBS phosphate-buffered saline
  • the CD20 DNA sequence for cynomolgus monkey was determined upon the isolation of cDNA encoding CD20 from a cynomolgus spleen cDNA library.
  • a SUPERSCRIPTTM Prim Plasmid System for cDNA Synthesis and Plasmid Cloning (Cat#18248-013, Invitrogen, Carlsbad, Calif.) was used with slight modifications to construct the library.
  • the cDNA library was ligated into a pRK5E vector using restriction sites Xho I-and Not I. mRNA was isolated from spleen tissue ((California Regional Research Primate Center, Davis, Calif.).
  • Primers to amplify cDNA encoding CD20 were designed based on non-coding sequences of human CD20. N-terminal region primer 5-AGTTTTGAGAGCAAAATG-3′ (SEQ ID NO. 37) and C-terminal region primer 5′-AAGCTATGAACACTAATG-3′ (SEQ ID NO. 38) were used to clone by polymerase chain reaction (PCR) the cDNA encoding cynomolgus monkey CD20. The PCR reaction was carried out using Platinum Taq DNA Polymerase High Fidelity according to the manufacturer's recommendation (Gibco, Rockville, Md.).
  • the PC:R product was subcloned into pCR® 2.1-TOPO® Vector (Invitrogen) and transformed into XL-1 blue E. coli (Stratagene. La Jolla, Calif.). Plasmid DNA containing ligated PGR products was isolated from individual clones and sequenced.
  • FIG. 19 The amino acid sequence for cynomolgus monkey CD20 is shown in FIG. 19 .
  • FIG. 20 shows comparison of cynomolgus and human CD20.
  • the cynomolgus monkey CD20 is 97.3% similar to human CD20 with 8 differences.
  • the extracellular domain contains one change at V157A, while the remaining 7 residues can be found in the cytoplasmic or transmembrane regions.
  • Antibodies directed against human CD20 were assayed for the ability to bind and displace FITC-conjugated murine 2H7 binding to cynomolgus monkey cells expressing CD20. Twenty milliliters of blood were drawn from 2 cynomolgus monkeys (California Regional Research Primate Center, Davis, Calif.) into sodium heparin and shipped directly to Genentech Inc. On the same day, the blood samples were pooled and diluted 1:1 by the addition of 40 ml of phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • the PBMC pellet was resuspended in RPMI 1640 (Gibco, Rockville, Md.) containing 5% fetal bovine serum (PBS) and dispensed into a 10 cm tissue culture dish for 1 hour at 37° C.
  • the non-adherent h and cell populations were removed by aspiration, centrifuged and counted. A total of 2.4 ⁇ 10 7 cells were recovered.
  • the resuspended PBMC were distributed into twenty 12 ⁇ 75 mm culture tubes (Cat#352053, Falcon), with each tube containing 1 ⁇ 10 6 cells in a volume of 0.25 ml. Tubes were divided into four sets of five tubes.
  • each tube also received 20 ul of Fluorescein Isothiocyanate (FITC)-conjugated anti-human CD20 (Cat#555622, BD Biosciences, San Diego, Calif.), The cells were gently mixed, incubated for 1 hour on ice and then washed twice in cold PBS. The cell surface staining was analyzed on a Epic XL-MCL (Coulter, Miami, Fla.), the geometric means derived, plotted (KaleidaGraphTM, Synergy Software, Reading, Pa.) versus antibody concentrations.
  • FITC Fluorescein Isothiocyanate
  • Hie primary objective of this study is to evaluate the safety and tolerabiitty of escalating intravenous (1V) doses of PRO70769 (rbuMAb 2H7) in subjeels with moderate to severe rheumatoid arthritis (RA).
  • the study consists of a dose escalation phase and a second phase with enrollment of a larger number of subjects. The Sponsor will remain unblinded to treatment assignment.
  • Subjects with moderate to severe RA who have failed one to five disease-modifying antirheumatic drugs or biologics who currently have unsatisfactory clinical responses to treatment with MTX will be enrolled.
  • Subjects will he required to receive MTX in the range of 10-25 mg weekly for at least 12 weeks prior to study entry and to be on a stable dose for at least 4 weeks before receiving their initial dose of study drug (PRO70769 or placebo).
  • Subjects may also receive stable doses of oral corticosteroids (up to 10 mg daily or prednisone equivalent) and stable doses of nonsteroidal anti-inflammatory drugs (NSAIDs).
  • Subjects will receive two IV infusions of PRO70769 or placebo equivalent at the indicated dose on Days 1 and 15 according to the following dose escalation plan (see FIG. 22 ).
  • Dose escalation will occur according to specific criteria and after review of safety data by an internal safety data review committee and assessment of acute toxicity 72 hours following the second infusion in the last subject treated in each cohort.
  • 40 additional subjects (32 active and 8 placebo) will be randomized to each of the following dose levels: 2 ⁇ 50 mg, 2 ⁇ 200 mg, 2 ⁇ 500 mg, and 2 ⁇ 1000 mg, if the dose levels have been demonstrated to be tolerable during the dose escalation phase.
  • Approximately 205 subjects will be enrolled in the study.
  • B-cell counts will be obtained and recorded. B-cell counts will e evaluated using flow cytometry in a 48-week follow-up period beyond the 6-month efficacy evaluation. B-cell depletion will not be considered a dose-limiting toxicity (DI,C), but rather the expected pharmacodynamic outcome of PRO70769 treatment.
  • DI,C dose-limiting toxicity
  • blood for serum and RNA analyses, as well as urine samples will be obtained from subjects at various timepoints. These samples may be used to identify biomarkers that may be predictive of response to PRO70769 treatment in subjects with moderate to severe RA.
  • the primary outcome measure for this study is the safety and tolerability of PRO70769 in subjects with moderate to severe RA.
  • PRO70769 The efficacy of PRO70769 will be measured by ACR responses.
  • the percentage of subjects who achieve an ACR20, ACR50, and ACR70 response will be summarized by treatment group and 95% confidence intervals will be generated for each group.
  • the components of these response and their change from baseline will be summarized by treatment and visit.
  • humanized CD20 binding antibodies in particular humanized 2H7 antibody variants, that maintained and even enhanced their biological properties.
  • the humanized 2H7 antibodies of the invention bound to CD20 at affinities similar to the murine donor and chimeric 2H7 antibodies and were effective at B cell killing in a primate, leading to B cell depletion.
  • Certain variants showed enhanced ADCC over a chimeric ante CD20 antibody currently used to treat NIII favoring the use of lower doses of the therapeutic antibody in patients.
  • the present humanized antibodies can be administered at dosages that achieve partial or complete B cell depletion, and for different durations of time, as desired for the particular disease and patient.
  • these antibodies demonstrated stability in solution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • General Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Cardiology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Communicable Diseases (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Virology (AREA)

Abstract

The invention provides humanized and chimeric anti-CD20 antibodies for treatment of CD20 positive malignancies and autoimmune diseases.

Description

  • This is a continuation application of U.S. patent application Ser. No. 12/256,349 filed Oct. 22, 2008, which is a divisional of Ser. No. 11/147,780, filed Jun. 7, 2005, U.S. Pat. No. 7,799,900 issued Sep. 21, 2010, which is a continuation application of international patent application number PCT/US03/40426, filed Dec. 16, 2003, which claims benefit of provisional application Ser. No. 60/526,163, filed on Dec. 1, 2003 and provisional application Ser. No. 60/434,115, filed on Dec. 16, 2002, which applications are incorporated herein by reference in their entirety.
  • SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE
  • The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 146392006003SeqListing.txt, date recorded: Dec. 9, 2013, size: 119 KB).
  • FIELD OF THE INVENTION
  • The invention relates to anti-CD20 antibodies and their use in the treatment of B-cell related diseases.
  • BACKGROUND OF THE INVENTION
  • Lymphocytes are one of several populations of white blood cells; they specifically recognize and respond to foreign antigen. The three major classes of lymphocytes are B lymphocytes (B cells), lymphocytes (T cells) and natural killer (NK) cells. B lymphocytes are the cells responsible for antibody production and provide humoral immunity. B cells mature within the bone marrow and leave the marrow expressing an antigen-binding antibody on their cell surface. When a naive B cell first encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide rapidly and its progeny differentiate into memory B cells and effector cells called “plasma cells”. Memory B cells have a longer life span and continue: to express membrane-bound antibody with the same specificity as the original parent cell. Plasma cells do not produce membrane-bound antibody but instead produce secreted form of the antibody. Secreted antibodies are the major effector molecules of humoral immunity.
  • The CD20 antigen (also called human B-lymphocyte-restricted differentiation antigen, Bp35) is a hydrophobic transmembrane protein with a molecular weight of approximately 35 kD located on pre-B and mature B lymphocytes (Valentine et al, J. Biol. Chem. 264(19):11282-11287 (1989); and Einfeld et al. EMBO J. 7(3):711-717 (1988)). The antigen is also expressed on greater than 90% of B cell non-Hodgkin's lymphomas (NHL) (Anderson et al. Blood 63(6):1424-1433 (1984)), but is not found on hematopoietic stem cells, pro-B cells, normal plasma cells or other normal tissues (Tedder et al. J. Immunol. 135(2):973-979 (1985)). CD20 is thought to regulate an early step(s) in the activation process for cell cycle initiation and differentiation (Tedder et al., supra) and possibly functions as a calcium ion channel (Tedder et al. J. Cell. Biochem. 14D:195 (1990)).
  • Given the expression of CD20 in B cell lymphomas, this antigen has been a useful therapeutic target to treat such lymphomas, There are more than 300,000 people in the United States with B-cell NHL and more than 56,000 new cases are diagnosed each year. For example, the rituximab (RITUXAN®) antibody which is a genetically engineered chimeric; murine human monoclonal antibody directed against human CD20 antigen (commercially available from Genentech, Inc., South San Francisco, Calif., U.S.) is used for the treatment of patients with relapsed or refractory low-grade or follicular, CD20 positive, B cell non-Hodgkin's lymphoma. Rituximab is the antibody referred to as “C2B8” in U.S. Pat. No. 5,736,137 issued Apr. 7, 1998 (Anderson at al.) and in U.S. Pat. No. 5,776,456. In vitro mechanism of action studies have demonstrated that RITUXAN® binds human complement and lyses lymphoid B cell lines through complement-dependent cytotoxicity (CDC) (Reff et al. Blood 83(2):435-445 (1994)). Additionally, it has significant activity in assays for antibody-dependent cellular cytotoxicity (ADCC). In vivo preclinical studies have shown that RITUXAN® depletes B cells from the peripheral blood, lymph nodes, and bone marrow of cynomolgus monkeys, presumably through complement and cell-mediated processes (Reff et al. Blood 83(2):435-445 (1994)). Other anti-CD20 antibodies indicated for the treatment of NHL include the murine antibody Zevalin™ which is linked to the radioisotope, Yttrium-90 (IDEC Pharmaceuticals. San Diego, Calif.), Bexxar™ which is a another fully murine antibody conjugated to 1-131 (Corixa, Wash.).
  • A major limitation in the use of murine antibodies in human therapy is the human anti-mouse antibody (HAMA) response (see, e.g., Miller, R. A. et al. “Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma” Blood, 62:988-995, 1983; and Schroff, R. W., et al. “Human anti-murine immunoglobulin response in patients receiving monoclonal antibody therapy” Cancer Res., 45:879-885, 1985). Even chimeric molecules, where the variable (V) domains of rodent antibodies are fused to human constant (C) regions, are still capable of eliciting a significant immune response (HACA, human anti-chimeric antibody) (Neuberger et al. Nature (Lond.), 314:268-270, 1985). A powerful approach to overcome these limitations in the clinical use of monoclonal antibodies is “humanization” of the murine antibody or antibody from a nonhuman species (Jones et al. Nature (Lond), 321:522-525, 1986; Riechman et al., Nature (Lond), 332:323-327, 1988).
  • Thus, it is beneficial to produce therapeutic antibodies to the CD20 antigen that create minimal or no antigenicity when administered to patients, especially for chronic treatment. The present invention satisfies this and other needs. The present invention provides anti-CD20 antibodies that overcome the limitations of current therapeutic compositions as well as offer additional advantages that will be apparent from the detailed description below.
  • SUMMARY OF THE INVENTION
  • The present invention provides CD20 binding antibodies or functional fragments thereof, and their use in the treatment of B-cell associated diseases. These antibodies are monoclonal antibodies. In specific embodiments, the antibodies that bind CD20 are humanized or chimeric. The humanized 2H7 variants include those that have amino acid substitutions in the FR and affinity maturation variants with changes in the grafted CDRs. The substituted amino acids in the CDR or FR are not limited to those present in the donor or recipient antibody. In other embodiments, the anti-CD20 antibodies of the invention further comprise changes in amino acid residues in the Fc region that lead to improved effector function including enhanced CDC and/or ADCC function and B-cell killing (also referred to herein as B-cell depletion). Other anti-CD20 antibodies of the invention include those having specific changes that improve stability. In a specific embodiment, the humanized 2H7 variants with increased stability are as described in example 6 below. Fucose deficient variants having improved ADCC function in vivo are also provided. In one embodiment, the chimeric anti-CD20 antibody has murine V regions and human C region. One such specific chimeric anti-CD20 antibody is Rituxan® (Rituximab®; Genentech, Inc.).
  • In a preferred embodiment of ail of the antibody compositions and methods of use of this invention, the humanized CD20 binding antibody is 2H7.v16 having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, as shown in FIG. 6 and FIG. 7. When referring to the polypeptide sequences in FIGS. 6, 7 and 8, it should be understood that the first 19 or so amino acids that form the secretory signal sequence are not present in the mature polypeptide. The V region of all other variants based on version 16 will have the amino acid sequences of v16 except at the positions of amino acid substitutions which are indicated in the disclosure. Unless otherwise indicated, the 2H7 variants will have the same L chain as that of v16.
  • The invention provides a humanized antibody that binds human CD20, or an antigen-binding fragment thereof, wherein the antibody is effective to deplete primate B cells in vivo, the antibody comprising in the H chain Variable region (VH) at least a CDR3 sequence of SEQ ID NO. 12 from an anti-human CD20 antibody and substantially the human consensus framework (FR) residues of human heavy chain subgroup III (VHIII). In one embodiment, the primate B cells are from human and Cynornolgus monkey. In one embodiment, the antibody further comprises the H chain CDR1 sequence of SEQ ID NO. 10 and CDR2 sequence of SEQ ID NO. 11. In another embodiment, the preceding antibody comprises the L chain CDR1 sequence of SEQ ID NO. 4, CDR2 sequence of SEQ ID NO. 5, CDR3 sequence of SEQ ID NO. 6 with substantially the human consensus framework (FR) residues of human light chain κ subgroup I (VκI). In a preferred embodiment, the FR region in VL has a donor antibody residue at position 46; in a specific embodiment, FR2 in VL has an amino acid substitution of leuL46pro (Leu in the human 1κI consensus sequence changed to pro which is present in the corresponding position in m2H7). The VH region further comprises a donor antibody residue at at least amino acid positions 49, 71 and 73 in the framework. In one embodiment, in the VH, the following FR positions in the human heavy chain subgroup III are substituted: AlaH49Gly in FR2; ArgH71Val and AsnH73Lys in FR3. In other embodiments, the CDR regions in the humanized antibody further comprise amino acid substitutions where the residues are neither from donor nor recipient antibody.
  • The antibody of the preceding embodiments can comprise the VH sequence of SEQ ID NO.8 of v16, as shown in FIG. 1B. In a further embodiment of the preceding, the antibody further comprises the VL L sequence of SEQ ID NO.2 of v16, as shown in FIG. 1A.
  • In other embodiments, the humanized antibody is 2H7.v31 having the tight and heavy chain amino acid sequence of SEQ ID NO. 21 and 23, respectively, as shown in FIG. 6 and FIG. 8; 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO. 23 as shown in FIG. 8; 2H7.v96 with the amino acid substitutions of D56A and N100A in the H chain and S92A in the L chain of v16.
  • In separate embodiments, the antibody of any of the preceding embodiments further comprises at least one amino acid substitution in the Fc region that improves ADCC and/or CDC activity over the original or parent antibody from which it was derived, v.16 being the parent antibody being compared to in most cases, and Rituxan in other cases. One such antibody with improved activity comprises the triple Alanine substitution of S298.A/E333A/K334A in the Pc region. One antibody having 8298A/E333A/K334A substitution is 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO. 23. Antibody 2H7.v114 and 2H7.v115 show at least 10-fold improved ADCC activity as compared to Rituxan.
  • In another embodiment, the antibody further comprises at least one amino acid substitution in the Fc region that decreases CDC activity as compared to the parent antibody from which it was derived which is v16 in most cases. One such antibody with decreased CDC activity as compared to v16 comprises at least the substitution K322A in the II chain. The comparison of ADCC and CDC activity can be assayed as described in the examples.
  • In a preferred embodiment, the antibodies of the invention are full length antibodies wherein the VH region is joined to a human IgG heavy chain constant region. In preferred embodiments, the IgG is human IgG1 or IgG3.
  • In one embodiment, the CD20 binding antibody is conjugated to a cytotoxic agent. In preferred embodiments the cytotoxic agent is a toxin or a radioactive isotope.
  • In one embodiment, the antibodies of the invention for use in therapeutic or diagnostic purposes are produced in CHO cells.
  • Also provided is a composition comprising an antibody of any one of the preceding embodiments, and a carrier. In one embodiment, the carrier is a pharmaceutically acceptable carrier. These compositions can be provided in an article of manufacture or a kit.
  • The invention also provided a liquid formulation comprising a humanized 2H7 antibody at 20 mg/mL antibody, 10 mM histidine sulfate pH5.8, 60 mg/ml sucrose (6%), 0.2 mg/ml polysorbate 20 (0.02%).
  • The invention also provides an isolated nucleic acid that encodes any of the antibodies disclosed herein, including an expression vector for expressing the antibody.
  • Another aspect of the invention are host cells comprising the preceding nucleic acids,and host cells that produce the antibody. In a preferred embodiment of the latter, the host cell is a CHO cell. A method of producing these antibodies is provided, the method comprising culturing the host cell that produces the antibody and recovering the antibody from the cell culture.
  • Yet another aspect of the invention is an article of manufacture comprising a container and a composition contained therein, wherein the composition comprises an antibody of any of the preceding embodiments. For use in treating NHL, the article of manufacture further comprises a package insert indicating that the composition is used to treat non-Hodgkin's lymphoma.
  • A further aspect of the invention is a method of inducing apoptosis in B cells in vivo, comprising contacting B cells with the antibody of any of the preceding, thereby killing the B cells.
  • The invention also provides methods of treating the diseases disclosed herein by administration of a CD20 binding antibody or functional fragment thereof, to a mammal such as a human patient suffering from the disease. In any of the methods for treating an autoimmune disease or a CD20 positive cancer, in one embodiment, the antibody is 2H7.v16 having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, as shown in FIGS. 6 and FIG. 7. Thus, one embodiment is a method of treating a CD20 positive cancer, comprising administering to a patient suffering from the cancer, a therapeutically effective amount of a humanized CD20 binding antibody of the invention. In preferred embodiments, the CD20 positive cancer is a B cell lymphoma or leukemia including non-Hodgkin's lymphoma (NHL) or lymphocyte predominant Hodgkin's disease (LPHD), chronic lymphocytic leukemia (CLL) or SLL. In one embodiment of the method of treating a B cell lymphoma or leukemia, the antibody is administered at a dosage range of about 275-375 mg/m2. In additional embodiments, the treatment method further comprises administering to the patient at least one chemotherapeutic agent, wherein for non-Hodgkin's lymphoma (NHL), the chemotherapeutic agent is selected from the group consisting of doxorubicin, cyclophosphamide, vincristine and prednisolone.
  • Also provided is a method of treating an autoimmune disease, comprising administering to patient suffering from the autoimmune disease, a therapeutically effective amount of the humanized CD20 binding antibody of any one of the preceding claims. The autoimmune disease is selected from the group consisting of rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), autoimmune thrombocytopenia, multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Sjorgen's syndrome and glomerulonephritis. Where the autoimmune disease is rheumatoid arthritis, the antibody can be administered in conjunction with a second therapeutic agent which is preferably methotrexate.
  • In these treatment methods, the CD20 binding antibodies can he administered alone or in conjunction with a second therapeutic agent such as a second antibody, or a chemotherapeutic agent or an immunosuppressive agent. The second antibody can he one that binds CD20 or a different B cell antigen, or a NK or T cell antigen. In one embodiment, the second antibody is a radiolabeled anti-CD20 antibody. In other embodiments, the CD20 binding antibody is conjugated to a cytotoxic agent including a toxin or a radioactive isotope.
  • In another aspect, the invention provides a method of treating an autoimmune disease selected from the group consisting, of Dermatomyositis, Wegner's granulomatosis, ANCA, Aplastic anemia, Autoimmune hemolytic anemia (AIHA), factor VIII deficiency, hemophilia A, Autoimmune neutropenia, Castleman's syndrome, Goodpasture's syndrome, solid organ transplant rejection, graft versus host disease (GVHD), IgM mediated, thrombotic thrombocytopenic purpura (TTP), Hashimoto's Thyroiditis, autoimmune hepatitis, lymphoid interstitial pneumonitis (HIV), bronchiolitis obliterans (non-transplant) vs. NSIP, Guillain-Barre Syndrome, large vessel vasculitis, giant cell (Takayasu's) arteritis, medium vessel vasculitis, Kawasaki's Disease, polyarteritis nodosa, comprising administering to a patient suffering from the disease, a therapeutically effective amount of a CD20 binding antibody. In one embodiment of this method, the CD20 binding antibody is Rituxan®.
  • The invention also provides an isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO.: 24 of the Cynomolgus monkey CD20 (shown in FIG. 19), or a degenerate variant of this sequence. One embodiment is an isolated nucleic acid comprising a sequence that encodes a polypeptide with the amino acid sequence of SEQ ID NO. 25 (shown FIG. 20), or SEQ ID NO. 25 (FIG. 20) with conservative amino acid substitutions. Another embodiment is a vector comprising the preceding nucleic acid, including an expression vector for expression in a host cell. Included as well is a host cell comprising the vector. Also provided is a isolated polypeptide comprising the amino acid sequence [SEQ ID NO. 25; FIG. 20] of the Cynomolgus monkey CD20.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1A is a sequence alignment comparing the amino acid sequences of the light chain variable domain (VL) of each of murine 2H7 (SEQ ID NO. 1), humanized 2H7. v16 variant (SEQ ID NO. 2), and human kappa light chain subgroup I (SEQ ID NO. 3). The CDRs of VL of 2H7 and hu2H7.v16 are follows: CDR1 (SEQ ID NO.4), CDR2 (SEQ ID NO.5), and CDR3 (SEQ ID NO.6).
  • FIG. 1B is a sequence alignment which compares the VH sequences of murine 2H7 (SEQ ID NO. 7), humanized 2H7.v16 variant (SEQ ID NO. 8), and the human consensus sequence of heavy chain subgroup III (SEQ ID NO. 9). The CDRs of VH of 2H7 and hu2H7.v16 are as follow: CDR1 (SEQ ID NO.10), CDR2 (SEQ ID NO.11), and CDR3 (SEQ ID NO.12).
  • In FIG. 1A and FIG. 1B, the CDR1, CDR2 and CDR3 in each chain are enclosed within brackets, flanked by the framework regions, FR1-FR4, as indicated. 2H7 refers to the murine 2H7 antibody. The asterisks in between two rows of sequences indicate the positions that are different between the two sequences. Residue numbering is according to Kabat et al., Sequences of Immunological Interest. 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), with insertions shown as a, b, c, d, and e.
  • FIG. 2A-2E show the sequence of phagemid pVX4 (SEQ II) NO.13) used for construction of 2H7 Fab plasmids (see Example 1) as well as the amino acid sequences of the L chain (SEQ ID NO.14) and H chain (SEQ ID NO.15) of the Fab for the CDR grafted anti-IFN-α humanized antibody.
  • FIG. 3A-3E show the sequence of the expression plasmid which encodes the chimeric 2H7.v6.8 Fab (SEQ ID NO.16). The amino acid sequences of the L chain (SEQ ID NO.17) and H chain (SEQ ID NO.18) are shown.
  • FIG. 4A and 4B show the sequence of the plasmid pDR1 (SEQ ID NO.19; 5391 bp) for expression of immunoglobulin light chains as described in Example 1. pDR1 contains sequences encoding an irrelevant antibody, the light chain of a humanized anti-CD3 antibody (Shalaby et al., J. Exp. Med. 175: 217-225 (1992)), the start and stop codons for which are indicated in bold and underlined.
  • FIG. 5A and 5B show the sequence of plasmid pDR2 (SEQ ID NO.20; 6135 bp) for expression of immunoglobulin heavy chains as described in Example 1. pDR2 contains sequences encoding an irrelevant antibody, the heavy chain of a humanized anti-CD3 antibody (Shalaby et al., supra), the start and stop codons for which are indicated in bold and underlined.
  • FIG. 6 shows the amino acid sequence of the 2H7.v16 complete L chain (SEQ ID NO.21). The first 19 amino acids before DIQ are the secretory signal sequence not present in the mature polypeptide chain.
  • FIG. 7 shows the amino acid sequence of the 2H7.v16 complete H chain (SEQ ID NO.22). The first 19 amino acids before EVQ before are the secretory signal sequence not present in the mature polypeptide chain. Aligning, the VH sequence in FIG. 1B (SEQ ID NO. 8) with the complete H chain sequence, the human γ1 constant region is from amino acid position 114-471 in SEQ ID NO. 22.
  • FIG. 8 shows the amino acid sequence of the 2H7.v31 complete H chain (SEQ ID NO.23). The first 19 amino acids before EVQ before are the secretory signal sequence not present in the mature polypeptide chain. The L chain is the same as for 2H7.v16 (see FIG. 6).
  • FIG. 9 shows the relative stability of 2H7.v.16 and 2H7.v73 IgG variants as described in Example 6. Assay results were normalized to the values prior to incubation and reported as percent remaining after incubation.
  • FIG. 10 is a flow chart summarizing the amino acid changes from the murine 2H7 to a subset of humanized versions up to v75.
  • FIG. 11 is a summary of mean absolute B-cell count [CD3−/CD40+] in all groups (2H7 study and Rituxan study combined), as described in Example 10.
  • FIG. 12 shows the results of a representative ADCC assay on fucose deficient 2H7 variants as described in Example 11.
  • FIG. 13 shows the results of the Annexin V staining plotted as a function of antibody concentration. Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles), Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS. FIGS. 13-15 are described in Example 13.
  • FIG. 14 shows the results of the Annexin V and propidium iodide double-staining are plotted as a function of antibody concentration. Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles). Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS.
  • FIG. 15 shows the counts (per 10 s) of live, unstained cells are plotted as a function of antibody concentration. Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles), Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS.
  • FIGS. 16, 17, 18 show inhibition of Raji cell tumor growth in rude mice, as described in Example 14. Animals were treated weekly (as indicated by vertical arrows; n=8 mice per group) for 6 weeks with PBS (control) or with Rituxan® or rhuMAb 2H7.v16 at 5 mg/kg (FIG. 16), 0.5 mg/kg (FIG. 17), or 0.05 mg/kg (FIG. 18).
  • FIG. 19 shows the nucleotide (SEQ ID NO. 24) and amino acid (SEQ ID NO. 25) sequences of Cynomolgus monkey CD20, as described in Example 15.
  • FIG. 20 shows the amino acid sequence for cynomolgus monkey CD20 (SEQ ID NO. 25). Residues that differ from human CD20 are underlined and the human residues (SEQ ID NO. 26) are indicated directly below the monkey residue. The putative extracellular domain of the monkey CD20 is in bold type.
  • FIG. 21 shows the results of Cynomolgus monkey cells expressing CD20 binding to hu2H7.v16,.v31, and Rituxan, as described in Example 15. The antibodies were assayed for the ability to bind and displace FITC-conjugated murine 2H7 binding to cynomolgus CD20.
  • FIG. 22 shows dose escalation schema for rheumatoid arthritis phase clinical trial.
  • FIG. 23 shows the vector for expression of 2H7.v16 in CHO cells.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The “CD20” antigen is a non-glycosylated, transmembrane phosphoprotein with a molecular weight of approximately 35 kD that is found on the surface of greater than 90% of B cells from peripheral blood or lymphoid organs. CD20 is expressed during early pre-B cell development and remains until plasma cell differentiation; it is not found on human stem cells, lymphoid progenitor cells or normal plasma cells. CD20 is present on both normal B cells as well as malignant B cells. Other names for CD20 in the literature include “B-lymphocyte-restricted differentiation antigen” and “Bp35”. The CD20 antigen is described in, for example, Clark and Ledbetter, Adv. Can. Res. 52:81-149 (1989) and Valentine et al. J. Biol. Chem. 264(19):11282-11287(1989).
  • The term “antibody” is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), multispecific antibodies (e.g.., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity or function.
  • The biological activity of the CD20 binding and humanized CD20 binding antibodies of the invention will include at least binding of the antibody to human CD20, more preferably binding to human and other primate CD20 (including cynomolgus monkey, rhesus monkey, chimpanzees). The antibodies would bind CD20 with a Kd value of no higher than 1×10−8, preferably a Kd value no higher than about 1×10, and be able to kill or deplete B cells in vivo, preferably by at least 20% when compared to the appropriate negative control which is not treated with such an antibody. B cell depletion can be a result of one or more of ADCC, CDC, apoptosis, or other mechanism. In some embodiments of disease treatment herein, specific effector functions or mechanisms may be desired over others and certain variants of the humanized 2H7 are preferred to achieve those biological functions, such as ADCC.
  • “Antibody fragments” comprise a portion of a full length antibody, generally the antigen binding or variable region thereof. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991), for example.
  • “Functional fragments” of the CD20 binding antibodies of the invention are those fragments that retain binding to CD20 with substantially the same affinity as the intact fall length molecule from which they are derived and show biological activity including depleting B cells as measured by in vitro or in vivo assays such as those described herein.
  • The term “variable” refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and defines specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called “hypervariable regions” that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
  • The term “hypervariable region” when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues front a “complementarity determining region” or “CDR” (e.g. around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the VL, and around about 31-35B (H1), 50-65 (H2) and 95-102 (H3) in the VH (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the VL, and 26-32 (H1), 52A-55 (H2) and 96-101 (H3) in the VH (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)).
  • As referred to herein, the “consensus sequence” or consensus V domain sequence is an artificial sequence derived from a comparison of the amino acid sequences of known human immunoglobulin variable region sequences. Based on these comparisons, recombinant nucleic acid sequences encoding the V domain amino acids that are a consensus of the sequences derived from the human K and the human H chain subgroup III V domains were prepared. The consensus V sequence does not have any known antibody binding specificity or affinity.
  • “Chimeric” antibodies (immunoglobulins) have a portion of the heavy and/or light chain identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Prot. Natl. Acad. Sci. USA 81:6851-6855 (1984)). Humanized antibody as used herein is a subset of chimeric antibodies.
  • “Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient or acceptor antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity, in some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance such as binding affinity. Generally, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence although the FR regions may include one or more amino acid substitutions that improve binding affinity. The number of these anti no acid substitutions in the FR is typically no more than 6 in the H chain, and in the L chain, no more than 3. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Reichmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
  • Antibody “effector functions” refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor); and B cell activation.
  • “Antibody-dependent cell-mediated cytotoxicity” or “ADCC” refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies “arm” the cytotoxic cells and are absolutely required for such killing. The primary cells for mediating ADCC, NK cells, express FcyγRIII only, whereas monocytes express FcγR1, FcγRIII and FcγRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in U.S. Pat. Nos. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).
  • “Fc receptor” or “FcR” describes a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an “activating receptor”) and FcγRIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcyγIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Dacron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term “FcR” herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).
  • WO00/42072 (Presto) describes antibody variants with improved or diminished binding to FcRs. The content of that patent publication is specifically incorporated herein by reference. See, also, Shieids et al. J. Riot. Chem. 9(2): 6591-6604 (2001).
  • “Human effector cells” are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g. from blood.
  • “Complement dependent cytotoxicity” or “CDC” refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
  • Polypeptide variants with altered Fc region amino acid sequences and increased or decreased C1q binding capability are described in U.S. Pat. No. 6,194,551B1 and WO99/51642. The contents of those patent publications are specifically incorporated herein by reference. See, also, Idusogie et al. J. Immunol. 164: 4178-4184 (2000).
  • The N-glycosylation site in IgG is at Asa297 in the CH2 domain. The present invention also provides compositions of a CD20-binding, humanized antibody having a Fc region. wherein about 80-100% (and preferably about 90-99%) of the antibody in the composition comprises a mature core carbohydrate structure which lacks fucose, attached to the Fc region of the glycoprotein. Such compositions were demonstrated herein to exhibit a surprising improvement in binding to Fc(RIIIA(F158), which is not as effective as Fc(RIIIA (V158) in interacting with human IgG. Thus, the compositions herein are anticipated to be superior to previously described anti-CD20 antibody compositions, especially for therapy of human patients who express Fc(RIIIA (F158). Fc(RIIIA (F158) is more common than Fc(RIIIA (V158) in normal, healthy African Americans and Caucasians. See Lehrnbecher et al. Blood 94:4220 (1999). The present application further demonstrates the synergistic increase in Fc(RIII binding and/or ADCC function that results from combining the glycosylation variations herein with amino acid sequence modification(s) in the Fc region of the glycoprotein.
  • An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nortreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily however, isolated antibody will be prepared by at least one purification step.
  • An “isolated” nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the antibody nucleic acid. An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
  • The expression “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • “Vector” includes shuttle and expression vectors. Typically, the plasmid construct will also include an origin of replication (e.g., the ColE1 origin of replication) and a selectable marker (e.g. ampicillin or tetracycline resistance), for replication and selection, respectively, of the plasmids in bacteria. An “expression vector” refers to a vector that contains the necessary control sequences or regulatory elements for expression of the antibodies including antibody fragment of the invention, in bacterial or eukaryotic cells. Suitable vectors are disclosed below.
  • The cell that produces a humanized CD20 binding antibody of the invention will include the bacterial and eukaryotic host cells into which nucleic acid encoding the antibodies have been introduced. Suitable host cells are disclosed below.
  • The word “label” when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody. The label may itself be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.
  • An “autoimmune disease” herein is a non-malignant disease or disorder arising from and directed against individual's own (self) antigens and/or tissues.
  • As used herein, “B cell depletion” refers to a reduction in B cell levels in an animal or human after drug or antibody treatment, as compared to the B cell level before treatment. B cell levels are measurable using well known assays such as those described in the Experimental Examples. B cell depletion can be complete or partial. In one embodiment, the depletion of CD20 expressing B cells is at least 25%. Not to be limited by any one mechanism, possible mechanisms of B-cell depletion include ADCC, CDC, apoptosis, modulation of calcium flux or a combination of two or more of the preceding.
  • The term “cytotoxic agent” as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., I131, I125, Y90 and Re186), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.
  • A “chemotherapeutic agent” is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkalyzing or alkylating agents such as thiotepa and cyclosphospharnide (CYTOXAN™); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethyienethiophosphaoramide and trimethyloiornelamine; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, calicheamicin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (Adriamycin), epirubicin, esorubicin, idambicin, marcellomycin, mitomycins, mycophenolic acid, nogalarnycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thianaprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine. 5-FU; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyliinic acid; 2-ethylhydrazide; procarbazine: PSK®; razoxane; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2, 2′,2″-trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); thiotepa; taxoids, e.g. paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.J.) and doxetaxel (TAXOTERE®, Rhone-Poulenc Rorer, Antony, France); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinblastine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylomithine (DMFO); retinoic acid; esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelia; other chemotherapeutic agents such as prednisolone, Pharmaceutically acceptable salts, acids or derivatives of any of the above are included.
  • “Treating” or “treatment” or “alleviation” refers to both therapeutic treatment and prophylactic: or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. A subject is successfully “treated” for a CD20 positive cancer or an autoimmune disease if, after receiving a therapeutic amount of a CD20 binding antibody of the invention according to the methods of the present invention, the subject shows observable and/or measurable reduction in or absence of one or more signs and symptoms of the particular disease. For example, for cancer, reduction in the number of cancer cells or absence of the cancer cells; reduction in the tumor size; inhibition (i.e., slow to some extent and preferably stop) of tumor metastasis; inhibition, to some extent, of tumor growth; increase in length of remission, and/or relief to some extent, one or more of the symptoms associated with the specific cancer; reduced morbidity and mortality, and improvement in quality of life issues. Reduction of the signs or symptoms of a disease may also be felt by the patient. Treatment can achieve a complete response, defined as disappearance of all signs of cancer, or a partial response, wherein the size of the tumor is decreased, preferably by more than 50 percent, more preferably by 75% . A patient is also considered treated if the patient experiences stable disease. In a preferred embodiment, the cancer patients are still progression-free in the cancer after one year, preferably after 15 months. These parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician of appropriate skill in the art.
  • A “therapeutically effective amount” refers to an amount of an antibody or a drug effective to “treat” a disease or disorder in a subject. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See preceding definition of “treating”.
  • “Chronic” administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. “Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
  • Compositions and Methods of the Invention
  • The invention provides humanized antibodies that bind human CD20, and preferably other primate CD20 as well, comprising a H chain having at least one, preferably two or all of the H chain CDRs of a non-human species anti-human CD20 antibody (donor antibody), and substantially all of the framework residues of a human consensus antibody as the recipient antibody. The donor antibody can be from various non-human species including mouse, rat, guinea pig, goat, rabbit, horse, primate but most frequently will be a murine antibody. “Substantially all” in this context is meant that the recipient FR regions in the humanized antibody may include one or more amino acid substitutions not originally present in the human consensus FR sequence. These FR changes may comprise residues not found in the recipient or the donor antibody.
  • In one embodiment, the donor antibody is the murine 2H7 antibody, the V region including the CDR and FR sequences of each of the H and L chains of which are shown in FIGS. 1A and 1B. In a specific embodiment, the residues for the human Fab framework correspond to the consensus sequence of human Vκ subgroup I and of VH subgroup III, these consensus sequences are shown in FIG. 1A and FIG. 1B, respectively. The humanized 2H7 antibody of the invention will have at least one of the CDRs in the H chain of the murine donor antibody. In one embodiment, the humanized 2H7 antibody that binds human CD20 comprises the CDRs of both the H and L chains of the donor antibody.
  • In a full length antibody, the humanized CD20 binding antibody of the invention will comprise a humanized V domain joined to a C domain of a human immunoglobulin. In a preferred embodiment, the H chain C region is from human IgG, preferably IgG1 or IgG3. The L chain C domain is preferably from human κ chain.
  • Unless indicated otherwise, a humanized 2H7 antibody version herein will have the V and C domain sequences of 2H7.v16 L chain (FIG. 6, SEQ. ID NO. 21) and H chain (FIG. 7., SEQ ID NO. 22) except at the positions of amino acid substitutions or changes indicated in the experimental examples below.
  • The humanized CD20 binding antibodies will bind at least human CD20 and preferably hind other primate CD20 such as that of monkeys including cynomolgus and rhesus monkeys, and chimpanzees. The sequence of the cynomolgus monkey CD20 is disclosed in Example 15 and FIG. 19
  • The biological activity of the CD20 binding antibodies and humanized CD20 binding antibodies of the invention will include at least binding of the antibody to human CD20, more preferably binding to human and primate CD20 (including cynomolgus monkey, rhesus monkey, chimpanzees), with a K4 value of no higher than 1×10−8, preferably a Kd value no higher than about 1×10−9, even more preferably a Kd value no higher than about 1×10−10, and be able to kill or deplete B cells in vitro or in vivo, preferably by at least 20% when compared to the baseline level or appropriate negative control which is not treated with such an antibody.
  • The desired level of B cell depletion will depend on the disease. For the treatment of a CD20 positive cancer, it may be desirable to maximize the depletion of the B cells which are the target of the anti-CD20 antibodies of the invention. Thus, for the treatment of a CD20 positive B cell neoplasm, it is desirable that the B cell depletion be sufficient to at least prevent progression of the disease which can be assessed by the physician of skill in the art, e.g., by monitoring tumor growth (size), proliferation of the cancerous cell type, metastasis, other signs and symptoms of the particular cancer. Preferably, the B cell depletion is sufficient to prevent progression of disease for at least 2 months, more preferably 3 months, even more preferably 4 months, more preferably 5 months, even more preferably 6 or more months. In even more preferred embodiments, the B cell depletion is sufficient to increase the time in remission by at least 6 months, more preferably 9 months, more preferably one year, more preferably 2 years, more preferably 3 years, even more preferably 5 or more years. In a most preferred embodiment, the B cell depletion is sufficient to cure the disease. In preferred embodiments, the B cell depletion in a cancer patient is at least about 75% and more preferably, 80%, 85%, 90%, 95% , 99% and even 100% of the baseline level before treatment.
  • For treatment of an autoimmune disease, it may be desirable to modulate the extent of B cell depletion depending on the disease and/or the severity of the condition in the individual patient, by adjusting the dosage of CD20 binding antibody. Thus, B cell depletion can but does not have to be complete. Or, total B cell depletion iay be desired in initial treatment but in subsequent treatments, the dosage may be adjusted to achieve only partial depletion. In one embodiment, the B cell depletion is at least 20%, i.e., 80% or less of CD20 positive B cells remain as compared to the baseline level before treatment. In other embodiments, B cell depletion is 25%, 30%, 40%, 50%, 60%, 70% or greater. Preferably, the B cell depletion is sufficient to halt progression of the disease, more preferably to alleviate the signs and symptoms of the particular disease under treatment, even more preferably to cure the disease.
  • The invention also provides bispecific CD20 binding antibodies wherein one arm of the antibody has a humanized H and L chain of the humanized CD20 binding antibody of the invention, and the other arm has V region binding specificity for a second antigen. In specific embodiments, the second antigen is selected from the group consisting of CD3, CD64, CD32A, CD16, NKG2D or other NK activating ligands.
  • In comparison with Rituxan (rituximab), v16 exhibits about 2 to 5 fold increased ADCC potency, ˜3-4 fold decreased CDC than Rituxan.
  • Antibody Production
  • Monoclonal Antibodies
  • Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
  • In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as described above to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. After immunization, lymphocytes are isolated and then fused with a myeloma cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
  • The hybridoma cells thus prepared are seeded and grown in a suitable culture medium which medium preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner). For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the selective culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred fusion partner myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a selective medium that selects against the unfused parental cells. Preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 and derivatives e.g., X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)),
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).
  • The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis described in Munson et al., Anal. Biochem., 107:220 (1980).
  • Once hybridoma cells that produce antibodies of the desired specificity, affinity, and/or activity are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal e.g, by i.p. injection of the cells into mice.
  • The monoclonal antibodies secreted by the subclones are suitably separated front the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, affinity chromatography (e.g., using protein A or protein G-Sepharose) or ion exchange chromatography, hydroxylapatite chromatography, gel electrophoresis, dialysis, etc.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skean et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Plückthun, Immunol. Revs., 130:151-188 (1992).
  • In a further embodiment, monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352;624-628 (1997; and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res., 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.
  • The DNA that encodes the antibody may be modified to produce chimeric or fusion antibody polypeptides, for example, by substituting human heavy chain and light chain constant domain (CH and CL) sequences for the homologous murine sequences (U.S. Pat. No, 4,816,567; and Morrison, et al, Proc. Natl. Acad. Sci. USA, 81:6851 (1984)), or by fusing the immunoglobulin coding sequence with all or part of the coding sequence for a non-immunoglobulin polypeptide (heterologous polypeptide). The non-immunoglobulin polypeptide sequences can substitute for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • Humanized Antibodies
  • Methods for humanizing non-human antibodies have been described in the art. Preferably, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Reichmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity and HAMA response (human anti-mouse antibody) when the antibody is intended for human therapeutic use. According to the so-called “best-fit” method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., Immunol., 151:2623 (1993)).
  • It is further important that antibodies be humanized with retention of high binding affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using, three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can he selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.
  • The humanized antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody may be an full length antibody, such as an full length IgG1 antibody.
  • Human Antibodies and Phage Display Methodology
  • As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene is chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et at., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno., 7:33 (1993); U.S. Pat. Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); U.S. Pat. No. 5,545,807; and WO 97/17852.
  • Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S. Pat. Nos. 5,565,332 and 5,573,905.
  • As discussed above, human antibodies may also be generated by in vitro activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275).
  • Antibody Fragments
  • In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to solid tumors.
  • Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al. , Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab′-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab′)2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab′)2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab′)2 fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Pat. No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Pat. No. 5,571,894; and U.S. Pat. No. 5,587,458. FV and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck, supra. The antibody fragment may also be a “linear antibody”, e.g., as described in U.S. Pat. No. 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.
  • Bispecific Antibodies
  • Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the CD20 protein. Other such antibodies may combine a CD20 binding site with a binding site for another protein. Alternatively, an anti-CD20 arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16), or NKG2D) or other NK cell activating ligand, so as to focus and localize cellular defense mechanisms to the CD20-expressing cell. Bispecific antibodies may Aso be used to localize cytotoxic agents to cells which express CD20. These antibodies possess a CD20-binding arm and an arm which hinds the cytotoxic agent (e.g. saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2bispecific antibodies).
  • WO 96/16673 describes a bispecific anti-ErbB2/anti-FcγRIII antibody and U.S. Pat. No. 5,837,234 discloses a bispecific anti-ErbB2/anti-FcγRI antibody. A bispecific anti-ErbB2/Fcα antibody is shown in WO98/02463. U.S. Pat. No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody.
  • Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, C H2, and C H3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant affect on the yield of the desired chain combination.
  • In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94104690. For further details of generating bispecific antibodies see, for example. Suresh et al., Methods in Enzymology, 121:210 (1986).
  • According to another approach described in U.S. Pat. No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C H3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a moaner of cross-linking techniques.
  • Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et. al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
  • Recent progress has facilitated the direct recovery of Fab′-SH fragments from E. coil, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coil and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.
  • Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci, USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a VH connected to a VL by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al. J. Immunol., 152:5368 (1994).
  • Antibodies with more than two valencies are contemplated. For example, tispecific antibodies can be prepared, Tutt et al. J. Immunol. 147: 60 (1991).
  • Multivalent Antibodies
  • A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VD1-(X1)n-VD2-(X2)u-Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH—CH1-flexible linker-VH—CH1-Fc region chain; or VH—CH1-VH—CH1-Fc region chain. The multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable domain polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL, domain.
  • Other Amino Acid Sequence Modifications
  • Amino acid sequence modification(s) of the CD20 binding antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the anti-CD20 antibody are prepared by introducing appropriate nucleotide changes into the anti-CD20 antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the anti-CD20 antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the anti-CD20 antibody, such as changing the number or position of glycosylation sites.
  • A useful method for identification of certain residues or regions of the anti-CD20 antibody that are preferred locations for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells in Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and gin) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction, of the amino acids with CD20 antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a imitation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed anti-CD20 antibody variants are screened for the desired activity.
  • Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an anti-CD20 antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide. Other insertional variants of the anti-CD20 antibody molecule include the fusion to the N- or C-terminus of the anti-CD20 antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
  • Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the anti-CD20 antibody molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in the Table below under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in the Table, or as further described below in reference to amino acid classes, may be introduced and the products screened.
  • TABLE of Amino Acid Substitutions
    Original Exemplary Preferred
    Residue Substitutions Substitutions
    Ala (A) val; leu; ile val
    Arg (R) lys; gln; asn lys
    Asn (N) gln; his; asp, lys; arg gln
    Asp (D) glu; asn glu
    Cys (C) ser; ala ser
    Gln (Q) asn; glu asn
    Glu (E) asp; gln asp
    Gly (G) Ala ala
    His (H) asn; gln; lys; arg arg
    Ile (I) leu; val; met; ala; phe; norleucine leu
    Leu (L) norleucine; ile; val; met; ala; phe ile
    Lys (K) arg; gln; asn arg
    Met (M) leu; phe; ile leu
    Phe (F) leu; val; ile; ala; tyr tyr
    Pro (P) Ala ala
    Ser (S) Thr thr
    Thr (T) Ser ser
    Trp (W) tyr; phe tyr
    Tyr (Y) trp; phe; thr; ser phe
    Val (V) ile; leu; met; phe; ala; norleucine leu
  • Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:
  • (1) hydrophobic: norleucine, met, ala, vat, leu, ile;
  • (2) neutral hydrophilic: cys, ser, thr;
  • (3) acidic: asp, glu;
  • (4) basic: asn, gln, has, lys, arg;
  • (5) residues that influence chain orientation: gly, pro; and
  • (6) aromatic: trp, tyr, phe.
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
  • Any cysteine residue not involved in maintaining the proper conformation of the anti-CD20 antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
  • A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and human CD20. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
  • Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
  • Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
  • Addition of glycosylation antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
  • Nucleic acid molecules encoding amino acid sequence variants of the anti-GD20 antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-CD20 antibody.
  • It may be desirable to modify the antibody of the invention with respect to effector function, e.g. so as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 76:1191-1195 (1992) and Hopes, B. J. Immunol, 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also he prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement mediated lysis and ADCC capabilities. See Stevenson et al. Anti-Cancer Drug Design 3:219-230 (1989).
  • To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Pat. No. 5,739,277, for example. As used herein, the term “salvage receptor binding epitope” refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, or IgG4) that is responsible for increasing the in coo serum half-life of the IgG molecule.
  • Other Antibody Modifications
  • Other modifications of the antibody are contemplated herein. For example, the antibody may be linked to one of a variety of nonpoteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980),
  • Screening for Antibodies with the Desired Properties
  • Antibodies with certain biological characteristics may be selected as described in the Experimental Examples.
  • The growth inhibitory effects of an anti-CD20 antibody of the invention may be assessed by methods known in the art, e.g., using cells which express CD20 either endogenously or following transfection with the CD20 gene. For example, tumor cell lines and CD20-transfected cells may treated with an anti-CD20 monoclonal antibody of the invention at various concentrations for a few days (e.g., 2-7) days and stained with crystal violet or MTT or analyzed by some other colorimetric assay. Another method of measuring proliferation would be by comparing 3H-thymidine uptake by the cells treated in the presence or absence an anti-CD20 antibody of the invention. After antibody treatment, the cells are harvested and the amount of radioactivity incorporated into the DNA quantitated in a scintillation counter. Appropriate positive controls include treatment of a selected cell line with a growth inhibitory antibody known to inhibit growth of that cell line.
  • To select for antibodies which induce cell death, loss of membrane integrity as indicated by, e.g., propidium iodide (PI), trypan blue or 7AAD uptake may be assessed relative to control. A PI uptake assay can be performed in the absence of complement and immune effector cells. CD20-expressing tumor cells are incubated with medium alone or medium containing of the appropriate monoclonal antibody at e.g, about 10 μg/ml. The cells are incubated for a 3 day time period. Following each treatment, cells are washed and aliquoted into 35 mm strainer-capped 12×75 tubes (1 ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10 μg/ml). Samples may be analyzed using a FACSCAN™ flow cytometer and FACSCONVERT™ CellQuest software (Becton Dickinson). Those antibodies which induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing antibodies.
  • To screen for antibodies which bind to an epitope on CD20 bound by an antibody of interest, a routinecross-blocking assay such as that described in Antibodies, A laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test antibody hinds same site or epitope as an anti CD20 antibody of the invention. Alternatively, or additionally, epitope mapping can be performed by methods known in the art . For example, the antibody sequence can be mutagenized such as by alanine scanning, to identify contact residues. The mutant antibody is initially tested for binding with polyclonal antibody to ensure proper folding. In a different method, peptides corresponding to different regions of CD20 can be used in competition assays with the test antibodies or with a test antibody and an antibody with a characterized or known epitope.
  • Vectors, Host Cells and Recombinant Methods
  • The invention also provides an isolated nucleic acid encoding a humanized CD20 binding antibody, vectors and host cells comprising the nucleic acid, and recombinant techniques for the production of the antibody.
  • For recombinant production of the antibody, the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. DNA encoding the monoclonal antibody is readily isolated and sequenced using conventional procedures (e.g., by using oligortucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody). Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • (i) Signal Sequence Component
  • The CD20 binding antibody of this invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native CD20 binding antibody signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, α factor leader (including, Saccharomyces and Kluyveromyces α-factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available.
  • The DNA for such precursor region is ligated in reading frame to DNA encoding the CD20 binding antibody.
  • (ii) Origin of Replication
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
  • (iii) Selection Gene Component
  • Expression and cloning vectors may contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g. the gene encoding D-alanine racemase for Bacilli.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring, drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
  • Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the CD20 binding antibody nucleic acid, such as DHFR, thymidine kinase, metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.
  • For example, cells transformed with the DHFR selection gene are first identified by culturing all of transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity (e.g., ATCC CRL-9096).
  • Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding CD20 binding antibody, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3′-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.
  • A suitable selection gene for use in yeast is the trpl gene present in the yeast plasmid YRp7 (Stinchcomb et al.. Nature, 282:39 (1979)). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85:12 (1977). The presence of the tip1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, Leu2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene. in addition, vectors derived from the 1.6 μm circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts. Alternatively, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis. Van den Berg, Bio/Technology, 8:135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. Fleer et a;., Bio/Technology, 9:968-975 (1991).
  • (iv) Promoter Component
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the nucleic acid encoding the CD20 binding antibody. Promoters suitable for use with prokaryotic hosts include the phoA promoter , β-lactamase and lactose promoter systems, alkaline phosphatase promoter, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter. However, other known bacterial promoters are suitable, Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the CD20 binding antibody.
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
  • Examples of suitable promoter sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
  • Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.
  • CD20 binding antibody transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems.
  • The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978, See also Reyes et al., Nature 297:598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus. Alternatively, the Rous Sarcoma Virus long terminal repeat can be used as the promoter.
  • (v) Enhancer Element Component
  • Transcription of a DNA encoding the CD20 binding antibody of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are now known from, mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may he spliced into the vector at a position 5′ or 3′ to the CD20 binding antibody-encoding sequence, but is preferably located at a site 5′ from the promoter.
  • (vi) Transcription Termination Component
  • Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding CD20 binding antibody. One useful transcription termination component is the bovine growth hormone polyadenylation region. See WO94/11026 and the expression vector disclosed therein.
  • (vii) Selection and Transformation of Host Cells
  • Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example. Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli. W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.
  • Full length antibody, antibody fragments, and antibody fusion proteins can be produced in bacteria, in particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is corqugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in tumor cell destruction. Full length antibodies have greater half life in circulation. Production in E. coli is faster and more cost efficient. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. Pat. No. 5,648,237 (Carter et. al.), U.S. Pat. No. 5,789,199 (Jolt' et al.), and U.S. Pat. No. 5,840,523 (Simmons et al.) which describes translation initiation region (TIR) and signal sequences for optimizing expression and secretion, these patents incorporated herein by reference. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out similar to the process for purifying antibody expressed e.g in CHO cells.
  • In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for CD20 binding antibody-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluvveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.
  • Suitable host cells for the expression of glycosylated CD20 binding antibody are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, tomato, and tobacco can also be utilized as hosts.
  • However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl, Acad. Sci, USA 77:4216 (1980)) ; mouse sertoli cells (TM4, Mather, Bial. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCE 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRE 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transformed with the above-described expression or cloning vectors for CD20 binding antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • (viii) Culturing the Host Cells
  • The host cells used to produce the CD20 binding antibody of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz, 58:44 (1979), Barnes et al., Anal. Biochem. 102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • (ix) Purification of Antibody
  • When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et of, Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phetlylmethylsuifonylfluoride (PMSE) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can he used to purify antibodies that are based on human γ1, γ2, or γ4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C H3 domain, the Bakerbond ABX™ resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.
  • Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).
  • Antibody Conjugates
  • The antibody may be conjugated to a cytotoxic agent such as a toxin or a radioactive isotope. In certain embodiments, the toxin is calicheamicin, a maytansinoid, a dolastatin, auristatin F and analogs or derivatives thereof, are preferable.
  • Preferred drugs/toxins include DNA damaging agents, inhibitors of microtubule polymerization or depolymerization and antimetabolites. Preferred classes of cytotoxic agents include, for example, the enzyme inhibitors such as dihydrofolate reductase inhibitors, and thymidylate synthase inhibitors, DNA intercalators, DNA cleavers, topoisomerase inhibitors, the anthracycline family of drugs, the vinca drugs, the mitornycins, the bleomycins, the cytotoxic nucleosides, the pteridine family of drugs, diynenes, the podophyllotoxins and differentiation inducers. Particularly useful members of those classes include, for example, methotrexate, methopterin, dichloromethotrexate, 5-fluorouracil, 6-mercaptopurine, cytosine arabinoside, melphalan, leurosine, leurosideine, actinomycin, daunorubicin, doxoruhicin, N-(5,5-diacetoxypentyl)doxorubicin, morpholino-doxorubicin, 1-(2-choroehthyl)-1,2-dimethanesulfonyl hydrazide, N8-acetyl spermidine, aminopterin methopterin, esperamicin, mitomycin C, mitomycin A, actinomycin, bleomycin, carminomycin, aminopterin, tallysomycin, podophyllotoxin and podophyllotoxin derivatives such as etoposide or etoposide phosphate, vinblastine, vincristine, vindesine, taxol, taxotere, retinoic acid, butyric acid, N8-acetyl spermidine, camptothecin, calicheamicin, bryostatins, cephalostatins, ansamitocin, actosin, maytansinoids such as DM-1, maytansine, maytansinol, N-desmethyl-4,5-desepoxymaytansinol, C-19-dechloromaytansinol, C-20-hydroxymaytansinol, C-20-demethoxymaytansinol, C-9-SH maytansinol, C-14-alkoxymethylmaytansinol, C-14-hydroxy or acetyloxymethlmaytansinol, C-15-hydroxy/acetyloxymaytansinol, C-15-methoxymaytansinol, C-18-N-demethylmaytansinol and 4,5-deoxymaytansinol, auristaans such as auristatin E, M, PHE and PE; dolostatins such as dolostatin A, dolostatin B, dolostatin. C, dolostatia D, dolostatin E (20-epi and 11-epi), dolostatin U, dolostatin H, dolostatin I, dolostatin 1, dolostati a 2, dolostatin 3, dolostatin 4, dolostatin 5, dolostatin 6, dolostatin 7, dolostatin 8, dolostatin 9, dolostatin 10, deo-dolostatin 10, dolostatin 11, dolostatin 12, dolostatin 13, dolostatin 14, dolostatin 15, dolostatin 16, dolostatin 17, and dolostatin 18; cephalostatins such as cephalostatin 1, cephalostatin 2, cephalostatin 3, cephalostatin 4, cephalostatin 5, cephalostatin 6, cephalostatin 7, 25′-epi-cephalostatin 7, 20-epi-cephalostatin 7, cephalostatin 8, cephalostatin cephalostatin 10, cephalostatin 11,cephalostatin 12,cephalostatin 13,cephalostatin 14, cephalostatin 15,cephalostatin 16,cephalostatin 17, cephalostatin 18, and cephalostatin 19.
  • Maytansinoids are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Pat. No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Pat. No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Pat. Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4.313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533, the disclosures of which are hereby expressly incorporated by reference.
  • Maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens. Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Pat. Nos. 5,208,020, 5,416,064 and European Patent EP 0 425 235 B I, the disclosures of which are hereby expressly incorporated by reference. Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to he highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an ivivo tumor growth assay. Chari et al. Cancer Research 52:127-131 (1992) describe immunoconjugates in which a maytansinoid was conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to another murine monoclonal antibody TA.1 that binds the HER-2/neu oncogene. There are many linking groups known in the art for making antibody-maytansinoid conjugates, including, for example, those disclosed in U.S. Pat. No. 5,208,020 or EP Patent 0 425 235 B1, and Chari et al. Cancer Research 52: 127-131 (1992). The linking groups include disulfide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred.
  • Conjugates of the antibody and maytansinoid may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and his-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). Particularly preferred coupling agents include N-succinimidyl-3-2-pyridyldithiol propionate (SPDP) (Carlsson et al.. Biochem. J. 173:723-737 [1978]) and N-succinimidyl-4-(2-pyridylthio)pentanoate (SPP) to provide for a disulfide linkage.
  • The linker may be attached to the maytansinoid molecule at various positions, depending on the type of the link. For example, an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques. The reaction may occur at the C-3 position having a hydroxyl group, the C-14 position modified with hyrdoxymethyl, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group. In a preferred embodiment, the linkage is formed at the C-3 position of maytansinol or a maytansinol analogue.
  • Calicheamicin
  • Another immunoconjugate of interest comprises an CD20 binding antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. Pat. Nos. 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company). Structural analogues of calicheamicin which may be used include, but are not limited to, γ1 I, α2 I, α3 I, N-acetyl-γ1 I (Hiaman et al. Cancer Research 53: 3336-3342 (1993), Lode et al. Cancer Research 58: 2925-2928 (1998) and the aforementioned U.S. patents to American Cyanamid). Another anti-tumor drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.
  • Radioactive Isotopes
  • For selective destruction of the tumor, the antibody may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti CD20 antibodies. Examples include At211, I131, I125, Y90, Re188Sm153, Bi212, P32, Pb212 and radioactive isotopes of Lu. When the conjugate is used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example tc99m or I123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
  • The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc99m or I123, Re186, Re188 and In111 can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. “Monoclonal Antibodies in Immunoscintigraphy” (Chatal, CRC Press 1989) describes other methods in detail.
  • Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cycloltexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al. Science 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. The linker may be a “cleavable linker” facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al. Cancer Research 52: 127-131 (1992); U.S. Pat. No. 5,208,020) may be used.
  • Therapeutic Uses of the CD20 Binding Antibodies
  • The CD20 binding antibodies of the invention are useful to treat a number of malignant and non-malignant diseases including autoimmune diseases and related conditions, and CD20 positive cancers including B cell lymphomas and leukemias. Stern cells progenitors) in bone marrow lack the CD20 antigen, allowing healthy B-cells to regenerate after treatment and return to normal levels within several months.
  • Autoimmune diseases or autoimmune related conditions include arthritis (rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), psoriasis, dermatitis including atopic dermatitis; chronic autoimmune urticaria, polymyositistdermatomyositis, toxic epidermal necrolysis, systemic scleroderma and sclerosis, responses associated with inflammatory bowel disease (IBD) (Crohn's disease, ulcerative colitis), respiratory distress syndrome, adult respiratory distress syndrome (ARDS), meningitis, allergic rhinitis, encephalitis, uveitis, colitis, glomerulonephritis, allergic conditions, eczema, asthma, conditions involving infiltration of T cells and chronic inflammatory responses, atherosclerosis, autoimmune rnyocardias, leukocyte adhesion deficiency, systemic lupus erythematosus (SLE), lupus (including, nephritis, non-renal, discoid, alopecia), juvenile onset diabetes, multiple sclerosis, allergic encephalomyelitis, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, tuberculosis, sarcoidosis, granulomatosis including Wegener's granulomatosis, agranulocytosis, vasculitis (including ANCA), aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia, pure red cell aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome, myasthenia gravis, antigen-antibody complex mediated diseases, anti-glomerular basement membrane disease, anti-phospholipid antibody syndrome, allergic neuritis, Bechet disease, Castleman's syndrome, Goodpasture's Syndrome, Lambert-Eaton Myasthenic Syndrome, Reynaud's syndrome, Sjorgen's syndrome, Stevens-Johnson syndrome, solid organ transplant rejection (including pretreatinem for high panel reactive antibody titers, IgA deposit in (issues, etc), graft versus host disease (GVHD), pemphigoid bullous, pemphigus (all including vulgaris, foliaceus), autoimmune polyendocrinopathies, Reiter's disease, stiff-man syndrome, giant cell arteritis, immune complex nephritis, IgA nephropathy, IgM polyneuropathies or IgM mediated neuropathy, idiopathic thrombocytopetlic purpura (ITP), thrombotic throbocytopertic purpura (TTP), autoimmune thrombocytopenia, autoimmune disease of the testis and ovary including autoimune orchitis and oophoritis, primary hypothyroidism; autoimmune endocrine diseases including autoimmune thyroiditis, chronic thyroiditis (Hashimoto's Thyroiditis), subacute thyroiditis, idiopathic hypothyroidism, Addison's disease, Grave's disease, autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), Type I diabetes also referred to as insulin-dependent diabetes mellitus (IDDM) and Sheehan's syndrome; autoimmune hepatitis, Lymphoid interstitial pneumonitis (HIV), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre' Syndrome, Large Vessel Vasculitis (including Polymyalgia Rheumatica and Giant Cell (Takayasu's) Arteritis), Medium Vessel Vasculitis (including Kawasaki's Disease and Polyarteritis Nodosa), ankylosing spondylitis, Berger's Disease (IgA nephropathy), Rapidly Progressive Glomerulonephritis, Primary biliary cirrhosis, Celiac sprue (gluten enteropathy), Cryoglobulinemia, ALS, coronary artery disease.
  • CD20 positive cancers are those comprising abnormal proliferation of cells that express CD20 on cell surface. The CD20 positive B cell neoplasms include CD20-positive Hodgkin's disease including lymphocyte predominant Hodgkin's disease (LPHD); non-Hodgkin's lymphoma (NHL); follicular center cell (FCC) lymphomas; acute lymphocytic leukemia (ALL); chronic lymphocytic leukemia (CLL); Hairy cell leukemia. The non-Hodgkins lymphoma include low grade/follicular non-Hodgkin's lymphoma (NHL), small lymphocytic lymphoma (SLL), intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high made lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, plasmacytoid lymphocytic lymphoma, mantle cell lymphom, AIDS-related lymphoma and Waldenstrom's macroglobulinemia. Treatment of relapses of these cancers are also contemplated. LPHD is a type of Hodgkin's disease that tends to relapse frequently despite radiation or chemotherapy treatment and is characterized by CD20-positive malignant cells. CLL is one of four major types of leukemia. A cancer of mature B-cells called lymphocytes, CLL is manifested by progressive accumulation of cells in blood, bone marrow and lymphatic tissues.
  • In specific embodiments, the humanized CD20 binding antibodies and functional fragments thereof are used to treat non-Hodgkin's lymphoma (NHL), lymphocyte predominant Hodgkin's disease (LPHD), small lymphocytic lymphoma (SLL), chronic lymphocyte leukemia, rheumatoid arthritis and juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE) including lupus nephritis, Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic throbocytopenic purpura (TTP), autoimmune thrombocytopenia, multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Sjorgen's syndrome and glomerulonephritis.
  • The humanized CD20 binding antibodies or functional fragments thereof are useful as a single-agent treatment in, e.g., for relapsed or refractory low-grade or follicular, CD20-positive, B-cell NHL, or can be administered to patients in conjunction with other drugs in a multi drug regimen.
  • Indolent lymphoma is a slow-growing, incurable disease in which the average patient survives between six and 10 years following numerous periods of remission and relapse. In one embodiment, the humanized CD20 binding antibodies or functional fragments thereof are used to treat indolent NHL.
  • The parameters for assessing efficacy or success of treatment of the neoplasm will be known to the physician of skill in the appropriate disease. Generally, the physician of skill will look for reduction in the signs and symptoms of the specific disease. Parameters can include median time to disease progression, time in remission, stable disease.
  • The following references describe lymphomas and CLL, their diagnoses, treatment and standard medical procedures for measuring treatment efficacy, Canellos G P, Lister, T A, Sklar J L: The Lymphomas. W.B.Saunders Company, Philadelphia, 1998; van Besien K and. Cabanillas, F: Clinical Manifestations, Staging and Treatment of Non-Hodgkin's Lymphoma, Chap. 70, pp 1293-1338, in: Hematology Basic Principles and Practice, 3rd ed. Hoffman et al. (editors). Churchill Livingstone, Philadelphia, 2000; and Rai, K and Patel, D:Chronic Lymphocytic Leukemia, Chap. 72, pp 1350-1362, in: Hematology, Basic Principles and Practice. 3rd ed, Hoffman et al (editors). Churchill Livingstone, Philadelphia, 2000.
  • The parameters for assessing efficacy or success of treatment of an autoimmune or autoimmune related disease will be known to the physician of skill in the appropriate disease. Generally, the physician of skill will look for reduction in the signs and symptoms of the specific disease. The following are by way of examples.
  • In one embodiment, the antibodies of the invention are useful to treat rheumatoid arthritis. RA is characterized by inflammation of multiple joints, cartilage loss and bone erosion that leads to joint destruction and ultimately reduced joint function. Additionally, since RA is a systemic disease, it can have effects in other tissues such as the lungs, eyes and bone marrow. Fewer than 50 percent of patients who have had RA for more than 10 years can continue to work or function normally on a day-to-day basis.
  • The antibodies can be used as first-line therapy in patients with early RA (i.e., methotrexate (MTX) naive) and as monotherapy, or in combination with, e.g., MTX or cyclophosphamide. Or, the antibodies can be used in treatment as second-line therapy for patients who were DMARD and/or MTX refractory, and as monotherapy or in combination with, e,g., MTX. The humanized CD20 binding antibodies are useful to prevent and control joint damage, delay structural damage, decrease pain associated with inflammation in RA, and generally reduce the signs and symptoms in moderate to severe RA. The RA patient can be treated with the humanized CD20 antibody prior to, after or together with treatment with other drugs used in treating RA (see combination therapy below). In one embodiment, patients who had previously failed disease-modifying antirheumatic drugs and/or had an inadequate response to methotrexate alone are treated with a humanized CD20 binding antibody of the invention. In one embodiment of this treatment, the patients are in a 17-day treatment regimen receiving humanized CD20 binding antibody alone (1 g iv infusions on days 1 and 15); CD20 binding antibody plus cyclophosphamide (750 mg iv infusion days 3 and 17); or CD20 binding antibody plus methotrexate.
  • One method of evaluating treatment efficacy in RA is based on American College of Rheumatology (ACR) criteria, which measures the percentage of improvement in tender and swollen joints, among other things. The RA patient can be scored at for example, ACR 20 (20 percent improvement) compared with no antibody treatment (e.g baseline before treatment) or treatment with placebo. Other ways of evaluating the efficacy of antibody treatment include X-ray scoring such as the Sharp X-ray score used to score structural damage such as bone erosion and joint space narrowing. Patients can also he evaluated for the prevention of or improvement in disability based on Health Assessment Questionnaire [HAQ] score, AIMS score, SF-36 at time periods during or after treatment. The ACR 20 criteria may include 20% improvement in both tender (painful) joint count and swollen joint count plus a 20% improvement in at least 3 of 5 additional measures:
      • 1. patient's pain assessment by visual analog scale (VAS),
      • 2. patient's global assessment of disease activity (VAS),
      • 3. physician's global assessment of disease activity (VAS),
      • 4. patient's self-assessed disability measured by the Health Assessment Questionnaire, and
      • 5. acute phase reactants, CRP or ESR.
        The ACR 50 and 70 are defined analogously. Preferably, the patient is administered an amount of a CD20 binding antibody of the invention effective to achieve at least a score of ACR 20, preferably at least ACR 30, more preferably at least ACR50, even more preferably at least ACR70, most preferably at least ACR 75 and higher.
  • Psoriatic arthritis hay unique and distinct radiographic features. For psoriatic arthritis, joint erosion and joint space narrowing can be evaluated by the Sharp score as well. The humanized CD20 binding antibodies of the invention can be used to prevent the joint damage as well as reduce disease signs and symptoms of the disorder.
  • Yet another aspect of the invention is a method of treating Lupus or SLE by administering to the patient suffering from SLE, a therapeutically effective amount of a humanized CD20 binding antibody of the invention. SLEDAI scores provide a numerical quantitation of disease activity. The SLEDAI is a weighted index of 24 clinical and laboratory parameters known to correlate with disease activity, with a numerical range of 0-103. see Bryan Gescuk & John Davis, “Novel therapeutic agent for systemic lupus erythematosus” in Current Opinion in Rheumatology 2002, 14:515-521. Antibodies to double-stranded DNA are believed to cause renal flares and other manifestations of lupus. Patients undergoing antibody treatment can he monitored for time to renal flare, which is defined as a significant, reproducible increase in serum creatinine, urine protein or blood in the urine. Alternatively or in addition, patients can be monitored for levels of antinuclear antibodies and antibodies to double-stranded DNA. Treatments for SLE include high-dose corticosteroids and/or cyclophosphamide (HDCC).
  • Spondyloarthropathies are a group of disorders of the joints, including ankylosing spondylitis, psoriatic arthritis and Crohn's disease. Treatment success can be determined by validated patient and physician global assessment measuring tools.
  • Various medications are used to treat psoriasis; treatment differs directly in relation to disease severity. Patients with a more mild form of psoriasis typically utilize topical treatments, such as topical steroids, anthralin, calcipotriene, clobetasol, and tazarotene, to manage the disease while patients with moderate and severe psoriasis are more likely to employ systemic (methotrexate, retinoids, cyclosporine, PUVA and ITVB) therapies. Tars are also used. These therapies have a combination of safety concerns, time consuming regimens, or inconvenient processes of treatment. Furthermore, some require expensive equipment and dedicated space in the office setting. Systemic medications can produce serious side effects, including hypertension, hyperlipidemia, bone marrow suppression, liver disease, kidney disease and gastrointestinal upset. Also, the use of phototherapy can increase the incidence of skin cancers. In addition to the inconvenience and discomfort associated with the use of topical therapies, phototherapy and systemic treatments require cycling patients on and off therapy and monitoring lifetime exposure due to their side effects.
  • Treatment efficacy for psoriasis is assessed by monitoring changes in clinical signs and symptoms of the disease including Physician's Global Assessment (PGA) changes and Psoriasis Area and Severity Index (PASI) scores, Psoriasis Symptom Assessment (PSA), compared with the baseline condition. The patient can be measured periodically throughout treatment on the Visual analog scale used to indicate the degree of itching experienced at specific time points.
  • Patients may experience an infusion reaction or infusion-related symptoms with their first infusion of a therapeutic antibody. These symptoms vary in severity and generally are reversible with medical intervention. These symptoms include but are not limited to, flu-like fever, chills/rigors, nausea, urticaria, headache, bronchospasm, angioedema. It would be desirable for the disease treatment methods of the present invention to minimize infusion reactions. Thus, another aspect of the invention is a method of treating the diseases disclosed by administering a humanized CD20 binding antibody wherein the antibody has reduced or no complement dependent cytotoxicity and results in reduced infusion related symptoms as compared to treatment with Rituxan®. In one embodiment, the humanized CD20 binding antibody is 2H7.v116.
  • Dosage
  • Depending on the indication to be treated and factors relevant to the dosing that a physician of skill in the field would be familiar with, the antibodies of the invention will be administered at a dosage that is efficacious for the treatment of that indication while minimizing toxicity and side effects. For the treatment of a CD20 positive cancer or an autoimmune disease, the therapeutically effective dosage will be in the range of about 250 m g/m2 to about 400 mg/m2 or 500 mg/m2, preferably about 250-375mg/m2. In one embodiment, the dosage range is 275-375 mg/m2. In one embodiment of the treatment of a CD20 positive B cell neoplasm, the antibody is administered at a range of 300-375 mg/m2. For the treatment of patients suffering from B-cell lymphoma such as non-Hodgkins lymphoma, in a specific embodiment, the anti-CD20 antibodies and humanized anti-CD20 antibodies of the invention will be administered to a human patient at a dosage of 10 mg/kg or 375 mg/m2. For treating NHL, one dosing regimen would be to administer one dose of the antibody composition a dosage of 10 mg/kg in the first week of treatment, followed by a 2 week interval, then a second dose of the same amount of antibody is administered. Generally, NHL patients receive such treatment once during a year but upon recurrence of the lymphoma, such treatment can be repeated. In another dosing regimen, patients treated with low-grade NHL receive four weeks of a version of humanized 2H7, preferably v16 (375 mg/m2 weekly) followed at week five by three additional courses of the antibody plus standard CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or CVP (cyclophosphamide, vincristine, prednisone) chemotherapy, which was given every three weeks for three cycles.
  • For treating rheumatoid arthritis, in one embodiment, the dosage range for the humanized antibody is 125 mg/m2 (equivalent to about 200 mg/dose) to 600mg/m2, given in two doses, e.g., the first dose of 200 mg is administered on day one followed by a second dose of 200 mg on day 15. In different embodiments, the dosage is 250 mg/dose, 275 mg, 300 mg, 325 mg, 350 mg, 375 mg, 400 mg, 425 mg, 450 mg, 475 mg, 500 mg, 525 mg, 550 mg, 575 mg, 600 mg.
  • In treating disease, the CD20 binding antibodies of the invention can be administered to the patient chronically or intermittently, as determined by the physician of skill in the disease.
  • A patient administered a drug by intravenous infusion or subcutaneously may experience adverse events such as fever, chills, burning sensation, asthenia and headache. To alleviate or minimize such adverse events, the patient may receive an initial conditioning dose(s) of the antibody followed by a therapeutic dose. The conditioning dose(s) will be lower than the therapeutic dose to condition the patient to tolerate higher dosages.
  • Route of Administration
  • The CD20 binding antibodies are administered to a human patient in accord with known methods, such as by intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by subcutaneous, intramuscular, intraperitoneal, intracerobrospinal, intra-articular, intrasynovial, intrathecal, or inhalation routes, generally by intravenous or subcutaneous administration.
  • In on embodiment, the humanized 2H7 antibody is administered by intravenous infusion with 0.9% sodium chloride solution as an infusion vehicle.
  • Combination Therapy
  • In treating the B cell neoplasms described above, the patient can be treated with the CD20 binding antibodies of the present invention in conjunction with one or more therapeutic agents such as a chemotherapeutic agent in a multidrug regimen. The CD20 binding antibody can be administered concurrently, sequentially, or alternating with the chemotherapeutic agent, or after non-responsiveness with other therapy. Standard chemotherapy for lymphoma treatment may include cyclophosphamide, cytarabine, melphalan and mitoxantrone plus melphalan. CHOP is one of the most common chemotherapy regimens for treating Non-Hodgkin's lymphoma. The following are the drugs used in the CHOP regimen: cyclophosphamide (brand names cytoxan, neosar); adriamycin (doxorubicin/hydroxydoxoruhicin); vincristine (Oncovin); and prednisolone (sometimes called Deltasone or Orasone). In particular embodiments, the CD20 binding antibody is administered to a patient in need thereof in combination with one or more of the following chemotherapeutic agents of doxorubicin, cyclophosphamide, vincristine and prednisolone. In a specific embodiment, a patient suffering from a lymphoma (such as a non-Hodgkin's lymphoma) is treated with an anti-CD20 antibody of the present invention in conjunction with CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) therapy. In another embodiment, the cancer patient can be treated with a humanized CD20 binding antibody of the invention in combination with CVP (cyclophosphamide, vincristine, and prednisone) chemotherapy. In a specific embodiment, the patient suffering from CD20-positive NHL is treated with humanized 2H7.v16 in conjunction with CVP. In a specific embodiment of the treatment of CLL, the CD20 binding antibody is administered in conjunction with chemotherapy with one or both of fludarabine and cytoxan.
  • In treating the autoimmune diseases or autoimmune related conditions described above, the patient can be treated with the CD20 binding antibodies of the present invention in conjunction with a second therapeutic agent, such as an immunosuppressive agent, such as in a multi drug regimen. The CD20 binding antibody can be administered concurrently, sequentially or alternating with the immunosuppressive agent or upon non-responsiveness with other therapy. The immunosuppressive agent can be administered at the same or lesser dosages than as set forth in the art. The preferred adjunct immunosuppressive agent will depend on many factors, including the type of disorder being treated as well as the patient's history.
  • “Immunosuppressive agent” as used herein for adjunct therapy refers to substances that act to suppress or mask the immune system of a patient. Such agents would include substances that suppress cytokine production, down regulate or suppress self-antigen expression, or mask the MHC antigens. Examples of such agents include steroids such as glucocorticosteroids, e.g., prednisone, methylprednisolone, and dexamethasone; 2-amino-6-aryl-5 substituted pyrimidines (see U.S. Pat. No, 4,665,077), azathioprine (or cyclophosphamide, if there is an adverse reaction to azathioprine); bromocryptine; glutaraldehyde (which masks the MHC antigens, as described in U.S. Pat. No. 4,120,649); anti-idiotypic antibodies for MHC antigens and MHC fragments; cyclosporin A; cytokine or cytokine receptor antagonists including anti-interferon-α, -β, or -γantibodies; anti-tumor necrosis factor-α antibodies; anti-tumor necrosis factor-β antibodies; anti-interleukin-2 antibodies and anti-IL-2 receptor antibodies; anti-L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, preferably anti-CD3 or anti-CD4/CD4a, antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published Jul. 26, 1990); streptokinase; TGF-β; streptodornase; RNA or DNA from the host; FK506; RS-61443; deoxyspergualin; rapamycin; T-cell receptor (U.S. Pat. No. 5,114.721); T-cell receptor fragments (Offner et al., Science 251:430-432 (1991); WO 90/11294; and WO 91/01133); and T cell receptor antibodies (EP 340, 109) such as T10B9.
  • For the treatment of rheumatoid arthritis, the patient can be treated with a CD20 antibody of the invention in conjunction with any one or more of the following drugs: DMARDS (disease modifying anti-rheumatic drugs (e.g., methotrexate), NSAI or NSALD (non-steroidal anti-inflammatory drugs), HUMIRA™ (adalimumab; Abbott Laboratories), ARAVA® (leflunomide), REMICADE® (infliximab; Centocor Inc., of Malvern, Pa.), ENBREL (etanercept; Immunex, WA), COX-2 inhibitors. DMARDs commonly used in RA are hydroxycloroquine, sulfasalazine, methotrexate, leflunomide, etatiercept, azathioprine, D penicillamine, Gold (oral), Gold (intramuscular), minocycline, cyclosporine,
  • Staphylococcal protein A immunoadsorption. Adahmnurnab is a human monoclonal antibody that binds to TNFα. Infliximab is a chimeric monoclonal antibody that binds to INFα. Etanercept is an “immunoadhesin” fusion protein consisting of the extracellular ligand binding portion of the human 75 kD (p75) tumor necrosis factor receptor (TNFR) linked to the Fc portion of a human IgG1. For conventional treatment of RA, see, e.g., “Guidelines for the management of rheumatoid arthritis” Arthritis& Rheumatism 46(2): 328-346 (February, 2002). In a specific embodiment, the RA patient is treated with a CD20 antibody of the invention in conjunction with methotrexate (MTX). An exemplary dosage of MIX is about 7.5-25 mg/kg/wk. MIX can be administered orally and subcutaneously.
  • For the treatment of ankylosing spondylitis, psoriatic arthritis and Crohn's disease, the patient can be treated with a CD20 binding antibody of the invention in conjunction with, for example, Remicadeg (infliximab; from Centocor Inc., of Malvern, Pa.), ENBREL (eumercept; Immunex, WA).
  • Treatments for SLE include high-dose corticosteroids and/or cyclophosphamide (HDCC). For the treatment of psoriasis, patients can he administered a CD20 binding antibody in conjunction with topical treatments, such as topical steroids, arithralin, calcipotriene, clobetasol, and tazarotene, or with methotrexate, retinoids, cyclosporine, PUVA and UVB therapies. In one embodiment, the psoriasis patient is treated with the CD20 binding antibody sequentially or concurrently with cyclosporine.
  • Pharmaceutical Formulations
  • Therapeutic formulations of the CD20-binding antibodies used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkordum chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as olyvinylpyrroliaone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).
  • Exemplary anti-CD20 antibody formulations are described in WO98/56418, expressly incorporated herein by reference. Another formulation is a liquid multidose formulation comprising the anti-CD20 antibody at 40 mg/mL, 25 mM acetate, 150 mM trehalose, 0.9% benzyl alcohol, 0.02% polysorbate 20 at PH 5.0 that has a minimum shelf life of two years storage at 2-8° C. Another anti-CD20 formulation of interest comprises 10 mg/mL, antibody in 9.0 mg/mL sodium chloride, 7.35 mg/mL sodium citrate dihydrate, 0.7 mg/mL polysorbate 80, and Sterile Water for Injection, pH 6.5. Yet another aqueous pharmaceutical formulation comprises 10-30 mM sodium acetate from about pH 4.8 to about pH 5.5, preferably at pH5.5, polysorbate as a surfactant in a an amount of about 0.01-0.1% v/v, trehalose at an amount of about 2-10% w/v, and benzyl alcohol as a preservative (U.S. Pat. No. 6,171,586). Lyophilized formulations adapted for subcutaneous administration are described in WO97/04801. Such lyophilized formulations may be reconstituted with a suitable diluent to a high protein concentration and the reconstituted formulation may be administered subcutaneously to the mammal to be treated herein.
  • One formulation for the humanized 2H7 variants is antibody at 12-14 mg/mL in 10 mM histidine, 6% sucrose, 0.02% polysorbate 20, pH 5.8.
  • In a specific embodiment, 2H7 variants and in particular 2H7.v16 is formulated at 20 mg/mL antibody in 10 mM histidine sulfate, 60 mg/ml sucrose., 0.2 mg/ml polysorbate 20, and Sterile Water for Injection, at pH5.8.
  • The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, it may be desirable to further provide a cytotoxic agent, chemotherapeutic agent, cytokine or immunosuppressive agent (e.g. one which acts on T cells, such as cyclosporin or an antibody that binds T cells, e.g. one which binds LFA-1). The effective amount of such other agents depends on the amount of antibody present in the formulation, the type of disease or disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein or about from 1 to 99% of the heretofore employed dosages.
  • The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nattocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).
  • Sustained-release preparations may he prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antagonist, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and ethyl-L-glutamate, non: degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-{-}-3-hydroxybutyric acid.
  • The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • Articles of Manufacture and Kits
  • Another embodiment of the invention is an article of manufacture containing materials useful for the treatment of autoimmune diseases and related conditions and CD20 positive cancers such as non-Hodgkin's lymphoma. The article of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for treating the condition and may have a sterile access port (for example the container may he an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is a CD20 binding antibody of the invention. The label or package insert indicates that the composition is used for treating the particular condition. The label or package insert will further comprise instructions for administering the antibody composition, to the patient. Package insert refers to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. In one embodiment, the package insert indicates that the composition is used for treating non-Hodgkins' lymphoma.
  • Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • Kits are also provided that are useful for various purposes , e.g., for B-cell killing assays, as a positive control for apoptosis assays, for purification or immunoprecipitation of CD20 from cells. For isolation and purification of CD20, the kit can contain an anti-CD20 antibody coupled to beads (e.g., sepharose beads). Kits can be provided which contain, the antibodies for detection and quantitation of CD20 in vitro, e.g. in an ELISA or a Western blot, As with the article of manufacture, the kit comprises a container and a label or package insert on or associated with the container. The container holds a composition comprising at least one anti-CD20 antibody of the invention. Additional containers may be included that contain, e.g., diluents and buffers, control antibodies. The label or package insert may provide a description of the composition as well as instructions for the intended in vitro or diagnostic use.
  • Cynomolgus Monkey CD20
  • The invention also provides an isolated nucleicacid comprising the nucleotide sequence of SEQ ID NO.: 24 of the Cynomolgus monkey CD20 as shown in FIG. 19. In one embodiment, the nucleic acid is a cDNA. In one embodiment, the nucleic acid encoding the monkey CD20 is in an expression vector for expression in a host cell. The nucleotide sequence of SEQ ID NO.: 24 in the expression vector is operably linked to an expression control sequence such as a promoter or promoter and enhancer. The expression control sequence can be can be the native sequence normally associated with the Cynomolgus CD20 gene, or heterologous to the gene. Also provided is an isolated polypeptide comprising the amino acid sequence [SEQ ID NO. 25; FIG. 19 & 20] of the Cynomolgus monkey CD20, as well as host cells containing the Cynomoigus CD20 nucleic acid. In one aspect the host cells are eukaryotic cells, e.g., CHO cells. Fusion proteins comprising the Cynomoigus CD20 amino acid sequence or fragments of the sequence are also contemplated.
  • EXPERIMENTAL EXAMPLES Example 1 Humanization of 2H7 and-CD20 Murine Monoclonal Antibody
  • Humanization of the murine anti-human CD20 antibody, 2H7 (also referred to herein as in2H7, m for murine), was carried out in a series of site-directed mutagenesis steps. The murine 2H7 antibody variable region sequences and the chimeric 2H7 with the mouse V and human C have been described, see, e.g., U.S. Pat. Nos. 5,846,818 and 6,204,023. The CDR residues of 2H7 were identified by comparing the amino acid sequence of the murine 2H7 variable domains (disclosed in U.S. Pat. No. 5,846,818) with the sequences of known antibodies (Kabat et al., Sequences of proteins of immunological interest, Ed. 5. Public Health Service, National institutes of Health, Bethesda, Md. (1991)). The CDR regions for the light and heavy chains were defined based on sequence hypervariability (Kabat et al., supra) and are shown in FIG. 1A and FIG. 1B, respectively. Using synthetic oligonucleotides (Table 1), site-directed mutagenesis (Kunkel, Proc. Natl. Acad. Sci. 82:488-492 (1985)) was used to introduce ail six of the murine 2H7 CDR regions into a complete human Fab framework corresponding, to a consensus sequence VκI, VHIII (VL kappa subgroup I, VH subgroup III) contained on plasmid pVX4 (FIG. 2).
  • The phagemid pVX4 (FIG. 2) was used for mutagenesis as well as for expression of F(ab,s in E. coli. Based on the phage mid pb0720, a derivative of pB0475 (Cunningham et al., Science 243: 1330-1336 (1989)), pVX4 contains a DNA fragment encoding a humanized consensus κ-subgroup I light chain (VLκI-CL) and a humanized consensus subgroup III heavy chain (VHIII-CH1) anti-IFN-α (interferon α) antibody, pVX4 also has an alkaline phosphatase promotor and Shine-Daigamo sequence both derived from another previously described pUC119-based plasmid, pAK2 (Carter et al., Proc. Natl. Acad. Sci. USA 89: 4285 (1992)). A unique Spel restriction site was introduced between the DNA encoding for the F(ab) light and heavy chains. The first 23 amino acids in both anti-IFN-α heavy and light chains are the StII secretion signal sequence (Chang et at. Gene 55: 189-196 (1987)).
  • To construct the CDR-swap version of 2H7 (2H7.v2), site-directed mutagenesis was performed on a deoxyuridine-containing template of pVX4; all six CDRs of anti-IFN-α were changed to the murine 2H7 CDRs. The resulting molecule is referred to as humanized 2H7 version 2 (2H7,v2), or the “CDR-swap version” of 2H7; it has the m2H7 CDR residues with the consensus human FR residues shown in FIGS. 1A and 1B. Humanized 2H7.v2 was used for further humanization.
  • Table 1 shows the oligonucleotide sequence used to create each of the murine 2H7 (m2H7) CDRs in the H and L chain. For example, the CDR-H1 oligonucleotide was used to recreate the m2H7 H chain CDR1, CDR-H1, CDR-H2 and CDR-H3 refers to the H chain CDR1, CDR2 and CDR3, respectively; similarly, CDR-L1, CDR-L2 and CDR-L3 refers to each of the L chain CDRs. The substitutions in CDR-H2 were done in two steps with two oligonucleotides, CDR-H2A and CDR-H2B.
  • TABLE 1
    Oligonucleotide sequences used for construction
    of the CDR-swap of murine 2H7 CDRs into a human
    framework in pVX4. Residues changed by each
    oligonucleotide are underlined.
    Substi-
    tution Oligonucleotide sequence
    CDR-H1 C TAC ACC TTC ACC AGC TAT AACATG CAC
    TGG GTC CG (SEQ ID NO. 27)
    CDR-H2A G ATT AAT CCT GAC AACGGCGAC ACG AGC
    TAT AAC CAG AAG TTC AAG GGC CG
    (SEQ ID NO. 28)
    CDR-H2B GAA TGG GTT GCA GCG ATC TAT CCT GGC
    AAC GGC GAC AC (SEQ ID NO. 29)
    CDR-H3 AT TAT TGT GCT CGA GTG GTCTACTAT
    AGCAACAGCTACTGGTACTTC GAC GTC
    TGG GGT GAA GGA (SEQ ID NO. 30)
    CDR-L1 C TGC ACA GCC AGC TCT TCT GTC AGC TAT
    ATG CAT TG (SEQ ID NO. 31)
    CDR-L2 AA CTA CTG ATT TAC GCTCCATCG AAC CTC
    GCG TCT GGA GTC C (SEQ ID NO. 32)
    CDR-L3 TAT TAC TGT CAA CAG TGGAGCTTCAAT
    CCG CCC ACA TTT GGA CAC (SEQ ID NO. 33)
  • For comparison with humanized constructs, a plasmid expressing a chimeric 2H7 Fab (containing murine VL and VH domains, and human CL and CH1 domains) was constructed by site-directed mutagenesis (Kunkel, supra) using synthetic oligonucleotides to introduce the murine framework residues into 2H7.v2. The sequence of the resulting plasmid construct for expression of the chimeric Fah known as 2H7.v6.8, is shown in FIG. 3, Each encoded chain of the Fab has a 23 amino acid StII secretion signal sequence as described for pVX4 (FIG. 2) above.
  • Based on a sequence comparison of the murine 2H7 framework residues with the human VκVHIII consensus framework (FIGS. 1A and 1B) and previously humanized antibodies (Carter et al, Proc. Natl. Acad. Sci. USA 89:4285-4289 (1992)), several framework mutations were introduced into the 2H7.v2 Fab construct by site-directed mutagenesis. These mutations result in a change of certain human consensus framework residues to those found in the murine 2H7 framework, at sites that might affect CDR conformations or antigen contacts. Version 3 contained VH(R71V, N73K), version 4 contained VH(R71V), version 5 contained VH(R71V, N73K) and VL(LA6P), and version 6 contained VH(R71V, N73K) and VL(L46P, L47W).
  • Humanized and chimeric Fab versions of m2H7 antibody were expressed in E. coli and purified as follows. Plasmids were transformed into E. coli strain XL-1 Blue (Stratagene, San Diego, Calif.) for preparation of double-and single-stranded DNA. For each variant, both light and heavy chains were completely sequenced using the dideoxynucleotide method (Sequenase, U.S. Biochemical Corp.). Plasmids were transformed into E. coli strain 16C9, a derivative of MM294, plated onto 1_,I3 plates containing 5 μg/ml carbenicillin, and a single colony selected for protein expression. The single colony was grown in 5 ml LB-100 μg/ml carbenicillin for 5-8 h at 37 C. The 5 ml culture was added to 500 ml AP5-100 μg/ml carbenicillin and allowed to grow for 16 h in a 4 L baffled shake flask at 37° C. AP5 media consists of: 1.5 g, glucose, 11.0 Hycase SF, 0.6 g yeast extract (certified), 0.19 g anhydrous MgSO4, 1.07 g NH4CI, 3.73 g KCl, 1.2 g NaCl, 120 ml 1 M triethanolamine, pH 7.4, to 1 L water and then sterile filtered through 0.1 μm Sealkeen filter.
  • Cells were harvested by centrifugation in a 1 L centrifuge bottle (Nalgene) at 3000×g and the supernatant removed. After freezing for 1 h, the pellet was resuspended in 25 ml cold 10 mM MES-10 mM EDTA, pH 5.0 (buffer A). 250 μl of 0.1M PMSF (Sigma) was added to inhibit proteolysis and 3.5 ml of stock 10 mg/ml hen egg white lysozyme (Sigma) was added to aid lysis of the bacterial cell wall. After gentle shaking on ice for 1 h, the sample was centrifuged at 40,000×g for 15 min. The supernatant was brought to 50 ml with buffer A and loaded onto a 2 ml DEAL column equilibrated with buffer A. The flow-through was then applied to a protein G-Sepharose CL 4B (Pharmacia) column (0.5 ml bed volume) equilibrated with buffer A. The column was washed with 10 ml buffer A and eluted with 3 ml 0.3 M glycine, pH 3,0, into 1.25 ml 1 M Tris, pH 8.0. The F(ab) was then buffer exchanged into PBS using a Centricon-30 (Amicon) and concentrated to a final volume of 0.5 ml. SDS-PAGE gels of all F(ab)s were run to ascertain purity and the molecular weight of each variant was verified by electrospray mass spectrometry.
  • In cell-based ELISA binding assays (described below), the binding of Fabs, including chimeric 2H7 Fab, to CD20 was difficult to detect. Therefore, the 2H7 Fab versions were reformatted as full-length IgG1 antibodies for assays and further mutagenesis.
  • Plasmids for expression of full-length IgG's were constructed by subcloning the VL, and VH domains of chimeric 2H7 (v6.8) Fab as well as humanized Fab versions 2 to 6 into previously described pRK vectors for mammalian cell expression (Gorman et al., DNA Prot. Eng. Tech. 2:3-10 (19901). Briefly, each Fab construct was digested with FcoRV and BlpI to excise a VL fragment, which was cloned into the EcoRV/BlpI sites of plasmid pDR1 (FIG. 4) for expression of the complete light chain (VL-CL, domains). Additionally. each Fab construct was digested with PvuII and ApaI to excise a VH fragment, which was cloned into the PvuII/ApaI sites of plasmid pDR2 (FIG. 5) for expression of the complete heavy chain (VH—CH1-hinge-CH2—CH3 domains). For each IgG variant, transient transfections were performed by cotransfecting a light-chain expressing plasmic' and a heavy-chain expressing plasmid into an adenovirus-transformed human embryonic kidney cell line, 293 (Graham et al., J. Gen. Virol., 36:59-74, (1977)). Briefly, 293 cells were split on the day prior to transfection, and plated in serum-containing medium. On the following day, double-stranded DNA prepared as a calcium phosphate precipitate was added, followed by pAdVAntage™ DNA (Promega, Madison, Wis.), and cells were incubated overnight at 37° C. Cells were cultured in serum-free medium and harvested after 4 days. Antibodies were purified from culture supernatants using protein A-Sepharose CL-4B, then buffer exchanged into 10 mM sodium succinate, 140 mM NaCl, pH 6.0, and concentrated using a Centricon-10 (Amicon). Protein concentrations were determined by quantitative amino acid analysis.
  • To measure relative binding affinities to the CD20 antigen, a cell-bases ELISA assay was developed. Human B-lymphoblastoid WIL2-S cells (ATCC CRL 8885, American Type Culture Collection, Rockville, MD.) were grown in RPMI 1640 supplemented with 2 mM L-glutamine, 20 mM HEPES, pH 7.2 and 10% heat inactivated fetal bovine serum in a humidified 5% CO2 incubator. The cells were washed with PBS containing 1% PBS (assay buffer) and seeded at 250-300,000 cell/well in 96-well round bottom plates (Nunc, Roskilde, Denmark). Two-fold serially diluted standard (15.6-1000 ng/ml of 2H7 v6.8 chimeric IgG) and threefold serially diluted samples (2.7-2000 ng/ml) in assay buffer were added to the plates. The plates were buried in ice and incubated for 45 min. To remove the unbound antibody, 0.1 mL assay buffer were added to the wells. Plates were centrifuged and supernatants were removed. Cells were washed two more times with 0.2 mL assay buffer. Antibody bound to the plates was detected by adding peroxidase conjugated goat anti-human Fc antibody (Jackson ImmunoResearch, West Grove, Pa.) to the plates. After a 45 min incubation, cells were washed as described before. TMB substrate (3,3′,5,5′-tetramethyl benzidine; Kirkegaard & Perry Laboratories, Gaithersburg, Md.) was added to the plates. The reaction was stopped by adding 1 M phosphoric acid. Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (KaleidaGraph, Synergy software, Reading, PA). The absorbance at the midpoint of the titration curve (mid-OD) and its corresponding concentration of the standard were determined. Then the concentration of each variant at this mid-OD was determined, and the concentration of the standard was divided by that of each variant. Hence the values are a ratio of the binding of each variant relative to the standard. Standard deviations in relative affinity (equivalent concentration) were generally ±10% between experiments.
  • As shown in Table 2, binding of the CDR-swap variant (v.2) was extremely reduced compared to chimeric 2H7 (v.6.8). However, versions 3 to 6 showed improved binding. To determine the minimum number of mutations that might be required to restore binding affinity to that of chimeric 2H7, additional mutations and combinations of mutations were constructed by site-direct mutagenesis to produce variants 7 to 17 as indicated in Table 3. in particular, these included VH mutations A49G, F67A, I69L, N73K, and L78A; and VL mutations M4L, M33I, and F71Y. Versions 16 and 17 showed the best relative binding affinities, within 2-fold of that of the Chimeric version, with no significant difference (s.d, =+/−10%) between the two. To minimize the number of mutations, version 16, having only 4 mutations of human framework residues to murine framework residues (Table 3), was therefore chosen as the humanized form for additional characterization.
  • TABLE 2
    Relative binding affinity of humanized 2H7 IgG variants to CD20
    compared to chimeric 2H7 using cell-based ELISA. The relative
    binding is expressed as the concentration of the chimeric 2H7 over the
    concentration of the variant required for equivalent binding; hence a
    ratio <1 indicates weaker affinity for the variant. Standard deviation
    in relative affinity determination averaged +/−10%. Framework
    substitutions in the variable domains are relative to the CDR-swap
    version according to the numbering system of Kabat (Kabat et al., supra).
    2H7 Heavy chain (VH) Light Chain (VL) Relative
    version substitutions substitutions binding
    6.8 (Chimera) (Chimera) -1-
    2 (CDR swap) (CDR swap) 0.01
    3 R71V, N73K (CDR swap) 0.21
    4 R71V (CDR swap) 0.21
    5 R71V, N73K L46P 0.50
    6 R71V, N73K L46P, L47W 0.58
    7 R71V L46P 0.33
    8 R71V, L78A L46P 0.19
    9 R71V, F67A L46P 0.07
    10 R71V, F67A, I69L L46P 0.12
    11 R71V, F67A, L78A L46P 0.19
    12 R71V L46P, M4L 0.32
    13 R71V L46P, M33I 0.31
    14 R71V L46P, F71Y 0.25
    15 R71V L46P, M4L, M33I 0.26
    16 R71V, N73K, A49G L46P 0.65
    17 R71V, N73K, A49G L46P, L47W 0.67
  • TABLE 3
    Oligonucleotide sequences used for construction of
    mutations VH(A49G, R71V, N73K) and VL(L46P) in
    humanized 2H7 version 16 (2H7.v16). Underlined
    codons encode the indicated amino acid
    substitutions. For VH(R71V, N73K) and VL(L46P),
    the oligos are shown as the sense strand since
    these were used for mutagenesis on the Fab
    template, while for VH(A49G), the oligo is shown
    as the anti-sense strand, since this was used with
    the pRK (IgG heavy chain) template. The protein
    sequence of version 16 is shown in FIF. 6 and
    FIG. 7,
    Substitution Oligonucleotide sequence
    VH(R71V, N73K) GT TTC ACT ATA AGT GTC GAC AAG TCC
    AAA AAC ACA TT (SEQ ID NO. 34)
    VH(A49G) GCCAGGATAGATGGCGCCAACCCATTCCAGGCC
    (SEQ ID NO. 35)
    VL(L46P) AAGCTCCGAAACCACTGATTTACGCT
    (SEQ ID NO. 36)
  • Example 2 Antigen-binding Determinants (Paratope) of 2H7
  • Alanine substitutions (Cunningham & Wells, Science 244: 1081-1085 (1989) were made in 2H7.v16 or 2H7.v17 in order to test the contributions of individual side chains of the antibody in binding to CD20. IgG variants were expressed in 293 cells from pDR1 and pDR2 vectors, purified, and assayed for relative binding affinity as described above. Several aJanine substitutions resulted in significant decreases in relative binding to CD20 on WIL-2S cells (Table 4).
  • TABLE 4
    Effects of alanine substitutions in the CDR regions of humanized
    2H7.v16 measured using cell-based ELISA (WIL2-S cells). The relative
    binding is expressed as the concentration of the 2H7.v16 parent
    over the concentration of the variant required for equivalent binding;
    hence a ratio <1 indicates weaker affinity for the variant; a ratio >1
    indicates higher affinity for the variant. Standard deviation in relative
    affinity determination averaged +/−10%. Framework substitutions
    in the variable domains are relative to 2H7.v16 according to the
    numbering system of Kabat (Kabat et al., supra). NBD means no
    detectable binding. The two numbers for version 45 are from
    separate experiments.
    2H7 CDR Heavy chain Light chain
    version location substitutions substitutions Relative binding
    16 -1-
    140 H1 G26A 0.63
    141 H1 Y27A 0.47
    34 H1 T28A 0.86
    35 H1 F29A 0.07
    36 H1 T30A 0.81
    37 H1 S31A 0.97
    142 H1 Y32A 0.63
    143 H1 N33A NDB
    144 H1 M34A 1.2
    145 H1 H35A <0.25
    146 H2 A50G 0.31
    147 H2 I51A 0.65
    38 H2 Y52A 0.01
    148 H2 P52aA 0.66
    39 H2 G53A 0.89
    67 H2 N54A 1.4
    40 H2 G55A 0.79
    41 H2 D56A 2.0
    89 H2 T57A 0.61
    90 H2 S58A 0.92
    91 H2 Y59A 0.74
    92 H2 N60A 0.80
    93 H2 Q61A 0.83
    94 H2 K62A 0.44
    95 H2 F63A 0.51
    83 H2 V71A 0.96
    149 H2 K64A 0.82
    150 H2 G65A 1.2
    153 H3 V95A 0.89
    42 H3 V96A 0.98
    43 H3 Y97A 0.63
    44 H3 Y98A 0.40
    45 H3 S99A 0.84; 0.92
    46 H3 N100A 0.81
    47 H3 S100aA 0.85
    48 H3 Y100bA 0.78
    49 H3 W100cA 0.02
    59 H3 Y100dA 0.98
    60 H3 F100eA NDB
    61 H3 D101A 0.31
    151 H3 V102A 1.1
    117 L1 R24A 0.85
    118 L1 A25G 0.86
    119 L1 S26A 0.98
    120 L1 S27A 0.98
    121 L1 S28A 1.0
    122 L1 V29A 0.41
    50 L1 S30A 0.96
    51 L1 Y32A 1.0
    123 L1 M33A 1.0
    124 L1 H34A 0.21
    125 L2 A50G 0.92
    126 L2 P51A 0.88
    52 L2 S52A 0.80
    53 L2 N53A 0.76
    54 L2 L54A 0.60
    127 L2 A55G 1.1
    128 L2 S56A 1.1
    129 L3 Q89A 0.46
    130 L3 Q90A <0.22
    55 L2 W91A 0.88
    56 L3 S92A 1.1
    57 L3 F93A 0.36
    58 L3 N94A 0.61
    131 L3 P95A NDB
    132 L3 P96A 0.18
    133 L3 T97A <0.22
  • Example 3 Additional Mutations Within 2H7 CDR Regions
  • Substitutions of additional residues and combinations of substitutions at CDR positions that were identified as important by Ala-scanning were also tested. Several combination variants, particularly v.96 appeared to bind inure tightly than v.16.
  • TABLE 5
    Effects of combinations of mutations and non-alanine substitutions in the
    CDR regions of humanized 2H7.v16 measured using cell-based ELISA
    (WIL2-S cells). The relative binding to CD20 is expressed as the
    concentration of the 2H7.v16 parent over the concentration of the variant
    required for equivalent binding; hence a ratio <1 indicates weaker
    affinity for the variant; a ratio >1 indicates higher affinity for the variant.
    Standard deviation in relative affinity determination averaged +/−10%.
    Framework substitutions in the variable domains are relative to 2H7.v16
    according to the numbering system of Kabat (Kabat et al., supra).
    2H7 Heavy chain Light chain Relative
    version substitutions Substitutions binding
    16 -1-
    96 D56A, N100A S92A 3.5
    97 S99T, N100G, Y100bI 0.99
    98 S99G, N100S, Y100bI 1.6
    99 N100G, Y100bI 0.80
    101 N54S, D56A 1.7
    102 N54K, D56A 0.48
    103 D56A, N100A 2.1
    104 S99T, N100G 0.81
    105 S99G, N100S 1.1
    106 N100G ~1
    167 S100aG, Y100bS
    136 D56A, N100A S56A, S92A 2.6
    137 D56A, N100A A55G, S92A 2.1
    156 D56A, N100A S26A, S56A, S92A 2.1
    107 D56A, N100A, Y100bI S92A not expressed
    182 Y27W
    183 Y27F
    184 F29Y
    185 F29W
    186 Y32F
    187 Y32W
    188 N33Q
    189 N33D
    190 N33Y
    191 N33S
    208 H35S
    209 A50S
    210 A50R
    211 A50V
    212 A50L
    168 Y52W
    169 Y52F 0.75
    170 N54D 0.25
    171 N54S 1.2
    172 D56K 1
    173 D56R
    174 D56H 1.5
    175 D56E 1.2
    213 D56S
    214 D56G
    215 D56N
    216 D56Y
    176 Y59W
    177 Y59F
    180 K62R
    181 K62D
    178 F63W
    179 F63Y
    157 Y97W 0.64
    158 Y97F 1.2
    159 Y98W 0.64
    160 Y98F 0.88
    106 N100G
    161 W100cY 0.05
    162 W100cF 0.27
    163 F100eY 0.59
    164 F100eW 0.71
    165 D101N 0.64
    166 S99G, N100G, S100aD, 0.99
    Y100b deleted
    217 V102Y 1.0
    207 H34Y
    192 Q89E
    193 Q89N
    194 Q90E
    195 Q90N
    196 W91Y
    197 W91F
    205 S92N
    206 S92G
    198 F93Y
    199 F93W
    204 F93S, N94Y
    200 P96L
    201 P96Y
    202 P96W
    203 P96R
  • Example 4 Mutations at Sites of Framework Humanization Substitutions
  • Substitutions of additiomil residues at framework positions that were changed during humanization were also tested in the 2H7.v16 background. In particular, alternative framework substitutions that were neither found in the murine 2H7 parent nor the human consensus framework were made at VL (P46) and VH(G49, V71, and K73).
  • These substitutions generally led to little change in elative binding (Table 6), indicating that there is some flexibility in framework residues at these positions.
  • TABLE 6
    Relative binding in a cell-based (WIL2-S) assay of framework
    substitutions. IgG variants are shown with mutations with respect to the
    2H7.v16 background. The relative binding is expressed as the
    concentration of the 2H7.v6.8 chimera over the concentration of the
    variant required for equivalent binding; hence a ratio <1 indicates
    weaker affinity for the variant; a ratio >1 indicates higher affinity for
    the variant. Standard deviation in relative affinity determination
    averaged +/−10%. Framework substitutions in the variable
    domains are relative to 2H7.v16 according to the numbering system
    of Kabat (Kabat et al., supra). (*) Variants that were assayed with
    2H7.v16 as the standard comparator; relative values are normalized
    to that of the chimera.
    2H7 Heavy chain Light chain
    version substitutions Substitutions Relative binding
    6.8 (chimera) (chimera) -1-
    16 0.64
    78 K73R 0.72
    79 K73H 0.49
    80 K73Q 0.58
    81 V71I 0.42
    82 V71T 0.58
    83 V71A
    84 G49S 0.32
    85 G49L
    86 P46E 0.22
    87 P46V 0.51
    88 P46T
    108 G49A, V71T, K73R S92A, M32L, P46T 0.026*
    109 G49A, A49G, V71T, S92A, M32L, P46T 0.026*
    K73R
    110 K73R, D56A, N100A S92A, M32L Not expressed
    111 G49A, V71T, K73R 0.46*
    112 G49A, A50G, V71T, 0.12*
    K73R
    *Variants that were assayed with 2H7.v16 as the standard comparator; relative values are normalized to that of the chimera.
  • Example 5 Humanized 2H7 Variants with Enhanced Effector Functions
  • Because 2H7 can mediate lysis of B-cells through both complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC), we sought to produce variants of humanized 2H7.v16 with improved CDC and ADCC activity. Mutations of certain residues within the Fe regions of other antibodies have been described (Idusogie et al., J. Immunol. 166:2571-2575 (2001)) for improving CDC through enhanced binding to the complement component C1q. Mutations have also been described (Shields et al., J. Biol. Chem. 276:6591-6604 (2001), Presta et al., Biochem. Soc. Trans. 30:487-490 (2002)) for improving ADCC through enhanced IgG binding to activating Fcγ receptors and reduced IgG binding to inhibitory Fcγ receptors. In particular, three mutations have been identified for improving CDC and ADCC activity: S298A/E333A/K334A (also referred to herein as a triple Ala mutant or variant; numbering in the Fc region is according to the ECT numbering system; Kabat et al., supra) as described (Idusogie et al, supra (2001); Shields et al., supra).
  • In order to enhance CDC and ADCC activity of 2H7, a triple Ala mutant of the 2H7 Fc was constructed. A humanized variant of the anti-HER2 antibody 4d5 has been produced with mutations S298A/E333A/K334A and is known as 4D5Fc110 (i.e, anti-p185HER2 IgG1 (S298A/E333A/K334A); Shields et al, supra). A plasmid, p4D5Fc110 encoding antibody 4D5Fc110 (Shields et al., supra) was digested with ApaI and HindIII, and the Fc fragment (containing mutations S298A/E333A/K334A) was ligated into the ApaI/HindIII sites of the 2H7 heavy-chain vector pDR2-v16, to produce pDR2-v31. The amino acid sequence of the version 31 complete H chain is shown in FIG. 8. The L chain is the same as that of v16.
  • Although the constant domains of the Fc region of IgG1 antibodies are relatively conserved within a given species, allelic variations exist (reviewed by Lefranc and Lefranc, in The human IgG subclasses: molecular analysis of structure, function, and regulation, pp. 43-78, F. Shakib (ed.), Pergammon Press, Oxford (1990)).
  • TABLE 7
    Effects of substitutions in the Fc region on CD20 binding. Relative
    binding to CD20 was measured in a cell-based (WIL2-S) assay of
    framework substitutions. Fc mutations (*) are indicated by EU
    numbering (Kabat, supra) and are relative to the 2H7.v16 parent.
    The combination of three Ala changes in the Fc region of v.31 is
    described as “Fc110.” IgG variants are shown with mutations
    with respect to the 2H7.v16 background. The relative binding is
    expressed as the concentration of the 2H7.v6.8 chimera over the
    concentration of the variant required for equivalent binding; hence
    a ratio <1 indicates weaker affinity for the variant. Standard deviation
    in relative affinity determination averaged +/−10%.
    2H7 Fc Relative
    version Substitutions* binding
    6.8 -1-
    16 0.65
    31 S298A, E333A, K334A 0.62
  • Example 6 Humanized 2H7 Variants with Enhanced Stability
  • For development as therapeutic proteins, it is desirable to choose variants that remain stable with respect to oxidation, deamidation, or other processes that may affect product quality, in a suitable formulation buffer. In 2H7.v16 several residues were identified as possible sources of instability: VL (M32) and VH (M34, N100). Therefore, mutations were introduced at these sites for comparison with v16.
  • TABLE 8
    Relative binding of 2H7 variants designed for enhanced stability and/or effector function, to CD20
    in a cell-based (WIL2-S) assay. IgG variants are shown with mutations with respect to the 2H7.v16
    background. The relative binding is expressed as the concentration of the 2H7.v6.8 chimera over the
    concentration of the variant required for equivalent binding; hence a ratio <1 indicates weaker affinity
    for the variant. Standard deviation in relative affinity determination averaged +/− 10%. Framework
    substitutions in the variable domains are relative to 2H7.v16 according to the numbering system
    of Kabat and Fc mutations (*) are indicated by EU numbering (Kabat et al., supra). (**) Variants
    that were measured with 2H7.v16 as the standard comparator; relative values are normalized to
    that of the chimera. Additional Fc mutations were combined with stability or affinity-enhancing
    mutations to alter or enhance effector functions based on previously reported mutations
    (Idusogie et al. (2000); Idusogie et al. (2001); Shields et al. (2001)). These changes include S298,
    E333A, K334A as described in Example 5; K322A to reduced CDC activity; D265A to reduce
    ADCC activity; K326A or K326W to enhance CDC activity; and E356D/M358L to test the
    effects of allotypic changes in the Fc region. None of these mutations caused significant
    differences in CD20 binding affinity.
    2H7 Heavy chain Light chain Relative
    version (VH) changes (VL) changes Fc changes* binding
    6.8 (chimera) (chimera) -1-
    16 0.65
    62 M32I 0.46
    63 M34I 0.49
    64 N100A
    65 N100A L47W 0.74
    66 S99A L47W 0.62
    67 N54A
    68 M32I 0.48
    69 M32L 0.52
    70 N100A S298A, E333A, K334A 0.80
    71 N100D S298A, E333A, K334A 0.44
    72 N100A M32I 0.58
    73 N100A M32L 0.53
    74 N100A M32I S298A, E333A, K334A 0.61
    75 N100A M32L S298A, E333A, K334A 0.60
    113 E356D, M358L 0.60**
    114 D56A, N100A M32L, S92A S298A, E333A, K334A 1.2**
    115 D56A, N100A M32L, S92A S298A, E333A, K334A, E356D, M358L 1.4**
    116 D56A, N100A M32L, S92A S298A, K334A, K322A 1.2**
    134 D56A, N100A M32L, S92A E356D, M358L, D265A 1.5**
    135 D56A, N100A M32L, S92A E356D, M358L, D265A, K326W 0.95**
    138 D56A, N100A M32L, S92A S298A, E333A, K334A, K326A 1.2**
    139 D56A, N100A M32L, S92A S298A, E333A, K334A, K326A, E356N, M358L 1.1**
    154 D265A 0.70**
    155 S298A, K322A, K334A 0.70**
    **Variants that were measured with 2H7.v16 as comparator; relative binding values are normalized to that of the chimera.
  • To test the effects of stability mutations on the rate of protein degradation, 2H7.v16 and 2H7.v73 were formulated at 12-14 mg/ML in 10 mM histidine, 6% sucrose, 0.02% polysorbate 20, pH 5.8 and incubated at 40° C. for 16 days. The incubated samples were then assayed for changes in charge variants by ion exchange chromatography, aggregation and fragmentation by size exclusion chromatography, and relative binding by testing in a cell-based (WIL2-S) assay.
  • The results (FIG. 9) show that 2H7 v.73 has greater stability compared to 2H7 v.16 with respect to losses in the fraction of main peak by ion exchange chromatography under accelerated stability conditions. No significant differences were seen with respect to aggregation, fragmentation, or binding affinity.
  • Example 7 Scatchard Analysis of Antibody Binding to CD20 on WIL2-S Cells
  • Equilibrium dissociation constants (Kd) were determined for 2H7 IgG variants binding to WIL2-S cells using radiolabeled 2H7 IgG. IgG variants were produced in CHO cells. Rituxan® (source for all experiments is Genentech, S. San Francisco, Calif.) and murine 2H7 (BD PharMingen, San Diego, Calif.) were used for comparison with humanized variants. The murine 2H7 antibody is also available from other sources, e.g., eBioscience, and Calbiochem (both of San Diego, Calif.), Accurate Chemical & Scientific Corp., (Westbury, N.Y.), Ancell (Bayport, Minn.), and Vinci-Biochem (Vinci, Italy). All dilutions were performed in binding assay buffer (DMEM media containing 1% bovine serum albumin, 25 mM HEPES pH 7.2, and 0.01% sodium azide). Aliquots (0.025 mL) of 125I-2H7.v16 (iodinated with lactoperoxidase) at a concentration of 0.8 nM were dispensed into wells of a V-bottom 96-well microassay plate, and serial dilutions (0.05 mL) of cold antibody were added and mixed. WIL2-S cells (60,000 cells in 0.025 mL) were then added. The plate was sealed and incubated at room temperature for 24 h, then centrifuged for 15 min at 3,500 RPM. The supernatant was then aspirated and the cell pellet was washed and centrifuged. The supernatant was again aspirated, and the pellets were dissolved in 1N1 NaOH and transferred to tubes for gamma counting. The data were used for Scatchard analysis (Munson and Rodbard, Anal. Biochem. 107:220-239 (1980)) using the program Ligand (McPherson, Comput. Programs Biamed. 17: 107-114 (1983)). The results, shown in Table 9, indicate that humanized 2H7 variants had similar CD20 binding affinity as compared to murine 2H7, and similar binding affinity to Rituxan®. It is expected that 2H7.v31 will have very similar Kd to v.16 on the basis of the binding shown in Table 7 above.
  • TABLE 9
    Equilibrium binding affinity of 2H7 variants from Scatchard analysis
    Antibody variant Kd (nM) N
    Rituxan 0.99 ± 0.49 3
    2H7 (murine) 1.23 ± 0.29 3
    2H7.v16 0.84 ± 0.37 4
    2H7.v73 1.22 ± 0.39 4
    2H7.v75 1.09 ± 0.17 4
  • Example 8 Complement Dependent Cytotoxicity (CDC) Assays
  • 2H7 IgG variants were assayed for their ability to mediate complement-dependent lysis of WIL2-S cells, a CD20 expressing lymphoblastoid B-cell line, essentially as described (Ichisogie et al., J. Immunol. 164:4178-4184 (2000); Idusogie et al., J. Immunol. 166:2,571-2575 (2001)), Antibodies were serially diluted 1:3 from a 0.1 mg/mL stock solution. A 0.05 mL aliquot of each dilution was added to a 96-well tissue culture plate that contained 0.05 mL of a solution of normal human complement (Quidel, San Diego, Calif.) To this mixture, 50,000 WIL2-S cells were added in a 0.05 mL volume. After incubation for 2 h at 37° C., 0.05 mL of a solution of Alamar blue (Accumed International, Westlake, Ohio) was added, and incubation was continued for an additional 18 h at 37° C. Covers were then removed from the plates, and they were shaken for 15 min at room temperature on an orbital shaker. Relative fluorescent units (RFU) were read using a 530 nm excitation filter and a 590 nm emission filter. An EC50 was calculated by fitting RFU as a function of concentration for each antibody using KaleidaGraph software.
  • The results (Table 10) show surprising improvement in CDC by humanized 2H7 antibodies, with relative potency similar to Rituxan® for v.73, 3-fold more potent than Rituxan® for v.75, and 3-fold weaker than Rituxan® for v.16.
  • TABLE 10
    CDC activity of 2H7 antibodies compared to Rituxan. Numbers >1
    indicate less potent CDC activity than Rituxan ® and numbers
    <1 indicate more potent activity than Rituxan ®. Antibodies
    were produced from stable CHO lines, except that those indicated
    by (*) were produced transiently.
    Antibody variant n EC50(variant)/EC50(Rituxan)
    Rituxan ® 4 -1-
    2H7.v16 4 3.72; 4.08
    2H7.v31* 4 .21
    2H7.v73 4 1.05
    2H7.v75 4 0.33
    2H7.v96* 4 0.956
    2H7.v114* 4 0.378
    2H7.v115* 4 0.475
    2H7.v116* 1 >100
    2H7.v135* 2 0.42
  • Example 9 Antibody Dependent Cellular Cytotoxicity (ADCC) Assays
  • 2H7 IgG variants were assayed for their ability to mediate Natural-Killer cell (NK cell) lysis of WIL2-S cells, a CD20 expressing lymphoblastoid B-cell line, essentially as described (Shields et al., J. Biol. Chem. 276:6591-6604 (2001)) using a lactate dehydrogenase (LDH) readout. NK cells were prepared from 100 mL of heparinized blood, diluted with 100 mL of PBS (phosphate buffered saline), obtained from normal human donors who had been isotyped for FcγRIII, also known as CD16 (Koene et al., Blood 90:1109-1114 (1997)). In this experiment, the NK cells were from human donors heterozygous for CD16 (F158/V158). The diluted blood was layered over 15 mL of lymphocyte separation medium (ICN Biochemical, Aurora, Ohio) and centrifuged for 20 min at 2000 RPM. White cells at the interface between layers were dispensed to 4 clean 50-mL tubes, which were filled with RPMI medium containing 15% fetal calf serum. Tubes were centrifuged for 5 min at 1400 RPM and the supernatant discarded. Pellets were resuspended in MACS buffer (0.5% BSA, 2 mM EDTA), and NK cells were purified using beads (NK Cell Isolation Kit, 130-046-502) according to the manufacturer's protocol (Miltenyi Biotech,). NK cells were diluted in MACS buffer to 2×106 cells/mL.
  • Serial dilutions of antibody (0.05 mL) in assay medium (F12/DMEM 50:50 without glycine, 1 mM HEPES buffer pH 7.2, Penicillin/Streptomycin (100 units/mL; Gibco), glutamine, and 1% heat-inactivated fetal bovine serum) were added to a 96-well round-bottom tissue culture plate. WIL2-S cells were diluted in assay buffer to a concentration of 4×105/mL. WIL2-S cells (0.05 mL per well) were mixed with diluted antibody in the 96-well plate and incubated for 30 min at room temperature to allow binding of antibody to CD20 (opsonization).
  • The ADCC reaction was initiated by adding 0.1 mL of NK cells to each well. In control wells, 2% Triton X-100 was added. The plate was then incubated for 4 h at 37° C. Levels of LDH released were measured using a cytotoxicity (LDH) detection kit (Kit#1644793, Roche Diagnostics, Indianapolis, Ind.) following the manufacturers instructions. 0.1 mL of LDH developer was added to each well, followed by mixing for 10 s. The plate was then covered with aluminum foil and incubated in the dark at room temperature for 15 min. Optical density at 490 nm was then read and use to calculate % lysis by dividing by the total LDH measured in control wells. Lysis was plotted as a function of antibody concentration, and a 4-parameter curve fit (KaleidaGraph) was used to determine EC50 concentrations.
  • The results showed that humanized 2H7 antibodies were active in ADCC, with relative potency 20-fold higher than Rituxan® for v.31 and v.75, 5-fold more potent than Rituxan® for v.16, and almost 4-fold higher than Rituxan® for v.73.
  • TABLE 11
    ADCC activity of 2H7 antibodies on WIL2-S cells compared to 2H7.v16,
    based on n experiments. (Values >1 indicate lower potency than
    2H7.v16, and values <1 indicate greater potency.)
    Antibody variant n EC50 (variant)/EC50(2H7.v16)
    Rituxan ® 4 5.3
    2H7.v16 5 1
    2H7.v31 1 0.24
    2H7.v73 5 1.4
    2H7.v75 4 0.25
  • Additional ADCC assays were carried out to compare combination-variants of 2H7 with Rituxan®, The results of these assays indicated that 2H7.v114 and 2H7.v115 have >10-fold improved ADCC potency as compared to Rituxan® (Table 12).
  • TABLE 12
    ADCC activity of 2H7 antibodies on WIL2-S cells compared to
    Rituxan ®, based on n experiments (Values >1 indicate lower potency
    than Rituxan ®, and values <1 indicate greater potency).
    Antibody variant EC50(variant)/EC50(Rituxan)
    Rituxan ® 2 -1-
    2H7 v.16 2 0.52
    2H7 v.96 2 0.58
    2H7.v114 2 0.093
    2H7.v115 2 0.083
    2H7.v116 2 0.30
  • Example 10 In vivo Effects or 2H7 Variants in a Pilot Study in Cynomolgus Monkeys
  • 2H7 variants, produced by transient transfection of CHO cells, were tested in normal male cynomolgus (Macaca fascicularis) monkeys in order to evaluate their in vivo activities. Other anti-CD20 antibodies, such as C2B8 (Rituxan®) have demonstrated an ability to deplete B-cells in normal primates (Reff et al., Blood 83: 435-445 (1994)).
  • In one study, humanized 2H7 variants were compared. In a parallel study, Rituxan® was also tested in cynomolgus monkeys. Four monkeys were used in each of five dose groups: (1) vehicle, (2) 0.05 mg/kg hu2H7.v16, (3) 10 mg/kg hu2H7.v16, (4) 0.05 mg/kg hu2H7.v31, and (5) 10 mg/kg hu2H7.v31. Antibodies were administered intravenously at a concentration of 0, 0.2, or 20 mg/mL, for a total of two doses, one on day 1 of the study, and another on day 8. The first day of closing is designated day 1 and the previous day is designated day −1; the first day of recovery (for 2 animals in each group) is designated as day 11. Blood samples were collected on days −19, −12, 1 (prior to dosing), and at 6 h, 24 h, and 72 h following the first dose. Additional samples were taken on day 8 (prior to dosing), day 10 (prior to sacrifice of 2 animals/group), and on days 36 and 67 (for recovery animals).
  • Peripheral B-cell concentrations were determined by a FACS method that counted CD3−/CD40+ cells. The percent of CD3−CD40+ B cells of total lymphocytes in monkey samples were obtained by the following gating strategy. The lymphocyte population was marked on the forward scatter/side scatter scattergram to define Region 1 (R1). Using events in R1, fluorescence intensity dot plots were displayed for CD40 and CD3 markers. Fluorescently labeled isotype controls were used to determine respective cutoff points for CD40 and CD3 positivity.
  • The results indicated that both 2H7.v16 and 2H7.v31 were capable of producing full peripheral B-cell depletion at the 10 mg/kg dose and partial peripheral B-cell depletion at the 0.05 mg/kg dose (FIG. 11). The time course and extent of B-cell depletion measured during the first 72 h of dosing were similar for the two antibodies. Subsequent analysis of the recovery animals indicated that animals treated with 2H7.v31 showed a prolonged depletion of B-cells as compared to those dosed with 2H7.v16. In particular, recovery animals treated with 10 mg/kg 2H7.v16, B-cells showed substantial B-cell recovery at some time between sampling on Day 10 and on Day 36. However, for recovery animals treated with 10 mg/kg 2H7.v31, B-cells did not show recovery until some time between Day 36 and Day 67 (FIG. 11). This suggests a greater duration of full depletion by about one month for 2H7.v31 compared to 2H7.v16.
  • No toxicity was observed in the monkey study at low or high dose and the gross pathology was normal. In other studies, v16 was well tolerated up to the highest dose evaluated of (100 mg/kg×2=1200 mg/m2×2) following i.v. administration of 2 doses given 2 weeks apart in these monkeys.
  • Data in Cynomolgus monkeys with 2H7.v16 versus Rituxan® suggests that a 5-fold reduction in CDC activity does not adversely affect potency. An antibody with potent ADCC activity but reduced CDC activity may have more favorable safety profile with regard to first infusion reactions than one with greater CDC activity.
  • Example 11 Fucose Deficient 2H7 Variant Antibodies with Enhanced Effector Function
  • Normal CHO and HEK293 cells add fucose to IgG oligosaccharide to a high degree (97-98%). IgG from sera are also highly fucosylated.
  • DP12, a dihydrofolate reductase minus (DHFR) CHO cell line that is fucosylation competent, and. Lec13, a cell line that is deficient in protein fucosylation were used to produce antibodies for this study. The CHO cell nine Pro-Lec13.6a (Lec13), was obtained front Professor Pamela Stanley of Albert Einstein College of Medicine of Yeshiva University. Parental lines are Pro- (proline auxotroplo and Gat- (glycine, adenosine, thymidine auxotroph). The CHO-DP12 cell line is a derivative of the CHO-K1 cell line (ATCC #CCL-61), which is dihydrofolate reductase deficient, and has a reduced requirement for insulin. Cell lines were transfected with cDNA using the Superfect method (Qiagen, Valencia, Calif.). Selection of the Lec13 cells expressing transfected antibodies was performed using puromycin dihydrochloride (Calbiochem, San Diego, Calif.) at 10 μg/ml in growth medium containing: MEM Alpha Medium with L-glutamine, ribonucleosides and deoxyribonucleosides (GIBCO-BRL, Gaithersburg, Md.), supplemented with 10% inactivated FBS (GIBCO), 10 mM HEPES, and 1× penicillin/streptomycin (GIBCO). The CHO cells were similarly selected in growth medium containing Ham's F12 without GHT: Low Glucose DMEM without Glycine with NaHCO3 supplemented with 5% FBS (GIBCO), 10 HEPES, 2 nM L-glutamine, 1× GHT(glycine, hypoxanthine, thymidine), and 1× penicillin/streptomycin.
  • Colonies formed within two to three weeks and were pooled for expansion and protein expression. The cell pools were seeded initially at 3×106 cells/10 cm plate for small batch protein expression. The cells were converted to serum-free media once they grew to 90-95% confluency and after 3-5 days cell supernatants were collected and tested in an Fc IgG- and intact IgG-ELISA to estimate protein expression levels. Lec13 and CHO cells were seeded at approximately 8×106 cells/15 cm plate one day prior to converting to PS24 production medium, supplemented with 10 mg/L recombinant human insulin and 1 mg/L trace elements.
  • Lec13 cells and DP12 cells remained in serum-free production medium for 3-5 days. Supernatants were collected and clarified by centrifugation in 150 ml conical tubes to remove cells and debris. The protease inhibitors PMSF and aprotinin (Sigma, St. Louis, Mo.) were added and the supernatants were concentrated 5-fold on stirred cells using MWCO30 filters (Amicon, Beverly, Mass.) prior to immediate purification using protein G chromatography (Amersham Pharmacia Biotech, Piscataway, N.J.)). All proteins were buffer exchanged into phosphate-buffered saline (PBS) using Centripriep-30 concentrators (Amicon) and analyzed SDS-polyacrylamide gel electrophoresis. Protein concentrations were determined using A280 and verified using amino acid composition analysis.
  • The CHO cells were transfected with vectors expressing humanized 2H7v16, 2H7v.31 and selected as described. The 2H7v.16 antibody retains the wild type Fc region While v.31 (see Example 5, Table 7 above) has an Fc region wherein 3 amino acid changes were made (S298A, E333A, K334A) which results in higher affinity for the FcγRIIIa receptor (Shields et al. J. Biol. Chem. 276 (9):6591-6604 (2001)). Following transfection and selection, individual colonies of cells were isolated and evaluated for protein expression level and the highest producers were subjected to methotrexate selection to select for cells that had amplified the plasmid copy number and which therefore produced higher levels of antibody. Cells were grown, transferred to serum free medium for a period of 7 days, then the medium was collected, loaded onto a protein A column and the antibody was eluted using standard techniques. The final concentration of the antibody was determined using an Elisa that measures intact antibody. All proteins were buffer exchanged into phosphate-buffered saline (PBS) using Centripriep-30 concentrators. (A.micon) and analyzed by SDS-polyacrylamide gel electrophoresis.
  • Matrix-Assisted Laser Desorption/Ionization Time-of-flight (MALDI-TOF) Mass Spectral Analysis of Asparagine-Linked Oligosaccharides: N-linked oligosaccharides were released from recombinant glycoproteins using the procedure of Papac et al., Glycobiology 8, 445-454 (1998). Briefly, the wells of a 96 well PVDF-lined microtitre plate (Millipore, Bedford, Mass.) were conditioned with 100 μl methanol that was drawn through the PDVF membranes by applying vacuum to the Millipore Multiscreen vacuum manifold. The conditioned PVDF membranes were washed with 3×250 μl water. Between all wash steps the wells were drained completely by applying gentle vacuum to the manifold. The membranes were washed with reduction and carboxymethylation buffer (RCM) consisting of 6 M guanidine hydrochloride, 360 mM Tris, 2 mM EDTA, pH 8.6. Glycoprotein samples (50 μg) were applied to individual wells, again drawn through the PVDF membranes by gentle vacuum and the wells were washed with 2×50 μl of RCM buffer. The immobilized samples were reduced by adding 50 μl of a 0.1 M dithiothreitol (DTT) solution to each well and incubating the microtitre plate at 37° C. for 1 hr. DTT was removed by vacuum and the wells were washed 4×250 μl water. Cysteine residues were carboxyimethylated by the addition of 50 μl of a 0.1 M iodoacetic acid (IAA) solution which was freshly prepared in 1 M NaOH and diluted to 0.1 M with RCM buffer. Carboxymethylation was accomplished by incubation for 30 min in the dark at ambient temperature. Vacuum was applied to the plate to remove the IAA solution and the wells were washed with 4×250 μl purified water. The PVDF membranes were blocked by the addition of 100 μl of 1% PVP360 (polyvinylpyrrolidine 360,000 MW) (Sigma) solution and incubation for 1 hr at ambient temperature. The PVP-360 solution was removed by gentle vacuum and the wells were washed 4×250 μl water. The PNGase F (New England Biolabs, Beverly, Mass.) digest solution, 25 μl of a 25 Unit/ml solution in 10 mM Tris acetate, pH 8.4, was added to each well and the digest proceeded for 3 hr at 37′C. After digestion, the samples were transferred to 500 μl Eppendorf tubes and 2.5 μlL of a 1.5 M acetic acid solution was added to each sample. The acidified samples were incubated for 3 hr at ambient temperature to convert the oligosaccharides from glycosylamines to the hydroxyl form. Prior to MALIN-TOF mass spectral analysis, the released oligosaccharides were desalted using a 0.7-ml bed of cation exchange resin (AG50W-X8 resin in the hydrogen form) (Bio-Rad, :Hercules, Calif.) slurried packed into compact reaction tubes (US Biochemical, Cleveland, Ohio).
  • For MALIN-TOE mass spectral analysis of the samples in the positive mode, the desalted oligosaccharides (0.5 μl aliquots) were applied to the stainless target with 0.5 μl of the 2,5 dihydroxybenzoic acid matrix (sDHB) that was prepared by dissolving 2 mg 2,5 dihydroxybenzoic acid with 0.1 mg of 5-methoxyslicylic acid in 1 ml of ethanol/10 mM sodium chloride 1:1 (v/v). The sample/matrix mixture was dried by vacuum. For analysis in the negative mode, the desalted N-linked oligosaccharides (0.5 μl aliquots) were applied to the stainless target along with 0.5 μl 2′,4′,6′-trihydroxyacetophenone matrix (TRAP) prepared in 1:3 (v/v) acetonitrile/13.3 mM ammonium citrate buffer. The sample/matrix mixture was vacuum dried and then allowed to absorb atmospheric moisture prior to analysis. Released oligosaccharides were analyzed by MALDI-TOF on a PerSeptive BioSystems Voyager-DE mass spectrometer. The mass spectrometer was operated at 20 kV either in the positive or negative mode with the linear configuration and utilizing delayed extraction. Data were acquired using a laser power of 1300 and in the data summation mode (240 scans) to Improve the Signal to noise. The instrument was calibrated with a mixture of standard oligosaccharides and the data was smoothed using a 19 point Savitsky-Golay algorithm before the masses were assigned. Integration of the mass spectral data was achieved using Caesar 7.0 data analysis software package (SciBridge Software).
  • Natural Killer (NK) Cell Antibody Dependent Cytoxicity Assays.
  • ADCC assays were performed as described in Example 9. NK to target cell (WIL2-S) ratio was 4 to 1, assays were run for 4 hours, and toxicity was measured as before using lactose dehydrogenase assay. Target cells were opsonized with the concentrations of antibody indicated for 30 min prior to addition of NK cells. The Rituxan® antibody used was from Genentech (S. San Francisco, Calif.). FIG. 12 shows the results of a representative ADCC assay.
  • The results show that underfucosylated antbodies mediate NK cell target cell killing more efficiently than do antibodies with a full complement of fucose. The underfucosylated antibody, 2H7v.31, is most efficient at mediating target cell killing. This antibody is effective at lower concentrations and is capable of mediating killing of a greater percentage of target cells at higher concentrations than are the other antibodies. The activity of the antibodies is as follows: Lec13-derived 2H7 v31>Lee 13 derived 2H7v16>Dp12 derived 2H7v31>DP12 derived 2H7v16> or =to Rituxan. The protein and carbohydrate alterations are additive. Comparison of the carbohydrate found on native IgG from the Lec13-produced and CHO-produced IgG showed no appreciable differences in the extent of galactosylation and hence the results can be attributed solely to the presence/absence of fucose.
  • Example 12 Fucose-dericient 2H7 Variant Antibodies with Enhanced ADCC in vivo
  • This example describes ADCC activity in vivo of the fucose-deficient humanized 2H7 variants including v.16 and v.31 produced in Lec13 compared to normal fucosylated counterparts produced in DP12, in mice expressing human CD16 [FcRγIII] and human CD20.
  • Generation of huCD20Tg+huCD16Tg+mCD16−/− Mice
  • Human CD20 transgenic mice were generated from human CD20 BAC DNA (Itivitrogen, Carlsbad, Calif.). Mice were screened based on the FACS analysis of human CD20 expression. HuCD20 Tg+ mice were then crossed with huCD16Tg+mCD16−/− mice to generate huCD20Tg+huCD16Tg+mCD16−/− mice.
  • In vivo Treatment
  • Ten to 100 μg of each of the 2H7 variants or Rituxan® is administrated to huCD20Tg+huCD16Tg+mCD16−/− mice via intraperitoneal injections. Equal amount of isotype-thatched antibodies will be applied similarly to the negative control group of animals.
  • Mouse Lymphocytes Preparation
  • Mouse lymphocytes from whole blood, spleen, lymph nodes and bone marrow are prepared according to standard protocol described in “Current Protocols in Immunology, edited by John Coligan, Ada Kruisbeek, David Margulies, Ethan Shevach and Warren Strober, 1994”.
  • FACS analysis
  • Half million cells are washed and resuspended in 100 μl of FACS buffer, which is phosphate buffered saline with 1% BSA, containing 5 μl of staining or control antibody. All the staining antibodies, including isotype controls, are obtained from PharMingen, San Diego, Calif. Human CD20 expression is assessed by staining with Rituxan® along with FITC-conjugated anti-human IgG1 secondary antibody. FACS analysis is conducted using FACScan and Cell Quest (Becton Dickinson Immunocytometry Systems, San Jose, Calif.): All the lymphocytes are defined in the forward and side light scatterings, while all the B lymphocytes are defined with the expression of B220 on the cell surface.
  • B cell depletion and recovery are assessed by analyzing peripheral B cell counts and analysis of hCD20+ B cells by FACS in the spleen, lymph node and bone marrow on a daily basis for the first week after injection and thereafter on a weekly basis. Serum levels of the injected 2H7 variant antibody are monitored.
  • The results of this in vivo assay confirms the in vitro findings on the increased ADCC activity and greater B cell depletion of fucose-deficient 2H7 variants over wild-type (with respect to fucosylation) glycosylation counterparts.
  • Example 13 Apoptosis Activity
  • Anti CD20 antibodies including Rituxim® have been shown to induce apopiosis in vitro when crosslinked by a secondary antibody or by chemical means (Shan et al., Blood 9:1644-1652 (1998); Byrd et al., Blood 99:1038-43 (2002); Pederson et al:, Blood 99:1314,-19 (2002)). When chemically crosslinked, murine 2H7 dimers induced apoptosis of Daudi cells ((Gietie et al:, Proc Natl Acad Sci USA 94:7509-14 (1997)). Crosslinking with a secondary antibody also induced apoptosis with the urine 2H7 antibody (Shan et al, 1998). These activities are believed to he physiologically relevant because a variety of mechanisms could lead to crosslinking of anti-CD20 antibodies bound to cell-surface CD20 in vivo.
  • RhuMAb 2H7.v16 [humanized 2H7 v16; RhuMAb stands for recombinant human monoclonal antibody] and Rituxan® were compared in apoptosis assays in vitro using a secondary crosslinking antibody. Ramos cells (CRL-1596ATCC, Manassas, Va.), a CD20-expressing, human B lymphocyte cell line, were used to measure the ability of the anti-CD20 monoclonal antibodies rhuMAb 2H7.v16 and Rituximab versus a negative-control antibody, Trastuzumab (Herceptin®, Genentech, South San Francisco, Calif.), to induce apoptosis as measured through Annexin V staining and propidium iodide dye exclusion (Vybrant® Apoptosis Assay Kit, Molecular Probes, Seattle, Wash.). The Ramos cells were cultured in RPMI-1640 medium (Gibco, Rockville, Md.) containing 10% fetal bovine serum (Biosource International, Camarillo, Calif.) and 2 mM L-glutamine (Gibco). Prior to being assayed, the cells were washed twice in fresh media and then adjusted to a cell concentration of 2×10 6 per mL. Cells (150 μL) were added to 96-well assay plates (Becton Dickinson, Palo Alto, Calif.) which contained 150 μL of a predetermined amount of control IgG1, rhuMAb 2H7.v16, or Rituximab, along with F(ab)′2 goat anti-human Fc (Pierce Biotechnology, Rockford, Ill.). The final IgG concentrations were 100, 10, 1.0, 0.1, 0.01 and 0.001 nM, and the F(ab)′2 goat anti-human Fc antibody concentration was set at twice the respective sample antibody concentration. Each dilution was set up in triplicate. After a 24-hour incubation at 37° C., the cells were washed twice with PBS and then stained with Annexin V and propidium iodide according to the manufacturer's recommendations. The staining patterns of the Ramos cells were analyzed by flow cytometry using a FACscan Flow Cytometer (Becton Dickinson, San Jose, Calif.), and data were collected for 10 s-periods. The data were reduced using the Cellquest Pro software (Becton Dickinson). Ramos cells that were positive for (1) Annexin V staining, (2) Annexin V and propiduim iodide double staining, and (3) the number of unstained live cells, were counted and plotted using KaleidaGraph software (Synergy Software, Reading, Pa.).
  • Both rhuMAb 2H7.v16 and Rituximab induced apoptosis of Ramos cells when crosslinked with anti-human Fc and as compared to an irrelevant IgG1 control antibody (FIGS. 13-15). The apoptotic activity of (rhuMAb 2H7) was slightly lower than that of Rituximab. At 10 nM concentrations of crosslinked rhuMAb 2H7, Rituximab, and control IgG1 antibody, fractions of Annexin V stained cells were 18.5, 16.5, 2.5%, respectively, fractions of doubly labeled cells were 29, 38, and 16%, and numbers of live cells counted per 10 s were 5200, 3100, and 8600.
  • These in vitro data demonstrate that apoptosis is one potential mechanism for in vivo B cell depletion. In vivo crosslinking of rhuMAb 2H7 or Rituximab bound to cell-surface CD20 may occur through FcγR on the surfaces of immune effector cells.
  • Example 14 In Vivo Suppression of Tumor Growth
  • The ability of rhuMAb 2H7.v16 to inhibit the growth of the Raji human B-cells, a lymphoma cell line (ATCC CCL 86), was evaluated in Balb/c nude (athymic) mice. The Raji cells express CD20 and have been reported to grow in nude mice, producing metastatic disease; tumor growth is inhibited by Rituxan® (Clynes et al., Nature Medicine 6, 443-446 (2000)). Fifty-six 8-10 week old, Balb/c nude mice were divided into 7 groups (A-G) with each group consisting of 8 mice. On day 0, each mouse received a subcutaneous injection of 5×106 Raji B-lymphoma cells in the flank. Beginning at day 0, each mouse received either 100 uL of the negative-control solution (PBS; phosphate-buffered saline), Rituxan® or 2H7.v16. Dosage was dependent on weight and drug delivery was intravenously via the tail vein, Group A mice received PBS. Groups B-D received Rituxan® at 5.0, mg/kg, 0.5 mg/kg, and 0.05 mg/kg respectively. Groups E-G mice received 2H7 v.16 at 5.0 mg/kg, 0.5 mg/kg, and 0.05 mg/kg respectively. The injections were repeated every week for 6 weeks. At weekly intervals during treatment, each mouse was inspected for the presence of palpable tumors at the site of injection, and the volume of the tumors if present were measured and recorded. A final inspection was made at week 8 (after a two-week interval of no treatments).
  • The results of this study showed that both rhuMAb 2H7v16 and Rituxan® and were effective at inhibiting subcutaneous Raji-cell tumor growth in nude mice (FIGS. 16-18). Tumor growth was observed in the PBS control group beginning at 4 weeks. However, no tumor growth was observed in groups treated with Rituxan® or 2H7.v16 at 5 mg/kg or 0.5 mg/kg for the 8-week duration of the study. In the low-dose 0.05 mg/kg treatment groups, tumors were observed in one animal in the 2H7 group and in one animal in the Rituxan® group (FIG. 18).
  • Example 15 Cloning of Cynomolgus Monkey C1D20 and Antibody Binding
  • The CD20 DNA sequence for cynomolgus monkey (Macaca fascicularis) was determined upon the isolation of cDNA encoding CD20 from a cynomolgus spleen cDNA library. A SUPERSCRIPT™ Prim Plasmid System for cDNA Synthesis and Plasmid Cloning (Cat#18248-013, Invitrogen, Carlsbad, Calif.) was used with slight modifications to construct the library. The cDNA library was ligated into a pRK5E vector using restriction sites Xho I-and Not I. mRNA was isolated from spleen tissue ((California Regional Research Primate Center, Davis, Calif.). Primers to amplify cDNA encoding CD20 were designed based on non-coding sequences of human CD20. N-terminal region primer 5-AGTTTTGAGAGCAAAATG-3′ (SEQ ID NO. 37) and C-terminal region primer 5′-AAGCTATGAACACTAATG-3′ (SEQ ID NO. 38) were used to clone by polymerase chain reaction (PCR) the cDNA encoding cynomolgus monkey CD20. The PCR reaction was carried out using Platinum Taq DNA Polymerase High Fidelity according to the manufacturer's recommendation (Gibco, Rockville, Md.). The PC:R product was subcloned into pCR® 2.1-TOPO® Vector (Invitrogen) and transformed into XL-1 blue E. coli (Stratagene. La Jolla, Calif.). Plasmid DNA containing ligated PGR products was isolated from individual clones and sequenced.
  • The amino acid sequence for cynomolgus monkey CD20 is shown in FIG. 19. FIG. 20 shows comparison of cynomolgus and human CD20. The cynomolgus monkey CD20 is 97.3% similar to human CD20 with 8 differences. The extracellular domain contains one change at V157A, while the remaining 7 residues can be found in the cytoplasmic or transmembrane regions.
  • Antibodies directed against human CD20 were assayed for the ability to bind and displace FITC-conjugated murine 2H7 binding to cynomolgus monkey cells expressing CD20. Twenty milliliters of blood were drawn from 2 cynomolgus monkeys (California Regional Research Primate Center, Davis, Calif.) into sodium heparin and shipped directly to Genentech Inc. On the same day, the blood samples were pooled and diluted 1:1 by the addition of 40 ml of phosphate buffered saline (PBS). 20 ml of diluted blood was layered on 4×20 ml of Ficoll-Paque™ Plus (Amersham Biosciences, Uppsala, Sweden) in 50 ml conical tubes (Cat#352098, Falcon, Franklin Lakes, N.J.) and centrifuged at 1300 rpm for 30 minutes R.T. in a Sorval 7 centrifuge. (Dupont, Newtown, Conn.). The PBMC layer was isolated and washed in PBS. Red blood cells were lysed in a 0.2% NaCl solution, restored to isotonicity with an equivalent volume of a 1.6% NaCl solution, and centrifuged for 10 minutes at 1000 R.PM. The PBMC pellet was resuspended in RPMI 1640 (Gibco, Rockville, Md.) containing 5% fetal bovine serum (PBS) and dispensed into a 10 cm tissue culture dish for 1 hour at 37° C. The non-adherent h and cell populations were removed by aspiration, centrifuged and counted. A total of 2.4×107 cells were recovered. The resuspended PBMC were distributed into twenty 12×75 mm culture tubes (Cat#352053, Falcon), with each tube containing 1×106 cells in a volume of 0.25 ml. Tubes were divided into four sets of five tubes. To each set was added either media (RPMH640, 5% FBS), titrated amounts of control human IgG1 antibody, Rituxan®, 2H7.v16, or 2H7.v31. The final concentration of each antibody was 30, 10, 3.3 and 1.1 nM. In addition, each tube also received 20 ul of Fluorescein Isothiocyanate (FITC)-conjugated anti-human CD20 (Cat#555622, BD Biosciences, San Diego, Calif.), The cells were gently mixed, incubated for 1 hour on ice and then washed twice in cold PBS. The cell surface staining was analyzed on a Epic XL-MCL (Coulter, Miami, Fla.), the geometric means derived, plotted (KaleidaGraph™, Synergy Software, Reading, Pa.) versus antibody concentrations.
  • Data in FIG. 21 showed that 2H7 v.16 and 2H7 v.31 competitively displaced FITC-murine 2H7 binding to cynomolgus monkey cells. Furthermore, Rituxan® also displaced FTC-murine 2H7 binding thus demonstrating that both 2H7 and Rituxan® bind to an overlapping epitope on CD20. in addition, the data show that the IC5 value for 2H7 v.16, 2H7 v.31 and Rituxan are similar and fall in the 4-6 nM range.
  • Example 16 Phase I/II Study or rhMAb 2H7 (2H7.v16) Moderate to Severe Rheumatoid Arthritis Protocol Synopsis
  • A randomized, placebo-controlled, multicenter, blinded phase I/II study of the safety of escalating doses of PRO70769 (rhuMAb 2H7) in subjects with moderate to severe rheumatoid arthritis receiving stable doses of concomitant methotrexate.
  • Objectives
  • Hie primary objective of this study is to evaluate the safety and tolerabiitty of escalating intravenous (1V) doses of PRO70769 (rbuMAb 2H7) in subjeels with moderate to severe rheumatoid arthritis (RA).
  • Study Design
  • This is a randomized, placebo-controlled, multicenter, blinded Phase I/II, investigator- and subject-blinded study of the safety of escalating doses of PRO70769 in combination with MTX in subjects with moderate to severe RA. The study consists of a dose escalation phase and a second phase with enrollment of a larger number of subjects. The Sponsor will remain unblinded to treatment assignment.
  • Subjects with moderate to severe RA who have failed one to five disease-modifying antirheumatic drugs or biologics who currently have unsatisfactory clinical responses to treatment with MTX will be enrolled.
  • Subjects will he required to receive MTX in the range of 10-25 mg weekly for at least 12 weeks prior to study entry and to be on a stable dose for at least 4 weeks before receiving their initial dose of study drug (PRO70769 or placebo). Subjects may also receive stable doses of oral corticosteroids (up to 10 mg daily or prednisone equivalent) and stable doses of nonsteroidal anti-inflammatory drugs (NSAIDs). Subjects will receive two IV infusions of PRO70769 or placebo equivalent at the indicated dose on Days 1 and 15 according to the following dose escalation plan (see FIG. 22).
  • Dose escalation will occur according to specific criteria and after review of safety data by an internal safety data review committee and assessment of acute toxicity 72 hours following the second infusion in the last subject treated in each cohort. After the dose escalation phase, 40 additional subjects (32 active and 8 placebo) will be randomized to each of the following dose levels: 2×50 mg, 2×200 mg, 2×500 mg, and 2×1000 mg, if the dose levels have been demonstrated to be tolerable during the dose escalation phase. Approximately 205 subjects will be enrolled in the study.
  • B-cell counts will be obtained and recorded. B-cell counts will e evaluated using flow cytometry in a 48-week follow-up period beyond the 6-month efficacy evaluation. B-cell depletion will not be considered a dose-limiting toxicity (DI,C), but rather the expected pharmacodynamic outcome of PRO70769 treatment.
  • In an optional substudy, blood for serum and RNA analyses, as well as urine samples will be obtained from subjects at various timepoints. These samples may be used to identify biomarkers that may be predictive of response to PRO70769 treatment in subjects with moderate to severe RA.
  • Outcome Measures
  • The primary outcome measure for this study is the safety and tolerability of PRO70769 in subjects with moderate to severe RA.
  • Study Treatment
  • Cohorts of subjects will receive two IV inffisions of PRO70769 or placebo equivalent at the indicated (lose on Days 1 and 15 according to the following escalation plan:
  • 10 mg PRO70769 or placebo equivalent: 4 subjects active drug, 1 control
  • 50 mg PRO70769 or placebo equivalent; 8 subjects active drug, 2 control
  • 200 mg PRO70769 or placebo equivalent: 8 subjects active drug, 2 control
  • 500 mg PRO70769 or placebo equivalent: 8 subjects active drug, 2 control
  • 1000 mg PRO70769 or placebo equivalent: 8 subjects active drag, 2 control
  • Efficacy
  • The efficacy of PRO70769 will be measured by ACR responses. The percentage of subjects who achieve an ACR20, ACR50, and ACR70 response will be summarized by treatment group and 95% confidence intervals will be generated for each group. The components of these response and their change from baseline will be summarized by treatment and visit.
  • Conclusion
  • The data above demonstrated the success in producing humanized CD20 binding antibodies, in particular humanized 2H7 antibody variants, that maintained and even enhanced their biological properties. The humanized 2H7 antibodies of the invention bound to CD20 at affinities similar to the murine donor and chimeric 2H7 antibodies and were effective at B cell killing in a primate, leading to B cell depletion. Certain variants showed enhanced ADCC over a chimeric ante CD20 antibody currently used to treat NIII favoring the use of lower doses of the therapeutic antibody in patients. Additional, whereas it may be necessary for a chimeric antibody that has marine FR residues to be administered at a dose effective to achieve complete B cell depletion to obviate an antibody response against it, the present humanized antibodies can be administered at dosages that achieve partial or complete B cell depletion, and for different durations of time, as desired for the particular disease and patient. In addition, these antibodies demonstrated stability in solution. These properties of the humanized 2H7 antibodies make them ideal for use as immunotherapeutic agent in the treatment of CD20 positive cancers and autoimmune diseases; these antibodies are not expected to be immunogenic or will at least be less immunogenic than fully murine or chimeric anti-CD20 antibodies in human patients.
  • REFERENCES
  • References cited within this application, including patents, published applications and other publications, are hereby incorporated by reference.
  • The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology and the like, which are within the skill of the art. Such techniques are explained fully in the literature. See e.g., Molecular Cloning: A Laboratory Manual, (J. Sambrook et al., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989); Current Protocols in Molecular Biology (F. Ausubel et al., eds., 1987 updated); Essential Molecular Biology (T. Brown ed., IRL Press 1991); Gene Expression Technology (Goeddel ed., Academic Press 1991); Methods for Cloning and Analysis of Eukaryotic Genes (A. Bothwell et al. eds., Bartlett Publ. 1990); Gene Transfer and Expression (M, Kriegler, Stockton Press 1990); Recombinant DNA Methodology 11 (R. Wu et al. eds., Academic Press 1995); PCR: A Practical Approach (M. McPherson et Press at Oxford University Press 1991); Oligonucleotide Synthesis, (M. Gait ed., 1984); Cell Culture for Biochemists (R. Adams ed., Elsevier Science Publishers 1990); Gene Transfer Vectors for Mammalian Cells (J. Miller & M. Calos eds., 1987); Mammalian Cell Biotechnology (M. Butler ed., 1991); Animal Cell Culture (J. Pollard et al. eds., Humana Press 1990); Culture of Animal Cells, 2nd Ed. (R. Freshney et al. eds Alan R. Liss 1987); Flow Cytometry and Sorting (M, Melamed et al. eds., Wiley-Liss 1990); the series Methods in Enzymology (Academic Press, Inc.);Wirth M. and Hauser H. (1993); Immunochemistry in Practice, 3rd edition, A. Johnstone & R. Thorpe, Blackwell Science, Cambridge, Mass., 1996; Techniques in Immunocytochemistry, (G. Bullock & P. Petrusz eds., Academic Press 1982, 1983, 1985, 1989); Handbook of Experimental Immunology, (D. Weir & C. Blackwell, eds.); Current Protocols in Immunology (J. Coligan et al. eds. 1991); Immunoassay (E. P. Diamandis T. K. Christopoulos, eds., Academic Press, Inc., 1996); Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; Ed Harlow and David Lane. Antibodies A laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988: Antibody Engineering. 2nd edition (C. Borrebaeck, ed., Oxford University Press, 1995); and the series Annual Review of Immunology; the series Advances in Immunology.

Claims (9)

1-81. (canceled)
82. An isolated nucleic acid encoding an antibody that binds to human CD20 or an antigen-binding fragment thereof, wherein the antibody heavy chain variable region comprises the amino acid sequence of SEQ ID NO:8 with amino acid substitutions D56A and N100A and the antibody light chain variable region comprises the amino acid sequence of SEQ ID NO:2 with amino acid substitution S92A.
83. A vector comprising the nucleic acid of claim 82.
84. An isolated host cell comprising the nucleic acid of claim 82.
85. An isolated host cell comprising the vector of claim 83.
86. An isolated host cell comprising a first vector comprising a nucleic acid encoding the heavy chain variable region (VH) of an antibody or antigen-binding fragment thereof, and a second vector comprising a nucleic acid encoding the light chain variable region (VL) of the antibody or antigen-binding fragment thereof, wherein the antibody heavy chain variable region comprises the amino acid sequence of SEQ ID NO:8 with amino acid substitutions D56A and N100A and the antibody light chain variable region comprises the amino acid sequence of SEQ ID NO:2 with amino acid substitution S92A; and wherein the antibody binds to human CD20.
87. A method of producing an antibody that binds to human CD20 or an antigen-binding fragment thereof, encoded by the nucleic acid present in the host cell of claim 84, comprising culturing the host cell under suitable conditions so that the antibody or antigen-binding fragment thereof is produced.
88. A method of producing an antibody that binds to human CD20 or an antigen-binding fragment thereof, encoded by the nucleic acid in the vector present in the host cell of claim 85, comprising culturing the host cell under suitable conditions so that the antibody or antigen-binding fragment thereof is produced.
89. A method of producing an antibody that binds to human CD20 or antigen-binding fragment thereof, comprising culturing a host cell under conditions so that the antibody or antigen-binding fragment is produced, wherein the host cell comprises a first vector and a second vector encoding the antibody or antigen-binding fragment thereof, wherein the first vector comprises a nucleic acid encoding the heavy chain variable region (VH) of the antibody, and the second vector comprises a nucleic acid encoding the light chain variable region (VL) of the antibody, wherein the antibody heavy chain variable region comprises the amino acid sequence of SEQ ID NO:8 with amino acid substitutions D56A and N100A and the antibody light chain variable region comprises the amino acid sequence of SEQ ID NO:2 with amino acid substitution S92A.
US15/217,838 2002-12-16 2016-07-22 Immunoglobulin variants and uses thereof Abandoned US20170158773A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/217,838 US20170158773A1 (en) 2002-12-16 2016-07-22 Immunoglobulin variants and uses thereof
US15/905,406 US20190071511A1 (en) 2002-12-16 2018-02-26 Immunoglobulin variants and uses thereof
US17/235,805 US20220002430A1 (en) 2002-12-16 2021-04-20 Immunoglobulin variants and uses thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US43411502P 2002-12-16 2002-12-16
US52616303P 2003-12-01 2003-12-01
PCT/US2003/040426 WO2004056312A2 (en) 2002-12-16 2003-12-16 Immunoglobulin variants and uses thereof
US11/147,780 US7799900B2 (en) 2002-12-16 2005-06-07 Immunoglobulin variants and uses thereof
US12/256,349 US8562992B2 (en) 2002-12-16 2008-10-22 Immunoglobulin variants and uses thereof
US14/029,717 US20140154242A1 (en) 2002-12-16 2013-09-17 Immunoglobulin variants and uses thereof
US15/217,838 US20170158773A1 (en) 2002-12-16 2016-07-22 Immunoglobulin variants and uses thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/029,717 Continuation US20140154242A1 (en) 2002-12-16 2013-09-17 Immunoglobulin variants and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/905,406 Continuation US20190071511A1 (en) 2002-12-16 2018-02-26 Immunoglobulin variants and uses thereof

Publications (1)

Publication Number Publication Date
US20170158773A1 true US20170158773A1 (en) 2017-06-08

Family

ID=32685285

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/147,780 Active 2028-10-02 US7799900B2 (en) 2002-12-16 2005-06-07 Immunoglobulin variants and uses thereof
US11/190,364 Abandoned US20060024300A1 (en) 2002-12-16 2005-07-26 Immunoglobulin variants and uses thereof
US12/256,349 Active 2026-01-23 US8562992B2 (en) 2002-12-16 2008-10-22 Immunoglobulin variants and uses thereof
US14/029,717 Abandoned US20140154242A1 (en) 2002-12-16 2013-09-17 Immunoglobulin variants and uses thereof
US15/217,838 Abandoned US20170158773A1 (en) 2002-12-16 2016-07-22 Immunoglobulin variants and uses thereof
US15/905,406 Abandoned US20190071511A1 (en) 2002-12-16 2018-02-26 Immunoglobulin variants and uses thereof
US17/235,805 Abandoned US20220002430A1 (en) 2002-12-16 2021-04-20 Immunoglobulin variants and uses thereof

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US11/147,780 Active 2028-10-02 US7799900B2 (en) 2002-12-16 2005-06-07 Immunoglobulin variants and uses thereof
US11/190,364 Abandoned US20060024300A1 (en) 2002-12-16 2005-07-26 Immunoglobulin variants and uses thereof
US12/256,349 Active 2026-01-23 US8562992B2 (en) 2002-12-16 2008-10-22 Immunoglobulin variants and uses thereof
US14/029,717 Abandoned US20140154242A1 (en) 2002-12-16 2013-09-17 Immunoglobulin variants and uses thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/905,406 Abandoned US20190071511A1 (en) 2002-12-16 2018-02-26 Immunoglobulin variants and uses thereof
US17/235,805 Abandoned US20220002430A1 (en) 2002-12-16 2021-04-20 Immunoglobulin variants and uses thereof

Country Status (35)

Country Link
US (7) US7799900B2 (en)
EP (5) EP1944320A1 (en)
JP (3) JP4351674B2 (en)
KR (2) KR20070055625A (en)
CN (1) CN103833854B (en)
AR (3) AR042485A1 (en)
AT (1) ATE470675T1 (en)
AU (1) AU2003301079C1 (en)
BE (1) BE2018C021I2 (en)
BR (2) BRPI0316779B8 (en)
CA (1) CA2507898C (en)
CL (1) CL2008003323A1 (en)
CR (2) CR7875A (en)
CY (2) CY1110759T1 (en)
DE (1) DE60332957D1 (en)
DK (2) DK1572744T3 (en)
ES (2) ES2633311T3 (en)
FR (1) FR18C1023I2 (en)
HK (1) HK1248731A1 (en)
HR (1) HRP20050649B1 (en)
HU (3) HUE035898T2 (en)
IL (2) IL168754A (en)
MA (1) MA27704A1 (en)
MX (1) MXPA05006511A (en)
NO (1) NO338402B1 (en)
NZ (1) NZ566907A (en)
PL (1) PL212899B1 (en)
PT (1) PT1572744E (en)
RS (2) RS51318B (en)
RU (1) RU2326127C2 (en)
SG (1) SG2013036975A (en)
SI (2) SI2289936T1 (en)
TW (2) TW201000132A (en)
UA (1) UA89350C2 (en)
WO (1) WO2004056312A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174124B2 (en) 2013-12-17 2019-01-08 Genentech, Inc. Anti-CD3 antibodies and methods of use
US10323094B2 (en) 2015-06-16 2019-06-18 Genentech, Inc. Humanized and affinity matured antibodies to FcRH5 and methods of use
US10501545B2 (en) 2015-06-16 2019-12-10 Genentech, Inc. Anti-CLL-1 antibodies and methods of use
US11084877B2 (en) 2014-09-12 2021-08-10 Genentech, Inc. Anti-CLL-1 antibodies and immunoconjugates
US11466094B2 (en) 2016-11-15 2022-10-11 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies
US11866498B2 (en) 2018-02-08 2024-01-09 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
US12291575B2 (en) 2021-05-14 2025-05-06 Genentech, Inc. Methods for treatment of CD20-positive proliferative disorder with mosunetuzumab and polatuzumab vedotin
US12351643B2 (en) 2020-11-04 2025-07-08 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies

Families Citing this family (1094)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL174721B1 (en) 1992-11-13 1998-09-30 Idec Pharma Corp Monoclonal antibody anty-cd2
US7744877B2 (en) 1992-11-13 2010-06-29 Biogen Idec Inc. Expression and use of anti-CD20 Antibodies
EP2990054A1 (en) 1998-08-11 2016-03-02 Biogen Inc. Combination therapies for B-cell lyphomas comprising administration of anti-CD20 antibody
MXPA01004649A (en) * 1998-11-09 2002-05-06 Idec Pharma Corp Chimeric anti-cd20 antibody treatment of patients receiving bmt or pbsc transplants.
DK2055313T3 (en) 1998-11-09 2015-07-27 Biogen Inc Treatment of Hematologic Malignancies Related to Circulating Tumor Cells Using Chimeric Anti-CD20 Antibody
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
HK1043312B (en) * 1999-05-07 2006-07-28 Genentech, Inc. Treatment of autoimmune diseases with antagonists which bind to b cell surface markers
CN1373672A (en) * 1999-07-12 2002-10-09 杰南技术公司 Blockade of the immune response to foreign antigens using an antagonist that binds CD20
US8557244B1 (en) 1999-08-11 2013-10-15 Biogen Idec Inc. Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody
US20020058029A1 (en) * 2000-09-18 2002-05-16 Nabil Hanna Combination therapy for treatment of autoimmune diseases using B cell depleting/immunoregulatory antibody combination
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
DK1443961T3 (en) * 2001-10-25 2009-08-24 Genentech Inc Glycoprotein compositions
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US7662925B2 (en) 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20040018573A1 (en) * 2002-04-18 2004-01-29 Power Scott D Production of functional antibodies in filamentous fungi
WO2004056312A2 (en) 2002-12-16 2004-07-08 Genentech, Inc. Immunoglobulin variants and uses thereof
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
PT1613350E (en) * 2003-04-09 2009-06-24 Genentech Inc Therapy of autoimmune disease in a patient with an inadequate response to a tnf-alpha inhibitor
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
PL1631313T3 (en) * 2003-06-05 2015-08-31 Genentech Inc Combination therapy for b cell disorders
US8883147B2 (en) 2004-10-21 2014-11-11 Xencor, Inc. Immunoglobulins insertions, deletions, and substitutions
US8399618B2 (en) 2004-10-21 2013-03-19 Xencor, Inc. Immunoglobulin insertions, deletions, and substitutions
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
EA025962B1 (en) 2003-11-05 2017-02-28 Роше Гликарт Аг ANTIBODIES HAVING INCREASED Fc RECEPTOR BINDING AFFINITY AND EFFECTOR FUNCTION
WO2005063815A2 (en) * 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
CA2561264A1 (en) 2004-03-24 2005-10-06 Xencor, Inc. Immunoglobulin variants outside the fc region
RU2396980C2 (en) * 2004-06-04 2010-08-20 Дженентек, Инк. Method of treating lupous
AR049200A1 (en) * 2004-06-04 2006-07-05 Genentech Inc METHOD TO TREAT MULTIPLE SCLEROSIS WITH A COMPOSITION CONTAINING A CD20 ANTIBODY
EP1773391A4 (en) * 2004-06-25 2009-01-21 Medimmune Inc Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis
WO2006085967A2 (en) * 2004-07-09 2006-08-17 Xencor, Inc. OPTIMIZED ANTI-CD20 MONOCONAL ANTIBODIES HAVING Fc VARIANTS
US20150010550A1 (en) 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
BRPI0513100A (en) * 2004-07-22 2007-10-23 Genentech Inc methods of treating sjígren's syndrome and manufactured articles
EA012464B1 (en) 2004-08-04 2009-10-30 Эпплайд Молекьюлар Эволюшн, Инк. Antibody against cd20 and use thereof
AU2005285347A1 (en) * 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
KR20070100228A (en) * 2004-10-05 2007-10-10 제넨테크, 인크. How to treat vasculitis
SV2006002258A (en) * 2004-10-08 2006-09-19 Wyeth Corp IMMUNOTHERAPY OF AUTOIMMUNE DISORDERS
JO3000B1 (en) * 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
EP2325207B1 (en) 2004-11-12 2017-03-15 Xencor, Inc. FC variants with altered binding to FCRN
FR2879204B1 (en) 2004-12-15 2007-02-16 Lab Francais Du Fractionnement CYTOTOXIC ANTIBODY AGAINST HEMATOPOIETIC B-TYPE HEMATOPOIETIC PROLIFERATIONS
HUE026688T2 (en) 2004-12-28 2016-07-28 Univ Di Genova Monoclonal antibodies against nkg2a
EP1841454A4 (en) * 2005-01-13 2009-07-22 Genentech Inc Treatment method
DOP2006000029A (en) * 2005-02-07 2006-08-15 Genentech Inc ANTIBODY VARIANTS AND USES THEREOF. (VARIATIONS OF AN ANTIBODY AND USES OF THE SAME)
TW200714289A (en) * 2005-02-28 2007-04-16 Genentech Inc Treatment of bone disorders
AR053579A1 (en) * 2005-04-15 2007-05-09 Genentech Inc TREATMENT OF INTESTINAL INFLAMMATORY DISEASE (IBD)
EP1877441A2 (en) * 2005-04-26 2008-01-16 Bioren, Inc. Method of producing human igg antibodies with enhanced effector functions
JP2008545958A (en) 2005-05-20 2008-12-18 ジェネンテック・インコーポレーテッド Pretreatment of biological samples from subjects with autoimmune disease
ZA200710496B (en) * 2005-06-02 2009-04-29 Astrazeneca Ab Antibodies directed to CD20 and used thereof
PT1912675E (en) 2005-07-25 2014-05-09 Emergent Product Dev Seattle B-cell reduction using cd37-specific and cd20-specific binding molecules
AU2006281978A1 (en) * 2005-08-12 2007-02-22 Garvan Institute Of Medical Research Phrophylactic and/or therapeutic method for treatment of autoimmune disease
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
WO2007041635A2 (en) 2005-10-03 2007-04-12 Xencor, Inc. Fc variants with optimized fc receptor binding properties
AU2006302254B2 (en) 2005-10-06 2011-05-26 Xencor, Inc. Optimized anti-CD30 antibodies
EP1940881B1 (en) 2005-10-11 2016-11-30 Amgen Research (Munich) GmbH Compositions comprising cross-species-specific antibodies and uses thereof
MY149159A (en) * 2005-11-15 2013-07-31 Hoffmann La Roche Method for treating joint damage
EP1952150B1 (en) 2005-11-23 2016-12-14 Genentech, Inc. Methods and compositions related to b cell assays
RU2426742C2 (en) 2005-12-02 2011-08-20 Дженентек, Инк. Compositions and methods of treating diseases and disorders associating cytokine signal transmission
PT1973950E (en) 2006-01-05 2014-12-29 Genentech Inc Anti-ephb4 antibodies and methods using the same
SI1976884T1 (en) 2006-01-20 2013-04-30 Genetech, Inc. Anti-ephrinb2 antibodies and methods using same
JPWO2007102200A1 (en) * 2006-03-07 2009-07-23 国立大学法人大阪大学 Anti-CD20 monoclonal antibody
AR059851A1 (en) 2006-03-16 2008-04-30 Genentech Inc ANTIBODIES OF EGFL7 AND METHODS OF USE
RS53168B (en) 2006-05-30 2014-06-30 Genentech Inc. Antibodies and Immunoconjugates and Their Use
AR061246A1 (en) 2006-06-06 2008-08-13 Genentech Inc ANTI-DILL4 ANTIBODIES AND METHODS THAT USE THEM
FR2902799B1 (en) 2006-06-27 2012-10-26 Millipore Corp METHOD AND UNIT FOR PREPARING A SAMPLE FOR THE MICROBIOLOGICAL ANALYSIS OF A LIQUID
KR101513498B1 (en) 2006-06-30 2015-04-21 노보 노르디스크 에이/에스 Anti-NKG2A antibodies and uses thereof
JP5605895B2 (en) 2006-07-04 2014-10-15 ゲンマブ エー/エス CD20 binding molecule for treating COPD
EP1878747A1 (en) 2006-07-11 2008-01-16 greenovation Biotech GmbH Glyco-engineered antibodies
WO2008008482A2 (en) * 2006-07-13 2008-01-17 Genentech, Inc. Altered br3-binding polypeptides
DK2046809T3 (en) 2006-07-19 2017-03-13 Univ Pennsylvania WSX-1 / IL-27 AS A TARGET OBJECTIVE FOR ANTI-INFLAMMATORY REACTIONS
CA2658557C (en) 2006-08-14 2015-12-01 Xencor, Inc. Optimized antibodies that target cd19
WO2008034076A2 (en) * 2006-09-15 2008-03-20 The Johns Hopkins University Cyclophosphamide in combination with immune therapeutics
AU2007299843B2 (en) 2006-09-18 2012-03-08 Xencor, Inc Optimized antibodies that target HM1.24
US7923011B2 (en) 2006-10-12 2011-04-12 Genentech, Inc. Antibodies to lymphotoxin-alpha
HUE034263T2 (en) 2006-10-27 2018-02-28 Genentech Inc Antibodies and immunoconjugates and uses therefor
HUE041957T2 (en) 2006-12-01 2019-06-28 Novartis Ag Anti-P-selectin antibodies and methods of using the same to treat inflammatory diseases
US8362217B2 (en) 2006-12-21 2013-01-29 Emd Millipore Corporation Purification of proteins
US20100267933A1 (en) 2006-12-21 2010-10-21 Moya Wilson Purification of proteins
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
ES2426158T3 (en) 2007-01-22 2013-10-21 Genentech, Inc. Precipitation with polyelectrolyte and antibody purification
JP2010518115A (en) 2007-02-09 2010-05-27 ジェネンテック, インコーポレイテッド Anti-Robo4 antibodies and uses therefor
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
PE20090321A1 (en) 2007-06-04 2009-04-20 Genentech Inc ANTI-NOTCH1 NRR ANTIBODIES, METHOD OF PREPARATION AND PHARMACEUTICAL COMPOSITION
CN103435696B (en) * 2007-06-25 2016-10-12 艾斯巴技术-诺华有限责任公司 The method of modified antibodies and there is the modified antibodies of functional character of improvement
SG188136A1 (en) * 2007-09-13 2013-03-28 Delenex Therapeutics Ag HUMANIZED ANTIBODIES AGAINST THE ß-AMYLOYD PEPTIDE
GB0718684D0 (en) * 2007-09-24 2007-10-31 Roche Products Ltd Treatment method
CA2978687C (en) 2007-09-26 2020-02-18 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US20090098118A1 (en) 2007-10-15 2009-04-16 Thomas Friess Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent
US8536310B2 (en) 2007-10-17 2013-09-17 Arca Biopharma, Inc. Antibodies to CLL-1
ME02101B (en) 2007-10-30 2015-10-20 Genentech Inc Antibody purification by cation exchange chromatography
DK2514436T3 (en) 2007-11-07 2018-03-12 Genentech Inc IL-22 FOR USE IN TREATMENT OF MICROBIAL DISEASES
TWI468417B (en) 2007-11-30 2015-01-11 Genentech Inc Anti-vegf antibodies
BR122021010656B1 (en) 2007-12-26 2022-07-19 Xencor, Inc ANTI-TNF ANTIBODY AND PHARMACEUTICAL COMPOSITION
AU2009207644A1 (en) 2008-01-24 2009-07-30 Novo Nordisk A/S Humanized anti-human NKG2A monoclonal antibody
TWI489994B (en) 2008-03-17 2015-07-01 Baxter Healthcare Sa Combination and method for subcutaneous administration of immunoglobulin and hyaluronic acid
PT2268310T (en) * 2008-03-25 2016-08-23 Roche Glycart Ag Use of a type ii anti-cd20 antibody with increased antibody dependent cellular cytotoxicity (adcc) in combination with cyclophosphamide, vincristine and doxorubicine for treating non-hodgkin' s lymphomas
CN102099377A (en) 2008-04-11 2011-06-15 新兴产品开发西雅图有限公司 CD37 immunotherapeutics and their combination with bifunctional chemotherapeutics
US20100260668A1 (en) * 2008-04-29 2010-10-14 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
NZ588554A (en) * 2008-04-29 2013-03-28 Abbott Lab Dual variable domain immunoglobulins and uses thereof
CA2726087A1 (en) * 2008-06-03 2009-12-10 Tariq Ghayur Dual variable domain immunoglobulins and uses thereof
CN102112494A (en) * 2008-06-03 2011-06-29 雅培制药有限公司 Dual variable domain immunoglobulins and uses thereof
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
CA2729949A1 (en) * 2008-07-08 2010-01-14 Abbott Laboratories Prostaglandin e2 dual variable domain immunoglobulins and uses thereof
EP2318832B1 (en) 2008-07-15 2013-10-09 Academia Sinica Glycan arrays on ptfe-like aluminum coated glass slides and related methods
DK2848625T3 (en) 2008-08-14 2019-10-07 Genentech Inc Methods of removing a contaminant using ion exchange membrane chromatography with displacement of naturally occurring proteins
KR20110076918A (en) 2008-09-10 2011-07-06 제넨테크, 인크. Compositions and Methods for Preventing Oxidative Degradation of Proteins
TW201438738A (en) 2008-09-16 2014-10-16 Genentech Inc Method for treating progressive multiple sclerosis
ES2828721T3 (en) * 2008-10-14 2021-05-27 Genentech Inc Immunoglobulin variants and their uses
CA2742990A1 (en) * 2008-11-17 2010-05-20 Genentech, Inc. Method and formulation for reducing aggregation of a macromolecule under physiological conditions
US8927249B2 (en) 2008-12-09 2015-01-06 Halozyme, Inc. Extended soluble PH20 polypeptides and uses thereof
DK2370561T3 (en) 2008-12-16 2019-10-21 Emd Millipore Corp Stirring tank reactor and process
BRPI0923034A2 (en) 2008-12-17 2015-12-15 Genentech Inc hepatitis c virus combination therapy
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
CN102264759B (en) 2008-12-23 2016-05-11 弗·哈夫曼-拉罗切有限公司 Immunoglobulin variants with altered binding to protein a
CA2752286A1 (en) * 2009-02-16 2010-08-19 Biolex Therapeutics, Inc. Humanized anti-cd20 antibodies and methods of use
SG173812A1 (en) 2009-02-27 2011-09-29 Genentech Inc Methods and compositions for protein labelling
MA33198B1 (en) 2009-03-20 2012-04-02 Genentech Inc ANTI-HER DI-SPECIFIC ANTIBODIES
NZ594343A (en) 2009-03-25 2013-10-25 Genentech Inc Novel anti-alpha5beta1 antibodies and uses thereof
CN104788564A (en) 2009-03-25 2015-07-22 健泰科生物技术公司 Anti-FGFR3 antibodies and methods using same
US20100247484A1 (en) 2009-03-31 2010-09-30 Heinrich Barchet Combination therapy of an afucosylated antibody and one or more of the cytokines gm csf, m csf and/or il3
MX2011010168A (en) 2009-04-07 2011-10-11 Roche Glycart Ag Trivalent, bispecific antibodies.
WO2010129609A2 (en) * 2009-05-07 2010-11-11 The Regents Of The University Of California Antibodies and methods of use thereof
AU2010248938B2 (en) * 2009-05-13 2014-12-11 Gliknik Inc. Methods of using immunoglobulin aggregates
EP2435476A4 (en) * 2009-05-27 2013-04-17 Synageva Biopharma Corp Avian derived antibodies
WO2010146059A2 (en) 2009-06-16 2010-12-23 F. Hoffmann-La Roche Ag Biomarkers for igf-1r inhibitor therapy
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
WO2011014457A1 (en) 2009-07-27 2011-02-03 Genentech, Inc. Combination treatments
TW201109438A (en) * 2009-07-29 2011-03-16 Abbott Lab Dual variable domain immunoglobulins and uses thereof
JP2013500993A (en) 2009-07-31 2013-01-10 ジェネンテック, インコーポレイテッド Inhibition of tumor metastasis using BV8 antagonists or G-CSF antagonists
BR112012003066A2 (en) 2009-08-14 2016-11-16 Roche Glycart Ag use of a defucosylated anti-cd20 antibody and composition comprising a defucosylated anti-cd20 antibody
TWI409079B (en) 2009-08-14 2013-09-21 Roche Glycart Ag Combination therapy of atypical fucosylated CD20 antibody and bendamustine
UY32870A (en) * 2009-09-01 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
WO2011028950A1 (en) 2009-09-02 2011-03-10 Genentech, Inc. Mutant smoothened and methods of using the same
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
RU2539112C2 (en) 2009-09-03 2015-01-10 Дженентек, Инк. Methods of treating, diagnosing and monitoring of rheumatoid arthritis
AR078161A1 (en) 2009-09-11 2011-10-19 Hoffmann La Roche VERY CONCENTRATED PHARMACEUTICAL FORMULATIONS OF AN ANTIBODY ANTI CD20. USE OF THE FORMULATION. TREATMENT METHOD
IN2012DN01663A (en) 2009-09-16 2015-06-05 Immunomedics Inc
WO2011034604A2 (en) 2009-09-17 2011-03-24 Baxter Healthcare, S.A. Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof
CA2775959A1 (en) * 2009-10-15 2011-04-21 Abbott Laboratories Dual variable domain immunoglobulins and uses thereof
WO2011050188A1 (en) 2009-10-22 2011-04-28 Genentech, Inc. Anti-hepsin antibodies and methods using same
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
UY32979A (en) 2009-10-28 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
WO2011056997A1 (en) 2009-11-04 2011-05-12 Fabrus Llc Methods for affinity maturation-based antibody optimization
KR101968766B1 (en) 2009-11-05 2019-04-12 제넨테크, 인크. Methods and composition for secretion of heterologous polypeptides
RU2581812C2 (en) * 2009-11-30 2016-04-20 Биотест Аг Humanised anti-il-10 antibodies for treating systemic lupus erythematosus (sle)
US8722615B2 (en) 2009-12-02 2014-05-13 Acceleron Pharma, Inc. Compositions and methods for increasing serum half-life
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
US8486397B2 (en) 2009-12-11 2013-07-16 Genentech, Inc. Anti-VEGF-C antibodies and methods using same
CN103068849B (en) 2009-12-23 2016-04-06 霍夫曼-拉罗奇有限公司 Anti-Bv8 antibody and uses thereof
WO2011091078A2 (en) 2010-01-19 2011-07-28 Xencor, Inc. Antibody fc variants with enhanced complement activity
CN102933231B (en) 2010-02-10 2015-07-29 伊缪诺金公司 CD20 antibody and its use
KR20130000384A (en) 2010-02-18 2013-01-02 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Neuregulin antagonists and use thereof in treating cancer
US20110200595A1 (en) 2010-02-18 2011-08-18 Roche Glycart TREATMENT WITH A HUMANIZED IgG CLASS ANTI EGFR ANTIBODY AND AN ANTIBODY AGAINST INSULIN LIKE GROWTH FACTOR 1 RECEPTOR
WO2011119487A2 (en) 2010-03-22 2011-09-29 Genentech, Inc. Compositions and methods useful for stabilizing protein-containing formulations
CN102906117B (en) 2010-03-24 2016-04-06 霍夫曼-拉罗奇有限公司 Anti-LRP6 antibody
ES2993140T3 (en) 2010-04-02 2024-12-23 Amunix Pharmaceuticals Inc Binding fusion proteins, binding fusion protein-drug conjugates, xten-drug conjugates and methods of making and using same
US10338069B2 (en) 2010-04-12 2019-07-02 Academia Sinica Glycan arrays for high throughput screening of viruses
CA2795544A1 (en) 2010-04-27 2011-11-03 Roche Glycart Ag Combination therapy of an afucosylated cd20 antibody with a mtor inhibitor
CN102958538A (en) 2010-05-03 2013-03-06 弗·哈夫曼-拉罗切有限公司 Compositions and methods useful for reducing the viscosity of protein-containing formulations
CN104777301B (en) 2010-05-10 2018-04-20 中央研究院 Zanamivir phosphonate congeners with anti-influenza activity and determination of oseltamivir susceptibility of influenza viruses
LT2571532T (en) 2010-05-14 2017-08-10 Abbvie Inc. Il-1 binding proteins
KR101551295B1 (en) 2010-05-17 2015-09-08 이엠디 밀리포어 코포레이션 Stimulus responsive polymers for the purification of biomolecules
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
RU2613886C2 (en) 2010-06-03 2017-03-21 Дженентек, Инк. Antibodies and immunoconjugates rendered by immuno-positron emission tomography, methods of application
RU2577986C2 (en) 2010-06-18 2016-03-20 Дженентек, Инк. Antibodies against axl and their application
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
MX339666B (en) 2010-06-24 2016-06-03 Genentech Inc * Compositions and methods containing alkylgycosides for stabilizing protein- containing formulations.
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
AU2011274528B2 (en) 2010-07-09 2015-04-23 Genentech, Inc. Anti-neuropilin antibodies and methods of use
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
EP2598530A2 (en) 2010-07-29 2013-06-05 Xencor, Inc. Antibodies with modified isoelectric points
CN103153341B (en) 2010-08-03 2015-05-27 霍夫曼-拉罗奇有限公司 Chronic lymphocytic leukemia (Cll) biomarkers
AU2011285852B2 (en) 2010-08-03 2014-12-11 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
CA2805564A1 (en) 2010-08-05 2012-02-09 Stefan Jenewein Anti-mhc antibody anti-viral cytokine fusion protein
CA2807552A1 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
MX2013001336A (en) 2010-08-13 2013-03-08 Roche Glycart Ag Anti-tenascin-c a2 antibodies and methods of use.
AU2011288487B2 (en) 2010-08-13 2015-10-01 Roche Glycart Ag Anti-FAP antibodies and methods of use
TW201208703A (en) 2010-08-17 2012-03-01 Roche Glycart Ag Combination therapy of an afucosylated CD20 antibody with an anti-VEGF antibody
CN103080132B (en) 2010-08-25 2016-06-08 弗·哈夫曼-拉罗切有限公司 Antibodies against IL-18R1 and uses thereof
PH12013500337A1 (en) 2010-08-26 2017-08-23 Abbvie Inc Dual variable domain immunoglobulins and uses thereof
ES2641916T3 (en) 2010-08-31 2017-11-14 Genentech, Inc. Biomarkers and treatment methods
SMT202200321T1 (en) 2010-10-01 2022-09-14 Modernatx Inc Ribonucleic acids containing n1-methyl-pseudouracils and uses thereof
US8481680B2 (en) 2010-10-05 2013-07-09 Genentech, Inc. Mutant smoothened and methods of using the same
KR101933197B1 (en) 2010-11-08 2018-12-27 제넨테크, 인크. Subcutaneously administered anti-il-6 receptor antibody
AU2011326564A1 (en) 2010-11-10 2013-05-09 Genentech, Inc. Methods and compositions for neural disease immunotherapy
AU2011343570B2 (en) 2010-12-16 2016-11-03 Genentech, Inc. Diagnosis and treatments relating to TH2 inhibition
EP2651976A1 (en) 2010-12-16 2013-10-23 Roche Glycart AG Combination therapy of an afucosylated cd20 antibody with a mdm2 inhibitor
WO2012087962A2 (en) 2010-12-20 2012-06-28 Genentech, Inc. Anti-mesothelin antibodies and immunoconjugates
MX2013007168A (en) 2010-12-22 2013-11-04 Genentech Inc ANTI-PCSK9 ANTIBODY AND METHODS OF USE.
WO2012092539A2 (en) 2010-12-31 2012-07-05 Takeda Pharmaceutical Company Limited Antibodies to dll4 and uses thereof
EP2482074A1 (en) * 2011-01-27 2012-08-01 Medizinische Hochschule Hannover Methods and means for diagnosing vasculitis
US10689447B2 (en) 2011-02-04 2020-06-23 Genentech, Inc. Fc variants and methods for their production
US20120258073A1 (en) 2011-02-10 2012-10-11 Christian Gerdes Immunotherapy
RU2013140975A (en) 2011-02-28 2015-04-10 Дженентек, Инк. BIOLOGICAL MARKERS AND METHODS FOR PREDICTING SUSCEPTIBILITY TO B-CELL ANTAGONISTS
MX341921B (en) 2011-02-28 2016-09-07 Hoffmann La Roche Antigen binding proteins.
JP5768147B2 (en) 2011-02-28 2015-08-26 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Monovalent antigen binding protein
US20120222851A1 (en) * 2011-03-04 2012-09-06 GM Global Technology Operations LLC Hvac system damper
ES2692268T5 (en) 2011-03-29 2025-02-26 Roche Glycart Ag Antibody fc variants
WO2012135805A2 (en) 2011-03-31 2012-10-04 modeRNA Therapeutics Delivery and formulation of engineered nucleic acids
CA2828890A1 (en) 2011-04-07 2012-10-11 Genentech, Inc. Anti-fgfr4 antibodies and methods of use
EA201892619A1 (en) 2011-04-29 2019-04-30 Роше Гликарт Аг IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
KR101992502B1 (en) 2011-05-12 2019-06-24 제넨테크, 인크. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature peptides
SI2710035T1 (en) 2011-05-16 2017-07-31 F. Hoffmann-La Roche Ag Fgfr1 agonists and methods of use
EA033677B1 (en) 2011-05-21 2019-11-15 Macrogenics Inc CD3-BINDING MOLECULES ARE ABLE TO BIND ON HUMAN CD3 AND CD3 NOT A HUMAN
KR101629073B1 (en) 2011-06-15 2016-06-09 에프. 호프만-라 로슈 아게 Anti-human epo receptor antibodies and methods of use
BR112013032217B1 (en) 2011-06-17 2021-01-19 Novo Nordisk A/S use of an anti-nkg2a antibody
BR112013029746B1 (en) 2011-06-22 2021-02-02 F. Hoffmann-La Roche Ag method for recombinant production of a complex, complex, pharmaceutical formulation and use of the complex
TW201306866A (en) 2011-06-30 2013-02-16 Genentech Inc Anti-c-met antibody formulations
BR112014003599A2 (en) 2011-08-17 2018-04-17 Genentech Inc tumor angiogenesis inhibition method, tumor growth suppression method and tumor treatment method
KR20140057326A (en) 2011-08-17 2014-05-12 제넨테크, 인크. Neuregulin antibodies and uses thereof
HRP20181355T1 (en) 2011-08-23 2018-10-19 Roche Glycart Ag Bispecific antigen binding molecules
CA2844141A1 (en) 2011-08-23 2013-02-28 Roche Glycart Ag Anti-mcsp antibodies
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
JP2014533927A (en) 2011-09-15 2014-12-18 ジェネンテック, インコーポレイテッド How to promote differentiation
CN103930111A (en) 2011-09-19 2014-07-16 霍夫曼-拉罗奇有限公司 Combination therapy comprising a C-MET antagonist and a B-RAF antagonist
ES2911677T3 (en) 2011-10-03 2022-05-20 Modernatx Inc Nucleosides, nucleotides and modified nucleic acids, and their uses
CA2849011A1 (en) 2011-10-05 2013-04-11 Genentech, Inc. Methods of treating liver conditions using notch2 antagonists
SI2766393T1 (en) 2011-10-14 2018-10-30 F. Hoffmann-La Roche Ag ANTI-HtrA1 ANTIBODIES AND METHODS OF USE
RU2014119426A (en) 2011-10-15 2015-11-20 Дженентек, Инк. WAYS OF APPLICATION OF SCD1 ANTAGONISTS
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
US20140302021A1 (en) 2011-10-25 2014-10-09 Onclave Therapeutics Limited Antibody formulations and methods
CN104039340B (en) 2011-10-28 2017-04-05 霍夫曼-拉罗奇有限公司 Methods and combinations of therapeutic agents for treating melanoma
CA2855864A1 (en) * 2011-11-17 2013-05-23 Gundram Jung Bi-specific antibodies for treating b-cell mediated autoimmune diseases or auto-reactive b-cells
AR088920A1 (en) 2011-11-21 2014-07-16 Genentech Inc ANTI-C-MET ANTIBODY PURIFICATION
US20130302274A1 (en) 2011-11-25 2013-11-14 Roche Glycart Ag Combination therapy
EP2788024A1 (en) 2011-12-06 2014-10-15 F.Hoffmann-La Roche Ag Antibody formulation
RU2685867C2 (en) 2011-12-15 2019-04-23 Алтернатив Инновейтив Текнолоджиз Ллц Hybrid proteins and protein conjugates based on heat shock protein-70 (hsp70) and methods for use thereof (versions)
US20130156849A1 (en) 2011-12-16 2013-06-20 modeRNA Therapeutics Modified nucleoside, nucleotide, and nucleic acid compositions
PL2794635T3 (en) 2011-12-22 2019-02-28 F.Hoffmann-La Roche Ag Ion exchange membrane chromatography
KR102080356B1 (en) 2011-12-22 2020-02-24 에프. 호프만-라 로슈 아게 Expression vector organization, novel production cell generation methods and their use for the recombinant production of polypeptides
CN113881702B (en) 2011-12-22 2025-05-30 弗·哈夫曼-拉罗切有限公司 Combination of expression vector elements, novel production cell generation method and use thereof in recombinant production of polypeptides
RU2625033C2 (en) 2011-12-22 2017-07-11 Ф. Хоффманн-Ля Рош Аг Display system based on full length antibody for eukaryotic cells, and its application
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
CN104159920A (en) 2011-12-30 2014-11-19 艾伯维公司 Dual specific binding proteins directed against il-13 and/or il-17
WO2013101771A2 (en) 2011-12-30 2013-07-04 Genentech, Inc. Compositions and method for treating autoimmune diseases
BR112014016195A2 (en) 2011-12-30 2020-10-27 Halozyme, Inc. ph20 polypeptide variants, formulations and uses thereof
US20140050720A1 (en) 2012-01-09 2014-02-20 The Scripps Research Institute Ultralong complementarity determining regions and uses thereof
JP2015509091A (en) 2012-01-09 2015-03-26 ザ スクリプス リサーチ インスティテュート Humanized antibody
HK1201199A1 (en) 2012-01-18 2015-08-28 霍夫曼-拉罗奇有限公司 Methods of using fgf19 modulators
EA028202B1 (en) 2012-01-18 2017-10-31 Дженентек, Инк. Anti-lrp5 antibodies and methods of use thereof
AU2012366290A1 (en) * 2012-01-19 2014-08-07 Therapeutic Proteins International, LLC Stabilization of the anti-CD20 antibody Rituximab
KR20140119777A (en) 2012-01-31 2014-10-10 제넨테크, 인크. Anti-ig-e m1' antibodies and methods using same
US20130209473A1 (en) 2012-02-11 2013-08-15 Genentech, Inc. R-spondin translocations and methods using the same
TR201808458T4 (en) 2012-02-15 2018-07-23 Hoffmann La Roche FC-receptor based affinity chromatography.
SG10201912877SA (en) 2012-03-27 2020-02-27 Genentech Inc Improved harvest operations for recombinant proteins
SG11201406079TA (en) 2012-03-27 2014-10-30 Genentech Inc Diagnosis and treatments relating to her3 inhibitors
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
EP2834260A4 (en) 2012-04-02 2016-08-10 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF MEMBRANE PROTEINS
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
AU2013243861A1 (en) 2012-04-05 2014-10-23 Ac Immune S.A. Humanized Tau antibody
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
KR20150006000A (en) 2012-05-01 2015-01-15 제넨테크, 인크. Anti-pmel17 antibodies and immunoconjugates
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
RU2625771C2 (en) 2012-05-23 2017-07-18 Дженентек, Инк. Therapeutics selection method
RU2015101113A (en) 2012-06-15 2016-08-10 Дженентек, Инк. ANTIBODIES AGAINST PCSK9, COMPOSITIONS, DOSES AND METHODS OF APPLICATION
WO2014006123A1 (en) 2012-07-04 2014-01-09 F. Hoffmann-La Roche Ag Anti-biotin antibodies and methods of use
JP6148729B2 (en) 2012-07-04 2017-06-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Covalently bound antigen-antibody conjugate
RU2017128512A (en) 2012-07-04 2019-02-15 Ф. Хоффманн-Ля Рош Аг ANTIBODIES TO THEOPHYLLIN AND WAYS OF THEIR APPLICATION
AU2013285081B2 (en) 2012-07-04 2017-01-12 Rhizen Pharmaceuticals Sa Selective PI3K delta inhibitors
JP6309518B2 (en) 2012-07-05 2018-04-11 ジェネンテック, インコーポレイテッド Expression and secretion system
IN2014DN10510A (en) 2012-07-09 2015-08-21 Genentech Inc
WO2014011519A1 (en) 2012-07-09 2014-01-16 Genentech, Inc. Immunoconjugates comprising anti-cd79b antibodies
ES2661572T3 (en) 2012-07-09 2018-04-02 Genentech, Inc. Immunoconjugates comprising anti-CD79b antibodies
HK1207973A1 (en) 2012-07-09 2016-02-19 基因泰克公司 Immunoconjugates comprising anti-cd22 antibodies
US9670276B2 (en) 2012-07-12 2017-06-06 Abbvie Inc. IL-1 binding proteins
RS62509B1 (en) 2012-07-13 2021-11-30 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
MX2015000681A (en) 2012-08-02 2015-04-10 Hoffmann La Roche METHOD FOR PRODUCING SOLUBLE FcR AS Fc-FUSION WITH INERT IMMUNOGLOBULIN Fc-REGION AND USES THEREOF.
JP6290209B2 (en) 2012-08-07 2018-03-07 ロシュ グリクアート アーゲー A composition comprising two antibodies engineered to have reduced and increased effector function.
WO2014031498A1 (en) 2012-08-18 2014-02-27 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
EP2888238A4 (en) 2012-08-21 2016-01-27 Academia Sinica BENZOCYCLO-OCTYNE COMPOUNDS AND USES THEREOF
US9777067B2 (en) 2012-09-27 2017-10-03 Massachusetts Institute Of Technology HER2- and VEGF-A-binding proteins with enhanced stability
KR20180008921A (en) 2012-11-01 2018-01-24 애브비 인코포레이티드 Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
WO2014071125A1 (en) 2012-11-02 2014-05-08 Tg Therapeutics, Inc. Combination of anti-cd20 antibody and pi3 kinase selective inhibitor
EP4223770A3 (en) 2012-11-05 2023-10-18 Foundation Medicine, Inc. Novel fusion molecules and uses thereof
WO2014071358A2 (en) 2012-11-05 2014-05-08 Foundation Medicine, Inc. Novel ntrk1 fusion molecules and uses thereof
MA38165A1 (en) 2012-11-08 2018-07-31 Hoffmann La Roche Her3 antigen binding proteins binding to her3 beta hairpin
MA38176A1 (en) 2012-11-13 2017-06-30 Genentech Inc Novel anti-haemagglutinin antibody, useful for the treatment, inhibition or prevention of viral influenza infection
KR102168562B1 (en) 2012-11-19 2020-10-22 발리오팜 아게 Recombinant bispecific antibody binding to cd20 and cd95
HRP20220607T1 (en) 2012-11-26 2022-06-24 Modernatx, Inc. Terminally modified rna
US9393327B2 (en) 2012-12-19 2016-07-19 Genentech, Inc. Methods and compositions for radiohalogen protein labeling
CN104884474A (en) 2012-12-21 2015-09-02 弗·哈夫曼-拉罗切有限公司 Disulfide-linked multivalent mhc class i comprising multi-function proteins
EP3939614A1 (en) 2013-01-18 2022-01-19 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
US9255155B2 (en) 2013-01-31 2016-02-09 The Regents Of The University Of California Antibodies specific for urokinase-type plasminogen activator and methods of treating cancer
MX2015010791A (en) 2013-02-22 2015-11-26 Hoffmann La Roche Methods of treating cancer and preventing drug resistance.
RU2015140921A (en) 2013-02-26 2017-04-03 Роше Гликарт Аг ANTIBODIES TO MCSP
HK1213180A1 (en) 2013-03-06 2016-06-30 豪夫迈‧罗氏有限公司 Methods of treating and preventing cancer drug resistance
AU2014249107C1 (en) * 2013-03-12 2018-07-19 Molecular Templates, Inc. CD20-binding immunotoxins for inducing cellular internalization and methods using same
RU2019120404A (en) 2013-03-13 2019-08-06 Дженентек, Инк. COMPOSITIONS OF ANTIBODIES
AU2014239903A1 (en) 2013-03-14 2015-09-17 Genentech, Inc. Combinations of a MEK inhibitor compound with an HER3/EGFR inhibitor compound and methods of use
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
EA201591750A1 (en) 2013-03-14 2016-05-31 Дженентек, Инк. ANTIBODIES AGAINST B7-H4 AND IMMUNOCONJUGATES
RU2015139054A (en) 2013-03-14 2017-04-19 Дженентек, Инк. METHODS FOR TREATING CANCER AND PREVENTION OF DRUG RESISTANCE OF CANCER
SG10201809452RA (en) * 2013-03-15 2018-11-29 Genentech Inc Cell culture compositions with antioxidants and methods for polypeptide production
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
ES2761260T3 (en) 2013-03-15 2020-05-19 Hoffmann La Roche Biomarkers and treatment procedures for conditions related to PD-1 and PD-L1
EP2970422B1 (en) 2013-03-15 2018-04-18 F.Hoffmann-La Roche Ag Il-22 polypeptides and il-22 fc fusion proteins and methods of use
KR20150130451A (en) 2013-03-15 2015-11-23 제넨테크, 인크. Methods of treating cancer and preventing cancer drug resistance
KR20150131177A (en) 2013-03-15 2015-11-24 제넨테크, 인크. Anti-crth2 antibodies and their use
WO2014150877A2 (en) 2013-03-15 2014-09-25 Ac Immune S.A. Anti-tau antibodies and methods of use
EP2970459A2 (en) 2013-03-15 2016-01-20 AbbVie Inc. Dual specific binding proteins directed against il-1beta and il-17
PE20151750A1 (en) 2013-03-15 2015-12-07 Genentech Inc COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF HEPATIC CANCER
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
CA2904806C (en) 2013-04-29 2021-11-23 F. Hoffmann-La Roche Ag Human fcrn-binding modified antibodies and methods of use
TWI653243B (en) 2013-04-29 2019-03-11 赫孚孟拉羅股份公司 Anti-IGF-1R antibody against FcRn binding and use thereof for treating vascular eye diseases
CN105164157B (en) 2013-04-29 2024-05-28 豪夫迈·罗氏有限公司 FC-receptor binding modified asymmetric antibodies and methods of use
EP2999716A2 (en) 2013-05-20 2016-03-30 F. Hoffmann-La Roche AG Anti-transferrin receptor antibodies and methods of use
KR20160015227A (en) 2013-05-31 2016-02-12 제넨테크, 인크. Anti-wall teichoic antibodies and conjugates
BR112015029754A2 (en) 2013-05-31 2017-09-26 Genentech Inc anti-theoretical wall antibodies and conjugates
WO2014210397A1 (en) 2013-06-26 2014-12-31 Academia Sinica Rm2 antigens and use thereof
EP3013347B1 (en) 2013-06-27 2019-12-11 Academia Sinica Glycan conjugates and use thereof
TW201534726A (en) 2013-07-03 2015-09-16 Halozyme Inc Thermally stable PH20 hyaluronidase variants and uses thereof
US10640574B2 (en) 2013-07-18 2020-05-05 Taurus Biosciences, Llc Humanized antibodies with ultralong complementary determining regions
US20160168231A1 (en) 2013-07-18 2016-06-16 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
KR20250099279A (en) 2013-08-01 2025-07-01 파이브 프라임 테라퓨틱스, 인크. Afucosylated anti-fgfr2iiib antibodies
WO2015023596A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. Compositions and method for treating complement-associated conditions
US9782476B2 (en) 2013-09-06 2017-10-10 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
CA2922889A1 (en) 2013-09-17 2015-03-26 Genentech, Inc. Methods of using anti-lgr5 antibodies
CN103524621B (en) * 2013-09-27 2015-04-01 北京济福霖生物技术有限公司 Anti-human CD20 chimeric monoclonal antibody
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
EA201690675A1 (en) 2013-10-03 2016-08-31 Модерна Терапьютикс, Инк. POLYNUCLEOTES ENCODING THE RECEPTOR OF LOW DENSITY LIPOPROTEINS
RU2016117978A (en) 2013-10-11 2017-11-17 Дженентек, Инк. NSP4 INHIBITORS AND WAYS OF THEIR APPLICATION
JP6502931B2 (en) 2013-10-11 2019-04-17 アメリカ合衆国 TEM 8 antibody and use thereof
WO2015052230A1 (en) 2013-10-11 2015-04-16 F. Hoffmann-La Roche Ag Multispecific domain exchanged common variable light chain antibodies
WO2015058132A2 (en) 2013-10-18 2015-04-23 Genentech, Inc. Anti-rspo antibodies and methods of use
MX2016005159A (en) 2013-10-23 2016-07-05 Genentech Inc Methods of diagnosing and treating eosinophilic disorders.
CN104623637A (en) 2013-11-07 2015-05-20 健能隆医药技术(上海)有限公司 Application of IL-22 dimer in preparation of intravenous injection drugs
CN111499743B (en) 2013-11-21 2024-01-12 豪夫迈·罗氏有限公司 Anti-alpha-synuclein antibodies and methods of use
PT3079719T (en) 2013-12-09 2019-12-05 Allakos Inc Anti-siglec-8 antibodies and methods of use thereof
EA201691214A1 (en) 2013-12-13 2016-12-30 Дженентек, Инк. ANTIBODIES TO CD33 AND IMMUNOCONJUGATES
EP3680254A1 (en) 2013-12-17 2020-07-15 F. Hoffmann-La Roche AG Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
EP3083690A1 (en) 2013-12-17 2016-10-26 F.Hoffmann-La Roche Ag Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
US20150190506A1 (en) 2013-12-17 2015-07-09 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
BR112016013562A2 (en) 2013-12-20 2017-10-03 Hoffmann La Roche HUMANIZED ANTI-TAU(PS422) ANTIBODIES, THEIR USES, AND PHARMACEUTICAL FORMULATIONS
TWI670283B (en) 2013-12-23 2019-09-01 美商建南德克公司 Antibodies and methods of use
MX373097B (en) 2014-01-03 2020-04-27 Hoffmann La Roche Bispecific anti-hapten/anti-blood-brain barrier receptor antibodies, their complexes, and their use as carriers across the blood-brain barrier.
JP6602304B2 (en) 2014-01-03 2019-11-06 エフ.ホフマン−ラ ロシュ アーゲー Covalently linked helicer-anti-helicer antibody conjugates and uses thereof
WO2015103549A1 (en) 2014-01-03 2015-07-09 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
CA2930046A1 (en) 2014-01-03 2015-07-09 F. Hoffmann-La Roche Ag Covalently linked polypeptide toxin-antibody conjugates
CN111057147B (en) 2014-01-06 2023-11-10 豪夫迈·罗氏有限公司 Monovalent blood brain barrier shuttle module
CN105899534B (en) 2014-01-15 2020-01-07 豪夫迈·罗氏有限公司 Fc region variants with modified FCRN and retained protein A binding properties
KR20160104727A (en) 2014-01-16 2016-09-05 아카데미아 시니카 Compositions and methods for treatment and detection of cancers
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2015112909A1 (en) 2014-01-24 2015-07-30 Genentech, Inc. Methods of using anti-steap1 antibodies and immunoconjugates
JP6655017B2 (en) 2014-01-27 2020-02-26 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. MHC class I epitope delivery polypeptides
CA2937539A1 (en) 2014-02-04 2015-08-13 Genentech, Inc. Mutant smoothened and methods of using the same
CN112826930A (en) 2014-02-08 2021-05-25 豪夫迈·罗氏有限公司 Methods of treating Alzheimer's disease
MX380252B (en) 2014-02-08 2025-03-12 Genentech Inc CRENEZUMAB FOR USE IN THE TREATMENT OF ALZHEIMER'S DISEASE.
LT3105253T (en) 2014-02-12 2018-09-10 F. Hoffmann-La Roche Ag ANTIQUES AGAINST JAGGED1 AND THEIR USE
EP3107574A2 (en) 2014-02-21 2016-12-28 F. Hoffmann-La Roche AG Anti-il-13/il-17 bispecific antibodies and uses thereof
TWI558399B (en) 2014-02-26 2016-11-21 美國禮來大藥廠 Combination therapy for cancer
US10183996B2 (en) 2014-02-28 2019-01-22 Allakos Inc. Methods and compositions for treating Siglec-8 associated diseases
TW201622744A (en) 2014-03-04 2016-07-01 美國禮來大藥廠 Combination therapy for cancer
US11142584B2 (en) 2014-03-11 2021-10-12 Molecular Templates, Inc. CD20-binding proteins comprising Shiga toxin A subunit effector regions for inducing cellular internalization and methods using same
WO2015139046A1 (en) 2014-03-14 2015-09-17 Genentech, Inc. Methods and compositions for secretion of heterologous polypeptides
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
EP3119490B1 (en) 2014-03-21 2021-09-08 F. Hoffmann-La Roche AG In vitro prediction of in vivo half-life of antibodies
CA2943329A1 (en) 2014-03-24 2015-10-01 Genentech, Inc. Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
JP6562942B2 (en) 2014-03-27 2019-08-28 アカデミア シニカAcademia Sinica Reactive labeled compounds and uses thereof
BR112016022345A2 (en) 2014-03-31 2017-10-10 Genentech Inc combination therapy comprising antiangiogenesis agents and ox40 binding agonists
BR112016022658A2 (en) 2014-03-31 2017-10-17 Genentech Inc anti-ox40 antibodies and methods of use
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
BR112016027222A2 (en) 2014-05-22 2018-01-30 Genentech Inc isolated antibodies, isolated nucleic acid, host cell, method of producing an antibody, immunoconjugate, pharmaceutical formulation, methods of treating an individual with cancer, inhibiting cell proliferation, detecting human gpc3 and detecting a cancer
JP2017524371A (en) 2014-05-23 2017-08-31 ジェネンテック, インコーポレイテッド MIT biomarkers and methods of use
AU2015267047A1 (en) 2014-05-27 2017-01-05 Academia Sinica Anti-CD20 glycoantibodies and uses thereof
JP7062361B2 (en) 2014-05-27 2022-05-06 アカデミア シニカ Anti-HER2 sugar-manipulated antibody group and its use
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
KR20170010003A (en) 2014-05-27 2017-01-25 아카데미아 시니카 Fucosidase from bacteroides and methods using the same
BR112016027674A2 (en) 2014-05-27 2017-08-15 Rhizen Pharmaceuticals Sa IMPROVED FORMS OF A SELECTIVE PI3K DELTA INHIBITOR FOR USE IN PHARMACEUTICAL FORMULATIONS
AU2015267044A1 (en) 2014-05-28 2016-12-15 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
EP3137488B1 (en) 2014-06-11 2019-01-02 Molecular Templates, Inc. Protease-cleavage resistant, shiga toxin a subunit effector polypeptides and cell-targeting molecules comprising the same
EP3155015A1 (en) 2014-06-11 2017-04-19 F. Hoffmann-La Roche AG Anti-lgr5 antibodies and uses thereof
WO2015191986A1 (en) 2014-06-13 2015-12-17 Genentech, Inc. Methods of treating and preventing cancer drug resistance
JP6654581B2 (en) 2014-06-26 2020-02-26 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Anti-BRDU antibodies and methods of use
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
MX2017000363A (en) 2014-07-11 2017-04-27 Genentech Inc Notch pathway inhibition.
BR112017000497B1 (en) 2014-07-11 2023-12-26 Ventana Medical Systems, Inc ISOLATED ANTIBODY, PROKARYOTIC HOST CELL, IMMUNOCONJUGATE AND METHOD FOR DETECTING THE PRESENCE OR LEVEL OF PD-L1 EXPRESSION
WO2016019969A1 (en) 2014-08-08 2016-02-11 Ludwig-Maximilians-Universität München Subcutaneously administered bispecific antibodies for use in the treatment of cancer
AU2015308818B2 (en) 2014-08-28 2021-02-25 Bioatla Llc Conditionally active chimeric antigen receptors for modified T-cells
TWI805109B (en) 2014-08-28 2023-06-11 美商奇諾治療有限公司 Antibodies and chimeric antigen receptors specific for cd19
US20170246272A1 (en) 2014-09-05 2017-08-31 Opexa Therapeutics, Inc. Compositions and methods for treating b cell mediated autoimmune disorders
EP3191500A4 (en) 2014-09-08 2018-04-11 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS
DK3191135T3 (en) 2014-09-12 2020-10-12 Genentech Inc Anti-HER2 antibodies and immunoconjugates
EP3191518B1 (en) 2014-09-12 2020-01-15 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
EP3191521A2 (en) 2014-09-12 2017-07-19 F. Hoffmann-La Roche AG Cysteine engineered antibodies and conjugates
EP3193932B1 (en) 2014-09-15 2023-04-26 F. Hoffmann-La Roche AG Antibody formulations
HK1243629A1 (en) 2014-09-17 2018-07-20 基因泰克公司 Immunoconjugates comprising anti-her2 antibodies and pyrrolobenzodiazepines
WO2016049214A1 (en) 2014-09-23 2016-03-31 Genentech, Inc. METHOD OF USING ANTI-CD79b IMMUNOCONJUGATES
EP3207057A2 (en) 2014-10-16 2017-08-23 F. Hoffmann-La Roche AG Anti-alpha-synuclein antibodies and methods of use
EP3223865A4 (en) 2014-10-31 2018-10-03 Jounce Therapeutics, Inc. Methods of treating conditions with antibodies that bind b7-h4
US20160160290A1 (en) 2014-11-03 2016-06-09 Genentech, Inc. Methods and biomarkers for predicting efficacy and evaluation of an ox40 agonist treatment
SG11201703448QA (en) 2014-11-03 2017-05-30 Genentech Inc Assays for detecting t cell immune subsets and methods of use thereof
KR102709593B1 (en) 2014-11-05 2024-09-26 제넨테크, 인크. Methods of producing two chain proteins in bacteria
EP3753948A1 (en) 2014-11-05 2020-12-23 Genentech, Inc. Methods of producing two chain proteins in bacteria
BR112017008666A2 (en) 2014-11-05 2018-01-30 Genentech, Inc. anti-fgfr2 / 3 antibodies and methods of use
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
KR20170072343A (en) 2014-11-06 2017-06-26 제넨테크, 인크. Combination therapy comprising ox40 binding agonists and tigit inhibitors
KR20170076697A (en) 2014-11-06 2017-07-04 에프. 호프만-라 로슈 아게 Fc-region variants with modified fcrn- and protein a-binding properties
RU2714116C2 (en) 2014-11-06 2020-02-11 Ф. Хоффманн-Ля Рош Аг VARIANTS OF Fc-DOMAIN WITH MODIFIED FcRn BINDING AND METHODS OF APPLICATION THEREOF
EP3552488A1 (en) 2014-11-10 2019-10-16 F. Hoffmann-La Roche AG Animal model for nephropathy and agents for treating the same
WO2016077381A1 (en) 2014-11-10 2016-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
US10160795B2 (en) 2014-11-14 2018-12-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to Ebola virus glycoprotein and their use
MX2017006320A (en) 2014-11-17 2017-08-10 Genentech Inc Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists.
US11008403B2 (en) 2014-11-19 2021-05-18 Genentech, Inc. Anti-transferrin receptor / anti-BACE1 multispecific antibodies and methods of use
JP6859259B2 (en) 2014-11-19 2021-04-14 ジェネンテック, インコーポレイテッド Antibodies to BACEl and its use for neurological disease immunotherapy
JP6779876B2 (en) 2014-11-19 2020-11-04 ジェネンテック, インコーポレイテッド Anti-transferrin receptor antibody and how to use it
EP4141032B1 (en) 2014-11-20 2024-05-29 F. Hoffmann-La Roche AG Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
HK1244230A1 (en) 2014-12-03 2018-08-03 F. Hoffmann-La Roche Ag Anti-staphylococcus aureus antibody rifamycin conjugates and uses thereof
ES2764111T3 (en) 2014-12-03 2020-06-02 Hoffmann La Roche Multispecific antibodies
RU2731055C2 (en) 2014-12-03 2020-08-28 Дженентек, Инк. Conjugates of antibodies to staphylococcus aureus with rifamycin and use thereof
KR20170086549A (en) 2014-12-05 2017-07-26 제넨테크, 인크. ANTI-CD79b ANTIBODIES AND METHODS OF USE
CN107207591A (en) 2014-12-10 2017-09-26 豪夫迈·罗氏有限公司 Blood-brain barrier receptor antibody and application method
WO2016094881A2 (en) 2014-12-11 2016-06-16 Abbvie Inc. Lrp-8 binding proteins
EP3945096A1 (en) 2014-12-19 2022-02-02 Regenesance B.V. Antibodies that bind human c6 and uses thereof
RU2746356C2 (en) 2014-12-19 2021-04-12 Чугаи Сейяку Кабусики Кайся C5 antibodies and their application methods
TWI656133B (en) 2014-12-19 2019-04-11 日商中外製藥股份有限公司 Anti-myostatin antibody, multi-peptide containing variant Fc region and method of use
US20160200815A1 (en) 2015-01-05 2016-07-14 Jounce Therapeutics, Inc. Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
MX2017009254A (en) 2015-01-16 2017-10-12 Juno Therapeutics Inc Antibodies and chimeric antigen receptors specific for ror1.
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
CN107428823B (en) 2015-01-22 2021-10-26 中外制药株式会社 Combinations and methods of use of two or more anti-C5 antibodies
WO2016118191A1 (en) 2015-01-24 2016-07-28 Academia Sinica Novel glycan conjugates and methods of use thereof
EP3250605A1 (en) * 2015-01-26 2017-12-06 Cellectis Anti-hsp70 specific chimeric antigen receptors (cars) for cancer immunotherapy
EP3253784B1 (en) 2015-02-04 2020-05-06 Genentech, Inc. Mutant smoothened and methods of using the same
CA2974547A1 (en) 2015-02-05 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses thereof
CA2972151C (en) 2015-02-05 2022-10-11 Molecular Templates, Inc. Multivalent cd20-binding molecules comprising shiga toxin a subunit effector regions and enriched compositions thereof
KR20170140180A (en) 2015-02-24 2017-12-20 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use
KR20170127011A (en) 2015-03-16 2017-11-20 제넨테크, 인크. Methods for detecting and quantifying IL-13 and for diagnosing and treating TH2-related diseases
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
WO2016154003A1 (en) 2015-03-20 2016-09-29 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Neutralizing antibodies to gp120 and their use
EP3274370B1 (en) 2015-03-23 2019-11-20 Bayer Pharma Aktiengesellschaft Anti-ceacam6 antibodies and uses thereof
KR20170129902A (en) 2015-03-23 2017-11-27 조운스 테라퓨틱스, 인크. Antibodies to ICOS
EP3274368A1 (en) 2015-03-25 2018-01-31 THE UNITED STATES OF AMERICA, represented by the S Bispecific multivalent fusion proteins
AU2016243026B2 (en) 2015-04-03 2022-03-31 Eureka Therapeutics, Inc. Constructs targeting AFP peptide/MHC complexes and uses thereof
KR20180002653A (en) 2015-04-07 2018-01-08 제넨테크, 인크. Antigen binding complexes having an agonistic activity activity and methods of use
PL3283508T3 (en) 2015-04-17 2021-10-11 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
SI3286315T1 (en) 2015-04-24 2021-09-30 F. Hoffmann-La Roche Ag Methods of identifying bacteria comprising binding polypeptides
HK1252158A1 (en) 2015-05-01 2019-05-17 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
WO2016179194A1 (en) 2015-05-04 2016-11-10 Jounce Therapeutics, Inc. Lilra3 and method of using the same
EP3936524A3 (en) 2015-05-11 2022-06-15 F. Hoffmann-La Roche AG Compositions and methods of treating lupus nephritis
PT3294770T (en) 2015-05-12 2020-12-04 Hoffmann La Roche Therapeutic and diagnostic methods for cancer
KR101997241B1 (en) 2015-05-21 2019-07-09 하푼 테라퓨틱스, 인크. Trispecific binding proteins and methods of use
WO2016196343A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Humanized anti-ebola virus glycoprotein antibodies and methods of use
HK1248773A1 (en) 2015-05-29 2018-10-19 豪夫迈‧罗氏有限公司 Therapeutic and diagnostic methods for cancer
KR20180013881A (en) 2015-05-29 2018-02-07 제넨테크, 인크. PD-L1 promoter methylation in cancer
EP3660035A1 (en) 2015-05-30 2020-06-03 Molecular Templates, Inc. De-immunized, shiga toxin a subunit scaffolds and cell-targeting molecules comprising the same
WO2016196679A1 (en) 2015-06-02 2016-12-08 Genentech, Inc. Compositions and methods for using anti-il-34 antibodies to treat neurological diseases
WO2016196975A1 (en) 2015-06-03 2016-12-08 The United States Of America, As Represented By The Secretary Department Of Health & Human Services Neutralizing antibodies to hiv-1 env and their use
MX392257B (en) 2015-06-05 2025-03-24 Genentech Inc Anti-tau antibodies and methods of use
JP2018518483A (en) 2015-06-08 2018-07-12 ジェネンテック, インコーポレイテッド Methods of treating cancer using anti-OX40 antibodies and PD-1 axis binding antagonists
CN107810011A (en) 2015-06-08 2018-03-16 豪夫迈·罗氏有限公司 Methods of treating cancer using anti-OX 40 antibodies
TW201709934A (en) 2015-06-15 2017-03-16 建南德克公司 Antibodies and immunoconjugates
TW201710286A (en) 2015-06-15 2017-03-16 艾伯維有限公司 Binding proteins against VEGF, PDGF, and/or their receptors
EP3916018A1 (en) 2015-06-16 2021-12-01 Genentech, Inc. Anti-cd3 antibodies and methods of use
JP2018524312A (en) 2015-06-17 2018-08-30 ジェネンテック, インコーポレイテッド Anti-HER2 antibody and method of use
CN116327953A (en) 2015-06-17 2023-06-27 豪夫迈·罗氏有限公司 Methods of treating locally advanced or metastatic breast cancer using PD-1 axis binding antagonists and taxanes
JP6846362B2 (en) 2015-06-17 2021-03-24 アラコス インコーポレイテッド Methods and Compositions for Treating Fibrous Diseases
US9862763B2 (en) 2015-06-24 2018-01-09 Hoffmann-La Roche Inc. Humanized anti-tau(pS422) antibodies and methods of use
HUE057952T2 (en) 2015-06-24 2022-06-28 Hoffmann La Roche Anti-transferrin receptor antibodies with tailored affinity
WO2016207091A1 (en) 2015-06-24 2016-12-29 F. Hoffmann-La Roche Ag Trispecific antibodies specific for her2 and a blood brain barrier receptor and methods of use
EP3108897A1 (en) 2015-06-24 2016-12-28 F. Hoffmann-La Roche AG Antibodies against human csf-1r for use in inducing lymphocytosis in lymphomas or leukemias
CN108473573A (en) 2015-06-29 2018-08-31 豪夫迈·罗氏有限公司 II type anti-CD 20 antibodies are used in organ transplant
EP3514174B1 (en) 2015-06-29 2021-03-31 Ventana Medical Systems, Inc. Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
IL319047A (en) 2015-08-28 2025-04-01 Amunix Operating Inc Chimeric polypeptide assembly and methods of making and using the same
EP3341415B1 (en) 2015-08-28 2021-03-24 H. Hoffnabb-La Roche Ag Anti-hypusine antibodies and uses thereof
CN113372443A (en) 2015-09-18 2021-09-10 中外制药株式会社 IL-8-binding antibodies and uses thereof
WO2017050729A1 (en) 2015-09-22 2017-03-30 Spring Bioscience Corporation Anti-ox40 antibodies and diagnostic uses thereof
EP3353203A2 (en) * 2015-09-23 2018-08-01 H. Hoffnabb-La Roche Ag Optimized variants of anti-vegf antibodies
RU2757135C2 (en) 2015-09-24 2021-10-11 АБВИТРО ЭлЭлСи Hiv antibody compositions and methods for their application
NZ758624A (en) 2015-09-25 2025-06-27 Genentech Inc Anti-tigit antibodies and methods of use
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
PT3356404T (en) 2015-10-02 2021-10-14 Hoffmann La Roche Anti-pd1 antibodies and methods of use
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
CN114057884A (en) 2015-10-02 2022-02-18 豪夫迈·罗氏有限公司 Bispecific anti-human CD20/human transferrin receptor antibody and methods of use
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
AU2016329120B2 (en) 2015-10-02 2023-04-13 F. Hoffmann-La Roche Ag Bispecific antibodies specific for a costimulatory TNF receptor
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
JP6622392B2 (en) 2015-10-02 2019-12-18 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antibody specific for PD1 and TIM3
LT3359572T (en) 2015-10-06 2025-02-10 F. Hoffmann-La Roche Ag TREATMENT METHOD FOR MULTIPLE SCLEROSIS
AU2016335750B2 (en) 2015-10-07 2023-05-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services IL-7R-alpha specific antibodies for treating acute lymphoblastic leukemia
US20170247467A1 (en) 2015-10-07 2017-08-31 Hoffmann-La Roche Inc. Bispecific antibodies with tetravalency for a costimulatory tnf receptor
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
HK1258249A1 (en) 2015-10-22 2019-11-08 震动疗法股份有限公司 Gene signatures for determining icos expression
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
EP4015533A1 (en) 2015-10-29 2022-06-22 F. Hoffmann-La Roche AG Anti-variant fc-region antibodies and methods of use
CN108290957B (en) 2015-10-30 2022-06-17 豪夫迈·罗氏有限公司 Anti-HtrA1 antibodies and methods of use
JP2018534930A (en) 2015-10-30 2018-11-29 ジェネンテック, インコーポレイテッド Anti-factor D antibodies and conjugates
AU2016349392B2 (en) 2015-11-03 2023-07-13 The Trustees Of Columbia University In The City Of New York Neutralizing antibodies to HIV-1 gp41 and their use
EP3371217B1 (en) 2015-11-08 2025-06-11 F. Hoffmann-La Roche AG Methods of screening for multispecific antibodies
KR102777244B1 (en) 2015-11-23 2025-03-11 파이브 프라임 테라퓨틱스, 인크. FGFR2 inhibitors alone or in combination with immunostimulants in cancer treatment
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
JP7325186B2 (en) 2015-12-09 2023-08-14 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Type II anti-CD20 antibody for reducing the formation of anti-drug antibodies
MY189425A (en) 2015-12-18 2022-02-10 Chugai Pharmaceutical Co Ltd Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
JP6088703B1 (en) 2015-12-18 2017-03-01 中外製薬株式会社 Anti-C5 antibodies and methods of use
CN108472379B (en) 2015-12-30 2022-06-21 豪夫迈·罗氏有限公司 Formulations for reducing polysorbate degradation
CN108368179B (en) 2016-01-08 2022-08-23 豪夫迈·罗氏有限公司 Methods of treating CEA positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD 3 bispecific antibodies
US20190016791A1 (en) 2016-01-20 2019-01-17 Genentech, Inc. High dose treatments for alzheimer's disease
EP3411396A1 (en) 2016-02-04 2018-12-12 Curis, Inc. Mutant smoothened and methods of using the same
KR102500659B1 (en) 2016-02-29 2023-02-16 제넨테크, 인크. Therapeutic and diagnostic methods for cancer
EP3423491A1 (en) 2016-03-01 2019-01-09 H. Hoffnabb-La Roche Ag Obinutuzumab variants having altered cell death induction
JP2019515876A (en) 2016-03-08 2019-06-13 アカデミア シニカAcademia Sinica Methods for module synthesis of N-glycans and their arrays
US11767362B1 (en) 2016-03-15 2023-09-26 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using PD-1 axis binding antagonists and anti-GPC3 antibodies
JP6943872B2 (en) 2016-03-25 2021-10-06 ジェネンテック, インコーポレイテッド Multiple whole antibody and antibody complex drug quantification assay
SG11201808562SA (en) 2016-03-29 2018-10-30 Geltor Inc Expression of proteins in gram-negative bacteria wherein the ratio of periplasmic volume to cytoplasmic volume is between 0.5:1 and 10:1
KR101796277B1 (en) * 2016-04-12 2017-11-13 앱클론(주) Antibodies Binding Specifically to HER2 with Improved Stability
EP3865511A1 (en) 2016-04-14 2021-08-18 F. Hoffmann-La Roche AG Anti-rspo3 antibodies and methods of use
WO2017180842A1 (en) 2016-04-15 2017-10-19 Bioatla, Llc Anti-axl antibodies, antibody fragments and their immunoconjugates and uses thereof
IL262365B2 (en) 2016-04-15 2024-11-01 Alpine Immune Sciences Inc Icos ligand variant immunomodulatory proteins and uses thereof
JP7503887B2 (en) 2016-04-15 2024-06-21 ジェネンテック, インコーポレイテッド Methods for monitoring and treating cancer - Patents.com
MA43552A (en) 2016-04-15 2018-11-07 Alpine Immune Sciences Inc CD80 VARIANT IMMUNOMODULATOR PROTEINS AND THEIR USES
AU2017248766A1 (en) 2016-04-15 2018-11-01 Genentech, Inc. Methods for monitoring and treating cancer
ES2930351T3 (en) 2016-04-15 2022-12-09 Evive Biotechnology Shanghai Ltd An IL-22 dimer for use in the treatment of necrotizing enterocolitis
MA56474A (en) 2016-05-02 2022-05-11 Hoffmann La Roche CONTORSBODY - SINGLE CHAIN TARGET BINDER
WO2017192589A1 (en) 2016-05-02 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to influenza ha and their use and identification
WO2017194441A1 (en) 2016-05-11 2017-11-16 F. Hoffmann-La Roche Ag Modified anti-tenascin antibodies and methods of use
KR20240148936A (en) 2016-05-13 2024-10-11 바이오아트라, 인코퍼레이티드 Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
EP3458101B1 (en) 2016-05-20 2020-12-30 H. Hoffnabb-La Roche Ag Protac antibody conjugates and methods of use
BR112018074238A2 (en) 2016-05-27 2019-04-16 Tg Therapeutics, Inc. combination of anti-cd20 antibody, selective delta p13 kinase inhibitor and btk inhibitor to treat B cell proliferative disorders
CN109313200B (en) 2016-05-27 2022-10-04 豪夫迈·罗氏有限公司 Bioanalytical methods for characterizing site-specific antibody-drug conjugates
AU2018276419A1 (en) 2016-06-02 2019-10-17 F. Hoffmann-La Roche Ag Type II anti-CD20 antibody and anti-CD20/CD3 bispecific antibody for treatment of cancer
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
CN109476648B (en) 2016-06-06 2022-09-13 豪夫迈·罗氏有限公司 Sevelamer antibody-drug conjugates and methods of use
EP3472200A4 (en) 2016-06-17 2020-04-01 Chugai Seiyaku Kabushiki Kaisha ANTI-MYOSTATIN ANTIBODIES AND METHOD FOR USE
JP7133477B2 (en) 2016-06-24 2022-09-08 ジェネンテック, インコーポレイテッド Anti-polyubiquitin multispecific antibody
WO2018007314A1 (en) 2016-07-04 2018-01-11 F. Hoffmann-La Roche Ag Novel antibody format
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
WO2018022945A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd112 variant immunomodulatory proteins and uses thereof
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
EP3491013A1 (en) 2016-07-28 2019-06-05 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
KR102591955B1 (en) 2016-07-29 2023-10-19 추가이 세이야쿠 가부시키가이샤 Bispecific Antibody with Enhanced FVIII Carrier Function Replacement Activity
CA3031734A1 (en) 2016-07-29 2018-02-01 Juno Therapeutics, Inc. Anti-idiotypic antibodies against anti-cd19 antibodies
WO2018022438A1 (en) 2016-07-29 2018-02-01 Eli Lilly And Company Combination therapy with merestinib and anti-pd-l1 or anti-pd-1 inhibitors for use in the treatment of cancer
US11046776B2 (en) 2016-08-05 2021-06-29 Genentech, Inc. Multivalent and multiepitopic antibodies having agonistic activity and methods of use
TWI693940B (en) 2016-08-05 2020-05-21 日商中外製藥股份有限公司 Composition for the treatment or prevention of IL-8 related diseases
JP7250674B2 (en) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト CANCER TREATMENT AND DIAGNOSTIC METHOD
EP3496763A1 (en) 2016-08-11 2019-06-19 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
CA3034057A1 (en) 2016-08-22 2018-03-01 CHO Pharma Inc. Antibodies, binding fragments, and methods of use
AU2017321973B2 (en) 2016-09-02 2024-09-05 Dana-Farber Cancer Institute, Inc. Composition and methods of treating B cell disorders
EP3510046A4 (en) 2016-09-07 2020-05-06 The Regents of the University of California ANTIBODIES AGAINST OXIDATION-SPECIFIC EPITOPES
EP3509634A1 (en) 2016-09-09 2019-07-17 TG Therapeutics Inc. Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor, and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
JP6976315B2 (en) 2016-09-19 2021-12-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Affinity chromatography based on complement factors
EP4268845A3 (en) 2016-09-23 2024-02-28 F. Hoffmann-La Roche AG Uses of il-13 antagonists for treating atopic dermatitis
MA46354A (en) 2016-10-03 2019-08-07 Juno Therapeutics Inc MOLECULES BINDING SPECIFICALLY TO HPV
JP7050770B2 (en) 2016-10-05 2022-04-08 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Method for preparing antibody drug conjugate
KR102804118B1 (en) 2016-10-06 2025-05-09 제넨테크, 인크. Treatment and Diagnosis of Cancer
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
WO2018081648A2 (en) 2016-10-29 2018-05-03 Genentech, Inc. Anti-mic antibidies and methods of use
PT3535298T (en) 2016-11-02 2021-11-25 Jounce Therapeutics Inc Antibodies to pd-1 and uses thereof
US20190284261A1 (en) * 2016-11-07 2019-09-19 The Trustees Of The University Of Pennsylvania Dna antibody constructs for use against lyme disease
ES2866348T3 (en) 2016-11-16 2021-10-19 Lilly Co Eli Combination therapy for cancer with exon 14 skipping mutation (s) or exon 14 skipping phenotype
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 anti-HLA-G antibody and use thereof
JOP20190100A1 (en) 2016-11-19 2019-05-01 Potenza Therapeutics Inc Anti-gitr antigen-binding proteins and methods of use thereof
CA3036983A1 (en) 2016-11-21 2018-05-24 Cureab Gmbh Anti-gp73 antibodies and immunoconjugates
EP3608333A1 (en) 2016-12-07 2020-02-12 Molecular Templates, Inc. Shiga toxin a subunit effector polypeptides, shiga toxin effector scaffolds, and cell-targeting molecules for site-specific conjugation
CN118165104A (en) 2016-12-07 2024-06-11 基因泰克公司 Anti-TAU antibodies and methods of use
EP3551655A2 (en) 2016-12-07 2019-10-16 Genentech, Inc. Anti-tau antibodies and methods of their use
CN110366562A (en) 2016-12-12 2019-10-22 豪夫迈·罗氏有限公司 Methods of using anti-PD-L1 antibodies and anti-androgens to treat cancer
MX2019006954A (en) 2016-12-20 2019-08-01 Hoffmann La Roche COMBINATION THERAPY OF ANTI-CD20 / ANTI-CD3 BISPECIFIC ANTIBODIES AND 4-1BB (CD137) AGONISTS.
JOP20190134A1 (en) 2016-12-23 2019-06-02 Potenza Therapeutics Inc Anti-neuropilin antigen-binding proteins and methods of use thereof
CN110461873B (en) 2017-01-03 2023-05-12 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules comprising anti-4-1 BB clone 20H4.9
WO2018129029A1 (en) 2017-01-04 2018-07-12 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
WO2018132597A1 (en) 2017-01-12 2018-07-19 Eureka Therapeutics, Inc. Constructs targeting histone h3 peptide/mhc complexes and uses thereof
ES2971981T3 (en) 2017-01-25 2024-06-10 Molecular Templates Inc Cell recognition molecules comprising deimmunized Shiga toxin A subunit effectors and CD8+ T cell epitopes
KR102365871B1 (en) 2017-01-31 2022-02-21 추가이 세이야쿠 가부시키가이샤 A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
US11021535B2 (en) 2017-02-10 2021-06-01 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
CN110494453B (en) 2017-02-10 2023-05-26 豪夫迈·罗氏有限公司 Anti-tryptase antibodies, compositions thereof and uses thereof
JP7256127B2 (en) 2017-03-01 2023-04-11 ジェネンテック, インコーポレイテッド Diagnostic and therapeutic methods for cancer
LT3596116T (en) 2017-03-16 2023-11-10 Alpine Immune Sciences, Inc. Pd-l1 variant immunomodulatory proteins and uses thereof
US11732022B2 (en) 2017-03-16 2023-08-22 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
EP3596114A2 (en) 2017-03-16 2020-01-22 Alpine Immune Sciences, Inc. Cd80 variant immunomodulatory proteins and uses thereof
UA129242C2 (en) 2017-03-22 2025-02-26 Дженентек, Інк. OPTIMIZED ANTIBODY COMPOSITION FOR TREATMENT OF EYE DISEASES
MA49270A (en) 2017-03-27 2020-02-05 Hoffmann La Roche ENHANCED ANTIGEN RECEPTORS
TWI848907B (en) 2017-03-28 2024-07-21 美商建南德克公司 Methods of treating neurodegenerative diseases
WO2018178055A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
JOP20190203A1 (en) 2017-03-30 2019-09-03 Potenza Therapeutics Inc Anti-tigit antigen-binding proteins and methods of use thereof
EP3606963B1 (en) 2017-04-03 2023-08-30 F. Hoffmann-La Roche AG Antibodies binding to steap-1
MA49039A (en) 2017-04-04 2020-02-12 Hoffmann La Roche NEW BISPECIFIC ANTIGEN BINDING MOLECULES CAPABLE OF BINDING SPECIFICALLY TO CD40 AND FAP
KR102346336B1 (en) 2017-04-05 2022-01-04 에프. 호프만-라 로슈 아게 Bispecific antibodies that specifically bind to PD1 and LAG3
ES2926859T3 (en) 2017-04-05 2022-10-31 Hoffmann La Roche Anti-LAG3 antibodies
WO2018191660A1 (en) 2017-04-14 2018-10-18 Genentech, Inc. Diagnostic and therapeutic methods for cancer
PE20200150A1 (en) 2017-04-21 2020-01-17 Genentech Inc USE OF KLK5 ANTAGONISTS FOR THE TREATMENT OF A DISEASE
IL319308A (en) 2017-04-26 2025-04-01 Eureka Therapeutics Inc ׂ A Delaware Corp Constructs specifically recognizing glypican 3 and uses thereof
WO2018201096A1 (en) 2017-04-27 2018-11-01 Tesaro, Inc. Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
US11203638B2 (en) 2017-05-05 2021-12-21 Allakos Inc. Methods and compositions for treating perennial allergic conjunctivitis and keratoconjunctivitis
EP3621994A4 (en) 2017-05-12 2020-12-30 Harpoon Therapeutics, Inc. MESOTHELINE BINDING PROTEINS
BR112019023898A2 (en) 2017-05-16 2020-06-09 Five Prime Therapeutics Inc method for treatment of gastric cancer, use of an antibody and composition
CN110831969B (en) 2017-06-20 2024-06-21 安进公司 Method for treating or improving metabolic disorders using a combination of gastric inhibitory peptide receptor (GIPR) binding protein and GLP-1 agonist
US11674962B2 (en) 2017-07-21 2023-06-13 Genentech, Inc. Therapeutic and diagnostic methods for cancer
JP2020528061A (en) 2017-07-26 2020-09-17 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Combination therapy with BET inhibitor, Bcl-2 inhibitor and anti-CD20 antibody
JP7122370B2 (en) 2017-07-26 2022-08-19 フォーティ セブン, インコーポレイテッド ANTI-SIRP-ALPHA ANTIBODIES AND RELATED METHODS
CN111511762B (en) 2017-08-21 2025-05-06 天演药业公司 Anti-CD137 molecules and their uses
JP7382922B2 (en) 2017-09-20 2023-11-17 中外製薬株式会社 Dosing regimen for combination therapy using PD-1 system binding antagonists and GPC3 targeting agents
US11180541B2 (en) 2017-09-28 2021-11-23 Geltor, Inc. Recombinant collagen and elastin molecules and uses thereof
EA202090641A1 (en) 2017-09-29 2020-08-07 Чугаи Сейяку Кабусики Кайся MULTISPECIFIC ANTIGEN-BINDING MOLECULE WITH A SUBSTITUTE FUNCTIONAL ACTIVITY OF BLOOD COGULATING FACTOR VIII, AND PHARMACEUTICAL COMPOSITION, COMPOSITION
EP3692063A1 (en) 2017-10-03 2020-08-12 Juno Therapeutics, Inc. Hpv-specific binding molecules
CN111801347A (en) 2017-10-10 2020-10-20 高山免疫科学股份有限公司 CTLA-4 variant immunomodulatory proteins and uses thereof
CN111372950B (en) 2017-10-12 2024-11-05 免疫苏醒公司 VEGFR-antibody light chain fusion proteins
CA3078969A1 (en) 2017-10-13 2019-04-18 Harpoon Therapeutics, Inc. Trispecific proteins and methods of use
IL315737A (en) 2017-10-13 2024-11-01 Harpoon Therapeutics Inc B cell maturation antigen binding proteins
BR112020007586A2 (en) 2017-10-17 2020-09-24 Rhizen Pharmaceuticals Sa crac channel modulators to treat esophageal cancer
SG11202003078VA (en) 2017-10-18 2020-05-28 Alpine Immune Sciences Inc Variant icos ligand immunomodulatory proteins and related compositions and methods
CA3078157A1 (en) 2017-10-20 2019-04-25 F.Hoffmann-La Roche Ag Method for generating multispecific antibodies from monospecific antibodies
WO2019082124A1 (en) 2017-10-26 2019-05-02 Rhizen Pharmaceuticals Sa Composition and method for treating diffuse large b-cell lymphoma
SG11202003437PA (en) 2017-10-30 2020-05-28 Rhizen Pharmaceuticals Sa Calcium release-activated calcium channel modulators for treating hematological and solid cancers
CA3078676A1 (en) 2017-10-30 2019-05-09 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
CA3080904A1 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for b-cell maturation antigen
AU2018359967A1 (en) 2017-11-06 2020-04-23 Genentech, Inc. Diagnostic and therapeutic methods for cancer
EP3710589A4 (en) 2017-11-14 2021-11-10 Chugai Seiyaku Kabushiki Kaisha ANTI-C1S ANTIBODIES AND METHOD OF USING
EP3717516A1 (en) 2017-12-01 2020-10-07 Pfizer Inc Anti-cxcr5 antibodies and compositions and uses thereof
JP2021505571A (en) 2017-12-06 2021-02-18 ルヒゼン ファーマスティカルズ エスエー Compositions and Methods for Treating Peripheral T-Cell Lymphoma and Cutaneous T-Cell Lymphoma
TW201934578A (en) 2017-12-14 2019-09-01 瑞士商赫孚孟拉羅股份公司 treatment method
KR20200110745A (en) 2017-12-15 2020-09-25 주노 쎄러퓨티크스 인코퍼레이티드 Anti-CCT5 binding molecule and method of use thereof
PE20201149A1 (en) 2017-12-21 2020-10-26 Hoffmann La Roche HLA-A2 / WT1 BINDING ANTIBODIES
EA202091540A1 (en) 2017-12-22 2021-03-22 Джаунс Терапьютикс, Инк. ANTIBODIES TO LILRB2
TW201929907A (en) 2017-12-22 2019-08-01 美商建南德克公司 Use of PILRA binding agents for treatment of a Disease
WO2019129221A1 (en) 2017-12-28 2019-07-04 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against tigit
AU2018396964C1 (en) 2017-12-28 2024-10-03 Nanjing Legend Biotech Co., Ltd. Antibodies and variants thereof against PD-L1
WO2019129677A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Anti-vegf antibodies and methods of use
WO2019136029A1 (en) 2018-01-02 2019-07-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to ebola virus glycoprotein and their use
US12297253B2 (en) 2018-01-03 2025-05-13 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
CN118955720A (en) 2018-01-04 2024-11-15 伊科尼克治疗公司 Anti-tissue factor antibodies, antibody-drug conjugates and related methods
MX2020006956A (en) 2018-01-05 2020-11-06 Ac Immune Sa Misfolded tdp-43 binding molecules.
EP3737692A4 (en) 2018-01-09 2021-09-29 Elstar Therapeutics, Inc. CALRETICULIN-BINDING CONSTRUCTS AND GENERALLY MODIFIED T-CELLS FOR THE TREATMENT OF DISEASES
KR20250114571A (en) 2018-01-15 2025-07-29 난징 레전드 바이오테크 씨오., 엘티디. Single-domain antibodies and variants thereof against pd-1
US20200339686A1 (en) 2018-01-16 2020-10-29 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
JP7349995B2 (en) 2018-01-26 2023-09-25 ジェネンテック, インコーポレイテッド IL-22 Fc fusion protein and method of use
TWI835773B (en) 2018-01-26 2024-03-21 美商建南德克公司 Compositions and methods of use
AU2019214183B2 (en) 2018-02-01 2022-04-07 Innovent Biologics (Suzhou) Co., Ltd. Fully human anti-B cell maturation antigen (BCMA) single chain variable fragment, and application thereof
WO2019148445A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Precision/context-dependent activatable antibodies, and methods of making and using the same
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
MX2020008291A (en) 2018-02-09 2020-09-25 Genentech Inc Therapeutic and diagnostic methods for mast cell-mediated inflammatory diseases.
US11591399B2 (en) 2018-02-14 2023-02-28 Abba Therapeutics Ag Anti-human PD-L2 antibodies
EP3755713A1 (en) 2018-02-21 2020-12-30 The United States of America, as represented by the Secretary, Department of Health and Human Services Neutralizing antibodies to hiv-1 env and their use
MX2020008502A (en) 2018-02-21 2020-09-25 Genentech Inc DOSING FOR TREATMENT WITH IL-22 Fc FUSION PROTEINS.
US20200399376A1 (en) 2018-02-26 2020-12-24 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
PL3765489T3 (en) 2018-03-13 2025-02-10 F. Hoffmann-La Roche Ag Therapeutic combination of 4-1BB agonists with anti-CD20 antibodies
US12152073B2 (en) 2018-03-14 2024-11-26 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
RU2020128013A (en) 2018-03-14 2022-04-15 Бейцзин Сюаньи Фармасайенсиз Ко., Лтд. ANTIBODIES AGAINST CLAUDIN 18.2
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
SG11202009010RA (en) 2018-03-15 2020-10-29 Chugai Pharmaceutical Co Ltd Anti-dengue virus antibodies having cross-reactivity to zika virus and methods of use
JP2021519073A (en) 2018-03-29 2021-08-10 ジェネンテック, インコーポレイテッド Regulation of lactogenic activity in mammalian cells
TW202003567A (en) 2018-03-30 2020-01-16 大陸商南京傳奇生物科技有限公司 Single-domain antibodies against LAG-3 and uses thereof
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
MX2020010460A (en) 2018-04-05 2021-01-29 Juno Therapeutics Inc T-CELL RECEPTORS, AND ENGINEERED CELLS EXPRESSING THEM.
KR20200143634A (en) 2018-04-17 2020-12-24 몰레큘러 템플레이츠, 인코퍼레이션. HER2-targeting molecule comprising deimmunized Shiga Toxin A subunit scaffold
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
CN110464842B (en) 2018-05-11 2022-10-14 信达生物制药(苏州)有限公司 Formulations comprising anti-PCSK 9 antibodies and uses thereof
EP3794024B1 (en) 2018-05-14 2023-05-10 Werewolf Therapeutics, Inc. Activatable interleukin-2 polypeptides and methods of use thereof
CA3100018A1 (en) 2018-05-14 2019-11-21 Werewolf Therapeutics, Inc. Activatable interleukin 12 polypeptides and methods of use thereof
WO2019227490A1 (en) 2018-06-01 2019-12-05 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and methods for imaging
WO2019228514A1 (en) 2018-06-01 2019-12-05 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and uses thereof for treating disease or condition
EP3805400A4 (en) 2018-06-04 2022-06-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule showing changed half-life in cytoplasm
TWI851577B (en) 2018-06-07 2024-08-11 美商思進公司 Camptothecin conjugates
US12065476B2 (en) 2018-06-15 2024-08-20 Alpine Immune Sciences, Inc. PD-1 variant immunomodulatory proteins and uses thereof
CN112469440B (en) 2018-06-18 2024-09-06 优瑞科生物技术公司 Constructs targeting prostate-specific membrane antigen (PSMA) and uses thereof
CN112585166A (en) 2018-06-23 2021-03-30 豪夫迈·罗氏有限公司 Methods of treating lung cancer with PD-1 axis binding antagonists, platinating agents, and topoisomerase II inhibitors
JP7554742B2 (en) 2018-07-03 2024-09-20 マレンゴ・セラピューティクス,インコーポレーテッド Anti-TCR antibody molecules and uses thereof
CN112424228B (en) 2018-07-04 2024-08-09 豪夫迈·罗氏有限公司 Novel bispecific agonistic 4-1BB antigen binding molecules
CN112384219A (en) 2018-07-09 2021-02-19 千禧制药公司 Administration of SUMO-activating enzyme inhibitors and anti-CD 20 antibodies
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
CA3104147A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
WO2020018879A1 (en) 2018-07-20 2020-01-23 Surface Oncology, Inc. Anti-cd112r compositions and methods
TWI704157B (en) 2018-08-01 2020-09-11 日商中外製藥股份有限公司 A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
EP3831854A4 (en) 2018-08-03 2022-05-04 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing two antigen-binding domains that are linked to each other
CA3051549A1 (en) 2018-08-09 2020-02-09 Regeneron Pharmaceuticals, Inc. Methods for assessing binding affinity of an antibody variant to the neonatal fc receptor
PE20210343A1 (en) 2018-08-10 2021-02-23 Chugai Pharmaceutical Co Ltd ANTIGEN BINDING MOLECULE ANTI DIFFERENTIATION GROUP 137 (CD137) AND ITS USE
EP3836966A4 (en) 2018-08-17 2022-06-08 Ab Studio Inc. CATALYTIC ANTIBODIES AND METHODS OF USE THEREOF
TW202021618A (en) 2018-08-17 2020-06-16 美商23與我有限公司 Anti-il1rap antibodies and methods of use thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
CA3111458A1 (en) 2018-09-10 2020-03-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against cll1 and constructs thereof
CA3111401A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
KR20210089146A (en) 2018-09-19 2021-07-15 알파인 이뮨 사이언시즈, 인코포레이티드 Methods and uses of variant CD80 proteins and related constructs
US12195544B2 (en) 2018-09-21 2025-01-14 Harpoon Therapeutics, Inc. EGFR binding proteins and methods of use
AU2019342133B8 (en) 2018-09-21 2025-08-07 Genentech, Inc. Diagnostic methods for triple-negative breast cancer
US10815311B2 (en) 2018-09-25 2020-10-27 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
SG11202102777PA (en) 2018-09-27 2021-04-29 Xilio Development Inc Masked cytokine polypeptides
JP7221379B2 (en) 2018-10-01 2023-02-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antigen-binding molecule comprising anti-FAP clone 212
EP3861025A1 (en) 2018-10-01 2021-08-11 F. Hoffmann-La Roche AG Bispecific antigen binding molecules with trivalent binding to cd40
BR112021005204A2 (en) 2018-10-05 2021-06-08 Five Prime Therapeutics, Inc. pharmaceutical formulations and method for treating a solid tumor
EP3868784A4 (en) 2018-10-15 2022-07-27 Industry-Academic Cooperation Foundation, Yonsei University ANTIBODIES WITH ENHANCED PRODUCTIVITY AND METHOD FOR PRODUCTION THEREOF
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
WO2020081767A1 (en) 2018-10-18 2020-04-23 Genentech, Inc. Diagnostic and therapeutic methods for sarcomatoid kidney cancer
US20210395390A1 (en) 2018-10-31 2021-12-23 Bayer Aktiengesellschaft Reversal agents for neutralizing the therapeutic activity of anti-fxia antibodies
RU2724469C2 (en) 2018-10-31 2020-06-23 Закрытое Акционерное Общество "Биокад" Monoclonal antibody which specifically binds to cd20
CN113260626B (en) 2018-11-05 2024-09-13 豪夫迈·罗氏有限公司 Method for producing double-stranded proteins in prokaryotic host cells
WO2020102555A1 (en) 2018-11-16 2020-05-22 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
EP3904382A4 (en) 2018-11-27 2022-07-13 Innovent Biologics (Suzhou) Co., Ltd. ANTI-IL-23P19 ANTIBODIES AND USES THEREOF
MY209069A (en) 2018-11-27 2025-06-18 Staidson Beijing Biopharmaceuticals Co Ltd Antibodies specifically recognizing granulocyte-macrophage colony stimulating factor receptor alpha and uses thereof
US20220372106A1 (en) 2018-11-30 2022-11-24 Alpine Immune Sciences, Inc. Cd86 variant immunomodulatory proteins and uses thereof
WO2020117952A2 (en) 2018-12-05 2020-06-11 Genentech, Inc. Diagnostic methods and compositions for cancer immunotherapy
MX2021006573A (en) 2018-12-06 2021-07-15 Genentech Inc Combination therapy of diffuse large b-cell lymphoma comprising an anti-cd79b immunoconjugates, an alkylating agent and an anti-cd20 antibody.
EP3894427A1 (en) 2018-12-10 2021-10-20 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
WO2020132214A2 (en) 2018-12-20 2020-06-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Ebola virus glycoprotein-specific monoclonal antibodies and uses thereof
AR117453A1 (en) 2018-12-20 2021-08-04 Genentech Inc CF OF MODIFIED ANTIBODIES AND METHODS TO USE THEM
AR117327A1 (en) 2018-12-20 2021-07-28 23Andme Inc ANTI-CD96 ANTIBODIES AND METHODS OF USE OF THEM
JP2022514950A (en) 2018-12-21 2022-02-16 23アンドミー・インコーポレイテッド Anti-IL-36 antibody and how to use it
CN119708249A (en) 2018-12-21 2025-03-28 豪夫迈·罗氏有限公司 Antibodies that bind VEGF and IL-1 beta and methods of use thereof
WO2020132231A1 (en) 2018-12-21 2020-06-25 Genentech, Inc. Methods of producing polypeptides using a cell line resistant to apoptosis
CN118271445A (en) 2018-12-21 2024-07-02 豪夫迈·罗氏有限公司 Antibodies that bind to CD3
EP3902833A2 (en) 2018-12-26 2021-11-03 City of Hope Activatable masked anti-ctla4 binding proteins
WO2020141145A1 (en) 2018-12-30 2020-07-09 F. Hoffmann-La Roche Ag Anti-rabbit cd19 antibodies and methods of use
CN115120716A (en) 2019-01-14 2022-09-30 健泰科生物技术公司 Methods of treating cancer with PD-1 axis binding antagonists and RNA vaccines
EP3911675A1 (en) 2019-01-17 2021-11-24 Bayer Aktiengesellschaft Methods to determine whether a subject is suitable of being treated with an agonist of soluble guanylyl cyclase (sgc)
CA3126359A1 (en) 2019-01-22 2020-07-30 Genentech, Inc. Immunoglobulin a antibodies and methods of production and use
US12263234B2 (en) 2019-01-23 2025-04-01 Tayu Huaxia Biotech Medical Group Co., Ltd. Anti-PD-L1 diabodies and the use thereof
JP7658905B2 (en) 2019-01-23 2025-04-08 ジェネンテック, インコーポレイテッド Methods for Producing Multimeric Proteins in Eukaryotic Host Cells
WO2020153467A1 (en) 2019-01-24 2020-07-30 中外製薬株式会社 Novel cancer antigens and antibodies of said antigens
MA54863A (en) 2019-01-29 2021-12-08 Juno Therapeutics Inc TYROSINE KINASE RECEPTOR-LIKE (ROR1) RECEPTOR ORPHAN-1 SPECIFIC CHIMERA ANTIGENIC ANTIBODIES AND RECEPTORS
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
EP3927744A1 (en) 2019-02-21 2021-12-29 Marengo Therapeutics, Inc. Multifunctional molecules that bind to t cell related cancer cells and uses thereof
CN114127111B (en) 2019-02-21 2024-09-10 马伦戈治疗公司 Antibody molecules binding to NKP30 and uses thereof
KR20210133237A (en) 2019-02-27 2021-11-05 제넨테크, 인크. Dosing for treatment with anti-TIGIT and anti-CD20 or anti-CD38 antibodies
MX2021010254A (en) 2019-02-27 2021-09-21 Angiex Inc ANTIBODY-DRUG CONJUGATES COMPRISING ANTI-TM4SF1 ANTIBODIES AND METHODS OF USE THEREOF.
BR112021017144A2 (en) 2019-03-08 2021-11-09 Genentech Inc Assay to detect a membrane-associated protein, methods to quantify the concentration of circulating protein, to determine whether a patient with b-cell lymphoma is likely to exhibit a response to an anti-cd20 therapy, to determine the affinity of an anti-cd20 antibody cd20, to determine the activation of t cells and method of treating a tumor
UA128654C2 (en) 2019-03-14 2024-09-18 Дженентек, Інк. Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab
TWI856084B (en) 2019-04-01 2024-09-21 美商建南德克公司 Compositions and methods for stabilizing protein-containing formulations
CN113993885B (en) 2019-04-12 2025-04-25 格尔托公司 Recombinant elastin and its production
MX2021012607A (en) 2019-04-17 2022-03-11 Alpine Immune Sciences Inc METHODS AND USES OF VARIANT ICOS LIGAND (ICOSL) FUSION PROTEINS.
CA3133909A1 (en) 2019-04-18 2020-10-22 Elpida TSIKA Novel molecules for therapy and diagnosis
TWI888376B (en) 2019-04-19 2025-07-01 日商中外製藥股份有限公司 Chimeric receptors that recognize the altered site of the antibody
KR20220002967A (en) 2019-04-19 2022-01-07 제넨테크, 인크. Anti-MERTK antibodies and methods of use thereof
EP3962523A2 (en) 2019-05-03 2022-03-09 The United States of America, as represented by the Secretary, Department of Health and Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
MX2021013222A (en) 2019-05-03 2022-01-06 Genentech Inc Methods of treating cancer with an anti-pd-l1 antibody.
EP3968993A1 (en) 2019-05-14 2022-03-23 F. Hoffmann-La Roche AG Methods of using anti-cd79b immunoconjugates to treat follicular lymphoma
CA3137512A1 (en) 2019-05-14 2020-11-19 Werewolf Therapeutics, Inc. Separation moieties and methods and use thereof
US20230085439A1 (en) 2019-05-21 2023-03-16 University Of Georgia Research Foundation, Inc. Antibodies that bind human metapneumovirus fusion protein and their use
SG11202112453TA (en) 2019-05-23 2021-12-30 Ac Immune Sa Anti-tdp-43 binding molecules and uses thereof
AU2020291300A1 (en) 2019-06-10 2022-01-06 Chugai Seiyaku Kabushiki Kaisha Anti-T cell antigen-binding molecule to be used in combination with cytokine inhibitor
US20220380474A1 (en) 2019-07-02 2022-12-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic Monoclonal antibodies that bind egfrviii and their use
KR20220029710A (en) 2019-07-09 2022-03-08 스테이드슨 (베이징) 바이오팔마슈티칼스 캄퍼니 리미티드 Antibodies specifically recognizing Pseudomonas PCRV and uses thereof
AR119382A1 (en) 2019-07-12 2021-12-15 Hoffmann La Roche PRE-TARGETING ANTIBODIES AND METHODS OF USE
EP3998083A4 (en) 2019-07-12 2023-08-23 Chugai Seiyaku Kabushiki Kaisha ANTI-MUTATION TYPE FGFR3 ANTIBODY AND USE THEREOF
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
WO2021018925A1 (en) 2019-07-31 2021-02-04 F. Hoffmann-La Roche Ag Antibodies binding to gprc5d
WO2021019036A1 (en) 2019-07-31 2021-02-04 F. Hoffmann-La Roche Ag Dosage and administration regimen for the treatment or prevention of c5-related diseases by the use of the anti-c5 antibody crovalimab
EP4003526A2 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Antibodies binding to gprc5d
AU2020319677A1 (en) 2019-07-31 2022-01-06 F. Hoffmann-La Roche Ag Dosage and administration regimen for the treatment or prevention of C5-related diseases by the use of the anti-C5 antibody Crovalimab
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
TWI832183B (en) 2019-08-06 2024-02-11 香港商新旭生技股份有限公司 Antibodies that bind to pathological tau species and uses thereof
EP4028054A1 (en) 2019-09-12 2022-07-20 Genentech, Inc. Compositions and methods of treating lupus nephritis
CN114981303B (en) * 2019-09-13 2024-01-23 安徽俊义医疗管理咨询有限公司 Humanized anti-Claudin 18.2 (CLDN 18.2) antibodies
CR20220156A (en) 2019-09-18 2022-05-23 Genentech Inc ANTI-KLK7 ANTIBODIES, ANTI-KLK5 ANTIBODIES, MULTISPECIFIC ANTI-KLK5/KLK7 ANTIBODIES AND METHODS OF USE
CA3147179A1 (en) 2019-09-20 2021-03-25 Joseph Haw-Ling Lin Dosing for anti-tryptase antibodies
CN114746119A (en) 2019-09-27 2022-07-12 詹森生物科技公司 Anti-CEACAM antibodies and uses thereof
CN114555116A (en) 2019-09-27 2022-05-27 豪夫迈·罗氏有限公司 Administration for anti-TIGIT and anti-PD-L1 antagonist antibody therapy
JP2023507053A (en) * 2019-10-12 2023-02-21 バイオ-セラ ソリューションズ リミテッド Anti-CD20 Antibody Preparations and Use of Anti-CD20 Antibodies for Treatment of CD20-Positive Diseases
CN114945386A (en) 2019-10-18 2022-08-26 基因泰克公司 Methods of treating diffuse large B-cell lymphoma using anti-CD79b immunoconjugates
IL292378A (en) 2019-10-21 2022-06-01 Rhizen Pharmaceuticals Ag Compositions comprising a dhodh inhibitor for the treatment of acute myeloid leukemia
CA3155922A1 (en) 2019-11-06 2021-05-14 Huang Huang Diagnostic and therapeutic methods for treatment of hematologic cancers
EP4058593A4 (en) 2019-11-12 2023-11-15 Foundation Medicine, Inc. METHODS FOR DETECTING A FUSION GENE ENCODING A NEO-ANTIGEN
KR20220101147A (en) 2019-11-14 2022-07-19 웨어울프 세라퓨틱스, 인크. Activatable cytokine polypeptides and methods of use thereof
KR20220110539A (en) 2019-12-04 2022-08-08 에이씨 이뮨 에스에이 Novel molecules for therapeutic and diagnostic use
JP7751577B2 (en) 2019-12-06 2025-10-08 ジュノー セラピューティクス インコーポレイテッド Anti-idiotypic antibodies to the GPRC5D target binding domain and related compositions and methods
IL293430A (en) 2019-12-06 2022-07-01 Juno Therapeutics Inc Anti-idiotic antibodies to bcma-targeted binding domains and related compositions and methods
CN114867494B9 (en) 2019-12-13 2024-01-12 基因泰克公司 anti-LY 6G6D antibodies and methods of use
US11987632B2 (en) 2019-12-18 2024-05-21 Hoffmann-La Roche Inc. Antibodies binding to HLA-A2/MAGE-A4
CN113045655A (en) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 anti-OX 40 antibodies and uses thereof
IL294226B2 (en) 2019-12-27 2025-05-01 Chugai Pharmaceutical Co Ltd Anti-ctla-4 antibody and use thereof
IL321341A (en) 2020-01-06 2025-08-01 Vaccinex Inc Anti-ccr8 antibodies and uses thereof
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
EP4096708A1 (en) 2020-01-31 2022-12-07 Genentech, Inc. Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
CA3165319A1 (en) 2020-01-31 2021-08-05 Vincent K. Tuohy Anti-mullerian hormone receptor 2 antibodies and methods of use
CA3167808A1 (en) 2020-02-12 2021-08-19 Chugai Seiyaku Kabushiki Kaisha Anti-cd137 antigen-binding molecule for use in cancer treatment
BR112022014623A2 (en) 2020-02-14 2022-09-13 Jounce Therapeutics Inc ANTIBODIES AND FUSION PROTEINS THAT BIND CCR8 AND USES THEREOF
EP4093762A1 (en) 2020-02-20 2022-11-30 The United States of America, as represented by the Secretary, Department of Health and Human Services Epstein-barr virus monoclonal antibodies and uses thereof
EP4110826A4 (en) 2020-02-28 2024-08-14 Shanghai Henlius Biotech, Inc. Anti-cd137 constructs, multispecific antibody and uses thereof
JP7715722B2 (en) 2020-02-28 2025-07-30 上海復宏漢霖生物技術股▲フン▼有限公司 Anti-CD137 constructs and uses thereof
EP4114445A1 (en) 2020-03-06 2023-01-11 Ona Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
PE20230252A1 (en) 2020-03-13 2023-02-07 Genentech Inc ANTI-INTERLEUKIN-33 ANTIBODIES AND ITS USES FOR THEM
IL318520A (en) 2020-03-19 2025-03-01 Genentech Inc Isoform-selective anti-tgf-beta antibodies and methods of use
BR112022018847A2 (en) 2020-03-24 2022-11-22 Genentech Inc ANTIBODIES, NUCLEIC ACID, HOST CELL, CONJUGATES, PHARMACEUTICAL COMPOSITION, LONG-ACTION DELIVERY DEVICE FOR OCULAR DELIVERY, METHOD FOR TREAT A DISORDER AND USE OF THE ANTIBODY
KR20220159426A (en) 2020-03-26 2022-12-02 제넨테크, 인크. Modified mammalian cells with reduced host cell proteins
JP7674383B2 (en) 2020-03-30 2025-05-09 エフ. ホフマン-ラ ロシュ アーゲー Antibodies that bind VEGF and PDGF-B and methods of use - Patents.com
AR121706A1 (en) 2020-04-01 2022-06-29 Hoffmann La Roche OX40 AND FAP-TARGETED BSPECIFIC ANTIGEN-BINDING MOLECULES
JP2023520515A (en) 2020-04-03 2023-05-17 ジェネンテック, インコーポレイテッド Therapeutic and diagnostic methods for cancer
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
PE20230078A1 (en) 2020-04-24 2023-01-11 Hoffmann La Roche MODULATION OF ENZYMES AND PATHWAYS WITH SULFHYDRYL COMPOUNDS AND THEIR DERIVATIVES
TW202206111A (en) 2020-04-24 2022-02-16 美商建南德克公司 Methods of using anti-cd79b immunoconjugates
WO2021222181A2 (en) 2020-04-27 2021-11-04 The Regents Of The University Of California Isoform-independent antibodies to lipoprotein(a)
WO2021222167A1 (en) 2020-04-28 2021-11-04 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
WO2021225892A1 (en) 2020-05-03 2021-11-11 Levena (Suzhou) Biopharma Co., Ltd. Antibody-drug conjugates (adcs) comprising an anti-trop-2 antibody, compositions comprising such adcs, as well as methods of making and using the same
CA3178882A1 (en) 2020-05-08 2021-11-11 Alpine Immune Sciences, Inc. April and baff inhibitory immunomodulatory proteins and methods of use thereof
CA3177717A1 (en) 2020-05-13 2021-11-18 Adagene Ag Compositions and methods for treating cancer
CN113993900B (en) 2020-05-27 2023-08-04 舒泰神(北京)生物制药股份有限公司 Antibody specifically recognizing nerve growth factor and use thereof
CA3178417A1 (en) 2020-05-29 2021-12-02 Yu Chen Anti-cd200r1 antibodies and methods of use thereof
CN116529260A (en) 2020-06-02 2023-08-01 当康生物技术有限责任公司 anti-CD 93 constructs and uses thereof
TW202210515A (en) 2020-06-02 2022-03-16 美商當康生物科技有限公司 Anti-cd93 constructs and uses thereof
BR112022024996A2 (en) 2020-06-08 2022-12-27 Hoffmann La Roche ANTIBODIES, NUCLEIC ACID, HOST CELL, METHOD FOR PRODUCING AN ANTIBODY, PHARMACEUTICAL COMPOSITION, THERAPEUTIC AGENT, USE OF THE ANTIBODY, AND METHOD FOR TREATING AN INDIVIDUAL WITH HEPATITIS B
CN115698719A (en) 2020-06-12 2023-02-03 基因泰克公司 Methods and compositions for cancer immunotherapy
WO2021257503A1 (en) 2020-06-16 2021-12-23 Genentech, Inc. Methods and compositions for treating triple-negative breast cancer
IL298946A (en) 2020-06-18 2023-02-01 Genentech Inc Treatment with anti-TIGIT antibodies and PD-1 spindle-binding antagonists
IL296089A (en) 2020-06-19 2022-11-01 Hoffmann La Roche Antibodies bind to cd3
WO2021255143A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and folr1
CA3180951A1 (en) 2020-06-19 2021-12-23 Takayoshi Tanaka Anti-t cell antigen-binding molecule for use in combination with angiogenesis inhibitor
EP4168447A1 (en) 2020-06-19 2023-04-26 F. Hoffmann-La Roche AG Antibodies binding to cd3 and cd19
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
CN115734972A (en) 2020-06-22 2023-03-03 信达生物制药(苏州)有限公司 anti-CD 73 antibodies and uses thereof
EP4168443A1 (en) 2020-06-22 2023-04-26 Almirall S.A. Anti-il-36 antibodies and methods of use thereof
JP2023533217A (en) 2020-06-24 2023-08-02 ジェネンテック, インコーポレイテッド Apoptosis resistant cell line
US20250262293A1 (en) 2020-07-07 2025-08-21 BioNTech SE Therapeutic rna for hpv-positive cancer
MX2023000339A (en) 2020-07-10 2023-02-09 Hoffmann La Roche Antibodies which bind to cancer cells and target radionuclides to said cells.
BR112023000839A2 (en) 2020-07-17 2023-02-07 Genentech Inc ISOLATED ANTIBODIES, ISOLATED NUCLEIC ACID, HOST CELL, METHODS FOR PRODUCING AN ANTIBODY THAT BINDS TO HUMAN NOTCH2, FOR TREATING AN INDIVIDUAL WITH A MUCO-OBSTRUCTIVE PULMONARY DISEASE, AND FOR REDUCING THE NUMBER OF SECRETORY CELLS IN AN INDIVIDUAL, PHARMACEUTICAL COMPOSITION, ANTIBODY, ANTIBODY FOR USE AND USE OF THE ANTIBODY
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
KR20230133832A (en) 2020-07-29 2023-09-19 다이내믹큐어 바이오테크놀로지 엘엘씨 Anti-CD93 constructs and uses thereof
JP2023536602A (en) 2020-08-03 2023-08-28 ジェネンテック, インコーポレイテッド Diagnostic and therapeutic methods for lymphoma
EP4192868A1 (en) 2020-08-05 2023-06-14 Juno Therapeutics, Inc. Anti-idiotypic antibodies to ror1-targeted binding domains and related compositions and methods
BR112023002123A2 (en) 2020-08-07 2023-03-07 Genentech Inc FC FUSION PROTEIN, ISOLATED NUCLEIC ACIDS, METHOD OF PRODUCING FC FUSION PROTEIN, PHARMACEUTICAL FORMULATION, METHODS FOR EXPANDING THE NUMBER OF DENDRITIC CELLS (DCS) IN AN INDIVIDUAL AND FOR TREATMENT OF CANCER, EFFECTOR-FREE PROTEIN AND ANTI-FCRP
CN111759732B (en) * 2020-08-12 2024-12-06 河南省人民医院 A multi-channel connection pipeline and method for cryopreservation of peripheral blood hematopoietic stem cells
JP2023537761A (en) 2020-08-14 2023-09-05 エイシー イミューン ソシエテ アノニム Humanized anti-TDP-43 binding molecules and uses thereof
CA3190803A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Methods for treating multiple sclerosis with ocrelizumab
WO2022043517A2 (en) 2020-08-27 2022-03-03 Cureab Gmbh Anti-golph2 antibodies for macrophage and dendritic cell differentiation
TW202227625A (en) 2020-08-28 2022-07-16 美商建南德克公司 Crispr/cas9 multiplex knockout of host cell proteins
US20230303665A1 (en) 2020-08-28 2023-09-28 Sana Biotechnology, Inc. Modified anti-viral binding agents
MX2023002496A (en) 2020-09-04 2023-03-09 Hoffmann La Roche ANTIBODY THAT BINDS VASCULAR ENDOTHELIAL GROWTH FACTOR A (VEGF-A) AND ANGIOPOIETIN 2 (ANG2) AND METHODS OF USE.
AU2021341526A1 (en) 2020-09-14 2023-04-27 IGI Therapeutics SA Antibodies that bind to il1rap and uses thereof
MX2023002984A (en) 2020-09-15 2023-04-10 Bayer Ag NEW ANTI-A2AP ANTIBODIES AND USES THEREOF.
WO2022063262A1 (en) 2020-09-28 2022-03-31 Angitia Biopharmaceuticals Guangzhou Limited Anti-sclerostin constructs and uses thereof
KR20230104611A (en) 2020-09-30 2023-07-10 드렌 바이오, 인크. Anti-CD94 Antibodies and Methods of Using The Same
JP2023544407A (en) 2020-10-05 2023-10-23 ジェネンテック, インコーポレイテッド Administration for treatment with anti-FcRH5/anti-CD3 bispecific antibodies
US12037399B2 (en) 2020-10-07 2024-07-16 Dren Bio, Inc. Anti-Dectin-1 antibodies and methods of use thereof
WO2022079297A1 (en) 2020-10-16 2022-04-21 Ac Immune Sa Antibodies binding to alpha-synuclein for therapy and diagnosis
WO2022084210A1 (en) 2020-10-20 2022-04-28 F. Hoffmann-La Roche Ag Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
AR123855A1 (en) 2020-10-20 2023-01-18 Genentech Inc PEG-CONJUGATED ANTI-MERTK ANTIBODIES AND METHODS OF USE
AU2021366287A1 (en) 2020-10-20 2023-04-13 Kantonsspital St. Gallen Antibodies or antigen-binding fragments specifically binding to Gremlin-1 and uses thereof
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
IL302217A (en) 2020-11-04 2023-06-01 Genentech Inc Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
IL302400A (en) 2020-11-04 2023-06-01 Genentech Inc Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
WO2022104150A1 (en) 2020-11-12 2022-05-19 Tg Therapeutics, Inc. Triple combination to treat b-cell malignancies
KR20230113581A (en) 2020-11-25 2023-07-31 실리오 디벨럽먼트, 인크. Tumor-specific cleavable linkers
AR125581A1 (en) 2020-12-07 2023-08-02 UCB Biopharma SRL MULTI-SPECIFIC ANTIBODIES AND ANTIBODY COMBINATIONS
CN116802211A (en) 2020-12-07 2023-09-22 Ucb生物制药有限责任公司 Antibodies against interleukin-22
TW202237638A (en) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof
TW202237639A (en) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof
IL303656A (en) 2020-12-17 2023-08-01 Hoffmann La Roche ANTI-HLA-G antibodies and their use
WO2022132904A1 (en) 2020-12-17 2022-06-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies targeting sars-cov-2
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
TW202245808A (en) 2020-12-21 2022-12-01 德商拜恩迪克公司 Therapeutic rna for treating cancer
CN117098548A (en) 2020-12-23 2023-11-21 信达生物制药(苏州)有限公司 anti-B7-H3 antibodies and uses thereof
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
AU2022206061A1 (en) 2021-01-06 2023-07-06 F. Hoffmann-La Roche Ag Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody
WO2022152656A1 (en) 2021-01-12 2022-07-21 F. Hoffmann-La Roche Ag Split antibodies which bind to cancer cells and target radionuclides to said cells
AU2022207624A1 (en) 2021-01-13 2023-07-13 F. Hoffmann-La Roche Ag Combination therapy
WO2022162203A1 (en) 2021-01-28 2022-08-04 Vaccinvent Gmbh Method and means for modulating b-cell mediated immune responses
CN117120084A (en) 2021-01-28 2023-11-24 维肯芬特有限责任公司 Methods and means for modulating B cell-mediated immune responses
AU2022212599A1 (en) 2021-01-28 2023-08-17 Universität Ulm Method and means for modulating b-cell mediated immune responses
CA3209479A1 (en) 2021-02-03 2022-08-11 Mozart Therapeutics, Inc. Binding agents and methods of using the same
EP4288458A1 (en) 2021-02-03 2023-12-13 Genentech, Inc. Multispecific binding protein degrader platform and methods of use
CA3209136A1 (en) 2021-02-09 2022-08-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibodies targeting the spike protein of coronaviruses
AU2022220611A1 (en) 2021-02-09 2023-08-24 University Of Georgia Research Foundation, Inc. Human monoclonal antibodies against pneumococcal antigens
US20240226295A9 (en) 2021-02-15 2024-07-11 Takeda Pharmaceutical Company Limited Cell therapy compositions and methods for modulating tgf-b signaling
CN117157317A (en) 2021-02-26 2023-12-01 拜耳公司 Inhibitors of IL-11 or IL-11Ra for the treatment of abnormal uterine bleeding
EP4301467A1 (en) 2021-03-01 2024-01-10 Xilio Development, Inc. Combination of ctla4 and pd1/pdl1 antibodies for treating cancer
CN116917325A (en) 2021-03-01 2023-10-20 西里欧发展公司 Combination of masked CTLA4 and PD1/PDL1 antibodies for the treatment of cancer
JP2024509169A (en) 2021-03-03 2024-02-29 ソレント・セラピューティクス・インコーポレイテッド Antibody-drug conjugates including anti-BCMA antibodies
TW202302646A (en) 2021-03-05 2023-01-16 美商當康生物科技有限公司 Anti-vista constructs and uses thereof
US20240392004A1 (en) 2021-03-10 2024-11-28 Immunowake Inc. Immunomodulatory molecules and uses thereof
JP2024512377A (en) 2021-03-12 2024-03-19 ジェネンテック, インコーポレイテッド Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use
CA3213599A1 (en) 2021-03-15 2022-09-22 Genentech, Inc. Compositions and methods of treating lupus nephritis
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
TW202300648A (en) 2021-03-25 2023-01-01 美商當康生物科技有限公司 Anti-igfbp7 constructs and uses thereof
PE20240357A1 (en) 2021-03-30 2024-02-27 Bayer Ag ANTI-SEMA3A ANTIBODIES AND USES THEREOF
JP7717832B2 (en) 2021-04-10 2025-08-04 ジェンマブ エー/エス FOLR1-binding agents, conjugates thereof and methods of using same
AR125344A1 (en) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd ANTI-C1S ANTIBODY
CA3215965A1 (en) 2021-04-19 2022-10-27 Amy Shen Modified mammalian cells
JP2024514281A (en) 2021-04-23 2024-04-01 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Prevention or reduction of adverse effects related to NK cell-engaging agents
US20250066490A1 (en) 2021-04-23 2025-02-27 Profoundbio Us Co. Anti-cd70 antibodies, conjugates thereof and methods of using the same
WO2022228706A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
AU2021443318A1 (en) 2021-04-30 2023-09-07 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
JP2024516305A (en) 2021-05-03 2024-04-12 ユーシービー バイオファルマ エスアールエル antibody
WO2022236335A1 (en) 2021-05-07 2022-11-10 Alpine Immune Sciences, Inc. Methods of dosing and treatment with a taci-fc fusion immunomodulatory protein
MX2023012703A (en) 2021-05-07 2023-11-21 Viela Bio Inc Use of an anti-cd19 antibody to treat myasthenia gravis.
IL308351A (en) 2021-05-12 2024-01-01 Genentech Inc Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
EP4337317A1 (en) 2021-05-14 2024-03-20 Genentech, Inc. Agonists of trem2
WO2022243347A1 (en) * 2021-05-18 2022-11-24 Christian-Albrechts-Universität Zu Kiel Co-stimulatory multispecific antibodies
WO2022243261A1 (en) 2021-05-19 2022-11-24 F. Hoffmann-La Roche Ag Agonistic cd40 antigen binding molecules targeting cea
WO2022246259A1 (en) 2021-05-21 2022-11-24 Genentech, Inc. Modified cells for the production of a recombinant product of interest
EP4155321A1 (en) 2021-06-04 2023-03-29 Chugai Seiyaku Kabushiki Kaisha Anti-ddr2 antibodies and uses thereof
EP4351582B1 (en) 2021-06-09 2025-10-08 F. Hoffmann-La Roche AG Combination of a particular braf inhibitor (paradox breaker) and a pd-1 axis binding antagonist for use in the treatment of cancer
WO2022262808A1 (en) * 2021-06-16 2022-12-22 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric cd20 genes
WO2022266660A1 (en) 2021-06-17 2022-12-22 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
JP2024525188A (en) 2021-06-18 2024-07-10 セリーニ バイオ インコーポレイテッド Antibodies that bind to human fibrin or fibrinogen gamma C domain and methods of use - Patents.com
CR20240026A (en) 2021-06-25 2024-03-14 Chugai Pharmaceutical Co Ltd Anti–ctla-4 antibody
TWI879694B (en) 2021-06-25 2025-04-01 日商中外製藥股份有限公司 Use of anti-ctla-4 antibodies
IL309071A (en) 2021-07-02 2024-02-01 Genentech Inc Methods and compositions for treating cancer
TW202320857A (en) 2021-07-06 2023-06-01 美商普方生物製藥美國公司 Linkers, drug linkers and conjugates thereof and methods of using the same
TW202317633A (en) 2021-07-08 2023-05-01 美商舒泰神(加州)生物科技有限公司 Antibodies specifically recognizing tnfr2 and uses thereof
EP4370545A1 (en) 2021-07-12 2024-05-22 Genentech, Inc. Structures for reducing antibody-lipase binding
US20240327544A1 (en) 2021-07-13 2024-10-03 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
WO2023284714A1 (en) 2021-07-14 2023-01-19 舒泰神(北京)生物制药股份有限公司 Antibody that specifically recognizes cd40 and application thereof
JP2024527606A (en) 2021-07-14 2024-07-25 ジェネンテック, インコーポレイテッド Anti-C-C motif chemokine receptor 8 (CCR8) antibodies and methods of use
CN117730102A (en) 2021-07-22 2024-03-19 豪夫迈·罗氏有限公司 Heterodimeric Fc domain antibodies
JP2024526880A (en) 2021-07-22 2024-07-19 ジェネンテック, インコーポレイテッド Brain targeting compositions and methods of use thereof
CN117715936A (en) 2021-07-28 2024-03-15 豪夫迈·罗氏有限公司 Methods and compositions for treating cancer
MX2024001415A (en) 2021-07-30 2024-02-27 Ona Therapeutics S L Anti-cd36 antibodies and their use to treat cancer.
CN117897404A (en) 2021-08-02 2024-04-16 信达生物制药(苏州)有限公司 Anti-CD79b×CD3 bispecific antibodies and uses thereof
JP2024528217A (en) 2021-08-03 2024-07-26 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antibodies and methods of use
US20240336697A1 (en) 2021-08-07 2024-10-10 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
WO2023019239A1 (en) 2021-08-13 2023-02-16 Genentech, Inc. Dosing for anti-tryptase antibodies
GB202111905D0 (en) 2021-08-19 2021-10-06 UCB Biopharma SRL Antibodies
JP2024534067A (en) 2021-08-19 2024-09-18 エフ. ホフマン-ラ ロシュ アーゲー Multivalent anti-variant fc region antibodies and methods of use
AU2022332285A1 (en) 2021-08-23 2024-02-15 Immunitas Therapeutics, Inc. Anti-cd161 antibodies and uses thereof
IL310382A (en) 2021-08-27 2024-03-01 Genentech Inc Methods of treating tau pathologies
JP2024534853A (en) 2021-08-30 2024-09-26 ジェネンテック, インコーポレイテッド Anti-polybiquitin multispecific antibody
KR20240058167A (en) 2021-09-17 2024-05-03 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Synthetic humanized llama nanobody library for identification of SARS-COV-2 neutralizing antibodies and uses thereof
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same
TW202323810A (en) 2021-10-08 2023-06-16 日商中外製藥股份有限公司 Preparation methods for prefilled syringe preparations
TW202333802A (en) 2021-10-11 2023-09-01 德商拜恩迪克公司 Therapeutic rna for lung cancer
WO2023076876A1 (en) 2021-10-26 2023-05-04 Mozart Therapeutics, Inc. Modulation of immune responses to viral vectors
AU2022379952A1 (en) 2021-11-05 2024-05-16 Mab Biotec, Inc. Monoclonal antibodies against carcinoembryonic antigens, and their uses
JP2024544885A (en) 2021-11-10 2024-12-05 ジェネンテック, インコーポレイテッド Anti-interleukin-33 antibodies and uses thereof
AU2022389969A1 (en) 2021-11-16 2024-05-02 Genentech, Inc. Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
CA3235206A1 (en) 2021-11-16 2023-05-25 Davide BASCO Novel molecules for therapy and diagnosis
EP4437006A1 (en) 2021-11-26 2024-10-02 F. Hoffmann-La Roche AG Combination therapy of anti-tyrp1/anti-cd3 bispecific antibodies and tyrp1-specific antibodies
US20250066458A1 (en) 2021-12-06 2025-02-27 Beijing Solobio Genetechnology Co., Ltd. Bispecific Antibodies Specifically Binding to Klebsiella Pneumoniae O2 Antigen and O1 Antigen and Compositions Thereof
AR127887A1 (en) 2021-12-10 2024-03-06 Hoffmann La Roche ANTIBODIES THAT BIND CD3 AND PLAP
WO2023114829A1 (en) 2021-12-15 2023-06-22 Genentech, Inc. Stabilized il-18 polypeptides and uses thereof
EP4448579A1 (en) 2021-12-17 2024-10-23 Shanghai Henlius Biotech, Inc. Anti-ox40 antibodies and methods of use
WO2023109900A1 (en) 2021-12-17 2023-06-22 Shanghai Henlius Biotech, Inc. Anti-ox40 antibodies, multispecific antibodies and methods of use
CR20240246A (en) 2021-12-20 2024-07-19 Hoffmann La Roche AGONIST ANTI-LTBR ANTIBODIES AND BISPECIFIC ANTIBODIES THAT INCLUDE THEM
TW202337904A (en) 2022-01-07 2023-10-01 美商壯生和壯生企業創新公司 Materials and methods of il-1β binding proteins
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
EP4476259A1 (en) * 2022-02-08 2024-12-18 Amgen Inc. Codon-optimized nucleic acids encoding ocrelizumab
WO2023154824A1 (en) 2022-02-10 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that broadly target coronaviruses
AU2023221539A1 (en) 2022-02-16 2024-08-22 Ac Immune Sa Humanized anti-tdp-43 binding molecules and uses thereof
MA67298A1 (en) 2022-02-18 2025-03-28 Rakuten Medical, Inc. ANTI-PROGRAMMED CELL DEATH LIGAND 1 (PD-L1) ANTIBODY MOLECULES, ENCODING POLYNUCLEOTIDES AND METHODS OF USE
US20250243260A1 (en) 2022-03-07 2025-07-31 Alpine Immune Sciences, Inc. Immunomodulatory proteins of variant cd80 polypeptides, cell therapies and related methods and uses
JP2025509286A (en) 2022-03-10 2025-04-11 ビバソル, インコーポレイテッド Antibody-drug conjugates and uses thereof
JP2025509824A (en) 2022-03-18 2025-04-11 イボルブイミューン セラピューティクス, インコーポレイテッド Bispecific antibody fusion molecules and methods of use thereof
EP4496631A1 (en) 2022-03-23 2025-01-29 F. Hoffmann-La Roche AG Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
JP2025514610A (en) 2022-03-25 2025-05-09 シャンハイ・ヘンリウス・バイオテック・インコーポレイテッド Anti-MSLN antibodies and methods of use
WO2023192827A1 (en) 2022-03-26 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Bispecific antibodies to hiv-1 env and their use
WO2023186756A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Interferon gamma variants and antigen binding molecules comprising these
WO2023192881A1 (en) 2022-03-28 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
EP4504780A1 (en) 2022-04-01 2025-02-12 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
EP4504775A1 (en) 2022-04-08 2025-02-12 AC Immune SA Anti-tdp-43 binding molecules
CN119384432A (en) 2022-04-13 2025-01-28 基因泰克公司 Pharmaceutical compositions and methods of use of therapeutic proteins
KR20250004776A (en) 2022-04-13 2025-01-08 에프. 호프만-라 로슈 아게 Pharmaceutical compositions and methods of use of anti-CD20/anti-CD3 bispecific antibodies
WO2023203177A1 (en) 2022-04-20 2023-10-26 Kantonsspital St. Gallen Antibodies or antigen-binding fragments pan-specifically binding to gremlin-1 and gremlin-2 and uses thereof
KR20250006932A (en) 2022-05-03 2025-01-13 제넨테크, 인크. Anti-Ly6E antibodies, immunoconjugates and uses thereof
CN119487065A (en) 2022-05-09 2025-02-18 舒泰神(北京)生物制药股份有限公司 Antibodies specifically recognizing GDF15 and their applications
AR129268A1 (en) 2022-05-11 2024-08-07 Hoffmann La Roche ANTIBODY THAT BINDS TO VEGF-A AND IL6 AND METHODS OF USE
JP2025517650A (en) 2022-05-11 2025-06-10 ジェネンテック, インコーポレイテッド Administration for Treatment with Anti-FcRH5/Anti-CD3 Bispecific Antibody
WO2023235699A1 (en) 2022-05-31 2023-12-07 Jounce Therapeutics, Inc. Antibodies to lilrb4 and uses thereof
US11884740B1 (en) 2022-06-01 2024-01-30 Tg Therapeutics, Inc. Anti-CD20 antibody compositions
US11814439B1 (en) 2022-06-01 2023-11-14 Tg Therapeutics, Inc. Anti-CD20 antibody compositions
US11807689B1 (en) 2022-06-01 2023-11-07 Tg Therapeutics, Inc. Anti-CD20 antibody compositions
US11965032B1 (en) 2022-06-01 2024-04-23 Tg Therapeutics, Inc. Anti-CD20 antibody compositions
IL317449A (en) 2022-06-07 2025-02-01 Genentech Inc Method for determining the efficacy of a lung cancer treatment comprising an anti-pd-l1 antagonist and an anti-tigit antagonist antibody
WO2023237706A2 (en) 2022-06-08 2023-12-14 Institute For Research In Biomedicine (Irb) Cross-specific antibodies, uses and methods for discovery thereof
EP4536290A1 (en) 2022-06-08 2025-04-16 Angiex, Inc. Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same
TW202417042A (en) 2022-07-13 2024-05-01 美商建南德克公司 Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
IL318252A (en) 2022-07-19 2025-03-01 Genentech Inc Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020407A1 (en) 2022-07-19 2024-01-25 Staidson Biopharma Inc. Antibodies specifically recognizing b- and t-lymphocyte attenuator (btla) and uses thereof
EP4558528A1 (en) 2022-07-22 2025-05-28 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
EP4565329A1 (en) 2022-08-01 2025-06-11 The United States of America, as represented by the Secretary, Department of Health and Human Services Monoclonal antibodies that bind to the underside of influenza viral neuraminidase
WO2024030956A2 (en) 2022-08-03 2024-02-08 Mozart Therapeutics, Inc. Cd39-specific binding agents and methods of using the same
MA71684A (en) 2022-08-05 2025-05-30 Janssen Biotech, Inc. TRANSFERRIN RECEPTOR-BINDING PROTEINS FOR THE TREATMENT OF BRAIN TUMORS
MA71685A (en) 2022-08-05 2025-05-30 Janssen Biotech, Inc. CD98-BINDING CONSTRUCTS FOR THE TREATMENT OF BRAIN TUMORS
CN119698274A (en) 2022-08-19 2025-03-25 亿一生物医药开发(上海)有限公司 Preparations containing G-CSF and uses thereof
EP4577578A1 (en) 2022-08-22 2025-07-02 Abdera Therapeutics Inc. Dll3 binding molecules and uses thereof
JP2025529903A (en) 2022-08-26 2025-09-09 ジュノー セラピューティクス インコーポレイテッド Antibodies and chimeric antigen receptors specific for delta-like ligand 3 (DLL3)
CN120153254A (en) 2022-09-01 2025-06-13 基因泰克公司 Bladder cancer treatment and diagnosis
WO2024054822A1 (en) 2022-09-07 2024-03-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Engineered sars-cov-2 antibodies with increased neutralization breadth
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
WO2024064826A1 (en) 2022-09-22 2024-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
WO2024067344A1 (en) 2022-09-27 2024-04-04 舒泰神(北京)生物制药股份有限公司 Antibody for specifically recognizing light and use thereof
WO2024077018A2 (en) 2022-10-04 2024-04-11 Alpine Immune Sciences, Inc. Methods and uses of taci-fc fusion immunomodulatory protein
EP4598959A1 (en) 2022-10-07 2025-08-13 Genentech, Inc. Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies
AU2023365967A1 (en) 2022-10-20 2025-06-05 Beijing Solobio Genetechnology Co., Ltd. Antibody combination specifically binding to trail or fasl, and bispecific antibody
TW202426505A (en) 2022-10-25 2024-07-01 美商建南德克公司 Therapeutic and diagnostic methods for cancer
CN120152989A (en) 2022-11-03 2025-06-13 豪夫迈·罗氏有限公司 Combination therapy of anti-CD19/anti-CD28 bispecific antibodies
KR20250099702A (en) 2022-11-04 2025-07-02 길리애드 사이언시즈, 인코포레이티드 Anticancer therapy using a combination of anti-CCR8 antibodies, chemotherapy, and immunotherapy
JP2025537197A (en) 2022-11-08 2025-11-14 ジェネンテック, インコーポレイテッド Compositions and methods for treating childhood-onset idiopathic nephrotic syndrome
IL320220A (en) 2022-11-09 2025-06-01 Cis Biopharma Ag Anti-l1-cam antibodies and their uses for diagnostic and therapeutic applications
WO2024100170A1 (en) 2022-11-11 2024-05-16 F. Hoffmann-La Roche Ag Antibodies binding to hla-a*02/foxp3
WO2024108053A1 (en) 2022-11-17 2024-05-23 Sanofi Ceacam5 antibody-drug conjugates and methods of use thereof
KR20250111141A (en) 2022-11-25 2025-07-22 추가이 세이야쿠 가부시키가이샤 Method for producing protein
EP4631974A1 (en) 2022-12-08 2025-10-15 Nanjing Vazyme Biotech Co., Ltd. Antibody specifically binding to rsv
AU2023393653A1 (en) 2022-12-14 2025-05-22 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137381A1 (en) 2022-12-19 2024-06-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies for treating sars-cov-2 infection
WO2024145398A1 (en) 2022-12-27 2024-07-04 Yale University Antibody drug conjugates
AR131638A1 (en) 2023-01-18 2025-04-16 Genentech Inc MULTISPECIFIC ANTIBODIES AND THEIR USES
EP4655007A1 (en) 2023-01-23 2025-12-03 Yale University Antibody oligonucleotide conjugates
WO2024156672A1 (en) 2023-01-25 2024-08-02 F. Hoffmann-La Roche Ag Antibodies binding to csf1r and cd3
WO2024163009A1 (en) 2023-01-31 2024-08-08 Genentech, Inc. Methods and compositions for treating urothelial bladder cancer
TW202436339A (en) 2023-01-31 2024-09-16 瑞士商赫孚孟拉羅股份公司 Use for treating cancer selected from non-small cell lung cancer or triple negative breast cancer
WO2024173607A2 (en) 2023-02-14 2024-08-22 Evolveimmune Therapeutics, Inc. Combination of bispecific antibodies and chimeric antigen receptor t cells for treatment
CN120712282A (en) 2023-02-17 2025-09-26 阿布林克斯有限公司 Polypeptides that bind neonatal FC receptors
CN120917043A (en) 2023-03-08 2025-11-07 Ac免疫有限公司 Anti-TDP-43 binding molecules and uses thereof
WO2024191785A1 (en) 2023-03-10 2024-09-19 Genentech, Inc. Fusions with proteases and uses thereof
WO2024188965A1 (en) 2023-03-13 2024-09-19 F. Hoffmann-La Roche Ag Combination therapy employing a pd1-lag3 bispecific antibody and an hla-g t cell bispecific antibody
WO2024197302A1 (en) 2023-03-23 2024-09-26 Yale University Compositions and methods for delivering antibody oligonucleotide conjugates for exon skipping
US20240327522A1 (en) 2023-03-31 2024-10-03 Genentech, Inc. Anti-alpha v beta 8 integrin antibodies and methods of use
WO2024211236A2 (en) 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211234A1 (en) 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211235A1 (en) 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
AU2024251934A1 (en) 2023-04-12 2025-10-30 Shanghai Kangabio Co., Limited Multifunctional molecules comprising masked interleukin 12 and methods of use
AU2024257248A1 (en) 2023-04-17 2025-11-06 Peak Bio, Inc. Antibodies and antibody-drug conjugates and methods of use and synthetic processes and intermediates
AU2024270495A1 (en) 2023-05-05 2025-10-09 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
AR132623A1 (en) 2023-05-08 2025-07-16 Hoffmann La Roche TARGETED INTERFERON FUSION PROTEINS AND METHODS OF USE
WO2024233646A1 (en) 2023-05-10 2024-11-14 Genentech, Inc. Methods and compositions for treating cancer
WO2024238537A1 (en) 2023-05-16 2024-11-21 F. Hoffmann-La Roche Ag Pd-1 -regulated il-2 immunocytokine and uses thereof
WO2024243423A1 (en) 2023-05-24 2024-11-28 Mozart Therapeutics, Inc. Cd8-specific binding proteins and methods of using the same
WO2024243355A1 (en) 2023-05-24 2024-11-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that target the rh5 complex of blood-stage plasmodium falciparum
WO2024246356A1 (en) 2023-06-01 2024-12-05 Pierre Fabre Medicament Silenced antibody-based anti-met constructs for the treatment of tumors and metastasis
TW202504641A (en) 2023-06-08 2025-02-01 美商建南德克公司 Macrophage signatures for diagnostic and therapeutic methods for lymphoma
TW202502809A (en) 2023-06-22 2025-01-16 美商建南德克公司 Antibodies and uses thereof
WO2024263845A1 (en) 2023-06-22 2024-12-26 Genentech, Inc. Treatment of multiple myeloma
WO2024263904A1 (en) 2023-06-23 2024-12-26 Genentech, Inc. Methods for treatment of liver cancer
WO2024263195A1 (en) 2023-06-23 2024-12-26 Genentech, Inc. Methods for treatment of liver cancer
WO2025002410A1 (en) 2023-06-30 2025-01-02 Evive Biotechnology (Shanghai) Ltd G-csf dimer for use in the treatment or prevention of chemotherapy or radiotherapy induced neutropenia
WO2025014896A1 (en) 2023-07-07 2025-01-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Humanized 40h3 antibody
TW202517294A (en) 2023-07-11 2025-05-01 美商建南德克公司 Compositions and methods for treating multiple sclerosis
WO2025024233A1 (en) 2023-07-21 2025-01-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Bispecific antibodies that broadly target coronaviruses
WO2025021838A1 (en) 2023-07-26 2025-01-30 F. Hoffmann-La Roche Ag Antibodies binding to cd3
WO2025027052A1 (en) 2023-07-31 2025-02-06 Sixpeaks Bio Ag Antibody conjugates and fusion proteins
WO2025034806A1 (en) 2023-08-08 2025-02-13 Wisconsin Alumni Research Foundation Single-domain antibodies and variants thereof against fibroblast activation protein
WO2025032070A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Anti-a-beta protein antibodies, methods and uses thereof
WO2025032071A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Mono and multispecific anti-trem2 antibodies, methods and uses thereof
WO2025032069A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Mono and multispecific anti-trem2 antibodies, methods and uses thereof
WO2025038492A1 (en) 2023-08-11 2025-02-20 Abalytics Oncology, Inc. Anti-ctla-4 antibodies and related binding molecules and methods and uses thereof
WO2025049905A1 (en) 2023-09-01 2025-03-06 Gennao Bio, Inc. Dnase co-expression in host cells
WO2025045251A2 (en) 2023-09-03 2025-03-06 Kira Pharmaceuticals (Us) Llc Multispecific constructs comprising anti-factor d moiety
TW202525856A (en) 2023-09-08 2025-07-01 美商Mlab生物科學有限公司 Bifunctional proteins and uses thereof
WO2025059037A1 (en) 2023-09-11 2025-03-20 Evolveimmune Therapeutics, Inc. Bispecific antibody fusion molecules targeting b7-h4 and cd3 and methods of use thereof
WO2025064539A1 (en) 2023-09-19 2025-03-27 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Herv-e antibodies and methods of their use
WO2025064890A1 (en) 2023-09-20 2025-03-27 Evolveimmune Therapeutics, Inc. Bispecific antibody fusion molecules targeting cd180 and cd3 and methods of use thereof
WO2025064885A1 (en) 2023-09-20 2025-03-27 Evolveimmune Therapeutics, Inc. Multispecific antibodies that bind cd3 and cd2 and methods of use thereof
TW202517673A (en) 2023-09-25 2025-05-01 瑞士商赫孚孟拉羅股份公司 Antibody that binds to c3bbb
US20250115680A1 (en) 2023-09-26 2025-04-10 Profoundbio Us Co. Ptk7 binding agents, conjugates thereof and methods of using the same
TW202517674A (en) 2023-10-19 2025-05-01 德商拜耳廠股份有限公司 Anti-gpc3 antibodies and radioconjugates thereof
WO2025099120A1 (en) 2023-11-09 2025-05-15 F. Hoffmann-La Roche Ag Multispecific antibodies with conditional activity
WO2025106474A1 (en) 2023-11-14 2025-05-22 Genentech, Inc. Therapeutic and diagnostic methods for treating cancer with anti-fcrh5/anti-cd3 bispecific antibodies
WO2025106427A1 (en) 2023-11-14 2025-05-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing and protective monoclonal antibodies against respiratory syncytial virus (rsv)
WO2025111402A1 (en) 2023-11-21 2025-05-30 Board Of Regents Of The University Of Nebraska Anti-amyloid beta antibodies and related compositions and methods thereof
WO2025117639A1 (en) 2023-11-27 2025-06-05 Profoundbio Us Co. Antibodies and methods for ptk7 detection
WO2025117516A1 (en) 2023-11-30 2025-06-05 Genzyme Corporation Methods for treating cd20-related disorders
WO2025117384A1 (en) 2023-12-01 2025-06-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Broadly neutralizing influenza hemagglutinin stem-directed antibodies
WO2025120867A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and anti-vegfr2 antibodies
WO2025120866A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and agents stabilizing or increasing expression of cldn18.2
WO2025121445A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and agents stabilizing or increasing expression of cldn18.2
WO2025125118A1 (en) 2023-12-11 2025-06-19 F. Hoffmann-La Roche Ag Protease activatable fc domain binding molecules
WO2025125386A1 (en) 2023-12-14 2025-06-19 F. Hoffmann-La Roche Ag Antibodies that bind to folr1 and methods of use
WO2025137410A1 (en) 2023-12-20 2025-06-26 Apogee Therapeutics, Inc. Pharmaceutical compositions of anti-il-13 antibodies with and without c-terminal lysine
WO2025137523A2 (en) 2023-12-20 2025-06-26 Apogee Therapeutics, Inc. Pharmaceutical formulations of antibodies that bind interleukin 13
WO2025137344A1 (en) 2023-12-20 2025-06-26 Bristol-Myers Squibb Company Antibodies targeting il-18 receptor beta (il-18rβ) and related methods
WO2025132503A1 (en) 2023-12-20 2025-06-26 F. Hoffmann-La Roche Ag Antibodies binding to ceacam5
WO2025137284A2 (en) 2023-12-21 2025-06-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Broadly neutralizing antibodies against sars-cov-2 and sars-cov variants
WO2025133290A1 (en) 2023-12-21 2025-06-26 Temper Bio Protein for immune regulation
WO2025133042A2 (en) 2023-12-22 2025-06-26 F. Hoffmann-La Roche Ag Activatable fusion proteins and methods of use
US20250296992A1 (en) 2024-01-10 2025-09-25 Genmab A/S Slitrk6 binding agents, conjugates thereof and methods of using the same
WO2025149633A1 (en) 2024-01-12 2025-07-17 Laigo Bio B.V. Bispecific antigen binding proteins
WO2025179281A1 (en) 2024-02-23 2025-08-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Treatment of cardiovascular disease with antxr1 antibodies
WO2025184416A1 (en) 2024-02-27 2025-09-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single-domain antibodies and bispecific antibodies against hiv-1 and their use
WO2025184421A1 (en) 2024-02-28 2025-09-04 Juno Therapeutics, Inc. Chimeric antigen receptors and antibodies specific for delta-like ligand 3 (dll3) and related methods
WO2025181219A1 (en) 2024-02-29 2025-09-04 Genmab A/S Egfr and c-met bispecific binding agents, conjugates thereof and methods of using the same
WO2025181189A1 (en) 2024-03-01 2025-09-04 F. Hoffmann-La Roche Ag Antibodies binding to cd3
WO2025186332A1 (en) 2024-03-05 2025-09-12 Ac Immune Sa Vectorized anti-tdp-43 antibodies
WO2025199352A2 (en) 2024-03-20 2025-09-25 Juno Therapeutics, Inc. Antibodies specific for solute carrier family 34 member 2 (slc34a2)
WO2025196639A1 (en) 2024-03-21 2025-09-25 Seagen Inc. Cd25 antibodies, antibody-drug conjugates, and uses thereof
WO2025215060A1 (en) 2024-04-11 2025-10-16 F. Hoffmann-La Roche Ag Antibodies that specifically bind modified oligonucleotides
WO2025215124A2 (en) 2024-04-12 2025-10-16 F. Hoffmann-La Roche Ag Combination treatment of glofitamab and chemotherapy
WO2025222129A2 (en) 2024-04-19 2025-10-23 Mozart Therapeutics, Inc. Engineered cytokines and targeted cytokine delivery
WO2025226603A1 (en) 2024-04-22 2025-10-30 Surface Oncology, LLC Methods for treating cancer using anti-ccr8 antibodies
WO2025226808A1 (en) 2024-04-24 2025-10-30 Genentech, Inc. Compositions and methods of treating lupus nephritis
WO2025233264A1 (en) 2024-05-07 2025-11-13 Innate Pharma Use of cd73 blocking agents in combination with anti-cd20 x cd3 t cell engagers
WO2025233266A1 (en) 2024-05-07 2025-11-13 Innate Pharma Use of cd39 blocking agents in combination with anti-cd20 x cd3 t cell engagers
WO2025238187A1 (en) 2024-05-15 2025-11-20 Cis Biopharma Ag Immunoconjugates targeting l1-cam
WO2025240670A2 (en) 2024-05-15 2025-11-20 Abalytics Oncology, Inc. Anti-pd-1 antibodies and related binding molecules and methods and uses thereof
WO2025238133A1 (en) 2024-05-17 2025-11-20 UCB Biopharma SRL Multispecific antibody with binding specificity for il-11 and il-17
WO2025238135A2 (en) 2024-05-17 2025-11-20 UCB Biopharma SRL Antibody with binding specificity for il-11

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2002128A (en) * 1934-02-19 1935-05-21 Ray A Reidenbaugh Display rack
IL47062A (en) 1975-04-10 1979-07-25 Yeda Res & Dev Process for diminishing antigenicity of tissues to be usedas transplants by treatment with glutaraldehyde
US4665077A (en) 1979-03-19 1987-05-12 The Upjohn Company Method for treating rejection of organ or skin grafts with 6-aryl pyrimidine compounds
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
DD266710A3 (en) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie Process for the biotechnical production of alkaline phosphatase
US4879231A (en) 1984-10-30 1989-11-07 Phillips Petroleum Company Transformation of yeasts of the genus pichia
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US5576195A (en) * 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
GB8610600D0 (en) 1986-04-30 1986-06-04 Novo Industri As Transformation of trichoderma
US5567610A (en) 1986-09-04 1996-10-22 Bioinvent International Ab Method of producing human monoclonal antibodies and kit therefor
US6893625B1 (en) * 1986-10-27 2005-05-17 Royalty Pharma Finance Trust Chimeric antibody with specificity to human B cell surface antigen
IL85035A0 (en) * 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
HUT53672A (en) 1988-02-25 1990-11-28 Gen Hospital Corp Quick immunoselective cloning process
US5506126A (en) * 1988-02-25 1996-04-09 The General Hospital Corporation Rapid immunoselection cloning method
IL85746A (en) 1988-03-15 1994-05-30 Yeda Res & Dev Preparations comprising t-lymphocyte cells treated with 8-methoxypsoralen or cell membranes separated therefrom for preventing or treating autoimmune diseases
US4861579A (en) * 1988-03-17 1989-08-29 American Cyanamid Company Suppression of B-lymphocytes in mammals by administration of anti-B-lymphocyte antibodies
FI891226A7 (en) 1988-04-28 1989-10-29 The Board Of Trustees Of The Leland Anti-T-cell receptor determinants for the treatment of autoimmune disease
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
IL162181A (en) 1988-12-28 2006-04-10 Pdl Biopharma Inc A method of producing humanized immunoglubulin, and polynucleotides encoding the same
WO1990008187A1 (en) 1989-01-19 1990-07-26 Dana Farber Cancer Institute Soluble two domain cd2 protein
KR920700674A (en) 1989-03-21 1992-08-10 원본미기재 Vaccinations and Methods for Diseases arising from Inventive Responses by Specific T Cell Populations
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
JP3072330B2 (en) 1989-07-19 2000-07-31 ジ・イミューン・レスポンス・コーポレーション T cell receptor peptides for the treatment of autoimmune and malignant diseases
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US5229275A (en) 1990-04-26 1993-07-20 Akzo N.V. In-vitro method for producing antigen-specific human monoclonal antibodies
WO1992022653A1 (en) * 1991-06-14 1992-12-23 Genentech, Inc. Method for making humanized antibodies
EP0604580A1 (en) 1991-09-19 1994-07-06 Genentech, Inc. EXPRESSION IN E. COLI OF ANTIBODY FRAGMENTS HAVING AT LEAST A CYSTEINE PRESENT AS A FREE THIOL, USE FOR THE PRODUCTION OF BIFUNCTIONAL F(ab') 2? ANTIBODIES
ES2136092T3 (en) 1991-09-23 1999-11-16 Medical Res Council PROCEDURES FOR THE PRODUCTION OF HUMANIZED ANTIBODIES.
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5736137A (en) * 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
PL174721B1 (en) * 1992-11-13 1998-09-30 Idec Pharma Corp Monoclonal antibody anty-cd2
US7744877B2 (en) 1992-11-13 2010-06-29 Biogen Idec Inc. Expression and use of anti-CD20 Antibodies
US5417972A (en) 1993-08-02 1995-05-23 The Board Of Trustees Of The Leland Stanford Junior University Method of killing B-cells in a complement independent and an ADCC independent manner using antibodies which specifically bind CDIM
US5595721A (en) * 1993-09-16 1997-01-21 Coulter Pharmaceutical, Inc. Radioimmunotherapy of lymphoma using anti-CD20
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US6267958B1 (en) * 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US20010056066A1 (en) * 1996-07-26 2001-12-27 Smithkline Beecham Corporation Method of treating immune cell mediated systemic diseases
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
EP0999853B1 (en) 1997-06-13 2003-01-02 Genentech, Inc. Stabilized antibody formulation
US6171586B1 (en) * 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
CA2293829C (en) 1997-06-24 2011-06-14 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
AU8296098A (en) * 1997-07-08 1999-02-08 Board Of Regents, The University Of Texas System Compositions and methods for homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells
JP2001521909A (en) 1997-10-31 2001-11-13 ジェネンテク・インコーポレイテッド Methods and compositions comprising glycoprotein glycoforms
US6242195B1 (en) * 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
ES2292236T3 (en) 1998-04-02 2008-03-01 Genentech, Inc. VARIATIONS OF ANTIBODIES AND THEIR FRAGMENTS.
US6528624B1 (en) * 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6194551B1 (en) * 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
EP2990054A1 (en) * 1998-08-11 2016-03-02 Biogen Inc. Combination therapies for B-cell lyphomas comprising administration of anti-CD20 antibody
US6224866B1 (en) * 1998-10-07 2001-05-01 Biocrystal Ltd. Immunotherapy of B cell involvement in progression of solid, nonlymphoid tumors
DK2055313T3 (en) 1998-11-09 2015-07-27 Biogen Inc Treatment of Hematologic Malignancies Related to Circulating Tumor Cells Using Chimeric Anti-CD20 Antibody
MXPA01004649A (en) 1998-11-09 2002-05-06 Idec Pharma Corp Chimeric anti-cd20 antibody treatment of patients receiving bmt or pbsc transplants.
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
CN1763097B (en) 1999-01-15 2011-04-13 杰南技术公司 Polypeptide variants with altered effector function
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
EP1035172A3 (en) * 1999-03-12 2002-11-27 Fuji Photo Film Co., Ltd. Azomethine compound and oily magenta ink
HK1043312B (en) 1999-05-07 2006-07-28 Genentech, Inc. Treatment of autoimmune diseases with antagonists which bind to b cell surface markers
DK1194167T3 (en) 1999-06-09 2009-11-16 Immunomedics Inc Immunotherapy of autoimmune diseases using B-cell specific antibodies
ITMI991299A1 (en) * 1999-06-11 2000-12-11 Consiglio Nazionale Ricerche USE OF ANTIBODIES AGAINST SURFACE ANTIGENS FOR THE TREATMENT OF DISEASE TRANSPLANT AGAINST GUESTS
DE19930748C2 (en) * 1999-07-02 2001-05-17 Infineon Technologies Ag Method for producing EEPROM and DRAM trench memory cell areas on a chip
CN1373672A (en) 1999-07-12 2002-10-09 杰南技术公司 Blockade of the immune response to foreign antigens using an antagonist that binds CD20
US6451284B1 (en) 1999-08-11 2002-09-17 Idec Pharmaceuticals Corporation Clinical parameters for determining hematologic toxicity prior to radioimmunotheraphy
MXPA02001398A (en) 1999-08-11 2002-08-12 Idec Pharma Corp Treatment of patients having non-hodgkins lymphoma with bone marrow involvement with anti-cd20 antibodies.
US8557244B1 (en) 1999-08-11 2013-10-15 Biogen Idec Inc. Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody
AU6929100A (en) * 1999-08-23 2001-03-19 Biocrystal Limited Methods and compositions for immunotherapy of b cell involvement in promotion ofa disease condition comprising multiple sclerosis
JP2003513937A (en) * 1999-11-08 2003-04-15 アイデック・ファーマシューティカルズ・コーポレイション Treatment of B-cell malignancy using anti-CD20 antibodies and / or anti-CD40L antibodies in combination with chemotherapeutic agents and radiation therapy
US20020006404A1 (en) * 1999-11-08 2002-01-17 Idec Pharmaceuticals Corporation Treatment of cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
US20020009427A1 (en) * 2000-03-24 2002-01-24 Wolin Maurice J. Methods of therapy for non-hodgkin's lymphoma
US20030185796A1 (en) * 2000-03-24 2003-10-02 Chiron Corporation Methods of therapy for non-hodgkin's lymphoma
KR20020091170A (en) 2000-03-31 2002-12-05 아이덱 파마슈티칼즈 코포레이션 Combined use of anti-cytokine antibodies or antagonists and anti-cd20 for the treatment of b cell lymphoma
LT2857516T (en) * 2000-04-11 2017-09-11 Genentech, Inc. Multivalent antibodies and uses therefor
JP2003531178A (en) * 2000-04-25 2003-10-21 アイデック ファーマスーティカルズ コーポレイション Intrathecal administration of rituximab for the treatment of central nervous system lymphoma
CA2411102A1 (en) 2000-06-20 2001-12-27 Idec Pharmaceutical Corporation Cold anti-cd20 antibody/radiolabeled anti-cd22 antibody combination
JP2003535907A (en) * 2000-06-22 2003-12-02 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Method for promoting antibody-induced cell lysis and treating cancer
MXPA03000306A (en) 2000-07-12 2004-04-05 Idec Pharma Corp Treatment of b cell malignancies using combination of b cell depleting antibody and immune modulating antibody related applications.
US20020058029A1 (en) * 2000-09-18 2002-05-16 Nabil Hanna Combination therapy for treatment of autoimmune diseases using B cell depleting/immunoregulatory antibody combination
AU2002213357A1 (en) * 2000-10-20 2002-05-06 Idec Pharmaceuticals Corporation Variant igg3 rituxan r and therapeutic use thereof
KR20100031769A (en) * 2000-12-28 2010-03-24 알투스 파마슈티컬스 인코포레이티드 Crystals of whole antibodies and fragments thereof and methods for making and using them
WO2002096948A2 (en) 2001-01-29 2002-12-05 Idec Pharmaceuticals Corporation Engineered tetravalent antibodies and methods of use
AU2002240120B2 (en) 2001-01-29 2008-05-08 Biogen Idec Inc. Modified antibodies and methods of use
US20030103971A1 (en) 2001-11-09 2003-06-05 Kandasamy Hariharan Immunoregulatory antibodies and uses thereof
US20030003097A1 (en) 2001-04-02 2003-01-02 Idec Pharmaceutical Corporation Recombinant antibodies coexpressed with GnTIII
US20020197256A1 (en) * 2001-04-02 2002-12-26 Genentech, Inc. Combination therapy
WO2003061694A1 (en) 2001-05-10 2003-07-31 Seattle Genetics, Inc. Immunosuppression of the humoral immune response by anti-cd20 antibodies
JP2005515161A (en) 2001-06-14 2005-05-26 インターミューン インコーポレイテッド Combination therapy of γ-interferon and B cell specific antibody
US7321026B2 (en) 2001-06-27 2008-01-22 Skytech Technology Limited Framework-patched immunoglobulins
AU2002327037A1 (en) * 2001-09-20 2003-04-01 Board Of Regents, The University Of Texas System Measuring circulating therapeutic antibody, antigen and antigen/antibody complexes using elisa assays
DK1443961T3 (en) * 2001-10-25 2009-08-24 Genentech Inc Glycoprotein compositions
US7127096B2 (en) * 2001-11-20 2006-10-24 Accuimage Diagnostics Corp. Method and software for improving coronary calcium scoring consistency
JP2005538034A (en) 2001-12-07 2005-12-15 カイロン コーポレイション Treatment of non-Hodgkin lymphoma
US20040093621A1 (en) * 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
EP1519959B1 (en) * 2002-02-14 2014-04-02 Immunomedics, Inc. Anti-cd20 antibodies and fusion proteins thereof and methods of use
US20040002587A1 (en) * 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US20030180292A1 (en) * 2002-03-14 2003-09-25 Idec Pharmaceuticals Treatment of B cell malignancies using anti-CD40L antibodies in combination with anti-CD20 antibodies and/or chemotherapeutics and radiotherapy
US20030219818A1 (en) * 2002-05-10 2003-11-27 Bohen Sean P. Methods and compositions for determining neoplastic disease responsiveness to antibody therapy
WO2004032828A2 (en) 2002-07-31 2004-04-22 Seattle Genetics, Inc. Anti-cd20 antibody-drug conjugates for the treatment of cancer and immune disorders
ES2524694T3 (en) 2002-10-17 2014-12-11 Genmab A/S Human monoclonal antibodies against CD20
WO2004056312A2 (en) 2002-12-16 2004-07-08 Genentech, Inc. Immunoglobulin variants and uses thereof
PT1613350E (en) * 2003-04-09 2009-06-24 Genentech Inc Therapy of autoimmune disease in a patient with an inadequate response to a tnf-alpha inhibitor
AR044388A1 (en) 2003-05-20 2005-09-07 Applied Molecular Evolution CD20 UNION MOLECULES
AR049200A1 (en) 2004-06-04 2006-07-05 Genentech Inc METHOD TO TREAT MULTIPLE SCLEROSIS WITH A COMPOSITION CONTAINING A CD20 ANTIBODY
JP2008545958A (en) * 2005-05-20 2008-12-18 ジェネンテック・インコーポレーテッド Pretreatment of biological samples from subjects with autoimmune disease
US8144978B2 (en) * 2007-08-01 2012-03-27 Tandent Vision Science, Inc. System and method for identifying complex tokens in an image
KR101041914B1 (en) * 2008-06-26 2011-06-15 부산대학교 산학협력단 De-differentiated cells by selenium, preparation method thereof and use thereof
TW201438738A (en) 2008-09-16 2014-10-16 Genentech Inc Method for treating progressive multiple sclerosis

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174124B2 (en) 2013-12-17 2019-01-08 Genentech, Inc. Anti-CD3 antibodies and methods of use
US12466896B2 (en) 2013-12-17 2025-11-11 Genentech, Inc. Anti-CD3 antibodies and methods of use
US11732054B2 (en) 2013-12-17 2023-08-22 Genentech, Inc. Anti-CD3 antibodies and methods of use
US10640572B2 (en) 2013-12-17 2020-05-05 Genentech, Inc. Anti-CD3 antibodies and methods of use
US10865251B2 (en) 2013-12-17 2020-12-15 Genentech, Inc. Anti-CD3 antibodies and methods of use
US11186650B2 (en) 2013-12-17 2021-11-30 Genentech, Inc. Anti-CD3 antibodies and methods of use
US11530275B2 (en) 2013-12-17 2022-12-20 Genentech, Inc. Anti-CD3 antibodies and methods of use
US11084877B2 (en) 2014-09-12 2021-08-10 Genentech, Inc. Anti-CLL-1 antibodies and immunoconjugates
US11466087B2 (en) 2015-06-16 2022-10-11 Genentech, Inc. Anti-CLL-1 antibodies and methods of use
US11192950B2 (en) 2015-06-16 2021-12-07 Genentech, Inc. Humanized and affinity matured antibodies to FcRH5 and methods of use
US10501545B2 (en) 2015-06-16 2019-12-10 Genentech, Inc. Anti-CLL-1 antibodies and methods of use
US12030947B2 (en) 2015-06-16 2024-07-09 Genentech, Inc. Humanized and affinity matured antibodies to FcRH5 and methods of use
US10323094B2 (en) 2015-06-16 2019-06-18 Genentech, Inc. Humanized and affinity matured antibodies to FcRH5 and methods of use
US11466094B2 (en) 2016-11-15 2022-10-11 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies
US11866498B2 (en) 2018-02-08 2024-01-09 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
US12297270B2 (en) 2018-02-08 2025-05-13 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
US12351643B2 (en) 2020-11-04 2025-07-08 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies
US12291575B2 (en) 2021-05-14 2025-05-06 Genentech, Inc. Methods for treatment of CD20-positive proliferative disorder with mosunetuzumab and polatuzumab vedotin

Also Published As

Publication number Publication date
HUP0500954A2 (en) 2007-09-28
EP2301966A1 (en) 2011-03-30
EP1572744B1 (en) 2010-06-09
TWI335821B (en) 2011-01-11
JP2012044997A (en) 2012-03-08
JP4351674B2 (en) 2009-10-28
CN103833854A (en) 2014-06-04
ES2347241T3 (en) 2010-10-27
FR18C1023I1 (en) 2018-07-13
CR11367A (en) 2010-07-23
SI2289936T1 (en) 2017-10-30
BRPI0316779B1 (en) 2020-04-28
RS51318B (en) 2010-12-31
SG2013036975A (en) 2016-07-28
RS20100366A (en) 2011-04-30
KR20070055625A (en) 2007-05-30
HUE035898T2 (en) 2018-05-28
EP1572744A2 (en) 2005-09-14
WO2004056312A2 (en) 2004-07-08
IL214083A0 (en) 2011-08-31
HK1248731A1 (en) 2018-10-19
CY2018009I1 (en) 2018-06-27
JP2006517399A (en) 2006-07-27
HK1074208A1 (en) 2005-11-04
RU2005122448A (en) 2006-03-20
CY2018009I2 (en) 2018-06-27
EP2289936A1 (en) 2011-03-02
RU2326127C2 (en) 2008-06-10
PL377328A1 (en) 2006-01-23
US20140154242A1 (en) 2014-06-05
US8562992B2 (en) 2013-10-22
US20060024300A1 (en) 2006-02-02
HU227217B1 (en) 2010-11-29
BR0316779A (en) 2005-11-01
BE2018C021I2 (en) 2023-03-07
ATE470675T1 (en) 2010-06-15
PT1572744E (en) 2010-09-07
JP2009159950A (en) 2009-07-23
UA89350C2 (en) 2010-01-25
US20190071511A1 (en) 2019-03-07
PL212899B1 (en) 2012-12-31
WO2004056312A3 (en) 2005-05-26
AR093046A2 (en) 2015-05-13
US20060034835A1 (en) 2006-02-16
CN103833854B (en) 2017-12-12
EP1572744A4 (en) 2006-07-12
MXPA05006511A (en) 2006-02-17
CY1110759T1 (en) 2015-06-10
NZ566907A (en) 2009-10-30
AR042485A1 (en) 2005-06-22
EP1944320A1 (en) 2008-07-16
ES2633311T3 (en) 2017-09-20
AU2003301079B2 (en) 2011-06-23
KR100910433B1 (en) 2009-08-04
DE60332957D1 (en) 2010-07-22
MA27704A1 (en) 2006-01-02
SI1572744T1 (en) 2010-09-30
NO20053435L (en) 2005-08-31
TW200501982A (en) 2005-01-16
KR20050086913A (en) 2005-08-30
FR18C1023I2 (en) 2019-05-17
CL2008003323A1 (en) 2009-03-06
NO338402B1 (en) 2016-08-15
US7799900B2 (en) 2010-09-21
JP5885457B2 (en) 2016-03-15
TW201000132A (en) 2010-01-01
US20090155257A1 (en) 2009-06-18
AU2003301079A1 (en) 2004-07-14
CA2507898A1 (en) 2004-07-08
HRP20050649A2 (en) 2005-12-31
DK2289936T3 (en) 2017-07-31
EP2289936B1 (en) 2017-05-31
BRPI0316779B8 (en) 2023-02-28
IL168754A (en) 2011-09-27
AU2003301079C1 (en) 2018-03-08
HUS1800030I1 (en) 2018-07-30
AR072523A2 (en) 2010-09-01
CA2507898C (en) 2014-02-18
HRP20050649B1 (en) 2016-06-17
RS20050467A (en) 2007-08-03
CR7875A (en) 2008-11-07
EP3263596A1 (en) 2018-01-03
DK1572744T3 (en) 2010-09-20
US20220002430A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US20220002430A1 (en) Immunoglobulin variants and uses thereof
CN100460421C (en) Immunoglobulin variants and uses thereof
AU2011226858B2 (en) Immunoglobulin variants and uses thereof
HK1156047A (en) Immunoglobulin variants and uses thereof
HK1120058A (en) Immunoglobulin variants and uses thereof
HK1074208B (en) Immunoglobulin variants and uses thereof
HK1154871B (en) Immunoglobulin variants and uses thereof
HK1154871A (en) Immunoglobulin variants and uses thereof
HK1129406A (en) Immunoglobulin variants and uses thereof
HK1129406B (en) Immunoglobulin variants and uses thereof
HK1129405A (en) Immunoglobulin variants and uses thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE