US20170150922A1 - Methods of Enhancing Homeostatic Capacity in a Subject by Increasing Homeostatic System Component Responsiveness, and Devices for Use in Practicing the Same - Google Patents
Methods of Enhancing Homeostatic Capacity in a Subject by Increasing Homeostatic System Component Responsiveness, and Devices for Use in Practicing the Same Download PDFInfo
- Publication number
- US20170150922A1 US20170150922A1 US15/363,988 US201615363988A US2017150922A1 US 20170150922 A1 US20170150922 A1 US 20170150922A1 US 201615363988 A US201615363988 A US 201615363988A US 2017150922 A1 US2017150922 A1 US 2017150922A1
- Authority
- US
- United States
- Prior art keywords
- subject
- activity
- homeostatic
- methods
- parasympathetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 162
- 230000003284 homeostatic effect Effects 0.000 title claims abstract description 130
- 230000001965 increasing effect Effects 0.000 title claims abstract description 52
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 15
- 230000004043 responsiveness Effects 0.000 title description 2
- 230000004044 response Effects 0.000 claims abstract description 44
- 238000002560 therapeutic procedure Methods 0.000 claims description 50
- 210000004027 cell Anatomy 0.000 claims description 42
- 230000008859 change Effects 0.000 claims description 30
- 210000000056 organ Anatomy 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 16
- 201000010099 disease Diseases 0.000 claims description 12
- 210000003463 organelle Anatomy 0.000 claims description 3
- 210000003470 mitochondria Anatomy 0.000 claims description 2
- 230000002889 sympathetic effect Effects 0.000 description 98
- 230000001734 parasympathetic effect Effects 0.000 description 95
- 108090000623 proteins and genes Proteins 0.000 description 73
- 239000003795 chemical substances by application Substances 0.000 description 61
- 230000000694 effects Effects 0.000 description 56
- 230000006870 function Effects 0.000 description 48
- 102000004169 proteins and genes Human genes 0.000 description 36
- 210000003403 autonomic nervous system Anatomy 0.000 description 34
- -1 MEDICORTEN Chemical compound 0.000 description 33
- 230000014509 gene expression Effects 0.000 description 28
- 238000011156 evaluation Methods 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 23
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 21
- 230000003247 decreasing effect Effects 0.000 description 20
- 230000000144 pharmacologic effect Effects 0.000 description 19
- 239000013543 active substance Substances 0.000 description 18
- 230000000692 anti-sense effect Effects 0.000 description 17
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000012544 monitoring process Methods 0.000 description 15
- 230000000541 pulsatile effect Effects 0.000 description 15
- 230000000763 evoking effect Effects 0.000 description 14
- 102000004196 processed proteins & peptides Human genes 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 239000002831 pharmacologic agent Substances 0.000 description 13
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 12
- 230000021615 conjugation Effects 0.000 description 12
- 229960002433 cysteine Drugs 0.000 description 12
- 210000002216 heart Anatomy 0.000 description 12
- 238000006722 reduction reaction Methods 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- 230000003542 behavioural effect Effects 0.000 description 11
- 235000018417 cysteine Nutrition 0.000 description 11
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- 125000003396 thiol group Chemical group [H]S* 0.000 description 10
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 210000005036 nerve Anatomy 0.000 description 9
- 210000000653 nervous system Anatomy 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 230000000638 stimulation Effects 0.000 description 9
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 230000002567 autonomic effect Effects 0.000 description 8
- 210000004899 c-terminal region Anatomy 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 208000011580 syndromic disease Diseases 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 206010020772 Hypertension Diseases 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical class N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 7
- 210000004126 nerve fiber Anatomy 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 210000001002 parasympathetic nervous system Anatomy 0.000 description 7
- 229920000136 polysorbate Polymers 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 210000002820 sympathetic nervous system Anatomy 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 6
- 230000004075 alteration Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000008499 blood brain barrier function Effects 0.000 description 6
- 210000001218 blood-brain barrier Anatomy 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000009368 gene silencing by RNA Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000001953 sensory effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 108091030071 RNAI Proteins 0.000 description 5
- 238000013542 behavioral therapy Methods 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 235000005911 diet Nutrition 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 239000000829 suppository Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 208000029523 Interstitial Lung disease Diseases 0.000 description 4
- 208000001089 Multiple system atrophy Diseases 0.000 description 4
- 208000008589 Obesity Diseases 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 208000036142 Viral infection Diseases 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000036772 blood pressure Effects 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 230000037182 bone density Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- 230000000378 dietary effect Effects 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000009547 dual-energy X-ray absorptiometry Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 125000005179 haloacetyl group Chemical group 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000013160 medical therapy Methods 0.000 description 4
- 238000000520 microinjection Methods 0.000 description 4
- 238000010852 mitochondrial transfer Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229960002748 norepinephrine Drugs 0.000 description 4
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 235000020824 obesity Nutrition 0.000 description 4
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 4
- 238000002515 oligonucleotide synthesis Methods 0.000 description 4
- 210000005037 parasympathetic nerve Anatomy 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 238000011269 treatment regimen Methods 0.000 description 4
- 230000001515 vagal effect Effects 0.000 description 4
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 3
- 229930182837 (R)-adrenaline Natural products 0.000 description 3
- 150000003923 2,5-pyrrolediones Chemical group 0.000 description 3
- 102000053642 Catalytic RNA Human genes 0.000 description 3
- 108090000994 Catalytic RNA Proteins 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- 208000004262 Food Hypersensitivity Diseases 0.000 description 3
- 206010016946 Food allergy Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 3
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 3
- 108020005196 Mitochondrial DNA Proteins 0.000 description 3
- 208000001132 Osteoporosis Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010004977 Vasopressins Proteins 0.000 description 3
- 102000002852 Vasopressins Human genes 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000000074 antisense oligonucleotide Substances 0.000 description 3
- 238000012230 antisense oligonucleotides Methods 0.000 description 3
- 206010003246 arthritis Diseases 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 210000000748 cardiovascular system Anatomy 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 230000027288 circadian rhythm Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000003372 endocrine gland Anatomy 0.000 description 3
- 229960005139 epinephrine Drugs 0.000 description 3
- 235000020932 food allergy Nutrition 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 230000013632 homeostatic process Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229960003987 melatonin Drugs 0.000 description 3
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000803 paradoxical effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 230000004952 protein activity Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 108091092562 ribozyme Proteins 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 230000007958 sleep Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 210000000278 spinal cord Anatomy 0.000 description 3
- 210000001032 spinal nerve Anatomy 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 3
- 210000001186 vagus nerve Anatomy 0.000 description 3
- 229960003726 vasopressin Drugs 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 description 2
- KWGRBVOPPLSCSI-WPRPVWTQSA-N (-)-ephedrine Chemical compound CN[C@@H](C)[C@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WPRPVWTQSA-N 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 2
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 description 2
- KLDLRDSRCMJKGM-UHFFFAOYSA-N 3-[chloro-(2-oxo-1,3-oxazolidin-3-yl)phosphoryl]-1,3-oxazolidin-2-one Chemical compound C1COC(=O)N1P(=O)(Cl)N1CCOC1=O KLDLRDSRCMJKGM-UHFFFAOYSA-N 0.000 description 2
- 208000010444 Acidosis Diseases 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- 102100030988 Angiotensin-converting enzyme Human genes 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 2
- 200000000007 Arterial disease Diseases 0.000 description 2
- 206010003225 Arteriospasm coronary Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010074051 C-Reactive Protein Proteins 0.000 description 2
- 102100032752 C-reactive protein Human genes 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 102100032937 CD40 ligand Human genes 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 208000003890 Coronary Vasospasm Diseases 0.000 description 2
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 2
- 230000007067 DNA methylation Effects 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 206010020591 Hypercapnia Diseases 0.000 description 2
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 208000019693 Lung disease Diseases 0.000 description 2
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 206010031127 Orthostatic hypotension Diseases 0.000 description 2
- 102000004270 Peptidyl-Dipeptidase A Human genes 0.000 description 2
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 208000010378 Pulmonary Embolism Diseases 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 208000001871 Tachycardia Diseases 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 2
- 206010047249 Venous thrombosis Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 2
- SORGEQQSQGNZFI-UHFFFAOYSA-N [azido(phenoxy)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(N=[N+]=[N-])OC1=CC=CC=C1 SORGEQQSQGNZFI-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000001467 acupuncture Methods 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 230000037424 autonomic function Effects 0.000 description 2
- 108091008698 baroreceptors Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 210000000133 brain stem Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 238000009232 chiropractic Methods 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 201000011634 coronary artery vasospasm Diseases 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- AJDPNPAGZMZOMN-UHFFFAOYSA-N diethyl (4-oxo-1,2,3-benzotriazin-3-yl) phosphate Chemical compound C1=CC=C2C(=O)N(OP(=O)(OCC)OCC)N=NC2=C1 AJDPNPAGZMZOMN-UHFFFAOYSA-N 0.000 description 2
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 230000005782 double-strand break Effects 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 230000002964 excitative effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000005176 gastrointestinal motility Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000001632 homeopathic effect Effects 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 229960000890 hydrocortisone Drugs 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 208000003532 hypothyroidism Diseases 0.000 description 2
- 230000002989 hypothyroidism Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 201000006370 kidney failure Diseases 0.000 description 2
- 238000000370 laser capture micro-dissection Methods 0.000 description 2
- 238000002647 laser therapy Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 206010028417 myasthenia gravis Diseases 0.000 description 2
- 230000007830 nerve conduction Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000005897 peptide coupling reaction Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 238000011422 pharmacological therapy Methods 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 210000004560 pineal gland Anatomy 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 229920001993 poloxamer 188 Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229950008882 polysorbate Drugs 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 210000001774 pressoreceptor Anatomy 0.000 description 2
- 230000035485 pulse pressure Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 210000004994 reproductive system Anatomy 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 229920002477 rna polymer Polymers 0.000 description 2
- 210000003079 salivary gland Anatomy 0.000 description 2
- 210000004927 skin cell Anatomy 0.000 description 2
- 231100000430 skin reaction Toxicity 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- AEQFSUDEHCCHBT-UHFFFAOYSA-M sodium valproate Chemical compound [Na+].CCCC(C([O-])=O)CCC AEQFSUDEHCCHBT-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003238 somatosensory effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 239000000021 stimulant Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 201000009032 substance abuse Diseases 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 210000000331 sympathetic ganglia Anatomy 0.000 description 2
- 210000000225 synapse Anatomy 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 230000006794 tachycardia Effects 0.000 description 2
- 108091035539 telomere Proteins 0.000 description 2
- 102000055501 telomere Human genes 0.000 description 2
- 210000003411 telomere Anatomy 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 229960000195 terbutaline Drugs 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- YLCSLYZPLGQZJS-VDQHJUMDSA-N (2r)-2-acetamido-3-sulfanylpropanoic acid;(2s)-2,6-diaminohexanoic acid Chemical compound CC(=O)N[C@@H](CS)C(O)=O.NCCCC[C@H](N)C(O)=O YLCSLYZPLGQZJS-VDQHJUMDSA-N 0.000 description 1
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 1
- HFJMJLXCBVKXNY-IVZWLZJFSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C#CC)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 HFJMJLXCBVKXNY-IVZWLZJFSA-N 0.000 description 1
- MXHRCPNRJAMMIM-SHYZEUOFSA-N 2'-deoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-SHYZEUOFSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- VYMHBQQZUYHXSS-UHFFFAOYSA-N 2-(3h-dithiol-3-yl)pyridine Chemical group C1=CSSC1C1=CC=CC=N1 VYMHBQQZUYHXSS-UHFFFAOYSA-N 0.000 description 1
- OGMADIBCHLQMIP-UHFFFAOYSA-N 2-aminoethanethiol;hydron;chloride Chemical group Cl.NCCS OGMADIBCHLQMIP-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- PBVAJRFEEOIAGW-UHFFFAOYSA-N 3-[bis(2-carboxyethyl)phosphanyl]propanoic acid;hydrochloride Chemical compound Cl.OC(=O)CCP(CCC(O)=O)CCC(O)=O PBVAJRFEEOIAGW-UHFFFAOYSA-N 0.000 description 1
- ZRFXOICDDKDRNA-IVZWLZJFSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidin-2-one Chemical compound O=C1N=C(N)C(C#CC)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 ZRFXOICDDKDRNA-IVZWLZJFSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-ULQXZJNLSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-tritiopyrimidin-2-one Chemical compound O=C1N=C(N)C([3H])=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-ULQXZJNLSA-N 0.000 description 1
- KISUPFXQEHWGAR-RRKCRQDMSA-N 4-amino-5-bromo-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound C1=C(Br)C(N)=NC(=O)N1[C@@H]1O[C@H](CO)[C@@H](O)C1 KISUPFXQEHWGAR-RRKCRQDMSA-N 0.000 description 1
- MJXUEUPECDTYCR-UHFFFAOYSA-N 4-methyl-n-[(4-methylbenzoyl)iminomethylidene]benzamide Chemical compound C1=CC(C)=CC=C1C(=O)N=C=NC(=O)C1=CC=C(C)C=C1 MJXUEUPECDTYCR-UHFFFAOYSA-N 0.000 description 1
- LUCHPKXVUGJYGU-XLPZGREQSA-N 5-methyl-2'-deoxycytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 LUCHPKXVUGJYGU-XLPZGREQSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical class [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 208000013824 Acidemia Diseases 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000010370 Adenoviridae Infections Diseases 0.000 description 1
- 206010060931 Adenovirus infection Diseases 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 1
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 1
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000005952 Amniotic Fluid Embolism Diseases 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 206010067010 Anaphylactoid syndrome of pregnancy Diseases 0.000 description 1
- 206010002329 Aneurysm Diseases 0.000 description 1
- 102000008873 Angiotensin II receptor Human genes 0.000 description 1
- 108050000824 Angiotensin II receptor Proteins 0.000 description 1
- 102400000344 Angiotensin-1 Human genes 0.000 description 1
- 101800000734 Angiotensin-1 Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 206010003130 Arrhythmia supraventricular Diseases 0.000 description 1
- 206010003178 Arterial thrombosis Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 238000010207 Bayesian analysis Methods 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- 206010069632 Bladder dysfunction Diseases 0.000 description 1
- AWJKTCZYSVVFBF-UHFFFAOYSA-N C1(CCCCC1)N=C=NCCN1CCOCC1.C(C)OP(=O)(OCC)O Chemical compound C1(CCCCC1)N=C=NCCN1CCOCC1.C(C)OP(=O)(OCC)O AWJKTCZYSVVFBF-UHFFFAOYSA-N 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 201000002829 CREST Syndrome Diseases 0.000 description 1
- 108091033409 CRISPR Proteins 0.000 description 1
- 208000034598 Caecitis Diseases 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 208000003417 Central Sleep Apnea Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 description 1
- 206010010254 Concussion Diseases 0.000 description 1
- 206010010539 Congenital megacolon Diseases 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 206010011686 Cutaneous vasculitis Diseases 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 206010051055 Deep vein thrombosis Diseases 0.000 description 1
- 206010012218 Delirium Diseases 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 229940124213 Dipeptidyl peptidase 4 (DPP IV) inhibitor Drugs 0.000 description 1
- 208000002251 Dissecting Aneurysm Diseases 0.000 description 1
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 206010014612 Encephalitis viral Diseases 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 101000759376 Escherichia phage Mu Tail sheath protein Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 208000004248 Familial Primary Pulmonary Hypertension Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000006893 Fetal Hypoxia Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 201000011240 Frontotemporal dementia Diseases 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 102000003676 Glucocorticoid Receptors Human genes 0.000 description 1
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- 208000024869 Goodpasture syndrome Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- 206010019133 Hangover Diseases 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 208000004592 Hirschsprung disease Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000868215 Homo sapiens CD40 ligand Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101150003028 Hprt1 gene Proteins 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 101100321817 Human parvovirus B19 (strain HV) 7.5K gene Proteins 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 229940122199 Insulin secretagogue Drugs 0.000 description 1
- 229940122355 Insulin sensitizer Drugs 0.000 description 1
- 206010022680 Intestinal ischaemia Diseases 0.000 description 1
- 208000011200 Kawasaki disease Diseases 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- WXFIGDLSSYIKKV-RCOVLWMOSA-N L-Metaraminol Chemical compound C[C@H](N)[C@H](O)C1=CC=CC(O)=C1 WXFIGDLSSYIKKV-RCOVLWMOSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000283953 Lagomorpha Species 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027236 Meningitis fungal Diseases 0.000 description 1
- 206010027260 Meningitis viral Diseases 0.000 description 1
- 208000004535 Mesenteric Ischemia Diseases 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- WJAJPNHVVFWKKL-UHFFFAOYSA-N Methoxamine Chemical compound COC1=CC=C(OC)C(C(O)C(C)N)=C1 WJAJPNHVVFWKKL-UHFFFAOYSA-N 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100438957 Mus musculus Cd8a gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- GHAZCVNUKKZTLG-UHFFFAOYSA-N N-ethyl-succinimide Natural products CCN1C(=O)CCC1=O GHAZCVNUKKZTLG-UHFFFAOYSA-N 0.000 description 1
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical compound CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 241001025261 Neoraja caerulea Species 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000005268 Neurogenic Arthropathy Diseases 0.000 description 1
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 1
- 206010029326 Neuropathic arthropathy Diseases 0.000 description 1
- 101150026055 Ngfr gene Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 206010029538 Non-cardiogenic pulmonary oedema Diseases 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 208000027868 Paget disease Diseases 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 244000146510 Pereskia bleo Species 0.000 description 1
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001219 Polysorbate 40 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 208000008348 Post-Concussion Syndrome Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010064911 Pulmonary arterial hypertension Diseases 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 206010068513 Pulmonary renal syndrome Diseases 0.000 description 1
- 206010037549 Purpura Diseases 0.000 description 1
- 241001672981 Purpura Species 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 201000001947 Reflex Sympathetic Dystrophy Diseases 0.000 description 1
- 208000033464 Reiter syndrome Diseases 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 206010040639 Sick sinus syndrome Diseases 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 206010040954 Skin wrinkling Diseases 0.000 description 1
- 208000010340 Sleep Deprivation Diseases 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229940123518 Sodium/glucose cotransporter 2 inhibitor Drugs 0.000 description 1
- 241000713880 Spleen focus-forming virus Species 0.000 description 1
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 1
- 208000034972 Sudden Infant Death Diseases 0.000 description 1
- 206010042434 Sudden death Diseases 0.000 description 1
- 206010042440 Sudden infant death syndrome Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000150 Sympathomimetic Substances 0.000 description 1
- 239000012317 TBTU Substances 0.000 description 1
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 1
- 208000001106 Takayasu Arteritis Diseases 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108010046075 Thymosin Proteins 0.000 description 1
- 102000007501 Thymosin Human genes 0.000 description 1
- 208000000323 Tourette Syndrome Diseases 0.000 description 1
- 208000016620 Tourette disease Diseases 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 208000032109 Transient ischaemic attack Diseases 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 208000004387 Typhlitis Diseases 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- 208000004557 Vasovagal Syncope Diseases 0.000 description 1
- 206010047281 Ventricular arrhythmia Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 208000005946 Xerostomia Diseases 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- JILUGXGJYPRQPA-UHFFFAOYSA-N [dimethylamino(fluoro)methylidene]-dimethylazanium Chemical compound CN(C)C(F)=[N+](C)C JILUGXGJYPRQPA-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 230000007950 acidosis Effects 0.000 description 1
- 208000026545 acidosis disease Diseases 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 210000002534 adenoid Anatomy 0.000 description 1
- 208000011589 adenoviridae infectious disease Diseases 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000000048 adrenergic agonist Substances 0.000 description 1
- 239000000951 adrenergic alpha-1 receptor antagonist Substances 0.000 description 1
- 210000004079 adrenergic fiber Anatomy 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229960002478 aldosterone Drugs 0.000 description 1
- 239000002170 aldosterone antagonist Substances 0.000 description 1
- 229940083712 aldosterone antagonist Drugs 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 239000002160 alpha blocker Substances 0.000 description 1
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- ORWYRWWVDCYOMK-HBZPZAIKSA-N angiotensin I Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 ORWYRWWVDCYOMK-HBZPZAIKSA-N 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 206010002895 aortic dissection Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000003906 autonomic nervous system functioning Effects 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- RROBIDXNTUAHFW-UHFFFAOYSA-N benzotriazol-1-yloxy-tris(dimethylamino)phosphanium Chemical compound C1=CC=C2N(O[P+](N(C)C)(N(C)C)N(C)C)N=NC2=C1 RROBIDXNTUAHFW-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 229940125388 beta agonist Drugs 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 208000015294 blood coagulation disease Diseases 0.000 description 1
- 239000003914 blood derivative Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000036471 bradycardia Effects 0.000 description 1
- 208000006218 bradycardia Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 206010006475 bronchopulmonary dysplasia Diseases 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 229930003827 cannabinoid Natural products 0.000 description 1
- 239000003557 cannabinoid Substances 0.000 description 1
- 229940065144 cannabinoids Drugs 0.000 description 1
- 150000001718 carbodiimides Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000001269 cardiogenic effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 238000010224 classification analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000006998 cognitive state Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000009514 concussion Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000009223 counseling Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- VMKJWLXVLHBJNK-UHFFFAOYSA-N cyanuric fluoride Chemical compound FC1=NC(F)=NC(F)=N1 VMKJWLXVLHBJNK-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 229940097265 cysteamine hydrochloride Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229940027008 deltasone Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- MXHRCPNRJAMMIM-UHFFFAOYSA-N desoxyuridine Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-UHFFFAOYSA-N 0.000 description 1
- 230000001496 desquamative effect Effects 0.000 description 1
- 210000000188 diaphragm Anatomy 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000021045 dietary change Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000003603 dipeptidyl peptidase IV inhibitor Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006334 disulfide bridging Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical class C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 229960001089 dobutamine Drugs 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 108010067396 dornase alfa Proteins 0.000 description 1
- 229960000533 dornase alfa Drugs 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 208000002296 eclampsia Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960002179 ephedrine Drugs 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000003687 estradiol congener Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 201000010056 fungal meningitis Diseases 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 210000000609 ganglia Anatomy 0.000 description 1
- 230000000574 ganglionic effect Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229960002146 guaifenesin Drugs 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 201000011200 hepatorenal syndrome Diseases 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- 150000002411 histidines Chemical class 0.000 description 1
- 230000009097 homeostatic mechanism Effects 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 210000001613 integumentary system Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 208000001286 intracranial vasospasm Diseases 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 235000007260 kalia Nutrition 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 208000021601 lentivirus infection Diseases 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000004777 loss-of-function mutation Effects 0.000 description 1
- 235000015263 low fat diet Nutrition 0.000 description 1
- 235000020845 low-calorie diet Nutrition 0.000 description 1
- 235000020855 low-carbohydrate diet Nutrition 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 208000005158 lymphoid interstitial pneumonia Diseases 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- 201000005857 malignant hypertension Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- LMOINURANNBYCM-UHFFFAOYSA-N metaproterenol Chemical compound CC(C)NCC(O)C1=CC(O)=CC(O)=C1 LMOINURANNBYCM-UHFFFAOYSA-N 0.000 description 1
- 229960003663 metaraminol Drugs 0.000 description 1
- 235000006109 methionine Nutrition 0.000 description 1
- 150000002742 methionines Chemical class 0.000 description 1
- 229960005192 methoxamine Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000000019 nipple aspirate fluid Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 208000001797 obstructive sleep apnea Diseases 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229960002657 orciprenaline Drugs 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 239000000734 parasympathomimetic agent Substances 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 210000002990 parathyroid gland Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 208000011906 peptic ulcer disease Diseases 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- RDBMUARQWLPMNW-UHFFFAOYSA-N phosphanylmethanol Chemical class OCP RDBMUARQWLPMNW-UHFFFAOYSA-N 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical group NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 description 1
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000003450 potassium channel blocker Substances 0.000 description 1
- 239000003286 potassium sparing diuretic agent Substances 0.000 description 1
- 229940097241 potassium-sparing diuretic Drugs 0.000 description 1
- 201000011461 pre-eclampsia Diseases 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 244000062645 predators Species 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 201000008312 primary pulmonary hypertension Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 210000004908 prostatic fluid Anatomy 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- WHMDPDGBKYUEMW-UHFFFAOYSA-N pyridine-2-thiol Chemical compound SC1=CC=CC=N1 WHMDPDGBKYUEMW-UHFFFAOYSA-N 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000004648 relaxation of smooth muscle Effects 0.000 description 1
- 201000010384 renal tubular acidosis Diseases 0.000 description 1
- 239000002461 renin inhibitor Substances 0.000 description 1
- 229940086526 renin-inhibitors Drugs 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 229960001634 ritodrine Drugs 0.000 description 1
- IOVGROKTTNBUGK-SJCJKPOMSA-N ritodrine Chemical compound N([C@@H](C)[C@H](O)C=1C=CC(O)=CC=1)CCC1=CC=C(O)C=C1 IOVGROKTTNBUGK-SJCJKPOMSA-N 0.000 description 1
- 229960002052 salbutamol Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Chemical group 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 208000037812 secondary pulmonary hypertension Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 210000001625 seminal vesicle Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000004999 sex organ Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000005586 smoking cessation Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000003195 sodium channel blocking agent Substances 0.000 description 1
- 229940084026 sodium valproate Drugs 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 231100000736 substance abuse Toxicity 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 229940064707 sympathomimetics Drugs 0.000 description 1
- 206010042772 syncope Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 208000008203 tachypnea Diseases 0.000 description 1
- 206010043089 tachypnoea Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 230000001331 thermoregulatory effect Effects 0.000 description 1
- 150000007970 thio esters Chemical group 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- LCJVIYPJPCBWKS-NXPQJCNCSA-N thymosin Chemical compound SC[C@@H](N)C(=O)N[C@H](CO)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CO)C(=O)N[C@H](CO)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@H]([C@H](C)O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@H](CCC(O)=O)C(O)=O LCJVIYPJPCBWKS-NXPQJCNCSA-N 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 201000010875 transient cerebral ischemia Diseases 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- PBKWZFANFUTEPS-CWUSWOHSSA-N transportan Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(N)=O)[C@@H](C)CC)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CC=C(O)C=C1 PBKWZFANFUTEPS-CWUSWOHSSA-N 0.000 description 1
- 108010062760 transportan Proteins 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 235000002374 tyrosine Nutrition 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 229940102566 valproate Drugs 0.000 description 1
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 1
- 229960000604 valproic acid Drugs 0.000 description 1
- 210000001177 vas deferen Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 235000003563 vegetarian diet Nutrition 0.000 description 1
- 201000010653 vesiculitis Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 201000002498 viral encephalitis Diseases 0.000 description 1
- 201000010044 viral meningitis Diseases 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000007279 water homeostasis Effects 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36135—Control systems using physiological parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36114—Cardiac control, e.g. by vagal stimulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- Homeostasis refers to the tendency of biological systems to maintain relatively constant conditions in the internal environment while continuously interacting with and adjusting to changes originating within or outside the system. Homeostasis involves continuous motion, adaptation, and change in response to environmental factors. It is through homeostatic mechanisms that body temperature is kept within normal range, the osmotic pressure of the blood and its hydrogen ion concentration (pH) is kept within strict limits, nutrients are supplied to cells as needed, and waste products are removed before they accumulate and reach toxic levels of concentration. These are but a few examples of the thousands of homeostatic control systems within the body. Some of these systems operate within the cell and others operate within an aggregate of cells (organs) to control the complex interrelationships among the various organs.
- organs an aggregate of cells
- Homeostatic capacity refers to the capability of systems, such as described above, to self-stabilize in response to stressors.
- a simple way to visualize homeostatic capacity is to imagine a WeebleTM, the popular self-centering children's toy.
- it is life's foundational trait—itself comprised of a hierarchy and network of traits—endowed by nature and shaped by selection. Because the trait is inborn and so pervasively effective, feeling healthy feels like “nothing” when we are young. We become aware of it only after we start losing it midlife. Roller-coaster rides begin to leave us nauseated instead of joyous. We can't tolerate hot or cold weather like before. Sunny days feel too bright and reading menus in low lights becomes more difficult.
- Methods of enhancing homeostatic capacity in a subject are provided. Aspects of the methods include increasing the amplitude of an input resultant response of a homeostatic system component of the subject in a manner sufficient to enhance homeostatic capacity of the subject. Also provided are devices configured for use in practicing the methods. Aspects of the invention further include methods of treating a subject for a condition via enhancement of homeostatic capacity. The methods and devices described herein find use in a variety of applications.
- Methods of enhancing homeostatic capacity in a subject are provided. Aspects of the methods include increasing the amplitude of an input resultant response of a homeostatic system component of the subject in a manner sufficient to enhance homeostatic capacity of the subject. Also provided are devices configured for use in practicing the methods. Aspects of the invention further include methods of treating a subject for a condition via enhancement of homeostatic capacity. The methods and devices described herein find use in a variety of applications.
- aspects of the invention include methods of enhancing homeostatic capacity in a subject.
- enhancing homeostatic capacity in a subject is meant at least increasing the homeostatic capacity of the subject by a measurable amount, e.g., as determined using the protocol described below.
- the methods may include at least partially restoring the homeostatic capacity of the subject.
- at least partially restoring the homeostatic capacity of the subject is meant that the homeostatic capacity of the subject is enhanced or improved, e.g., to that of a target value, which target value may be a “normal” value or greater than a normal value, e.g., a super-normal value.
- normal is meant the homeostatic capacity of a healthy subject of a particular age.
- the healthy subject is a healthy human at an age after puberty, e.g., 18 year old, 19 year old, 20 year old, 21 year old, 22 year old, 23 year old, 24 year old, 25 year old, 26 year old, 27 year old, 28 year old, 29 year old, 30 year old, 31 year old, 32 year old, 33 year old 34 year old, 35 year old, 36 year old, 37 year old, 38 year old, 39 year old, 40 year old, 41 year old, 42 year old, 43 year old, 44 year old, 45 year old, 46 year old, 47 year old, 48 year old, 49 year old or 50 year old.
- the normal function with respect to homeostatic capacity is that of a healthy human 25 year old.
- super normal value is meant the homeostatic capacity of a subject having greater than normal homeostatic capacity, e.g., that of an athlete, etc.
- the magnitude of difference between normal and super normal may vary, and in some instances may be 5% or greater, such as 10% or greater, including 15%, 20% or 25% or greater, where in some instances the target super normal homeostatic capacity is 5% to 75% greater than of a normal homeostatic capacity.
- the methods include enhancing the homeostatic capacity of the subject to that which is at least closer to a target homeostatic capacity.
- the target homeostatic capacity is restored to be 50% or more, e.g., 75% or more of the target function, such as 80% or more of the target function, including 90% or more of the target function, e.g., 95% or more of the target function, including 99% or more of the target function.
- aspects of the methods include increasing the amplitude of an input resultant response of a homeostatic system component of the subject in a manner sufficient to restore enhance homeostatic capacity of the subject.
- increasing the input resultant response of a homeostatic system component is meant augmenting a response of a homeostatic system component, where the response is a response that occurs following receipt of the component by an input.
- aspects of the methods include making greater a response that results in a homeostatic system component following receipt of input by the component.
- the magnitude of the enhancement of the response may vary, and in some instances the magnitude is 2-fold or greater, such as 5-fold or greater, including 10-fold or greater.
- the response that is enhanced in practicing methods of the invention is an input resultant response.
- the response is a response the target homeostatic component makes when the component receives an input, e.g., in the form of a stimulus, such as physical, chemical or electrical stimulus.
- the response by the component may vary depending on the nature of the component.
- the response may manifest as an increase in the magnitude of a chemical response, e.g., in the form of an increase in the amount of a chemical released from the target homeostatic system component.
- the response may manifest as an increase in the magnitude of an electrical response, e.g., in the form of an increase in the amplitude and/or duration of an electrical output produced by the target homeostatic system component.
- the target homeostatic system component may be any part (i.e., unit or element) of homeostatic system.
- Target homeostatic systems include, but are not limited to: sub-cellular systems, cellular systems, supra-cellular, e.g., organ systems, etc. Homeostatic systems may further be described functionally.
- circadian rhythm systems e.g., master circadian rhythm control (i.e., master clock system), peripheral circadian rhythm systems (i.e., peripheral oscillator system), thermoregulatory control systems, blood pressure control (i.e., regulatory) systems, osmoregulation control (i.e., regulatory) systems, pH control (i.e., regulatory) systems, glucose concentration control systems, calcium regulation control systems, body fluid control systems, etc.
- master circadian rhythm control i.e., master clock system
- peripheral circadian rhythm systems i.e., peripheral oscillator system
- thermoregulatory control systems e.g., blood pressure control (i.e., regulatory) systems
- osmoregulation control i.e., regulatory
- pH control i.e., regulatory
- glucose concentration control systems i.e., calcium regulation control systems
- body fluid control systems e.g., body fluid control systems, etc.
- the target homeostatic system component is an organ or component thereof, e.g., a portion of the organ.
- Organs if interest include, but are not limited to: cardiovascular system organs, e.g., heart, blood and blood vessels; digestive system organs, e.g., salivary glands, esophagus, stomach, liver, gallbladder, pancreas, intestines, colon, rectum and anus; endocrine system organs, e.g., hypothalamus, pituitary gland, pineal body or pineal gland, thyroid, parathyroids and adrenals, i.e., adrenal glands; excretory system organs, e.g., kidneys, ureters, bladder and urethra; lymphatic system organs, e.g., tonsils, adenoids, thymus and spleen; integumentary system organs, e.g., skin, hair and nails; muscular system organs, e.g.,
- the amplitude of an input resultant response of a homeostatic system component may be increased in a variety of different ways.
- the amplitude of an input resultant response may be increased by administering a variety of different types of therapies to the subject.
- any convenient therapy may be administered to a subject.
- Therapies that may be employed include, but are not limited to: traditional medical therapies, e.g., electrical therapies, pharmacological therapies, electro-pharmaceuticals, etc.; and non-traditional medical therapies, e.g., homeopathic therapies, acupuncture, acupressure, mechanical manipulation, e.g., chiropractic therapies, laser therapy, e.g., to the vertex or other physiological locations, etc.
- therapies of interest may also be categorized as physical, chemical, psychological, environmental, electrical, behavioral, pharmacological, etc. Specific types of therapies of interest are now reviewed in greater detail.
- the administered therapy is one that modulates the autonomic nervous system of the subject.
- the autonomic nervous system (“ANS”) is that portion of the nervous system that is not the somatic nervous system.
- the ANS controls individual organ function and homeostasis. For the most part, the ANS is not subject to voluntary control.
- the ANS is also commonly referred to as the visceral or automatic system.
- the ANS can be viewed as a “real-time” regulator of physiological functions that extracts features from the environment and, based on that information, allocates an organism's internal resources to perform physiological functions for the benefit of the organism, e.g., responds to environment conditions in a manner that is advantageous to the organism.
- the ANS conveys sensory impulses to and from the central nervous system to various structures of the body such as organs and blood vessels, in addition to conveying sensory impulses through reflex arcs.
- the ANS controls constriction and dilatation of blood vessels; heart rate; the force of contraction of the heart; contraction and relaxation of smooth muscle in various organs; lungs; stomach; colon; bladder; visual accommodation, secretions from exocrine and endocrine glands, etc.
- the ANS does this through a series of nerve fibers and more specifically through efferent and afferent nerves.
- the ANS acts through a balance of its two components: the sympathetic nervous system and parasympathetic nervous system, which are two anatomically and functionally distinct systems. Both of these systems include myelinated preganglionic fibers which make synaptic connections with unmyelinated postganglionic fibers, and it is these fibers which then innervate the effector structure. These synapses usually occur in clusters called ganglia. Most organs are innervated by fibers from both divisions of the ANS, and the influence is usually opposing (e.g., the vagus nerve slows the heart, while the sympathetic nerves increase its rate and contractility), although it may be parallel (e.g., as in the case of the salivary glands).
- modulating is meant altering or changing one or more aspects or components to provide a change, alteration or shift in another aspect or component.
- Modulating autonomic function is achieved by modulating at least one portion of the subject's autonomic nervous system.
- modulating at least one portion of the subject's autonomic nervous system is meant altering or changing at least a portion of an autonomic nervous system by a means to provide a change, alteration or shift in at least one component or aspect of the autonomic nervous system.
- modulation of the autonomic nervous system includes modulating the parasympathetic and/or sympathetic activity in the subject.
- “Parasympathetic activity” refers to activity of the parasympathetic nervous system whereas “sympathetic activity” refers to activity of the sympathetic nervous system.
- modulation results in at least one of decreasing parasympathetic activity and/or increasing sympathetic activity in a subject to improve a condition caused by parasympathetic bias. In other embodiments, the modulation results in at least one of decreasing sympathetic activity and/or increasing parasympathetic activity in a subject to improve a condition caused by sympathetic bias.
- Therapeutic modalities may employ modulation of activity in or more components of the nervous system.
- the nervous system includes the spinal cord and the pairs of nerves along the spinal cord which are known as spinal nerves.
- the spinal nerves include both dorsal and ventral branches which fuse in the intravertebral foramen to create a mixed nerve.
- Methods employed in the invention may modulate only one of the dorsal or ventral branches, or both of the dorsal and ventral branches, where when both of the dorsal and ventral branches are modulated, the modulation may be the same or different, e.g., where the two branches are differentially modulated.
- Modulation of the autonomic nervous system may be carried out using any suitable protocol, including, but not limited to: electrical and/or pharmacologic and/or physical and/or chemical and/or psychological and/or environmental protocols, e.g., as described below.
- the modulation of the ANS provides, in some instances, an increase in function of at least a portion of the autonomic system, e.g., increase function in at least one sympathetic or parasympathetic nerve fiber, and/or provides, in some instances, a decrease in function or dampening of a portion of the autonomic system, e.g., may inhibit activity in at least one sympathetic or parasympathetic nerve fiber or inhibit nerve pulse transmission.
- the modulation that is achieved in practicing methods of the invention may be quantified.
- One way of quantifying modulation of at least one portion of the subject's autonomic nervous system is the parasympathetic/sympathetic activity ratio.
- parasympathetic/sympathetic activity ratio is meant the ratio of activity of the sympathetic nervous system to the activity of the parasympathetic nervous system.
- methods according to certain embodiments include modulating a sympathetic/parasympathetic activity ratio in the subject.
- the ANS is modulated in a manner sufficient to shift or change parasympathetic activity and/or sympathetic activity from a first state to a second state, where the second state is characterized by an increase or decrease in the sympathetic activity/parasympathetic activity ratio relative to the first state.
- some embodiments of the subject invention include modulating at least a portion of a subject's autonomic nervous system to increase the sympathetic activity/parasympathetic activity ratio, i.e., to increase sympathetic activity relative to parasympathetic activity (in other words to decrease parasympathetic activity relative to sympathetic activity) so as to treat a subject for a condition that can be treated by such modulation (e.g., a condition caused by parasympathetic bias).
- stimulating at least one sympathetic nerve fiber to increase activity may be achieved by inhibiting activity in the parasympathetic system.
- Other embodiments of the subject invention include modulating a subject's autonomic nervous system to decrease the sympathetic activity/parasympathetic activity ratio, i.e., to decrease sympathetic activity relative to parasympathetic activity (in other words, to increase parasympathetic activity relative to sympathetic activity) so as to treat a subject for a condition that can be treated by such modulation (e.g., a condition caused by sympathetic bias).
- modulating a subject's autonomic nervous system to decrease the sympathetic activity/parasympathetic activity ratio, i.e., to decrease sympathetic activity relative to parasympathetic activity (in other words, to increase parasympathetic activity relative to sympathetic activity) so as to treat a subject for a condition that can be treated by such modulation (e.g., a condition caused by sympathetic bias).
- the ratio of sympathetic function/parasympathetic function may be modulated according to embodiments of the subject invention to treat or improve a subject for a condition (e.g., aging associated conditions)
- the net result may be a parasympathetic bias (i.e., a parasympathetic dominance), a sympathetic bias (i.e., sympathetic dominance), or the activities of the sympathetic system and parasympathetic system may be substantially equal (i.e., neither is dominant).
- bias is meant that the particular “biased” component of the autonomic nervous system has a higher activity level than the other component.
- a parasympathetic bias refers to a higher level of parasympathetic activity than sympathetic activity, and vice versa, where such bias may be systemic or localized.
- vagal bias is meant that that the particular biased component of the autonomic nervous system that has a higher activity level than the other component is the vagus nerve or a portion of the autonomic nervous system associated with the vagus nerve.
- Vagal bias may be characterized by one or more of vagal dominance, vagal hypersensitivity and/or sympathetic insufficiency.
- the net result of the subject methods to treat a condition may be higher or greater sympathetic activity relative to parasympathetic activity in at least the area of the targeted autonomic system (i.e., that portion in need of modulation), or substantially equal activity levels of sympathetic activity and parasympathetic activity.
- activity in at least a portion of the autonomic nervous system is increased.
- activity in at least a portion of the ANS that is involved the sympathetic nervous system may be increased such that at least a portion of the sympathetic nervous system may be “up-regulated”.
- any portion of the ANS that is involved in the parasympathetic system e.g., one or more nerve fibers, may be stimulated to increase parasympathetic activity to provide the desired ratio of parasympathetic/sympathetic activity.
- activity in at least a portion of the parasympathetic nervous system may be increased such that at least a portion of the parasympathetic nervous system may be “up-regulated”.
- increasing activity in, or up-regulating, at least a part of the sympathetic system may be desired in instances where, prior to the application of autonomic nervous system-modulating agent, parasympathetic activity is higher than desired, e.g., higher than sympathetic activity (e.g., there exists a relative parasympathetic bias) and as such the subject methods may be employed to increase sympathetic activity to a level above or rather to a level that is greater than parasympathetic activity or may be employed to modulate the differential between the parasympathetic-sympathetic systems such that the result of increasing sympathetic activity may be a sympathetic bias, parasympathetic bias or may be an equalization of the two systems (i.e., the activities of the two systems are approximately equal—including equal), but the difference between the parasympathetic-sympathetic systems may be modulated, e.g., reduced or minimized or increased in certain embodiments.
- the subject methods may be employed to increase sympathetic activity above that of parasympathetic activity and/or may be employed to modulate (increase or decrease) the differential between the two systems, but in certain embodiments may be employed to decrease the parasympathetic activity/sympathetic activity ratio.
- increasing activity in, or up-regulating, at least a part of the parasympathetic system may be desired in instances where, prior to the application of autonomic nervous system-modulating agent, sympathetic activity is higher than desired, e.g., higher than parasympathetic activity (e.g., there exists a relative sympathetic bias) and as such the subject methods may be employed to increase parasympathetic activity to a level above or rather to a level that is greater than sympathetic activity or may be employed to modulate the differential between the parasympathetic-sympathetic systems such that the result of increasing parasympathetic activity may be a parasympathetic bias, sympathetic bias or may be an equalization of the two systems (i.e., the activities of the two systems are approximately equal—including equal), but the difference between the parasympathetic-sympathetic systems may be modulated, e.g., reduced or minimized or increased in certain embodiments.
- the subject methods may be employed to increase parasympathetic activity above that of sympathetic activity and/or may be employed to modulate (increase or decrease) the differential between the two systems, but in certain embodiments may be employed to decrease the parasympathetic activity/sympathetic activity ratio.
- a parasympathetic bias may be the normal state, but the ratio of the two systems may be abnormal or otherwise contributing to a condition.
- Increasing sympathetic bias may also be desired in instances where, prior to the restoration of the normal function of a central nervous system endocrine gland, sympathetic activity is higher than the parasympathetic activity, but the differential between the two needs to be modulated such as increased further, e.g., the sympathetic activity is normal or above normal (i.e., abnormally high) and/or the parasympathetic activity is normal or below normal (i.e., abnormally low) or above normal (i.e., abnormally low).
- Such instances may occur where a subject has normal or above normal sympathetic function, but also has elevated parasympathetic function.
- Other instances may include below normal sympathetic function, but normal or elevated parasympathetic function, etc.
- It may also be desirable to increase sympathetic function in instances where the respective activities of the two system are analogous or approximately equal, including equal, prior to increasing activity in the sympathetic system, but the level of one or both is abnormally high or abnormally low.
- the above-described examples of instances where increasing sympathetic activity may be desired is exemplary only and is in no way intended to limit the scope of the invention and other instances where increasing sympathetic activity may be desired will be apparent to those of skill in the art.
- a sympathetic bias may be the normal state, but the ratio of the two systems may be abnormal or otherwise contributing to a condition.
- Increasing parasympathetic bias may also be desired in instances where, prior to the restoration of the normal function of a central nervous system endocrine gland, parasympathetic activity is higher than the sympathetic activity, but the differential between the two needs to be modulated such as increased further, e.g., the parasympathetic activity is normal or above normal (i.e., abnormally high) and/or the sympathetic activity is normal or below normal (i.e., abnormally low) or above normal (i.e., abnormally low).
- Such instances may occur where a subject has normal or above normal parasympathetic function, but also has elevated sympathetic function.
- Other instances may include below normal parasympathetic function, but normal or elevated sympathetic function, etc.
- It may also be desirable to increase parasympathetic function in instances where the respective activities of the two system are analogous or approximately equal, including equal, prior to increasing activity in the parasympathetic system, but the level of one or both is abnormally high or abnormally low.
- the above-described examples of instances where increasing parasympathetic activity may be desired is exemplary only and is in no way intended to limit the scope of the invention and other instances where increasing sympathetic activity may be desired will be apparent to those of skill in the art.
- activity in at least a portion of the ANS may be inhibited to modulate at least a portion of the autonomic nervous system. Inhibiting or “down-regulating” activity in at least a part of the autonomic nervous system, may be desired in instances where, the sympathetic or parasympathetic activity is higher than desired.
- parasympathetic activity may be higher than the sympathetic activity (i.e., there exists a parasympathetic bias) or parasympathetic activity may be less than or approximately equal to, including equal, to sympathetic activity, and the subject methods may be employed to modulate the differential between the parasympathetic-sympathetic systems such that the net result of decreasing sympathetic activity may be a sympathetic bias, parasympathetic bias or may be an equalization of the two systems (i.e., the activities of the two systems are approximately equal—including equal), but the difference between the parasympathetic-sympathetic systems may be modulated, e.g., increased or reduced in certain embodiments.
- the subject methods may be employed to decrease parasympathetic activity below that of sympathetic activity and/or may be employed to modulate (decrease or increase) the differential between the two systems, where in certain embodiments may be employed to decrease the ratio of parasympathetic activity to sympathetic activity.
- decreasing activity in at least a portion of the parasympathetic system may be employed where there is a normal or an abnormally low sympathetic function and/or abnormally high parasympathetic function.
- Such may also be desired in instances where, prior to decreasing parasympathetic function in, e.g., at least one parasympathetic nerve fiber, sympathetic activity is higher than the parasympathetic activity, but the differential between the two needs to be increased further.
- such instances may occur where a subject has normal or above normal (i.e., abnormally high) parasympathetic function, but also has elevated sympathetic function (i.e., abnormally high), e.g., a relative bias towards sympathetic function may be present.
- Decreasing activity in at least a portion of the sympathetic system may be employed where there is a normal or an abnormally low parasympathetic function and/or abnormally high sympathetic function. Such may also be desired in instances where, prior to decreasing sympathetic function in, e.g., at least one parasympathetic nerve fiber, parasympathetic activity is higher than the sympathetic activity, but the differential between the two needs to be increased further. For example, such instances may occur where a subject has normal or above normal (i.e., abnormally high) sympathetic function, but also has elevated parasympathetic function (i.e., abnormally high), e.g., a relative bias towards parasympathetic function may be present.
- One way of inhibiting activity in at least a portion of the autonomic nervous system is by the application of a nerve block.
- Application of a nerve block at least partially prevents nerve transmission across the location of the block.
- a nerve block can be administered to modulate autonomic function using all the methods and devices described herein including pharmacological and/or electrical means.
- activity in at least a portion of the autonomic nervous system may be increased and activity in at least a portion of the autonomic nervous system may be decreased.
- activity in at least a portion of the sympathetic system may be increased and activity in at least a portion of the parasympathetic system may be inhibited, e.g., to decrease the parasympathetic activity/sympathetic activity ratio.
- activity in at least a portion of the parasympathetic system may be increased and activity in at least a portion of the sympathetic system may be inhibited, e.g., to decrease the parasympathetic activity/sympathetic activity ratio.
- any portion of the parasympathetic and/or sympathetic nervous systems may be modulated to increase activity and activity in any portion of the ANS may be inhibited to provide the desired ratio of parasympathetic activity to sympathetic activity.
- Such a protocol may be employed, e.g., in instances where sympathetic function is normal or abnormally low and/or parasympathetic function is normal or abnormally high, or where parasympathetic function is normal or abnormally low and/or sympathetic function is normal or abnormally high, where normal is determined by the typical or average autonomic nervous system functions for a healthy subject, e.g., a healthy human subject ranging in age from about 20 years old to about 25 years old.
- Embodiments wherein activity in at least a portion of the autonomic nervous system may be increased and activity in at least a portion of the autonomic nervous system may be decreased may be employed to alter the dominance and/or may be employed to modulate the differential between the two systems.
- the activity in the parasympathetic system may be higher than activity in the sympathetic system and the subject methods may be employed to increase the sympathetic activity to a level that is greater than the parasympathetic activity and/or may be employed to alter the differential or difference in activity levels of the two systems such as decreasing the difference in activity levels or increasing the difference in activity levels.
- Increasing activity in at least a portion of the autonomic nervous system e.g., increasing activity in at least a portion of the parasympathetic system, and decreasing activity in at least a portion of the autonomic nervous system, e.g., decreasing activity in at least a portion of the sympathetic system
- at least a portion of the autonomic nervous system e.g., at least a portion of the parasympathetic nervous system
- the parameters for increasing activity in at least a portion of autonomic nervous system and decreasing activity in at least a portion of the autonomic nervous system may be analogous to that described above.
- Modulation of the autonomic nervous system may be accomplished using any suitable method, including employing electrical, thermal, vibrational, magnetic, acoustic, baropressure, optical, or other sources of energy to modulate autonomic balance, where in representative embodiments modulation is achieved via pharmacological modulation and/or electrical energy modulation in a manner that is effective to treat a subject for a food allergy syndrome condition.
- Certain embodiments include pharmacologically or electrically stimulating a portion of the subject's nervous system in a manner that causes a modulation of at least a portion of a subject's autonomic nervous system, e.g., by increasing parasympathetic activity and/or decreasing sympathetic activity or by increasing sympathetic activity and/or decreasing parasympathetic activity in at least a portion of the subject's autonomic nervous system.
- modulation may include increasing the sympathetic activity/parasympathetic activity ratio in at least a portion of the subject's autonomic nervous system.
- a combination of electrical and pharmacological may be employed.
- the therapy comprises a pharmacological modulation, which modulation may result in modulation of the ANS and/or some other system of the subject in manner effective to enhance homeostatic capacity, e.g., as described above.
- pharmacological modulation is meant altering or changing one or more systems of the subject by pharmacological means to provide a desired change, alteration or shift in system(s) function.
- any suitable protocol may be used, where certain protocols include using an pharmacological agent administering device to deliver a suitable amount of pharmacological agent to a subject.
- Pro-sympathetic agents of interest include, but are not limited to: beta agonists, e.g., dobutamine, metaproterenol, terbutaline, ritodrine, albuterol; alpha agonists, e.g., selective alpha 1-adrenergic blocking agents such as phenylephrine, metaraminol, methoxamine; prednisone and steroids, (e.g., available under the brand names CORATN, DELTASONE, LIQUID PRED, MEDICORTEN, ORASONE, PANASOL-S, PREDNICEN-M, PREDNISONE INTENSOL); indirect agents that include norepinephrine, e.g., ephedrine, ampthetamines, phenylpropanolamines, cyclopentamines, tuaminoheptanes, naphazolines, tetrahydrozolines; epinep
- Pro-parasympathetic agents of interest include, but are not limited to: Beta Blockers, Aldosterone Antagonists; Angiotensin II Receptor Blockers; Angiotensin Converting Enzyme Inhibitors; Statins; Triglyceride Lowering Agents; Insulin Sensitizers; Insulin Secretagogues; Insulin Analogs; Alpha-glucosidase Inhibitors; SGLT2 Inhibitors; Immunomodulators, including agents that bind/react to CD4, gp39, B7, CD19, CD20, CD22, CD401, CD40, CD40L and CD23 antigens; Sympathomimetics; Cholinergics; Calcium Channel Blockers; Sodium Channel Blockers; Glucocorticoid Receptor Blockers; Peripheral Adrenergic Inhibitors; Blood Vessel Dilators; Central Adrenergic Agonists; Alpha-adrenergic Blockers; Combination Diuretics; Potassium-sparing Diuretics
- Biotherapeutic agents include, but are not limited to: nucleic acid agents, polypeptide agents, complex biological preparations, e.g., blood products and derivatives thereof, e.g., plasma, mitochondrial preparations (e.g., for mitochondrial transfer); etc.
- the agent modulates the activity of the protein following expression, such that the agent is one that changes the activity of the protein encoded by a target gene following expression of the protein from the target gene.
- the agent is one that may act directly with protein encoded by the target gene.
- the agent modulates expression of the RNA and/or protein from the gene, such that it changes the expression of the RNA or protein from the target gene in some manner.
- the agent may change expression of the RNA or protein in a number of different ways.
- the agent is one that reduces, including inhibits, expression of a functional target protein. Inhibition of protein expression may be accomplished using any convenient means, including use of an agent that inhibits protein expression, such as, but not limited to: antisense agents, RNAi agents, agents that interfere with transcription factor binding to a promoter sequence of the target gene, or inactivation of the target gene, e.g., through recombinant techniques, etc.
- antisense molecules can be used to down-regulate expression of a target gene in the cell.
- the anti-sense reagent may be antisense oligodeoxynucleotides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA.
- ODN antisense oligodeoxynucleotides
- the antisense sequence is complementary to the mRNA of the targeted protein, and inhibits expression of the targeted protein.
- Antisense molecules inhibit gene expression through various mechanisms, e.g., by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance.
- One or a combination of antisense molecules may be administered, where a combination may include multiple different sequences.
- Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule.
- the antisense molecule is a synthetic oligonucleotide.
- Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al. (1996), Nature Biotechnol. 14:840-844).
- a specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence.
- Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an in vitro or animal model.
- a combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.
- Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993), supra, and Milligan et al., supra.) Oligonucleotides may be chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases.
- phosphorothioates Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates.
- Achiral phosphate derivatives include 3′-O′-5′-S-phosphorothioate, 3′-S-5′-O-phosphorothioate, 3′-CH 2 -5′-O-phosphonate and 3′-NH-5′-O-phosphoroamidate.
- Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and affinity.
- the ⁇ -anomer of deoxyribose may be used, where the base is inverted with respect to the natural ⁇ -anomer.
- the 2′-OH of the ribose sugar may be altered to form 2′-O-methyl or 2′-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine. 5-propynyl-2′-deoxyuridine and 5-propynyl-2′-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.
- catalytic nucleic acid compounds e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression.
- Ribozymes may be synthesized in vitro and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman et al. (1995), Nucl. Acids Res. 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764.
- Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin et al. (1995), Appl. Biochem. Biotechnol. 54:43-56.
- RNAi agents e.g., double-strand RNA (Sharp (1999) Genes and Development 13: 139-141).
- RNAi such as double-stranded RNA interference (dsRNAi) or small interfering RNA (siRNA)
- dsRNAi double-stranded RNA interference
- siRNA small interfering RNA
- RNAi agents may be dsRNA or a transcriptional template of the interfering ribonucleic acid which can be used to produce dsRNA in a cell.
- the transcriptional template may be a DNA that encodes the interfering ribonucleic acid.
- Methods and procedures associated with RNAi are also described in WO 03/010180 and WO 01/68836, all of which are incorporated herein by reference.
- dsRNA can be prepared according to any of a number of methods that are known in the art, including in vitro and in vivo methods, as well as by synthetic chemistry approaches. Examples of such methods include, but are not limited to, the methods described by Sadher et al. (Biochem. Int. 14:1015, 1987); by Bhattacharyya (Nature 343:484, 1990); and by Livache, et al. (U.S. Pat. No.
- Single-stranded RNA can also be produced using a combination of enzymatic and organic synthesis or by total organic synthesis.
- the use of synthetic chemical methods enables one to introduce desired modified nucleotides or nucleotide analogs into the dsRNA.
- dsRNA can also be prepared in vivo according to a number of established methods (see, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed.; Transcription and Translation (B. D. Hames, and S. J. Higgins, Eds., 1984); DNA Cloning, volumes I and II (D. N.
- RNA can be directly introduced intracellularly.
- Various physical methods are generally utilized in such instances, such as administration by microinjection (see, e.g., Zernicka-Goetz, et al. (1997) Development 124:1133-1137; and Wianny, et al. (1998) Chromosoma 107: 430-439).
- cellular delivery include permeabilizing the cell membrane and electroporation in the presence of the dsRNA, liposome-mediated transfection, or transfection using chemicals such as calcium phosphate.
- a number of established gene therapy techniques can also be utilized to introduce the dsRNA into a cell. By introducing a viral construct within a viral particle, for instance, one can achieve efficient introduction of an expression construct into the cell and transcription of the RNA encoded by the construct.
- the target gene is inactivated so that it no longer expresses a functional protein.
- inactivated is meant that the gene, e.g., coding sequence and/or regulatory elements thereof, is genetically modified so that it no longer expresses a functional target protein.
- the alteration or mutation may take a number of different forms, e.g., through deletion of one or more nucleotide residues, through exchange of one or more nucleotide residues, and the like.
- One means of making such alterations in the coding sequence is by homologous recombination. Methods for generating targeted gene modifications through homologous recombination are known in the art, including those described in: U.S. Pat. Nos.
- Also of interest in certain embodiments are dominant negative mutants of target proteins, where expression of such mutants in the cell result in a modulation, e.g., decrease, in target protein activity.
- Dominant negative mutants are mutant proteins that exhibit dominant negative target protein activity.
- the term “dominant negative activity” refers to the inhibition, negation, or diminution of certain particular activities of a target protein, such as the apoptotic activity of a target protein.
- Dominant negative mutations are readily generated for corresponding proteins. These may act by several different mechanisms, including mutations in a substrate-binding domain; mutations in a catalytic domain; mutations in a protein binding domain (e.g.
- a mutant polypeptide may interact with wild-type polypeptides (made from the other allele) and form a non-functional multimer. In certain embodiments, the mutant polypeptide will be overproduced. Point mutations are made that have such an effect.
- fusion of different polypeptides of various lengths to the terminus of a protein, or deletion of specific domains can yield dominant negative mutants.
- General strategies are available for making dominant negative mutants (see for example, Herskowitz (1987) Nature 329:219, and the references cited above). Such techniques are used to create loss of function mutations, which are useful for determining protein function.
- RNA capable of encoding gene product sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in “Oligonucleotide Synthesis”, 1984, Gait, M. J. ed., IRL Press, Oxford.
- the agent is an agent that modulates, e.g., inhibits, target protein activity by binding to the target protein and/or inhibiting binding of target protein to a second protein.
- small molecules that bind to a target protein and inhibit its activity are of interest.
- Naturally occurring or synthetic small molecule compounds of interest include numerous chemical classes, such as organic molecules, e.g., small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons.
- Candidate agents comprise functional groups for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups.
- the candidate agents may include cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups.
- Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Such molecules may be identified, among other ways, by employing the screening protocols described below.
- the agent is an agent that increases the activity of a protein, e.g., by increasing the amount of protein, e.g., in a cell.
- introduction of an expression vector encoding a polypeptide can be used to express the encoded product in cells lacking the sequence, or to over-express the product.
- Various promoters can be used that are constitutive or subject to external regulation, where in the latter situation, one can turn on or off the transcription of a gene.
- These coding sequences may include full-length cDNA or genomic clones, fragments derived therefrom, or chimeras that combine a naturally occurring sequence with functional or structural domains of other coding sequences.
- the introduced sequence may encode an anti-sense sequence; be an anti-sense oligonucleotide; encode a dominant negative mutation, or dominant or constitutively active mutations of native sequences; altered regulatory sequences, etc.
- RNA capable of encoding gene product sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in “Oligonucleotide Synthesis”, 1984, Gait, M. J. ed., IRL Press, Oxford.
- Expression constructs may contain promoters derived from the genome of mammalian cells, e.g., metallothionein promoter, elongation factor promoter, actin promoter, etc., from mammalian viruses, e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter, SV40 late promoter, cytomegalovirus, etc.
- mammalian viruses e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter, SV40 late promoter, cytomegalovirus, etc.
- a number of viral-based expression systems may be utilized, e.g. retrovirus, lentivirus, adenovirus, herpesvirus, and the like.
- the coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination.
- Insertion in a non-essential region of the viral genome will result in a recombinant virus that is viable and capable of expressing the gene product in infected hosts (see Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659).
- Specific initiation signals may also be required for efficient translation of inserted gene product coding sequences. These signals include the ATG initiation codon and adjacent sequences.
- Standard systems for generating adenoviral vectors for expression on inserted sequences are available from commercial sources, for example the Adeno-XTM expression system from Clontech (Clontechniques (January 2000) p. 10-12).
- methods are used that achieve a high efficiency of transfection, and therefore circumvent the need for using selectable markers.
- selectable markers may include adenovirus infection (see, for example Wrighton, 1996, J. Exp. Med. 183: 1013; Soares, J. Immunol., 1998, 161: 4572; Spiecker, 2000, J. Immunol 164: 3316; and Weber, 1999, Blood 93: 3685); and lentivirus infection (for example, International Patent Application WO000600; or WO9851810).
- Adenovirus-mediated gene transduction of endothelial cells has been reported with 100% efficiency.
- Retroviral vectors also can have a high efficiency of infection with endothelial cells, with reported infection efficiencies of 40-77%.
- Other vectors of interest include lentiviral vectors, for examples, see Barry et al. (2000) Hum Gene Ther 11(2):323-32; and Wang et al. (2000) Gene Ther 7(3):196-200.
- Viral vectors include retroviral vectors (e.g. derived from MoMLV, MSCV, SFFV, MPSV, SNV etc), lentiviral vectors (e.g. derived from HIV-1, HIV-2, SIV, BIV, FIV etc.), adeno-associated virus (AAV) vectors, adenoviral vectors (e.g. derived from Ad5 virus), SV40-based vectors, Herpes Simplex Virus (HSV)-based vectors etc.
- retroviral vectors e.g. derived from MoMLV, MSCV, SFFV, MPSV, SNV etc
- lentiviral vectors e.g. derived from HIV-1, HIV-2, SIV, BIV, FIV etc.
- AAV adeno-associated virus
- Ad5 virus adenoviral vectors
- SV40-based vectors e.g. derived from Ad5 virus
- HSV Herpes Simplex Virus
- a vector construct may include drug resistance genes (neo, dhfr, hprt, gpt, bleo, puro etc) enzymes ( ⁇ -galactosidase, alkaline phosphatase etc) fluorescent genes (e.g. GFP, RFP, BFP, YFP) or surface markers (e.g. CD24, NGFr, Lyt-2 etc).
- drug resistance genes no, dhfr, hprt, gpt, bleo, puro etc
- enzymes ⁇ -galactosidase, alkaline phosphatase etc
- fluorescent genes e.g. GFP, RFP, BFP, YFP
- surface markers e.g. CD24, NGFr, Lyt-2 etc.
- the gene or protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intra-muscular administration, as described by Furth et al. (1992), Anal Biochem 205:365-368.
- the DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or “gene gun” as described in the literature (see, for example, Tang et al. (1992), Nature 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.
- the gene corresponding to a selected polynucleotide is identified, its expression can be regulated in the cell to which the gene is native.
- an endogenous gene of a cell can be regulated by an exogenous regulatory sequence as disclosed in U.S. Pat. No. 5,641,670; the disclosure of which is herein incorporated by reference.
- Also of interest in these embodiments is the administration of a target protein itself or active fragments, as well as mimetics, thereof.
- the active agent is configured to cross the blood brain barrier.
- the active agent may be conjugated to a moiety that confers upon the active agent the ability to cross the blood brain barrier.
- a moiety that confers upon the active agent the ability to cross the blood brain barrier.
- the subject moiety may be a peptide, e.g., a cell-penetrating peptide.
- Suitable peptides that facilitate crossing of the blood brain barrier include, but are not limited to positively charged peptides with amphipathic characteristics, such as MAP, pAntp, Transportan, SBP, FBP, TAT 48-60 , SynB1, SynB3 and the like.
- the subject moiety may be a polymer.
- Suitable polymers that facilitate crossing of the blood brain barrier include, but are not limited to, surfactants such as polysorbate (e.g., Tween® 20, 40, 60 and 80); poloxamers such as Pluronic® F 68; and the like.
- an active agent is conjugated to a polysorbate such as, e.g., Tween® 80 (which is Polyoxyethylene-80-sorbitan monooleate), Tween® 40 (which is Polyoxyethylene sorbitan monopalmitate); Tween® 60 (which is Polyoxyethylene sorbitan monostearate); Tween® 20 (which is Polyoxyethylene-20-sorbitan monolaurate); polyoxyethylene 20 sorbitan monopalmitate; polyoxyethylene 20 sorbitan monostearate; polyoxyethylene 20 sorbitan monooleate; etc.
- a polysorbate such as, e.g., Tween® 80 (which is Polyoxyethylene-80-sorbitan monooleate), Tween® 40 (which is Polyoxyethylene sorbitan monopalmitate); Tween® 60 (which is Polyoxyethylene sorbitan monostearate); Tween® 20 (which is Polyoxyethylene-20-sorbitan monolaurate); polyoxyethylene 20 sorbitan monopal
- water soluble polymers including, e.g.: polyether, for example, polyalkylene oxides such as polyethylene glycol (“PEG”), polyethylene oxide (“PEO”), polyethylene oxide-co-polypropylene oxide (“PPO”), co-polyethylene oxide block or random copolymers, and polyvinyl alcohol (“PVA”); poly(vinyl pyrrolidinone) (“PVP”); poly(amino acids); dextran, and proteins such as albumin.
- polyether for example, polyalkylene oxides such as polyethylene glycol (“PEG”), polyethylene oxide (“PEO”), polyethylene oxide-co-polypropylene oxide (“PPO”), co-polyethylene oxide block or random copolymers, and polyvinyl alcohol (“PVA”); poly(vinyl pyrrolidinone) (“PVP”); poly(amino acids); dextran, and proteins such as albumin.
- PEG polyethylene glycol
- PEO polyethylene oxide
- PPO polyethylene oxide-co
- Block co-polymers are suitable for use, e.g., a polyethylene oxide-polypropylene oxide-polyethylene-oxide (PEO-PPO-PEO) triblock co-polymer (e.g., Pluronic® F68); and the like; see, e.g., U.S. Pat. No. 6,923,986.
- PEO-PPO-PEO polyethylene oxide-polypropylene oxide-polyethylene-oxide
- Pluronic® F68 e.g., Pluronic® F68
- Other methods for crossing the blood brain barrier are discussed in various publications, including, e.g., Chen & Liu (2012) Advanced Drug Delivery Reviews 64:640-665.
- the targeting moiety may be attached to the subject active agent via any convenient method.
- the targeting moiety may be attached to the active agent via a single bond or a suitable linker, e.g., a PEG linker, a peptidic linker including one or more amino acids, or a saturated hydrocarbon linker.
- a suitable linker e.g., a PEG linker, a peptidic linker including one or more amino acids, or a saturated hydrocarbon linker.
- linkers find use in the subject modified compounds.
- targeting moieties or active agents are small molecule compounds
- such compounds may contain, or be modified to contain, an ⁇ -nucleophilic group that serves as a reactive partner useful in conjugation to a compound disclosed herein.
- General methods are known in the art for chemical synthetic schemes and conditions useful for synthesizing a compound of interest (see, e.g., Smith and March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Fifth Edition, Wiley-Interscience, 2001; or Vogel, A Textbook of Practical Organic Chemistry, Including Qualitative Organic Analysis, Fourth Edition, New York: Longman, 1978).
- targeting moieties or active agents are peptides
- any convenient reagents and methods may be used to conjugate the targeting moiety and subject active agent, for example, conjugation methods as described in G. T. Hermanson, “Bioconjugate Techniques” Academic Press, 2nd Ed., 2008, solid phase peptide synthesis methods, or fusion protein expression methods.
- Reactive functional groups for conjugation of peptidic compounds, via an optional linker include, but are not limited to: an azido group, an alkynyl group, a phosphine group, a cysteine residue, a C-terminal thioester, aryl azides, maleimides, carbodiimides, N-hydroxysuccinimide (NHS)-esters, hydrazides, PFP-esters, hydroxymethyl phosphines, psoralens, imidoesters, pyridyl disulfides, isocyanates, aminooxy-, aldehyde, keto, chloroacetyl, bromoacetyl, and vinyl sulfones.
- peptide coupling reagents include, but not limited to, DCC (dicyclohexylcarbodiimide), DIC (diisopropylcarbodiimide), di-p-toluoylcarbodiimide, BDP (1-benzotriazole diethylphosphate-1-cyclohexyl-3-(2-morpholinylethyl)carbodiimide), EDC (1-(3-dimethylaminopropyl-3-ethyl-carbodiimide hydrochloride), cyanuric fluoride, cyanuric chloride, TFFH (tetramethyl fluoroformamidinium hexafluorophosphosphate), DPPA (diphenylphosphorazidate), BOP (benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate), HBTU (O
- any convenient reagents and methods may be used to conjugate the targeting moiety and subject active agent.
- conjugation methods described in P. Herdewijn, “Oligonucleotide Synthesis” Humana Press, 2005 such as total stepwise solid-phase synthesis methods, or methods utilizing incorporation of 2′-aldehydes for use in ligation via hydrazine, oxime, or thiazolidine linkages.
- the oligonucleotide may be first conjugated, by methods well known in the art, to a natural or synthetic amino acid such that functional groups on the amino acid may be utilized for conjugation by any of the relevant peptide conjugation methods described herein.
- the antibody may include a light chain polypeptide including a C-terminal amino acid extension, which extension includes a cysteine residue, where the agent is conjugated to the cysteine residue (directly or indirectly (e.g., via a linker)) of the C-terminal amino acid extension.
- conjugation method involves the preferential (or “biased”) conjugation of agent to the cysteine residue of the C-terminal amino acid extension over a cysteine residue outside the C-terminal extension.
- the conjugation includes conjugating a linker to a sulfhydryl group of the cysteine residue, e.g., using maleimide reaction chemistry, haloacetyl reaction chemistry, pyridyl disulfide reaction chemistry, or any other suitable reaction chemistry as described elsewhere herein.
- the methods of making the conjugate may further include reducing the sulfhydryl group of the cysteine residue prior to the conjugating step, e.g., using a suitable reducing agent and reaction conditions as described above.
- An alternative embodiment of the present disclosure does not require a reduction step as the cysteine within the light chain extension is already in a reduced state as a synthesis product.
- the agent is linked to the cysteine of the C-terminal extension using maleimide reaction chemistry.
- the maleimide group reacts specifically with sulfhydryl groups when the pH of the reaction mixture is between pH 6.5 and 7.5; the result is formation of a stable thioether linkage.
- primary amines compete with thiols for reaction with maleimides, and also increases the rate of hydrolysis of the maleimide group to a non-reactive maleamic acid.
- Maleimides do not react with tyrosines, histidines or methionines. Bioconjugation approaches that employ maleimide-based linkers are known and described in detail, e.g., in Hermanson, G.
- the agent is linked to the cysteine of the C-terminal extension using haloacetyl reaction chemistry.
- a haloacetyl crosslinker that includes an iodoacetyl or a bromoacetyl group is employed.
- Haloacetyls react with sulfhydryl groups at physiologic pH. The reaction of the iodoacetyl group proceeds by nucleophilic substitution of iodine with a sulfur atom from a sulfhydryl group, resulting in a stable thioether linkage.
- the agent is linked to the cysteine of the C-terminal extension using pyridyl disulfide reaction chemistry.
- Pyridyl disulfides react with sulfhydryl groups over a broad pH range (with pH 4 to 5 being optimal) to form disulfide bonds.
- a disulfide exchange occurs between the molecule's —SH group and the reagent's 2-pyridyldithiol group.
- the sulfhydryl group of the cysteine may be contacted with a suitable reducing agent under conditions sufficient to reduce the sulfhydryl group.
- the reducing agent is selected from cysteamine hydrochloride, 2-mercaptoethanol, dithiothreitol (DTT), 2-mercaptoethylamine, tris(2-carboxyl)phosphine (TCEP), cysteine HCl, N-ethylmaleimide, Nacystelyn, dornase alfa, thymosin 134, guaifenesin TCEP HCl, and any combination thereof.
- cysteamine hydrochloride 2-mercaptoethanol, dithiothreitol (DTT), 2-mercaptoethylamine, tris(2-carboxyl)phosphine (TCEP), cysteine HCl, N-ethylmaleimide, Nacystelyn, dornase alfa, thymosin 134, guaifenesin TCEP HCl, and any combination thereof.
- Reaction conditions for such reducing agents are known in the art and may be optimized, e.g., to promote selectivity or “bias” the reduction of the sulfhydryl group of the cysteine(s) present in the C-terminal extension as opposed to the cysteine residues present in the parental antibody (e.g., the cysteine residues that participate in disulfide bonding between CL and CH1 of the light and heavy chains, and/or between the hinge regions of the heavy chains).
- An alternative embodiment of the invention does not require a reduction step as the cysteine within the light chain extension is already in a reduced state as a synthesis product.
- Preferential reduction of the cysteine(s) of the C-terminal amino acid extension over one or more cysteine residues outside the C-terminal amino acid extension may be achieved by selection of suitable reduction conditions.
- suitable reduction conditions include suitable selection of one or more of the following: a mild reducing agent and/or a reducing agent having a steric bulk that confers upon the reducing agent a preference for reducing a cysteine of the C-terminal amino acid extension; concentrations of the reducing agent and substrate; the temperature at which the reduction reaction is carried out, the pH of the reduction reaction mixture; the buffer used in the reduction reaction; and/or conditions under which the cells expressing the extended C-terminal light chain polypeptides are cultured (e.g., to obtain free thiol on the C-terminal extension and/or to generate readily reduced intermolecular disulfides).
- the agent conjugated to the antibody may be any useful agent described elsewhere herein. In certain aspects where the agent is an antibody, the agent may be conjugated to a targeting moiety by antibody conjugation methods described herein.
- an effective amount of the active agent is provided in the target cell or cells.
- the effective amount of the modulatory agent is provided in the cell by contacting the cell with the modulatory agent.
- Contact of the cell with the modulatory agent may occur using any convenient protocol. The protocol may provide for in vitro or in vivo contact of the modulatory agent with the target cell, depending on the location of the target cell. Contact may or may not include entry of the agent into the cell.
- the modulatory agent may be introduced directly into the cell under cell culture conditions permissive of viability of the target cell.
- Such techniques include, but are not necessarily limited to: viral infection, transfection, conjugation, protoplast fusion, electroporation, particle gun technology, calcium phosphate precipitation, direct microinjection, viral vector delivery, and the like.
- the choice of method is generally dependent on the type of cell being contacted and the nature of the modulatory agent, and the circumstances under which the transformation is taking place (e.g., in vitro, ex vivo, or in vivo).
- a general discussion of these methods can be found in Ausubel, et al, Short Protocols in Molecular Biology, 3rd ed., Wiley & Sons, 1995.
- the modulatory agent may be administered to the organism or subject in a manner such that the agent is able to contact the target cell(s), e.g., via an in vivo or ex vivo protocol.
- in vivo it is meant in the target construct is administered to a living body of an animal.
- ex vivo it is meant that cells or organs are modified outside of the body. Such cells or organs are typically returned to a living body.
- the active agent(s) may be administered to the targeted cells using any convenient administration protocol capable of resulting in the desired activity.
- the agent can be incorporated into a variety of formulations, e.g., pharmaceutically acceptable vehicles, for therapeutic administration.
- the agents of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments (e.g., skin creams), solutions, suppositories, injections, inhalants and aerosols.
- administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.
- the agents may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds.
- the following methods and excipients are merely exemplary and are in no way limiting.
- the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- conventional additives such as lactose, mannitol, corn starch or potato starch
- binders such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins
- disintegrators such as corn starch, potato starch or sodium carboxymethylcellulose
- lubricants such as talc or magnesium stearate
- the agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- an aqueous or nonaqueous solvent such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol
- solubilizers isotonic agents
- suspending agents emulsifying agents, stabilizers and preservatives.
- the agents can be utilized in aerosol formulation to be administered via inhalation.
- the compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.
- the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases.
- bases such as emulsifying bases or water-soluble bases.
- the compounds of the present invention can be administered rectally via a suppository.
- the suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors.
- unit dosage forms for injection or intravenous administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle.
- the specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- the pharmaceutically acceptable excipients such as vehicles, adjuvants, carriers or diluents, are readily available to the public.
- pharmaceutically acceptable auxiliary substances such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- the agent is a polypeptide, polynucleotide, analog or mimetic thereof
- it may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth et al. (1992), Anal Biochem 205:365-368.
- the DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or “gene gun” as described in the literature (see, for example, Tang et al. (1992), Nature 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.
- a number of different delivery vehicles find use, including viral and non-viral vector systems, as are known in the art.
- dose levels can vary as a function of the specific compound, the nature of the delivery vehicle, and the like. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means.
- electrical energy may be applied to at least a portion of a subject, where such electrical energy may be excitatory or inhibitory and in certain embodiments may include both excitatory and inhibitory stimulation.
- electrical modulating is meant altering or changing at least a portion of the subject by electrical means to provide a change, alteration or shift in at least one component or aspect of an electrical system of the subject.
- Any suitable area may be targeted for electrical modulation. Areas that may be targeted include, but are not limited to, pre- and post-ganglionic nerve fibers, as well as ganglionic structures, efferent and afferent nerve fibers, synapses, etc., and combinations thereof in certain embodiments.
- activity in a given nerve fiber may be electrically modulated in more than one area of the nerve fiber.
- electrical energy is applied to modulate synaptic efficiency.
- electrical energy is applied using any of the devices described below.
- the methods include employing a paradoxical protocol in order to obtain a desired enhancement of homeostatic capacity.
- a counter-intuitive stimulus is applied to the subject in a manner effective to cause the subject to mount a compensatory response effective to ultimately modulate the dynamic homeostatic capacity of the subject, as desired.
- a stimulus is applied to the subject, where the stimulus is of a nature and magnitude sufficient to achieve the desired modulation.
- the applied stimulus is one of short duration, where by short duration is meant that the applied stimulus lasts for 1 week or less, e.g., 3 days or less, e.g., 1 day or less, e.g., 12 hours or less, 5 hours or less, 1 hour or less, 30 min or less, 15 min or less, 5 min or less, 1 min or less, 30 s or less, 1 s or less, where the duration of the applied stimulus may be even shorter.
- the applied stimulus is one of long duration, where by long duration is meant that the applied stimulus lasts for 1 week or longer, e.g., 2 weeks or longer, 1 month or longer, 2 months or longer, 3 months or longer, or 6 months or longer, where the duration of the applied stimulus may be even shorter.
- the duration refers to the period in which the pharmacological agent from an administered dosage is active.
- the duration refers to the total of electrical applications received by a subject over a given period, analogous to a dose of a pharmacological agent.
- the stimulus is removed, e.g., by metabolization of the pharmacological agent or cessation of application of electrical energy, and the subject is permitted to mount a compensatory response.
- no additional stimulus is administered to the subject.
- the duration of this period between stimulus application which may be referred to as a “holiday” period, may vary, but in representative embodiments is 1 second or longer, such as 30 seconds or longer, e.g., 1 minute or longer, 5 minutes or longer, 10 minutes or longer, 15 minutes or longer, 30 minutes or longer, 1 hour or longer, 6 hours or longer, 12 hours or longer, 1 day or longer, such as 2 days or longer, including 5 days or longer, 10 days or longer, e.g., 15 days or longer.
- embodiments of the methods include non-chronic (i.e., non-continuous) application of the stimulus, e.g., non-chronic administration of a pharmacologic agent.
- the methods include close monitoring or supervision of the subject during and/or after application of the stimulus.
- This monitoring may be completely automated, or at least in part performed manually, e.g., by a health care professional.
- a health care professional can closely watch the subject following application of the stimulus as well as during the holiday period following stimulus application, and based on this monitoring determine when a next stimulus should be applied.
- Monitoring also assures that the symptom enhancement is not so severe as to be ultimately damaging to the subject at an unacceptable level.
- Certain aspects of the monitoring may be automated. For example, following administration, the subject may enter one or more physiological parameters into an automated system, which uses the input parameters to automatically determine whether the subject is staying within a predetermined set of physiological parameters, or whether intervention is necessary.
- the automated monitoring system may also be integrated with a stimulus application device, such that the system, based on monitored parameters, determines when next to administer a stimulus, the duration of the next stimulus, etc.
- the method may be characterized as applying a first stimulus to the subject and monitoring the subject for a response thereto. Following this first step, the method further includes applying at least a second stimulus to the subject, wherein the second stimulus is determined based on the monitored response to the first stimulus.
- stimulus to the subject is done in an “irregularly irregular” manner.
- duration of the stimulus application events, as well as duration of holiday periods between such events varies randomly over the entire course of a treatment, or at least a portion thereof.
- the variation does not follow any pattern, but instead is random.
- the applied stimulus may vary, where in certain embodiments the stimulus may be a pharmacological stimulus and/or an electrical stimulus.
- the stimulus is a pharmacological stimulus.
- the stimulus is an electrical stimulus.
- the stimulus is a combination of pharmacological and electrical stimuli.
- the enhancing is by administering a pharmacological agent to the subject.
- the enhancing is by electrical stimulation, e.g., by employing an implanted electrical energy application device.
- the methods include employing a pulsatile protocol in order to obtain a desired enhancement of homeostatic capacity.
- a stimulus is applied in a pulsatile manner to the subject effective to cause the desired modulation in homeostatic capacity.
- Pulsatile protocols may be employed to enhance homeostatic capacity and aspects thereof, e.g., dynamic range, robustness, etc.
- intermittent stressors may be employed, e.g., in the form of iterative stress and rest and/or variation (irregularity or regularity) and intermittency of stressor, e.g., in order to enhance homeostatic capacity.
- a dynamic range of stressors may be employed to increase the dynamic range of homeostatic capacity and/or to strengthen homeostatic capacity.
- a pulsatile stimulus is applied to the subject, where the pulsatile stimulus is of a nature and magnitude sufficient to achieve the desired modulation.
- the applied pulsatile stimulus is one of short duration, where by short duration is meant that the applied stimulus lasts for 1 week or less, e.g., 3 days or less, e.g., 1 day or less, e.g., 12 hours or less, 5 hours or less, 1 hour or less, 30 min or less, 15 min or less, 5 min or less, 1 min or less, 30 s or less, 1 s or less, where the duration of the applied stimulus may be even shorter.
- the applied pulsatile stimulus is one of long duration, where by long duration is meant that the applied stimulus lasts for 1 week or longer, e.g., 2 weeks or longer, 1 month or longer, 2 months or longer, 3 months or longer, or 6 months or longer, where the duration of the applied stimulus may be even shorter.
- the duration refers to the period in which the pharmacological agent from an administered dosage is active.
- the duration refers to the total of electrical applications received by a subject over a given period, analogous to a dose of a pharmacological agent.
- non-stimulation period Following administration of a given stimulation in a pulsatile stimulus protocol, there is a non-stimulation period.
- the duration of this non-stimulation period between stimuli application may vary, but in certain embodiments is 1 second or longer, such as 30 seconds or longer, e.g., 1 minute or longer, 5 minutes or longer, 10 minutes or longer, 15 minutes or longer, 30 minutes or longer, 1 hour or longer, 6 hours or longer, 12 hours or longer, 1 day or longer, such as 2 days or longer, including 5 days or longer, 10 days or longer, e.g., 15 days or longer.
- pulsatile stimulus to the subject is done in an “irregularly irregular” manner.
- duration of the stimulus application events, as well as duration of holiday periods between such events varies randomly over the entire course of a treatment, or at least a portion thereof.
- the variation does not follow any pattern, but instead is random.
- the applied pulsatile stimulus may vary, where in certain embodiments the pulsatile stimulus may be a pharmacological stimulus and/or an electrical stimulus.
- the stimulus is a pharmacological stimulus.
- the stimulus is an electrical stimulus.
- the stimulus is a combination of pharmacological and electrical stimuli.
- the enhancing is by administering a pharmacological agent to the subject.
- the enhancing is by electrical stimulation, e.g., by employing an implanted electrical energy application device.
- the therapy that is administered to the subject is a behavioral therapy.
- behavioral therapy is meant at protocol or regimen that results in a change in the behavior, i.e., the way that the subject acts, in a manner sufficient to modulate the dynamic measure of homeostatic capacity and treat the subject for the target condition.
- Behavioral therapies may vary, where examples of such therapies include, but are not limited to: exercise regimens (e.g., cardiovascular, weight lifting, stretching, yoga); resting/sleeping regimens (e.g., meditation); physical therapies; psychological therapies, e.g., counseling for enhancement of emotions/mood; substance abuse therapies, e.g., smoking cessation therapies, alcohol abstinence therapies; drugs of abuse abstinence therapies, etc.
- Behavioral therapies may vary in terms of application, where examples include but are not limited to those that are administered via professional and/or consumer devices/services, e.g., mobile apps, videos, computers, etc.
- the therapy that is administered to the subject is a dietary therapy.
- dietary therapy is meant at protocol or regimen that results in a change in the nutritional and/or chemical intake of the subject, e.g., the types of foods/liquids that the subject ingests or otherwise introduces into the body, in a manner sufficient to modulate the dynamic measure of homeostatic capacity and treat the subject for the target condition.
- Dietary therapies that may be employed may vary, where examples of such therapies include, but are not limited to: low carbohydrate diets, low fat diets, low calorie diets, vegetarian diets, organic diets, etc.; nutritional supplement regimens, e.g., vitamin regimens; etc.
- the therapy that is administered to the subject is an environmental therapy.
- environmental therapy is meant at protocol or regimen that results in a change in the contextual environment of the subject, e.g., the perceived surroundings of the subject, in a manner sufficient to modulate the dynamic measure of homeostatic capacity and treat the subject for the target condition.
- Environmental therapies that may be employed may vary, where examples of such therapies include, but are not limited to: changes in day/night duration; changes in geographic locations, e.g., to obtain a desired temperature and/or elevation, etc.
- the therapy that is administered to the subject is a surgical therapy.
- surgical therapy is meant a manual or operative procedure on a living subject. Surgical procedures may vary widely, and may or may not be minimally invasive, as is known in the art.
- Embodiments of the methods may further include evaluating homeostatic capacity of a subject.
- homeostatic capacity refers to the ability of a subject to maintain relatively constant conditions in the internal environment while continuously interacting with and adjusting to changes originating within or outside the system.
- evaluating is meant assessing, analyzing or assaying to provide a form of measurement, e.g., in the form of a determination or proxy thereof, of the homeostatic capacity of the subject.
- the evaluations that may be made may be quantitative and/or qualitative determinations, and be represented as a value or set of values, as desired.
- biometric data is employed to refer to a measure of a biometric parameter that relates to the physiology of a living organism, e.g., as described below.
- the biometric parameter which is employed in methods of the invention to obtain the biometric data may be a parameter that provides information about an organism's vital functions, including growth and development, the absorption and processing of nutrients, the synthesis and distribution of proteins and other organic molecules, the functioning of different tissues, organs, and other anatomic structures; the psychological and/or behavioral state of the subject, e.g., mental and/or cognitive state of the subject, which may be subjective or objective, self-reported or third party observed, as desired; etc.
- Biometric parameters that are measured may vary widely, where examples of such parameters include physiological, chemical, electrical, behavioral, psychological, etc., based parameters, as well as variations and derivatives thereof.
- Biometric parameters of interest include, but are not limited to: physical parameters, e.g., blood pressure, orthostatic hypotension, pulse pressure, heart rate, heart rate variability (HRV), heart rate recovery, resting heart rate, respiration rate, forced expiratory volume, forced vital capacity, temperature, core temperature, galvanic skin response, gastrointestinal motility, sleep cycle, VO2 max, bone density, weight, body mass index (BMI), bone density, waist to hip ratio, waist circumference, other obesity measures (e.g., volume displacement, Dual Energy X-ray Absorptiometry (i.e., DEXA), etc.), baroreceptor sensitivity, oxygen saturation, nervous system activity measurements, including electrical potential measurements, such as spontaneous electrical potential measurements, e.g., EEG, EMG EKG, evoked electrical potential measurements, e.g., sensory evoked
- Dynamic biometric data may be made up of information about a single type of biometric parameter, or two or more different types of biometric parameters.
- the biometric data employed in methods of the invention may thus be made up of information obtained by measuring or assessing one or more biometric parameters, such as the ones listed above.
- the biometric data that is obtained and employed in embodiments of the invention is dynamic biometric data.
- dynamic biometric data is meant biometric data that incorporates some type of change component, as opposed to static biometric data.
- the change component may vary widely, where examples of change components include, but are not limited to components that are: temporal and/or in response to an applied stimulus and/or in response to withdrawal of stimulus and/or in response to a change in the contextual environment of the subject.
- the dynamic biometric data that is obtained may be biometric data obtained over a given period of time. The given period of time may vary, ranging in some instances from 0.1 seconds to 24 hours, such as 1 second to 12 hours, e.g., 1 second to 1 hour, including 1 second to 1 minute.
- the data may be obtained continuously over that period of time or at one or more distinct points during that period of time.
- the biometric parameter(s) that is monitored in order to obtain biometric data may be monitored continuously during the given period of time, i.e., it may be obtained in an uninterrupted manner, i.e., without cessation, during the given period of time.
- the biometric parameter(s) that is monitored in order to obtain biometric data may be monitored intermittently during the given period of time, i.e., it may be obtained at one or more points over the given period of time, with an interval between points at which it is not obtained.
- the interval may vary, ranging, for example, from 0.01 sec to 60 minutes or longer, such as 0.1 to 60 s.
- the dynamic biometric data is obtained by evaluating a biometric parameter for a rate of change over a period of time.
- methods may include obtaining information about the speed at which a biometric parameter of interest changes over a given period of period of time.
- Obtaining dynamic biometric data as described above provides for numerous benefits, including increases in temporal resolution, as compared to single point in time data. Dynamic biometric data as obtained herein provides a truer and more meaningful measure of the biometric value(s) of interest, as compared to single point in time measurements.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to an applied stimulus.
- biometric data may include data that is obtained before and/or after application of the stimulus to the subject.
- the biometric data may be obtained over a given period of time that spans or follows the application of the stimulus to the subject. This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with application of a stimulus to the subject being evaluated.
- the applied stimulus may vary, where stimuli of interest include physical stimuli and chemical stimuli. Physical stimuli of interest include, but are not limited to, change in orientation of the subject, exercise, change in temperature experienced by the subject or a portion thereof, and the like.
- Chemical stimuli of interest include, but are not limited to, administration of various active agents, e.g., orally, topically, by injection or other type of administration route, where active agents of interest include, but are not limited to: sugars, starches, stimulants, and the like.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to withdrawal of a stimulus.
- biometric data may include data that is obtained before and/or after withdrawal (e.g., blockage) of the stimulus to the subject.
- the biometric data may be obtained over a given period of time that spans or follows the withdrawal of the stimulus to the subject. This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with withdrawal of a stimulus to the subject being evaluated.
- the withdrawn stimulus may vary, where stimuli of interest include physical stimuli and chemical stimuli.
- Physical stimuli of interest include, but are not limited to, change in orientation of the subject, exercise, change in temperature experienced by the subject or a portion thereof, and the like.
- Chemical stimuli of interest include, but are not limited to, administration of various active agents, e.g., orally, topically, by injection or other type of administration route, where active agents of interest include, but are not limited to: sugars, starches, stimulants, and the like.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to modulation of the contextual environment of the subject.
- contextual environment of the subject is meant the perceived environment of the subject.
- biometric data may include data that is obtained before and/or after the modulation in the contextual environment of the subject.
- the biometric data may be obtained over a given period of time that spans or follows the modulation of the contextual environment of the subject.
- This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with modulation of the contextual environment of the subject.
- the modulation of the contextual environment of the subject may vary, where contextual modulations of interest include, but are not limited to, change in day and night duration, change in temperature, change in humidity, change in elevation, change in atmosphere, and the like.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to modulation of the behavioral aspect of the subject.
- behavioral aspect of the subject is meant an observable activity of the subject.
- biometric data may include data that is obtained before and/or after the modulation of the behavioral aspect of the subject.
- the biometric data may be obtained over a given period of time that spans or follows the modulation of the behavioral aspect of the subject.
- This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with modulation of the behavioral aspect of the subject.
- the modulation of the behavioral aspect of the subject may vary, where behavioral modulations of interest include, but are not limited to, dietary changes, sleep pattern changes, activity level changes, and the like.
- biometric parameters may be measured to obtain the dynamic biometric data.
- the method by which the biometric data is obtained may vary depending on the nature of the biometric parameter that is monitored.
- the method employed to obtain the biometric data includes physically monitoring the subject to obtain the dynamic biometric data.
- the biometric parameter is one or more of blood pressure, orthostatic hypotension, pulse pressure, heart rate, heart rate variability (HRV), heart rate recovery, resting heart rate, respiration rate, forced expiratory volume, forced vital capacity, temperature, core temperature, galvanic skin response, gastrointestinal motility, sleep cycle, VO2 max, bone density, weight, body mass index (BMI), bone density, waist to hip ratio, waist circumference, other obesity measures (e.g., volume displacement, Dual Energy X-ray Absorptiometry (i.e., DEXA), etc.), baroreceptor sensitivity, oxygen saturation, nervous system activity measurements, including electrical potential measurements, such as spontaneous electrical potential measurements, e.g., EEG, EMG EKG, evoked electrical potential measurements, e.g., sensory evoked potentials (such as auditory invoked potentials (e.g., brain stem evoked response or potential (ABER or ABEP), visual evoked potentials, tactile or somatosensor
- HRV heart rate variability
- HRV
- the physical monitoring may include measures such as low frequency peak (“LF”), high frequency peak (“HF”), and the LF/HF ratio to determine HRV and obtain the HRV derived biometric data.
- LF low frequency peak
- HF high frequency peak
- the dynamic biometric data is obtained by a method that includes analyzing a sample from the subject to obtain the dynamic biometric data.
- the sample that is analyzed may vary, where samples of interest include, but are not limited to: urine, blood, serum, plasma, saliva, semen, prostatic fluid, nipple aspirate fluid, lachrymal fluid, perspiration, feces, cheek swabs, cerebrospinal fluid, cell lysate samples, amniotic fluid, gastrointestinal fluid, biopsy tissue (e.g., samples obtained from laser capture microdissection (LCM)), and the like.
- samples of interest include, but are not limited to: urine, blood, serum, plasma, saliva, semen, prostatic fluid, nipple aspirate fluid, lachrymal fluid, perspiration, feces, cheek swabs, cerebrospinal fluid, cell lysate samples, amniotic fluid, gastrointestinal fluid, biopsy tissue (e.g., samples obtained from laser capture microdissection (LC
- the sample can be a biological sample or can be extracted from a biological sample derived from humans, animals, and the like, and may employ conventional methods for the successful extraction of DNA, RNA, proteins and peptides.
- the sample is a fluid sample, such as a solution of analytes in a fluid.
- the fluid may be an aqueous fluid, such as, but not limited to water, a buffer, and the like.
- Biometric parameters that may be monitored by evaluating a sample from the subject include, but are not limited to: pH level, cortisol level, ACTH level, Epinephrine/Norepinephrine level, oxygen saturation, insulin, glucose, inflammatory/immune markers, DNA methylation, DNA double strand breaks, clock genes/factors, oxidative stress, telomere status, gut biome, melatonin level, adenosine level, creatinine, urea nitrogen, c-reactive protein, hemoglobin, triglycerides, lipoproteins, apoloipoprotein B100/A1 ratio, white blood cell count, cholesterol, oxygen saturation, and combinations thereof.
- the dynamic biometric data is obtained by both physically monitoring the subject and by assaying a sample from the subject, e.g., as described above.
- aspects of the methods further include evaluating the homeostatic capacity of the subject from the dynamic biometric data.
- the homeostatic capacity of the subject is evaluated based on the obtained dynamic biometric data.
- Any convenient protocol may be employed to evaluate the homeostatic capacity of the subject based on the obtained dynamic biometric data.
- the obtained dynamic biometric data may be compared to control or reference sets of dynamic biometric data to obtain the homeostatic capacity evaluation.
- the obtained dynamic biometric data may be compared to a suitable database of control or reference sets to obtain the homeostatic capacity evaluation.
- the control or references sets of data may be made up of data obtained from multiple different individuals of known homeostatic capacity.
- the data may be made up from individuals of a variety of different ages and health, including from young and old individuals, as well as healthy and diseased individuals, as desired. Any suitable comparison algorithm may be employed, and the output homeostatic capacity evaluation may be produced in a variety of different formats or configurations. This homeostatic capacity evaluation step may be performed using a suitable functional module of a computing device/system, e.g., as described in greater detail below.
- the homeostatic capacity evaluation may vary, as desired.
- the evaluation may be an output in the form of a qualitative assessment, e.g., bad, poor, average, good and exceptional, etc.
- the output may be in the form of a quantitative assessment, e.g., where the homeostatic capacity evaluation output a number selected from a numerical scale.
- the homeostatic capacity evaluation output may provide assessment with respect to a number of different homeostatic capacity parameters, such as but not limited to: the robustness, dynamic range, resilience, coping mechanism, anti-fragility, etc., of the homeostatic capacity of the individual.
- the output showing the homeostatic capacity of the animal/person may be provided as a proxy for the biological age (as opposed to the chronological age) of the subject, e.g., by using statistical correlations relative to the general population.
- the homeostatic capacity evaluation produced from dynamic biometric data from a 50 year old professional cyclist in great condition could suggest that the “biological age” of that person based on homeostatic capacity measures is actually much younger, e.g., that of a 35 years old from the general population.
- the homeostatic capacity evaluation is one that is prepared by comparing the obtained dynamic biometric data to a database that includes data comprising statistically meaningful values that correlate each biometric value and/or a combination of the biometric values of interest to the values of different ages or age ranges of cohorts for the same biometric value(s).
- the homeostatic capacity evaluation may be performed by comparing the obtained biometric data to data obtained from healthy individuals from a variety of ages ranging from 20 to 80 years, and show a correlation to a certain age of the individual as a whole or certain systems thereof, e.g., cardiovascular system, neurological system, reproductive system, etc.
- the output homeostatic capacity evaluating may be an overall composite number, e.g., that the individual has the homeostatic capacity of a 32 year old, or be more granular with respect to particular biological systems of the individual, e.g., where the output is that the system provides a homeostatic capacity evaluation in which the subject has a cardiovascular system of a 25 year old but the nervous system of a 35 year old.
- these sub-categories could be at systems levels of the body and could be more granular, e.g., portions of systems.
- the methods may include use of one or more static measures of homeostatic capacity. Such measures may be used as separate measures, or composites of dynamic and static measurements may be employed.
- aspects of the invention further include treating a subject for a condition.
- Embodiments of such methods include enhancing homeostatic capacity of the subject, e.g., as described above, in a manner sufficient to treat the subject for the condition.
- the methods may include a homeostatic capacity measurement that is based on one or more static measures and/or dynamic measures of homeostatic capacity, e.g., as described above. Such measures may be used as separate measures, or composites of dynamic and static measurements may be employed.
- any convenient therapy may be administered to a subject.
- Therapies that may be employed include, but are not limited to: traditional medical therapies, e.g., electrical therapies, pharmacological therapies, electropharmaceuticals, etc.; and non-traditional medical therapies, e.g., homeopathic therapies, acupuncture, acupressure, mechanical manipulation, e.g., chiropractic therapies, laser therapy, e.g., to the vertex or other physiological locations, etc.
- therapies of interest may also be categorized as physical, chemical, psychological, environmental, electrical, behavioral, pharmacological, etc. Specific types of therapies of interest are review above in greater detail. Examples of such therapies are described in greater detail above.
- the therapy is administered to the subject (e.g., by a health practitioner and/or the subject itself, depending the nature of the particular therapy) in a manner sufficient to modulate the subject's dynamic measure of homeostatic capacity to more closely approximate a target dynamic measure of homeostatic capacity and treat the subject for the condition.
- the methods result in an enhancement or an increase in the dynamic measure of the homeostatic capacity of the subject.
- the magnitude of the enhancement/increase may vary, where in some instances the magnitude is 2-fold or greater, such as 5-fold or greater, e.g., 10-fold or greater.
- the methods may result in at least partially restoring the dynamic measure of homeostatic capacity of the subject.
- at least partially restoring the homeostatic capacity of the subject is meant that the homeostatic capacity of the subject is restored to be normal, e.g., in those embodiments were normal is the target dynamic measure.
- normal is meant the dynamic measure of homeostatic capacity of a healthy subject of a particular age.
- the healthy subject is a healthy human at an age after puberty, e.g., 18 year old, 19 year old, 20 year old, 21 year old, 22 year old, 23 year old, 24 year old, 25 year old, 26 year old, 27 year old, 28 year old, 29 year old, 30 year old, 31 year old, 32 year old, 33 year old 34 year old, 35 year old, 36 year old, 37 year old, 38 year old, 39 year old, 40 year old, 41 year old, 42 year old, 43 year old, 44 year old, 45 year old, 46 year old, 47 year old, 48 year old, 49 year old or 50 year old.
- the normal function with respect to homeostatic capacity is that of a healthy human 25 year old.
- the dynamic measure is enhanced to a target dynamic measure that is greater than that observed in a normal subject, e.g., a super normal value.
- the magnitude by which the target dynamic measure may exceed the normal measure may vary, such as by 2-fold or greater, e.g., 5-fold or greater, including 10-fold or greater.
- the therapies are applied such that the dynamic measure of homeostatic capacity more closely approximates a target dynamic measure, e.g., the normal measure or super normal measure, such as described above.
- a target dynamic measure e.g., the normal measure or super normal measure, such as described above.
- approximately is meant, in some instances, that the dynamic measure of homeostatic capacity is changed by the therapy to be 50% or more, e.g., 75% or more of the target function, such as 80% or more of the target dynamic measure, including 90% or more of the target function, e.g., 95% or more of the target function, including 99% or more of the target dynamic measure.
- Therapeutic methods as described herein may further include, following application of therapy, assessing dynamic homeostatic capacity to determine with the measure approximates the target measure, as desired.
- the subject's dynamic measure of homeostatic capacity may be made using any convenient protocol, such as that described above.
- the methods described herein may be employed with a variety of different types of subjects, i.e., animals, where the animals may be “mammals” or “mammalian,” where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), lagomorpha (e.g., rabbits) and primates (e.g., humans, chimpanzees, and monkeys). In some instances, the subjects or patients are humans or laboratory research animals.
- the subject methods find use in a variety of different applications.
- the methods find use as a component of the treatment of a variety of different conditions.
- treatment is meant that at least an amelioration of the symptoms associated with the condition afflicting the subject is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g. symptom, associated with the condition being treated.
- amelioration also includes situations where the condition, or at least symptoms associated therewith, are completely inhibited, e.g. prevented from happening, or stopped, e.g. terminated, such that the subject no longer suffers from the condition, or at least the symptoms that characterize the condition.
- the condition being treated is a disease condition.
- Non-limiting examples of disease conditions that may be treated by practice of the methods include, but are not limited to:
- Examples of conditions that may be treated with the methods of the subject invention include, but are not limited to, cardiovascular diseases, e.g., atherosclerosis, coronary artery disease, hypertension, hyperlipidemia, cardiomyopathy, volume retention; neurodegenerative diseases, e.g., Alzheimer's disease, Pick's disease, dementia, delirium, Parkinson's disease, amyotrophic lateral sclerosis; neuroinflammatory diseases, e.g., viral meningitis, viral encephalitis, fungal meningitis, fungal encephalitis, multiple sclerosis, charcot joint; myasthenia gravis; orthopedic diseases, e.g., osteoarthritis, inflammatory arthritis, reflex sympathetic dystrophy, Paget's disease, osteoporosis; lymphoproliferative diseases, e.g., lymphoma, lymphoproliferative disease, Hodgkin's disease; autoimmune diseases,
- At least partial restoration of the homeostatic capacity of a subject results in treatment of a condition caused by sympathetic bias.
- Conditions that are caused by a sympathetic bias include, but are not limited to aging related diseases, such as but not limited to: cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes, hypertension; shy dragers, multi-system atrophy, age related inflammation conditions and diabetes.
- At least partial restoration of the homeostatic capacity of a subject results in treatment of a condition caused by parasympathetic bias.
- Conditions that are caused by a parasympathetic bias include, but are not limited to an allergy, common cold, eczema, asthma, anaphylaxis, attention deficit hyperactive disorder (ADHD), autism, obesity, depression, Tourette's syndrome, hay fever, cough, fatigue, hypothyroidism, chronic fatigue syndrome, environmental sensitivity syndrome, shock, sepsis, food allergy and food allergy syndrome.
- ADHD attention deficit hyperactive disorder
- non-disease conditions include, but are not limited to: aging, sleep deprivation, veisalgia, and the like.
- the devices may further be configured to obtain dynamic biometric data from a subject and make a homeostatic capacity evaluation of the subject based on the obtained dynamic biometric data.
- the devices may be configured to also output a therapeutic treatment regimen recommendation based on the homeostatic capacity evaluation.
- Devices of interest may include one or more functional modules, which may be distributed among two or more distinct hardware units or integrated into a single hardware unit, e.g., as described in greater detail below.
- the devices include a dynamic biometric data obtainment module, a homeostatic capacity evaluation module, and a homeostatic capacity evaluation output module.
- the dynamic biometric obtainment module is adapted to obtain dynamic biometric data, e.g., by being in operational communication with one or more biometric parameter sensors and or an input configured to receive dynamic biometric data from a source of such data, and transmit the obtained biometric data to the process unit module.
- the homeostatic capacity evaluation module is adapted to retrieve the dynamic biometric data from the dynamic biometric data obtainment module and make a homeostatic capacity evaluation therefrom.
- the module is configured to produce a homeostatic capacity evaluation from the received or input dynamic biometric data.
- the systems further include a therapeutic treatment regimen module, which is configured to identify a suitable therapeutic regimen based on the homeostatic capacity evaluation.
- the output module is adapted to provide the homeostatic capacity evaluation (and in some instances a therapeutic treatment regimen) to a user, e.g., the subject or interested stakeholder.
- the output module is configured to display the homeostatic capacity evaluation to a user, e.g., via graphical user interface (GUI).
- GUI graphical user interface
- a visual display can be used for displaying the homeostatic capacity evaluation.
- Other outputs may also be employed, e.g., printouts, messages (e.g., text messages or emails) sent to another display device, to a storage location for later viewing (e.g., the cloud), etc.
- a general-purpose computer can be configured to a functional arrangement for the methods and programs disclosed herein.
- the hardware architecture of such a computer is well known by a person skilled in the art, and can comprise hardware components including one or more processors (CPU), a random-access memory (RAM), a read-only memory (ROM), an internal or external data storage medium (e.g., hard disk drive).
- a computer system can also comprise one or more graphic boards for processing and outputting graphical information to display means.
- the above components can be suitably interconnected via a bus inside the computer.
- the computer can further comprise suitable interfaces for communicating with general-purpose external components such as a monitor, keyboard, mouse, network, etc.
- the computer can be capable of parallel processing or can be part of a network configured for parallel or distributive computing to increase the processing power for the present methods and programs.
- the program code read out from the storage medium can be written into a memory provided in an expanded board inserted in the computer, or an expanded unit connected to the computer, and a CPU or the like provided in the expanded board or expanded unit can actually perform a part or all of the operations according to the instructions of the program code, so as to accomplish the functions described below.
- the method can be performed using a cloud computing system.
- the data files and the programming can be exported to a cloud computer, which runs the program, and returns an output to the user.
- the memory of a computer system can be any device that can store information for retrieval by a processor, and can include magnetic or optical devices, or solid-state memory devices (such as volatile or non-volatile RAM).
- a memory or memory unit can have more than one physical memory device of the same or different types (for example, a memory can have multiple memory devices such as multiple drives, cards, or multiple solid state memory devices or some combination of the same).
- “permanent memory” refers to memory that is permanent. Permanent memory is not erased by termination of the electrical supply to a computer or processor.
- Computer hard-drive ROM i.e., ROM not used as virtual memory
- CD-ROM compact disc-read only memory
- floppy disk and DVD are all examples of permanent memory.
- Random Access Memory is an example of non-permanent (i.e., volatile) memory.
- a file in permanent memory can be editable and re-writable. Operation of the computer is controlled primarily by operating system, which is executed by a central processing unit.
- the operating system can be stored in a system memory.
- the operating system includes a file system.
- one possible implementation of the system memory includes a variety programming files and data files for implementing the method described above.
- instructions in accordance with the method (e.g., in the form of a mobile app or other type of structure) described herein can be coded onto a computer-readable medium in the form of “programming”, where the term “computer readable medium” as used herein refers to any storage or transmission medium (including non-transitory version so such) that participates in providing instructions and/or data to a computer for execution and/or processing.
- Programming may take the form of any convenient algorithms. In some instances, programming may include statistical analysis.
- any of a variety of statistical methods known in the art and described herein, can be used, where statistical methods of interest include, for example, discriminant analysis, classification analysis, cluster analysis, analysis of variance (ANOVA), regression analysis, regression trees, decision trees, nearest neighbor algorithms, principal components, factor analysis, multidimensional scaling and other methods of dimensionality reduction, likelihood models, hypothesis testing, kernel density estimation and other smoothing techniques, cross-validation and other methods to guard against overfitting of the data, the bootstrap and other statistical resampling techniques, artificial intelligence, including artificial neural networks, machine learning, data mining, and boosting algorithms, and Bayesian analysis, etc.
- ANOVA analysis of variance
- Examples of storage media include a floppy disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-ft magnetic tape, non-volatile memory card, ROM, DVD-ROM, Blue-ray disk, solid state disk, and network attached storage (NAS), whether or not such devices are internal or external to the computer.
- a file containing information can be “stored” on computer readable medium, where “storing” means recording information such that it is accessible and retrievable at a later date by a computer.
- the computer-implemented method described herein can be executed using programming that can be written in one or more of any number of computer programming languages.
- Such languages include, for example, Java (Sun Microsystems, Inc., Santa Clara, Calif.), Visual Basic (Microsoft Corp., Redmond, Wash.), and C++ (AT&T Corp., Bedminster, N.J.), as well as any many others.
- the functional modules may be performed by a variety of different hardware, firmware and software configurations.
- the functional modules will be distributed among a system of two or more distinct devices, e.g., mobile devices, remote devices (such as cloud server devices), laboratory instrument devices, etc., which may be in communication with each other, e.g., via wired or wireless communication.
- the distinct functional modules will be integrated into a single device.
- the device may have a variety of configurations.
- the device may be a laboratory device, which may or may not be configured to a bench top device.
- the device may be a handheld device, e.g., a smartphone or tablet type device.
- the device may be a wearable device, such as a watch type device, a wearable patch type device, etc.
- the present invention contemplates the storage and access to information present thereon, e.g., concerning homeostatic capacity evaluation, treatment regimen, therapeutic administration, etc., where such access may be public or via an appropriate secured and private setting, e.g., wherein HIPAA standards are followed, such that the system may be HIPAA compliant.
- Standard abbreviations may be used, e.g., bp, base pair(s); kb, kilobase(s); pl, picoliter(s); s or sec, second(s); min, minute(s); h or hr, hour(s); aa, amino acid(s); kb, kilobase(s); nt, nucleotide(s) and the like.
- Double blinded randomized controlled studies are employed to ascertain the effect of mitochondrial gene therapy on hypertension.
- Subjects in a treatment group are given an AAV vector comprising expression cassettes for both Cas9 and guide RNA targeted to mtDNA and including a sequence that enhances mitochondrial mediated cellular signal responsiveness with the intent of reducing hypertension.
- a group of appropriate age-matched controls receive placebo.
- the melatonin treatment group exhibits a decrease in hypertension to produce a statistically significant improvement in the treatment group as compared to control.
- Double blinded randomized controlled studies are employed to ascertain the effect of mitochondrial transfer on type 2 diabetes.
- Beta cells from subjects in the treatment group are harvested, subjected to mitochondrial transfer using cytoplasm from healthy donors, and then returned to the pancreas.
- a group of appropriate age-matched controls undergo a placebo protocol.
- the treatment group exhibits an increase in insulin production to produce a statistically significant improvement in the treatment group as compared to control.
- Double blinded randomized controlled studies are employed to ascertain the effect of lumbar sympathetic ganglia stimulation on hypertension.
- an electrical stimulator device is surgically placed under the skin in the upper part of the leg.
- a connecting wire is run under the skin from the stimulator to an electrode that is attached to a target lumbar sympathetic gaglion.
- the stimulator is programmed using a computer to generate
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Genetics & Genomics (AREA)
- Physiology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
Abstract
Description
- Pursuant to 35 U.S.C. §119 (e), this application is claims priority to U.S. Provisional Patent Application Ser. No. 62/260,997 filed Nov. 30, 2015; the disclosure of which is herein incorporated by reference.
- Homeostasis refers to the tendency of biological systems to maintain relatively constant conditions in the internal environment while continuously interacting with and adjusting to changes originating within or outside the system. Homeostasis involves continuous motion, adaptation, and change in response to environmental factors. It is through homeostatic mechanisms that body temperature is kept within normal range, the osmotic pressure of the blood and its hydrogen ion concentration (pH) is kept within strict limits, nutrients are supplied to cells as needed, and waste products are removed before they accumulate and reach toxic levels of concentration. These are but a few examples of the thousands of homeostatic control systems within the body. Some of these systems operate within the cell and others operate within an aggregate of cells (organs) to control the complex interrelationships among the various organs.
- Homeostatic capacity refers to the capability of systems, such as described above, to self-stabilize in response to stressors. A simple way to visualize homeostatic capacity is to imagine a Weeble™, the popular self-centering children's toy. For organisms, it is life's foundational trait—itself comprised of a hierarchy and network of traits—endowed by nature and shaped by selection. Because the trait is inborn and so pervasively effective, feeling healthy feels like “nothing” when we are young. We become aware of it only after we start losing it midlife. Roller-coaster rides begin to leave us nauseated instead of joyous. We can't tolerate hot or cold weather like before. Sunny days feel too bright and reading menus in low lights becomes more difficult. Recovering from stressors—a late night, hangover, or injury—suddenly take far longer than it used to, if at all. Consider changes that we can't feel. When we are young, homeostatic capacity returns elevated blood glucose and blood pressure to base levels. As homeostatic capacity erodes with age, those levels may no longer self-tune.
- Methods of enhancing homeostatic capacity in a subject are provided. Aspects of the methods include increasing the amplitude of an input resultant response of a homeostatic system component of the subject in a manner sufficient to enhance homeostatic capacity of the subject. Also provided are devices configured for use in practicing the methods. Aspects of the invention further include methods of treating a subject for a condition via enhancement of homeostatic capacity. The methods and devices described herein find use in a variety of applications.
- Methods of enhancing homeostatic capacity in a subject are provided. Aspects of the methods include increasing the amplitude of an input resultant response of a homeostatic system component of the subject in a manner sufficient to enhance homeostatic capacity of the subject. Also provided are devices configured for use in practicing the methods. Aspects of the invention further include methods of treating a subject for a condition via enhancement of homeostatic capacity. The methods and devices described herein find use in a variety of applications.
- Before the present invention is further described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
- Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described.
- It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
- All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
- The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
- In further describing the invention, aspects of embodiments of methods of enhancing homeostatic capacity are described first in greater detail, followed by a description of representative devices that find use in practicing such methods. Next, a review of various methods of treating a subject for a condition is provided.
- As reviewed above, aspects of the invention include methods of enhancing homeostatic capacity in a subject. By enhancing homeostatic capacity in a subject is meant at least increasing the homeostatic capacity of the subject by a measurable amount, e.g., as determined using the protocol described below. For example, the methods may include at least partially restoring the homeostatic capacity of the subject. By “at least partially restoring the homeostatic capacity of the subject” is meant that the homeostatic capacity of the subject is enhanced or improved, e.g., to that of a target value, which target value may be a “normal” value or greater than a normal value, e.g., a super-normal value. By “normal” is meant the homeostatic capacity of a healthy subject of a particular age. In certain embodiments, the healthy subject is a healthy human at an age after puberty, e.g., 18 year old, 19 year old, 20 year old, 21 year old, 22 year old, 23 year old, 24 year old, 25 year old, 26 year old, 27 year old, 28 year old, 29 year old, 30 year old, 31 year old, 32 year old, 33 year old 34 year old, 35 year old, 36 year old, 37 year old, 38 year old, 39 year old, 40 year old, 41 year old, 42 year old, 43 year old, 44 year old, 45 year old, 46 year old, 47 year old, 48 year old, 49 year old or 50 year old. In some instances, the normal function with respect to homeostatic capacity is that of a healthy human 25 year old. By super normal value is meant the homeostatic capacity of a subject having greater than normal homeostatic capacity, e.g., that of an athlete, etc. The magnitude of difference between normal and super normal may vary, and in some instances may be 5% or greater, such as 10% or greater, including 15%, 20% or 25% or greater, where in some instances the target super normal homeostatic capacity is 5% to 75% greater than of a normal homeostatic capacity. In some instances, the methods include enhancing the homeostatic capacity of the subject to that which is at least closer to a target homeostatic capacity. By “at least closer” is meant, in some instances, that the target homeostatic capacity is restored to be 50% or more, e.g., 75% or more of the target function, such as 80% or more of the target function, including 90% or more of the target function, e.g., 95% or more of the target function, including 99% or more of the target function.
- Aspects of the methods include increasing the amplitude of an input resultant response of a homeostatic system component of the subject in a manner sufficient to restore enhance homeostatic capacity of the subject. By “increasing the input resultant response of a homeostatic system component” is meant augmenting a response of a homeostatic system component, where the response is a response that occurs following receipt of the component by an input. In other words, aspects of the methods include making greater a response that results in a homeostatic system component following receipt of input by the component. With respect to a given response, the magnitude of the enhancement of the response may vary, and in some instances the magnitude is 2-fold or greater, such as 5-fold or greater, including 10-fold or greater.
- The response that is enhanced in practicing methods of the invention is an input resultant response. As such, the response is a response the target homeostatic component makes when the component receives an input, e.g., in the form of a stimulus, such as physical, chemical or electrical stimulus. The response by the component may vary depending on the nature of the component. For example, the response may manifest as an increase in the magnitude of a chemical response, e.g., in the form of an increase in the amount of a chemical released from the target homeostatic system component. In other instances, the response may manifest as an increase in the magnitude of an electrical response, e.g., in the form of an increase in the amplitude and/or duration of an electrical output produced by the target homeostatic system component.
- The target homeostatic system component may be any part (i.e., unit or element) of homeostatic system. Target homeostatic systems include, but are not limited to: sub-cellular systems, cellular systems, supra-cellular, e.g., organ systems, etc. Homeostatic systems may further be described functionally. Examples of homeostatic systems of interest include, but are not limited to: circadian rhythm systems, e.g., master circadian rhythm control (i.e., master clock system), peripheral circadian rhythm systems (i.e., peripheral oscillator system), thermoregulatory control systems, blood pressure control (i.e., regulatory) systems, osmoregulation control (i.e., regulatory) systems, pH control (i.e., regulatory) systems, glucose concentration control systems, calcium regulation control systems, body fluid control systems, etc.
- In some instances, the target homeostatic system component is an organ or component thereof, e.g., a portion of the organ. Organs if interest include, but are not limited to: cardiovascular system organs, e.g., heart, blood and blood vessels; digestive system organs, e.g., salivary glands, esophagus, stomach, liver, gallbladder, pancreas, intestines, colon, rectum and anus; endocrine system organs, e.g., hypothalamus, pituitary gland, pineal body or pineal gland, thyroid, parathyroids and adrenals, i.e., adrenal glands; excretory system organs, e.g., kidneys, ureters, bladder and urethra; lymphatic system organs, e.g., tonsils, adenoids, thymus and spleen; integumentary system organs, e.g., skin, hair and nails; muscular system organs, e.g., muscles; nervous system organs, e.g., brain, spinal cord and nerves; reproductive system organs, e.g., the sex organs, such as ovaries, fallopian tubes, uterus, vagina, mammary glands, testes, vas deferens, seminal vesicles, prostate and penis; respiratory system organs, e.g, pharynx, larynx, trachea, bronchi, lungs and diaphragm; skeletal system organs, e.g., bones, cartilage, ligaments and tendons. In some instances, the component is a cell or component thereof, e.g., an organelle, such as mitochondria, endoplasmic reticulum, flagellum, golgi apparatus, vacuole and nucleus.
- The amplitude of an input resultant response of a homeostatic system component may be increased in a variety of different ways. The amplitude of an input resultant response may be increased by administering a variety of different types of therapies to the subject. In these embodiments of the invention, any convenient therapy may be administered to a subject. Therapies that may be employed include, but are not limited to: traditional medical therapies, e.g., electrical therapies, pharmacological therapies, electro-pharmaceuticals, etc.; and non-traditional medical therapies, e.g., homeopathic therapies, acupuncture, acupressure, mechanical manipulation, e.g., chiropractic therapies, laser therapy, e.g., to the vertex or other physiological locations, etc. Therapies of interest may also be categorized as physical, chemical, psychological, environmental, electrical, behavioral, pharmacological, etc. Specific types of therapies of interest are now reviewed in greater detail.
- In some instances, the administered therapy is one that modulates the autonomic nervous system of the subject. The autonomic nervous system (“ANS”) is that portion of the nervous system that is not the somatic nervous system. The ANS controls individual organ function and homeostasis. For the most part, the ANS is not subject to voluntary control. The ANS is also commonly referred to as the visceral or automatic system. The ANS can be viewed as a “real-time” regulator of physiological functions that extracts features from the environment and, based on that information, allocates an organism's internal resources to perform physiological functions for the benefit of the organism, e.g., responds to environment conditions in a manner that is advantageous to the organism. The ANS conveys sensory impulses to and from the central nervous system to various structures of the body such as organs and blood vessels, in addition to conveying sensory impulses through reflex arcs. For example, the ANS controls constriction and dilatation of blood vessels; heart rate; the force of contraction of the heart; contraction and relaxation of smooth muscle in various organs; lungs; stomach; colon; bladder; visual accommodation, secretions from exocrine and endocrine glands, etc. The ANS does this through a series of nerve fibers and more specifically through efferent and afferent nerves.
- The ANS acts through a balance of its two components: the sympathetic nervous system and parasympathetic nervous system, which are two anatomically and functionally distinct systems. Both of these systems include myelinated preganglionic fibers which make synaptic connections with unmyelinated postganglionic fibers, and it is these fibers which then innervate the effector structure. These synapses usually occur in clusters called ganglia. Most organs are innervated by fibers from both divisions of the ANS, and the influence is usually opposing (e.g., the vagus nerve slows the heart, while the sympathetic nerves increase its rate and contractility), although it may be parallel (e.g., as in the case of the salivary glands).
- By “modulating” is meant altering or changing one or more aspects or components to provide a change, alteration or shift in another aspect or component. Modulating autonomic function is achieved by modulating at least one portion of the subject's autonomic nervous system. By “modulating at least one portion of the subject's autonomic nervous system” is meant altering or changing at least a portion of an autonomic nervous system by a means to provide a change, alteration or shift in at least one component or aspect of the autonomic nervous system.
- In some instances of the subject methods, modulation of the autonomic nervous system includes modulating the parasympathetic and/or sympathetic activity in the subject. “Parasympathetic activity” refers to activity of the parasympathetic nervous system whereas “sympathetic activity” refers to activity of the sympathetic nervous system.
- In some instances, modulation results in at least one of decreasing parasympathetic activity and/or increasing sympathetic activity in a subject to improve a condition caused by parasympathetic bias. In other embodiments, the modulation results in at least one of decreasing sympathetic activity and/or increasing parasympathetic activity in a subject to improve a condition caused by sympathetic bias.
- Therapeutic modalities may employ modulation of activity in or more components of the nervous system. The nervous system includes the spinal cord and the pairs of nerves along the spinal cord which are known as spinal nerves. The spinal nerves include both dorsal and ventral branches which fuse in the intravertebral foramen to create a mixed nerve. Methods employed in the invention may modulate only one of the dorsal or ventral branches, or both of the dorsal and ventral branches, where when both of the dorsal and ventral branches are modulated, the modulation may be the same or different, e.g., where the two branches are differentially modulated.
- Modulation of the autonomic nervous system may be carried out using any suitable protocol, including, but not limited to: electrical and/or pharmacologic and/or physical and/or chemical and/or psychological and/or environmental protocols, e.g., as described below. The modulation of the ANS provides, in some instances, an increase in function of at least a portion of the autonomic system, e.g., increase function in at least one sympathetic or parasympathetic nerve fiber, and/or provides, in some instances, a decrease in function or dampening of a portion of the autonomic system, e.g., may inhibit activity in at least one sympathetic or parasympathetic nerve fiber or inhibit nerve pulse transmission.
- In some instances, the modulation that is achieved in practicing methods of the invention may be quantified. One way of quantifying modulation of at least one portion of the subject's autonomic nervous system is the parasympathetic/sympathetic activity ratio. By “parasympathetic/sympathetic activity ratio” is meant the ratio of activity of the sympathetic nervous system to the activity of the parasympathetic nervous system. As such, methods according to certain embodiments include modulating a sympathetic/parasympathetic activity ratio in the subject.
- In some instances, the ANS is modulated in a manner sufficient to shift or change parasympathetic activity and/or sympathetic activity from a first state to a second state, where the second state is characterized by an increase or decrease in the sympathetic activity/parasympathetic activity ratio relative to the first state.
- Accordingly, some embodiments of the subject invention include modulating at least a portion of a subject's autonomic nervous system to increase the sympathetic activity/parasympathetic activity ratio, i.e., to increase sympathetic activity relative to parasympathetic activity (in other words to decrease parasympathetic activity relative to sympathetic activity) so as to treat a subject for a condition that can be treated by such modulation (e.g., a condition caused by parasympathetic bias). Alternatively or in addition to stimulating at least one sympathetic nerve fiber to increase activity, increasing the sympathetic activity/parasympathetic activity ratio may be achieved by inhibiting activity in the parasympathetic system.
- Other embodiments of the subject invention include modulating a subject's autonomic nervous system to decrease the sympathetic activity/parasympathetic activity ratio, i.e., to decrease sympathetic activity relative to parasympathetic activity (in other words, to increase parasympathetic activity relative to sympathetic activity) so as to treat a subject for a condition that can be treated by such modulation (e.g., a condition caused by sympathetic bias).
- As will be described in greater detail below, while the ratio of sympathetic function/parasympathetic function may be modulated according to embodiments of the subject invention to treat or improve a subject for a condition (e.g., aging associated conditions) the net result may be a parasympathetic bias (i.e., a parasympathetic dominance), a sympathetic bias (i.e., sympathetic dominance), or the activities of the sympathetic system and parasympathetic system may be substantially equal (i.e., neither is dominant).
- By “bias”, is meant that the particular “biased” component of the autonomic nervous system has a higher activity level than the other component. For example, a parasympathetic bias refers to a higher level of parasympathetic activity than sympathetic activity, and vice versa, where such bias may be systemic or localized. As such, by “vagal bias”, is meant that that the particular biased component of the autonomic nervous system that has a higher activity level than the other component is the vagus nerve or a portion of the autonomic nervous system associated with the vagus nerve. Vagal bias may be characterized by one or more of vagal dominance, vagal hypersensitivity and/or sympathetic insufficiency. The net result of the subject methods to treat a condition may be higher or greater sympathetic activity relative to parasympathetic activity in at least the area of the targeted autonomic system (i.e., that portion in need of modulation), or substantially equal activity levels of sympathetic activity and parasympathetic activity.
- As noted above, in certain embodiments activity in at least a portion of the autonomic nervous system is increased. For example, activity in at least a portion of the ANS that is involved the sympathetic nervous system may be increased such that at least a portion of the sympathetic nervous system may be “up-regulated”. In other instances, any portion of the ANS that is involved in the parasympathetic system, e.g., one or more nerve fibers, may be stimulated to increase parasympathetic activity to provide the desired ratio of parasympathetic/sympathetic activity. In other words, activity in at least a portion of the parasympathetic nervous system may be increased such that at least a portion of the parasympathetic nervous system may be “up-regulated”.
- In certain embodiments, increasing activity in, or up-regulating, at least a part of the sympathetic system may be desired in instances where, prior to the application of autonomic nervous system-modulating agent, parasympathetic activity is higher than desired, e.g., higher than sympathetic activity (e.g., there exists a relative parasympathetic bias) and as such the subject methods may be employed to increase sympathetic activity to a level above or rather to a level that is greater than parasympathetic activity or may be employed to modulate the differential between the parasympathetic-sympathetic systems such that the result of increasing sympathetic activity may be a sympathetic bias, parasympathetic bias or may be an equalization of the two systems (i.e., the activities of the two systems are approximately equal—including equal), but the difference between the parasympathetic-sympathetic systems may be modulated, e.g., reduced or minimized or increased in certain embodiments. Accordingly, the subject methods may be employed to increase sympathetic activity above that of parasympathetic activity and/or may be employed to modulate (increase or decrease) the differential between the two systems, but in certain embodiments may be employed to decrease the parasympathetic activity/sympathetic activity ratio.
- In other embodiments, increasing activity in, or up-regulating, at least a part of the parasympathetic system may be desired in instances where, prior to the application of autonomic nervous system-modulating agent, sympathetic activity is higher than desired, e.g., higher than parasympathetic activity (e.g., there exists a relative sympathetic bias) and as such the subject methods may be employed to increase parasympathetic activity to a level above or rather to a level that is greater than sympathetic activity or may be employed to modulate the differential between the parasympathetic-sympathetic systems such that the result of increasing parasympathetic activity may be a parasympathetic bias, sympathetic bias or may be an equalization of the two systems (i.e., the activities of the two systems are approximately equal—including equal), but the difference between the parasympathetic-sympathetic systems may be modulated, e.g., reduced or minimized or increased in certain embodiments. Accordingly, the subject methods may be employed to increase parasympathetic activity above that of sympathetic activity and/or may be employed to modulate (increase or decrease) the differential between the two systems, but in certain embodiments may be employed to decrease the parasympathetic activity/sympathetic activity ratio.
- In certain embodiments, a parasympathetic bias may be the normal state, but the ratio of the two systems may be abnormal or otherwise contributing to a condition. Increasing sympathetic bias may also be desired in instances where, prior to the restoration of the normal function of a central nervous system endocrine gland, sympathetic activity is higher than the parasympathetic activity, but the differential between the two needs to be modulated such as increased further, e.g., the sympathetic activity is normal or above normal (i.e., abnormally high) and/or the parasympathetic activity is normal or below normal (i.e., abnormally low) or above normal (i.e., abnormally low).
- For example, such instances may occur where a subject has normal or above normal sympathetic function, but also has elevated parasympathetic function. Other instances may include below normal sympathetic function, but normal or elevated parasympathetic function, etc. It may also be desirable to increase sympathetic function in instances where the respective activities of the two system are analogous or approximately equal, including equal, prior to increasing activity in the sympathetic system, but the level of one or both is abnormally high or abnormally low. The above-described examples of instances where increasing sympathetic activity may be desired is exemplary only and is in no way intended to limit the scope of the invention and other instances where increasing sympathetic activity may be desired will be apparent to those of skill in the art.
- In other embodiments, a sympathetic bias may be the normal state, but the ratio of the two systems may be abnormal or otherwise contributing to a condition. Increasing parasympathetic bias may also be desired in instances where, prior to the restoration of the normal function of a central nervous system endocrine gland, parasympathetic activity is higher than the sympathetic activity, but the differential between the two needs to be modulated such as increased further, e.g., the parasympathetic activity is normal or above normal (i.e., abnormally high) and/or the sympathetic activity is normal or below normal (i.e., abnormally low) or above normal (i.e., abnormally low).
- For example, such instances may occur where a subject has normal or above normal parasympathetic function, but also has elevated sympathetic function. Other instances may include below normal parasympathetic function, but normal or elevated sympathetic function, etc. It may also be desirable to increase parasympathetic function in instances where the respective activities of the two system are analogous or approximately equal, including equal, prior to increasing activity in the parasympathetic system, but the level of one or both is abnormally high or abnormally low. The above-described examples of instances where increasing parasympathetic activity may be desired is exemplary only and is in no way intended to limit the scope of the invention and other instances where increasing sympathetic activity may be desired will be apparent to those of skill in the art.
- As noted above, in certain embodiments, activity in at least a portion of the ANS may be inhibited to modulate at least a portion of the autonomic nervous system. Inhibiting or “down-regulating” activity in at least a part of the autonomic nervous system, may be desired in instances where, the sympathetic or parasympathetic activity is higher than desired. For example, parasympathetic activity may be higher than the sympathetic activity (i.e., there exists a parasympathetic bias) or parasympathetic activity may be less than or approximately equal to, including equal, to sympathetic activity, and the subject methods may be employed to modulate the differential between the parasympathetic-sympathetic systems such that the net result of decreasing sympathetic activity may be a sympathetic bias, parasympathetic bias or may be an equalization of the two systems (i.e., the activities of the two systems are approximately equal—including equal), but the difference between the parasympathetic-sympathetic systems may be modulated, e.g., increased or reduced in certain embodiments. Accordingly, the subject methods may be employed to decrease parasympathetic activity below that of sympathetic activity and/or may be employed to modulate (decrease or increase) the differential between the two systems, where in certain embodiments may be employed to decrease the ratio of parasympathetic activity to sympathetic activity.
- For example, decreasing activity in at least a portion of the parasympathetic system may be employed where there is a normal or an abnormally low sympathetic function and/or abnormally high parasympathetic function. Such may also be desired in instances where, prior to decreasing parasympathetic function in, e.g., at least one parasympathetic nerve fiber, sympathetic activity is higher than the parasympathetic activity, but the differential between the two needs to be increased further. For example, such instances may occur where a subject has normal or above normal (i.e., abnormally high) parasympathetic function, but also has elevated sympathetic function (i.e., abnormally high), e.g., a relative bias towards sympathetic function may be present. Other instances include normal or below normal (i.e., abnormally low) parasympathetic activity and/or normal or above normal (i.e., abnormally high) sympathetic activity. The above-described examples of instances where decreasing parasympathetic activity may be desired is exemplary only and is in no way intended to limit the scope of the invention and other instances where decreasing parasympathetic activity to provide an increase in the parasympathetic activity/sympathetic activity ratio may be desired will be apparent to those of skill in the art.
- Decreasing activity in at least a portion of the sympathetic system may be employed where there is a normal or an abnormally low parasympathetic function and/or abnormally high sympathetic function. Such may also be desired in instances where, prior to decreasing sympathetic function in, e.g., at least one parasympathetic nerve fiber, parasympathetic activity is higher than the sympathetic activity, but the differential between the two needs to be increased further. For example, such instances may occur where a subject has normal or above normal (i.e., abnormally high) sympathetic function, but also has elevated parasympathetic function (i.e., abnormally high), e.g., a relative bias towards parasympathetic function may be present. Other instances include normal or below normal (i.e., abnormally low) sympathetic activity and/or normal or above normal (i.e., abnormally high) parasympathetic activity. The above-described examples of instances where decreasing sympathetic activity may be desired is exemplary only and is in no way intended to limit the scope of the invention and other instances where decreasing sympathetic activity to provide an increase in the parasympathetic activity/sympathetic activity ratio may be desired will be apparent to those of skill in the art.
- One way of inhibiting activity in at least a portion of the autonomic nervous system is by the application of a nerve block. Application of a nerve block at least partially prevents nerve transmission across the location of the block. A nerve block can be administered to modulate autonomic function using all the methods and devices described herein including pharmacological and/or electrical means.
- As noted above, in certain embodiments, activity in at least a portion of the autonomic nervous system may be increased and activity in at least a portion of the autonomic nervous system may be decreased. For example, in certain embodiments, activity in at least a portion of the sympathetic system may be increased and activity in at least a portion of the parasympathetic system may be inhibited, e.g., to decrease the parasympathetic activity/sympathetic activity ratio. In other embodiments, activity in at least a portion of the parasympathetic system may be increased and activity in at least a portion of the sympathetic system may be inhibited, e.g., to decrease the parasympathetic activity/sympathetic activity ratio. As described above, any portion of the parasympathetic and/or sympathetic nervous systems may be modulated to increase activity and activity in any portion of the ANS may be inhibited to provide the desired ratio of parasympathetic activity to sympathetic activity. Such a protocol may be employed, e.g., in instances where sympathetic function is normal or abnormally low and/or parasympathetic function is normal or abnormally high, or where parasympathetic function is normal or abnormally low and/or sympathetic function is normal or abnormally high, where normal is determined by the typical or average autonomic nervous system functions for a healthy subject, e.g., a healthy human subject ranging in age from about 20 years old to about 25 years old.
- Embodiments wherein activity in at least a portion of the autonomic nervous system may be increased and activity in at least a portion of the autonomic nervous system may be decreased may be employed to alter the dominance and/or may be employed to modulate the differential between the two systems. For example, prior to modulating the autonomic system according to the subject invention, the activity in the parasympathetic system may be higher than activity in the sympathetic system and the subject methods may be employed to increase the sympathetic activity to a level that is greater than the parasympathetic activity and/or may be employed to alter the differential or difference in activity levels of the two systems such as decreasing the difference in activity levels or increasing the difference in activity levels.
- Increasing activity in at least a portion of the autonomic nervous system, e.g., increasing activity in at least a portion of the parasympathetic system, and decreasing activity in at least a portion of the autonomic nervous system, e.g., decreasing activity in at least a portion of the sympathetic system, may be performed simultaneously or sequentially such that at least a portion of the autonomic nervous system, e.g., at least a portion of the parasympathetic nervous system, may be pharmacologically and/or electrically modulated to increase activity therein prior or subsequent to inhibiting activity in at least a portion of the autonomic nervous system e.g., at least a portion of the sympathetic nervous system, such as by electrical and/or pharmacological means.
- Regardless of whether increasing activity in at least a portion of the autonomic nervous system, e.g., in at least a portion of the parasympathetic system, and decreasing activity in at least a portion of the autonomic nervous system, e.g., in at least a portion of the sympathetic system, is performed simultaneously or sequentially, the parameters for increasing activity in at least a portion of autonomic nervous system and decreasing activity in at least a portion of the autonomic nervous system may be analogous to that described above.
- Modulation of the autonomic nervous system may be accomplished using any suitable method, including employing electrical, thermal, vibrational, magnetic, acoustic, baropressure, optical, or other sources of energy to modulate autonomic balance, where in representative embodiments modulation is achieved via pharmacological modulation and/or electrical energy modulation in a manner that is effective to treat a subject for a food allergy syndrome condition.
- Certain embodiments include pharmacologically or electrically stimulating a portion of the subject's nervous system in a manner that causes a modulation of at least a portion of a subject's autonomic nervous system, e.g., by increasing parasympathetic activity and/or decreasing sympathetic activity or by increasing sympathetic activity and/or decreasing parasympathetic activity in at least a portion of the subject's autonomic nervous system. In certain embodiments, modulation may include increasing the sympathetic activity/parasympathetic activity ratio in at least a portion of the subject's autonomic nervous system. In certain embodiments, a combination of electrical and pharmacological may be employed.
- In certain embodiments of the subject methods, the therapy comprises a pharmacological modulation, which modulation may result in modulation of the ANS and/or some other system of the subject in manner effective to enhance homeostatic capacity, e.g., as described above. By “pharmacological modulation” is meant altering or changing one or more systems of the subject by pharmacological means to provide a desired change, alteration or shift in system(s) function. In embodiments in which pharmacological agent is administered, any suitable protocol may be used, where certain protocols include using an pharmacological agent administering device to deliver a suitable amount of pharmacological agent to a subject. Methods and corresponding devices and systems for applying at least one pharmacological agent to a subject and which may be adapted for use in the subject invention are described, e.g., in U.S. Pat. Nos. 7,363,076; 7,149,574, 7,738,952; 7,899,527; 7,676,269; 8,121,690; 8,569,277; 8,909,340 United States Published Application Nos. 20050143378; 20100260669; 20110015188; 20100119482; 20110256097; 20060206149; 20140065129; 20140369969 and U.S. patent application Ser. No. 14/737,248; the disclosures of which are herein incorporated by reference.
- Any convenient pharmacological agent may be employed. Pro-sympathetic agents of interest include, but are not limited to: beta agonists, e.g., dobutamine, metaproterenol, terbutaline, ritodrine, albuterol; alpha agonists, e.g., selective alpha 1-adrenergic blocking agents such as phenylephrine, metaraminol, methoxamine; prednisone and steroids, (e.g., available under the brand names CORATN, DELTASONE, LIQUID PRED, MEDICORTEN, ORASONE, PANASOL-S, PREDNICEN-M, PREDNISONE INTENSOL); indirect agents that include norepinephrine, e.g., ephedrine, ampthetamines, phenylpropanolamines, cyclopentamines, tuaminoheptanes, naphazolines, tetrahydrozolines; epinephrine; norepinephrine; acetylcholine; sodium; calcium; angiotensin I; angiotensin II; angiotensin converting enzyme I (“ACE I”); angiotensin converting enzyme II (“ACE II”); aldosterone; potassium channel blockers and magnesium channel blockers, e.g., valproate (sodium valproate, valproic acid), lithium; cocaine; amphetamines; terbutaline; dopamine; doputamine; antidiuretic hormone (“ADH”) (also known as vasopressin); oxytocin (including PITOCINE); THC cannabinoids; and combinations thereof.
- Pro-parasympathetic agents of interest include, but are not limited to: Beta Blockers, Aldosterone Antagonists; Angiotensin II Receptor Blockers; Angiotensin Converting Enzyme Inhibitors; Statins; Triglyceride Lowering Agents; Insulin Sensitizers; Insulin Secretagogues; Insulin Analogs; Alpha-glucosidase Inhibitors; SGLT2 Inhibitors; Immunomodulators, including agents that bind/react to CD4, gp39, B7, CD19, CD20, CD22, CD401, CD40, CD40L and CD23 antigens; Sympathomimetics; Cholinergics; Calcium Channel Blockers; Sodium Channel Blockers; Glucocorticoid Receptor Blockers; Peripheral Adrenergic Inhibitors; Blood Vessel Dilators; Central Adrenergic Agonists; Alpha-adrenergic Blockers; Combination Diuretics; Potassium-sparing Diuretics; Nitrate Pathway Modulators; Cyclic Nucleotide Monophosphodiesterase (PDE) Inhibitors; Vasopressin Inhibitors; Renin Inhibitors; Estrogen and Estrogen Analogues and Metabolites; Vesicular Monoamine Transport (VMAT) Inhibitors; Progesterone Inhibitors; Testosterone Inhibitors; Gonadotropin-releasing Hormone Inhibitors; Dipeptidyl Peptidase IV inhibitors; Anticoagulants; Thrombolytics.
- Pharmaceutical agents of interest also include biotherapeutic agents. Biotherapeutic agents include, but are not limited to: nucleic acid agents, polypeptide agents, complex biological preparations, e.g., blood products and derivatives thereof, e.g., plasma, mitochondrial preparations (e.g., for mitochondrial transfer); etc.
- In some instances, the agent modulates the activity of the protein following expression, such that the agent is one that changes the activity of the protein encoded by a target gene following expression of the protein from the target gene. In these instances, the agent is one that may act directly with protein encoded by the target gene.
- In yet other embodiments, the agent modulates expression of the RNA and/or protein from the gene, such that it changes the expression of the RNA or protein from the target gene in some manner. In these instances, the agent may change expression of the RNA or protein in a number of different ways. In certain embodiments, the agent is one that reduces, including inhibits, expression of a functional target protein. Inhibition of protein expression may be accomplished using any convenient means, including use of an agent that inhibits protein expression, such as, but not limited to: antisense agents, RNAi agents, agents that interfere with transcription factor binding to a promoter sequence of the target gene, or inactivation of the target gene, e.g., through recombinant techniques, etc.
- For example, antisense molecules can be used to down-regulate expression of a target gene in the cell. The anti-sense reagent may be antisense oligodeoxynucleotides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted protein, and inhibits expression of the targeted protein. Antisense molecules inhibit gene expression through various mechanisms, e.g., by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may include multiple different sequences.
- Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al. (1996), Nature Biotechnol. 14:840-844).
- A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an in vitro or animal model. A combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.
- Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993), supra, and Milligan et al., supra.) Oligonucleotides may be chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases.
- Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3′-O′-5′-S-phosphorothioate, 3′-S-5′-O-phosphorothioate, 3′-CH2-5′-O-phosphonate and 3′-NH-5′-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and affinity. The α-anomer of deoxyribose may be used, where the base is inverted with respect to the natural β-anomer. The 2′-OH of the ribose sugar may be altered to form 2′-O-methyl or 2′-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine. 5-propynyl-2′-deoxyuridine and 5-propynyl-2′-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.
- As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes may be synthesized in vitro and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman et al. (1995), Nucl. Acids Res. 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin et al. (1995), Appl. Biochem. Biotechnol. 54:43-56.
- In addition, the transcription level of a target protein can be regulated by gene silencing using RNAi agents, e.g., double-strand RNA (Sharp (1999) Genes and Development 13: 139-141). RNAi, such as double-stranded RNA interference (dsRNAi) or small interfering RNA (siRNA), has been extensively documented in the nematode C. elegans (Fire, A., et al, Nature, 391, 806-811, 1998) and routinely used to “knock down” genes in various systems. RNAi agents may be dsRNA or a transcriptional template of the interfering ribonucleic acid which can be used to produce dsRNA in a cell. In these embodiments, the transcriptional template may be a DNA that encodes the interfering ribonucleic acid. Methods and procedures associated with RNAi are also described in WO 03/010180 and WO 01/68836, all of which are incorporated herein by reference. dsRNA can be prepared according to any of a number of methods that are known in the art, including in vitro and in vivo methods, as well as by synthetic chemistry approaches. Examples of such methods include, but are not limited to, the methods described by Sadher et al. (Biochem. Int. 14:1015, 1987); by Bhattacharyya (Nature 343:484, 1990); and by Livache, et al. (U.S. Pat. No. 5,795,715), each of which is incorporated herein by reference in its entirety. Single-stranded RNA can also be produced using a combination of enzymatic and organic synthesis or by total organic synthesis. The use of synthetic chemical methods enables one to introduce desired modified nucleotides or nucleotide analogs into the dsRNA. dsRNA can also be prepared in vivo according to a number of established methods (see, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed.; Transcription and Translation (B. D. Hames, and S. J. Higgins, Eds., 1984); DNA Cloning, volumes I and II (D. N. Glover, Ed., 1985); and Oligonucleotide Synthesis (M. J. Gait, Ed., 1984, each of which is incorporated herein by reference in its entirety). A number of options can be utilized to deliver the dsRNA into a cell or population of cells such as in a cell culture, tissue, organ or embryo. For instance, RNA can be directly introduced intracellularly. Various physical methods are generally utilized in such instances, such as administration by microinjection (see, e.g., Zernicka-Goetz, et al. (1997) Development 124:1133-1137; and Wianny, et al. (1998) Chromosoma 107: 430-439). Other options for cellular delivery include permeabilizing the cell membrane and electroporation in the presence of the dsRNA, liposome-mediated transfection, or transfection using chemicals such as calcium phosphate. A number of established gene therapy techniques can also be utilized to introduce the dsRNA into a cell. By introducing a viral construct within a viral particle, for instance, one can achieve efficient introduction of an expression construct into the cell and transcription of the RNA encoded by the construct.
- In another embodiment, the target gene is inactivated so that it no longer expresses a functional protein. By inactivated is meant that the gene, e.g., coding sequence and/or regulatory elements thereof, is genetically modified so that it no longer expresses a functional target protein. The alteration or mutation may take a number of different forms, e.g., through deletion of one or more nucleotide residues, through exchange of one or more nucleotide residues, and the like. One means of making such alterations in the coding sequence is by homologous recombination. Methods for generating targeted gene modifications through homologous recombination are known in the art, including those described in: U.S. Pat. Nos. 6,074,853; 5,998,209; 5,998,144; 5,948,653; 5,925,544; 5,830,698; 5,780,296; 5,776,744; 5,721,367; 5,614,396; 5,612,205; the disclosures of which are herein incorporated by reference.
- Also of interest in certain embodiments are dominant negative mutants of target proteins, where expression of such mutants in the cell result in a modulation, e.g., decrease, in target protein activity. Dominant negative mutants are mutant proteins that exhibit dominant negative target protein activity. As used herein, the term “dominant negative activity” refers to the inhibition, negation, or diminution of certain particular activities of a target protein, such as the apoptotic activity of a target protein. Dominant negative mutations are readily generated for corresponding proteins. These may act by several different mechanisms, including mutations in a substrate-binding domain; mutations in a catalytic domain; mutations in a protein binding domain (e.g. multimer forming, effector, or activating protein binding domains); mutations in cellular localization domain, etc. A mutant polypeptide may interact with wild-type polypeptides (made from the other allele) and form a non-functional multimer. In certain embodiments, the mutant polypeptide will be overproduced. Point mutations are made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein, or deletion of specific domains can yield dominant negative mutants. General strategies are available for making dominant negative mutants (see for example, Herskowitz (1987) Nature 329:219, and the references cited above). Such techniques are used to create loss of function mutations, which are useful for determining protein function. Methods that are well known to those skilled in the art can be used to construct expression vectors containing coding sequences and appropriate transcriptional and translational control signals for increased expression of an exogenous gene introduced into a cell. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Alternatively, RNA capable of encoding gene product sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in “Oligonucleotide Synthesis”, 1984, Gait, M. J. ed., IRL Press, Oxford.
- In yet other embodiments, the agent is an agent that modulates, e.g., inhibits, target protein activity by binding to the target protein and/or inhibiting binding of target protein to a second protein. For example, small molecules that bind to a target protein and inhibit its activity are of interest. Naturally occurring or synthetic small molecule compounds of interest include numerous chemical classes, such as organic molecules, e.g., small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents may include cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Such molecules may be identified, among other ways, by employing the screening protocols described below.
- In yet other instances, the agent is an agent that increases the activity of a protein, e.g., by increasing the amount of protein, e.g., in a cell. For example, introduction of an expression vector encoding a polypeptide can be used to express the encoded product in cells lacking the sequence, or to over-express the product. Various promoters can be used that are constitutive or subject to external regulation, where in the latter situation, one can turn on or off the transcription of a gene. These coding sequences may include full-length cDNA or genomic clones, fragments derived therefrom, or chimeras that combine a naturally occurring sequence with functional or structural domains of other coding sequences. Alternatively, the introduced sequence may encode an anti-sense sequence; be an anti-sense oligonucleotide; encode a dominant negative mutation, or dominant or constitutively active mutations of native sequences; altered regulatory sequences, etc.
- A variety of methods can be used to construct expression vectors containing coding sequences and appropriate transcriptional and translational control signals for increased expression of an exogenous gene introduced into a cell. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Alternatively, RNA capable of encoding gene product sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in “Oligonucleotide Synthesis”, 1984, Gait, M. J. ed., IRL Press, Oxford.
- A variety of host-expression vector systems may be utilized to express a genetic coding sequence. Expression constructs may contain promoters derived from the genome of mammalian cells, e.g., metallothionein promoter, elongation factor promoter, actin promoter, etc., from mammalian viruses, e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter, SV40 late promoter, cytomegalovirus, etc.
- In mammalian host cells, a number of viral-based expression systems may be utilized, e.g. retrovirus, lentivirus, adenovirus, herpesvirus, and the like. In cases where an adenovirus is used as an expression vector, the coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the gene product in infected hosts (see Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted gene product coding sequences. These signals include the ATG initiation codon and adjacent sequences. Standard systems for generating adenoviral vectors for expression on inserted sequences are available from commercial sources, for example the Adeno-X™ expression system from Clontech (Clontechniques (January 2000) p. 10-12).
- In cases where an entire gene, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of the gene coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:516-544).
- In representative embodiments, methods are used that achieve a high efficiency of transfection, and therefore circumvent the need for using selectable markers. These may include adenovirus infection (see, for example Wrighton, 1996, J. Exp. Med. 183: 1013; Soares, J. Immunol., 1998, 161: 4572; Spiecker, 2000, J. Immunol 164: 3316; and Weber, 1999, Blood 93: 3685); and lentivirus infection (for example, International Patent Application WO000600; or WO9851810). Adenovirus-mediated gene transduction of endothelial cells has been reported with 100% efficiency. Retroviral vectors also can have a high efficiency of infection with endothelial cells, with reported infection efficiencies of 40-77%. Other vectors of interest include lentiviral vectors, for examples, see Barry et al. (2000) Hum Gene Ther 11(2):323-32; and Wang et al. (2000) Gene Ther 7(3):196-200.
- Viral vectors include retroviral vectors (e.g. derived from MoMLV, MSCV, SFFV, MPSV, SNV etc), lentiviral vectors (e.g. derived from HIV-1, HIV-2, SIV, BIV, FIV etc.), adeno-associated virus (AAV) vectors, adenoviral vectors (e.g. derived from Ad5 virus), SV40-based vectors, Herpes Simplex Virus (HSV)-based vectors etc. A vector construct may include drug resistance genes (neo, dhfr, hprt, gpt, bleo, puro etc) enzymes (β-galactosidase, alkaline phosphatase etc) fluorescent genes (e.g. GFP, RFP, BFP, YFP) or surface markers (e.g. CD24, NGFr, Lyt-2 etc).
- The gene or protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intra-muscular administration, as described by Furth et al. (1992), Anal Biochem 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or “gene gun” as described in the literature (see, for example, Tang et al. (1992), Nature 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.
- Once the gene corresponding to a selected polynucleotide is identified, its expression can be regulated in the cell to which the gene is native. For example, an endogenous gene of a cell can be regulated by an exogenous regulatory sequence as disclosed in U.S. Pat. No. 5,641,670; the disclosure of which is herein incorporated by reference.
- Also of interest in these embodiments is the administration of a target protein itself or active fragments, as well as mimetics, thereof.
- In some instances, the active agent is configured to cross the blood brain barrier. For example, the active agent may be conjugated to a moiety that confers upon the active agent the ability to cross the blood brain barrier. Such a configuration allows for the targeting of the active agent to tissues within the blood brain barrier. In some embodiments the subject moiety may be a peptide, e.g., a cell-penetrating peptide. Suitable peptides that facilitate crossing of the blood brain barrier include, but are not limited to positively charged peptides with amphipathic characteristics, such as MAP, pAntp, Transportan, SBP, FBP, TAT48-60, SynB1, SynB3 and the like.
- In other embodiments, the subject moiety may be a polymer. Suitable polymers that facilitate crossing of the blood brain barrier include, but are not limited to, surfactants such as polysorbate (e.g., Tween® 20, 40, 60 and 80); poloxamers such as Pluronic® F 68; and the like. In some embodiments, an active agent is conjugated to a polysorbate such as, e.g., Tween® 80 (which is Polyoxyethylene-80-sorbitan monooleate), Tween® 40 (which is Polyoxyethylene sorbitan monopalmitate); Tween® 60 (which is Polyoxyethylene sorbitan monostearate); Tween® 20 (which is Polyoxyethylene-20-sorbitan monolaurate); polyoxyethylene 20 sorbitan monopalmitate; polyoxyethylene 20 sorbitan monostearate; polyoxyethylene 20 sorbitan monooleate; etc. Also suitable for use are water soluble polymers, including, e.g.: polyether, for example, polyalkylene oxides such as polyethylene glycol (“PEG”), polyethylene oxide (“PEO”), polyethylene oxide-co-polypropylene oxide (“PPO”), co-polyethylene oxide block or random copolymers, and polyvinyl alcohol (“PVA”); poly(vinyl pyrrolidinone) (“PVP”); poly(amino acids); dextran, and proteins such as albumin. Block co-polymers are suitable for use, e.g., a polyethylene oxide-polypropylene oxide-polyethylene-oxide (PEO-PPO-PEO) triblock co-polymer (e.g., Pluronic® F68); and the like; see, e.g., U.S. Pat. No. 6,923,986. Other methods for crossing the blood brain barrier are discussed in various publications, including, e.g., Chen & Liu (2012) Advanced Drug Delivery Reviews 64:640-665.
- The targeting moiety may be attached to the subject active agent via any convenient method. The targeting moiety may be attached to the active agent via a single bond or a suitable linker, e.g., a PEG linker, a peptidic linker including one or more amino acids, or a saturated hydrocarbon linker. A variety of linkers find use in the subject modified compounds.
- In certain embodiments where targeting moieties or active agents are small molecule compounds, such compounds may contain, or be modified to contain, an α-nucleophilic group that serves as a reactive partner useful in conjugation to a compound disclosed herein. General methods are known in the art for chemical synthetic schemes and conditions useful for synthesizing a compound of interest (see, e.g., Smith and March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Fifth Edition, Wiley-Interscience, 2001; or Vogel, A Textbook of Practical Organic Chemistry, Including Qualitative Organic Analysis, Fourth Edition, New York: Longman, 1978).
- In certain embodiments where targeting moieties or active agents are peptides, any convenient reagents and methods may be used to conjugate the targeting moiety and subject active agent, for example, conjugation methods as described in G. T. Hermanson, “Bioconjugate Techniques” Academic Press, 2nd Ed., 2008, solid phase peptide synthesis methods, or fusion protein expression methods. Reactive functional groups for conjugation of peptidic compounds, via an optional linker, include, but are not limited to: an azido group, an alkynyl group, a phosphine group, a cysteine residue, a C-terminal thioester, aryl azides, maleimides, carbodiimides, N-hydroxysuccinimide (NHS)-esters, hydrazides, PFP-esters, hydroxymethyl phosphines, psoralens, imidoesters, pyridyl disulfides, isocyanates, aminooxy-, aldehyde, keto, chloroacetyl, bromoacetyl, and vinyl sulfones.
- Other variations of standard peptide coupling chemistry may be employed. Examples of peptide coupling reagents that can be used include, but not limited to, DCC (dicyclohexylcarbodiimide), DIC (diisopropylcarbodiimide), di-p-toluoylcarbodiimide, BDP (1-benzotriazole diethylphosphate-1-cyclohexyl-3-(2-morpholinylethyl)carbodiimide), EDC (1-(3-dimethylaminopropyl-3-ethyl-carbodiimide hydrochloride), cyanuric fluoride, cyanuric chloride, TFFH (tetramethyl fluoroformamidinium hexafluorophosphosphate), DPPA (diphenylphosphorazidate), BOP (benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate), HBTU (O-benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium hexafluorophosphate), TBTU (O-benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium tetrafluoroborate), TSTU (O—(N-succinimidyl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate), HATU (N-[(dimethylamino)-1-H-1,2,3-triazolo[4,5,6]-pyridin-1-ylmethylene]- —N-methylmethanaminium hexafluorophosphate N-oxide), BOP-Cl (bis(2-oxo-3-oxazolidinyl)phosphinic chloride), PyBOP ((1-H-1,2,3-benzotriazol-1-yloxy)-tris(pyrrolidino)phosphonium tetrafluorophopsphate), BrOP (bromotris(dimethylamino)phosphonium hexafluorophosphate), DEPBT (3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one) PyBrOP (bromotris(pyrrolidino)phosphonium hexafluorophosphate).
- In certain embodiments where targeting moieties or active agents are oligonucleotides, any convenient reagents and methods may be used to conjugate the targeting moiety and subject active agent. For example conjugation methods described in P. Herdewijn, “Oligonucleotide Synthesis” Humana Press, 2005, such as total stepwise solid-phase synthesis methods, or methods utilizing incorporation of 2′-aldehydes for use in ligation via hydrazine, oxime, or thiazolidine linkages. In other cases, the oligonucleotide may be first conjugated, by methods well known in the art, to a natural or synthetic amino acid such that functional groups on the amino acid may be utilized for conjugation by any of the relevant peptide conjugation methods described herein.
- In another embodiment where the targeting moiety is an antibody, the antibody may include a light chain polypeptide including a C-terminal amino acid extension, which extension includes a cysteine residue, where the agent is conjugated to the cysteine residue (directly or indirectly (e.g., via a linker)) of the C-terminal amino acid extension. In one embodiment, conjugation method involves the preferential (or “biased”) conjugation of agent to the cysteine residue of the C-terminal amino acid extension over a cysteine residue outside the C-terminal extension. In certain aspects, the conjugation includes conjugating a linker to a sulfhydryl group of the cysteine residue, e.g., using maleimide reaction chemistry, haloacetyl reaction chemistry, pyridyl disulfide reaction chemistry, or any other suitable reaction chemistry as described elsewhere herein. The methods of making the conjugate may further include reducing the sulfhydryl group of the cysteine residue prior to the conjugating step, e.g., using a suitable reducing agent and reaction conditions as described above. An alternative embodiment of the present disclosure does not require a reduction step as the cysteine within the light chain extension is already in a reduced state as a synthesis product.
- In certain aspects, the agent is linked to the cysteine of the C-terminal extension using maleimide reaction chemistry. The maleimide group reacts specifically with sulfhydryl groups when the pH of the reaction mixture is between pH 6.5 and 7.5; the result is formation of a stable thioether linkage. In more alkaline conditions (pH>8.5), primary amines compete with thiols for reaction with maleimides, and also increases the rate of hydrolysis of the maleimide group to a non-reactive maleamic acid. Maleimides do not react with tyrosines, histidines or methionines. Bioconjugation approaches that employ maleimide-based linkers are known and described in detail, e.g., in Hermanson, G. T., Bioconjugate Techniques, 2nd ed. San Diego, Calif. Academic Press 2008; Aslam & Dent, Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences, London Macmillan Reference Ltd 1998; Kalia & Raines, Advances in Bioconjugation, Curr. Org. Chem. 14(2):138-147; and elsewhere.
- According to certain embodiments, the agent is linked to the cysteine of the C-terminal extension using haloacetyl reaction chemistry. In certain aspects, a haloacetyl crosslinker that includes an iodoacetyl or a bromoacetyl group is employed. Haloacetyls react with sulfhydryl groups at physiologic pH. The reaction of the iodoacetyl group proceeds by nucleophilic substitution of iodine with a sulfur atom from a sulfhydryl group, resulting in a stable thioether linkage.
- In certain aspects, the agent is linked to the cysteine of the C-terminal extension using pyridyl disulfide reaction chemistry. Pyridyl disulfides react with sulfhydryl groups over a broad pH range (with pH 4 to 5 being optimal) to form disulfide bonds. During the reaction, a disulfide exchange occurs between the molecule's —SH group and the reagent's 2-pyridyldithiol group. As a result, pyridine-2-thione is released and can be measured spectrophotometrically (Amax=343 nm) to monitor the progress of the reaction.
- To generate a reduced sulfhydryl in the cysteine of the C-terminal amino acid extension to which the agent may be attached (e.g., via a linker), the sulfhydryl group of the cysteine may be contacted with a suitable reducing agent under conditions sufficient to reduce the sulfhydryl group. In certain aspects, the reducing agent is selected from cysteamine hydrochloride, 2-mercaptoethanol, dithiothreitol (DTT), 2-mercaptoethylamine, tris(2-carboxyl)phosphine (TCEP), cysteine HCl, N-ethylmaleimide, Nacystelyn, dornase alfa, thymosin 134, guaifenesin TCEP HCl, and any combination thereof. Reaction conditions for such reducing agents are known in the art and may be optimized, e.g., to promote selectivity or “bias” the reduction of the sulfhydryl group of the cysteine(s) present in the C-terminal extension as opposed to the cysteine residues present in the parental antibody (e.g., the cysteine residues that participate in disulfide bonding between CL and CH1 of the light and heavy chains, and/or between the hinge regions of the heavy chains). An alternative embodiment of the invention does not require a reduction step as the cysteine within the light chain extension is already in a reduced state as a synthesis product.
- Preferential reduction of the cysteine(s) of the C-terminal amino acid extension over one or more cysteine residues outside the C-terminal amino acid extension (or exclusive reduction of the cysteine(s) of the C-terminal amino acid extension) may be achieved by selection of suitable reduction conditions. In certain aspects, suitable reduction conditions include suitable selection of one or more of the following: a mild reducing agent and/or a reducing agent having a steric bulk that confers upon the reducing agent a preference for reducing a cysteine of the C-terminal amino acid extension; concentrations of the reducing agent and substrate; the temperature at which the reduction reaction is carried out, the pH of the reduction reaction mixture; the buffer used in the reduction reaction; and/or conditions under which the cells expressing the extended C-terminal light chain polypeptides are cultured (e.g., to obtain free thiol on the C-terminal extension and/or to generate readily reduced intermolecular disulfides). The agent conjugated to the antibody may be any useful agent described elsewhere herein. In certain aspects where the agent is an antibody, the agent may be conjugated to a targeting moiety by antibody conjugation methods described herein.
- The ordinarily skilled artisan will appreciate that factors such as pH and steric hindrance (i.e., the accessibility of the amino acid residue to reaction with a reactive partner of interest) are of importance. Modifying reaction conditions to provide for optimal conjugation conditions is well within the skill of the ordinary artisan, and is routine in the art.
- In practicing methods according to embodiments of the invention, an effective amount of the active agent is provided in the target cell or cells. In some instances, the effective amount of the modulatory agent is provided in the cell by contacting the cell with the modulatory agent. Contact of the cell with the modulatory agent may occur using any convenient protocol. The protocol may provide for in vitro or in vivo contact of the modulatory agent with the target cell, depending on the location of the target cell. Contact may or may not include entry of the agent into the cell. For example, where the target cell is an isolated cell and the modulatory agent is an agent that modulates expression of target protein, the modulatory agent may be introduced directly into the cell under cell culture conditions permissive of viability of the target cell. Such techniques include, but are not necessarily limited to: viral infection, transfection, conjugation, protoplast fusion, electroporation, particle gun technology, calcium phosphate precipitation, direct microinjection, viral vector delivery, and the like. The choice of method is generally dependent on the type of cell being contacted and the nature of the modulatory agent, and the circumstances under which the transformation is taking place (e.g., in vitro, ex vivo, or in vivo). A general discussion of these methods can be found in Ausubel, et al, Short Protocols in Molecular Biology, 3rd ed., Wiley & Sons, 1995.
- Alternatively, where the target cell or cells are part of a multicellular organism, the modulatory agent may be administered to the organism or subject in a manner such that the agent is able to contact the target cell(s), e.g., via an in vivo or ex vivo protocol. By “in vivo,” it is meant in the target construct is administered to a living body of an animal. By “ex vivo” it is meant that cells or organs are modified outside of the body. Such cells or organs are typically returned to a living body.
- In the subject methods, the active agent(s) may be administered to the targeted cells using any convenient administration protocol capable of resulting in the desired activity. Thus, the agent can be incorporated into a variety of formulations, e.g., pharmaceutically acceptable vehicles, for therapeutic administration. More particularly, the agents of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments (e.g., skin creams), solutions, suppositories, injections, inhalants and aerosols. As such, administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.
- In pharmaceutical dosage forms, the agents may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds. The following methods and excipients are merely exemplary and are in no way limiting.
- For oral preparations, the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- The agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- The agents can be utilized in aerosol formulation to be administered via inhalation. The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.
- Furthermore, the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors. Similarly, unit dosage forms for injection or intravenous administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- The term “unit dosage form,” as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- Where the agent is a polypeptide, polynucleotide, analog or mimetic thereof, it may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth et al. (1992), Anal Biochem 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or “gene gun” as described in the literature (see, for example, Tang et al. (1992), Nature 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells. For nucleic acid therapeutic agents, a number of different delivery vehicles find use, including viral and non-viral vector systems, as are known in the art.
- Those of skill in the art will readily appreciate that dose levels can vary as a function of the specific compound, the nature of the delivery vehicle, and the like. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means.
- In certain embodiments, to accomplish the desired enhancement of homeostatic capacity, e.g., as described above, electrical energy (electrical modulation) may be applied to at least a portion of a subject, where such electrical energy may be excitatory or inhibitory and in certain embodiments may include both excitatory and inhibitory stimulation. By “electrically modulating” is meant altering or changing at least a portion of the subject by electrical means to provide a change, alteration or shift in at least one component or aspect of an electrical system of the subject.
- Any suitable area may be targeted for electrical modulation. Areas that may be targeted include, but are not limited to, pre- and post-ganglionic nerve fibers, as well as ganglionic structures, efferent and afferent nerve fibers, synapses, etc., and combinations thereof in certain embodiments. In certain embodiments, activity in a given nerve fiber may be electrically modulated in more than one area of the nerve fiber. In certain embodiments, electrical energy is applied to modulate synaptic efficiency. In certain embodiments, electrical energy is applied using any of the devices described below.
- A number of different methods and corresponding devices and systems for applying electrical energy to a subject and which may be adapted for use in the subject invention are described, e.g., in U.S. Pat. Nos.: in U.S. Pat. Nos. 7,363,076; 7,149,574, 7,738,952; 7,899,527; 7,676,269; 8,121,690; 8,569,277; 8,909,340 United States Published Application Nos. 20050143378; 20100260669; 20110015188; 20100119482; 20110256097; 20060206149; 20140065129; 20140369969 and U.S. patent application Ser. No. 14/737,248; the disclosures of which are herein incorporated by reference.
- In some instances, the methods include employing a paradoxical protocol in order to obtain a desired enhancement of homeostatic capacity. In some of these embodiments, a counter-intuitive stimulus is applied to the subject in a manner effective to cause the subject to mount a compensatory response effective to ultimately modulate the dynamic homeostatic capacity of the subject, as desired. In practicing methods according to such embodiments, a stimulus is applied to the subject, where the stimulus is of a nature and magnitude sufficient to achieve the desired modulation. In certain embodiments, the applied stimulus is one of short duration, where by short duration is meant that the applied stimulus lasts for 1 week or less, e.g., 3 days or less, e.g., 1 day or less, e.g., 12 hours or less, 5 hours or less, 1 hour or less, 30 min or less, 15 min or less, 5 min or less, 1 min or less, 30 s or less, 1 s or less, where the duration of the applied stimulus may be even shorter. In certain embodiments, the applied stimulus is one of long duration, where by long duration is meant that the applied stimulus lasts for 1 week or longer, e.g., 2 weeks or longer, 1 month or longer, 2 months or longer, 3 months or longer, or 6 months or longer, where the duration of the applied stimulus may be even shorter. Where the stimulus is a pharmacological stimulus, the duration refers to the period in which the pharmacological agent from an administered dosage is active. Where the stimulus is an electrical stimulus, the duration refers to the total of electrical applications received by a subject over a given period, analogous to a dose of a pharmacological agent.
- Following administration, the stimulus is removed, e.g., by metabolization of the pharmacological agent or cessation of application of electrical energy, and the subject is permitted to mount a compensatory response. In this following period, no additional stimulus is administered to the subject. The duration of this period between stimulus application, which may be referred to as a “holiday” period, may vary, but in representative embodiments is 1 second or longer, such as 30 seconds or longer, e.g., 1 minute or longer, 5 minutes or longer, 10 minutes or longer, 15 minutes or longer, 30 minutes or longer, 1 hour or longer, 6 hours or longer, 12 hours or longer, 1 day or longer, such as 2 days or longer, including 5 days or longer, 10 days or longer, e.g., 15 days or longer. As such, embodiments of the methods include non-chronic (i.e., non-continuous) application of the stimulus, e.g., non-chronic administration of a pharmacologic agent.
- In certain embodiments, the methods include close monitoring or supervision of the subject during and/or after application of the stimulus. This monitoring may be completely automated, or at least in part performed manually, e.g., by a health care professional. For example, a health care professional can closely watch the subject following application of the stimulus as well as during the holiday period following stimulus application, and based on this monitoring determine when a next stimulus should be applied. Monitoring also assures that the symptom enhancement is not so severe as to be ultimately damaging to the subject at an unacceptable level. Certain aspects of the monitoring may be automated. For example, following administration, the subject may enter one or more physiological parameters into an automated system, which uses the input parameters to automatically determine whether the subject is staying within a predetermined set of physiological parameters, or whether intervention is necessary. In certain embodiments, the automated monitoring system may also be integrated with a stimulus application device, such that the system, based on monitored parameters, determines when next to administer a stimulus, the duration of the next stimulus, etc. As such, the method may be characterized as applying a first stimulus to the subject and monitoring the subject for a response thereto. Following this first step, the method further includes applying at least a second stimulus to the subject, wherein the second stimulus is determined based on the monitored response to the first stimulus.
- In certain embodiments, stimulus to the subject is done in an “irregularly irregular” manner. As such, duration of the stimulus application events, as well as duration of holiday periods between such events, varies randomly over the entire course of a treatment, or at least a portion thereof. In addition, the variation does not follow any pattern, but instead is random.
- In practicing the subject methods, the applied stimulus may vary, where in certain embodiments the stimulus may be a pharmacological stimulus and/or an electrical stimulus. As such, in certain embodiments, the stimulus is a pharmacological stimulus. In other embodiments, the stimulus is an electrical stimulus. In yet other embodiments, the stimulus is a combination of pharmacological and electrical stimuli. Accordingly, in certain embodiments, the enhancing is by administering a pharmacological agent to the subject. In yet other embodiments, the enhancing is by electrical stimulation, e.g., by employing an implanted electrical energy application device.
- Further details regarding paradoxical therapies that may be employed in embodiments of the methods include those described in U.S. Pat. Nos. 8,691,877 and 8,571,650, the disclosures of which are herein incorporated by reference.
- In some instances, the methods include employing a pulsatile protocol in order to obtain a desired enhancement of homeostatic capacity. In some of these embodiments, a stimulus is applied in a pulsatile manner to the subject effective to cause the desired modulation in homeostatic capacity. Pulsatile protocols may be employed to enhance homeostatic capacity and aspects thereof, e.g., dynamic range, robustness, etc. In pulsatile stimulation protocols, intermittent stressors may be employed, e.g., in the form of iterative stress and rest and/or variation (irregularity or regularity) and intermittency of stressor, e.g., in order to enhance homeostatic capacity. A dynamic range of stressors may be employed to increase the dynamic range of homeostatic capacity and/or to strengthen homeostatic capacity.
- In practicing methods according to such embodiments, a pulsatile stimulus is applied to the subject, where the pulsatile stimulus is of a nature and magnitude sufficient to achieve the desired modulation. In certain embodiments, the applied pulsatile stimulus is one of short duration, where by short duration is meant that the applied stimulus lasts for 1 week or less, e.g., 3 days or less, e.g., 1 day or less, e.g., 12 hours or less, 5 hours or less, 1 hour or less, 30 min or less, 15 min or less, 5 min or less, 1 min or less, 30 s or less, 1 s or less, where the duration of the applied stimulus may be even shorter. In certain embodiments, the applied pulsatile stimulus is one of long duration, where by long duration is meant that the applied stimulus lasts for 1 week or longer, e.g., 2 weeks or longer, 1 month or longer, 2 months or longer, 3 months or longer, or 6 months or longer, where the duration of the applied stimulus may be even shorter. Where the pulsatile stimulus is a pharmacological stimulus, the duration refers to the period in which the pharmacological agent from an administered dosage is active. Where the pulsatile stimulus is an electrical stimulus, the duration refers to the total of electrical applications received by a subject over a given period, analogous to a dose of a pharmacological agent.
- Following administration of a given stimulation in a pulsatile stimulus protocol, there is a non-stimulation period. The duration of this non-stimulation period between stimuli application, which may be referred to as a “holiday” period, may vary, but in certain embodiments is 1 second or longer, such as 30 seconds or longer, e.g., 1 minute or longer, 5 minutes or longer, 10 minutes or longer, 15 minutes or longer, 30 minutes or longer, 1 hour or longer, 6 hours or longer, 12 hours or longer, 1 day or longer, such as 2 days or longer, including 5 days or longer, 10 days or longer, e.g., 15 days or longer.
- In certain embodiments, pulsatile stimulus to the subject is done in an “irregularly irregular” manner. As such, duration of the stimulus application events, as well as duration of holiday periods between such events, varies randomly over the entire course of a treatment, or at least a portion thereof. In addition, the variation does not follow any pattern, but instead is random.
- In practicing the subject methods, the applied pulsatile stimulus may vary, where in certain embodiments the pulsatile stimulus may be a pharmacological stimulus and/or an electrical stimulus. As such, in certain embodiments, the stimulus is a pharmacological stimulus. In other embodiments, the stimulus is an electrical stimulus. In yet other embodiments, the stimulus is a combination of pharmacological and electrical stimuli. Accordingly, in certain embodiments, the enhancing is by administering a pharmacological agent to the subject. In yet other embodiments, the enhancing is by electrical stimulation, e.g., by employing an implanted electrical energy application device.
- In some embodiments, the therapy that is administered to the subject is a behavioral therapy. By “behavioral therapy” is meant at protocol or regimen that results in a change in the behavior, i.e., the way that the subject acts, in a manner sufficient to modulate the dynamic measure of homeostatic capacity and treat the subject for the target condition. Behavioral therapies that may be employed may vary, where examples of such therapies include, but are not limited to: exercise regimens (e.g., cardiovascular, weight lifting, stretching, yoga); resting/sleeping regimens (e.g., meditation); physical therapies; psychological therapies, e.g., counseling for enhancement of emotions/mood; substance abuse therapies, e.g., smoking cessation therapies, alcohol abstinence therapies; drugs of abuse abstinence therapies, etc. Behavioral therapies may vary in terms of application, where examples include but are not limited to those that are administered via professional and/or consumer devices/services, e.g., mobile apps, videos, computers, etc.
- In some embodiments, the therapy that is administered to the subject is a dietary therapy. By “dietary therapy” is meant at protocol or regimen that results in a change in the nutritional and/or chemical intake of the subject, e.g., the types of foods/liquids that the subject ingests or otherwise introduces into the body, in a manner sufficient to modulate the dynamic measure of homeostatic capacity and treat the subject for the target condition. Dietary therapies that may be employed may vary, where examples of such therapies include, but are not limited to: low carbohydrate diets, low fat diets, low calorie diets, vegetarian diets, organic diets, etc.; nutritional supplement regimens, e.g., vitamin regimens; etc.
- In some embodiments, the therapy that is administered to the subject is an environmental therapy. By “environmental therapy” is meant at protocol or regimen that results in a change in the contextual environment of the subject, e.g., the perceived surroundings of the subject, in a manner sufficient to modulate the dynamic measure of homeostatic capacity and treat the subject for the target condition. Environmental therapies that may be employed may vary, where examples of such therapies include, but are not limited to: changes in day/night duration; changes in geographic locations, e.g., to obtain a desired temperature and/or elevation, etc.
- In some embodiments, the therapy that is administered to the subject is a surgical therapy. By “surgical therapy” is meant a manual or operative procedure on a living subject. Surgical procedures may vary widely, and may or may not be minimally invasive, as is known in the art.
- Embodiments of the methods may further include evaluating homeostatic capacity of a subject. As reviewed above, homeostatic capacity refers to the ability of a subject to maintain relatively constant conditions in the internal environment while continuously interacting with and adjusting to changes originating within or outside the system. By “evaluating” is meant assessing, analyzing or assaying to provide a form of measurement, e.g., in the form of a determination or proxy thereof, of the homeostatic capacity of the subject. The evaluations that may be made may be quantitative and/or qualitative determinations, and be represented as a value or set of values, as desired.
- Aspects of the methods of certain embodiments include obtaining dynamic biometric data from a subject. The phrase “biometric data” is employed to refer to a measure of a biometric parameter that relates to the physiology of a living organism, e.g., as described below. As such, the biometric parameter which is employed in methods of the invention to obtain the biometric data may be a parameter that provides information about an organism's vital functions, including growth and development, the absorption and processing of nutrients, the synthesis and distribution of proteins and other organic molecules, the functioning of different tissues, organs, and other anatomic structures; the psychological and/or behavioral state of the subject, e.g., mental and/or cognitive state of the subject, which may be subjective or objective, self-reported or third party observed, as desired; etc.
- Biometric parameters that are measured may vary widely, where examples of such parameters include physiological, chemical, electrical, behavioral, psychological, etc., based parameters, as well as variations and derivatives thereof. Biometric parameters of interest include, but are not limited to: physical parameters, e.g., blood pressure, orthostatic hypotension, pulse pressure, heart rate, heart rate variability (HRV), heart rate recovery, resting heart rate, respiration rate, forced expiratory volume, forced vital capacity, temperature, core temperature, galvanic skin response, gastrointestinal motility, sleep cycle, VO2 max, bone density, weight, body mass index (BMI), bone density, waist to hip ratio, waist circumference, other obesity measures (e.g., volume displacement, Dual Energy X-ray Absorptiometry (i.e., DEXA), etc.), baroreceptor sensitivity, oxygen saturation, nervous system activity measurements, including electrical potential measurements, such as spontaneous electrical potential measurements, e.g., EEG, EMG EKG, evoked electrical potential measurements, e.g., sensory evoked potentials (such as auditory invoked potentials (e.g., brain stem evoked response or potential (ABER or ABEP), visual evoked potentials, tactile or somatosensory evoked potentials, laser evoked potentials), motor evoked potentials, etc.; nerve conduction measures, e.g., motor NCS, sensory NCS, F-wave study, H-reflex study, spf-NCS, etc.; and the like, and combinations thereof; sample analysis obtainable parameters, e.g., pH level, cortisol level, ACTH level, Epinephrine/Norepinephrine level, oxygen saturation, insulin, glucose, inflammatory/immune markers, DNA methylation, DNA double strand breaks, clock genes/factors, oxidative stress, telomere status, gut biome, melatonin level, adenosine level, creatinine, urea nitrogen, c-reactive protein, hemoglobin, triglycerides, lipoproteins, apoloipoprotein B100/A1 ratio, white blood cell count, cholesterol, oxygen saturation, and the like, and combinations thereof. Dynamic biometric data may be made up of information about a single type of biometric parameter, or two or more different types of biometric parameters. The biometric data employed in methods of the invention may thus be made up of information obtained by measuring or assessing one or more biometric parameters, such as the ones listed above.
- As summarized above, the biometric data that is obtained and employed in embodiments of the invention is dynamic biometric data. By “dynamic biometric data” is meant biometric data that incorporates some type of change component, as opposed to static biometric data. The change component may vary widely, where examples of change components include, but are not limited to components that are: temporal and/or in response to an applied stimulus and/or in response to withdrawal of stimulus and/or in response to a change in the contextual environment of the subject. For example, the dynamic biometric data that is obtained may be biometric data obtained over a given period of time. The given period of time may vary, ranging in some instances from 0.1 seconds to 24 hours, such as 1 second to 12 hours, e.g., 1 second to 1 hour, including 1 second to 1 minute. Where the dynamic biometric data is data obtained over a given period of time, the data may be obtained continuously over that period of time or at one or more distinct points during that period of time. For example, the biometric parameter(s) that is monitored in order to obtain biometric data may be monitored continuously during the given period of time, i.e., it may be obtained in an uninterrupted manner, i.e., without cessation, during the given period of time. Alternatively, the biometric parameter(s) that is monitored in order to obtain biometric data may be monitored intermittently during the given period of time, i.e., it may be obtained at one or more points over the given period of time, with an interval between points at which it is not obtained. In some embodiments, the interval may vary, ranging, for example, from 0.01 sec to 60 minutes or longer, such as 0.1 to 60 s. In some instances, the dynamic biometric data is obtained by evaluating a biometric parameter for a rate of change over a period of time. As such, methods may include obtaining information about the speed at which a biometric parameter of interest changes over a given period of period of time. Obtaining dynamic biometric data as described above provides for numerous benefits, including increases in temporal resolution, as compared to single point in time data. Dynamic biometric data as obtained herein provides a truer and more meaningful measure of the biometric value(s) of interest, as compared to single point in time measurements.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to an applied stimulus. Such biometric data may include data that is obtained before and/or after application of the stimulus to the subject. In some instances, the biometric data may be obtained over a given period of time that spans or follows the application of the stimulus to the subject. This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with application of a stimulus to the subject being evaluated. The applied stimulus may vary, where stimuli of interest include physical stimuli and chemical stimuli. Physical stimuli of interest include, but are not limited to, change in orientation of the subject, exercise, change in temperature experienced by the subject or a portion thereof, and the like. Chemical stimuli of interest include, but are not limited to, administration of various active agents, e.g., orally, topically, by injection or other type of administration route, where active agents of interest include, but are not limited to: sugars, starches, stimulants, and the like.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to withdrawal of a stimulus. Such biometric data may include data that is obtained before and/or after withdrawal (e.g., blockage) of the stimulus to the subject. In some instances, the biometric data may be obtained over a given period of time that spans or follows the withdrawal of the stimulus to the subject. This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with withdrawal of a stimulus to the subject being evaluated. The withdrawn stimulus may vary, where stimuli of interest include physical stimuli and chemical stimuli. Physical stimuli of interest include, but are not limited to, change in orientation of the subject, exercise, change in temperature experienced by the subject or a portion thereof, and the like. Chemical stimuli of interest include, but are not limited to, administration of various active agents, e.g., orally, topically, by injection or other type of administration route, where active agents of interest include, but are not limited to: sugars, starches, stimulants, and the like.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to modulation of the contextual environment of the subject. By contextual environment of the subject is meant the perceived environment of the subject. Such biometric data may include data that is obtained before and/or after the modulation in the contextual environment of the subject. In some instances, the biometric data may be obtained over a given period of time that spans or follows the modulation of the contextual environment of the subject. This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with modulation of the contextual environment of the subject. The modulation of the contextual environment of the subject may vary, where contextual modulations of interest include, but are not limited to, change in day and night duration, change in temperature, change in humidity, change in elevation, change in atmosphere, and the like.
- Dynamic biometric data of interest also include biometric data that is obtained by evaluating a biometric parameter for a change in response to modulation of the behavioral aspect of the subject. By behavioral aspect of the subject is meant an observable activity of the subject. Such biometric data may include data that is obtained before and/or after the modulation of the behavioral aspect of the subject. In some instances, the biometric data may be obtained over a given period of time that spans or follows the modulation of the behavioral aspect of the subject. This type of biometric data may be viewed as biometric data that is obtained over a given period of time in conjunction with modulation of the behavioral aspect of the subject. The modulation of the behavioral aspect of the subject may vary, where behavioral modulations of interest include, but are not limited to, dietary changes, sleep pattern changes, activity level changes, and the like.
- As reviewed above, a variety of different biometric parameters may be measured to obtain the dynamic biometric data. The method by which the biometric data is obtained may vary depending on the nature of the biometric parameter that is monitored. In some instances, the method employed to obtain the biometric data includes physically monitoring the subject to obtain the dynamic biometric data. For example, physical monitoring of the subject may be employed where the biometric parameter is one or more of blood pressure, orthostatic hypotension, pulse pressure, heart rate, heart rate variability (HRV), heart rate recovery, resting heart rate, respiration rate, forced expiratory volume, forced vital capacity, temperature, core temperature, galvanic skin response, gastrointestinal motility, sleep cycle, VO2 max, bone density, weight, body mass index (BMI), bone density, waist to hip ratio, waist circumference, other obesity measures (e.g., volume displacement, Dual Energy X-ray Absorptiometry (i.e., DEXA), etc.), baroreceptor sensitivity, oxygen saturation, nervous system activity measurements, including electrical potential measurements, such as spontaneous electrical potential measurements, e.g., EEG, EMG EKG, evoked electrical potential measurements, e.g., sensory evoked potentials (such as auditory invoked potentials (e.g., brain stem evoked response or potential (ABER or ABEP), visual evoked potentials, tactile or somatosensory evoked potentials, laser evoked potentials), motor evoked potentials, etc.; nerve conduction measures, e.g., motor NCS, sensory NCS, F-wave study, H-reflex study, spf-NCS, etc.; and combinations thereof. Any convenient protocol for physically monitoring a subject for one or more of the above biometric parameters may be employed, and methods for physically monitoring each are known in the art. For example, where the biometric parameter of interest is HRV, the physical monitoring may include measures such as low frequency peak (“LF”), high frequency peak (“HF”), and the LF/HF ratio to determine HRV and obtain the HRV derived biometric data.
- In some embodiments, the dynamic biometric data is obtained by a method that includes analyzing a sample from the subject to obtain the dynamic biometric data. The sample that is analyzed may vary, where samples of interest include, but are not limited to: urine, blood, serum, plasma, saliva, semen, prostatic fluid, nipple aspirate fluid, lachrymal fluid, perspiration, feces, cheek swabs, cerebrospinal fluid, cell lysate samples, amniotic fluid, gastrointestinal fluid, biopsy tissue (e.g., samples obtained from laser capture microdissection (LCM)), and the like. The sample can be a biological sample or can be extracted from a biological sample derived from humans, animals, and the like, and may employ conventional methods for the successful extraction of DNA, RNA, proteins and peptides. In certain embodiments, the sample is a fluid sample, such as a solution of analytes in a fluid. The fluid may be an aqueous fluid, such as, but not limited to water, a buffer, and the like. Biometric parameters that may be monitored by evaluating a sample from the subject include, but are not limited to: pH level, cortisol level, ACTH level, Epinephrine/Norepinephrine level, oxygen saturation, insulin, glucose, inflammatory/immune markers, DNA methylation, DNA double strand breaks, clock genes/factors, oxidative stress, telomere status, gut biome, melatonin level, adenosine level, creatinine, urea nitrogen, c-reactive protein, hemoglobin, triglycerides, lipoproteins, apoloipoprotein B100/A1 ratio, white blood cell count, cholesterol, oxygen saturation, and combinations thereof.
- Any convenient protocol for physically monitoring a subject for one or more of the above biometric parameters may be employed, and methods for testing a sample for monitoring each are known in the art. In some instances, the dynamic biometric data is obtained by both physically monitoring the subject and by assaying a sample from the subject, e.g., as described above.
- Aspects of the methods further include evaluating the homeostatic capacity of the subject from the dynamic biometric data. As such, following obtainment of the dynamic biometric data, the homeostatic capacity of the subject is evaluated based on the obtained dynamic biometric data. Any convenient protocol may be employed to evaluate the homeostatic capacity of the subject based on the obtained dynamic biometric data. For example, the obtained dynamic biometric data may be compared to control or reference sets of dynamic biometric data to obtain the homeostatic capacity evaluation. In some instances, the obtained dynamic biometric data may be compared to a suitable database of control or reference sets to obtain the homeostatic capacity evaluation. The control or references sets of data may be made up of data obtained from multiple different individuals of known homeostatic capacity. The data may be made up from individuals of a variety of different ages and health, including from young and old individuals, as well as healthy and diseased individuals, as desired. Any suitable comparison algorithm may be employed, and the output homeostatic capacity evaluation may be produced in a variety of different formats or configurations. This homeostatic capacity evaluation step may be performed using a suitable functional module of a computing device/system, e.g., as described in greater detail below.
- The homeostatic capacity evaluation that is provided by embodiments of the invention may vary, as desired. For example, the evaluation may be an output in the form of a qualitative assessment, e.g., bad, poor, average, good and exceptional, etc. The output may be in the form of a quantitative assessment, e.g., where the homeostatic capacity evaluation output a number selected from a numerical scale. The homeostatic capacity evaluation output may provide assessment with respect to a number of different homeostatic capacity parameters, such as but not limited to: the robustness, dynamic range, resilience, coping mechanism, anti-fragility, etc., of the homeostatic capacity of the individual. The output showing the homeostatic capacity of the animal/person may be provided as a proxy for the biological age (as opposed to the chronological age) of the subject, e.g., by using statistical correlations relative to the general population. For example, the homeostatic capacity evaluation produced from dynamic biometric data from a 50 year old professional cyclist in great condition could suggest that the “biological age” of that person based on homeostatic capacity measures is actually much younger, e.g., that of a 35 years old from the general population. In some instances, the homeostatic capacity evaluation is one that is prepared by comparing the obtained dynamic biometric data to a database that includes data comprising statistically meaningful values that correlate each biometric value and/or a combination of the biometric values of interest to the values of different ages or age ranges of cohorts for the same biometric value(s). For example, in instances where the obtained biometric data may be from an individual or animal that is 30 years of age, the homeostatic capacity evaluation may be performed by comparing the obtained biometric data to data obtained from healthy individuals from a variety of ages ranging from 20 to 80 years, and show a correlation to a certain age of the individual as a whole or certain systems thereof, e.g., cardiovascular system, neurological system, reproductive system, etc. For example, the output homeostatic capacity evaluating may be an overall composite number, e.g., that the individual has the homeostatic capacity of a 32 year old, or be more granular with respect to particular biological systems of the individual, e.g., where the output is that the system provides a homeostatic capacity evaluation in which the subject has a cardiovascular system of a 25 year old but the nervous system of a 35 year old. In such instances, these sub-categories could be at systems levels of the body and could be more granular, e.g., portions of systems.
- In some instances, the methods may include use of one or more static measures of homeostatic capacity. Such measures may be used as separate measures, or composites of dynamic and static measurements may be employed.
- Aspects of the invention further include treating a subject for a condition. Embodiments of such methods include enhancing homeostatic capacity of the subject, e.g., as described above, in a manner sufficient to treat the subject for the condition. In some instances, the methods may include a homeostatic capacity measurement that is based on one or more static measures and/or dynamic measures of homeostatic capacity, e.g., as described above. Such measures may be used as separate measures, or composites of dynamic and static measurements may be employed.
- In these embodiments of the invention, any convenient therapy may be administered to a subject. Therapies that may be employed include, but are not limited to: traditional medical therapies, e.g., electrical therapies, pharmacological therapies, electropharmaceuticals, etc.; and non-traditional medical therapies, e.g., homeopathic therapies, acupuncture, acupressure, mechanical manipulation, e.g., chiropractic therapies, laser therapy, e.g., to the vertex or other physiological locations, etc. Therapies of interest may also be categorized as physical, chemical, psychological, environmental, electrical, behavioral, pharmacological, etc. Specific types of therapies of interest are review above in greater detail. Examples of such therapies are described in greater detail above.
- Where desired, the therapy is administered to the subject (e.g., by a health practitioner and/or the subject itself, depending the nature of the particular therapy) in a manner sufficient to modulate the subject's dynamic measure of homeostatic capacity to more closely approximate a target dynamic measure of homeostatic capacity and treat the subject for the condition. In some embodiments, the methods result in an enhancement or an increase in the dynamic measure of the homeostatic capacity of the subject. The magnitude of the enhancement/increase may vary, where in some instances the magnitude is 2-fold or greater, such as 5-fold or greater, e.g., 10-fold or greater.
- In some embodiments, the methods may result in at least partially restoring the dynamic measure of homeostatic capacity of the subject. By “at least partially restoring the homeostatic capacity of the subject” is meant that the homeostatic capacity of the subject is restored to be normal, e.g., in those embodiments were normal is the target dynamic measure. By “normal” is meant the dynamic measure of homeostatic capacity of a healthy subject of a particular age. In certain embodiments, the healthy subject is a healthy human at an age after puberty, e.g., 18 year old, 19 year old, 20 year old, 21 year old, 22 year old, 23 year old, 24 year old, 25 year old, 26 year old, 27 year old, 28 year old, 29 year old, 30 year old, 31 year old, 32 year old, 33 year old 34 year old, 35 year old, 36 year old, 37 year old, 38 year old, 39 year old, 40 year old, 41 year old, 42 year old, 43 year old, 44 year old, 45 year old, 46 year old, 47 year old, 48 year old, 49 year old or 50 year old. In some instances, the normal function with respect to homeostatic capacity is that of a healthy human 25 year old. In some instances, the dynamic measure is enhanced to a target dynamic measure that is greater than that observed in a normal subject, e.g., a super normal value. In these instances, the magnitude by which the target dynamic measure may exceed the normal measure may vary, such as by 2-fold or greater, e.g., 5-fold or greater, including 10-fold or greater.
- As indicated above, the therapies are applied such that the dynamic measure of homeostatic capacity more closely approximates a target dynamic measure, e.g., the normal measure or super normal measure, such as described above. By “approximates” is meant, in some instances, that the dynamic measure of homeostatic capacity is changed by the therapy to be 50% or more, e.g., 75% or more of the target function, such as 80% or more of the target dynamic measure, including 90% or more of the target function, e.g., 95% or more of the target function, including 99% or more of the target dynamic measure.
- Therapeutic methods as described herein may further include, following application of therapy, assessing dynamic homeostatic capacity to determine with the measure approximates the target measure, as desired. In such embodiments, the subject's dynamic measure of homeostatic capacity may be made using any convenient protocol, such as that described above.
- The methods described herein may be employed with a variety of different types of subjects, i.e., animals, where the animals may be “mammals” or “mammalian,” where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), lagomorpha (e.g., rabbits) and primates (e.g., humans, chimpanzees, and monkeys). In some instances, the subjects or patients are humans or laboratory research animals.
- The subject methods find use in a variety of different applications. For example, the methods find use as a component of the treatment of a variety of different conditions. By treatment is meant that at least an amelioration of the symptoms associated with the condition afflicting the subject is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g. symptom, associated with the condition being treated. As such, treatment also includes situations where the condition, or at least symptoms associated therewith, are completely inhibited, e.g. prevented from happening, or stopped, e.g. terminated, such that the subject no longer suffers from the condition, or at least the symptoms that characterize the condition. In certain embodiments, the condition being treated is a disease condition.
- Non-limiting examples of disease conditions that may be treated by practice of the methods include, but are not limited to: Examples of conditions that may be treated with the methods of the subject invention include, but are not limited to, cardiovascular diseases, e.g., atherosclerosis, coronary artery disease, hypertension, hyperlipidemia, cardiomyopathy, volume retention; neurodegenerative diseases, e.g., Alzheimer's disease, Pick's disease, dementia, delirium, Parkinson's disease, amyotrophic lateral sclerosis; neuroinflammatory diseases, e.g., viral meningitis, viral encephalitis, fungal meningitis, fungal encephalitis, multiple sclerosis, charcot joint; myasthenia gravis; orthopedic diseases, e.g., osteoarthritis, inflammatory arthritis, reflex sympathetic dystrophy, Paget's disease, osteoporosis; lymphoproliferative diseases, e.g., lymphoma, lymphoproliferative disease, Hodgkin's disease; autoimmune diseases, e.g., Graves disease, hashimoto's, takayasu's disease, kawasaki's diseases, arthritis, scleroderma, CREST syndrome, allergies, dermatitis, Henoch-schlonlein purpura, goodpasture syndrome, autoimmune thyroiditis, myasthenia gravis, Reiter's disease, lupus, rheumatoid arthritis; inflammatory and infectious diseases, e.g., sepsis, viral and fungal infections, wound healing, tuberculosis, infection, human immunodeficiency virus; pulmonary diseases, e.g., tachypnea, fibrotic diseases such as cystic fibrosis, interstitial lung disease, desquamative interstitial pneumonitis, non-specific interstitial pneumonitis, lymphocytic interstitial pneumonitis, usual interstitial pneumonitis, idiopathic pulmonary fibrosis; transplant-related side effects such as rejection, transplant-related tachycardia, renal failure, typhlitis; transplant related bowel dysmotility, transplant-related hyperreninemia; sleep disorders, e.g., insomnia, obstructive sleep apnea, central sleep apnea; gastrointestinal disorders, e.g., hepatitis, xerostomia, bowel dysmotility, peptic ulcer disease, constipation, post-operative bowel dysmotility; inflammatory bowel disease; endocrine disorders, e.g., hypothyroidism, hyperglycemia, diabetes, obesity, syndrome X; cardiac rhythm disorders, e.g., sick sinus syndrome, bradycardia, tachycardia, QT interval prolongation arrhythmias, atrial arrhythmias, ventricular arrhythmias; genitourinary disorders, e.g., bladder dysfunction, renal failure, hyperreninemia, hepatorenal syndrome, renal tubular acidosis, erectile dysfunction; cancer; fibrosis; skin disorders, e.g., wrinkles, cutaneous vasculitis, psoriasis; aging associated diseases and conditions, e.g., shy dragers, multi-system atrophy, osteoporosis, age related inflammation conditions, degenerative disorders; autonomic dysregulation diseases; e.g., headaches, concussions, post-concussive syndrome, coronary syndromes, coronary vasospasm; neurocardiogenic syncope; neurologic diseases such as epilepsy, seizures, stress, bipolar disorder, migraines and chronic headaches; conditions related to pregnancy such as amniotic fluid embolism, pregnancy-related arrhythmias, fetal stress, fetal hypoxia, eclampsia, preeclampsia; conditions that cause hypoxia, hypercarbia, hypercapnia, acidosis, acidemia, such as chronic obstructive lung disease, emphysema, cardiogenic pulmonary edema, non-cardiogenic pulmonary edema, neurogenic edema, pleural effusion, adult respiratory distress syndrome, pulmonary-renal syndromes, interstitial lung diseases, pulmonary fibrosis, and any other chronic lung disease; sudden death syndromes, e.g., sudden infant death syndrome, sudden adult death syndrome; vascular disorders, e.g., acute pulmonary embolism, chronic pulmonary embolism, deep venous thrombosis, venous thrombosis, arterial thrombosis, coagulopathy, aortic dissection, aortic aneurysm, arterial aneurysm, myocardial infarction, coronary vasospasm, cerebral vasospasm, mesenteric ischemia, arterial vasospasm, malignant hypertension; primary and secondary pulmonary hypertension, reperfusion syndrome, ischemia, cerebral vascular accident, cerebral vascular accident and transient ischemic attacks, corporal arterial disease; pediatric diseases such as respiratory distress syndrome; bronchopulmonary dysplasia; Hirschprung disease; congenital megacolon, aganglionosis; ocular diseases such as glaucoma; and the like.
- In some instances, at least partial restoration of the homeostatic capacity of a subject results in treatment of a condition caused by sympathetic bias. Conditions that are caused by a sympathetic bias include, but are not limited to aging related diseases, such as but not limited to: cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes, hypertension; shy dragers, multi-system atrophy, age related inflammation conditions and diabetes.
- In some instances, at least partial restoration of the homeostatic capacity of a subject results in treatment of a condition caused by parasympathetic bias. Conditions that are caused by a parasympathetic bias include, but are not limited to an allergy, common cold, eczema, asthma, anaphylaxis, attention deficit hyperactive disorder (ADHD), autism, obesity, depression, Tourette's syndrome, hay fever, cough, fatigue, hypothyroidism, chronic fatigue syndrome, environmental sensitivity syndrome, shock, sepsis, food allergy and food allergy syndrome.
- Also of interest are non-disease conditions, where such non-disease conditions include, but are not limited to: aging, sleep deprivation, veisalgia, and the like.
- A number of different devices and systems may be employed in accordance with the subject invention. Devices and systems that may be adapted or configured for use in the subject invention include devices and systems configured to enhance homeostatic capacity of a subject, e.g., as described above. In some instances, the devices may further be configured to obtain dynamic biometric data from a subject and make a homeostatic capacity evaluation of the subject based on the obtained dynamic biometric data. In some instances, the devices may be configured to also output a therapeutic treatment regimen recommendation based on the homeostatic capacity evaluation.
- Devices of interest may include one or more functional modules, which may be distributed among two or more distinct hardware units or integrated into a single hardware unit, e.g., as described in greater detail below. In some instances, the devices include a dynamic biometric data obtainment module, a homeostatic capacity evaluation module, and a homeostatic capacity evaluation output module. The dynamic biometric obtainment module is adapted to obtain dynamic biometric data, e.g., by being in operational communication with one or more biometric parameter sensors and or an input configured to receive dynamic biometric data from a source of such data, and transmit the obtained biometric data to the process unit module. The homeostatic capacity evaluation module is adapted to retrieve the dynamic biometric data from the dynamic biometric data obtainment module and make a homeostatic capacity evaluation therefrom. As such, the module is configured to produce a homeostatic capacity evaluation from the received or input dynamic biometric data. In some instances, the systems further include a therapeutic treatment regimen module, which is configured to identify a suitable therapeutic regimen based on the homeostatic capacity evaluation. The output module is adapted to provide the homeostatic capacity evaluation (and in some instances a therapeutic treatment regimen) to a user, e.g., the subject or interested stakeholder. In some instances, the output module is configured to display the homeostatic capacity evaluation to a user, e.g., via graphical user interface (GUI). In one embodiment, a visual display can be used for displaying the homeostatic capacity evaluation. Other outputs may also be employed, e.g., printouts, messages (e.g., text messages or emails) sent to another display device, to a storage location for later viewing (e.g., the cloud), etc.
- As would be recognized by one of skilled in the art, many different software, firmware, hardware options and data structures can be employed in devices of the invention, e.g., as described above. In some instances, a general-purpose computer can be configured to a functional arrangement for the methods and programs disclosed herein. The hardware architecture of such a computer is well known by a person skilled in the art, and can comprise hardware components including one or more processors (CPU), a random-access memory (RAM), a read-only memory (ROM), an internal or external data storage medium (e.g., hard disk drive). A computer system can also comprise one or more graphic boards for processing and outputting graphical information to display means. The above components can be suitably interconnected via a bus inside the computer. The computer can further comprise suitable interfaces for communicating with general-purpose external components such as a monitor, keyboard, mouse, network, etc. In some embodiments, the computer can be capable of parallel processing or can be part of a network configured for parallel or distributive computing to increase the processing power for the present methods and programs. In some embodiments, the program code read out from the storage medium can be written into a memory provided in an expanded board inserted in the computer, or an expanded unit connected to the computer, and a CPU or the like provided in the expanded board or expanded unit can actually perform a part or all of the operations according to the instructions of the program code, so as to accomplish the functions described below. In other embodiments, the method can be performed using a cloud computing system. In these embodiments, the data files and the programming can be exported to a cloud computer, which runs the program, and returns an output to the user.
- The memory of a computer system can be any device that can store information for retrieval by a processor, and can include magnetic or optical devices, or solid-state memory devices (such as volatile or non-volatile RAM). A memory or memory unit can have more than one physical memory device of the same or different types (for example, a memory can have multiple memory devices such as multiple drives, cards, or multiple solid state memory devices or some combination of the same). With respect to computer readable media, “permanent memory” refers to memory that is permanent. Permanent memory is not erased by termination of the electrical supply to a computer or processor. Computer hard-drive ROM (i.e., ROM not used as virtual memory), CD-ROM, floppy disk and DVD are all examples of permanent memory. Random Access Memory (RAM) is an example of non-permanent (i.e., volatile) memory. A file in permanent memory can be editable and re-writable. Operation of the computer is controlled primarily by operating system, which is executed by a central processing unit. The operating system can be stored in a system memory. In some embodiments, the operating system includes a file system. In addition to the operating system, one possible implementation of the system memory includes a variety programming files and data files for implementing the method described above.
- In use, dynamic biometric data information is input into the system, and a user receives a homeostatic capacity evaluation from the system, e.g., as described above. In certain embodiments, instructions in accordance with the method (e.g., in the form of a mobile app or other type of structure) described herein can be coded onto a computer-readable medium in the form of “programming”, where the term “computer readable medium” as used herein refers to any storage or transmission medium (including non-transitory version so such) that participates in providing instructions and/or data to a computer for execution and/or processing. Programming may take the form of any convenient algorithms. In some instances, programming may include statistical analysis. Any of a variety of statistical methods known in the art and described herein, can be used, where statistical methods of interest include, for example, discriminant analysis, classification analysis, cluster analysis, analysis of variance (ANOVA), regression analysis, regression trees, decision trees, nearest neighbor algorithms, principal components, factor analysis, multidimensional scaling and other methods of dimensionality reduction, likelihood models, hypothesis testing, kernel density estimation and other smoothing techniques, cross-validation and other methods to guard against overfitting of the data, the bootstrap and other statistical resampling techniques, artificial intelligence, including artificial neural networks, machine learning, data mining, and boosting algorithms, and Bayesian analysis, etc.
- Examples of storage media include a floppy disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-ft magnetic tape, non-volatile memory card, ROM, DVD-ROM, Blue-ray disk, solid state disk, and network attached storage (NAS), whether or not such devices are internal or external to the computer. A file containing information can be “stored” on computer readable medium, where “storing” means recording information such that it is accessible and retrievable at a later date by a computer. The computer-implemented method described herein can be executed using programming that can be written in one or more of any number of computer programming languages. Such languages include, for example, Java (Sun Microsystems, Inc., Santa Clara, Calif.), Visual Basic (Microsoft Corp., Redmond, Wash.), and C++ (AT&T Corp., Bedminster, N.J.), as well as any many others.
- As mentioned above, the functional modules may be performed by a variety of different hardware, firmware and software configurations. In some instances, the functional modules will be distributed among a system of two or more distinct devices, e.g., mobile devices, remote devices (such as cloud server devices), laboratory instrument devices, etc., which may be in communication with each other, e.g., via wired or wireless communication. In other instances, the distinct functional modules will be integrated into a single device. Where the distinct functional modules are integrated into a single device, the device may have a variety of configurations. For example, the device may be a laboratory device, which may or may not be configured to a bench top device. In yet other instances, the device may be a handheld device, e.g., a smartphone or tablet type device. In yet other instances, the device may be a wearable device, such as a watch type device, a wearable patch type device, etc.
- In addition, the present invention contemplates the storage and access to information present thereon, e.g., concerning homeostatic capacity evaluation, treatment regimen, therapeutic administration, etc., where such access may be public or via an appropriate secured and private setting, e.g., wherein HIPAA standards are followed, such that the system may be HIPAA compliant.
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Celsius, and pressure is at or near atmospheric. Standard abbreviations may be used, e.g., bp, base pair(s); kb, kilobase(s); pl, picoliter(s); s or sec, second(s); min, minute(s); h or hr, hour(s); aa, amino acid(s); kb, kilobase(s); nt, nucleotide(s) and the like.
- Double blinded randomized controlled studies are employed to ascertain the effect of mitochondrial gene therapy on hypertension. Subjects in a treatment group are given an AAV vector comprising expression cassettes for both Cas9 and guide RNA targeted to mtDNA and including a sequence that enhances mitochondrial mediated cellular signal responsiveness with the intent of reducing hypertension. A group of appropriate age-matched controls receive placebo. After two weeks, the melatonin treatment group exhibits a decrease in hypertension to produce a statistically significant improvement in the treatment group as compared to control.
- Double blinded randomized controlled studies are employed to ascertain the effect of mitochondrial transfer on type 2 diabetes. Beta cells from subjects in the treatment group are harvested, subjected to mitochondrial transfer using cytoplasm from healthy donors, and then returned to the pancreas. A group of appropriate age-matched controls undergo a placebo protocol. The treatment group exhibits an increase in insulin production to produce a statistically significant improvement in the treatment group as compared to control.
- Double blinded randomized controlled studies are employed to ascertain the effect of lumbar sympathetic ganglia stimulation on hypertension. In the treatment group, an electrical stimulator device is surgically placed under the skin in the upper part of the leg. A connecting wire is run under the skin from the stimulator to an electrode that is attached to a target lumbar sympathetic gaglion. After implantation, the stimulator is programmed using a computer to generate
- All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- The invention now being fully described, it will be apparent to one of skill in the art that many changes and modifications can be made thereto without departing from the spirit and scope of the appended claims.
Claims (23)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/363,988 US20170150922A1 (en) | 2015-11-30 | 2016-11-29 | Methods of Enhancing Homeostatic Capacity in a Subject by Increasing Homeostatic System Component Responsiveness, and Devices for Use in Practicing the Same |
| US17/131,029 US11813456B2 (en) | 2015-11-30 | 2020-12-22 | Methods of enhancing homeostatic capacity in a subject by increasing homeostatic system component responsiveness, and devices for use in practicing the same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562260997P | 2015-11-30 | 2015-11-30 | |
| US15/363,988 US20170150922A1 (en) | 2015-11-30 | 2016-11-29 | Methods of Enhancing Homeostatic Capacity in a Subject by Increasing Homeostatic System Component Responsiveness, and Devices for Use in Practicing the Same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/131,029 Continuation US11813456B2 (en) | 2015-11-30 | 2020-12-22 | Methods of enhancing homeostatic capacity in a subject by increasing homeostatic system component responsiveness, and devices for use in practicing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170150922A1 true US20170150922A1 (en) | 2017-06-01 |
Family
ID=58776646
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/363,988 Abandoned US20170150922A1 (en) | 2015-11-30 | 2016-11-29 | Methods of Enhancing Homeostatic Capacity in a Subject by Increasing Homeostatic System Component Responsiveness, and Devices for Use in Practicing the Same |
| US17/131,029 Active US11813456B2 (en) | 2015-11-30 | 2020-12-22 | Methods of enhancing homeostatic capacity in a subject by increasing homeostatic system component responsiveness, and devices for use in practicing the same |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/131,029 Active US11813456B2 (en) | 2015-11-30 | 2020-12-22 | Methods of enhancing homeostatic capacity in a subject by increasing homeostatic system component responsiveness, and devices for use in practicing the same |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20170150922A1 (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030097151A1 (en) * | 2001-10-25 | 2003-05-22 | Smedley Gregory T. | Apparatus and mitochondrial treatment for glaucoma |
| US20040086576A1 (en) * | 2002-10-30 | 2004-05-06 | Giuseppe Cianfarani | Ergogenic multivitamin-mineral energy supplement for the prevention of muscle fatigue |
| US20050288721A1 (en) * | 2004-06-07 | 2005-12-29 | Cardiac Pacemakers, Inc. | Method and apparatus to modulate cellular regeneration post myocardial infarct |
| US20060216251A1 (en) * | 2005-03-24 | 2006-09-28 | Tracie Martyn International, Llc | Topical formulations and methods of use |
| US20070054871A1 (en) * | 2005-09-06 | 2007-03-08 | Pastore Joseph M | Method and apparatus for device controlled gene expression for cardiac protection |
| US20150283265A1 (en) * | 2005-08-05 | 2015-10-08 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
| US20160375240A1 (en) * | 2015-06-26 | 2016-12-29 | ActivaDerm, Inc. a Utah Corporation | Method for iontophoretic body fat treatment and related apparatus |
| US20180362623A1 (en) * | 2015-06-05 | 2018-12-20 | Yu-Hua Tseng | Methods and compositions for promoting thermogenic potential |
Family Cites Families (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR0131528B1 (en) | 1994-12-07 | 1998-04-17 | 성재갑 | Novel pyrimidine derivatives, their preparation and their use as herbicides |
| US20040230252A1 (en) | 1998-10-21 | 2004-11-18 | Saul Kullok | Method and apparatus for affecting the autonomic nervous system |
| JP4355386B2 (en) | 1999-03-18 | 2009-10-28 | キヤノン株式会社 | Biological homeostasis maintenance evaluation device |
| AU2001263126B2 (en) | 2000-05-13 | 2007-04-05 | Omegawave Llc | Apparatus and method for non-invasive measurement of current functional state and adaptive response in humans |
| US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
| US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US8145316B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US7853333B2 (en) | 2002-04-08 | 2010-12-14 | Ardian, Inc. | Methods and apparatus for multi-vessel renal neuromodulation |
| US6978174B2 (en) | 2002-04-08 | 2005-12-20 | Ardian, Inc. | Methods and devices for renal nerve blocking |
| US7020521B1 (en) | 2002-11-08 | 2006-03-28 | Pacesetter, Inc. | Methods and apparatus for detecting and/or monitoring heart failure |
| US20050015122A1 (en) | 2003-06-03 | 2005-01-20 | Mott Christopher Grey | System and method for control of a subject's circadian cycle |
| US7149574B2 (en) | 2003-06-09 | 2006-12-12 | Palo Alto Investors | Treatment of conditions through electrical modulation of the autonomic nervous system |
| US7738952B2 (en) | 2003-06-09 | 2010-06-15 | Palo Alto Investors | Treatment of conditions through modulation of the autonomic nervous system |
| US20050153885A1 (en) | 2003-10-08 | 2005-07-14 | Yun Anthony J. | Treatment of conditions through modulation of the autonomic nervous system |
| US20050143378A1 (en) | 2003-12-29 | 2005-06-30 | Yun Anthony J. | Treatment of conditions through pharmacological modulation of the autonomic nervous system |
| US7676269B2 (en) | 2003-12-29 | 2010-03-09 | Palo Alto Investors | Treatment of female fertility conditions through modulation of the autonomic nervous system |
| US7840263B2 (en) | 2004-02-27 | 2010-11-23 | Cardiac Pacemakers, Inc. | Method and apparatus for device controlled gene expression |
| US20100260669A1 (en) | 2004-05-13 | 2010-10-14 | Anthony Joonkyoo Yun | Treatment of Seasonal Conditions Through Modulation of the Autonomic Nervous System |
| US7899527B2 (en) | 2004-05-13 | 2011-03-01 | Palo Alto Investors | Treatment of conditions through modulation of the autonomic nervous system during at least one predetermined menstrual cycle phase |
| EP1750506A4 (en) | 2004-05-14 | 2010-03-17 | Flowmedica Inc | Bi-lateral local renal delivery for treating congestive heart failure and for bnp therapy |
| US7767713B2 (en) | 2004-08-05 | 2010-08-03 | Palo Alto Investors | Linoleic acid active agents for enhancing probability of becoming pregnant |
| US8569277B2 (en) | 2004-08-11 | 2013-10-29 | Palo Alto Investors | Methods of treating a subject for a condition |
| US20060069012A1 (en) | 2004-09-29 | 2006-03-30 | Yun Anthony J | Methods and compositions for treating plasticity in a subject |
| US8691877B2 (en) | 2004-10-15 | 2014-04-08 | Palo Alto Investors | Methods and compositions for treating a disease condition in a subject |
| US7722529B2 (en) | 2004-12-28 | 2010-05-25 | Palo Alto Investors | Expandable vessel harness for treating vessel aneurysms |
| US9833618B2 (en) | 2005-02-04 | 2017-12-05 | Palo Alto Investors | Methods and compositions for treating a disease condition in a subject |
| US7966072B2 (en) | 2005-02-18 | 2011-06-21 | Palo Alto Investors | Methods and compositions for treating obesity-hypoventilation syndrome |
| JP2008545799A (en) | 2005-06-10 | 2008-12-18 | ボード オブ スーパーバイザーズ オブ ルイジアナ ステイト ユニバーシティー アンド アグリカルチュラル アンド メカニカル カレッジ | Peripheral clock regulation in adipose tissue |
| US10716749B2 (en) | 2005-11-03 | 2020-07-21 | Palo Alto Investors | Methods and compositions for treating a renal disease condition in a subject |
| US8868177B2 (en) | 2009-03-20 | 2014-10-21 | ElectroCore, LLC | Non-invasive treatment of neurodegenerative diseases |
| US8571650B2 (en) | 2006-03-03 | 2013-10-29 | Palo Alto Investors | Methods and compositions for treating a renal associated condition in a subject |
| US8722016B2 (en) | 2006-09-25 | 2014-05-13 | Palo Alto Investors | Methods of identifying xenohormetic phenotypes and agents |
| WO2009023968A1 (en) | 2007-08-20 | 2009-02-26 | UNIVERSITé LAVAL | Artificial light apparatus and its use for influencing a condition in a subject |
| WO2010040142A1 (en) | 2008-10-03 | 2010-04-08 | Lockheed Martin Corporation | Nerve stimulator and method using simultaneous electrical and optical signals |
| US8468115B2 (en) | 2009-06-25 | 2013-06-18 | George Mason Intellectual Properties, Inc. | Cyclical behavior modification |
| WO2012009682A2 (en) * | 2010-07-15 | 2012-01-19 | The Board Of Trustees Of The Leland Stanford Junior University | Elastic substrates and methods of use in cell manipulation and culture |
| US8739522B2 (en) | 2010-10-29 | 2014-06-03 | Nuovo Pignone S.P.A. | Systems and methods for pre-heating compressed air in advanced adiabatic compressed air energy storage systems |
| US8909340B2 (en) | 2011-08-23 | 2014-12-09 | Palo Alto Investors | Methods and devices for treating conditions associated with autonomic dysfunction |
| EP2741757B1 (en) * | 2011-09-11 | 2018-05-16 | Minovia Therapeutics Ltd. | Compositions of functional mitochondria and uses thereof |
| EP2763703B1 (en) | 2011-10-06 | 2018-02-14 | Miragen Therapeutics, Inc. | Control of whole body energy homeostasis by microrna regulation |
| US8855757B2 (en) | 2011-12-14 | 2014-10-07 | Rijuven Corporation | Mobile wellness device |
| US8457745B1 (en) | 2012-04-02 | 2013-06-04 | Julio Luis Garcia | Method, system and apparatus for control of pancreatic beta cell function to improve glucose homeostatis and insulin production |
| US9803227B2 (en) | 2012-07-20 | 2017-10-31 | Palo Alto Investors | Methods for producing biological materials |
| US10426950B2 (en) | 2012-08-29 | 2019-10-01 | Palo Alto Investors | Methods and devices for treating parasympathetic bias mediated conditions |
| US20140369969A1 (en) | 2013-06-13 | 2014-12-18 | Palo Alto Investors | Methods for treating conditions by restoring central nervous system endocrine gland function, and compositions and devices for practicing the same |
| US20150025924A1 (en) | 2013-07-22 | 2015-01-22 | Palo Alto Investors | Methods of displaying information to a user, and systems and devices for use in practicing the same |
| JP2015054002A (en) | 2013-09-11 | 2015-03-23 | 株式会社日立システムズ | Examination system for fatigue and stress |
| US10835134B2 (en) | 2014-06-13 | 2020-11-17 | Palo Alto Investors | Methods and compositions for restoring homeostatic capacity of a subject |
-
2016
- 2016-11-29 US US15/363,988 patent/US20170150922A1/en not_active Abandoned
-
2020
- 2020-12-22 US US17/131,029 patent/US11813456B2/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030097151A1 (en) * | 2001-10-25 | 2003-05-22 | Smedley Gregory T. | Apparatus and mitochondrial treatment for glaucoma |
| US20040086576A1 (en) * | 2002-10-30 | 2004-05-06 | Giuseppe Cianfarani | Ergogenic multivitamin-mineral energy supplement for the prevention of muscle fatigue |
| US20050288721A1 (en) * | 2004-06-07 | 2005-12-29 | Cardiac Pacemakers, Inc. | Method and apparatus to modulate cellular regeneration post myocardial infarct |
| US20060216251A1 (en) * | 2005-03-24 | 2006-09-28 | Tracie Martyn International, Llc | Topical formulations and methods of use |
| US20150283265A1 (en) * | 2005-08-05 | 2015-10-08 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
| US20070054871A1 (en) * | 2005-09-06 | 2007-03-08 | Pastore Joseph M | Method and apparatus for device controlled gene expression for cardiac protection |
| US20180362623A1 (en) * | 2015-06-05 | 2018-12-20 | Yu-Hua Tseng | Methods and compositions for promoting thermogenic potential |
| US20160375240A1 (en) * | 2015-06-26 | 2016-12-29 | ActivaDerm, Inc. a Utah Corporation | Method for iontophoretic body fat treatment and related apparatus |
Non-Patent Citations (1)
| Title |
|---|
| e.g. prevent cell death, aid in preservation of sight, lower pressure, paras. 6, 13, 14, 81, etc. * |
Also Published As
| Publication number | Publication date |
|---|---|
| US11813456B2 (en) | 2023-11-14 |
| US20210115524A1 (en) | 2021-04-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10631781B2 (en) | Homeostatic capacity evaluation | |
| US11020051B2 (en) | Methods of enhancing homeostatic capacity in a subject by modulating homeostatic system synchrony, and devices for use in practicing the same | |
| US11045140B2 (en) | Homeostatic capacity evaluation | |
| US12133720B2 (en) | Methods and compositions for restoring homeostatic capacity of a subject | |
| McMullen et al. | Protective effects of exercise and phosphoinositide 3-kinase (p110α) signaling in dilated and hypertrophic cardiomyopathy | |
| Lakatta | Cardiovascular regulatory mechanisms in advanced age. | |
| Parati et al. | The human sympathetic nervous system: its relevance in hypertension and heart failure | |
| Martino et al. | Influence of the cardiomyocyte circadian clock on cardiac physiology and pathophysiology | |
| Selmi et al. | Inflammation and oxidative stress in obstructive sleep apnea syndrome | |
| Zhao et al. | Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury | |
| Levin et al. | KATP channel gain-of-function leads to increased myocardial L-type Ca2+ current and contractility in Cantu syndrome | |
| Monasky et al. | Calcium in Brugada syndrome: questions for future research | |
| Wilkinson et al. | A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress | |
| Guo et al. | Exercise training improves cardiac function and regulates myocardial mitophagy differently in ischaemic and pressure‐overload heart failure mice | |
| Pérez et al. | Gene therapy for catecholaminergic polymorphic ventricular tachycardia | |
| US11813456B2 (en) | Methods of enhancing homeostatic capacity in a subject by increasing homeostatic system component responsiveness, and devices for use in practicing the same | |
| Wang et al. | Vascular smooth muscle cell PRDM16 regulates circadian variation in blood pressure | |
| De Mello et al. | Aliskiren, at low doses, reduces the electrical remodeling in the heart of the TGR (mRen2) 27 rat independently of blood pressure | |
| Prontera et al. | 2q31. 2q32. 3 deletion syndrome: report of an adult patient | |
| Geist et al. | Canonical and noncanonical contribution of thyroid hormone receptor isoforms alpha and beta to cardiac hypertrophy and heart rate in male mice | |
| Shtylla et al. | A mathematical model for DC vaccine treatment of type I diabetes | |
| Maggi et al. | 253rd ENMC international workshop: Striated muscle laminopathies-natural history and clinical trial readiness. 24–26 June 2022, Hoofddorp, the Netherlands | |
| Cheung et al. | Sex differences in cardiac transcriptomic response to neonatal sleep apnea | |
| Nilsson et al. | Prediabetic cardiomyopathy is attenuated by hypothalamic PVN oxytocin neuron activation | |
| Toepfer et al. | MYBPC3 mutations cause hypertrophic cardiomyopathy by dysregulating myosin: Implications for therapy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PALO ALTO INVESTORS, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUN, ANTHONY JOONKYOO;YUN, CONRAD MINKYOO;SIGNING DATES FROM 20161129 TO 20161130;REEL/FRAME:040471/0970 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |