US20170143726A1 - Adenosine receptor agonists and antagonists to modulate t cell responses - Google Patents
Adenosine receptor agonists and antagonists to modulate t cell responses Download PDFInfo
- Publication number
- US20170143726A1 US20170143726A1 US15/420,892 US201715420892A US2017143726A1 US 20170143726 A1 US20170143726 A1 US 20170143726A1 US 201715420892 A US201715420892 A US 201715420892A US 2017143726 A1 US2017143726 A1 US 2017143726A1
- Authority
- US
- United States
- Prior art keywords
- cells
- cell
- receptor
- antigen
- antagonist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005867 T cell response Effects 0.000 title abstract description 15
- 239000003379 purinergic P1 receptor agonist Substances 0.000 title abstract description 9
- 239000000296 purinergic P1 receptor antagonist Substances 0.000 title abstract description 4
- 229940044551 receptor antagonist Drugs 0.000 claims abstract description 88
- 239000002464 receptor antagonist Substances 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 85
- 230000028993 immune response Effects 0.000 claims abstract description 83
- 230000002708 enhancing effect Effects 0.000 claims description 23
- 239000012634 fragment Substances 0.000 claims description 19
- 230000009471 action Effects 0.000 claims description 6
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 claims description 4
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 claims description 4
- 101100510617 Caenorhabditis elegans sel-8 gene Proteins 0.000 claims 1
- 210000001744 T-lymphocyte Anatomy 0.000 abstract description 174
- 239000000556 agonist Substances 0.000 abstract description 51
- 238000011282 treatment Methods 0.000 abstract description 49
- 150000001875 compounds Chemical class 0.000 abstract description 43
- 239000003018 immunosuppressive agent Substances 0.000 abstract description 30
- 229940125721 immunosuppressive agent Drugs 0.000 abstract description 20
- 230000007774 longterm Effects 0.000 abstract description 20
- 230000001404 mediated effect Effects 0.000 abstract description 16
- 230000000890 antigenic effect Effects 0.000 abstract description 7
- 230000002265 prevention Effects 0.000 abstract description 6
- 229940121359 adenosine receptor antagonist Drugs 0.000 abstract 1
- 102000036639 antigens Human genes 0.000 description 206
- 108091007433 antigens Proteins 0.000 description 206
- 239000000427 antigen Substances 0.000 description 204
- 206010028980 Neoplasm Diseases 0.000 description 156
- 241000699670 Mus sp. Species 0.000 description 125
- 102000005962 receptors Human genes 0.000 description 119
- 108020003175 receptors Proteins 0.000 description 119
- 210000004027 cell Anatomy 0.000 description 118
- 239000005557 antagonist Substances 0.000 description 116
- 201000011510 cancer Diseases 0.000 description 85
- PAOANWZGLPPROA-RQXXJAGISA-N CGS-21680 Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(O)=O)=CC=3)=NC(N)=C2N=C1 PAOANWZGLPPROA-RQXXJAGISA-N 0.000 description 77
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 68
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 56
- 230000001093 anti-cancer Effects 0.000 description 55
- 230000001900 immune effect Effects 0.000 description 52
- 210000003289 regulatory T cell Anatomy 0.000 description 43
- 230000000694 effects Effects 0.000 description 39
- 208000023275 Autoimmune disease Diseases 0.000 description 38
- 102000009346 Adenosine receptors Human genes 0.000 description 36
- 108050000203 Adenosine receptors Proteins 0.000 description 36
- 108090000623 proteins and genes Proteins 0.000 description 36
- 229960005305 adenosine Drugs 0.000 description 35
- 239000003814 drug Substances 0.000 description 34
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 33
- 239000002246 antineoplastic agent Substances 0.000 description 33
- 238000001727 in vivo Methods 0.000 description 33
- 230000000638 stimulation Effects 0.000 description 33
- 229960005486 vaccine Drugs 0.000 description 33
- 239000003795 chemical substances by application Substances 0.000 description 32
- 235000018102 proteins Nutrition 0.000 description 31
- 102000004169 proteins and genes Human genes 0.000 description 31
- 201000010099 disease Diseases 0.000 description 30
- 230000002159 abnormal effect Effects 0.000 description 29
- 210000001519 tissue Anatomy 0.000 description 29
- 108010074328 Interferon-gamma Proteins 0.000 description 28
- 102000017578 LAG3 Human genes 0.000 description 28
- 208000015181 infectious disease Diseases 0.000 description 28
- 101150030213 Lag3 gene Proteins 0.000 description 27
- 230000004913 activation Effects 0.000 description 26
- 230000004663 cell proliferation Effects 0.000 description 26
- 210000004072 lung Anatomy 0.000 description 26
- -1 polyethylene Polymers 0.000 description 26
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 25
- 206010061218 Inflammation Diseases 0.000 description 25
- 102100037850 Interferon gamma Human genes 0.000 description 25
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 25
- 208000035475 disorder Diseases 0.000 description 25
- 229940079593 drug Drugs 0.000 description 25
- 108090000765 processed proteins & peptides Proteins 0.000 description 25
- 229940044601 receptor agonist Drugs 0.000 description 25
- 239000000018 receptor agonist Substances 0.000 description 25
- 230000009467 reduction Effects 0.000 description 25
- 230000000139 costimulatory effect Effects 0.000 description 24
- 230000004054 inflammatory process Effects 0.000 description 24
- 210000003071 memory t lymphocyte Anatomy 0.000 description 24
- 241000282414 Homo sapiens Species 0.000 description 23
- 230000006698 induction Effects 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 23
- 239000000203 mixture Substances 0.000 description 23
- 210000000612 antigen-presenting cell Anatomy 0.000 description 20
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 20
- 230000004083 survival effect Effects 0.000 description 20
- 238000012546 transfer Methods 0.000 description 20
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 18
- 206010025323 Lymphomas Diseases 0.000 description 18
- 230000017274 T cell anergy Effects 0.000 description 18
- 239000002671 adjuvant Substances 0.000 description 18
- 210000004698 lymphocyte Anatomy 0.000 description 18
- 230000011664 signaling Effects 0.000 description 18
- 230000008685 targeting Effects 0.000 description 18
- 101710154606 Hemagglutinin Proteins 0.000 description 17
- 108010002350 Interleukin-2 Proteins 0.000 description 17
- 102000000588 Interleukin-2 Human genes 0.000 description 17
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 17
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 17
- 101710176177 Protein A56 Proteins 0.000 description 17
- 241000700605 Viruses Species 0.000 description 17
- 239000000185 hemagglutinin Substances 0.000 description 17
- 210000000056 organ Anatomy 0.000 description 17
- 230000002829 reductive effect Effects 0.000 description 17
- 241001529936 Murinae Species 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 16
- 230000004044 response Effects 0.000 description 16
- 210000004881 tumor cell Anatomy 0.000 description 16
- 230000001154 acute effect Effects 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 15
- 230000001939 inductive effect Effects 0.000 description 15
- 239000003446 ligand Substances 0.000 description 15
- 230000035755 proliferation Effects 0.000 description 15
- 102000004127 Cytokines Human genes 0.000 description 14
- 108090000695 Cytokines Proteins 0.000 description 14
- 210000000481 breast Anatomy 0.000 description 14
- 230000002757 inflammatory effect Effects 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 14
- PWTBZOIUWZOPFT-UHFFFAOYSA-N 4-[2-[[7-amino-2-(2-furanyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazin-5-yl]amino]ethyl]phenol Chemical compound N=1C2=NC(C=3OC=CC=3)=NN2C(N)=NC=1NCCC1=CC=C(O)C=C1 PWTBZOIUWZOPFT-UHFFFAOYSA-N 0.000 description 13
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 13
- 108010036949 Cyclosporine Proteins 0.000 description 13
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 13
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 13
- 238000002650 immunosuppressive therapy Methods 0.000 description 13
- 238000000338 in vitro Methods 0.000 description 13
- 210000004988 splenocyte Anatomy 0.000 description 13
- 230000000692 anti-sense effect Effects 0.000 description 12
- 230000005784 autoimmunity Effects 0.000 description 12
- 229940030156 cell vaccine Drugs 0.000 description 12
- 210000000987 immune system Anatomy 0.000 description 12
- 230000005764 inhibitory process Effects 0.000 description 12
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 11
- 201000004681 Psoriasis Diseases 0.000 description 11
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 11
- 238000009175 antibody therapy Methods 0.000 description 11
- 230000001363 autoimmune Effects 0.000 description 11
- 230000002354 daily effect Effects 0.000 description 11
- 230000002163 immunogen Effects 0.000 description 11
- 230000001506 immunosuppresive effect Effects 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 229930105110 Cyclosporin A Natural products 0.000 description 10
- 206010052779 Transplant rejections Diseases 0.000 description 10
- 229960001265 ciclosporin Drugs 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 10
- 230000002401 inhibitory effect Effects 0.000 description 10
- 210000003734 kidney Anatomy 0.000 description 10
- 201000006417 multiple sclerosis Diseases 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 210000002307 prostate Anatomy 0.000 description 10
- 238000002054 transplantation Methods 0.000 description 10
- 230000003612 virological effect Effects 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 9
- 241000186781 Listeria Species 0.000 description 9
- 206010027476 Metastases Diseases 0.000 description 9
- 230000006044 T cell activation Effects 0.000 description 9
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000001684 chronic effect Effects 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000011813 knockout mouse model Methods 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 210000004962 mammalian cell Anatomy 0.000 description 9
- 201000001441 melanoma Diseases 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 206010039073 rheumatoid arthritis Diseases 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 102000053642 Catalytic RNA Human genes 0.000 description 8
- 108090000994 Catalytic RNA Proteins 0.000 description 8
- 208000035473 Communicable disease Diseases 0.000 description 8
- 229940032072 GVAX vaccine Drugs 0.000 description 8
- 206010062016 Immunosuppression Diseases 0.000 description 8
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 8
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 8
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 8
- 108010018242 Transcription Factor AP-1 Proteins 0.000 description 8
- 102100023132 Transcription factor Jun Human genes 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- SNHRLVCMMWUAJD-SUYDQAKGSA-N betamethasone valerate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(OC(=O)CCCC)[C@@]1(C)C[C@@H]2O SNHRLVCMMWUAJD-SUYDQAKGSA-N 0.000 description 8
- 230000034994 death Effects 0.000 description 8
- 210000004443 dendritic cell Anatomy 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 229960003444 immunosuppressant agent Drugs 0.000 description 8
- 230000002611 ovarian Effects 0.000 description 8
- 244000052769 pathogen Species 0.000 description 8
- 108091092562 ribozyme Proteins 0.000 description 8
- 230000001629 suppression Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 208000007465 Giant cell arteritis Diseases 0.000 description 7
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 7
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 7
- 102100040247 Tumor necrosis factor Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 229960000890 hydrocortisone Drugs 0.000 description 7
- 210000000440 neutrophil Anatomy 0.000 description 7
- 230000001717 pathogenic effect Effects 0.000 description 7
- 206010043207 temporal arteritis Diseases 0.000 description 7
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 6
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 6
- 208000011231 Crohn disease Diseases 0.000 description 6
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 6
- 201000004624 Dermatitis Diseases 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 102000007665 Extracellular Signal-Regulated MAP Kinases Human genes 0.000 description 6
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 6
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 6
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 6
- 208000017604 Hodgkin disease Diseases 0.000 description 6
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 6
- 241000725303 Human immunodeficiency virus Species 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 6
- 206010060862 Prostate cancer Diseases 0.000 description 6
- 206010039491 Sarcoma Diseases 0.000 description 6
- 208000021386 Sjogren Syndrome Diseases 0.000 description 6
- 108020004459 Small interfering RNA Proteins 0.000 description 6
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 241000607479 Yersinia pestis Species 0.000 description 6
- 230000003213 activating effect Effects 0.000 description 6
- 230000000259 anti-tumor effect Effects 0.000 description 6
- 206010003246 arthritis Diseases 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 6
- 210000003719 b-lymphocyte Anatomy 0.000 description 6
- 230000016396 cytokine production Effects 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 230000003203 everyday effect Effects 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 208000027866 inflammatory disease Diseases 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 210000004986 primary T-cell Anatomy 0.000 description 6
- 238000003757 reverse transcription PCR Methods 0.000 description 6
- 229960004641 rituximab Drugs 0.000 description 6
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 6
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 210000001685 thyroid gland Anatomy 0.000 description 6
- 238000002255 vaccination Methods 0.000 description 6
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 5
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 5
- 102000055025 Adenosine deaminases Human genes 0.000 description 5
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 5
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 5
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 5
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 5
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 5
- 208000011200 Kawasaki disease Diseases 0.000 description 5
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 5
- 206010027458 Metastases to lung Diseases 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 229930012538 Paclitaxel Natural products 0.000 description 5
- 101710194807 Protective antigen Proteins 0.000 description 5
- 241000725643 Respiratory syncytial virus Species 0.000 description 5
- 208000001106 Takayasu Arteritis Diseases 0.000 description 5
- 206010043376 Tetanus Diseases 0.000 description 5
- 108010067390 Viral Proteins Proteins 0.000 description 5
- 229940100198 alkylating agent Drugs 0.000 description 5
- 239000002168 alkylating agent Substances 0.000 description 5
- 230000006470 autoimmune attack Effects 0.000 description 5
- LWQQLNNNIPYSNX-UROSTWAQSA-N calcipotriol Chemical compound C1([C@H](O)/C=C/[C@@H](C)[C@@H]2[C@]3(CCCC(/[C@@H]3CC2)=C\C=C\2C([C@@H](O)C[C@H](O)C/2)=C)C)CC1 LWQQLNNNIPYSNX-UROSTWAQSA-N 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- CBGUOGMQLZIXBE-XGQKBEPLSA-N clobetasol propionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CBGUOGMQLZIXBE-XGQKBEPLSA-N 0.000 description 5
- 229960004397 cyclophosphamide Drugs 0.000 description 5
- 229930182912 cyclosporin Natural products 0.000 description 5
- 239000000824 cytostatic agent Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 238000000684 flow cytometry Methods 0.000 description 5
- 210000002216 heart Anatomy 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 230000001861 immunosuppressant effect Effects 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 5
- 229960001592 paclitaxel Drugs 0.000 description 5
- 230000026731 phosphorylation Effects 0.000 description 5
- 238000006366 phosphorylation reaction Methods 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000003827 upregulation Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 210000003462 vein Anatomy 0.000 description 5
- 108010077805 Bacterial Proteins Proteins 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 4
- 206010009900 Colitis ulcerative Diseases 0.000 description 4
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 4
- 108010008165 Etanercept Proteins 0.000 description 4
- 208000001382 Experimental Melanoma Diseases 0.000 description 4
- 108091006020 Fc-tagged proteins Proteins 0.000 description 4
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 4
- 208000001204 Hashimoto Disease Diseases 0.000 description 4
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 4
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 4
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 4
- 108010028921 Lipopeptides Proteins 0.000 description 4
- 208000016604 Lyme disease Diseases 0.000 description 4
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 4
- 108091054455 MAP kinase family Proteins 0.000 description 4
- 102000043136 MAP kinase family Human genes 0.000 description 4
- 102000029749 Microtubule Human genes 0.000 description 4
- 108091022875 Microtubule Proteins 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 4
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 4
- 208000005225 Opsoclonus-Myoclonus Syndrome Diseases 0.000 description 4
- 208000037581 Persistent Infection Diseases 0.000 description 4
- 206010035148 Plague Diseases 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 244000236480 Podophyllum peltatum Species 0.000 description 4
- 235000008562 Podophyllum peltatum Nutrition 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 206010036105 Polyneuropathy Diseases 0.000 description 4
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 4
- 101150114644 Rapgef3 gene Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 4
- 229940123237 Taxane Drugs 0.000 description 4
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 4
- 201000006704 Ulcerative Colitis Diseases 0.000 description 4
- 241000700647 Variola virus Species 0.000 description 4
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 4
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 4
- 206010047115 Vasculitis Diseases 0.000 description 4
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 4
- 241000710951 Western equine encephalitis virus Species 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 230000000340 anti-metabolite Effects 0.000 description 4
- 229940100197 antimetabolite Drugs 0.000 description 4
- 239000002256 antimetabolite Substances 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- 208000010668 atopic eczema Diseases 0.000 description 4
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 4
- CIWBQSYVNNPZIQ-XYWKZLDCSA-N betamethasone dipropionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CIWBQSYVNNPZIQ-XYWKZLDCSA-N 0.000 description 4
- 229960001102 betamethasone dipropionate Drugs 0.000 description 4
- 229960004311 betamethasone valerate Drugs 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 210000001185 bone marrow Anatomy 0.000 description 4
- 208000037976 chronic inflammation Diseases 0.000 description 4
- 230000006020 chronic inflammation Effects 0.000 description 4
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 4
- 230000004940 costimulation Effects 0.000 description 4
- 230000001085 cytostatic effect Effects 0.000 description 4
- 229960002806 daclizumab Drugs 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 208000002672 hepatitis B Diseases 0.000 description 4
- 229940022353 herceptin Drugs 0.000 description 4
- 239000012216 imaging agent Substances 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 229940127121 immunoconjugate Drugs 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000004073 interleukin-2 production Effects 0.000 description 4
- 231100000518 lethal Toxicity 0.000 description 4
- 230000001665 lethal effect Effects 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 230000001394 metastastic effect Effects 0.000 description 4
- 206010061289 metastatic neoplasm Diseases 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 210000004688 microtubule Anatomy 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 210000000496 pancreas Anatomy 0.000 description 4
- 210000001539 phagocyte Anatomy 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 208000005987 polymyositis Diseases 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 208000002574 reactive arthritis Diseases 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 4
- 230000000451 tissue damage Effects 0.000 description 4
- 231100000827 tissue damage Toxicity 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 230000009261 transgenic effect Effects 0.000 description 4
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 3
- 208000026872 Addison Disease Diseases 0.000 description 3
- 229940122614 Adenosine receptor agonist Drugs 0.000 description 3
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 3
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 3
- 241000193738 Bacillus anthracis Species 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 description 3
- 206010055113 Breast cancer metastatic Diseases 0.000 description 3
- 102000004631 Calcineurin Human genes 0.000 description 3
- 108010042955 Calcineurin Proteins 0.000 description 3
- 102100039510 Cancer/testis antigen 2 Human genes 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- 240000001829 Catharanthus roseus Species 0.000 description 3
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 3
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 241000283073 Equus caballus Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000710781 Flaviviridae Species 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 3
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 3
- 239000012981 Hank's balanced salt solution Substances 0.000 description 3
- 241000700721 Hepatitis B virus Species 0.000 description 3
- 208000005331 Hepatitis D Diseases 0.000 description 3
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 3
- 101000889345 Homo sapiens Cancer/testis antigen 2 Proteins 0.000 description 3
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 3
- 241000701806 Human papillomavirus Species 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 102000000521 Immunophilins Human genes 0.000 description 3
- 108010016648 Immunophilins Proteins 0.000 description 3
- 102000008070 Interferon-gamma Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 102000015696 Interleukins Human genes 0.000 description 3
- 108010063738 Interleukins Proteins 0.000 description 3
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 241000710778 Pestivirus Species 0.000 description 3
- 108090000553 Phospholipase D Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 206010037742 Rabies Diseases 0.000 description 3
- 208000033464 Reiter syndrome Diseases 0.000 description 3
- 206010039710 Scleroderma Diseases 0.000 description 3
- 241000700584 Simplexvirus Species 0.000 description 3
- 108091008874 T cell receptors Proteins 0.000 description 3
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 3
- 206010042971 T-cell lymphoma Diseases 0.000 description 3
- 210000000447 Th1 cell Anatomy 0.000 description 3
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 208000034784 Tularaemia Diseases 0.000 description 3
- 206010046865 Vaccinia virus infection Diseases 0.000 description 3
- 229940122803 Vinca alkaloid Drugs 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000035508 accumulation Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 208000002552 acute disseminated encephalomyelitis Diseases 0.000 description 3
- 229930013930 alkaloid Natural products 0.000 description 3
- 230000008485 antagonism Effects 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000002456 anti-arthritic effect Effects 0.000 description 3
- 230000003127 anti-melanomic effect Effects 0.000 description 3
- 208000006673 asthma Diseases 0.000 description 3
- 230000006472 autoimmune response Effects 0.000 description 3
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 3
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 3
- 229960002170 azathioprine Drugs 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 229960002882 calcipotriol Drugs 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 3
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 201000001981 dermatomyositis Diseases 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 231100000676 disease causative agent Toxicity 0.000 description 3
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940082789 erbitux Drugs 0.000 description 3
- 229960005420 etoposide Drugs 0.000 description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 3
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 3
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 3
- 229960004675 fusidic acid Drugs 0.000 description 3
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 229940124589 immunosuppressive drug Drugs 0.000 description 3
- 230000006662 intracellular pathway Effects 0.000 description 3
- 238000010212 intracellular staining Methods 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229920006008 lipopolysaccharide Polymers 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 206010025135 lupus erythematosus Diseases 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 208000010658 metastatic prostate carcinoma Diseases 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 208000029974 neurofibrosarcoma Diseases 0.000 description 3
- 239000004031 partial agonist Substances 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 201000006292 polyarteritis nodosa Diseases 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000770 proinflammatory effect Effects 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 3
- LZPZPHGJDAGEJZ-AKAIJSEGSA-N regadenoson Chemical compound C1=C(C(=O)NC)C=NN1C1=NC(N)=C(N=CN2[C@H]3[C@@H]([C@H](O)[C@@H](CO)O3)O)C2=N1 LZPZPHGJDAGEJZ-AKAIJSEGSA-N 0.000 description 3
- 229960003614 regadenoson Drugs 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 208000037803 restenosis Diseases 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229940115586 simulect Drugs 0.000 description 3
- 229960002930 sirolimus Drugs 0.000 description 3
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 3
- 208000017520 skin disease Diseases 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 229960001967 tacrolimus Drugs 0.000 description 3
- 206010043778 thyroiditis Diseases 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 238000011830 transgenic mouse model Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 208000007089 vaccinia Diseases 0.000 description 3
- XMAYWYJOQHXEEK-ZEQKJWHPSA-N (2S,4R)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@H]1O[C@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-ZEQKJWHPSA-N 0.000 description 2
- XSMYYYQVWPZWIZ-IDTAVKCVSA-N (2r,3r,4s,5r)-2-[2-chloro-6-(cyclopentylamino)purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC(Cl)=NC(NC3CCCC3)=C2N=C1 XSMYYYQVWPZWIZ-IDTAVKCVSA-N 0.000 description 2
- VHUVBWVDIFVVBI-SNYZSRNZSA-N (2s)-3-(4-hydroxyphenyl)-2-(octadecylamino)propanoic acid;hydrochloride Chemical compound Cl.CCCCCCCCCCCCCCCCCCN[C@H](C(O)=O)CC1=CC=C(O)C=C1 VHUVBWVDIFVVBI-SNYZSRNZSA-N 0.000 description 2
- 108010091916 2,3-bis(palmitoyloxy)-2-propyl-N-palmitoyl-cysteinyl-seryl-seryl-asparaginyl-alanine Proteins 0.000 description 2
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- OOXNYFKPOPJIOT-UHFFFAOYSA-N 5-(3-bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-amine;dihydrochloride Chemical compound Cl.Cl.C=12C(N)=NC=NC2=NC(C=2C=NC(=CC=2)N2CCOCC2)=CC=1C1=CC=CC(Br)=C1 OOXNYFKPOPJIOT-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- 102100032534 Adenosine kinase Human genes 0.000 description 2
- 108010076278 Adenosine kinase Proteins 0.000 description 2
- 208000032671 Allergic granulomatous angiitis Diseases 0.000 description 2
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 2
- 208000032467 Aplastic anaemia Diseases 0.000 description 2
- 206010003267 Arthritis reactive Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 2
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 2
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 208000023328 Basedow disease Diseases 0.000 description 2
- 208000009137 Behcet syndrome Diseases 0.000 description 2
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 2
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 2
- 208000018084 Bone neoplasm Diseases 0.000 description 2
- 108030001720 Bontoxilysin Proteins 0.000 description 2
- 241001118702 Border disease virus Species 0.000 description 2
- 208000003508 Botulism Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 206010006500 Brucellosis Diseases 0.000 description 2
- 108010059108 CD18 Antigens Proteins 0.000 description 2
- 108010029697 CD40 Ligand Proteins 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 102100032937 CD40 ligand Human genes 0.000 description 2
- 108010084313 CD58 Antigens Proteins 0.000 description 2
- 241000178270 Canarypox virus Species 0.000 description 2
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 206010008631 Cholera Diseases 0.000 description 2
- 208000006344 Churg-Strauss Syndrome Diseases 0.000 description 2
- 241000710777 Classical swine fever virus Species 0.000 description 2
- 208000015943 Coeliac disease Diseases 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 241000272201 Columbiformes Species 0.000 description 2
- 241000606678 Coxiella burnetii Species 0.000 description 2
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 2
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 2
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 2
- 208000006343 Cutaneous Mastocytosis Diseases 0.000 description 2
- 108010068682 Cyclophilins Proteins 0.000 description 2
- 102000001493 Cyclophilins Human genes 0.000 description 2
- 102100030497 Cytochrome c Human genes 0.000 description 2
- 108010075031 Cytochromes c Proteins 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 241000710945 Eastern equine encephalitis virus Species 0.000 description 2
- 201000011001 Ebola Hemorrhagic Fever Diseases 0.000 description 2
- 208000002460 Enteropathy-Associated T-Cell Lymphoma Diseases 0.000 description 2
- 208000018428 Eosinophilic granulomatosis with polyangiitis Diseases 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- 241000710831 Flavivirus Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 description 2
- 102100040578 G antigen 7 Human genes 0.000 description 2
- 108091006027 G proteins Proteins 0.000 description 2
- 230000010190 G1 phase Effects 0.000 description 2
- 102000030782 GTP binding Human genes 0.000 description 2
- 108091000058 GTP-Binding Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 208000015023 Graves' disease Diseases 0.000 description 2
- 241000711549 Hepacivirus C Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 2
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 2
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 2
- 101000893968 Homo sapiens G antigen 7 Proteins 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 2
- 101001057156 Homo sapiens Melanoma-associated antigen C2 Proteins 0.000 description 2
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 2
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 2
- 235000017309 Hypericum perforatum Nutrition 0.000 description 2
- 244000141009 Hypericum perforatum Species 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 2
- 102000004556 Interleukin-15 Receptors Human genes 0.000 description 2
- 108010017535 Interleukin-15 Receptors Proteins 0.000 description 2
- 102000004554 Interleukin-17 Receptors Human genes 0.000 description 2
- 108010017525 Interleukin-17 Receptors Proteins 0.000 description 2
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 2
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 2
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 2
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 2
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 2
- UTLPKQYUXOEJIL-UHFFFAOYSA-N LSM-3822 Chemical compound N1=CC=2C3=NC(C=4OC=CC=4)=NN3C(N)=NC=2N1CCC1=CC=CC=C1 UTLPKQYUXOEJIL-UHFFFAOYSA-N 0.000 description 2
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 2
- 206010073099 Lobular breast carcinoma in situ Diseases 0.000 description 2
- 206010049459 Lymphangioleiomyomatosis Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 2
- 102100022430 Melanocyte protein PMEL Human genes 0.000 description 2
- 102100027252 Melanoma-associated antigen C2 Human genes 0.000 description 2
- 102100034256 Mucin-1 Human genes 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 241000186359 Mycobacterium Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 208000003435 Optic Neuritis Diseases 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 241000721454 Pemphigus Species 0.000 description 2
- 208000031845 Pernicious anaemia Diseases 0.000 description 2
- 201000005702 Pertussis Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102000011420 Phospholipase D Human genes 0.000 description 2
- 244000221860 Podophyllum emodi Species 0.000 description 2
- 235000010169 Podophyllum emodi Nutrition 0.000 description 2
- 208000000474 Poliomyelitis Diseases 0.000 description 2
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 2
- 108090000315 Protein Kinase C Proteins 0.000 description 2
- 102000012751 Pyruvate Dehydrogenase Complex Human genes 0.000 description 2
- 108010090051 Pyruvate Dehydrogenase Complex Proteins 0.000 description 2
- 206010037688 Q fever Diseases 0.000 description 2
- 241000219061 Rheum Species 0.000 description 2
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 101800001271 Surface protein Proteins 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 241001116498 Taxus baccata Species 0.000 description 2
- 241000202349 Taxus brevifolia Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 206010043540 Thromboangiitis obliterans Diseases 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 101710183280 Topoisomerase Proteins 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 2
- 108090000704 Tubulin Proteins 0.000 description 2
- 102000004243 Tubulin Human genes 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 102000003425 Tyrosinase Human genes 0.000 description 2
- 108060008724 Tyrosinase Proteins 0.000 description 2
- 108010046334 Urease Proteins 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 244000126014 Valeriana officinalis Species 0.000 description 2
- 235000013832 Valeriana officinalis Nutrition 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 208000028227 Viral hemorrhagic fever Diseases 0.000 description 2
- OGQICQVSFDPSEI-UHFFFAOYSA-N Zorac Chemical compound N1=CC(C(=O)OCC)=CC=C1C#CC1=CC=C(SCCC2(C)C)C2=C1 OGQICQVSFDPSEI-UHFFFAOYSA-N 0.000 description 2
- FBRAWBYQGRLCEK-RJFLZJKCSA-N [(8s,9s,10s,13s,14r,16r,17r)-17-(2-chloroacetyl)-9-fluoro-10,13,16-trimethyl-3,11-dioxo-7,8,12,14,15,16-hexahydro-6h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@]2(F)[C@@H]1[C@H]1C[C@@H](C)[C@@](C(=O)CCl)(OC(=O)CCC)[C@@]1(C)CC2=O FBRAWBYQGRLCEK-RJFLZJKCSA-N 0.000 description 2
- FBRAWBYQGRLCEK-UHFFFAOYSA-N [17-(2-chloroacetyl)-9-fluoro-10,13,16-trimethyl-3,11-dioxo-7,8,12,14,15,16-hexahydro-6h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound C1CC2=CC(=O)C=CC2(C)C2(F)C1C1CC(C)C(C(=O)CCl)(OC(=O)CCC)C1(C)CC2=O FBRAWBYQGRLCEK-UHFFFAOYSA-N 0.000 description 2
- 230000009102 absorption Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229960005339 acitretin Drugs 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 239000002465 adenosine A2a receptor agonist Substances 0.000 description 2
- DJHCCTTVDRAMEH-DUUJBDRPSA-N alclometasone dipropionate Chemical compound C([C@H]1Cl)C2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O DJHCCTTVDRAMEH-DUUJBDRPSA-N 0.000 description 2
- IHUNBGSDBOWDMA-AQFIFDHZSA-N all-trans-acitretin Chemical compound COC1=CC(C)=C(\C=C\C(\C)=C\C=C\C(\C)=C\C(O)=O)C(C)=C1C IHUNBGSDBOWDMA-AQFIFDHZSA-N 0.000 description 2
- 239000013566 allergen Substances 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- 206010002449 angioimmunoblastic T-cell lymphoma Diseases 0.000 description 2
- 229940045799 anthracyclines and related substance Drugs 0.000 description 2
- NUZWLKWWNNJHPT-UHFFFAOYSA-N anthralin Chemical compound C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O NUZWLKWWNNJHPT-UHFFFAOYSA-N 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000397 bevacizumab Drugs 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003124 biologic agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 229940023860 canarypox virus HIV vaccine Drugs 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 229960005395 cetuximab Drugs 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 229960004630 chlorambucil Drugs 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- 229960004703 clobetasol propionate Drugs 0.000 description 2
- 229960005465 clobetasone butyrate Drugs 0.000 description 2
- 201000011050 comedo carcinoma Diseases 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- BMCQMVFGOVHVNG-TUFAYURCSA-N cortisol 17-butyrate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CO)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O BMCQMVFGOVHVNG-TUFAYURCSA-N 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940075049 dovonex Drugs 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 229960001776 edrecolomab Drugs 0.000 description 2
- 210000003162 effector t lymphocyte Anatomy 0.000 description 2
- 229940073621 enbrel Drugs 0.000 description 2
- 206010014599 encephalitis Diseases 0.000 description 2
- 229960000403 etanercept Drugs 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- VCCRNZQBSJXYJD-UHFFFAOYSA-N galangin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=CC=C1 VCCRNZQBSJXYJD-UHFFFAOYSA-N 0.000 description 2
- 201000007116 gestational trophoblastic neoplasm Diseases 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- 208000024908 graft versus host disease Diseases 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 208000029570 hepatitis D virus infection Diseases 0.000 description 2
- 230000005745 host immune response Effects 0.000 description 2
- 229940048921 humira Drugs 0.000 description 2
- 230000028996 humoral immune response Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229960001067 hydrocortisone acetate Drugs 0.000 description 2
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 230000008102 immune modulation Effects 0.000 description 2
- 230000008629 immune suppression Effects 0.000 description 2
- 230000006058 immune tolerance Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 230000001024 immunotherapeutic effect Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006749 inflammatory damage Effects 0.000 description 2
- 229960000598 infliximab Drugs 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 101150046348 inlB gene Proteins 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 2
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 2
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 231100000636 lethal dose Toxicity 0.000 description 2
- 206010024627 liposarcoma Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 2
- 230000000527 lymphocytic effect Effects 0.000 description 2
- 208000003747 lymphoid leukemia Diseases 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 239000003120 macrolide antibiotic agent Substances 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 201000009020 malignant peripheral nerve sheath tumor Diseases 0.000 description 2
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 2
- 208000021937 marginal zone lymphoma Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 2
- 206010028417 myasthenia gravis Diseases 0.000 description 2
- 208000025113 myeloid leukemia Diseases 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 229940005483 opioid analgesics Drugs 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 201000010198 papillary carcinoma Diseases 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- KASDHRXLYQOAKZ-XDSKOBMDSA-N pimecrolimus Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C/C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@H](Cl)[C@H](OC)C1 KASDHRXLYQOAKZ-XDSKOBMDSA-N 0.000 description 2
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 2
- 230000007824 polyneuropathy Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 230000001185 psoriatic effect Effects 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 229940116176 remicade Drugs 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 206010042863 synovial sarcoma Diseases 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- 229960001278 teniposide Drugs 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 229960005267 tositumomab Drugs 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 229960000575 trastuzumab Drugs 0.000 description 2
- 229910052722 tritium Inorganic materials 0.000 description 2
- 235000016788 valerian Nutrition 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- 230000004393 visual impairment Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NWJQLQGQZSIBAF-MSLXHMNKSA-N (1R,9S,12S,13R,14S,17R,18Z,21S,23S,24R,25S,27R)-1,14-dihydroxy-12-[(E)-1-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-17-prop-2-enyl-11,28-dioxa-4-azatricyclo[22.3.1.04,9]octacos-18-ene-2,3,10,16-tetrone hydrate Chemical compound O.C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)\C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 NWJQLQGQZSIBAF-MSLXHMNKSA-N 0.000 description 1
- CNXNMLQATFFYLX-ICTDYHGOSA-N (1r,3s,5z)-5-[(2e)-2-[(1r,3as,7ar)-1-[(e,2r,5s)-5-cyclopropyl-5-hydroxypent-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1h-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol;[2-[(8s,9r,10s,11s,13s,14s,16s,17r)-9-fluoro-11-hydroxy-10,13,16-trime Chemical compound C1([C@H](O)/C=C/[C@@H](C)[C@@H]2[C@]3(CCCC(/[C@@H]3CC2)=C\C=C\2C([C@@H](O)C[C@H](O)C/2)=C)C)CC1.C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CNXNMLQATFFYLX-ICTDYHGOSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OEDPHAKKZGDBEV-GFPBKZJXSA-N (2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2r)-3-[2,3-di(hexadecanoyloxy)propylsulfanyl]-2-(hexadecanoylamino)propanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]hexanoyl]amino]hexanoyl]amino]hexanoic acid Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)CCCCCCCCCCCCCCC)CSCC(COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC OEDPHAKKZGDBEV-GFPBKZJXSA-N 0.000 description 1
- SSOORFWOBGFTHL-OTEJMHTDSA-N (4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-4-carbamimidamido-1-carboxybutyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-5-oxopentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SSOORFWOBGFTHL-OTEJMHTDSA-N 0.000 description 1
- GMRQFYUYWCNGIN-ZVUFCXRFSA-N 1,25-dihydroxy vitamin D3 Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=CC=C1C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-ZVUFCXRFSA-N 0.000 description 1
- WEYNBWVKOYCCQT-UHFFFAOYSA-N 1-(3-chloro-4-methylphenyl)-3-{2-[({5-[(dimethylamino)methyl]-2-furyl}methyl)thio]ethyl}urea Chemical compound O1C(CN(C)C)=CC=C1CSCCNC(=O)NC1=CC=C(C)C(Cl)=C1 WEYNBWVKOYCCQT-UHFFFAOYSA-N 0.000 description 1
- MFXYQIHPQYSOHM-WPUDDCNKSA-N 1-[(2-chlorophenyl)-diphenylmethyl]imidazole;(8s,9s,10r,11s,13s,14s,17r)-11,17-dihydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-2,6,7,8,9,11,12,14,15,16-decahydro-1h-cyclopenta[a]phenanthren-3-one Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1.O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFXYQIHPQYSOHM-WPUDDCNKSA-N 0.000 description 1
- MCCACAIVAXEFAL-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]imidazole;nitric acid Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 MCCACAIVAXEFAL-UHFFFAOYSA-N 0.000 description 1
- XMAYWYJOQHXEEK-UHFFFAOYSA-N 1-acetyl-4-(4-{[2-(2,4-dichlorophenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)piperazine Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OCC1OC(CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-UHFFFAOYSA-N 0.000 description 1
- BBYWOYAFBUOUFP-JOCHJYFZSA-N 1-stearoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(=O)OCCN BBYWOYAFBUOUFP-JOCHJYFZSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 1
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical class O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- SODWJACROGQSMM-UHFFFAOYSA-N 5,6,7,8-tetrahydronaphthalen-1-amine Chemical compound C1CCCC2=C1C=CC=C2N SODWJACROGQSMM-UHFFFAOYSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- MAFGBWPMBVXVNI-PVHZEMNUSA-N 5,7-dichloro-2-methylquinolin-8-ol;[(8s,9s,10r,11s,13s,14s,17r)-11-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound ClC1=CC(Cl)=C(O)C2=NC(C)=CC=C21.C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CO)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O MAFGBWPMBVXVNI-PVHZEMNUSA-N 0.000 description 1
- GGMXWHRZJSEEMV-UBYGFFDOSA-N 5-chloro-7-iodoquinolin-8-ol;[(8s,10s,11s,13s,14s,16s,17r)-9-fluoro-11-hydroxy-17-(2-hydroxyacetyl)-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl] pentanoate Chemical compound C1=CN=C2C(O)=C(I)C=C(Cl)C2=C1.C1CC2=CC(=O)C=C[C@]2(C)C2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(OC(=O)CCCC)[C@@]1(C)C[C@@H]2O GGMXWHRZJSEEMV-UBYGFFDOSA-N 0.000 description 1
- 101710166488 6 kDa early secretory antigenic target Proteins 0.000 description 1
- PFWLFWPASULGAN-UHFFFAOYSA-N 7-Methylxanthine Natural products N1C(=O)NC(=O)C2=C1N=CN2C PFWLFWPASULGAN-UHFFFAOYSA-N 0.000 description 1
- RTAPDZBZLSXHQQ-UHFFFAOYSA-N 8-methyl-3,7-dihydropurine-2,6-dione Chemical class N1C(=O)NC(=O)C2=C1N=C(C)N2 RTAPDZBZLSXHQQ-UHFFFAOYSA-N 0.000 description 1
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical class O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102100021305 Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Human genes 0.000 description 1
- 101710137115 Adenylyl cyclase-associated protein 1 Proteins 0.000 description 1
- 208000006468 Adrenal Cortex Neoplasms Diseases 0.000 description 1
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 1
- 208000008190 Agammaglobulinemia Diseases 0.000 description 1
- 206010001767 Alopecia universalis Diseases 0.000 description 1
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 1
- 208000037540 Alveolar soft tissue sarcoma Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000004881 Amebiasis Diseases 0.000 description 1
- 206010001935 American trypanosomiasis Diseases 0.000 description 1
- 206010001980 Amoebiasis Diseases 0.000 description 1
- 102000052587 Anaphase-Promoting Complex-Cyclosome Apc3 Subunit Human genes 0.000 description 1
- 108700004606 Anaphase-Promoting Complex-Cyclosome Apc3 Subunit Proteins 0.000 description 1
- 241001465677 Ancylostomatoidea Species 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 108090000668 Annexin A2 Proteins 0.000 description 1
- 102000004149 Annexin A2 Human genes 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 241000712892 Arenaviridae Species 0.000 description 1
- 102100024003 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 Human genes 0.000 description 1
- AILDTIZEPVHXBF-UHFFFAOYSA-N Argentine Natural products C1C(C2)C3=CC=CC(=O)N3CC1CN2C(=O)N1CC(C=2N(C(=O)C=CC=2)C2)CC2C1 AILDTIZEPVHXBF-UHFFFAOYSA-N 0.000 description 1
- 201000009695 Argentine hemorrhagic fever Diseases 0.000 description 1
- 206010053555 Arthritis bacterial Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 206010003840 Autonomic nervous system imbalance Diseases 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000028564 B-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 108010045634 B7 Antigens Proteins 0.000 description 1
- 102000005738 B7 Antigens Human genes 0.000 description 1
- 208000004429 Bacillary Dysentery Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 208000027496 Behcet disease Diseases 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 241000702628 Birnaviridae Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 241000589968 Borrelia Species 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- CIUUIPMOFZIWIZ-UHFFFAOYSA-N Bropirimine Chemical compound NC1=NC(O)=C(Br)C(C=2C=CC=CC=2)=N1 CIUUIPMOFZIWIZ-UHFFFAOYSA-N 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- 241000589567 Brucella abortus Species 0.000 description 1
- 201000010717 Bruton-type agammaglobulinemia Diseases 0.000 description 1
- 208000033386 Buerger disease Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 1
- 108700012434 CCL3 Proteins 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 108010065524 CD52 Antigen Proteins 0.000 description 1
- 101150108242 CDC27 gene Proteins 0.000 description 1
- 101100005789 Caenorhabditis elegans cdk-4 gene Proteins 0.000 description 1
- 229940122739 Calcineurin inhibitor Drugs 0.000 description 1
- 101710192106 Calcineurin-binding protein cabin-1 Proteins 0.000 description 1
- 102100024123 Calcineurin-binding protein cabin-1 Human genes 0.000 description 1
- 241000714198 Caliciviridae Species 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 108090000538 Caspase-8 Proteins 0.000 description 1
- 208000005024 Castleman disease Diseases 0.000 description 1
- 208000024699 Chagas disease Diseases 0.000 description 1
- 102000000013 Chemokine CCL3 Human genes 0.000 description 1
- 201000006082 Chickenpox Diseases 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 206010008690 Chondrocalcinosis pyrophosphate Diseases 0.000 description 1
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- QCDFBFJGMNKBDO-UHFFFAOYSA-N Clioquinol Chemical compound C1=CN=C2C(O)=C(I)C=C(Cl)C2=C1 QCDFBFJGMNKBDO-UHFFFAOYSA-N 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 244000163122 Curcuma domestica Species 0.000 description 1
- 235000003392 Curcuma domestica Nutrition 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 206010011793 Cystitis haemorrhagic Diseases 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 102100040606 Dermatan-sulfate epimerase Human genes 0.000 description 1
- 101710127030 Dermatan-sulfate epimerase Proteins 0.000 description 1
- 208000008334 Dermatofibrosarcoma Diseases 0.000 description 1
- 206010057070 Dermatofibrosarcoma protuberans Diseases 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 101100216227 Dictyostelium discoideum anapc3 gene Proteins 0.000 description 1
- 208000000655 Distemper Diseases 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 1
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 208000030820 Ebola disease Diseases 0.000 description 1
- 208000001976 Endocrine Gland Neoplasms Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 108010093099 Endoribonucleases Proteins 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 108010055196 EphA2 Receptor Proteins 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 1
- 201000005231 Epithelioid sarcoma Diseases 0.000 description 1
- 206010015278 Erythrodermic psoriasis Diseases 0.000 description 1
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 208000033371 Extranodal NK/T-cell lymphoma, nasal type Diseases 0.000 description 1
- 206010061850 Extranodal marginal zone B-cell lymphoma (MALT type) Diseases 0.000 description 1
- 201000003364 Extraskeletal myxoid chondrosarcoma Diseases 0.000 description 1
- 206010015848 Extraskeletal osteosarcomas Diseases 0.000 description 1
- 241000713800 Feline immunodeficiency virus Species 0.000 description 1
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 description 1
- 108090000382 Fibroblast growth factor 6 Proteins 0.000 description 1
- 102100028075 Fibroblast growth factor 6 Human genes 0.000 description 1
- 208000001640 Fibromyalgia Diseases 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 201000006353 Filariasis Diseases 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 1
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 1
- 208000007212 Foot-and-Mouth Disease Diseases 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 208000000666 Fowlpox Diseases 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 108010058643 Fungal Proteins Proteins 0.000 description 1
- 102100039717 G antigen 1 Human genes 0.000 description 1
- 102100039699 G antigen 4 Human genes 0.000 description 1
- 102100039698 G antigen 5 Human genes 0.000 description 1
- 101710092267 G antigen 5 Proteins 0.000 description 1
- 102100039713 G antigen 6 Human genes 0.000 description 1
- 101710092269 G antigen 6 Proteins 0.000 description 1
- 241000531123 GB virus C Species 0.000 description 1
- 101710113436 GTPase KRas Proteins 0.000 description 1
- 101710177291 Gag polyprotein Proteins 0.000 description 1
- 102000009338 Gastric Mucins Human genes 0.000 description 1
- 108010009066 Gastric Mucins Proteins 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108091006101 Gi proteins Proteins 0.000 description 1
- 102000034354 Gi proteins Human genes 0.000 description 1
- 241000224466 Giardia Species 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 206010018370 Glomerulonephritis membranoproliferative Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010018498 Goitre Diseases 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- 206010018612 Gonorrhoea Diseases 0.000 description 1
- 208000024869 Goodpasture syndrome Diseases 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 102100021186 Granulysin Human genes 0.000 description 1
- 108091006065 Gs proteins Proteins 0.000 description 1
- 102000016285 Guanine Nucleotide Exchange Factors Human genes 0.000 description 1
- 108010067218 Guanine Nucleotide Exchange Factors Proteins 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 1
- 108010075704 HLA-A Antigens Proteins 0.000 description 1
- 102000012153 HLA-B27 Antigen Human genes 0.000 description 1
- 108010061486 HLA-B27 Antigen Proteins 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 208000006050 Hemangiopericytoma Diseases 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 201000004331 Henoch-Schoenlein purpura Diseases 0.000 description 1
- 206010019617 Henoch-Schonlein purpura Diseases 0.000 description 1
- 241000711557 Hepacivirus Species 0.000 description 1
- 206010019695 Hepatic neoplasm Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000724675 Hepatitis E virus Species 0.000 description 1
- 208000037262 Hepatitis delta Diseases 0.000 description 1
- 241000709721 Hepatovirus A Species 0.000 description 1
- 102100028721 Hermansky-Pudlak syndrome 5 protein Human genes 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 208000017605 Hodgkin disease nodular sclerosis Diseases 0.000 description 1
- 101001042227 Homo sapiens Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Proteins 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101100165850 Homo sapiens CA9 gene Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000954709 Homo sapiens Doublecortin domain-containing protein 2 Proteins 0.000 description 1
- 101000886137 Homo sapiens G antigen 1 Proteins 0.000 description 1
- 101000886678 Homo sapiens G antigen 2D Proteins 0.000 description 1
- 101000886136 Homo sapiens G antigen 4 Proteins 0.000 description 1
- 101001040751 Homo sapiens Granulysin Proteins 0.000 description 1
- 101000985516 Homo sapiens Hermansky-Pudlak syndrome 5 protein Proteins 0.000 description 1
- 101000614481 Homo sapiens Kidney-associated antigen 1 Proteins 0.000 description 1
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 description 1
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 1
- 101001134060 Homo sapiens Melanocyte-stimulating hormone receptor Proteins 0.000 description 1
- 101001036689 Homo sapiens Melanoma-associated antigen B5 Proteins 0.000 description 1
- 101001036675 Homo sapiens Melanoma-associated antigen B6 Proteins 0.000 description 1
- 101001057159 Homo sapiens Melanoma-associated antigen C3 Proteins 0.000 description 1
- 101001133081 Homo sapiens Mucin-2 Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101001114052 Homo sapiens P antigen family member 4 Proteins 0.000 description 1
- 101000874141 Homo sapiens Probable ATP-dependent RNA helicase DDX43 Proteins 0.000 description 1
- 101001109419 Homo sapiens RNA-binding protein NOB1 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101001062222 Homo sapiens Receptor-binding cancer antigen expressed on SiSo cells Proteins 0.000 description 1
- 101000821981 Homo sapiens Sarcoma antigen 1 Proteins 0.000 description 1
- 101000665137 Homo sapiens Scm-like with four MBT domains protein 1 Proteins 0.000 description 1
- 101000648075 Homo sapiens Trafficking protein particle complex subunit 1 Proteins 0.000 description 1
- 206010020460 Human T-cell lymphotropic virus type I infection Diseases 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 206010020850 Hyperthyroidism Diseases 0.000 description 1
- 206010020983 Hypogammaglobulinaemia Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- GRSZFWQUAKGDAV-KQYNXXCUSA-N IMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-N 0.000 description 1
- 101710123134 Ice-binding protein Proteins 0.000 description 1
- 101710082837 Ice-structuring protein Proteins 0.000 description 1
- 208000031814 IgA Vasculitis Diseases 0.000 description 1
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 1
- 206010021263 IgA nephropathy Diseases 0.000 description 1
- 208000004575 Infectious Arthritis Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102000003781 Inhibitor of growth protein 1 Human genes 0.000 description 1
- 108090000191 Inhibitor of growth protein 1 Proteins 0.000 description 1
- 108050002021 Integrator complex subunit 2 Proteins 0.000 description 1
- 108010041012 Integrin alpha4 Proteins 0.000 description 1
- 206010022520 Intention tremor Diseases 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 208000005615 Interstitial Cystitis Diseases 0.000 description 1
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 1
- 206010022998 Irritability Diseases 0.000 description 1
- 208000000209 Isaacs syndrome Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 101150026829 JUNB gene Proteins 0.000 description 1
- 201000008869 Juxtacortical Osteosarcoma Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 206010023927 Lassa fever Diseases 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 206010024264 Lethargy Diseases 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 208000000265 Lobular Carcinoma Diseases 0.000 description 1
- 208000000185 Localized scleroderma Diseases 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000005777 Lupus Nephritis Diseases 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 206010025476 Malabsorption Diseases 0.000 description 1
- 208000004155 Malabsorption Syndromes Diseases 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 206010025566 Malignant haemangiopericytoma Diseases 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 102100034216 Melanocyte-stimulating hormone receptor Human genes 0.000 description 1
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 1
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 1
- 102100039475 Melanoma-associated antigen B5 Human genes 0.000 description 1
- 102100039483 Melanoma-associated antigen B6 Human genes 0.000 description 1
- 102100027248 Melanoma-associated antigen C3 Human genes 0.000 description 1
- 208000004451 Membranoproliferative Glomerulonephritis Diseases 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 102000003735 Mesothelin Human genes 0.000 description 1
- 108090000015 Mesothelin Proteins 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- PQMWYJDJHJQZDE-UHFFFAOYSA-M Methantheline bromide Chemical compound [Br-].C1=CC=C2C(C(=O)OCC[N+](C)(CC)CC)C3=CC=CC=C3OC2=C1 PQMWYJDJHJQZDE-UHFFFAOYSA-M 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102000044589 Mitogen-Activated Protein Kinase 1 Human genes 0.000 description 1
- 102000046795 Mitogen-Activated Protein Kinase 3 Human genes 0.000 description 1
- 108700027649 Mitogen-Activated Protein Kinase 3 Proteins 0.000 description 1
- 108700015928 Mitogen-activated protein kinase 13 Proteins 0.000 description 1
- 241001430197 Mollicutes Species 0.000 description 1
- 206010027982 Morphoea Diseases 0.000 description 1
- 102100034263 Mucin-2 Human genes 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 241000711386 Mumps virus Species 0.000 description 1
- 208000007379 Muscle Hypotonia Diseases 0.000 description 1
- 206010028403 Mutism Diseases 0.000 description 1
- 241000187482 Mycobacterium avium subsp. paratuberculosis Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 231100000678 Mycotoxin Toxicity 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 208000002033 Myoclonus Diseases 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- TWWFAXQOKNBUCR-UHFFFAOYSA-N N-[9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-yl]-2-phenylacetamide Chemical compound N12N=C(C=3OC=CC=3)N=C2C2=CC(Cl)=CC=C2N=C1NC(=O)CC1=CC=CC=C1 TWWFAXQOKNBUCR-UHFFFAOYSA-N 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- JADDQZYHOWSFJD-FLNNQWSLSA-N N-ethyl-5'-carboxamidoadenosine Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 JADDQZYHOWSFJD-FLNNQWSLSA-N 0.000 description 1
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 description 1
- 206010028703 Nail psoriasis Diseases 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 208000003788 Neoplasm Micrometastasis Diseases 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 206010029240 Neuritis Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010072359 Neuromyotonia Diseases 0.000 description 1
- 206010057852 Nicotine dependence Diseases 0.000 description 1
- 206010029461 Nodal marginal zone B-cell lymphomas Diseases 0.000 description 1
- 241000243985 Onchocerca volvulus Species 0.000 description 1
- 102000003840 Opioid Receptors Human genes 0.000 description 1
- 108090000137 Opioid Receptors Proteins 0.000 description 1
- 241000712464 Orthomyxoviridae Species 0.000 description 1
- 108700006640 OspA Proteins 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010033078 Otitis media Diseases 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 102100023240 P antigen family member 4 Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108060006580 PRAME Proteins 0.000 description 1
- 102000036673 PRAME Human genes 0.000 description 1
- 102100034640 PWWP domain-containing DNA repair factor 3A Human genes 0.000 description 1
- 108050007154 PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 1
- 208000027868 Paget disease Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033661 Pancytopenia Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 208000008223 Pemphigoid Gestationis Diseases 0.000 description 1
- 201000011152 Pemphigus Diseases 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 241000150350 Peribunyaviridae Species 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 208000031839 Peripheral nerve sheath tumour malignant Diseases 0.000 description 1
- 208000004571 Pestivirus Infections Diseases 0.000 description 1
- 229940099471 Phosphodiesterase inhibitor Drugs 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102100021768 Phosphoserine aminotransferase Human genes 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 206010036030 Polyarthritis Diseases 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 244000308495 Potentilla anserina Species 0.000 description 1
- 235000016594 Potentilla anserina Nutrition 0.000 description 1
- 208000031951 Primary immunodeficiency Diseases 0.000 description 1
- 208000037276 Primitive Peripheral Neuroectodermal Tumors Diseases 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 102100035724 Probable ATP-dependent RNA helicase DDX43 Human genes 0.000 description 1
- 102100025803 Progesterone receptor Human genes 0.000 description 1
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 229940123573 Protein synthesis inhibitor Drugs 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 102000000033 Purinergic Receptors Human genes 0.000 description 1
- 108010080192 Purinergic Receptors Proteins 0.000 description 1
- 206010037575 Pustular psoriasis Diseases 0.000 description 1
- 101150040459 RAS gene Proteins 0.000 description 1
- 101150076031 RAS1 gene Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 102100022491 RNA-binding protein NOB1 Human genes 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 101150057959 Rapgef4 gene Proteins 0.000 description 1
- 101100328548 Rattus norvegicus C3 gene Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 102100029165 Receptor-binding cancer antigen expressed on SiSo cells Human genes 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 102100023606 Retinoic acid receptor alpha Human genes 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 108050003189 SH2B adapter protein 1 Proteins 0.000 description 1
- 101000999689 Saimiriine herpesvirus 2 (strain 11) Transcriptional regulator ICP22 homolog Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010039438 Salmonella Infections Diseases 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 102100021466 Sarcoma antigen 1 Human genes 0.000 description 1
- 206010039587 Scarlet Fever Diseases 0.000 description 1
- 102100038689 Scm-like with four MBT domains protein 1 Human genes 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 101710189648 Serine/threonine-protein phosphatase Proteins 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 206010040550 Shigella infections Diseases 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000014604 Specific Language disease Diseases 0.000 description 1
- 208000006045 Spondylarthropathies Diseases 0.000 description 1
- 201000002661 Spondylitis Diseases 0.000 description 1
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 description 1
- 101710185775 Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000187391 Streptomyces hygroscopicus Species 0.000 description 1
- 241001647839 Streptomyces tsukubensis Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 208000000389 T-cell leukemia Diseases 0.000 description 1
- 108010032166 TARP Proteins 0.000 description 1
- 108700019889 TEL-AML1 fusion Proteins 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- 102100033082 TNF receptor-associated factor 3 Human genes 0.000 description 1
- 108091008003 TRAIL-RI Proteins 0.000 description 1
- 235000009065 Taxus cuspidata Nutrition 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 206010043561 Thrombocytopenic purpura Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 240000007591 Tilia tomentosa Species 0.000 description 1
- 208000025569 Tobacco Use disease Diseases 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- 241000223996 Toxoplasma Species 0.000 description 1
- 102100025256 Trafficking protein particle complex subunit 1 Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 108010077913 Triamcinolone Acetonide Drug Combination Nystatin Neomycin Sulfate Gramicidin Proteins 0.000 description 1
- 206010044608 Trichiniasis Diseases 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 206010054094 Tumour necrosis Diseases 0.000 description 1
- 102000018594 Tumour necrosis factor Human genes 0.000 description 1
- 108050007852 Tumour necrosis factor Proteins 0.000 description 1
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 description 1
- 208000037386 Typhoid Diseases 0.000 description 1
- 102100027244 U4/U6.U5 tri-snRNP-associated protein 1 Human genes 0.000 description 1
- 101710155955 U4/U6.U5 tri-snRNP-associated protein 1 Proteins 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 206010046752 Urticaria Pigmentosa Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010046980 Varicella Diseases 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 206010047141 Vasodilatation Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 208000003728 Vulvodynia Diseases 0.000 description 1
- 206010069055 Vulvovaginal pain Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 208000016349 X-linked agammaglobulinemia Diseases 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- MRZWGGPHYUTCNW-XEMJQECLSA-N [2-[(8s,10s,11s,13s,14s,16s,17r)-9-fluoro-11-hydroxy-10,13,16-trimethyl-3-oxo-17-propanoyloxy-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl]-2-oxoethyl] propanoate;2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1O.C1CC2=CC(=O)C=C[C@]2(C)C2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O MRZWGGPHYUTCNW-XEMJQECLSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 101150023527 actA gene Proteins 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 229950009084 adecatumumab Drugs 0.000 description 1
- 239000002467 adenosine A2a receptor antagonist Substances 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 201000006966 adult T-cell leukemia Diseases 0.000 description 1
- 229960004229 alclometasone dipropionate Drugs 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940023871 allantoin / coal tar Drugs 0.000 description 1
- 201000009961 allergic asthma Diseases 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000000961 alloantigen Effects 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000002187 allostimulatory effect Effects 0.000 description 1
- 208000032775 alopecia universalis congenita Diseases 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 208000008524 alveolar soft part sarcoma Diseases 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- 230000031016 anaphase Effects 0.000 description 1
- 229960003473 androstanolone Drugs 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 244000037640 animal pathogen Species 0.000 description 1
- 230000002494 anti-cea effect Effects 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 230000000781 anti-lymphocytic effect Effects 0.000 description 1
- 230000000702 anti-platelet effect Effects 0.000 description 1
- 230000002682 anti-psoriatic effect Effects 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 230000003208 anti-thyroid effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 229940045686 antimetabolites antineoplastic purine analogs Drugs 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 239000003972 antineoplastic antibiotic Substances 0.000 description 1
- 229940045688 antineoplastic antimetabolites pyrimidine analogues Drugs 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 229940043671 antithyroid preparations Drugs 0.000 description 1
- 201000007201 aphasia Diseases 0.000 description 1
- 229950003145 apolizumab Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003886 aromatase inhibitor Substances 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229940053670 asmanex Drugs 0.000 description 1
- 229940092117 atgam Drugs 0.000 description 1
- 208000037979 autoimmune inflammatory disease Diseases 0.000 description 1
- 208000006424 autoimmune oophoritis Diseases 0.000 description 1
- 208000036556 autosomal recessive T cell-negative B cell-negative NK cell-negative due to adenosine deaminase deficiency severe combined immunodeficiency Diseases 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 230000007844 axonal damage Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 229960004669 basiliximab Drugs 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940046858 betnovate Drugs 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003131 biological toxin Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229960003008 blinatumomab Drugs 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 201000007327 bone benign neoplasm Diseases 0.000 description 1
- 206010006007 bone sarcoma Diseases 0.000 description 1
- 229940053031 botulinum toxin Drugs 0.000 description 1
- 201000005389 breast carcinoma in situ Diseases 0.000 description 1
- 201000003714 breast lobular carcinoma Diseases 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 229950009494 bropirimine Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 230000003491 cAMP production Effects 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- 229960005084 calcitriol Drugs 0.000 description 1
- GMRQFYUYWCNGIN-NKMMMXOESA-N calcitriol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-NKMMMXOESA-N 0.000 description 1
- 235000020964 calcitriol Nutrition 0.000 description 1
- 239000011612 calcitriol Substances 0.000 description 1
- VANYVCHXDYVKSI-MXWBXKMOSA-L calcium;(6ar,10s,10ar,11s,11ar,12s)-8-carbamoyl-10-(dimethylamino)-4,6a,7,11,12-pentahydroxy-12-methyl-6,9-dioxo-10,10a,11,11a-tetrahydrotetracen-5-olate Chemical compound [Ca+2].C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C([O-])C2=C1O.C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C([O-])C2=C1O VANYVCHXDYVKSI-MXWBXKMOSA-L 0.000 description 1
- 229930195731 calicheamicin Natural products 0.000 description 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 1
- 229940112129 campath Drugs 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- TWFZGCMQGLPBSX-UHFFFAOYSA-N carbendazim Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1 TWFZGCMQGLPBSX-UHFFFAOYSA-N 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 150000001765 catechin Chemical class 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 229940093515 chlorquinaldol / hydrocortisone Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000002849 chondrocalcinosis Diseases 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 208000017580 chronic wasting disease Diseases 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229960005228 clioquinol Drugs 0.000 description 1
- 229940093546 clioquinol / hydrocortisone Drugs 0.000 description 1
- 229940078775 clotrimazole / hydrocortisone Drugs 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- FDJOLVPMNUYSCM-WZHZPDAFSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+3].N#[C-].N([C@@H]([C@]1(C)[N-]\C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C(\C)/C1=N/C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C\C1=N\C([C@H](C1(C)C)CCC(N)=O)=C/1C)[C@@H]2CC(N)=O)=C\1[C@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H](N2C3=CC(C)=C(C)C=C3N=C2)O[C@@H]1CO FDJOLVPMNUYSCM-WZHZPDAFSA-L 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 229940124301 concurrent medication Drugs 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- DNTGGZPQPQTDQF-XBXARRHUSA-N crotamiton Chemical compound C/C=C/C(=O)N(CC)C1=CC=CC=C1C DNTGGZPQPQTDQF-XBXARRHUSA-N 0.000 description 1
- 229940093382 crotamiton / hydrocortisone Drugs 0.000 description 1
- LXWYCLOUQZZDBD-LIYNQYRNSA-N csfv Chemical compound C([C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)[C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 LXWYCLOUQZZDBD-LIYNQYRNSA-N 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 229940018869 cutivate Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 206010061811 demyelinating polyneuropathy Diseases 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 229960001275 dimeticone Drugs 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 229960002311 dithranol Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 206010013663 drug dependence Diseases 0.000 description 1
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 208000019479 dysautonomia Diseases 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 229960003645 econazole nitrate Drugs 0.000 description 1
- 229960000284 efalizumab Drugs 0.000 description 1
- 229940020485 elidel Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012645 endogenous antigen Substances 0.000 description 1
- 231100000284 endotoxic Toxicity 0.000 description 1
- 230000002346 endotoxic effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 208000037902 enteropathy Diseases 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 229950009760 epratuzumab Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 1
- 229960000752 etoposide phosphate Drugs 0.000 description 1
- 229940063164 eurax Drugs 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 201000008815 extraosseous osteosarcoma Diseases 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 1
- 229960004039 finasteride Drugs 0.000 description 1
- 229960000556 fingolimod Drugs 0.000 description 1
- KKGQTZUTZRNORY-UHFFFAOYSA-N fingolimod Chemical compound CCCCCCCCC1=CC=C(CCC(N)(CO)CO)C=C1 KKGQTZUTZRNORY-UHFFFAOYSA-N 0.000 description 1
- 238000009093 first-line therapy Methods 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960000289 fluticasone propionate Drugs 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- CIPSYTVGZURWPT-UHFFFAOYSA-N galangin Natural products OC1=C(Oc2cc(O)c(O)cc2C1=O)c3ccccc3 CIPSYTVGZURWPT-UHFFFAOYSA-N 0.000 description 1
- 210000004475 gamma-delta t lymphocyte Anatomy 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960000578 gemtuzumab Drugs 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 201000003872 goiter Diseases 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 208000001786 gonorrhea Diseases 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- 101150086609 groEL2 gene Proteins 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 206010018797 guttate psoriasis Diseases 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 201000002802 hemorrhagic cystitis Diseases 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 208000002557 hidradenitis Diseases 0.000 description 1
- 201000007162 hidradenitis suppurativa Diseases 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 229940093397 hydrocortisone / miconazole Drugs 0.000 description 1
- 229940093494 hydrocortisone / nystatin Drugs 0.000 description 1
- 229960001524 hydrocortisone butyrate Drugs 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229960003685 imatinib mesylate Drugs 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 208000015446 immunoglobulin a vasculitis Diseases 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 229960001438 immunostimulant agent Drugs 0.000 description 1
- 239000003022 immunostimulating agent Substances 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 201000004933 in situ carcinoma Diseases 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 201000006747 infectious mononucleosis Diseases 0.000 description 1
- 230000003960 inflammatory cascade Effects 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 235000013902 inosinic acid Nutrition 0.000 description 1
- 108010021315 integrin beta7 Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 208000028774 intestinal disease Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 208000012947 ischemia reperfusion injury Diseases 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 229940063199 kenalog Drugs 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 206010023497 kuru Diseases 0.000 description 1
- 229950000518 labetuzumab Drugs 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 229950002950 lintuzumab Drugs 0.000 description 1
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 1
- 230000004130 lipolysis Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 201000011059 lobular neoplasia Diseases 0.000 description 1
- 229940071337 locoid Drugs 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000004904 long-term response Effects 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229940083747 low-ceiling diuretics xanthine derivative Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000000207 lymphocyte subset Anatomy 0.000 description 1
- 208000037652 lymphocytic-histiocytic predominance Hodgkin lymphoma Diseases 0.000 description 1
- 208000019420 lymphoid neoplasm Diseases 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 101710130522 mRNA export factor Proteins 0.000 description 1
- 208000030179 maculopapular cutaneous mastocytosis Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 206010061526 malignant mesenchymoma Diseases 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229950001869 mapatumumab Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 201000011475 meningoencephalitis Diseases 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- BKBBTCORRZMASO-ZOWNYOTGSA-M methotrexate monosodium Chemical compound [Na+].C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C([O-])=O)C=C1 BKBBTCORRZMASO-ZOWNYOTGSA-M 0.000 description 1
- 229960003058 methotrexate sodium Drugs 0.000 description 1
- FLEVIENZILQUKB-DMJMAAGCSA-N methyl 4-[3-[6-amino-9-[(2r,3r,4s,5s)-5-(ethylcarbamoyl)-3,4-dihydroxyoxolan-2-yl]purin-2-yl]prop-2-ynyl]cyclohexane-1-carboxylate Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(C#CCC3CCC(CC3)C(=O)OC)=NC(N)=C2N=C1 FLEVIENZILQUKB-DMJMAAGCSA-N 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229950003063 mitumomab Drugs 0.000 description 1
- 229960001664 mometasone Drugs 0.000 description 1
- QLIIKPVHVRXHRI-CXSFZGCWSA-N mometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O QLIIKPVHVRXHRI-CXSFZGCWSA-N 0.000 description 1
- WOFMFGQZHJDGCX-ZULDAHANSA-N mometasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(Cl)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)CCl)C(=O)C1=CC=CO1 WOFMFGQZHJDGCX-ZULDAHANSA-N 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 239000002636 mycotoxin Substances 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 201000003631 narcolepsy Diseases 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000007302 negative regulation of cytokine production Effects 0.000 description 1
- 229940063121 neoral Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 210000000715 neuromuscular junction Anatomy 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940064438 nizoral Drugs 0.000 description 1
- 210000000929 nociceptor Anatomy 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- 229940055998 nystatin / oxytetracycline Drugs 0.000 description 1
- 229940115973 nystatin / triamcinolone Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 208000028780 ocular motility disease Diseases 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 208000002042 onchocerciasis Diseases 0.000 description 1
- 108091008819 oncoproteins Proteins 0.000 description 1
- 102000027450 oncoproteins Human genes 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 229950007283 oregovomab Drugs 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229940045795 other cytotoxic antibiotic in ATC Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000001354 painful effect Effects 0.000 description 1
- 201000002530 pancreatic endocrine carcinoma Diseases 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 201000001976 pemphigus vulgaris Diseases 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 208000025858 pestivirus infectious disease Diseases 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 239000002571 phosphodiesterase inhibitor Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229960005330 pimecrolimus Drugs 0.000 description 1
- SUYJZKRQHBQNCA-UHFFFAOYSA-N pinobanksin Natural products O1C2=CC(O)=CC(O)=C2C(=O)C(O)C1C1=CC=CC=C1 SUYJZKRQHBQNCA-UHFFFAOYSA-N 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 208000030428 polyarticular arthritis Diseases 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 208000019629 polyneuritis Diseases 0.000 description 1
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 description 1
- 208000000813 polyradiculoneuropathy Diseases 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 230000018656 positive regulation of gluconeogenesis Effects 0.000 description 1
- 230000002064 post-exposure prophylaxis Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 208000018290 primary dysautonomia Diseases 0.000 description 1
- 208000028529 primary immunodeficiency disease Diseases 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 108090000468 progesterone receptors Proteins 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000000007 protein synthesis inhibitor Substances 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 229940112971 protopic Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 108010014186 ras Proteins Proteins 0.000 description 1
- 102000016914 ras Proteins Human genes 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000025078 regulation of biosynthetic process Effects 0.000 description 1
- 230000025160 regulation of secretion Effects 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 108091008726 retinoic acid receptors α Proteins 0.000 description 1
- 239000013037 reversible inhibitor Substances 0.000 description 1
- HJORMJIFDVBMOB-UHFFFAOYSA-N rolipram Chemical compound COC1=CC=C(C2CC(=O)NC2)C=C1OC1CCCC1 HJORMJIFDVBMOB-UHFFFAOYSA-N 0.000 description 1
- 229950005741 rolipram Drugs 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000003131 sacroiliac joint Anatomy 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 206010039447 salmonellosis Diseases 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 201000004409 schistosomiasis Diseases 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 208000008864 scrapie Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 201000001223 septic arthritis Diseases 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 206010040400 serum sickness Diseases 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 201000005113 shigellosis Diseases 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 101150082315 spas-1 gene Proteins 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 201000005671 spondyloarthropathy Diseases 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229940036185 synagis Drugs 0.000 description 1
- 210000005222 synovial tissue Anatomy 0.000 description 1
- 229960001569 tacrolimus monohydrate Drugs 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 229960000565 tazarotene Drugs 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 241001147422 tick-borne encephalitis virus group Species 0.000 description 1
- 230000003868 tissue accumulation Effects 0.000 description 1
- 230000024664 tolerance induction Effects 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 208000037956 transmissible mink encephalopathy Diseases 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 229960002117 triamcinolone acetonide Drugs 0.000 description 1
- 208000003982 trichinellosis Diseases 0.000 description 1
- 201000007588 trichinosis Diseases 0.000 description 1
- LZAJKCZTKKKZNT-PMNGPLLRSA-N trichothecene Chemical compound C12([C@@]3(CC[C@H]2OC2C=C(CCC23C)C)C)CO1 LZAJKCZTKKKZNT-PMNGPLLRSA-N 0.000 description 1
- 229930013292 trichothecene Natural products 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical class OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 201000007423 tubular adenocarcinoma Diseases 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 235000013976 turmeric Nutrition 0.000 description 1
- 201000008297 typhoid fever Diseases 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 101150061086 ureB gene Proteins 0.000 description 1
- 229940045136 urea Drugs 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 239000002435 venom Substances 0.000 description 1
- 210000001048 venom Anatomy 0.000 description 1
- 231100000611 venom Toxicity 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000000304 virulence factor Substances 0.000 description 1
- 230000007923 virulence factor Effects 0.000 description 1
- 229950004393 visilizumab Drugs 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/53—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
Definitions
- This application relates to uses of A 2a adenosine receptor agonists and antagonists to modulate T-cell mediated tolerance to antigenic stimuli.
- a 2a receptor antagonists provide long term enhancement of immune responses by reducing T-cell mediated tolerance to antigenic stimuli, enhancing the induction of memory T cells and enhancing the efficacy of passive antibody administration for the treatment of cancer and infectious diseases while
- a 2a receptor agonists provide long term reduction of immune responses by enhancing T-cell mediated tolerance to antigenic stimuli, in particular to reduce use of immunosuppressive agents in certain conditions.
- the application provides methods of treatment and prevention of inflammatory responses based on the long term effects of the compounds on T cell responses.
- Immune modulation is a critical aspect of the treatment of a number of diseases and disorders.
- T cells in particular play a vital role in fighting infections and have the capability to recognize and destroy cancer cells.
- Enhancing T cell mediated responses is a key component to enhancing responses to therapeutic agents.
- it is critical in immune modulation that any enhancement of an immune response is balanced against the need to prevent autoimmunity as well as chronic inflammation.
- Chronic inflammation and self-recognition by T cells is a major cause for the pathogenesis of systemic disorders such as rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus.
- long term immunosuppression is required in preventing rejection of transplanted organs or grafts.
- T cell tolerance The mechanisms that prevent T-cell mediated autoimmune reactions are collectively known as T cell “tolerance”. Tolerance can occur by removing antigen specific T cells from the population, which occurs both in the thymus and the periphery. In addition, tolerance can be maintained by ‘turning off’ certain antigen specific T cells or rendering them anergic. When T cells recognize an antigen under conditions that promote anergy, these same cells later fail to respond to antigen upon rechallenge even under normally activating conditions. Anergy is induced when T cell receptor engagement (Signal 1) occurs in the absence of co-stimulation (Signal 2). A major set of co-regulatory molecules is in the B7-CD28 family.
- regulatory T cells play an important role in maintaining tolerance. Regulatory T cells suppress auto-reactive T cells. Thus, as the level of regulatory T cells decreases, the potential for autoimmunity rises. Interestingly, tumors have been shown to evade immune destruction by impeding T cell activation through inhibition of co-stimulatory factors in the B7-CD28 and TNF families, as well as by attracting regulatory T cells, which inhibit anti-tumor T cell responses (see Wang (2006) Immune Suppression by Tumor Specific CD4 + Regulatory T cells in Cancer. Semin. Cancer. Biol. 16:73-79; Greenwald, et al. (2005) The B7 Family Revisited. Ann. Rev. Immunol.
- autoimmune diseases develop when the body's immune system fails to recognize normal body tissues and attacks and destroys them as if they were foreign rather than attacking an outside organism. There are nearly 150 autoimmune disorders with no currently known cures. Although the cause is not fully understood, pioneering work by Rose, Witebsky, Roitt and Doniach provided evidence that autoimmune diseases result at least in part from loss of T cell tolerance. An essential prerequisite for the pathogenesis of autoimmune diseases is indeed the breakage of immunological tolerance, which leads to the immune system mounting an effective and specific immune response against self determinants.
- Adenosine modulates diverse physiological functions including induction of sedation, vasodilatation, suppression of cardiac rate and contractility, inhibition of platelet aggregation, stimulation of gluconeogenesis and inhibition of lipolysis (see, Stiles (1986) Trends Pharmacol. Sci. 7:486; Williams, (1987) Ann. Rev. Pharmacol. Toxicol. 27:315; Rarnkumar et al., (1988) Prog. Drug. Res. 32:195).
- adenosine and some adenosine analogs that non-selectively activate adenosine receptor subtypes decrease neutrophil production of inflammatory oxidative products (Cronstein et al., (1986) Ann. N Y.
- Adenosine binds to P1 purinergic receptors, which are members of the G protein-coupled receptor family.
- P1 purinergic receptors which are members of the G protein-coupled receptor family.
- Four subtypes of adenosine receptors have been cloned: A 1 , A 2a , A 2B , and A 3 .
- the four subtypes have the hallmark structural characteristics that are common to G protein-coupled receptors, including seven putative transmembrane spanning domains, an extracellular NH 2 terminus, cytoplasmic COOH terminus, and a third intracellular loop that is important in binding G proteins.
- the A 2a receptor cDNA which has been cloned from several species including humans, encodes a protein of 45 kDa, larger than the molecular masses of the other subtypes. This is primarily due to the additional 80-90 amino acids of the COOH-terminal tail. The overall amino acid identity is 90% among species, with most of the differences occurring in the second extracellular loop and the long COOH-terminal domain. The COOH-terminal domain has several serine and threonine residues that are potential phosphorylation sites.
- a 2a adenosine receptors stimulate adenylyl cyclase and increase the production of cAMP by coupling to stimulatory G proteins (G s ) or to G olf in certain tissues.
- cAMP-protein kinase A PKA
- MAP kinase mitogen-activated protein kinase
- PKC PKC
- phospholipase D may participate in mediating the effects of A 2a adenosine receptor activation.
- Epac-GEFs Epac1 and Epac2
- Epac1 and Epac2 Epac2
- adenosine has a direct effect on hematopoietic and endothelial cells to reduce inflammation (for a review, see Linden (2001) Molecular approach to adenosine receptors: receptor mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41: 775-787).
- Evidence for an anti-inflammatory role of A 2a adenosine receptor activation comes from a variety of studies both in vivo and in vitro (Cronstein et al. (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 ⁇ generation, respectively.
- Ohta and Sitkovsky have proposed that adenosine, when acting on A 2a receptors, protects tissues from excessive inflammation (Ohta, and Sitkovsky (2001) Role of G-protein-coupled adenosine receptors in down-regulation of inflammation and protection from tissue damage. Nature 414(6866):916-20).
- Ohta et al. showed that, while sub-threshold doses of an inflammatory stimulus caused minimal tissue damage in wild-type mice, such doses were sufficient to induce extensive tissue damage, more prolonged and higher levels of pro-inflammatory cytokines, and death of animals deficient in the A 2a adenosine receptor. Additional observations were made in studies of model systems of inflammation and liver damage as well as during bacterial endotoxin-induced septic shock.
- Ohta, et al. have also proposed that the A 2a adenosine receptor protects tumors from anti-tumor T cells (Ohta, et al. (2006) A 2a adenosine receptor protects tumors from antitumor T cells. PNAS 103(35):13132-7). Again using A 2a receptor deficient mice, the investigators showed that approximately 60% of tumor cells were rejected when compared to no rejection in normal mice. The investigators also showed that treatment using an A 2a receptor antagonist improved inhibition of tumor growth, destruction of metastases and prevention of neovascularization by anti-tumor T cells. In all cases, the treatment was continuous during the timeframe, with no suggestion of long term effects.
- PCT Publication No. WO 03/050241 by Sitkovsky and Ohta describes the methods to increase an immune response to an antigen, increasing vaccine efficacy or increasing an immune response to a tumor antigen or immune cell-mediated tumor destruction by administering an agent that inhibits extracellular adenosine or inhibits adenosine receptors.
- Sullivan described the role of endogenous adenosine in blocking potentially destructive inflammatory cascades by binding to A 2a adenosine receptors and decreasing activation of platelets, leukocytes and endothelial cells (Sullivan G W. (2003) Adenosine A 2a receptor agonists as anti-inflammatory agents. Curr Opin Investig Drugs. 4(11):1313-9). Sullivan also reviews potential disease targets for A 2a receptor agonist treatment, including in allergen-induced inflammation, ischemia-reperfusion injury, sepsis and autoimmune diseases.
- Sevigny, et al. investigated the in vitro and in vivo effect of A 2a receptor agonists to attenuate allogenic immune activation (Sevigny C P, et al. (2007 Apr. 1) Activation of adenosine 2a receptors attenuates allograft rejection and alloantigen recognition. J Immunol 178(7):4240-9). The authors state that the results indicated that A 2a receptor agonists attenuate allogenic recognition by action on both T lymphocytes and APCs in vitro and delayed acute rejection in vivo and may represent a new class of compounds for induction therapy in organ transplantation.
- Nemeth, et al. investigated adenosine receptor activation in type I diabetes and suggest that adenosine receptor ligands could be potential candidates for treatment of type I diabetes and could be promising targets in autoimmune disease (Nemeth Z H, et al. (2007) Adenosine receptor activation ameliorates type 1 diabetes. FASEB J. epub).
- a 2a receptors are responsible for induction of long term T cell tolerance. These receptors can induce tolerance both by promoting T cell anergy, under which T cells fail to respond to an antigen upon re-challenge even under normally activating conditions, and by inducing regulatory T cells, which are responsible for maintained tolerance.
- a 2a receptor antagonists can overcome T cell tolerance and thus stimulate long term resistance to certain antigens.
- a 2a receptor antagonists can overcome tumor escape mechanisms including both anergy and regulatory T cell induction caused by tumor cells and cause long-term tumor susceptibility to treatment.
- methods are provided for enhancing an immune response in a host in need thereof.
- the immune response can be enhanced by reducing T cell tolerance, including by increasing IFN- ⁇ release, by decreasing regulatory T cell production or activation, or by increasing antigen-specific memory T cell production in a host.
- the method comprises administering a A 2a receptor antagonist to a host in combination or alternation with an antibody.
- the antibody is a therapeutic antibody.
- a method of enhancing efficacy of passive antibody therapy comprising administering an A 2a receptor antagonist in combination or alternation with one or more passive antibodies.
- This method can enhance the efficacy of antibody therapy for treatment of abnormal cell proliferative disorders such as cancer, or can enhance the efficacy of therapy in the treatment or prevention of infectious diseases.
- the antagonist can be administered in combination or alternation with antibodies such as rituximab, herceptin or erbitux, for example.
- the method comprises administering a first A 2a receptor antagonist substantially in combination with an antigen to a host and subsequently administering a second A 2a receptor antagonist in the absence of the antigen.
- the antigens are typically derived from a pathogenic organism, such as a virus or bacterium.
- the first and second A 2a receptor antagonists can be the same or can be different and can be administered in the same or in separate preparations.
- the first A 2a receptor antagonist can enhance an immune response against the antigen for an extended period of time, such as for at least one day or more, such as for at least one week.
- a 2a receptor antagonist administration enhances the number of antigen specific memory T cells in a host.
- the number of memory T cells is enhanced 2-5 fold over the number in a control host who has not been administered an antagonist.
- the immune response can also be an enhancement of a cytokine release, such as IFN- ⁇ release.
- the enhancement of IFN- ⁇ release is 2-5 fold over the amount of IFN- ⁇ release in a control host who has not been administered an antagonist.
- the immune response is a reduction in regulatory T cells.
- the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- the generation, expansion or stimulation of regulatory T cells is enhanced 2-5 fold over the number in a control host who has not been administered an antagonist.
- a method of enhancing an immune response in a host comprising administering an A 2a receptor antagonist to the host and subsequently administering an antigen to the host in the absence of the antagonist.
- the method comprises administering an A 2a receptor antagonist substantially in combination with a first antigen to the host and subsequently administering a second antigen in the absence of the antagonist.
- the antigen can be any compound that elicits an immune response, and in non-limiting examples is a viral protein, a bacterial protein, or a mammalian protein.
- the antigen can be expressed in a Listeria species, which can be attenuated for entry into non-phagocytic cells.
- a method of treating an infection in a host by enhancing the generation of antigen-specific memory T cells comprising administering an A 2a receptor antagonist to a host carrying an infection for an amount of time and at a concentration sufficient to elicit a memory T cell response, such as a response to the particular antigen, by 2 to 5 fold.
- the antagonist can also enhance the generation of memory T cells by at least two fold over control.
- the antagonist enhances the generation of memory T cells by at least four fold.
- the antagonist increases total release of Interferon- ⁇ in the host.
- the infection can be a chronic infection or an acute infection and can be due to, for example, a virus or a bacteria.
- the infection is a chronic infection such as HIV or HCV.
- a method of enhancing an immune response in a host comprising administering an A 2a receptor antagonist in combination or alternation with a costimulatory molecule to the host.
- the costimulatory molecule enhances CD28 signaling.
- the costimulatory molecule is a fusion protein of a B7 family member.
- the costimulatory molecule is a fusion of a B7-H1 or a B7-DC molecule, or a variant thereof.
- the costimulatory molecule is an Fc-fusion of a B7-H1 or B7-DC molecule, a fragment of a B7-H1 or B7-DC molecule, or a variant thereof.
- the variant can include one or more mutated amino acids when compared to the native protein.
- the costimulatory molecule does not interact with PD-1.
- a method of eliciting an immune response in a host comprising administering to the host an A 2a receptor antagonist in combination with an antigen, wherein the antigen is a commercially available antigen, and wherein the amount of antigen administered is reduced by a factor of five beyond the effective dose to elicit an immune response to the antigen in the absence of A 2a receptor antagonist.
- a kit is provided comprising an A 2a receptor antagonist and a dosage unit, in which the dosage unit allows the separation of a dosage of a commercially available antigen into at least one fifth the provided dosage.
- the commercially available antigen is a vaccine.
- the vaccine dosage is reduced by a factor of 10.
- methods of treating or preventing abnormal cell proliferation in a host comprising administering an A 2a receptor antagonist to a host at risk of or suffering from a disorder of abnormal cell proliferation, such as cancer. These methods can reduce the risk of developing cancer in the host. In other embodiments, the methods reduce the amount of cancer in a host. In yet other embodiments, the methods reduce the metastatic potential of a cancer in a host. The methods can also reduce the size of a cancer in a host.
- administering reduces tolerance of T cells to a cancer.
- the antagonist increases susceptibility of cancer cells to immune rejection.
- the immune response elicited by an A 2a antagonist is a reduction in regulatory T cells.
- the A 2a receptor antagonists inhibit generation, expansion or stimulation of regulatory T cells.
- the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- a method of treating or preventing abnormal cell proliferation in a host comprising administering to a host in need thereof an Aza receptor antagonist in combination or alternation with a mammalian cell based vaccine, which can be a whole mammalian cell such as a tumor cell that is not actively dividing and can be genetically modified to secrete an activation factor for an antigen-presenting cell such as a granulocyte-macrophage colony stimulating factor (GM-CSF).
- the cell based vaccine comprises a dendritic cell or a dendritic cell formulation.
- the A 2a receptor antagonist reduces tolerance of T cells to a cell in the cell based vaccine.
- the antagonist increases susceptibility of tumor cells to immune rejection.
- the immune response is a reduction in regulatory T cells.
- the antagonist enhances generation of memory T cells.
- the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- the changes in T cell responses are specific to the particular antigen.
- a method of treating or preventing abnormal cell proliferation comprising administering an A 2a receptor antagonist to a host in need thereof substantially in the absence of another anti-cancer agent.
- a method of treating or preventing abnormal cell proliferation in a host in need thereof comprising administering a first A 2a receptor antagonist substantially in combination with a first anti-cancer agent to the host and subsequently administering a second A 2a receptor antagonist.
- the second antagonist is administered substantially in the absence of another anti-cancer agent.
- a method of treating or preventing abnormal cell proliferation in a host in need thereof comprising administering an A 2a receptor antagonist substantially in combination with a first anti-cancer agent to the host and subsequently administering a second anti-cancer agent in the absence of the antagonist.
- Alternative embodiments of the present invention relate to the use of A 2a receptor agonists, rather than antagonists.
- Many drugs have been shown to inhibit T cells responses, for example Cyclosporin A.
- Cyclosporin A such agents require continuous administration. That is, when the drug is stopped the T cells can become activated again.
- a 2a receptor agonists can stimulate long term T cell tolerance. As such, a finite treatment of A 2a receptor agonists will lead to tolerance thus abrogating the need for chronic immunosuppression.
- a 2a receptor agonists can reduce the need for continued immunosuppression in preventing or treating autoimmune diseases or disorders, for example in preventing transplant rejection or Graft versus Host Disease.
- a method of inducing immune tolerance in a host in need thereof comprising administering an A 2a receptor agonist to the host, wherein the tolerance is induced for at least one week.
- the administration of the agonist can be in a single administration, or can be in a short term regimen. In one embodiment, the administration is a short term regimen of two weeks or less.
- the tolerance can be specific to an antigen or can be general tolerance of T cells in the host.
- an A 2a agonist in acute response instances, for example in an organ transplantation situation, can be administered at least daily for a period of weeks to months during and after the transplantation.
- the agonist can be administered during a ‘flare up’.
- the agonist is not administered during a ‘flare up’, but is administered when no agent to decrease inflammation is necessary.
- the agonist is administered during a ‘flare up’, but then is additionally administered after inflammation is no longer apparent to increase auto-tolerance.
- the A 2a agonist is administered in combination with an immunosuppressive agent. In some embodiments, the A 2a agonist is administered in combination with an immunosuppressive agent and subsequently, the A 2a agonist is administered in the absence of the immunosuppressive agent.
- the host is in need of immunosuppressive therapy.
- the host is being treated with an immunosuppressive therapy.
- administration of the A 2a receptor agonist reduces the amount of immunosuppressive therapy administered to the host.
- an immunosuppressive agent is not administered to the host receiving the agonist.
- the A 2a receptor agonist is administered to a host who has failed immunosuppressive therapy or refractory thereto.
- the host has an immune response, for example an organ rejection, while being administered immunosuppressive therapy.
- administration of the A 2a agonist reduces immune responses against an antigen.
- the antigen can be administered to the host in combination or alternation with the agonist to cause T cell tolerance to the antigen.
- the host is suffering from or at risk of an autoimmune disease or disorder.
- the host is a recipient of a transplanted tissue or organ.
- the host is at risk of organ rejection.
- the A 2a agonist is administered in combination or alternation with a checkpoint blocker such as B7-H4 or fragments or variants thereof.
- FIG. 1A-1D are graphs showing A 2a receptor signaling during T cell activation mimics Signal 1 alone.
- 1(a) is a graph of IL-2, GM-CSF, TNF- ⁇ , and IFN- ⁇ levels (solid diamonds, hollow squares, hollow circles and crosses, respectively) of A.E7s stimulated with anti-CD3 and anti-CD28 in increasing doses of CGS (denoted on X axis).
- 1(b) is a graph of surface expression of CD25 of A.E7s after activation with anti-CD3 and anti-CD28 in the presence (grey) or absence (black) of 1 ⁇ M CGS. Data are representative of 3 separate experiments.
- 1(c) & (d) are graphs of the cytokine profile of anergic A.E7s (c) or A.E7s stimulated with anti-CD3 and anti-CD28 and 20 nM CGS (d). Data are represented as percentage of A.E7s stimulated with anti-CD3 and anti-CD28, and is the average of 3 separate experiments.
- FIG. 2A-2E are graphs showing A 2a receptor engagement during activation promotes T cell tolerance.
- 2(a) & (b) is graphs of proliferation upon rechallenge of A.E7 T cells following 4 day incubation without or with peptide (panel A or B, respectively) in the absence (open squares) or presence (solid diamonds) of 1 ⁇ M CGS.
- 2(c) is a graph of IFN- ⁇ production upon rechallenge of A.E7 T cells following incubation without or with peptide (left or right side, respectively) in the absence (open bars) or presence (solid bars) of 1 ⁇ M CGS.
- FIG. 3A-3F are graphs showing that A 2a receptor signaling promotes the upregulation of LAG-3 + in vitro.
- FIG. 3( a ) is a graph of the percentage of A 2a receptor Wt or KO T cells that were IFN- ⁇ positive upon rechallenge following incubation with peptide in the absence (solid bars) or presence (open bars) of 1 ⁇ M CGS.
- 3(b) is a graph showing fold increase in LAG-3 expression in cells.
- CD4 + , 6.5 + primary T cells were cultured with irradiated APCs and HA ⁇ 1 ⁇ M CGS for 3 days. mRNA was harvested and assayed for abundance of LAG-3 transcripts. Data are representative of 3 independent experiments.
- 3(c) is a graph of LAG3 upregulation in A.E7 T cells following stimulation with ionomycin or PMA.
- 3(d) is an image of representative Western blots for phosphor-ERK and total ERK (top and bottom respectively).
- Activated CD4 + , 6.5+ primary T cells were stimulated with signals 1 and 2 in the absence or presence of 1 ⁇ M CGS.
- Data are representative of 3 independent experiments.
- 3(e) is an image of representative Western blots for junB, and actin (top and bottom, respectively).
- CD4 + , 6.5+ primary T cells were stimulated with HA and irradiated APCs overnight in the absence or presence of 1 ⁇ M CGS. Data are representative of 3 independent experiments.
- 3(f) is an image of representative EMSA for AP-1.
- CD4 + , 6 . 5 + primary T cells were stimulated with HA and irradiated APCs overnight in the absence or presence of 1 ⁇ M CGS. Data are representative of 3 independent experiments.
- FIG. 4A-4D are graphs showing A 2a receptor stimulation in vivo prevents death by autoimmunity and promotes T cell tolerance.
- FIG. 4( b ) & (c) show graphs of in vitro proliferation (b), and IFN- ⁇ production (c) of T cells harvested from vehicle- or CGS-treated C3HA mice (open and solid bars, respectively). Data are representative of 2 independent experiments, ⁇ 3 mice per group. (*: p>0.05)
- FIG. 5A-5D are graphs showing that A 2a receptor signaling, in vivo, promotes regulatory T cells.
- FIG. 5( a ) shows a graph of LAG-2 expression in clonotypic 6.5 + T cells that were transferred into C3HA mice which were treated with vehicle or CGS (3 days after adoptive transfer), and sorted to >98% purity. LAG-3 expression was determined by RT-PCR.
- 5(b) shows a graph of relative LAG-3 expression of A 2a receptor wild type or null 6.5 + T cells.
- data are representative of 3 independent experiments, 3 mice per group.
- 5(c) shows a survival curve of C3HA mice given wild type or LAG-3 knock out T cells and a 4 day treatment with CGS.
- FIG. 6 is a graph of the number of lung metastases in either control mice injected with TC-1 tumor cells as a model of metastatic breast cancer, or A 2a receptor knockout mice, which were either vaccinated with a single vaccinia tumor vaccine or not.
- C57B6 mice were inoculated with 10 4 TC-1 tumor cells via tail vein. Mice were sacrificed 30+ days later and the lungs were analyzed for the number of lung metastases under a dissection microscope.
- FIG. 7 is a graph of the percent survival between A 2a receptor wild type or null mice that were given 5 ⁇ 10 4 TC-1 cells, a murine cervical cancer cell line. Mice were followed for survival for greater than 10 weeks.
- FIG. 8A-8C shows A 2a receptor engagement during either the induction or the effector phase of the T cell response leads to tolerance.
- A T cells were activated with varying doses of A 2a receptor specific agonist CGS-21680 (CGS), and IL-2 production measured;
- B T cells stimulated with APCs and peptide+/ ⁇ A 2a agonist CGS-21680 (CGS) and specific A 2a receptor antagonist ZM-241385 (ZM; 4-(2-[7-amino-2-(2-fury)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol), T cells were harvested, washed and rechallenged with APCs and peptide in absence of drug;
- C T cells were rendered tolerant, rested then rechallenged in presence or absence of A 2a antagonist.
- FIG. 9 is a graph displaying the percentage of donor T cells after vaccinia infection in either wild type (WT) or A 2a receptor knock-out (KO) mice.
- WT wild type
- KO 2a receptor knock-out mice.
- Non-transgenic B10.D2 mice were vaccinated with 10 6 pfu VacHA.
- 1 ⁇ 10 6 CD4-enriched 6.5 + T cells were transferred into the host mice by tail vein injection.
- Antigen specific memory T cells were determined in the peripheral blood by assaying for Thy 1.1 + (donor) CD4 + T cells.
- FIG. 10 is a graph of the number of IFN- ⁇ -producing donor T cells in either wild type or A 2a receptor null mice derived splenocytes from mice infected with vaccinia infection after rechallenge.
- Non-transgenic B10.D2 mice were vaccinated and given 1 ⁇ 10 6 6.5 + T cells as in FIG. 9 .
- the mice were sacrificed and splenocytes were assayed for IFN- ⁇ production by in vitro stimulation with HA peptide.
- FIG. 11A-11B shows the percentage of donor cells from either wild type or A 2a receptor knock out in mice vaccinated with GVAX.
- A Non-transgenic B10.D2 mice were given a dose of irradiated GM-CSF-secreting cells that produce 300 ng of GM-CSF per 1 ⁇ 10 6 cells per 24 hour time period. Typically, this results in about 0.6-1.0 ⁇ 10 6 GVAX cells per mouse. The mice also received 1 ⁇ 10 6 irradiated HA-expressing A20 lymphoma cells. The following day the mice receive 1 ⁇ 10 6 6.5 + T cells. On Day 8, the mice were sacrificed and splenocytes were analyzed for the percentage of donor T cells.
- B displays the percentage of IFN-g producing, tumor-specific donor T cells T cells from wild type or A 2a receptor knock out mice after GVAX vaccination (as above) when cells were rechallenged in vitro with HA.
- FIG. 12 is a graph of the average size in mm 2 of tumor size over time in wild type (WT) and A 2a receptor null (A 2a receptor KO) mice after treatment with the whole cell GVAX vaccine.
- FIG. 13 is a graph of the percent tumor free survival of wild type and A 2a receptor knock out mice challenged with 1 ⁇ 10 5 EL-4 lymphoma cells over 30 days.
- FIG. 14 is a graph of percent disease free survival over time in wild type or A 2a receptor knock out mice vaccinated with GVAX and challenged with 1 ⁇ 10 6 EL-4 lymphoma cells.
- FIG. 15 shows the percent of tumor free survival over time in wild type or A 2a receptor knock out mice that had been previously challenged with EL-4 lymphoma cells.
- Wt or KO mice were initially inoculated subcutaneously with 1 ⁇ 10 4 EL-4 cells in the left flank on Day ⁇ 30. No tumor developed. On Day 0, the mice received 1 ⁇ 10 6 EL-4 cells in the right flank. The graph follows the development of palpable tumor following the second tumor (1 ⁇ 10 6 ) challenge.
- FIG. 16 is a graph demonstrating enhanced activity of the anti-melanoma antibody TA99 in A 2a receptor null mice.
- Wt and A 2a receptor null mice received 1 million B16 melanoma cells IV on day 0.
- Control mice received not treatment.
- Treated mice received 200 ug IP of TA99 antibody on days 0,2,5. The mice were sacrificed on Day 15 and lung mets were counted.
- FIG. 17 is a graph demonstrating the ability of the Ata receptor antagonist ZM241385 (ZM) to enhance the activity of the anti-melanoma antibody TA99.
- ZM Ata receptor antagonist
- Wt mice received 1 million B16 melanoma cells on Day 0. On day +1 they received either no treatment or 200 ug of TA99 antibody.
- Zm treated mice received 10 mg/kg IP of ZM twice a day beginning on Day 0 and continuing for the remainder of the experiment. The mice were evaluated on Day +15.
- Aza receptors are responsible for induction of long term T cell tolerance. These receptors can induce tolerance both by promoting T cell anergy, under which T cells fail to respond to an antigen upon re-challenge even under normally activating conditions, and by inducing regulatory T cells, which are responsible for maintained tolerance. It has now been found that A 2a receptor antagonists can overcome T cell tolerance and thus stimulate long term responses to certain antigens.
- methods are provided for enhancing an immune response to a specific antigen in a host in need thereof.
- a method of enhancing an immune response to an antigen in a host comprising administering a first A 2a receptor antagonist substantially in combination with an antigen to the host and subsequently administering a second A 2a receptor antagonist in the absence of the antigen.
- the first and second A 2a receptor antagonists are the same. In another embodiment, the first and second A 2a receptor antagonists are different. In one embodiment, the first antagonist and antigen are administered in the same preparation. In another embodiment, the antagonist and antigen are administered concurrently in separate preparations. In another embodiment, the antagonist and antigen are administered within the same day.
- the second A 2a receptor antagonist is administered at least one day after administration of the antigen. In another subembodiment, the second antagonist is administered at least one week after administration of the antigen. In another embodiment, the second antagonist is administered at least one day after administration of the antigen and the method includes further administering the second antagonist at least two times.
- the second antagonist can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times.
- the administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- the first A 2a receptor antagonist enhances an immune response against the antigen.
- the antagonist enhances the number of antigen specific memory T cells in a host.
- the immune response is an enhancement of effector cytokine release. In certain embodiments, this is IFN- ⁇ release. In yet another embodiment, the immune response is a reduction in regulatory T cells.
- the first A 2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the first antagonist stimulates an immune response for at least one week. In yet another embodiment, the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- the antigen is a viral protein. In another embodiment, the antigen is a bacterial protein or a portion thereof. In yet another embodiment, the antigen is a mammalian protein or a portion thereof.
- the antigen is expressed in a Listeria species.
- the Listeria species can be a Listeria monocytogenes . Methods of producing Listeria vaccines, including Listeria species expressing antigens of interest are discussed in U.S. Patent Application Publication Nos. 2004/0228877, 2005/0249748 and 2005/0281783.
- the Listeria species is attenuated for entry into non-phagocytic cells as compared to a wild type Listeria species.
- the Listeria species is one in which the inlB gene has been deleted (i.e., a strain attenuated for entry into non-phagocytic cells, for example, hepatocytes via the c-met receptor) or both the actA gene and the inlB genes have been deleted (i.e., a strain attenuated for both entry into non-phagocytic cells and cell-to-cell spread).
- the inlB gene has been deleted (i.e., a strain attenuated for entry into non-phagocytic cells, for example, hepatocytes via the c-met receptor) or both the actA gene and the inlB genes have been deleted (i.e., a strain attenuated for both entry into non-phagocytic cells and cell-to-cell spread).
- a method of enhancing an immune response in a host comprising administering an A 2a receptor antagonist to the host and subsequently administering an antigen in the absence of the antagonist.
- the antigen is administered at least one day after administration of the antagonist. In another subembodiment, the antigen is administered at least one week after administration of the antagonist. In another embodiment, the antigen is administered at least one day after administration of the antagonist and the method includes further administering the antagonist at least two times.
- the antagonist can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times.
- the administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- the A 2a receptor antagonist enhances an immune response against the antigen.
- the antagonist enhances the number of antigen specific memory T cells in a host.
- the immune response is an enhancement of IFN- ⁇ release.
- the immune response is a reduction in regulatory T cells.
- the A 2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the antagonist stimulates an immune response for at least one week. In yet another embodiment, the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- a method of enhancing an immune response to an antigen in a host comprising administering an A 2a receptor antagonist substantially in combination with a first antigen to the host and subsequently administering a second antigen in the absence of the antagonist.
- the second antigen is administered at least one day after administration of the antagonist. In another subembodiment, the second antigen is administered at least one week after administration of the antagonist. In another embodiment, the second antigen is administered at least one day after administration of the antagonist and the method includes further administering the second antigen at least two times.
- the second antigen can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times.
- the administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- the A 2a receptor antagonist enhances an immune response against the second antigen.
- the antagonist enhances the number of second antigen specific memory T cells in a host.
- the immune response is an enhancement of IFN- ⁇ release.
- the immune response is a reduction in regulatory T cells.
- the A 2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the antagonist stimulates an immune response for at least one week. In yet another embodiment, the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- a method of treating an infection in a host by enhancing the generation of antigen-specific memory T cells comprising administering an A 2a receptor antagonist to a host carrying an infection for an amount of time and at a concentration sufficient to elicit a memory T cell response, such as from 2 to 5 fold over the number in a control host who has not been administered an antagonist.
- the memory T cell number is enhanced by a factor of 2, by a factor of 3, by a factor of 4, by a factor of 5, by a factor of 6, by a factor of 7, by a factor of 8, by a factor of 9, by a factor of 10 or more, either when compared to a control host who has not been administered the antagonist, or in comparison to the memory T cell level that existed in the host prior to administration of the antagonist.
- the memory T cell response is an increase in tolerance of these cells. In some cases, it is a number of cells. In some instances, it is a decrease in cell anergy. In some embodiments, the response is measured by an increase in IFN- ⁇ release.
- the response is measured using flow cytometry based on tetramers of labeled antigen-MHC. In another embodiment, the response is measured using a limiting dilution assay such as an Enzyme-linked immunosorbent spot assay (Elispot). In another embodiment, the response is measured using intracellular staining.
- the infection is a chronic infection. In another subembodiment, the infection is an acute infection. In one embodiment, the infection is due to a virus. In another embodiment, the infection is due to a bacteria. In one embodiment, the infection is a chronic infection such as HIV.
- the antagonist enhances the generation of memory T cells by at least two fold over control. In another embodiment, the antagonist enhances the generation of memory T cells by at least four fold. In one embodiment, the antagonist increases total release of Interferon- ⁇ in the host.
- a method of enhancing an immune response in a host comprising administering an A 2a receptor antagonist in combination or alternation with a costimulatory molecule to the host.
- the costimulatory molecule enhances CD28 signaling.
- the costimulatory molecule is a fusion protein of a B7 family member with a molecule that is not a B7 family member, for example with an Fc molecule.
- the costimulatory molecule is a fusion of a B7-H1 or a B7-DC molecule, or a variant thereof.
- the costimulatory molecule does not interact with PD-1.
- a method of eliciting an immune response in a host comprising administering an A 2a receptor antagonist in combination with an antigen to the host, wherein the antigen is a commercially available antigen, and wherein the amount of antigen administered to elicit a prophylactically or therapeutically effective immune response is reduced by a factor of five beyond the effective dose in the absence of A 2a receptor antagonist.
- a kit is provided comprising an A 2a receptor antagonist, a dosage unit, in which the dosage unit allows the separation of a dosage of a commercially available antigen into at least one fifth the provided dosage.
- the commercially available antigen is a vaccine.
- the vaccine dosage is reduced by at least a factor of 10.
- a factor of 10 is reduced by less than a factor of 10, such as by a factor of 2, by a factor of 3, by a factor of 4, by a factor of 5, by a factor of 6, by a factor of 7, by a factor of 8 or by a factor of 9.
- the host can be a mammal and in particular embodiments is a human.
- the methods can reduce the risk of developing cancer in the host.
- the methods reduce the amount of cancer in a host.
- the methods reduce the metastatic potential of a cancer in a host.
- the methods can also reduce the size of a cancer in a host.
- administering reduces tolerance of T cells to a cancer.
- the antagonist increases susceptibility of cancer cells to immune rejection.
- the immune response elicited by an A 2a antagonist is a reduction in regulatory T cells.
- the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- a method of treating or preventing abnormal cell proliferation in a host comprising administering to a host in need thereof an A 2a receptor antagonist in combination or alternation with a mammalian cell based vaccine.
- the method reduces the risk of developing cancer in the host. In another embodiment, the method reduces the amount of cancer in a host. In yet another embodiment, the method reduces the metastatic potential of a cancer in a host. In yet another embodiment, the method reduces the size of a cancer in a host.
- the mammalian cell based vaccine is a whole mammalian cell.
- the vaccine is a tumor cell that is not actively dividing.
- the tumor cell can be irradiated.
- the cell is genetically modified.
- the cell can be secreting an activation factor for an antigen-presenting cell.
- the cell secretes, for example constitutively secretes, a colony stimulating factor and can specifically secrete a granulocyte-macrophage colony stimulating factor (GM-CSF).
- the cell based vaccine can also be based on a dendritic cell or dendritic cell formulation.
- the cell can be based on cells from the same type of tissue as the tumor.
- the cell is derived from a prostate cancer cell.
- the cell is derived from a breast cancer cell.
- the cell is derived from a lymphoma cell.
- the A 2a receptor antagonist reduces tolerance of T cells to a cell in the cell based vaccine.
- the antagonist increases susceptibility of tumor cells to immune rejection.
- the immune response is a reduction in regulatory T cells.
- the antagonist enhances generation of memory T cells.
- the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- the antagonist and cell based vaccine are administered in combination. In certain of these embodiments, the antagonist and vaccine are administered concurrently in the same preparation. In other embodiments, the antagonist and vaccine are administered concurrently in separate preparations. In other embodiments, the antagonist is administered before administration of the vaccine. In some embodiments, the vaccine is administered at least one hour, at least 8 hours, at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 7 days, at least 8 days, at least 9 days, at least 10 days or more after administration of the antagonist. In certain embodiments, the antagonist and vaccine are administered in multiple rounds. In specific embodiments, the antagonist and vaccine are administered at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 at least 9 or at least 10 times.
- the method further comprises administering a second A 2a receptor antagonist in the absence of the vaccine.
- the second A 2a receptor antagonist is different than the first antagonist.
- the second antagonist is the same as the first antagonist.
- the further administration can occur at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 at least 9 or at least 10 days, or at least 1 week, a least 2 weeks, at least 3 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months or more after administration of the vaccine.
- a method of inhibiting abnormal cell proliferation comprising administering an A 2a receptor antagonist in combination or alternation with a mammalian cell based vaccine and further administering an anti-cancer agent.
- a method of treating or preventing abnormal cell proliferation comprising administering an A 2a receptor antagonist to a host in need thereof substantially in the absence of an anti-cancer agent.
- the A 2a receptor antagonist reduces tolerance of T cells to a cancer.
- the antagonist increases susceptibility of the cancer cells to immune rejection.
- the immune response is a reduction in regulatory T cells.
- the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- the first A 2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the first antagonist stimulates an immune response for at least one week or more.
- a method of treating or preventing abnormal cell proliferation in a host in need thereof comprising administering a first A 2a receptor antagonist substantially to a host in combination with a first anti-cancer agent and subsequently administering a second A 2a receptor antagonist.
- the first and second A 2a receptor antagonists are the same. In another embodiment, the first and second A 2a receptor antagonists are different. In one embodiment, the first antagonist and anti-cancer agent are administered in the same preparation. In another embodiment, the antagonist and anti-cancer agent are administered concurrently in separate preparations. In another embodiment, the antagonist and anti-cancer agent are administered within the same day.
- the second antagonist is administered substantially in the absence of an anti-cancer agent.
- the second A 2a receptor antagonist is administered at least one day after administration of the anti-cancer agent.
- the second antagonist is administered at least one week after administration of the anti-cancer agent.
- the second antagonist is administered at least one day after administration of the anti-cancer agent and the method includes further administering the second antagonist at least two times.
- the second antagonist can be administered at least twice, at least three times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times.
- the administration can be every day, or can be less often, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- the first A 2a receptor antagonist reduces tolerance of T cells to a cancer.
- the antagonist increases susceptibility of the cancer cell to an anti-cancer agent.
- the antagonist increases susceptibility of the cancer cells to immune rejection.
- the first A 2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the first antagonist stimulates an immune response for at least one week. In yet another embodiment, the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- a method of treating or preventing abnormal cell proliferation in a host in need thereof comprising administering an A 2a receptor antagonist to the host substantially in combination with a first anti-cancer agent and subsequently administering a second anti-cancer agent in the absence of the antagonist.
- the first and second anti-cancer agent are the same. In another embodiment, the first and second anti-cancer agent are different. In one embodiment, the antagonist and first anti-cancer agent are administered in the same preparation. In another embodiment, the antagonist and first anti-cancer agent are administered concurrently in separate preparations. In another embodiment, the antagonist and first anti-cancer agent are administered within the same day.
- the second anti-cancer agent is administered at least one day after administration of the antagonist. In another subembodiment, the second anti-cancer agent is administered at least one week after administration of the antagonist. In another embodiment, the second anti-cancer agent is administered at least one day after administration of the antagonist and the method includes further administering the second anti-cancer agent at least two times.
- the second anti-cancer agent can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times.
- the administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- the A 2a receptor antagonist reduces tolerance of T cells to a cancer. In one embodiment, the antagonist increases susceptibility of the cancer cell to the second anti-cancer agent. In another embodiment, the antagonist increases susceptibility of the cancer cells to immune rejection.
- the A 2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the antagonist stimulates an immune response for at least one week. In yet another embodiment, the A 2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- Any molecule that is an antagonist at an A 2a adenosine receptor can be useful in the methods of this invention.
- examples include, but are not limited to, a pharmacological antagonist, a gene therapy agent, a ribozyme, an antisense oligonucleotide, or another catalytic nucleic acid that selectively binds mRNA encoding an adenosine receptor, and agents that reduce total levels of adenosine in a tissue.
- the antagonists are non-selective antagonists. In certain other embodiments, the antagonists are selective antagonists.
- Caffeine (1,7-methylxantine), along with theophylline have been found to antagonize both A1 and A 2a receptors in the brain.
- Flavonoids from a variety of dietary plants, and e.g. soy
- adenosine receptor stimulation when present in the micromolar range, for example galangin.
- Specific antagonists of the A 2a receptor include SCH-58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]-pyrimidine), ZM 241385, MRS1220; theobromin; ADA-PEG (polyethylene glycol-modified ADA that has been used in treatment of patients with ADA SCID (Hershfield, Hum Mutat.
- Partial agonists/antagonists may be present in Hypericum perforatum and Valeriana officinalis .
- selective antagonists are being developed by Adenosine Therapeutics.
- Inhibitors of extracellular adenosine are also generally contemplated for use in the methods of the invention. These include agents or compositions that decreases the activity or level of extracellular adenosine. Examples include, but are not limited to, agents that degrade extracellular adenosine, render extracellular adenosine inactive, and/or decrease or prevent the accumulation or formation of extracellular adenosine.
- Particular examples include, but are not limited to, enzymes such as adenosine deaminase, adenosine kinase, and adenosine kinase enhancers; oxygenation; redox-potential changing agents which diminish the degree of hypoxia-ischemia; and other catalytic agents that selectively bind and decrease or abolish the ability of endogenously formed adenosine to signal through adenosine receptors.
- enzymes such as adenosine deaminase, adenosine kinase, and adenosine kinase enhancers
- oxygenation oxygenation
- redox-potential changing agents which diminish the degree of hypoxia-ischemia
- other catalytic agents that selectively bind and decrease or abolish the ability of endogenously formed adenosine to signal through adenosine receptors.
- the antagonist is an antisense molecule or catalytic nucleic acid molecule (e.g. a ribozyme) that specifically binds mRNA encoding an adenosine receptor.
- the antagonist is an siRNA molecule that reduces expression of an A 2a adenosine receptor in at least one cell in a host.
- the antisense molecule, siRNA molecule or catalytic nucleic acid molecule binds A 2a receptor.
- an antisense molecule, siRNA molecule or catalytic nucleic acid molecule targets biochemical pathways downstream of the adenosine receptor.
- the antisense molecule, siRNA molecule or catalytic nucleic acid molecule can inhibit an enzyme involved in the Gs-dependent intracellular pathway.
- Adenosine receptor protein expression in a host cell can be reduced by introducing into cells an antisense construct or another genetic sequence-targeting agent A 2a locus (e. g. Genbank accession number AH003248).
- the antagonist is an siRNA molecule that targets and causes degradation of an mRNA molecule encoding the A 2a receptor.
- An antisense construct includes the reverse complement of the adenosine receptor cDNA coding sequence, the adenosine receptor cDNA or gene sequence or flanking regions thereof.
- a nucleotide sequence from the adenosine receptor locus (e.g. all or a portion of the adenosine receptor cDNA or gene or the reverse complement thereof) is arranged in reverse orientation relative to the promoter sequence in a vector, which is introduced into a cell of interest.
- Antisense molecule construction and siRNA construction follow similar patterns.
- the introduced sequence need not be the full-length human adenosine receptor cDNA or gene or reverse complement thereof, and need not be exactly homologous to the equivalent sequence found in the cell type to be transformed.
- the introduced antisense sequence in the vector is at least 10, such as at least 30 nucleotides in length. Improved antisense suppression is typically observed as the length of the antisense sequence increases. Shorter polynucleotide (oligonucleotides) can conveniently be produced synthetically as well as in vivo. In specific aspects, the oligonucleotide is at least 10 nucleotides, at least 15 nucleotides, at least 30, at least 100 nucleotides, or at least 200 nucleotides.
- the oligonucleotides can be DNA or RNA, or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded.
- An antisense polynucleotide can be conjugated to another molecule, for example a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent.
- the signal of the receptor is blocked. This can be by antagonism of the cAMP cascade, of MAP kinases, of PKA, of PLD, of Epac, or of other related downsteam signals, or by reduction of the expression of the Ata receptor.
- Ribozymes are synthetic RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Pat. No. 4,987,071 to Cech and U.S. Pat. No. 5,543,508 to Haselhoff. Ribozymes can be synthesized and administered to a cell or a subject, or can be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (as in PCT publication WO 9523225, and Beigelman et al. Nucl. Acids Res. 23:4434-42, 1995). Examples of oligonucleotides with catalytic activity are described in WO 9506764, WO 9011364, and Sarver et al. (Science 247: 1222-5, 1990).
- adenosine deaminase a preparation of adenosine deaminase (ADA).
- ADA adenosine deaminase
- This can be, for example, an enzyme, adenosine deaminase or a ribozyme, or another catalytic molecule that selectively binds and destroys adenosine, thereby abolishing, or substantially decreasing, the ability of endogenously-formed adenosine to signal through adenosine receptors and terminate inflammation.
- adenosine receptor-triggered intracellular signaling cascade can also be affected by the use of specific inhibitors of enzymes and proteins that are involved in regulation of synthesis and/or secretion of pro-inflammatory molecules, including modulators of nuclear transcription factors. Suppression of adenosine receptor expression or expression of the Gs protein- or Gi protein dependent intracellular pathway, or the cAMP dependent intracellular pathways, can also be used.
- the Ata receptor antagonist is linked to a molecule to increase bioavailability and/or stability.
- the antagonist can also be linked to a molecule that allows targeting of the antibody to particular tissues or regions, or to ‘present’ the drug to T cells.
- this molecule is a polymer such as a polyethylene glycol moiety.
- the molecule is an antibody or a fragment of an antibody such as an Fc region.
- the antagonist is linked to an Fc region of an antibody.
- T cells In addition to antigen-specific signals mediated through the T-cell receptor, T cells also require antigen nonspecific costimulation for activation.
- the B7 family of molecules on antigen-presenting cells which include B7-1 (CD80) and B7-2 (CD86), play important roles in providing costimulatory signals required for development of antigen-specific immune responses.
- the CD28 molecule on T cells delivers a costimulatory signal upon engaging either of its ligands, B7.1 (CD80) or B7.2 (CD86) and possibly B7.3.
- a distinct signal is transduced by the CD40L (for ligand) molecule on the T cell when it is ligated to CD40.
- a number of other molecules on the surface of APC may serve some role in costimulation, although their full role or mechanism of action is not clear. These include VCAM-1, ICAM-1 and LFA-3 on APC and their respective ligands VLA-4, LFA-1 and CD2 on T cells. It is likely that the integrins LFA-1 and VCAM-1 are involved in initiating cell-cell contact. LFA-1 (lymphocyte function associated protein 1) which blocks killing of target cells by CD8 cytotoxic T cells. LFA-1 binds the immunoglobulin superfamily ligands ICAM-1, -2, -3. Blocking ⁇ -2 integrin is a very effective way of inhibiting immune responses and monoclonal antibodies against this protein are in clinical trial for treatment of transplant recipients and other conditions.
- CTLA-Ig which is a soluble from of a high affinity receptor for B7.1 and B7.2 (more avid than CD28), and anti-CD40L. Both block co-stimulation of T cells and anti-CD40L may also block reciprocal activation of antigen presenting cells.
- the antagonist is administered in combination or alternation with an agent that activates a CD28 pathway.
- this costimulatory molecule is a B7.1 or B7-2 or B7-3 molecule.
- the costimulatory molecule is a B7-DC or B7-H1 molecule, and in particular a protein fusion of B7-DC, B7-H1, variants of these or truncates thereof with a non-B7 molecule.
- Certain B7 molecules are described in PCT Publications WO 08/083169, WO 08/067071, WO 07/082154, WO 06/012232, WO 02/10187, WO 01/64704 and U.S. Pat. Nos.
- the costimulatory molecule is an Fc-fusion of a B7-H1 or B7-DC molecule, a fragment of a B7-H1 or B7-DC molecule, or a variant thereof.
- the variant can include one or more mutated amino acids when compared to the native protein.
- the costimulatory molecule does not interact with PD-1.
- the antagonist is administered in combination or alternation with an antibody that blocks interaction of soluble B7-H4 with its ligand.
- the costimulatory molecule is encoded by a vector derived from a virus.
- a costimulatory molecule can be encoded by a vector derived from a canarypox virus, ALVAC.
- the costimulatory molecule is B7.1, encoded by a vector derived from the canarypox virus, ALVAC (ALVAC-B7.1), alone or with another molecule, such as interleukin 12 (ALVAC-IL-12).
- Checkpoint inhibitors can also be used in conjunction with the antagonists of the invention.
- inhibitors of PD-1 could be used to reduce inhibition of T cell activity.
- molecules such as soluble B7-H4 can be used to stimulate T cell activities.
- the A 2a antagonists are administered in combination or alternation with a specific human or humanized antibody directed against a therapeutic target.
- the specific antibody generally acts as a passive vaccine, providing immediate immunity against certain agents.
- the antibody can be directed against agents such as anthrax, toxins produced by Clostridium botulinum , Brucellosis, Q fever (caused by Coxiella burnetii ), smallpox, viral meningoencephalitis syndromes (including Eastern equine encephalomyelitis virus (EEEV), Venezuelan equine encephalomyelitis virus (VEEV), and Western equine encephalomyelitis virus (WEEV)), viral hemorrhagic fevers (including Ebola, Marburg, and Junin), tularemia, biological toxins (including those causing diphtheria, tetanus, botulism, venoms, ricin, trichothecene mycotoxins, and staphylococcal enterotoxins) and plague.
- the methods of the invention are provided in combination with an anti-cancer agent to treat abnormal cell proliferation.
- the anti-cancer agent is not an A 2a receptor antagonist.
- Many of these drugs can be divided in to several categories: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, monoclonal antibodies against tumor antigens, and other antitumour agents. Some agents don't directly interfere with DNA. These include the new tyrosine kinase inhibitor imatinib mesylate (Gleevec® or Glivec®), which directly targets a molecular abnormality in certain types of cancer (chronic myelogenous leukemia, gastrointestinal stromal tumors).
- Alkylating agents are so named because of their ability to add alkyl groups to many electronegative groups under conditions present in cells. Cisplatin and carboplatin, as well as oxaliplatin are alkylating agents. Other agents are mechloethamine, cyclophosphamide, chlorambucil. They work by chemically modifying a cell's DNA.
- Anti-metabolites masquerade as purine ((azathioprine, mercaptopurine)) or pyrimidine—which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the “S” phase (of the cell cycle), stopping normal development and division. They also affect RNA synthesis. Due to their efficiency, these drugs are the most widely used cytostatics.
- Plant alkaloids and terpenoids are derived from plants and block cell division by preventing microtubule function. Microtubules are vital for cell division and without them it can not occur.
- the main examples are vinca alkaloids and taxanes. Vinca alkaloids bind to specific sites on tubulin, inhibiting the assembly of tubulin into microtubules (M phase of the cell cycle). They are derived from the Madagascar periwinkle, Catharanthus roseus (formerly known as Vinca rosea ).
- the vinca alkaloids include: Vincristine; Vinblastine; Vinorelbine; and Vindesine.
- Podophyllotoxin is a plant-derived compound used to produce two other cytostatic drugs, etoposide and teniposide.
- Taxanes are derived from the Yew Tree.
- Paclitaxel (Taxol®) is derived from the bark of the Pacific Yew Tree ( Taxus brevifolia ).
- Taxanes enhance stability of microtubules, preventing the separation of chromosomes during anaphase. Taxanes include: Paclitaxel and Docetaxel.
- Topoisomerase inhibitors are another class of compounds. Topoisomerases are essential enzymes that maintain the topology of DNA. Inhibition of type I or type II topoisomerases interferes with both transcription and replication of DNA by upsetting proper DNA supercoiling. Some type I topoisomerase inhibitors include camptothecins: irinotecan and topotecan. Examples of type II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide. These are semisynthetic derivatives of epipodophyllotoxins, alkaloids naturally occurring in the root of American Mayapple ( Podophyllum peltatum ).
- Antitumour antibiotics are another class of anti-cancer compounds.
- the most important immunosuppressant from this group is dactinomycin, which is used in kidney transplantations.
- Glands can inhibit tumour growth or the associated edema (tissue swelling), and may cause regression of lymph node malignancies.
- Prostate cancer is often sensitive to finasteride, an agent that blocks the peripheral conversion of testosterone to dihydrotestosterone.
- Breast cancer cells often highly express the estrogen and/or progesterone receptor. Inhibiting the production (with aromatase inhibitors) or action (with tamoxifen) of these hormones can often be used as an adjunct to therapy.
- Gonadotropin-releasing hormone agonists such as goserelin possess a paradoxic negative feedback effect followed by inhibition of the release of FSH (follicle-stimulating hormone) and LH (luteinizing hormone), when given continuously.
- anti-cancer agents also include: ifosamide, cisplatin, methotrexate, cytoxan, procarizine, etoposide, BCNU, vincristine, vinblastine, cyclophosphamide, gencitabine, 5-flurouracil, paclitaxel, and doxorubicin.
- Additional agents that are used to reduce cell proliferation include: AS-101 (Wyeth-Ayers” Labs.), bropirimine (Upjohn), gamma interferon (Genentech), GM-CSF (Genetics Institute), IL-2 (Cetus or Hoffman-LaRoche), human immune globulin (Cutter Biological), 20 IMREG (from Imreg of New La, La.), SKF106528 (Genentech), TNF (Genentech), azathioprine, cyclophosphamide, chlorambucil, and methotrexate.
- a method of enhancing efficacy of passive antibody therapy comprising administering an A 2a Receptor antagonist in combination or alternation with one or more passive antibodies.
- the passive antibody therapy is not a vaccination. Unlike vaccines, which require time to induce protective immunity and depend on the host's ability to mount an immune response, passive antibody therapy can confer a level of protection regardless of the immune status of the host, however is enhanced by reduction of T cell tolerance using the A 2a Receptor antagonist. Passive antibody therapy can have substantial advantages over antimicrobial agents and other measures for postexposure prophylaxis, including low toxicity and high specific activity. Specific antibodies are active against the major agents of bioterrorism, including anthrax, smallpox, botulinum toxin, tularemia, and plague.
- This method can enhance the efficacy of antibody therapy for treatment of abnormal cell proliferative disorders such as cancer, or can enhance the efficacy of therapy in the treatment of infectious diseases.
- the antagonist can be administered in combination or alternation with antibodies such as rituximab, herceptin or erbitux, for example.
- the antibody is an anticancer antibody.
- Monoclonal antibodies, including human and humanized monoclonal antibodies work by targeting tumour specific antigens, thus enhancing the host's immune response to tumour cells to which the agent attaches itself.
- Other antibody therapies include use of polyclonal antibodies and use of antibody fragments or regions.
- trastuzumab Herceptin
- cetuximab cetuximab
- rituximab rituximab
- Bevacizumab is a monoclonal antibody that does not directly attack tumor cells but instead blocks the formation of new tumor vessels.
- the antibody is a humanized antibody.
- the antibody is a human antibody.
- the antibody is an antibody fragment.
- Antibody fragments include, for example, scFv, Fab, F(ab)′2, Fc, heavy chain, light chain or any combination or fusion thereof.
- anti-cancer antibodies are Alemtuzumab (Campath) (BTG, West Conshohocken, Pa.) targeting CD52, for chronic lymphocytic and chronic myelogenous leukemia and multiple sclerosis; Daclizumab (Zenapax) (Protein Design Labs, Fremont, Calif.), targeting the IL-2 receptor, CD25, for transplant rejection, uveitis, multiple sclerosis, leukemia, psoriasis, diabetes mellitus, type 1, asthma and ulcerative colitis; Rituximab (Rituxan) (IDEC Pharmaceuticals, San Diego, Calif.), targeting CD20, for n lymphomas, rheumatoid arthritis, thrombocytopenic purpura; Trastuzumab (Herceptin)(Genentech), targeting p185 neu for breast, lung, pancreatic cancers; Gemtuzumab (Mylotarg) (Wyeth/AHP, Collegeville, Pa.) targeting CD33/
- the antibody is an antibody to an infectious disease.
- Diseases to which antibodies have been used clinically include Anthrax (cutaneous, gastrointestinal, and inhalational) by passive administration of polyclonal antibodies raised against recombinant protective antigen (PA), lethal factor (LF) and edema factor (EF); Botulinum Toxins by administration of antibodies against the most common causes of human botulism, toxin types A, B, E, a heptavalent equine serum, and a human botulinum immune globulin derived from volunteers vaccinated with pentavalent botulinum toxoid (ABCDE) vaccine; Brucellosis using a antibodies specific for the 0 polysaccharide of B.
- Anthrax cutaneous, gastrointestinal, and inhalational
- PA recombinant protective antigen
- LF lethal factor
- EF edema factor
- Botulinum Toxins by administration of antibodies against the most common causes of human botulism, tox
- abortus to the M epitope of Brucella spp. or panels of murine MAbs; Q Fever using a antibodies against C. burnetii infection; Plague using passive antibody administration against lethal Y. pestis infection; Smallpox using neutralizing and protective antibodies to vaccinia virus; Tularemia using passive antibodies to F. tularensis ; Viral Encephalitides using antibodies to Eastern equine encephalomyelitis virus (EEEV), Venezuelan equine encephalomyelitis virus (VEEV), or Western equine encephalomyelitis virus (WEEV); Viral Hemorrhagic Fevers using antibodies to Ebola, Argentine and Lassa hemorrhagic fevers.
- EEEV Eastern equine encephalomyelitis virus
- VEEV Venezuelan equine encephalomyelitis virus
- WEEV Western equine encephalomyelitis virus
- the antibody is against a respiratory syncytial virus (RSV).
- RSV respiratory syncytial virus
- Such antibodies include Synagis® (Medimmune) and Numax® (Medimmune). Additional antibodies useful for modulating immune functions to stimulate a desired immune response include HGS-ETR1 and HGS-ETR2 (Medimmune).
- the method provides an enhanced and prolonged immune response to an antigen.
- An antigen is generally any compound, composition, or agent, as well as all related antigenic epitopes, capable of being the target of inducing a specific immune response, such as stimulate the production of antibodies or a T-cell response in a subject, including compositions that are injected or absorbed into a subject.
- the host is infected with a virus or bacteria that has an antigen prior to the administration of the antagonist.
- the host can be infected with an HIV virus.
- the host is infected with a flavivirus or pestivirus, or other member of the flaviviridae family such as hepatitis C.
- Pestiviruses and flaviviruses belong to the flaviviridae family of viruses along with hepacivirus (hepatitis C virus).
- the pestivirus genus includes bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV, also called hog cholera virus) and border disease virus (BDV) of sheep (Moennig, V. et al. Adv. Vir. Res. 1992, 41, 53-98).
- Pestivirus infections of domesticated livestock cattle, pigs and sheep
- BVDV causes mucosal disease in cattle and is of significant economic importance to the livestock industry (Meyers, G.
- the host is infected with a hepatitis B virus.
- the host is infected with hepatitis D (also known as hepatitis delta).
- the host is infected with a member of the herpes family, such as Herpes simplex virus, Cytomegalovirus, and Epstein-Barr virus (EBV).
- Antigens can include: live, heat killed, or chemically attenuated viruses, bacteria, mycoplasmas, fungi, and protozoa, or fragments, extracts, subunits, metabolites and recombinant constructs of these or fragments, subunits, metabolites and recombinant constructs of mammalian proteins and glycoproteins; nucleic acids; combinations of these; or whole mammalian cells.
- Antigens can be from pathogenic and non-pathogenic organisms, viruses, and fungi. Antigens can include proteins, peptides, antigens and vaccines from smallpox, yellow fever, distemper, cholera, fowl pox, scarlet fever, diphtheria, tetanus, whooping cough, influenza, rabies, mumps, measles, foot and mouth disease, and poliomyelitis.
- the antigen can be a protein or peptide. In certain embodiments, the antigen is exogenous.
- the antigen can, for example, be a viral or bacterial protein or peptide, or antigenic fragment thereof.
- the antigen is from a “subunit” vaccine, composed of viral or bacterial antigenic determinants, generally in which viral or bacterial antigens made are free of nucleic acid by chemical extraction and containing only minimal amounts of non-viral or non-bacterial antigens derived from the culture medium. In other instances, the antigen is not based on a subunit vaccine.
- the antigen is a whole cell, derived from a virus, bacteria or mammal. In certain embodiments, the antigen is a “killed component” of a vaccine. In some embodiments of the invention, the antigen is derived from a human or animal pathogen. The pathogen is optionally a virus, bacterium, fungus, or a protozoan. In this instance, the antigen is prepared from a viral or bacterial cell that has been irradiated or otherwise inactivated to avoid replication. In one embodiment, the antigen is a protein produced by the pathogen, or a fragment and/or variant of a protein produced by the pathogen. In other embodiments, the antigen is a mammalian protein or peptide. In certain embodiment, the antigen is a whole mammalian cell and is not an isolated mammalian protein or peptide, or fragment thereof.
- the antigen is a whole cell. In some embodiments, the antigen is a whole mammalian cell, which can be genetically modified. In certain embodiments, the cell is a whole mammalian tumor cell that has been modified to express a colony stimulating factor. In other embodiments, the antigen is a stromal antigen-presenting cell capable of antigen presentation. In other embodiments, the antigen comprises a dendritic cell or a dendritic cell preparation. The antigen can include antigens and dendritic antigen-presenting cells (APCs).
- APCs dendritic antigen-presenting cells
- Target disorders for dendritic cell therapy include disseminated single tumor cells (micrometastases) or metastases of epithelial tumors including from breast cancer, ovarian cancer, prostate cancer, colon cancer, glioblastomas and myelomas.
- the antigen may be derived from Human Immunodeficiency virus (such as gp120, gp 160, gp41, gag antigens such as p24gag and p55gag, as well as proteins derived from the pol, env, tat, vif, rev, nef, vpr, vpu and LTR regions of HIV), Feline Immunodeficiency virus, or human or animal herpes viruses.
- Human Immunodeficiency virus such as gp120, gp 160, gp41, gag antigens such as p24gag and p55gag, as well as proteins derived from the pol, env, tat, vif, rev, nef, vpr, vpu and LTR regions of HIV
- Feline Immunodeficiency virus such as gp120, gp 160, gp41, gag antigens such as p24gag and p55g
- the antigen is derived from herpes simplex virus (HSV) types 1 and 2 (such as gD, gB, gH, Immediate Early protein such as ICP27), from cytomegalovirus (such as gB and gH), from Epstein-Barr virus or from Varicella Zoster Virus (such as gpl, II or III).
- HSV herpes simplex virus
- cytomegalovirus such as gB and gH
- Epstein-Barr virus such as gpl, II or III
- Varicella Zoster Virus such as gpl, II or III.
- the antigen is derived from a hepatitis virus such as hepatitis B virus (for example, Hepatitis B Surface antigen), hepatitis A virus, hepatitis C virus, delta hepatitis virus, hepatitis E virus, or hepatitis G virus.
- hepatitis B virus for example, Hepatitis B Surface antigen
- the hepatitis antigen can be a surface, core, or other associated antigen.
- the HCV genome encodes several viral proteins, including E1 and E2. See, e.g., Houghton et al., Hepatology 14: 381-388(1991).
- An antigen that is a viral antigen is optionally derived from a virus from any one of the families Picornaviridae (e.g., polioviruses, rhinoviruses, etc.); Caliciviridae; Togaviridae (e.g., rubella virus, dengue virus, etc.); Flaviviridae; Coronaviridae; Reoviridae (e.g., rotavirus, etc.); Birnaviridae; Rhabodoviridae (e.g., rabies virus, etc.); Orthomyxoviridae (e.g., influenza virus types A, B and C, etc.); Filoviridae; Paramyxoviridae (e.g., mumps virus, measles virus, respiratory syncytial virus, parainfluenza virus, etc.); Bunyaviridae; Arenaviridae; Retroviradae (e.g., HTLV-I; HTLV-11; HIV-1; HIVI
- the antigen is Flu-HA (Morgan et al., J. Immunol. 160:643 (1998)).
- the antigen comprises a (Myco)bacterial or viral protein or an immunogenic part, derivative and/or analogue thereof.
- the antigen comprises a Mycobacterium protein or an immunogenic part, derivative and/or analogue thereof.
- the antigen comprises hsp65 369 412 (Ottenhof et al., 1991; Charo et al., 2001).
- the antigen comprises a human papillomavirus (HPV) protein or an immunogenic part, derivative and/or analogue thereof.
- An immunogenic part, derivative and/or analogue of a protein comprises the same immunogenic capacity in kind not necessarily in amount as said protein itself.
- the antigen is a killed whole pneumococci, lysate of pneumococci or isolated and purified PspA, or immunogenic fragments thereof (see U.S. Pat. No. 6,042,838).
- the antigen is a 314 amino acid truncate (amino acids 1-314) of the mature PspA molecule. This region of the PspA molecule contains most, if not all, of the protective epitopes of PspA.
- the antigen is derived from bacterial pathogens such as Mycobacterium, Bacillus, Yersinia, Salmonella, Neisseria, Borrelia (for example, OspA or OspB or derivatives thereof), Chlamydia , or Bordetella (for example, P.69, PT and FHA), or derived from parasites such as plasmodium or Toxoplasma .
- the antigen is derived from the Mycobacterium tuberculosis (e.g. ESAT-6, 85A, 85B, 72F), Bacillus anthraces (e.g. PA), or Yersinia pestis (e.g. F1, V).
- antigens suitable for use in the present invention can be obtained or derived from known causative agents responsible for diseases including, but not limited to, Diptheria, Pertussis, Tetanus, Tuberculosis, Bacterial or Fungal Pneumonia, Otitis Media, Gonorrhea, Cholera, Typhoid, Meningitis, Mononucleosis, Plague, Shigellosis or Salmonellosis , Legionaire's Disease, Lyme Disease, Leprosy, Malaria, Hookworm, Onchocerciasis, Schistosomiasis, Trypamasomialsis, Lesmaniasis, Giardia, Amoebiasis, Filariasis, Borelia, and Trichinosis.
- causative agents responsible for diseases including, but not limited to, Diptheria, Pertussis, Tetanus, Tuberculosis, Bacterial or Fungal Pneumonia, Otitis Media, Gonorrhea, Cholera,
- Still further antigens can be obtained or derived from unconventional pathogens such as the causative agents of kuru, Creutzfeldt-Jakob disease (CJD), scrapie, transmissible mink encephalopathy, and chronic wasting diseases, or from proteinaceous infectious particles such as prions that are associated with mad cow disease.
- unconventional pathogens such as the causative agents of kuru, Creutzfeldt-Jakob disease (CJD), scrapie, transmissible mink encephalopathy, and chronic wasting diseases
- proteinaceous infectious particles such as prions that are associated with mad cow disease.
- tumor-associated antigens that are recognized by T cells have been identified (Renkvist et al., Cancer Immunol Innumother 50:3-15 (2001)).
- These tumor-associated antigens may be differentiation antigens (e.g., PSMA, Tyrosinase, gp100), tissue-specific antigens (e.g. PAP, PSA), developmental antigens, tumor-associated viral antigens (e.g. HPV 16 E7), cancer-testis antigens (e.g. MAGE, BAGE, NY-ESO-1), embryonic antigens (e.g. CEA, alpha-fetoprotein), oncoprotein antigens (e.g. Ras, p53), over-expressed protein antigens (e.g. ErbB2 (Her2/Neu), MUC1), or mutated protein antigens.
- differentiation antigens e.g., PSMA, Tyrosinase, gp100
- tissue-specific antigens e.g.
- Tumor-associated antigens that may be useful in the methods of the invention include, but are not limited to, 707-AP, Annexin II, AFP, ART-4, BAGE, ⁇ -catenin/m, BCL-2, bcr-abl, bcr-abl p190, bcr-abl p210, BRCA-1, BRCA-2, CAMEL, CAP-1, CASP-8, CDC27/m, CDK-4/m, CEA (Huang et al., Exper Rev.
- Vaccines (2002)1:49-63
- CT9 CT10
- Cyp-B Dek-cain
- DAM-6 MAGE-B2
- DAM-10 MAGE-B1
- EphA2 Zaantek et al., Cell Growth Differ . (1999) 10:629-38; Carles-Kinch et al., Cancer Res .
- ELF2M ETV6-AML1, G250, GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, GAGE-8, GnT-V, gp100, HAGE, HER2/neu, HLA-A*0201-R170I, HPV-E7, HSP70-2M, HST-2, hTERT, hTRT, iCE, inhibitors of apoptosis (e.g.
- the antigen may comprise a fragment of a tumor-associated antigen, a variant of a tumor-associated antigen, or a fragment of a variant of a tumor-associated antigen.
- an antigen such as a tumor antigen, is capable of inducing a more significant immune response when the sequence differs from that endogenous to the host.
- the variant of a tumor-associated antigen, or a fragment of a variant of a tumor-associated antigen differs from that of the tumor-associated antigen, or its corresponding fragment, by one or more amino acids.
- the antigen derived from a tumor-associated antigen can comprise at least one epitope sequence capable of inducing an immune response upon administration.
- the antigen can be an autoimmune disease-specific antigen.
- a T cell response to self antigens results in the autoimmune disease.
- the type of antigen for use in treating an autoimmune disease with the vaccines of the present invention might target the specific T cells responsible for the autoimmune response.
- the antigen may be part of a T cell receptor, the idiotype, specific to those T cells causing an autoimmune response, wherein the antigen incorporated into a vaccine of the invention would elicit an immune response specific to those T cells causing the autoimmune response. Eliminating those T cells would be the therapeutic mechanism to alleviating the autoimmune disease.
- an antigen that will result in an immune response targeting the antibodies that are generated to self antigens in an autoimmune disease or targeting the specific B cell clones that secrete the antibodies.
- an idiotype antigen may be incorporated into the Listeria that will result in an anti-idiotype immune response to such B cells and/or the antibodies reacting with self antigens in an autoimmune disease.
- the antigen is obtained or derived from a biological agent involved in the onset or progression of neurodegenerative diseases (such as Alzheimer's disease), metabolic diseases (such as Type I diabetes), and drug addictions (such as nicotine addiction).
- the method can be used for pain management and the antigen is a pain receptor or other agent involved in the transmission of pain signals.
- the present invention can be used to treat, prevent, manage and slow the spread of cancer as well as other abnormal cell proliferation-associated diseases in a host.
- a host is any multi-cellular vertebrate organism including specifically both human and non-human mammals.
- the “host” is a human.
- the terms “subject” and “patient” are also included in the term “host”.
- the present invention provides methods to treat carcinomas, include tumors arising from epithelial tissue, such as glands, breast, skin, and linings of the urogenital, digestive, and respiratory systems. Lung, cancer and prostate cancers can be treated or prevented.
- Breast cancers that can be treated or prevented include both invasive (e.g., infiltrating ductal carcinoma, infiltrating lobular carcinoma infiltrating ductal & lobular carcinoma, medullary carcinoma, mucinous (colloid) carcinoma, comedocarcinoma, paget's disease, papillary carcinoma, tubular carcinoma, adenocarcinoma (NOS) and carcinoma (NOS)) and non-invasive carcinomas (e.g., intraductal carcinoma, lobular carcinoma in situ (LCIS), intraductal & LCIS, papillary carcinoma, comedocarcinoma).
- invasive e.g., infiltrating ductal carcinoma, infiltrating lobular carcinoma infiltrating ductal & lobular carcinoma, medullary carcinoma, mucinous (colloid) carcinoma, comedocarcinoma, paget's disease, papillary carcinoma, tubular carcinoma, adenocarcinoma (NOS) and carcinoma (NOS)
- Prostate cancers that can be treated or prevented with the methods described herein include localized, regional and metastatic prostate cancer.
- Localized prostate cancers include A1-A2, T1a-T1b, T1c, B0-B2 or T2a-T2c.
- Regional prostate cancers include D1 or N1-M0, while metastatic prostate cancers include D2 or M1.
- Metastatic prostate cancers include bone and brain cancers.
- methods are provided to treat or prevent abnormal cell proliferation using A 2a receptor antagonists in combination or alternation with a cell based vaccine.
- the cell based vaccine is based on cells that match the tumor to be prevented. For example, if a host is suffering from, or at risk of suffering from, a prostate cancer, the cell based vaccine will be based on a prostate cancer tumor cell. In these instances, the cell is typically irradiated or otherwise prevented from replicating. In particular embodiments, the cell is genetically modified to secrete a colony stimulating factor.
- cancers of the cancers include those of the bowel, bladder, brain, cervix, colon, rectum, esophagus, eye, head and neck, liver, kidney, larynx, lung, skin, ovary, pancreas, pituitary gland, stomach, testicles, thymus, thyroid, uterus, and vagina as well as adrenocortical cancer, carcinoid tumors, endocrine cancers, endometrial cancer, gastric cancer, gestational trophoblastic tumors, islet cell cancer, and mesothelioma.
- Lymphomas that can be treated or prevented with the invention include tumors arising from the lymph or spleen, which can cause excessive production of lymphocytes, including both Hodgkin's disease and Non-Non-Hodgkin's lymphoma.
- Hodgkin's Disease is intended to include diseases classified as such by the REAL and World Health Organization (WHO) classifications known to those of skill in the art, including classical Hodgkin's disease (i.e., nodular sclerosis, mixed cellularity, lymphocyte depletion or lymphocyte rich) or lymphocyte predominance Hodgkin's disease.
- WHO World Health Organization
- Non-Hodgkin's lymphoma is used to refer 30 lymphomas classified by WHO (Harris N L et al. (2000) Lymphoma classification-from controversy to consensus: the REAL and WHO Classification of lymphoid neoplasms. Ann Oncol. 11(suppl 1):S3-S10), including but not limited to:
- B-cell non-Hodgkin's lymphomas such as small lymphocytic lymphoma (SLL/CLL), mantle cell lymphoma (MCL), follicular lymphoma marginal zone lymphoma (MZL), extranodal (MALT lymphoma), nodal (Monocytoid B-cell lymphoma), splenic, diffuse large cell lymphoma, burkitt's lymphoma and lymphoblastic lymphoma.
- T-cell non-Hodgkin's lymphoma's such as lymphoblastic lymphomas, peripheral T-cell lymphoma.
- Hepatosplenic gamma-delta T-cell lymphoma subcutaneous panniculitis-like lymphoma, angioimmunoblastic T-cell lymphoma (AILD), extranodal NK/T cell lymphoma, nasal type, intestinal T-cell lymphoma (+/ ⁇ enteropathy associated) (EATL), adult T-cell leukemia/lymphoma (HTLV-1 associated), mycosis fungoides/Sezary syndrome, anaplastic large cell lymphoma (ALCL), including both primary cuteous and primary systemic types.
- ACL anaplastic large cell lymphoma
- Leukemias that can be treated or prevented with the present invention include but are not limited to myeloid and lymphocytic (sometimes referred to as B or T cell leukemias) or myeloid leukemias, both chronic and acute.
- the myeloid leukemias include chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) (i.e., acute nonlymphocytic leukemia (ANLL)).
- the lymphocytic leukemias include acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL)(i.e., chronic granulocytic leukemia) and hairy cell leukemia (HCL).
- ALL acute lymphocytic leukemia
- CLL chronic lymphocytic leukemia
- HCL hairy cell leukemia
- Sarcomas that can be treated or prevented with the present invention include both bone and soft-tissue sarcomas of the muscles, tendons, fibrous tissues, fat, blood vessels nerves, and synovial tissues.
- Non-limiting examples include fibrosacromas, rhabdomyosarcomas, liposarcomas, synovial sarcomas, angiosacromas, neurofibrosarcomas, gastrointestinal stroma tumors, Kaposi's sacroma, Ewing's sarcoma, alveolar soft-part sarcoma, angiosarcoma, dermatofibrosarcoma protuberans, epithelioid sarcoma, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, leiomyosarcoma, liposarcoma, malignant fibrous histiocytoma, malignant hemangiopericytoma, malignant mesenchymom
- Diseases of abnormal cell proliferation other than cancer can be treated or prevented with the present invention.
- Diseases association with the abnormal proliferation of vascular smooth muscle cells include, as a non-limiting example, benign tumors.
- benign tumors include benign bone, brain and liver tumors.
- CM cutaneous mastocytosis
- GN membranoproliferative glomerulonephritis
- lupus nephritis diabetic nephropathy
- Psoriasis can be treated or prevented by the present invention, including but not limited to, plaque psoriasis, guttate psoriasis, inverse psoriasis, seborrheic psoriasis, nail psoriasis, generalized erythrodermic psoriasis (also called psoriatic exfoliative erythroderm), pustular psoriasis, and Von Zumbusch psoriasis.
- plaque psoriasis guttate psoriasis
- inverse psoriasis seborrheic psoriasis
- nail psoriasis nail psoriasis
- generalized erythrodermic psoriasis also called psoriatic exfoliative erythroderm
- pustular psoriasis and Von Zumbusch psoriasis.
- the present invention can also be used to treat or prevent lymphangiomyomatosis (LAM), as well as other diseases associated with abnormal cell proliferation known to those skilled in the art.
- LAM lymphangiomyomatosis
- a 2a receptors are responsible for induction of long term T cell tolerance. These receptors can induce tolerance both by promoting T cell anergy, under which T cells fail to respond to an antigen upon re-challenge even under normally activating conditions, and by inducing regulatory T cells, which are responsible for maintained tolerance.
- a 2a receptor agonists can stimulate and maintain T cell tolerance. As such, a finite treatment with an A 2a receptor agonists will lead to sustained tolerance thus abrogating the need for chronic immunosuppression. In particular, it has been found that A 2a receptor agonists can reduce the need for continued immunosuppression in preventing or treating autoimmune diseases or disorders, for example in preventing transplant rejection or Graft verus Host Disease.
- a method of inducing immune tolerance in a host in need thereof comprising administering an A 2a receptor agonist to the host, wherein the tolerance is induced for at least one month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, or longer, such as at least one year.
- the A 2a agonist is administered in combination with an immunosuppressive agent other than an A 2a agonist. In some embodiments, the A 2a agonist is administered in combination with an immunosuppressive agent and subsequently, the A 2a agonist is administered in the absence of the immunosuppressive agent.
- the host is in need of immunosuppressive therapy.
- the host is being treated with an immunosuppressive therapy.
- administration of the A 2a receptor agonist reduces the amount of immunosuppressive therapy administered to the host.
- the amount of immunosuppressive therapy is reduced by a factor of 2, or 3, or 4 or 5 or 6, or 7, or 8 or 9 or 10.
- the host is able to be subject to a different immunosuppressive regimen with a reduced toxicity.
- the immunosuppressive agent can be administered for less than one year.
- the immunosuppressive agent is administered for from 2 weeks to one year.
- the immunosuppressive agent is administered for one month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months or 12 months or less.
- administration of the A 2a agonist reduces immune responses against an antigen.
- the antigen is an exogenous protein.
- the antigen is a protein native to the host.
- the antigen is a cell surface antigen.
- the host is suffering from an autoimmune disease. In another embodiment, the host is at risk for an autoimmune disorder. In another embodiment, the host is a recipient of a transplanted tissue or organ. In a particular embodiment, the host is at risk of organ rejection.
- the A 2a agonist is administered in combination or alternation with a costimulatory molecule such as B7-H4 or fragments or variants thereof.
- T cell tolerance is induced for at least one month, or at least three months, or at least six months.
- the methods further comprise administering an antigen to the host in combination or alternation with the agonist.
- the antigen can be a protein or peptide derived from the host, or can be an exogenous protein or peptide.
- the antigen can also be a cell derived from the host or an exogenous cell.
- the administration of the agonist in combination with the antigen can cause T cell tolerance to the antigen.
- the agonist is administered less than once a week. In certain embodiments, the agonist is administered once a month. In certain other embodiments, an immunosuppressive agent is not administered to the host receiving the agonist.
- the agonist is administered every day, or less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- Agonists to be used in the methods of the invention are generally those that are selective for the A 2a receptor, or an agonist of downstream signals such as increased cAMP, increased activation of PKA, MAP kinases, PKC, Epac or phospholipase D.
- Agonists can be either full or partial agonists at the receptor.
- non-selective agonists are also useful.
- Nonselective adenosine receptor agonist include 5-N-ethylcarboxamidoadenosine (NECA), adenosine and methylxanthines.
- Selective A 2a receptor agonists include 2-p-(2-carboxyethyl)phenethyl-amino-5-N-ethyl-carboxamidoadenosine (CGS21680), ATL-146e, 2-chloro-N-6-cyclopentyl adenosine (CCPA) and regadenoson (also known as CVT-3146).
- Partial agonists may be present in Hypericum perforatum and Valeriana officinalis .
- selective agonists are being developed by Adenosine Therapeutics.
- the A 2a receptor agonist is linked to a molecule to increase bioavailability and/or stability.
- the agonist can also be linked to a molecule that allows targeting of the antibody to particular tissues or regions, or to ‘present’ the drug to T cells.
- this molecule is a polymer such as a polyethylene glycol moiety.
- Immunosuppressive drugs or immunosuppressants are drugs that are used in immunosuppressive therapy to inhibit or prevent activity of the immune system. Clinically they are used to prevent the rejection of transplanted organs and tissues (e.g. bone marrow, heart, kidney, liver), treatment of autoimmune diseases or diseases that are most likely of autoimmune origin (e.g. rheumatoid arthritis, myasthenia gravis, systemic lupus erythematosus, Crohn's disease, and ulcerative colitis) and treatment of some other non-autoimmune inflammatory diseases (eg. long term Allergic Asthma control).
- a method of reducing need for immunosuppressive therapy comprising administering an Ata receptor agonist to a host receiving an immunosuppressive agent.
- Immunosuppressive drugs can be classified into five groups: glucocorticoids; cytostatics; antibodies; drugs acting on immunophilins; and other drugs.
- glucocorticoids are used to suppress various allergic, inflammatory, and autoimmune disorders. They are also administered as posttransplantory immunosuppressants to prevent the acute transplant rejection and graft-versus-host disease. Nevertheless, they do not prevent an infection and also inhibit later reparative processes.
- Cytostatics inhibit cell division. In immunotherapy, they are used in smaller doses than in the treatment of malignant diseases. They affect the proliferation of both T cells and B cells. Due to their highest effectiveness, purine analogs are most frequently administered. Some cytostatics are alkylating agents. The alkylating agents used in immunotherapy are nitrogen mustards (cyclophosphamide), nitrosoureas, platinum compounds and others. Cyclophosphamide is probably the most potent immunosuppressive compound. In small doses, it is very efficient in the therapy of systemic lupus erythematosus, autoimmune hemolytic anemias, Wegener's granulomatosis and other immune diseases. High doses cause pancytopenia and hemorrhagic cystitis.
- Antimetabolites are also used as immunosuppressive compounds. Antimetabolites interfere with the synthesis of nucleic acids. These include: folic acid analogues, such as methotrexate; purine analogues such as azathioprine and mercaptopurine; pyrimidine analogues; and protein synthesis inhibitors.
- Cytotoxic antibiotics are also used for immunosuppression. Among these, dactinomycin is the most typical. It is used in kidney transplantations. Other cytotoxic antibiotics are anthracyclines, mitomycin C, bleomycin, mithramycin. Certain antibodies are also used as immunosuppressive agents.
- Approved antibodies for transplant rejection include OKT3 (R), Simulect® and Zenapax (daclizumab).
- Fc-fusion proteins can be used for transplant rejection, such as fusion with mutants of or receptors for certain interleukins (IL-15 and IL-17 receptor for example). Fc-fusion proteins can also include modifications to decrease side effects of the administration.
- Interleukin-2 is an important immune system regulator necessary for the clone expansion and survival of activated lymphocytes T.
- the mouse anti-Tac antibodies have been modified leading to the presentation of two himeric mouse/human anti-Tac antibodies in the year 1998: basiliximab (Simulect®) and daclizumab (Zenapax®).
- basiliximab Simulect®
- daclizumab Zaclizumab
- These drugs act by binding the IL-2a receptor's a chain, preventing the IL-2 induced clonal expansion of activated lymphocytes and shortening their survival. They are used in the prophylaxis of the acute organ rejection after the bilateral kidney transplantation, both being similarly effective and with only few side effects.
- cyclosporin is a calcineurin inhibitor. It has been in use since 1983 and is one of the most widely used immunosuppressive drugs. It is a fungal peptide, composed of 11 amino acids. Cyclosporin is thought to bind to the cytosolic protein cyclophilin (an immunophilin) of immunocompetent lymphocytes, especially T-lymphocytes. This complex of cyclosporin and cyclophilin inhibits calcineurin, which under normal circumstances induces the transcription of interleukin-2. The drug also inhibits lymphokine production and interleukin release, leading to a reduced function of effector T-cells.
- Tacrolimus (PrografTM, FK506) is a fungal product ( Streptomyces tsukubaensis ). It is a macrolide lactone and acts by inhibiting calcineurin. The drug is used particularly in the liver and kidney transplantations, although in some clinics it is used in heart, lung and heart/lung transplants. It binds to an immunophilin, followed by the binding of the complex to calcineurin and the inhibition of its phosphatase activity. In this way, it prevents the passage of G0 into G1 phase. Tacrolimus is more potent than cyclosporin and has less pronounced side effects.
- Sirolimus (RapamuneTM, Rapamycin) s is a macrolide lactone, produced by the actinomycetes Streptomyces hygroscopicus . It is used to prevent rejection reactions. Although it is a structural analogue of tacrolimus, it acts somewhat differently and has different side effects. Other rapalogues are also useful as immunosuppressive agents in the present invention.
- IFN- ⁇ suppresses the production of Th1 cytokines and the activation of monocytes. It is used to slow down the progression of multiple sclerosis. IFN- ⁇ is able to trigger lymphocytic apoptosis.
- opioids can be useful. Prolonged use of opioids may cause immunosuppression of both innate and adaptive immunity. Decrease in proliferation as well as immune function has been observed in macrophages as well as lymphocytes. It is thought that these effects are mediated by opioid receptors expressed on the surface of these immune cells.
- a TNF- ⁇ (tumor necrosis factor alpha) binding protein is a monoclonal antibody or a circulating receptor such as infliximab (Remicade®), etanercept (Enbrel®), or adalimumab (Humira®) that binds to TNF- ⁇ and prevent it from inducing the synthesis of IL-1 and IL-6 and the adhesion of lymphocyte activating molecules. They are used in the treatment of rheumatoid arthritis, ankylosing spondylitis, Crohn's disease and psoriasis. TNF or the effects of TNF are also suppressed by various natural compounds, including curcumin (an ingredient in turmeric) and catechins (in green tea).
- Mycophenolic acid acts as a non-competitive, selective and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), which is a key enzyme in the de novo guanosine nucleotide synthesis.
- IMPDH inosine monophosphate dehydrogenase
- lymphocytes B and T are very dependent on this process.
- FTY720 is a new synthetic immunosuppressant, currently in phase 3 of clinical trials. It increases the expression or changes the function of certain adhesion molecules ( ⁇ 4/ ⁇ 7 integrin) in lymphocytes, so they accumulate in the lymphatic tissue (lymphatic nodes) and their number in the circulation is diminished. In this respect, it differs from all other known immunosuppressants.
- Agents used to treat skin inflammatory conditions include Acitretin, Alclometasone dipropionate, Allantoin/Coal tar extract/Hydrocortisone, Alphaderm, Alphosyl HC, Asmanex, Benzalkonium chloride/Dimeticone 350/Hydrocortisone/Nystatin, Betacap, Betamethasone dipropionate, Betamethasone dipropionate/Calcipotriol hydrate, Betamethasone dipropionate/Salicylic acid, Betamethasone Valerate, Betamethasone Valerate/Clioquinol, Betamethasone Valerate/Fusidic Acid, Betamethasone valerate/Neomycin sulphate, Betnovate, Betnovate-C, Betnovate-N, Bettamousse, Calcipotriol, Calcipotriol hydrate, Calcitriol, Calmurid HC, Canesten HC, Chlorquinaldol/Hydrocort
- the CD28 molecule on T cells delivers a costimulatory signal upon engaging either of its ligands, B7.1 (CD80) or B7.2 (CD86) and possibly B7.3.
- a distinct signal is transduced by the CD40L (for ligand) molecule on the T cell when it is ligated to CD40.
- CD40L for ligand
- a number of other molecules on the surface of APC may serve some role in costimulation, although their full role or mechanism of action is not clear. These include VCAM-1, ICAM-1 and LFA-3 on APC and their respective ligands VLA-4, LFA-1 and CD2 on T cells. It is likely that the integrins LFA-1 and VCAM-1 (which is only expressed on activated and memory T cells) are involved in initiating cell-cell contact.
- LFA-1 lymphocyte function associated protein 1 which blocks killing of target cells by CD8 cytotoxic T cells.
- LFA-1 binds the immunoglobulin superfamily ligands ICAM-1, -2, -3. Blocking beta-2 integrin is a very effective way of inhibiting immune responses and monoclonal antibodies against this protein are in clinical trial for treatment of transplant recipients and other conditions.
- CTLA4-Ig which is a soluble from of a high affinity receptor for B7.1 and B7.2 (more avid than CD28), and anti-CD40L; both block co-stimulation of T cells and anti-CD40L may also block reciprocal activation of antigen presenting cells.
- the agonist is administered in combination or alternation with an costimulatory molecule that induces anergy.
- the molecule is a B7-H4 protein or fragment, or a variant or fusion protein thereof.
- the molecule is one described in PCT Publication Nos. WO 08/083239, WO 08/083228, WO 07/124361, WO 07/082154, WO 02/10187 or US Patent Publication No. 2007/0218032 or U.S. Pat. No. 6,891,030.
- the method comprises administration of an Ata Receptor agonist in combination or alternation with one or more suppressive antibody formulations.
- Antibodies are used as a quick and potent immunosuppression method to prevent the acute rejection reaction.
- Heterologous polyclonal antibodies are obtained from the serum of animals (e.g. rabbit, horse) and injected with the patient's thymocytes or lymphocytes.
- the antilymphocyte (ALG) and antithymocyte antigens (ATG) are being used.
- AAG antilymphocyte
- ATG antithymocyte antigens
- These compositions include Atgam®, obtained from horse serum, and Thymoglobuline®, obtained from rabbit serum. They are part of the steroid-resistant acute rejection reaction and grave aplastic anemia treatment. However, they are primarily added to other immunosuppressives to diminish their dosage and toxicity. They also allow transition to cyclosporine therapy.
- Monoclonal antibodies are directed towards exactly defined antigens. Therefore, they cause fewer side effects. Especially significant are the IL-2 receptor (CD25) and CD3 directed antibodies. They are used to prevent the rejection of transplanted organs, but also to track changes in the lymphocyte subpopulations.
- Approved antibodies for transplant rejection include OKT3 ®, Simulect® and Zenapax (daclizumab).
- Fc-fusion proteins can be used for transplant rejection, such as fusion with mutants of or receptors for certain interleukins (IL-15 and IL-17 receptor for example). Fc-fusion proteins can also include modifications to decrease side effects of the administration.
- Additional antibodies useful for treating or preventing certain disorders are those useful for autoimmune disorders, inflammation, allergic reactions and cancer (HUMIRA (Abbott) for treatment of various forms of arthritis and Chron's disease, ABT-874, CAT-354, GC-1008, MYO-029 and MEDI-528.
- HUMIRA Abbott
- the agonist is administered in combination or alternation with an Intravenous immunoglobulin (IVIG), a blood product generally administered intravenously that contains pooled IgG immunoglobulins (antibodies extracted from the plasma of over a thousand blood donors).
- IVIG therapy is useful for treatment of Immune deficiencies such as X-linked agammaglobulinemia, hypogammaglobulinemia (primary immune deficiencies), and acquired compromised immunity conditions ([secondary immune deficiencies), featuring low antibody levels; Inflammatory and autoimmune diseases; and Acute infections.
- the formulations are used to treat Allogeneic bone marrow transplant, Chronic lymphocytic leukemia, Idiopathic thrombocytopenic purpura, Pediatric HIV, Primary immunodeficiencies, Kawasaki disease, Kidney transplant with a high antibody recipient or with an ABO incompatible donor or Common Variable Immune Deficiency.
- these formulations are directed to specific infectious diseases, such as respiratory syncytial virus (RSV), hepatitis B (Hepatitis B Immune Globulin-HBIG), rabies (Rabies Immune Globulin-RIG), tetanus (Tetanus Immune Globulin-TIG) and varicella (chickenpox) (Varicella Zoster Immune Globulin-VZIG).
- RSV respiratory syncytial virus
- Hepatitis B Immune Globulin-HBIG hepatitis B Immune Globulin-HBIG
- rabies Rabies Immune Globulin-RIG
- tetanus Tetanus Immune Globulin-TIG
- varicella chickenpox
- Varicella Zoster Immune Globulin-VZIG varicella
- the co-administration increases generation of memory T cells in individuals receiving the antibody and enhances the efficacy of the antibody therapy.
- the Ata receptor agonists can generally be administered to a host at risk of, or suffering from, a condition related to hyperactivity of the immune system, including an autoimmune disease. These conditions can be initiated in response to a pathogenic insult. For example, the conditions can occur due to infection, allergens, autoimmune stimuli, immune response to transplanted tissue, noxious chemicals, and toxins, ischemia/reperfusion, hypoxia, mechanical and thermal trauma, as well as growth of tumors. Inflammation is normally a localized action that results in expulsion or dilution of a pathogenic agent, resulting in isolation of the damaging agent and injured tissue. In certain cases, an immune response can occur to innocuous antigens that lead to symptomatic reactions upon re-exposure are called hypersensitivity reactions. These can cause hypersensitivity diseases if they occur repetitively.
- the host is suffering from, or at risk for, a transplant rejection.
- the transplant is a solid organ transplant.
- the rejection is mediated by a rejection of endothelial cells in the transplant.
- the rejection is not a hyperacute rejection.
- the rejection is in part a hyperacute rejection.
- the rejection is of a donor kidney, liver or heart, or portion thereof.
- autoimmune disorders are those in which the immune system produces an immune response (e.g. a B cell or a T cell response) against an endogenous antigen, with consequent injury to tissues.
- an immune response e.g. a B cell or a T cell response
- Systemic autoimmune syndromes include SLE, Sjögren's syndrome, Scleroderma, Rheumatoid Arthritis and polymyositis.
- Local syndromes may be endocrinologic (DM Type 1, Hashimoto's thyroiditis, Addison's disease etc.), dermatologic (pemphigus vulgaris), haematologic (autoimmune haemolytic anaemia), neural (multiple sclerosis) or can involve virtually any circumscribed mass of body tissue.
- endocrinologic DM Type 1, Hashimoto's thyroiditis, Addison's disease etc.
- dermatologic pemphigus vulgaris
- haematologic autoimmune haemolytic anaemia
- neural multiple sclerosis
- Alopecia universalis Alopecia universalis
- Behcet's disease Chagas' disease; Chronic fatigue syndrome; Dysautonomia; Endometriosis; Hidradenitis suppurativa; Interstitial cystitis; Lyme disease; Morphea; Neuromyotonia; Narcolepsy; Psoriasis; Sarcoidosis; Schizophrenia; Scleroderma; Ulcerative colitis; Vitiligo; and Vulvodynia.
- the compounds are administered for the treatment or prophylaxis of inflammatory disorders that include, but are not limited to, respiratory disorders (including asthma, COPD, chronic bronchitis and cystic fibrosis); cardiovascular related disorders (including atherosclerosis, post-angioplasty, restenosis, coronary artery diseases and angina); inflammatory diseases of the joints (including rheumatoid and osteoarthritis); skin disorders (including dermatitis, eczematous dermatitis and psoriasis); post transplantation late and chronic solid organ rejection; multiple sclerosis; autoimmune conditions (including systemic lupus erythematosus, dermatomyositis, polymyositis, Sjogren's syndrome, polymyalgia rheumatica, temporal arteritis, Behcet's disease, Guillain Barré, Wegener's granulomatosus, polyarteritis nodosa ); inflammatory neuropathies (including inflammatory neuropathies
- Specific disorders include rheumatoid arthritis, lupus erythematosus, Sjögren's syndrome, scleroderma (systemic sclerosis), dermatomyositis, polychondritis, polymyositis, polymyalgia rheumatica, osteoarthritis, septic arthritis, fibromyalgia, gout, pseudogout, spondyloarthropathies, such as ankylosing spondylitis, reactive arthritis (Reiter's syndrome), psoriatic arthropathy, enteropathic spondylitis and reactive arthropathy, vasculitis, such as polyarteritis nodosa , Henoch-Schonlein purpura, serum sickness, Wegener's granulomatosis, giant cell arteritis, temporal arteritis, Takayasu's arteritis, Behçet's syndrome, Kawasaki's disease (mucocutaneous
- autoimmune conditions such as acute disseminated encephalomyelitis, Addison's disease, ankylosing spondylitisis, antiphospholipid antibody syndrome, autoimmune hepatitis, Coeliac disease, Crohn's disease, diabetes mellitus, Graves' disease, Guillain-Barré syndrome, Hashimoto's disease, idiopathic thrombocytopenic purpura, Kawasaki's Disease, lupus erythematosus, multiple sclerosis, Mmyasthenia gravis, opsoclonus myoclonus syndrome, optic neuritis, Ord's thyroiditis, pemphigus, pernicious anaemia, primary biliary cirrhosis, Reiter's syndrome, Sjögren's syndrome, Takayasu's arteritis, temporal arteritis, warm autoimmune hemolytic anemia and Wegener's granulomatosis.
- certain inflammatory skin disorders are treated or prevented, such as dermatitis, eczematous dermatitis and psoriasis.
- inflammatory skin disease is a broad category that includes many conditions, ranging in severity from mild itching to serious medical health complications.
- Other conditions that are inflammatory skin disorders include eczema generally, acne and rosacea.
- disorders to be treated or prophylactically prevented or reduced by the methods of the invention include post transplantation late and chronic solid organ rejection; multiple sclerosis; autoimmune conditions (including systemic lupus erythematosus, dermatomyositis, polymyositis, inflammatory neuropathies (Guillain Barré, inflammatory polyneuropathies), vasculitis (Wegener's granulomatosus, polyarteritis nodosa ), and rare disorders such as polymyalgia rheumatica, temporal arteritis, Sjogren's syndrome, Bechet's disease, Churg-Strauss syndrome, and Takayasu's arteritis).
- autoimmune conditions including systemic lupus erythematosus, dermatomyositis, polymyositis, inflammatory neuropathies (Guillain Barré, inflammatory polyneuropathies), vasculitis (Wegener's granulomatosus,
- the described compounds can be formulated as pharmaceutical compositions and administered for any of the disorders described herein, in a host, including a human, in any of a variety of forms adapted to the chosen route of administration, including systemically, such as orally, or parenterally, by intravenous, intramuscular, topical, transdermal or subcutaneous routes.
- the compounds can be included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount to treat cancer or other disorders characterized by abnormal cell proliferation or cancer or the symptoms thereof in vivo without causing serious toxic effects in the patient treated.
- a dose of the antagonists or agonists for the above-mentioned conditions will be in the range from about 1 to 75 mg/kg, or 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day.
- the effective dosage range of the prodrug can be calculated based on the weight of the parent derivative to be delivered.
- the compounds are conveniently administered in units of any suitable dosage form, including but not limited to one containing 7 to 3000 mg, or 70 to 1400 mg of active ingredient per unit dosage form.
- An oral dosage of 50-1000 mg is usually convenient, and more typically, 50-500 mg.
- the antagonists or agonists should be administered to achieve peak plasma concentrations of the active compound of from about 0.2 to 70 ⁇ M, or about 1.0 to 10 ⁇ M. This may be achieved, for example, by the intravenous injection of an appropriate concentration of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.
- the concentration of the antagonist or agonist in the drug composition will depend on absorption, inactivation and excretion rates of the extract as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
- the compounds may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
- Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets.
- the active compound can be incorporated with excipients and used in the form of tablets, troches or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- the compounds can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like.
- a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
- the compounds can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, anti-inflammatories, or other anti-autoimmune compounds.
- Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfate; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- preferred carriers are physiological saline or phosphate buffered saline (PBS).
- the compounds are prepared with carriers that will protect the derivatives against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- a controlled release formulation including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- Liposomal suspensions are also typical as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container.
- appropriate lipid(s) such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol
- aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives is then introduced into the container.
- the container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
- the compounds can be administered in a composition that enhances the half life of the compounds in the body.
- the antagonist or agonists molecules can be linked to a molecule, such as a polyethylene glycol.
- the molecule can be used to target the compounds to a cell, for example as a ligand to a receptor.
- the linking of the compound reduces the amount of times the compound is administered in a day or in a week. In other embodiments, the linkage can enhance the oral availability of the compounds.
- compositions will additionally comprise an immunogenic adjuvant.
- Antigens especially when recombinantly produced, may elicit a stronger response when administered in conjunction with adjuvant.
- Alum is an adjuvant licensed for human use and hundreds of experimental adjuvants such as cholera toxin B are being tested.
- Helicobacter pylori is the spiral bacterium which selectively colonizes human gastric mucin-secreting cells and is the causative agent in most cases of nonerosive, gastritis in humans. Recent research activity indicates that H. pylori , which has a high urease activity, is responsible for most peptic ulcers as well as many gastric cancers. Many studies have suggested that urease, a complex of the products of the ureA and ureB genes, may be a protective antigen.
- Immunogenicity can be significantly improved if an antigen is co-administered with an adjuvant, commonly used as 0.001% to 50% solution in phosphate buffered saline (PBS).
- Adjuvants enhance the immunogenicity of an antigen but are not necessarily immunogenic themselves.
- Intrinsic adjuvants such as lipopolysaccarides, normally are the components of the killed or attenuated bacteria used as vaccines.
- Extrinsic adjuvants are immunomodulators which are typically non-covalently linked to antigens and are formulated to enhance the host immune response.
- Aluminum hydroxide and aluminum phosphate are routinely used as adjuvants in human and veterinary vaccines.
- extrinsic adjuvants can provoke potent immune responses to antigens. These include saponins complexed to membrane protein antigens (immune stimulating complexes), pluronic polymers with mineral oil, killed mycobacteria in mineral oil, Freund's complete adjuvant, bacterial products, such as muramyl dipeptide (MDP) and lipopolysaccharide (LPS), as well as lipid A, and liposomes.
- MDP muramyl dipeptide
- LPS lipopolysaccharide
- immunogens are typically emulsified in adjuvants.
- U.S. Pat. No. 4,855,283 granted to Lockhoff describes glycolipid analogs including N-glycosylamides, N-glycosylureas and N-glycosylcarbamates, each of which is substituted in the sugar residue by an amino acid, as immune-modulators or adjuvants.
- U.S. Pat. No. 4,258,029 granted to Moloney describes that octadecyl tyrosine hydrochloride (OTH) functions as an adjuvant when complexed with tetanus toxoid and formalin inactivated type I, II and III poliomyelitis virus vaccine.
- OTH octadecyl tyrosine hydrochloride
- Octodecyl esters of aromatic amino acids complexed with a recombinant hepatitis B surface antigen enhanced the host immune responses against hepatitis B virus.
- Bessler et al. “Synthetic lipopeptides as novel adjuvants,” in the 44th Forum In Immunology (1992) at page 548 et seq. is directed to employing lipopeptides as adjuvants when given in combination with an antigen.
- the lipopeptides typically had P3C as the lipidated moiety and up to only 5 amino acids, e.g., P3C-SG, P3C-SK4, P3C-SS, P3C-SSNA, P3C-SSNA.
- Antigens or immunogenic fragments thereof stimulate an immune response when administered to a host.
- the antigen is a killed whole pneumococci, lysate of pneumococci or isolated and purified PspA, as well as immunogenic fragments thereof, particularly when administered with an adjuvant (see U.S. Pat. No. 6,042,838).
- the S. pneumoniae cell surface protein PspA has been demonstrated to be a virulence factor and a protective antigen (see WO 92/14488).
- PspA was recombinantly expressed in E. coli .
- the mature PspA molecule of the Rx1 strain was truncated from its normal length of 589 amino acids to that of 314 amino acids comprising amino acids 1 to 314. This region of the PspA molecule contains most, if not all, of the protective epitopes of PspA.
- Nardelli et al. (Vaccine (1994), 12(14):1335 1339) covalently linked a tetravalent multiple antigen peptide containing a gp120 sequence to a lipid moiety and orally administered the resulting synthetic lipopeptide to mice.
- Croft et al. J. Immunol. (1991), 146(5): 793 796) have covalently coupled integral membrane proteins (Imps) isolated from E. coli to various antigens and obtained enhanced immune responses by intramuscular injection into mice and rabbits.
- Schlecht et al. Zbl. Bakt. (1989) 271:493 500
- the amount of antibody administered is an effective amount to effect the result indicated. Therefore, when an A 2a Receptor antagonist is administered to enhance an immune response, the amount administered is an effective amount to produce the desired results.
- the compounds are generally administered for a sufficient time period to alleviate the undesired symptoms and the clinical signs associated with the condition being treated. In one embodiment, the compounds are administered less than three times daily. In one embodiment, the compounds are administered in one or two doses daily. In one embodiment, the compounds are administered once daily. In some embodiments, the compounds are administered in a single oral dosage once a day. In certain embodiments, as described above, the agonists are administered in a specific order and in a particular time frame, to provide the tolerance inducing effects and reduce the use of immunosuppressive agents.
- the active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutic amount of compound in vivo in the absence of serious toxic effects.
- An effective dose can be determined by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication.
- Typical systemic dosages for the herein described conditions are those ranging from 0.01 mg/kg to 1500 mg/kg of body weight per day as a single daily dose or divided daily doses. Dosages for the described conditions typically range from 0.5-1500 mg per day. A more particularly dosage for the desired conditions ranges from 5-750 mg per day. Typical dosages can also range from 0.01 to 1500, 0.02 to 1000, 0.2 to 500, 0.02 to 200, 0.05 to 100, 0.05 to 50, 0.075 to 50, 0.1 to 50, 0.5 to 50, 1 to 50, 2 to 50, 5 to 50, 10 to 50, 25 to 50, 25 to 75, 25 to 100, 100 to 150, or 150 or more mg/kg/day, as a single daily dose or divided daily doses.
- the daily dose is between 10 and 500 mg/day.
- the dose is between about 10 and 400 mg/day, or between about 10 and 300 mg/day, or between about 20 and 300 mg/day, or between about 30 and 300 mg/day, or between about 40 and 300 mg/day, or between about 50 and 300 mg/day, or between about 60 and 300 mg/day, or between about 70 and 300 mg/day, or between about 80 and 300 mg/day, or between about 90 and 300 mg/day, or between about 100 and 300 mg/day, or about 200 mg/day.
- the compounds are given in doses of between about 1 to about 5, about 5 to about 10, about 10 to about 25 or about 25 to about 50 mg/kg. Typical dosages for topical application are those ranging from 0.001 to 100% by weight of the active compound.
- the concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the dosage ranges set forth herein are exemplary only.
- Cyclosporine A (Calbiochem, Cambridge, Mass.) was dissolved in ethanol and used at 1 uM.
- CGS-21680 (Sigma, St. Louis, Mo.) was dissolved in PBS and used at indicated concentrations.
- Anti-CD3 (2C11, BD PharMingen, San Diego, Calif.) was diluted in PBS and used at 1 ug/mL, as indicated.
- Soluble anti-CD28 (a kind gift from Dr. J. Allison, UC Berkeley, Calif.) was used at a 1/1000 dilution.
- Hemagglutinin (HA) class II is an I-Ed specific peptide (SFERFEIFPKE) which was manufactured by The Johns Hopkins School of Medicine Oncology Department Peptide Synthesis Facility.
- Anti-phospho-ERK (Santa Cruz Biotechnology, Santa Cruz, Calif.) was used at 1:400 in 5% NFDM/TBS-tween (0.1%).
- Anti-p42/p44 MAPK (Cell Signaling Technology, Danvers, Mass.) was used at 1:500 in 5% BSA/TBS-tween (0.1%).
- Anti-jun B (Santa Cruz) and anti-Actin (Sigma) were both used at 1:1000 in 5% NFDM/TBS-tween (0.1%) mAbs used for staining: biotinylated anti-clonotypic 6.5 TCR (generously provided by H.
- TGF- ⁇ (Sigma) was used at 5 ng/mL.
- IL-6 (Peprotech, Rocky Hill, N.J.), was used at 20 ng/mL.
- FACSCalibur was used for flow cytometry event collection, and events were analyzed using FlowJo software (Ashland, Oreg.). Sorting was done with FACSAria (BD Biosciences, San Jose, Calif.).
- A.E7 is a clonotypic CD4 + , Th1 T cell clone specific for pigeon cytochrome c (PCC) and is maintained as previously described (Powell et al. J Immunol. 1999; 162:2775-2784).
- A.E7s were rendered anergic with plate-bound anti-CD3 or by incubation with APC, PCC and 1 uM CGS.
- Splenocytes and lymphocytes from A 2a receptor wt or null 6.5 + mice were harvested and enriched for CD4 + T cells via negative selection with the CD4 + T cell isolation kit and LS MACs column (all from Miltenyi Biotech, Auburn, Calif.).
- the T cells were then cultured in the presence or absence of 10 ug/mL HA class II peptide and 1 uM CGS.
- the T cells were rechallenged for 3-4 hours with 100 ug/mL HA class II peptide, GolgiStop (BD PharMingen) and irradiated APCs.
- Total cAMP of na ⁇ ve or previously activated cells were assayed with the Biotrak EIA system (Amersham Biosciences, Buckinghamshire, UK).
- A.E7 cells were mock stimulated or rendered anergic as above and rested for 24 hours. They were then harvested, extensively washed, and resuspended in media.
- 3.2 ⁇ o15 cells were incubated with increasing amounts of CGS (as indicated) in a total volume of 180 pL at 37° C. After 40 minutes, whole cell lysates were generated and total cAMP levels were determined.
- splenocytes from A 2a receptor wt or null mice were harvested and the incubated overnight in the presence or absence of soluble anti-CD3 (activated and nai′ve, respectively). The cells were assessed for cAMP similar to the in vitro cAMP studies.
- the C3HA expressing transgenic (recipient) mice express hemagglutinin (HA) under the rat C3 promoter and has been previously described (Huang et al. J Immunol. 2003; 170:3945-3953).
- the TCR-transgenic mouse line 6.5 (donor mice) has been previously described. 8 A 2a receptor ⁇ / ⁇ mice were bred to this 6.5 mouse line.
- LAG-3 knockout mice on a C57/B6 were a generous gift of Dr. Dario Vignali.
- the LAG-3 KO genotype was bred onto a B10.D2 6.5 + TCR background. All experiments involving the mice were performed in accordance with protocols approved by the Animal Care and Use Committee of The Johns Hopkins University School of Medicine.
- Clonotypic CD4 + T cells were harvested from 6.5 + transgenic mice. The unfractionated population was resuspended to contain 1.2 ⁇ 10 6 6.5 + T cells in 200 uL of HBSS for i.v. injection through the tail vein of C3HA mice. Recipient mice were given twice daily i.p. injections of vehicle (PBS alone) or CGS (2.5 mg/kg) in 100 uL volumes, on Days 1-4 following the transfer. No CGS was administered after Day 4. The percentage of CD4 + , 6 . 5 + , Thy 1.1 + , Thy 1.2 ⁇ clonotypic T cells was determined by flow cytometric analysis.
- CD44 level was also analyzed to ensure that these clonotypic T cells were not activated in donor mice and were naive in phenotype.
- the cells were washed three times with HBSS and the unfractionated population was resuspended to contain the appropriate number of clonotypic T cells in 200 uL of HBSS for i.v. injection through the tail vein of C3HA.
- splenocytes from 6.5 + mice were stimulated overnight with 10 ug/mL HA class II peptide then harvested and enriched for CD4 + T cells.
- CD4 + purified T cells were then stimulated in 500 uL with soluble anti-CD3 (10 ug/mL) and soluble anti-CD28 (1:20 dilution).
- Nuclear extracts from CD4 + purified 6.5 + T cells that were prepared.
- the AP-1 probe was: 5′-CGC TTG ATG ACT CAG CCG GAA-3′.
- the NFkB probe was: 5′-AGT TGA GGG GAC TTT CCC AGG C-3′.
- 5cc7 splenocytes were harvested and stimulated overnight with 10 uM PCC in the presence or absence of 1 uM CGS.
- the cells were harvested, mRNA isolated with Trizol and cDNA was generated.
- RT-PCR was performed as previously described (Safford et al. Nat Immunol. 2005; 6:472-480).
- recipient C3HA mice were given 1.2 ⁇ 10 6 6.5 + donor T cells as described above. On Day 3, donor T cells were sorted and cDNA generated as above. RT-PCR was performed as previously described (Safford et al. Nat Immunol. 2005; 6:472-480).
- LAG-3 primers and probe sets used were: (SEQ ID NO: 1) Primer 5′-ACATCAACCAGACAGTGGCCA-3′/ (SEQ ID NO: 2) Primer 5′-GCATCCCCTGGTGAAGGTC-3′/ (SEQ ID NO: 3) Probe 5′-6FAM-CCCACTCCCATCCCGGCCC-TAMRA-3′ FoxP3 primers and probe sets used were: (SEQ ID NO: 4) Primer 5′-GGC CCT TCT CCA GGA CAG A-3′/ (SEQ ID NO: 5) Primer 5′-GCT GAT CAT GGC TGG GTT GT -3′/ (SEQ ID NO: 6) Probe 5′-6FAM-ACT TCA TGC ATC AGC TCT CCA CTG TGG ATT AT-TAMRA-3′
- IL-6 and TGF- ⁇ primers and probe sets were purchased from Applied Biosystems (Foster City, Calif.).
- Example 1 A 2a Receptor Signaling During Activation Mimics Signal 1 Alone
- A.E7 is a clonotypic CD4′, Th1 T cell clone specific for pigeon cytochrome c (PCC) and is maintained as previously described (Powell, J. D., Lerner, C. G. & Schwartz, R. H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 162, 2775-84 (1999)). A.E7s were rendered anergic with anti-CD3 or by incubation with APC, PCC and 1 pM CGS-21680.
- A.E7s were then isolated via a ficoll gradient, washed extensively, and immediately rechallenged for proliferation and cytokine production.
- T cells were extensively washed and 5 ⁇ 10 6 cells were added to 50 ⁇ 10 4 irradiated BIO.A splenocytes and increasing doses of PCC in triplicate in a 96-well flat-bottomed plate. After 48 hours, cells were pulsed with [ 3 H] thymidine and harvested 16 hrs later. Tritium incorporation was determined by a Packard Matrix 96 direct beta counter (Packard bioscience). For cytokine production, a 96-well round-bottom plate was preincubated with 3 pg/mL anti-CD3 for 3 hours.
- the wells were washed and 10 5 A.E7s were added in the presence of anti-CD28 and increasing doses of CGS (as indicated) in a total volume of 200 pL. All conditions were done in triplicate and were cultured overnight. Supernatant was collected and assessed for cytokine levels (eBioscience for IL-2, IFN-y, TNF-a; R&D Systems for GM-CSF) as per manufacturers' instructions. For each sample, multiple dilutions of the supernatant were assayed and concentration was determined based upon the dilution that best fit the most linear aspect of the standard curve. For CD25 measurements, the cells used for cytokine production were stained with anti-CD25, harvested and measured by flow cytometry.
- cytokine levels eBioscience for IL-2, IFN-y, TNF-a; R&D Systems for GM-CSF
- Splenocytes and lymphocytes from A 2a receptor wt or null, 6.5 + mice were harvested and enriched for CD4′ T cells via negative selection with the CD4 + T cell isolation kit and LS MACs column (all from Miltenyi Biotech, Auburn, Calif.). The T cells were then cultured for in the presence or absence of 10 pg/mL HA class II peptide and 1 pM CGS. Irradiated splenocytes from mice of the same A 2a receptor genotype were used as APCs, at a 10:1 ratio with T cells. After 3 days, the T cells were harvested and isolated via a ficoll gradient, washed extensively and immediately rechallenged for intracellular staining.
- the 1 ⁇ 10 5 T cells were stimulated for 3-4 hours with 5 ⁇ 10 5 irradiated A 2a receptor wt APCs, I00 pg1 mL HA class II peptide and a 1:1000 dilution of GolgiStop (BD PharMingen), in a total volume of 200 pL. After the stimulation, the cells were washed, stained with anti-6.5 and anti-CD4 antibodies, permeablized and fixed, then stained with anti-IFN-y antibody. Finally, the cells were washed and IFN-y production of CD4 + , 6 . 5 + T cells was analyzed by flow cytometry.
- 1.2 ⁇ 10 6 clonotypic 6.5 + T cells were adoptive transferred into C3HA recipient mice as described above.
- the splenocytes and lymphocytes were harvested and pooled. 2 ⁇ 10 5 of the pooled cells were incubated in 96-well round bottom plates with varying concentrations of HA class II peptide for 24 hours. A portion of the supernatant were withdrawn and later assayed for IL-2 and IFN- ⁇ productions by ELISA. The wells were then pulsed with [ 3 H]thymidine for 16 hours and proliferation determined by tritium incorporation, as described above. All samples were performed in triplicate.
- mice that survive the initial transfer of donor T cells can survive subsequent transfer of higher numbers of clonotypic T cells.
- adenosine mediates the formation of T regulatory cells, in vivo, we gave the surviving mice from FIG. 4 a a transfer of 25 ⁇ 10 6 clonotypic T cells 4-6 weeks after the first transfer. No CGS is administered upon the second transfer.
- Recipient mice are given 1.2 ⁇ 10 6 donor T cells as described above.
- cells from spleens and lymph nodes are harvested and pooled. They are enriched for CD4 + T cells via negative selection using biotinylated anti-CD8 (Ly-2, 53-6.7), anti-B220 (RA3-6B2) and anti-Thy 1.2(30-H12) antibodies (all from BD Biosciences PharMingen), and MACS streptavidin microbeads and AutoMACS column (Miltenyi Biotech) to deplete CD8 + T cells, B cells and recipient cells (Thy 1.2′). The remaining cells are then sorted on Thy 1. I and CD4 using FACSAria cell sorter to yield a CD4′, 6.5′ T cell population of greater than 95% purity. RT-PCR was performed as previously described′.
- LAG-3 primers and probe sets used are: (SEQ ID NO: 1) Primer 5′-ACATCAACCAGACAGTGGCCA-3′/ (SEQ ID NO: 2) Primer 5′-GCATCCCCTGGTGAAGGTC-3′/ (SEQ ID NO: 3) Probe 5′-6FAM-CCCACTCCCATCCCGG CCC-TAMRA-3′
- FIG. 1 b The cytokine profile of cells stimulated with anti-CD3 and anti-CD28 in the presence of the A 2a receptor agonist, matched that of the cytokine profile seen in T cell anergy (Signal 1 alone). IL-2 production was markedly decreased followed by IFN- ⁇ and GM-CSF (see FIG. 1 b ). Production of the chemokine MIP-1 ⁇ which is induced with anti-CD3 stimulation alone, was not inhibited by CGS ( FIGS. 1 c and d ).
- Example 2 A 2a Receptor Engagement Promotes Long-Term Tolerance and LAG-3+ and Foxp3 Regulatory T Cells
- A.E7 T cells (specific for the antigen PCC) were co-incubated with irradiated APCs in the presence or absence of both CGS and PCC (induction, primary stimulation). Next, the T cells were isolated and rechallenged with APCs and peptide in the absence of CGS (secondary stimulation).
- IL-2 has the ability to prevent T cell anergy.
- IL-2 was added to the cultures stimulated in the presence or absence of CGS and then determined if the cells were anergic upon rechallenge. Consistent with anergy (Signal 1 alone), the presence of IL-2 prevented the ability of CGS to induce anergy ( FIGS. 2 d and e ).
- TCR transgenic T cells were incubated with HA (their cognate antigen) in the presence or absence of CGS during the primary stimulation, and then rechallenged and assessed for IFN- ⁇ production by intracellular staining.
- HA family cognate antigen
- a 2a receptor signaling during the primary stimulation induced anergy such that the cells were hyporesponsive upon subsequent stimulation ( FIG. 3 a ).
- a 2a receptor null T cells were resistant to CGS-induced anergy, confirming the specificity of CGS for the A 2a receptor.
- Example 3 A 2a Receptor Signaling Promotes Long-Term Tolerance, In Vivo
- TCR transgenic 6.5 + T cells were adoptively transferred into C3HA mice that express HA as a self antigen (primarily in the lung), It is known that such cells initially are activated and proliferate but then become anergic by Day 4. The balance between the induction of peripheral tolerance and autoimmunity can be manipulated by adjusting the input of adoptively transferred 6.5 + T cells.
- C3HA mice were given clonotypic T cells, treated with CGS or vehicle, and their lymphocytes were harvested 2 or 3 days later. Cells harvested two days after adoptive transfer display equal proliferation and cytokine production, regardless of CGS treatment. By Day 3, however, the T cells derived from the CGS treated mice were hyporesponsive, displaying significant reduction in proliferation and IFN- ⁇ production following in vitro stimulation when compared to T cells from vehicle-treated mice.
- FIGS. 4 b and c Note that there is no CGS present during the rechallenge. The data depict the consequence of CGS exposure in vivo prior to rechallenge. By treating the mice with pharmacologic doses of an A 2a receptor agonist tolerance could thus be induced.
- inducible regulatory T cells A role for inducible regulatory T cells has been demonstrated in a number of in vivo models of tolerance. Recently, it has been shown both that the CD4 homologue LAG-3 is expressed on inducible regulatory T cells, in vivo, and that anti-LAG-3 antibodies have the ability to hasten the development of autoimmunity in the C3HA model. Alternatively, these LAG-3 + regulatory T cells have the ability to protect mice against subsequent rechallenge with normally lethal doses of clonotypic cells.
- Tests were conducted to determine if the ability of CGS to promote tolerance, in vivo, was in part related to the induction of LAG-3 + regulatory T cells.
- the ability of CGS to promote tolerance and prevent death was analyzed when LAG-3 null clonotypic T cells were adoptively transferred into C3HA mice ( FIG. 5 c ).
- the adoptive transfer of LAG-3 KO T cells led to the rapid death of 100% of the C3HA hosts.
- the adoptive transfer of Wt T cells led to delayed death and 25% survival.
- CGS was able to prevent death in 100% of the mice receiving Wt T cells but had no affect on the mice receiving LAG-3 null T cells.
- a 2a receptor signaling appears to promote tolerance in part by promoting the generation of LAG-3 + T regulatory cells.
- mice that survived the initial adoptive transfer (the 20% of the mice from FIG. 4 a ) all survive the second transfer while the transfer of cells into na ⁇ ve C3HA mice resulted in 100% mortality. 100% of the mice that survived as a result of CGS treatment also survived the second adoptive transfer.
- a short course of CGS treatment not only prevented acute autoimmunity and induced anergy, but it also promoted the induction of regulatory T cells, such that these mice were protected from a subsequent lethal challenge of autoreactive T cells over a month later.
- the microenvironment surrounding tumors contains high levels of adenosine (Spychala, J. Tumor-promoting functions of adenosine. Pharmacol Ther 87, 161-173 (2000)). Tests were conducted to analyze if tumor vaccines would be more effective in A 2a receptor null mice. WT and A 2a null mice were vaccinated in a model of metastatic cervical cancer.
- a 2a receptor engagement during either the induction or the effector phase of the T cell response leads to tolerance.
- a 2a receptor engagement with CGS-21680 (CGS), an A 2a receptr-specific agonist markedly inhibits T cell activation ( FIG. 8A ).
- CGS-21680 CGS-21680
- signaling through the A 2a receptor during antigen recognition renders the T cells hyporesponsive upon subsequent rechallenge ( FIG. 8B ). That is A 2a receptor engagement during T cell activation can render T cells tolerant such that they are anergic upon rechallenge even in the absence of adenosine or A 2a agonists.
- the A 2a receptor antagonist ZM-241385 (ZM)
- ZM ZM-241385
- a 2a receptor antagonism can actually enhance the activity of previously tolerized T cells ( FIG. 8C ).
- a 2a receptor engagement inhibits T cell activation and promotes tolerance while A 2a receptor antagonism increases T cell activate and prevents the induction of tolerance.
- FIG. 9 demonstrates that antigen specific T cells from A 2a receptor null mice expand to a greater extent after infection with vaccinia virus. This expansion leads to the generation of more IFN- ⁇ producing effector cells ( FIG. 10 ). Similarly there is an increase in expansion and generation of functional antigen specific effector T cells in A 2a receptor null mice when these are vaccinated with a whole cell GVAX vaccine ( FIGS. 11 a & 11 b ). A 2a receptor null mice also have an increased response to the whole cell GVAX vaccine when measured by average tumor size over time (see FIG. 12 ).
- T cells respond to antigens from the pathogen either presented by the infected cells or cross presented by professional antigen presenting cells.
- Experiments were designed to test whether an endogenous immune response of A 2a receptor null mice would be more robust than that of Wt mice.
- FIG. 13 when give 10 5 lymphoma cells, A 2a receptor null mice reject the tumor and remain essentially tumor free while WT mice develop tumor and die.
- the mice are given 10 6 lymphoma cells, there is a delay in death in the A 2a receptor null mice compared with the Wt mice (data not shown). Therefore we gave Wt and A 2a receptor null mice GVAX, challenged them with 10 6 tumor cells and then followed them for disease free survival.
- FIG. 13 when give 10 5 lymphoma cells, A 2a receptor null mice reject the tumor and remain essentially tumor free while WT mice develop tumor and die.
- the mice are given 10 6 lymphoma cells, there is a delay in death in the A 2a receptor null mice compared with the
- FIG. 15 shows the percent of tumor free survival over time in wild type or A 2a receptor knock out mice that had been previously challenged with EL-4 lymphoma cells.
- Wt or KO mice were initially inoculated subcutaneously with 1 ⁇ 10 4 EL-4 cells in the left flank on Day ⁇ 30. No tumor developed. On Day 0, the mice received 1 ⁇ 10 6 EL-4 cells in the right flank. The graph follows the development of palpable tumor following the second tumor (1 ⁇ 10 6 ) challenge.
- Example 7 A 2a Receptor Antagonists Enhanced Antibody Mediated Anti-Melanoma Therapy
- Antibody therapy is more effective in A 2a receptor KO mice.
- Wt and A 2a receptor null mice received 1 million B16 melanoma cells IV on day 0.
- Control mice received not treatment.
- Treated mice received 200 ug IP of TA99 antibody on days 0,2,5.
- the mice were sacrificed on Day 15 and lung metastases were counted.
- a 2a receptor knock out animals have melanoma metastases at similar levels to mice treated with antibody. Eliminating A 2a receptor activity in the mice reduced melanoma metastases by approximately 50% and treatment with the antibody reduced metastases by approximately 60%. However, when knock out mice are treated with the antibody, the level of tumor metastases dropped by approximately 80% when compared to untreated wild type, and by 50% or more when compared to either the knock out or antibody treated wild type mice.
- ZM 241385 a pharmacological A 2a receptor antagonist
- Wt mice received 1 million B16 melanoma cells on Day 0. On day +1 they received either no treatment or 200 ug of TA99 antibody.
- Zm treated mice received 10 mg/kg IP of ZM twice a day beginning on Day 0 and continuing for the remainder of the experiment. The mice were evaluated on Day +15.
- the average lung metastases in animals treated only with antibody treatment reduced by approximately 25%, however when in combination with ZM, the average lung metastases reduced by approximately 80%.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oncology (AREA)
- Mycology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Communicable Diseases (AREA)
- Transplantation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Described are uses of A2a adenosine receptor antagonists and agonists to provide long term modulation of immune responses. A2a receptor antagonists in particular are provided to enhance immune responses by reducing T-cell mediated tolerance to antigenic stimuli and agonists are provided to enhance effectiveness of immunosuppressive agents. The application provides methods of treatment and prevention based on the long term effects of the compounds on T cell responses.
Description
- This application is a Continuation of U.S. patent application Ser. No. 12/676,741, filed Oct. 6, 2010, which is a 35 U.S.C. §371 U.S. national entry of International Application PCT/US2008/075610, having an international filing date of Sep. 8, 2008, which claims the benefit of U.S. Provisional Application Nos. 60/970,841, and 60/970,848, both filed Sep. 7, 2007, the content of each of the aforementioned applications is herein incorporated by reference in their entirety.
- This invention was made with government support under grants RO1CA098109, P50CA098252 and P30CA06973 awarded by the NIH. The Government has certain rights in the invention.
- This application contains a sequence listing. It has been submitted electronically via EFS-Web as an ASCII text file entitled “P04897-05 ST25.txt.” The sequence listing is 1,508 bytes in size, and was created on Jun. 16, 2015. It is hereby incorporated by reference in its entirety.
- This application relates to uses of A2a adenosine receptor agonists and antagonists to modulate T-cell mediated tolerance to antigenic stimuli. In particular, A2a receptor antagonists provide long term enhancement of immune responses by reducing T-cell mediated tolerance to antigenic stimuli, enhancing the induction of memory T cells and enhancing the efficacy of passive antibody administration for the treatment of cancer and infectious diseases while A2a receptor agonists provide long term reduction of immune responses by enhancing T-cell mediated tolerance to antigenic stimuli, in particular to reduce use of immunosuppressive agents in certain conditions. The application provides methods of treatment and prevention of inflammatory responses based on the long term effects of the compounds on T cell responses.
- Immune modulation is a critical aspect of the treatment of a number of diseases and disorders. T cells in particular play a vital role in fighting infections and have the capability to recognize and destroy cancer cells. Enhancing T cell mediated responses is a key component to enhancing responses to therapeutic agents. However, it is critical in immune modulation that any enhancement of an immune response is balanced against the need to prevent autoimmunity as well as chronic inflammation. Chronic inflammation and self-recognition by T cells is a major cause for the pathogenesis of systemic disorders such as rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus. Furthermore, long term immunosuppression is required in preventing rejection of transplanted organs or grafts.
- The mechanisms that prevent T-cell mediated autoimmune reactions are collectively known as T cell “tolerance”. Tolerance can occur by removing antigen specific T cells from the population, which occurs both in the thymus and the periphery. In addition, tolerance can be maintained by ‘turning off’ certain antigen specific T cells or rendering them anergic. When T cells recognize an antigen under conditions that promote anergy, these same cells later fail to respond to antigen upon rechallenge even under normally activating conditions. Anergy is induced when T cell receptor engagement (Signal 1) occurs in the absence of co-stimulation (Signal 2). A major set of co-regulatory molecules is in the B7-CD28 family.
- In addition to anergy and deletion, recently it has become clear that regulatory T cells play an important role in maintaining tolerance. Regulatory T cells suppress auto-reactive T cells. Thus, as the level of regulatory T cells decreases, the potential for autoimmunity rises. Interestingly, tumors have been shown to evade immune destruction by impeding T cell activation through inhibition of co-stimulatory factors in the B7-CD28 and TNF families, as well as by attracting regulatory T cells, which inhibit anti-tumor T cell responses (see Wang (2006) Immune Suppression by Tumor Specific CD4+ Regulatory T cells in Cancer. Semin. Cancer. Biol. 16:73-79; Greenwald, et al. (2005) The B7 Family Revisited. Ann. Rev. Immunol. 23:515-48; Watts (2005) TNF/TNFR Family Members in Co-stimulation of T Cell Responses Ann. Rev. Immunol. 23:23-68; Sadum, et al. (2007) Immune Signatures of Murine and Human Cancers Reveal Unique Mechanisms of Tumor Escape and New Targets for Cancer Immunotherapy. Clin. Canc. Res. 13(13): 4016-4025).
- Autoimmune diseases develop when the body's immune system fails to recognize normal body tissues and attacks and destroys them as if they were foreign rather than attacking an outside organism. There are nearly 150 autoimmune disorders with no currently known cures. Although the cause is not fully understood, pioneering work by Rose, Witebsky, Roitt and Doniach provided evidence that autoimmune diseases result at least in part from loss of T cell tolerance. An essential prerequisite for the pathogenesis of autoimmune diseases is indeed the breakage of immunological tolerance, which leads to the immune system mounting an effective and specific immune response against self determinants. Several theories exist as to what causes this breakdown, including the breakdown of “clonal deletion theory”, according to which self-reactive lymphoid cells are destroyed during the development of the immune system in an individual, the breakdown of “clonal anergy theory”, in which self-reactive T- or B-cells become inactivated in the normal individual and cannot amplify the immune response, the breakdown of “idiotype network theory”, wherein a network of antibodies capable of neutralizing self-reactive antibodies exists naturally within the body, and the “suppressor population theory”, wherein regulatory T-lymphocytes prevent or limit autoaggressive immune responses.
- Adenosine modulates diverse physiological functions including induction of sedation, vasodilatation, suppression of cardiac rate and contractility, inhibition of platelet aggregation, stimulation of gluconeogenesis and inhibition of lipolysis (see, Stiles (1986) Trends Pharmacol. Sci. 7:486; Williams, (1987) Ann. Rev. Pharmacol. Toxicol. 27:315; Rarnkumar et al., (1988) Prog. Drug. Res. 32:195). In addition, adenosine and some adenosine analogs that non-selectively activate adenosine receptor subtypes decrease neutrophil production of inflammatory oxidative products (Cronstein et al., (1986) Ann. N Y. Acad. Sci. 451:291; Roberts et al., (1985) Biochem. J, 227:669; Schrier et al., (1986) J. Immunol. 137:3284; Cronstein et al., (1987) Clinical Immunol. Immunopath. 42:76).
- Adenosine binds to P1 purinergic receptors, which are members of the G protein-coupled receptor family. Four subtypes of adenosine receptors have been cloned: A1, A2a, A2B, and A3. The four subtypes have the hallmark structural characteristics that are common to G protein-coupled receptors, including seven putative transmembrane spanning domains, an extracellular NH2 terminus, cytoplasmic COOH terminus, and a third intracellular loop that is important in binding G proteins.
- The A2a receptor cDNA, which has been cloned from several species including humans, encodes a protein of 45 kDa, larger than the molecular masses of the other subtypes. This is primarily due to the additional 80-90 amino acids of the COOH-terminal tail. The overall amino acid identity is 90% among species, with most of the differences occurring in the second extracellular loop and the long COOH-terminal domain. The COOH-terminal domain has several serine and threonine residues that are potential phosphorylation sites. A2a adenosine receptors stimulate adenylyl cyclase and increase the production of cAMP by coupling to stimulatory G proteins (Gs) or to Golf in certain tissues. In addition to the cAMP-protein kinase A (PKA) pathway, recent studies indicate that serine/threonine protein phosphatase, mitogen-activated protein kinase (MAP kinase), PKC, and phospholipase D may participate in mediating the effects of A2a adenosine receptor activation. Further, the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs, also known as Epac1 and Epac2) may also participate in mediating the effects of these receptors.
- Studies have indicated that adenosine has a direct effect on hematopoietic and endothelial cells to reduce inflammation (for a review, see Linden (2001) Molecular approach to adenosine receptors: receptor mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41: 775-787). Evidence for an anti-inflammatory role of A2a adenosine receptor activation comes from a variety of studies both in vivo and in vitro (Cronstein et al. (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2− generation, respectively. J Clin Invest 85: 1150-1157; Schrier and Imre (1986) The effects of adenosine agonists on human neutrophil function (Abstract). J Immunol 137: 3284; Sullivan et al. (1995) The specific type IV phosphodiesterase inhibitor rolipram combined with adenosine reduces tumor necrosis factor-a (TNF-α)-primed neutrophil oxidative activity. Int J Immunopharmacol 17: 793-803). This physiological role of endogenous adenosine became apparent after the demonstration that activated neutrophils or endothelial cells release and respond to adenosine. Monocytes accumulate more slowly at sites of inflammation than neutrophils and contribute to the inflammatory process by producing and releasing cytokines. The results of several studies indicate that the proinflammatory cytokine TNF-α, is regulated by A2a adenosine receptors (Bouma et al. (1994) Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol 153:4159-4168; Eigler et al. (1997) Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis. Scand J Immunol 45: 132-139; Hasko et al. (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-α, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 96: 4634-4640; Reinstein et al. (1994) Suppression of lipopolysaccharidestimulated release of tumor necrosis factor by adenosine: evidence for A2 receptors on rat Kupffer cells. Hepatology 19: 1445-1452).
- On the basis of the evidence that activation of A2a adenosine receptors regulates factors that attenuate inflammation, studies have been performed using selective A2a agonists in tissue to determine whether activation of A2a receptors confers tissue protection. In many of these studies, the observation that A2a agonist-induced tissue protection was associated with a reduction of factors associated with inflammation suggested that A2a agonists contribute to tissue protection by attenuating inflammation, although a direct causal relationship between tissue protection and attenuation of inflammation by A2a agonists has not been proven.
- Evidence has accumulated that adenosine accumulation in hypoxic conditions can lead to activation of A2a receptors and, in certain instances, can cause inhibition of immune cells, in particular, of T lymphocytes.
- Ohta and Sitkovsky have proposed that adenosine, when acting on A2a receptors, protects tissues from excessive inflammation (Ohta, and Sitkovsky (2001) Role of G-protein-coupled adenosine receptors in down-regulation of inflammation and protection from tissue damage. Nature 414(6866):916-20). Using an A2a receptor knock-out mouse, Ohta et al. showed that, while sub-threshold doses of an inflammatory stimulus caused minimal tissue damage in wild-type mice, such doses were sufficient to induce extensive tissue damage, more prolonged and higher levels of pro-inflammatory cytokines, and death of animals deficient in the A2a adenosine receptor. Additional observations were made in studies of model systems of inflammation and liver damage as well as during bacterial endotoxin-induced septic shock.
- Kinsel and Sitkovsky overviewed possible targeting of certain G protein coupled receptors, including A2a receptors, in manipulating inflammation in vivo with ligands (Kinsel J F, Sitkovsky M V. (2003) Possible targeting of G protein coupled receptors to manipulate inflammation in vivo using synthetic and natural ligands. Ann Rheum Dis. 62 Suppl 2:ii22-4). The authors state that targeting of these receptors by selective agonists may lead to better protocols of anti-inflammatory treatments, and that inhibiting the Gs protein coupled mediated signaling with antagonists could be explored in studies of approaches to enhance inflammation and tissue damage.
- Ohta, et al. have also proposed that the A2a adenosine receptor protects tumors from anti-tumor T cells (Ohta, et al. (2006) A2a adenosine receptor protects tumors from antitumor T cells. PNAS 103(35):13132-7). Again using A2a receptor deficient mice, the investigators showed that approximately 60% of tumor cells were rejected when compared to no rejection in normal mice. The investigators also showed that treatment using an A2a receptor antagonist improved inhibition of tumor growth, destruction of metastases and prevention of neovascularization by anti-tumor T cells. In all cases, the treatment was continuous during the timeframe, with no suggestion of long term effects.
- PCT Publication No. WO 03/050241 by Sitkovsky and Ohta describes the methods to increase an immune response to an antigen, increasing vaccine efficacy or increasing an immune response to a tumor antigen or immune cell-mediated tumor destruction by administering an agent that inhibits extracellular adenosine or inhibits adenosine receptors.
- Sullivan described the role of endogenous adenosine in blocking potentially destructive inflammatory cascades by binding to A2a adenosine receptors and decreasing activation of platelets, leukocytes and endothelial cells (Sullivan G W. (2003) Adenosine A2a receptor agonists as anti-inflammatory agents. Curr Opin Investig Drugs. 4(11):1313-9). Sullivan also reviews potential disease targets for A2a receptor agonist treatment, including in allergen-induced inflammation, ischemia-reperfusion injury, sepsis and autoimmune diseases.
- Kinsel and Sitkovsky overviewed possible targeting of certain G protein coupled receptors, including A2a receptors, in manipulating inflammation in vivo with ligands (Kinsel J F, Sitkovsky M V. (2003) Possible targeting of G protein coupled receptors to manipulate inflammation in vivo using synthetic and natural ligands. Ann Rheum Dis. 62 Suppl 2:ii22-4). The authors state that targeting of these receptors by selective agonists may lead to better protocols of anti-inflammatory treatments.
- Ulusal et al. conducted in vivo experimental studies to investigate whether A2a receptor agonists reduce allostimulatory functions of dendritic cells, for example through modulation of surface expression of the costimulatory molecules and down-regulation of cytokines (Ulusal B G, et al. (2006) The effect of A2a adenosine receptor agonist on composite tissue allotransplant survival: an in vivo preliminary study. J Surg Res. 131(2):261-6). The authors state that the results from this study showed that A2a adenosine receptor agonist treatment does not prolong composite tissue allograft survival.
- Sevigny, et al. investigated the in vitro and in vivo effect of A2a receptor agonists to attenuate allogenic immune activation (Sevigny C P, et al. (2007 Apr. 1) Activation of adenosine 2a receptors attenuates allograft rejection and alloantigen recognition. J Immunol 178(7):4240-9). The authors state that the results indicated that A2a receptor agonists attenuate allogenic recognition by action on both T lymphocytes and APCs in vitro and delayed acute rejection in vivo and may represent a new class of compounds for induction therapy in organ transplantation.
- Nemeth, et al. investigated adenosine receptor activation in type I diabetes and suggest that adenosine receptor ligands could be potential candidates for treatment of type I diabetes and could be promising targets in autoimmune disease (Nemeth Z H, et al. (2007) Adenosine receptor activation ameliorates
type 1 diabetes. FASEB J. epub). - There remains a need for therapies that provide long term enhancement of immune responses to specific antigens, particularly for treatment and prevention of abnormal cell proliferation and for treatment of infectious diseases and disorders. There also remains a need for treatments that provide long term, targeted immune suppression and reduce the need for standard immunosuppressive therapies in certain disorders, in particular in the area of transplantation and autoimmunity.
- It is an object of the present invention to provide methods of treatment that allow simplified treatment protocols and enhance immune responses against certain antigens. It is a specific object of the invention to provide improved methods of preventing or treating abnormal cell proliferation and infectious diseases in a host. It is a separate object of the present invention to provide more effective therapeutic regimes to reduce the need for long term treatment with immunosuppressive therapies in a host.
- It has been discovered that A2a receptors are responsible for induction of long term T cell tolerance. These receptors can induce tolerance both by promoting T cell anergy, under which T cells fail to respond to an antigen upon re-challenge even under normally activating conditions, and by inducing regulatory T cells, which are responsible for maintained tolerance.
- It has now been found that A2a receptor antagonists can overcome T cell tolerance and thus stimulate long term resistance to certain antigens. In particular, it has been found that A2a receptor antagonists can overcome tumor escape mechanisms including both anergy and regulatory T cell induction caused by tumor cells and cause long-term tumor susceptibility to treatment. Thus, provided are methods of enhancing immune responses against infectious agents as well as methods of treatment or prevention of abnormal cell proliferation.
- In one principal embodiment, methods are provided for enhancing an immune response in a host in need thereof. The immune response can be enhanced by reducing T cell tolerance, including by increasing IFN-γ release, by decreasing regulatory T cell production or activation, or by increasing antigen-specific memory T cell production in a host. In one embodiment, the method comprises administering a A2a receptor antagonist to a host in combination or alternation with an antibody. In particular subembodiments, the antibody is a therapeutic antibody. In one particular embodiment, a method of enhancing efficacy of passive antibody therapy is provided comprising administering an A2a receptor antagonist in combination or alternation with one or more passive antibodies. This method can enhance the efficacy of antibody therapy for treatment of abnormal cell proliferative disorders such as cancer, or can enhance the efficacy of therapy in the treatment or prevention of infectious diseases. The antagonist can be administered in combination or alternation with antibodies such as rituximab, herceptin or erbitux, for example. In a separate embodiment, the method comprises administering a first A2a receptor antagonist substantially in combination with an antigen to a host and subsequently administering a second A2a receptor antagonist in the absence of the antigen. The antigens are typically derived from a pathogenic organism, such as a virus or bacterium. The first and second A2a receptor antagonists can be the same or can be different and can be administered in the same or in separate preparations. The first A2a receptor antagonist can enhance an immune response against the antigen for an extended period of time, such as for at least one day or more, such as for at least one week.
- In certain embodiments, A2a receptor antagonist administration enhances the number of antigen specific memory T cells in a host. In particular embodiments, the number of memory T cells is enhanced 2-5 fold over the number in a control host who has not been administered an antagonist. The immune response can also be an enhancement of a cytokine release, such as IFN-γ release. In particular embodiments, the enhancement of IFN-γ release is 2-5 fold over the amount of IFN-γ release in a control host who has not been administered an antagonist. In yet another embodiment, the immune response is a reduction in regulatory T cells. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells. In particular embodiments, the generation, expansion or stimulation of regulatory T cells is enhanced 2-5 fold over the number in a control host who has not been administered an antagonist.
- In another embodiment, a method of enhancing an immune response in a host is provided comprising administering an A2a receptor antagonist to the host and subsequently administering an antigen to the host in the absence of the antagonist. In certain embodiments, the method comprises administering an A2a receptor antagonist substantially in combination with a first antigen to the host and subsequently administering a second antigen in the absence of the antagonist. The antigen can be any compound that elicits an immune response, and in non-limiting examples is a viral protein, a bacterial protein, or a mammalian protein. The antigen can be expressed in a Listeria species, which can be attenuated for entry into non-phagocytic cells.
- In another principal embodiment, a method of treating an infection in a host by enhancing the generation of antigen-specific memory T cells is provided, comprising administering an A2a receptor antagonist to a host carrying an infection for an amount of time and at a concentration sufficient to elicit a memory T cell response, such as a response to the particular antigen, by 2 to 5 fold. The antagonist can also enhance the generation of memory T cells by at least two fold over control. In another embodiment, the antagonist enhances the generation of memory T cells by at least four fold. In one embodiment, the antagonist increases total release of Interferon-γ in the host. The infection can be a chronic infection or an acute infection and can be due to, for example, a virus or a bacteria. In one embodiment, the infection is a chronic infection such as HIV or HCV.
- In one principal embodiment, a method of enhancing an immune response in a host is provided comprising administering an A2a receptor antagonist in combination or alternation with a costimulatory molecule to the host. In certain embodiments, the costimulatory molecule enhances CD28 signaling. In certain embodiments, the costimulatory molecule is a fusion protein of a B7 family member. In some embodiments, the costimulatory molecule is a fusion of a B7-H1 or a B7-DC molecule, or a variant thereof. In specific embodiments, the costimulatory molecule is an Fc-fusion of a B7-H1 or B7-DC molecule, a fragment of a B7-H1 or B7-DC molecule, or a variant thereof. In certain cases, the variant can include one or more mutated amino acids when compared to the native protein. In certain embodiments, the costimulatory molecule does not interact with PD-1.
- In another embodiment, a method of eliciting an immune response in a host is provided comprising administering to the host an A2a receptor antagonist in combination with an antigen, wherein the antigen is a commercially available antigen, and wherein the amount of antigen administered is reduced by a factor of five beyond the effective dose to elicit an immune response to the antigen in the absence of A2a receptor antagonist. In addition, a kit is provided comprising an A2a receptor antagonist and a dosage unit, in which the dosage unit allows the separation of a dosage of a commercially available antigen into at least one fifth the provided dosage. In one embodiment, the commercially available antigen is a vaccine. In a specific embodiment, the vaccine dosage is reduced by a factor of 10.
- In separate principal embodiments, methods of treating or preventing abnormal cell proliferation in a host are provided comprising administering an A2a receptor antagonist to a host at risk of or suffering from a disorder of abnormal cell proliferation, such as cancer. These methods can reduce the risk of developing cancer in the host. In other embodiments, the methods reduce the amount of cancer in a host. In yet other embodiments, the methods reduce the metastatic potential of a cancer in a host. The methods can also reduce the size of a cancer in a host.
- In some embodiments, administration of an A2a receptor antagonist reduces tolerance of T cells to a cancer. In these embodiments, the antagonist increases susceptibility of cancer cells to immune rejection. In certain embodiments, the immune response elicited by an A2a antagonist is a reduction in regulatory T cells. In yet other embodiments, the A2a receptor antagonists inhibit generation, expansion or stimulation of regulatory T cells. In further embodiments, the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- In one specific embodiment, a method of treating or preventing abnormal cell proliferation in a host is provided comprising administering to a host in need thereof an Aza receptor antagonist in combination or alternation with a mammalian cell based vaccine, which can be a whole mammalian cell such as a tumor cell that is not actively dividing and can be genetically modified to secrete an activation factor for an antigen-presenting cell such as a granulocyte-macrophage colony stimulating factor (GM-CSF). In other embodiments, the cell based vaccine comprises a dendritic cell or a dendritic cell formulation.
- In one embodiment, the A2a receptor antagonist reduces tolerance of T cells to a cell in the cell based vaccine. In this embodiment, the antagonist increases susceptibility of tumor cells to immune rejection. In one embodiment, the immune response is a reduction in regulatory T cells. In one embodiment, the antagonist enhances generation of memory T cells. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells. In another embodiment, the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells. In some embodiments, the changes in T cell responses are specific to the particular antigen.
- In another principal embodiment, a method of treating or preventing abnormal cell proliferation is provided comprising administering an A2a receptor antagonist to a host in need thereof substantially in the absence of another anti-cancer agent.
- In another principal embodiment, a method of treating or preventing abnormal cell proliferation in a host in need thereof is provided, comprising administering a first A2a receptor antagonist substantially in combination with a first anti-cancer agent to the host and subsequently administering a second A2a receptor antagonist. In one subembodiment, the second antagonist is administered substantially in the absence of another anti-cancer agent. In another principal embodiment, a method of treating or preventing abnormal cell proliferation in a host in need thereof is provided, comprising administering an A2a receptor antagonist substantially in combination with a first anti-cancer agent to the host and subsequently administering a second anti-cancer agent in the absence of the antagonist.
- Alternative embodiments of the present invention relate to the use of A2a receptor agonists, rather than antagonists. Many drugs have been shown to inhibit T cells responses, for example Cyclosporin A. However, such agents require continuous administration. That is, when the drug is stopped the T cells can become activated again. It has now been found that A2a receptor agonists can stimulate long term T cell tolerance. As such, a finite treatment of A2a receptor agonists will lead to tolerance thus abrogating the need for chronic immunosuppression. In particular, A2a receptor agonists can reduce the need for continued immunosuppression in preventing or treating autoimmune diseases or disorders, for example in preventing transplant rejection or Graft versus Host Disease.
- In one embodiment, a method of inducing immune tolerance in a host in need thereof is provided comprising administering an A2a receptor agonist to the host, wherein the tolerance is induced for at least one week. The administration of the agonist can be in a single administration, or can be in a short term regimen. In one embodiment, the administration is a short term regimen of two weeks or less. The tolerance can be specific to an antigen or can be general tolerance of T cells in the host.
- In acute response instances, for example in an organ transplantation situation, an A2a agonist can be administered at least daily for a period of weeks to months during and after the transplantation. In chronic situations, such as an autoimmune disease, the agonist can be administered during a ‘flare up’. In other embodiments, the agonist is not administered during a ‘flare up’, but is administered when no agent to decrease inflammation is necessary. In certain embodiments, the agonist is administered during a ‘flare up’, but then is additionally administered after inflammation is no longer apparent to increase auto-tolerance.
- In one embodiment, the A2a agonist is administered in combination with an immunosuppressive agent. In some embodiments, the A2a agonist is administered in combination with an immunosuppressive agent and subsequently, the A2a agonist is administered in the absence of the immunosuppressive agent.
- In a specific embodiment, the host is in need of immunosuppressive therapy. In one embodiment, the host is being treated with an immunosuppressive therapy. In certain embodiments, administration of the A2a receptor agonist reduces the amount of immunosuppressive therapy administered to the host. In certain embodiments, an immunosuppressive agent is not administered to the host receiving the agonist.
- In some embodiments, the A2a receptor agonist is administered to a host who has failed immunosuppressive therapy or refractory thereto. In certain instances, the host has an immune response, for example an organ rejection, while being administered immunosuppressive therapy. In certain embodiments, administration of the A2a agonist reduces immune responses against an antigen. In some instances, the antigen can be administered to the host in combination or alternation with the agonist to cause T cell tolerance to the antigen.
- In one particular embodiment, the host is suffering from or at risk of an autoimmune disease or disorder. In another embodiment, the host is a recipient of a transplanted tissue or organ. In a particular embodiment, the host is at risk of organ rejection.
- In certain embodiments, the A2a agonist is administered in combination or alternation with a checkpoint blocker such as B7-H4 or fragments or variants thereof.
-
FIG. 1A-1D are graphs showing A2a receptor signaling during T cell activation mimicsSignal 1 alone. 1(a) is a graph of IL-2, GM-CSF, TNF-α, and IFN-γ levels (solid diamonds, hollow squares, hollow circles and crosses, respectively) of A.E7s stimulated with anti-CD3 and anti-CD28 in increasing doses of CGS (denoted on X axis). 1(b) is a graph of surface expression of CD25 of A.E7s after activation with anti-CD3 and anti-CD28 in the presence (grey) or absence (black) of 1 μM CGS. Data are representative of 3 separate experiments. 1(c) & (d) are graphs of the cytokine profile of anergic A.E7s (c) or A.E7s stimulated with anti-CD3 and anti-CD28 and 20 nM CGS (d). Data are represented as percentage of A.E7s stimulated with anti-CD3 and anti-CD28, and is the average of 3 separate experiments. -
FIG. 2A-2E are graphs showing A2a receptor engagement during activation promotes T cell tolerance. 2(a) & (b) is graphs of proliferation upon rechallenge of A.E7 T cells following 4 day incubation without or with peptide (panel A or B, respectively) in the absence (open squares) or presence (solid diamonds) of 1 μM CGS. 2(c) is a graph of IFN-γ production upon rechallenge of A.E7 T cells following incubation without or with peptide (left or right side, respectively) in the absence (open bars) or presence (solid bars) of 1 μM CGS. 2(d) & (e) is graphs of proliferation and IFN-γ production upon rechallenge of A.E7s incubation with peptide and exogenous IL-2 in the absence or presence of 1 μM CGS. All data are representative of at least 3 independent experiments. (*: p>0.05) -
FIG. 3A-3F are graphs showing that A2a receptor signaling promotes the upregulation of LAG-3+ in vitro.FIG. 3(a) is a graph of the percentage of A2a receptor Wt or KO T cells that were IFN-γ positive upon rechallenge following incubation with peptide in the absence (solid bars) or presence (open bars) of 1 μM CGS. 3(b) is a graph showing fold increase in LAG-3 expression in cells. CD4+, 6.5+ primary T cells were cultured with irradiated APCs and HA±1 μM CGS for 3 days. mRNA was harvested and assayed for abundance of LAG-3 transcripts. Data are representative of 3 independent experiments. 3(c) is a graph of LAG3 upregulation in A.E7 T cells following stimulation with ionomycin or PMA. 3(d) is an image of representative Western blots for phosphor-ERK and total ERK (top and bottom respectively). Activated CD4+, 6.5+ primary T cells were stimulated with 1 and 2 in the absence or presence of 1 μM CGS. Data are representative of 3 independent experiments. 3(e) is an image of representative Western blots for junB, and actin (top and bottom, respectively). CD4+, 6.5+ primary T cells were stimulated with HA and irradiated APCs overnight in the absence or presence of 1 μM CGS. Data are representative of 3 independent experiments. 3(f) is an image of representative EMSA for AP-1. CD4+, 6.5 + primary T cells were stimulated with HA and irradiated APCs overnight in the absence or presence of 1 μM CGS. Data are representative of 3 independent experiments.signals -
FIG. 4A-4D are graphs showing A2a receptor stimulation in vivo prevents death by autoimmunity and promotes T cell tolerance.FIG. 4(a) is a survival curve of C3HA mice given 6.5+ T cells and 4 days of vehicle (open squares) or CGS (2.5 mg/kg, solid diamonds) (n=17 mice, each condition).FIG. 4(b) & (c) show graphs of in vitro proliferation (b), and IFN-γ production (c) of T cells harvested from vehicle- or CGS-treated C3HA mice (open and solid bars, respectively). Data are representative of 2 independent experiments, ≧3 mice per group. (*: p>0.05)FIG. 4(d) shows a survival curve of C3HA mice given Wt (grey diamonds) or A2a receptor null 6.5 T cells and treated with vehicle or CGS (open circles and open triangles, respectively) (n=5 each condition). -
FIG. 5A-5D are graphs showing that A2a receptor signaling, in vivo, promotes regulatory T cells.FIG. 5(a) shows a graph of LAG-2 expression in clonotypic 6.5+ T cells that were transferred into C3HA mice which were treated with vehicle or CGS (3 days after adoptive transfer), and sorted to >98% purity. LAG-3 expression was determined by RT-PCR. 5(b) shows a graph of relative LAG-3 expression of A2a receptor wild type or null 6.5+ T cells. For A-B, data are representative of 3 independent experiments, 3 mice per group. 5(c) shows a survival curve of C3HA mice given wild type or LAG-3 knock out T cells and a 4 day treatment with CGS. (n=5 mice, each condition) 5(d) shows a graph of percent survival in which vehicle- or CGS-treated C3HA mice (the survivors ofFIG. 5(a) ; open squares [n=4] or grey diamonds [n=13], respectively) were given a higher dose of 6.5+ T cells. Naïve mice (open triangles, [n=17]) received only this higher dose of 6.5+ T cells. No drug was administered during this experiment. -
FIG. 6 is a graph of the number of lung metastases in either control mice injected with TC-1 tumor cells as a model of metastatic breast cancer, or A2a receptor knockout mice, which were either vaccinated with a single vaccinia tumor vaccine or not. C57B6 mice were inoculated with 104 TC-1 tumor cells via tail vein. Mice were sacrificed 30+ days later and the lungs were analyzed for the number of lung metastases under a dissection microscope. -
FIG. 7 is a graph of the percent survival between A2a receptor wild type or null mice that were given 5×104 TC-1 cells, a murine cervical cancer cell line. Mice were followed for survival for greater than 10 weeks. -
FIG. 8A-8C shows A2a receptor engagement during either the induction or the effector phase of the T cell response leads to tolerance. (A) T cells were activated with varying doses of A2a receptor specific agonist CGS-21680 (CGS), and IL-2 production measured; (B) T cells stimulated with APCs and peptide+/−A2a agonist CGS-21680 (CGS) and specific A2a receptor antagonist ZM-241385 (ZM; 4-(2-[7-amino-2-(2-fury)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol), T cells were harvested, washed and rechallenged with APCs and peptide in absence of drug; (C) T cells were rendered tolerant, rested then rechallenged in presence or absence of A2a antagonist. -
FIG. 9 is a graph displaying the percentage of donor T cells after vaccinia infection in either wild type (WT) or A2a receptor knock-out (KO) mice. Non-transgenic B10.D2 mice were vaccinated with 106 pfu VacHA. 1×106 CD4-enriched 6.5+ T cells were transferred into the host mice by tail vein injection. Antigen specific memory T cells were determined in the peripheral blood by assaying for Thy 1.1+ (donor) CD4+ T cells. -
FIG. 10 is a graph of the number of IFN-γ-producing donor T cells in either wild type or A2a receptor null mice derived splenocytes from mice infected with vaccinia infection after rechallenge. Non-transgenic B10.D2 mice were vaccinated and given 1×106 6.5+ T cells as inFIG. 9 . OnDay 20, the mice were sacrificed and splenocytes were assayed for IFN-γ production by in vitro stimulation with HA peptide. -
FIG. 11A-11B shows the percentage of donor cells from either wild type or A2a receptor knock out in mice vaccinated with GVAX. (A) Non-transgenic B10.D2 mice were given a dose of irradiated GM-CSF-secreting cells that produce 300 ng of GM-CSF per 1×106 cells per 24 hour time period. Typically, this results in about 0.6-1.0×106 GVAX cells per mouse. The mice also received 1×106 irradiated HA-expressing A20 lymphoma cells. The following day the mice receive 1×106 6.5+ T cells. OnDay 8, the mice were sacrificed and splenocytes were analyzed for the percentage of donor T cells. (B) displays the percentage of IFN-g producing, tumor-specific donor T cells T cells from wild type or A2a receptor knock out mice after GVAX vaccination (as above) when cells were rechallenged in vitro with HA. -
FIG. 12 is a graph of the average size in mm2 of tumor size over time in wild type (WT) and A2a receptor null (A2a receptor KO) mice after treatment with the whole cell GVAX vaccine. -
FIG. 13 is a graph of the percent tumor free survival of wild type and A2a receptor knock out mice challenged with 1×105 EL-4 lymphoma cells over 30 days. -
FIG. 14 is a graph of percent disease free survival over time in wild type or A2a receptor knock out mice vaccinated with GVAX and challenged with 1×106 EL-4 lymphoma cells. -
FIG. 15 shows the percent of tumor free survival over time in wild type or A2a receptor knock out mice that had been previously challenged with EL-4 lymphoma cells. Wt or KO mice were initially inoculated subcutaneously with 1×104 EL-4 cells in the left flank on Day −30. No tumor developed. OnDay 0, the mice received 1×106 EL-4 cells in the right flank. The graph follows the development of palpable tumor following the second tumor (1×106) challenge. -
FIG. 16 is a graph demonstrating enhanced activity of the anti-melanoma antibody TA99 in A2a receptor null mice. Wt and A2a receptor null mice received 1 million B16 melanoma cells IV onday 0. Control mice received not treatment. Treated mice received 200 ug IP of TA99 antibody on 0,2,5. The mice were sacrificed ondays Day 15 and lung mets were counted. -
FIG. 17 is a graph demonstrating the ability of the Ata receptor antagonist ZM241385 (ZM) to enhance the activity of the anti-melanoma antibody TA99. Wt mice received 1 million B16 melanoma cells onDay 0. On day +1 they received either no treatment or 200 ug of TA99 antibody. Zm treated mice received 10 mg/kg IP of ZM twice a day beginning onDay 0 and continuing for the remainder of the experiment. The mice were evaluated on Day +15. - It has been discovered that Aza receptors are responsible for induction of long term T cell tolerance. These receptors can induce tolerance both by promoting T cell anergy, under which T cells fail to respond to an antigen upon re-challenge even under normally activating conditions, and by inducing regulatory T cells, which are responsible for maintained tolerance. It has now been found that A2a receptor antagonists can overcome T cell tolerance and thus stimulate long term responses to certain antigens.
- In one principal embodiment, methods are provided for enhancing an immune response to a specific antigen in a host in need thereof.
- In one principal embodiment, a method of enhancing an immune response to an antigen in a host is provided, comprising administering a first A2a receptor antagonist substantially in combination with an antigen to the host and subsequently administering a second A2a receptor antagonist in the absence of the antigen.
- In one embodiment, the first and second A2a receptor antagonists are the same. In another embodiment, the first and second A2a receptor antagonists are different. In one embodiment, the first antagonist and antigen are administered in the same preparation. In another embodiment, the antagonist and antigen are administered concurrently in separate preparations. In another embodiment, the antagonist and antigen are administered within the same day.
- In one subembodiment, the second A2a receptor antagonist is administered at least one day after administration of the antigen. In another subembodiment, the second antagonist is administered at least one week after administration of the antigen. In another embodiment, the second antagonist is administered at least one day after administration of the antigen and the method includes further administering the second antagonist at least two times. The second antagonist can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times. The administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- In one embodiment, the first A2a receptor antagonist enhances an immune response against the antigen. In certain embodiments, the antagonist enhances the number of antigen specific memory T cells in a host. In another embodiment, the immune response is an enhancement of effector cytokine release. In certain embodiments, this is IFN-γ release. In yet another embodiment, the immune response is a reduction in regulatory T cells.
- In one embodiment, the first A2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the first antagonist stimulates an immune response for at least one week. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- In one embodiment, the antigen is a viral protein. In another embodiment, the antigen is a bacterial protein or a portion thereof. In yet another embodiment, the antigen is a mammalian protein or a portion thereof.
- In certain embodiments, the antigen is expressed in a Listeria species. The Listeria species can be a Listeria monocytogenes. Methods of producing Listeria vaccines, including Listeria species expressing antigens of interest are discussed in U.S. Patent Application Publication Nos. 2004/0228877, 2005/0249748 and 2005/0281783. In certain embodiments, the Listeria species is attenuated for entry into non-phagocytic cells as compared to a wild type Listeria species. In certain cases, the Listeria species is one in which the inlB gene has been deleted (i.e., a strain attenuated for entry into non-phagocytic cells, for example, hepatocytes via the c-met receptor) or both the actA gene and the inlB genes have been deleted (i.e., a strain attenuated for both entry into non-phagocytic cells and cell-to-cell spread).
- In one embodiment, a method of enhancing an immune response in a host is provided comprising administering an A2a receptor antagonist to the host and subsequently administering an antigen in the absence of the antagonist.
- In one subembodiment, the antigen is administered at least one day after administration of the antagonist. In another subembodiment, the antigen is administered at least one week after administration of the antagonist. In another embodiment, the antigen is administered at least one day after administration of the antagonist and the method includes further administering the antagonist at least two times. The antagonist can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times. The administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- In one embodiment, the A2a receptor antagonist enhances an immune response against the antigen. In certain embodiments, the antagonist enhances the number of antigen specific memory T cells in a host. In another embodiment, the immune response is an enhancement of IFN-γ release. In yet another embodiment, the immune response is a reduction in regulatory T cells.
- In one embodiment, the A2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the antagonist stimulates an immune response for at least one week. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- In one principal embodiment, a method of enhancing an immune response to an antigen in a host is provided, comprising administering an A2a receptor antagonist substantially in combination with a first antigen to the host and subsequently administering a second antigen in the absence of the antagonist.
- In one subembodiment, the second antigen is administered at least one day after administration of the antagonist. In another subembodiment, the second antigen is administered at least one week after administration of the antagonist. In another embodiment, the second antigen is administered at least one day after administration of the antagonist and the method includes further administering the second antigen at least two times. The second antigen can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times. The administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- In one embodiment, the A2a receptor antagonist enhances an immune response against the second antigen. In certain embodiments, the antagonist enhances the number of second antigen specific memory T cells in a host. In another embodiment, the immune response is an enhancement of IFN-γ release. In yet another embodiment, the immune response is a reduction in regulatory T cells.
- In one embodiment, the A2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the antagonist stimulates an immune response for at least one week. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- In another principal embodiment, a method of treating an infection in a host by enhancing the generation of antigen-specific memory T cells is provided, comprising administering an A2a receptor antagonist to a host carrying an infection for an amount of time and at a concentration sufficient to elicit a memory T cell response, such as from 2 to 5 fold over the number in a control host who has not been administered an antagonist. In certain embodiments, the memory T cell number is enhanced by a factor of 2, by a factor of 3, by a factor of 4, by a factor of 5, by a factor of 6, by a factor of 7, by a factor of 8, by a factor of 9, by a factor of 10 or more, either when compared to a control host who has not been administered the antagonist, or in comparison to the memory T cell level that existed in the host prior to administration of the antagonist. In some instances, the memory T cell response is an increase in tolerance of these cells. In some cases, it is a number of cells. In some instances, it is a decrease in cell anergy. In some embodiments, the response is measured by an increase in IFN-γ release. In another embodiment, the response is measured using flow cytometry based on tetramers of labeled antigen-MHC. In another embodiment, the response is measured using a limiting dilution assay such as an Enzyme-linked immunosorbent spot assay (Elispot). In another embodiment, the response is measured using intracellular staining.
- In one subembodiment, the infection is a chronic infection. In another subembodiment, the infection is an acute infection. In one embodiment, the infection is due to a virus. In another embodiment, the infection is due to a bacteria. In one embodiment, the infection is a chronic infection such as HIV.
- In one embodiment, the antagonist enhances the generation of memory T cells by at least two fold over control. In another embodiment, the antagonist enhances the generation of memory T cells by at least four fold. In one embodiment, the antagonist increases total release of Interferon-γ in the host.
- In one principal embodiment, a method of enhancing an immune response in a host is provided comprising administering an A2a receptor antagonist in combination or alternation with a costimulatory molecule to the host. In certain embodiments, the costimulatory molecule enhances CD28 signaling. In certain embodiments, the costimulatory molecule is a fusion protein of a B7 family member with a molecule that is not a B7 family member, for example with an Fc molecule. In some embodiments, the costimulatory molecule is a fusion of a B7-H1 or a B7-DC molecule, or a variant thereof. In certain embodiments, the costimulatory molecule does not interact with PD-1.
- In another principal embodiment, a method of eliciting an immune response in a host is provided comprising administering an A2a receptor antagonist in combination with an antigen to the host, wherein the antigen is a commercially available antigen, and wherein the amount of antigen administered to elicit a prophylactically or therapeutically effective immune response is reduced by a factor of five beyond the effective dose in the absence of A2a receptor antagonist. In addition, a kit is provided comprising an A2a receptor antagonist, a dosage unit, in which the dosage unit allows the separation of a dosage of a commercially available antigen into at least one fifth the provided dosage. In one embodiment, the commercially available antigen is a vaccine. In a specific embodiment, the vaccine dosage is reduced by at least a factor of 10. In other embodiments, it is reduced by less than a factor of 10, such as by a factor of 2, by a factor of 3, by a factor of 4, by a factor of 5, by a factor of 6, by a factor of 7, by a factor of 8 or by a factor of 9.
- In separate principal embodiments, methods of treating or preventing abnormal cell proliferation in a host are provided. The host can be a mammal and in particular embodiments is a human.
- These methods can reduce the risk of developing cancer in the host. In other embodiments, the methods reduce the amount of cancer in a host. In yet other embodiments, the methods reduce the metastatic potential of a cancer in a host. The methods can also reduce the size of a cancer in a host.
- In some embodiments, administration of an A2a receptor antagonist reduces tolerance of T cells to a cancer. In these embodiments, the antagonist increases susceptibility of cancer cells to immune rejection. In certain embodiments, the immune response elicited by an A2a antagonist is a reduction in regulatory T cells. In yet other embodiments, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells. In further embodiments, the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- In one specific embodiment, a method of treating or preventing abnormal cell proliferation in a host is provided comprising administering to a host in need thereof an A2a receptor antagonist in combination or alternation with a mammalian cell based vaccine.
- In one embodiment, the method reduces the risk of developing cancer in the host. In another embodiment, the method reduces the amount of cancer in a host. In yet another embodiment, the method reduces the metastatic potential of a cancer in a host. In yet another embodiment, the method reduces the size of a cancer in a host.
- In one embodiment, the mammalian cell based vaccine is a whole mammalian cell. In certain embodiments, the vaccine is a tumor cell that is not actively dividing. The tumor cell can be irradiated. In certain embodiments, the cell is genetically modified. In some embodiments, the cell can be secreting an activation factor for an antigen-presenting cell. In certain embodiments, the cell secretes, for example constitutively secretes, a colony stimulating factor and can specifically secrete a granulocyte-macrophage colony stimulating factor (GM-CSF). The cell based vaccine can also be based on a dendritic cell or dendritic cell formulation. The cell can be based on cells from the same type of tissue as the tumor. In certain embodiments, the cell is derived from a prostate cancer cell. In other embodiments, the cell is derived from a breast cancer cell. In other instances, the cell is derived from a lymphoma cell.
- In one embodiment, the A2a receptor antagonist reduces tolerance of T cells to a cell in the cell based vaccine. In this embodiment, the antagonist increases susceptibility of tumor cells to immune rejection. In one embodiment, the immune response is a reduction in regulatory T cells. In one embodiment, the antagonist enhances generation of memory T cells. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells. In another embodiment, the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- In one embodiment, the antagonist and cell based vaccine are administered in combination. In certain of these embodiments, the antagonist and vaccine are administered concurrently in the same preparation. In other embodiments, the antagonist and vaccine are administered concurrently in separate preparations. In other embodiments, the antagonist is administered before administration of the vaccine. In some embodiments, the vaccine is administered at least one hour, at least 8 hours, at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 7 days, at least 8 days, at least 9 days, at least 10 days or more after administration of the antagonist. In certain embodiments, the antagonist and vaccine are administered in multiple rounds. In specific embodiments, the antagonist and vaccine are administered at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 at least 9 or at least 10 times.
- In some embodiments, the method further comprises administering a second A2a receptor antagonist in the absence of the vaccine. In some embodiments, the second A2a receptor antagonist is different than the first antagonist. In other embodiments, the second antagonist is the same as the first antagonist. In this embodiment, the further administration can occur at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 at least 9 or at least 10 days, or at least 1 week, a least 2 weeks, at least 3 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months or more after administration of the vaccine.
- In some embodiments, a method of inhibiting abnormal cell proliferation is provided comprising administering an A2a receptor antagonist in combination or alternation with a mammalian cell based vaccine and further administering an anti-cancer agent.
- In another principal embodiment, a method of treating or preventing abnormal cell proliferation is provided comprising administering an A2a receptor antagonist to a host in need thereof substantially in the absence of an anti-cancer agent.
- In one embodiment, the A2a receptor antagonist reduces tolerance of T cells to a cancer. In this embodiment, the antagonist increases susceptibility of the cancer cells to immune rejection. In one embodiment, the immune response is a reduction in regulatory T cells. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells. In another embodiment, the antagonist causes a reduction in T cell anergy. The reduction in T cell anergy can be in tumor-specific T cells.
- In one embodiment, the first A2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the first antagonist stimulates an immune response for at least one week or more.
- In another principal embodiment, a method of treating or preventing abnormal cell proliferation in a host in need thereof is provided, comprising administering a first A2a receptor antagonist substantially to a host in combination with a first anti-cancer agent and subsequently administering a second A2a receptor antagonist.
- In one embodiment, the first and second A2a receptor antagonists are the same. In another embodiment, the first and second A2a receptor antagonists are different. In one embodiment, the first antagonist and anti-cancer agent are administered in the same preparation. In another embodiment, the antagonist and anti-cancer agent are administered concurrently in separate preparations. In another embodiment, the antagonist and anti-cancer agent are administered within the same day.
- In one subembodiment, the second antagonist is administered substantially in the absence of an anti-cancer agent. In one subembodiment, the second A2a receptor antagonist is administered at least one day after administration of the anti-cancer agent. In another subembodiment, the second antagonist is administered at least one week after administration of the anti-cancer agent. In another embodiment, the second antagonist is administered at least one day after administration of the anti-cancer agent and the method includes further administering the second antagonist at least two times. The second antagonist can be administered at least twice, at least three times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times. The administration can be every day, or can be less often, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- In one embodiment, the first A2a receptor antagonist reduces tolerance of T cells to a cancer. In one embodiment, the antagonist increases susceptibility of the cancer cell to an anti-cancer agent. In another embodiment, the antagonist increases susceptibility of the cancer cells to immune rejection.
- In one embodiment, the first A2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the first antagonist stimulates an immune response for at least one week. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- In another principal embodiment, a method of treating or preventing abnormal cell proliferation in a host in need thereof is provided, comprising administering an A2a receptor antagonist to the host substantially in combination with a first anti-cancer agent and subsequently administering a second anti-cancer agent in the absence of the antagonist.
- In one embodiment, the first and second anti-cancer agent are the same. In another embodiment, the first and second anti-cancer agent are different. In one embodiment, the antagonist and first anti-cancer agent are administered in the same preparation. In another embodiment, the antagonist and first anti-cancer agent are administered concurrently in separate preparations. In another embodiment, the antagonist and first anti-cancer agent are administered within the same day.
- In one subembodiment, the second anti-cancer agent is administered at least one day after administration of the antagonist. In another subembodiment, the second anti-cancer agent is administered at least one week after administration of the antagonist. In another embodiment, the second anti-cancer agent is administered at least one day after administration of the antagonist and the method includes further administering the second anti-cancer agent at least two times. The second anti-cancer agent can be administered at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times, at least ten times or more, or between 2 and 20, between 2 and 15, between 2 and 10 or fewer times. The administration can be every day, or can be less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- In one embodiment, the A2a receptor antagonist reduces tolerance of T cells to a cancer. In one embodiment, the antagonist increases susceptibility of the cancer cell to the second anti-cancer agent. In another embodiment, the antagonist increases susceptibility of the cancer cells to immune rejection.
- In one embodiment, the A2a receptor antagonist stimulates an immune response for at least one day. In another embodiment, the antagonist stimulates an immune response for at least one week. In yet another embodiment, the A2a receptor antagonist inhibits generation, expansion or stimulation of regulatory T cells.
- Any molecule that is an antagonist at an A2a adenosine receptor can be useful in the methods of this invention. Examples include, but are not limited to, a pharmacological antagonist, a gene therapy agent, a ribozyme, an antisense oligonucleotide, or another catalytic nucleic acid that selectively binds mRNA encoding an adenosine receptor, and agents that reduce total levels of adenosine in a tissue. In certain embodiments, the antagonists are non-selective antagonists. In certain other embodiments, the antagonists are selective antagonists.
- Caffeine (1,7-methylxantine), along with theophylline have been found to antagonize both A1 and A2a receptors in the brain. Flavonoids (from a variety of dietary plants, and e.g. soy) inhibit adenosine receptor stimulation, when present in the micromolar range, for example galangin. Specific antagonists of the A2a receptor include SCH-58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]-pyrimidine), ZM 241385, MRS1220; theobromin; ADA-PEG (polyethylene glycol-modified ADA that has been used in treatment of patients with ADA SCID (Hershfield, Hum Mutat. 5:107, 1995)); CSC, KF17837, MRA470, CTS21680, CVT3146 and some xanthine derivatives, including KW6002 ((E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dibydro-1H-purine-2,6-dione). Particular non limiting examples of antagonists are described in U.S. Pat. Nos. 5,565,566; 5,545,627, 5,981,524; 5,861,405; 6,066,642; 6,326,390; 5,670,501; 6,117,998; 6,232,297; 5,786,360; 5,424,297; 6,313,131, 5,504,090; and 6,322,771. Partial agonists/antagonists may be present in Hypericum perforatum and Valeriana officinalis. In addition, selective antagonists are being developed by Adenosine Therapeutics.
- Inhibitors of extracellular adenosine are also generally contemplated for use in the methods of the invention. These include agents or compositions that decreases the activity or level of extracellular adenosine. Examples include, but are not limited to, agents that degrade extracellular adenosine, render extracellular adenosine inactive, and/or decrease or prevent the accumulation or formation of extracellular adenosine. Particular examples include, but are not limited to, enzymes such as adenosine deaminase, adenosine kinase, and adenosine kinase enhancers; oxygenation; redox-potential changing agents which diminish the degree of hypoxia-ischemia; and other catalytic agents that selectively bind and decrease or abolish the ability of endogenously formed adenosine to signal through adenosine receptors.
- In another example, the antagonist is an antisense molecule or catalytic nucleic acid molecule (e.g. a ribozyme) that specifically binds mRNA encoding an adenosine receptor. In certain embodiments, the antagonist is an siRNA molecule that reduces expression of an A2a adenosine receptor in at least one cell in a host. In specific, non-limiting examples, the antisense molecule, siRNA molecule or catalytic nucleic acid molecule binds A2a receptor. In a further example, an antisense molecule, siRNA molecule or catalytic nucleic acid molecule targets biochemical pathways downstream of the adenosine receptor. For example, the antisense molecule, siRNA molecule or catalytic nucleic acid molecule can inhibit an enzyme involved in the Gs-dependent intracellular pathway. Adenosine receptor protein expression in a host cell can be reduced by introducing into cells an antisense construct or another genetic sequence-targeting agent A2a locus (e. g. Genbank accession number AH003248). In some embodiments, the antagonist is an siRNA molecule that targets and causes degradation of an mRNA molecule encoding the A2a receptor. An antisense construct includes the reverse complement of the adenosine receptor cDNA coding sequence, the adenosine receptor cDNA or gene sequence or flanking regions thereof. For antisense suppression, a nucleotide sequence from the adenosine receptor locus (e.g. all or a portion of the adenosine receptor cDNA or gene or the reverse complement thereof) is arranged in reverse orientation relative to the promoter sequence in a vector, which is introduced into a cell of interest. Antisense molecule construction and siRNA construction follow similar patterns.
- The introduced sequence need not be the full-length human adenosine receptor cDNA or gene or reverse complement thereof, and need not be exactly homologous to the equivalent sequence found in the cell type to be transformed. In one example, the introduced antisense sequence in the vector is at least 10, such as at least 30 nucleotides in length. Improved antisense suppression is typically observed as the length of the antisense sequence increases. Shorter polynucleotide (oligonucleotides) can conveniently be produced synthetically as well as in vivo. In specific aspects, the oligonucleotide is at least 10 nucleotides, at least 15 nucleotides, at least 30, at least 100 nucleotides, or at least 200 nucleotides. The oligonucleotides can be DNA or RNA, or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. An antisense polynucleotide can be conjugated to another molecule, for example a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent. In some embodiments, the signal of the receptor is blocked. This can be by antagonism of the cAMP cascade, of MAP kinases, of PKA, of PLD, of Epac, or of other related downsteam signals, or by reduction of the expression of the Ata receptor.
- Suppression of endogenous adenosine receptor locus expression can also be achieved using catalytic nucleic acids such as ribozymes. Ribozymes are synthetic RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Pat. No. 4,987,071 to Cech and U.S. Pat. No. 5,543,508 to Haselhoff. Ribozymes can be synthesized and administered to a cell or a subject, or can be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (as in PCT publication WO 9523225, and Beigelman et al. Nucl. Acids Res. 23:4434-42, 1995). Examples of oligonucleotides with catalytic activity are described in WO 9506764, WO 9011364, and Sarver et al. (Science 247: 1222-5, 1990).
- In another example, local tissue accumulation of extracellular adenosine is inhibited using a preparation of adenosine deaminase (ADA). This can be, for example, an enzyme, adenosine deaminase or a ribozyme, or another catalytic molecule that selectively binds and destroys adenosine, thereby abolishing, or substantially decreasing, the ability of endogenously-formed adenosine to signal through adenosine receptors and terminate inflammation. The propagation of adenosine receptor-triggered intracellular signaling cascade can also be affected by the use of specific inhibitors of enzymes and proteins that are involved in regulation of synthesis and/or secretion of pro-inflammatory molecules, including modulators of nuclear transcription factors. Suppression of adenosine receptor expression or expression of the Gs protein- or Gi protein dependent intracellular pathway, or the cAMP dependent intracellular pathways, can also be used.
- In certain embodiments, the Ata receptor antagonist is linked to a molecule to increase bioavailability and/or stability. The antagonist can also be linked to a molecule that allows targeting of the antibody to particular tissues or regions, or to ‘present’ the drug to T cells. In certain instances, this molecule is a polymer such as a polyethylene glycol moiety. In other instances, the molecule is an antibody or a fragment of an antibody such as an Fc region. In specific instances, the antagonist is linked to an Fc region of an antibody.
- In addition to antigen-specific signals mediated through the T-cell receptor, T cells also require antigen nonspecific costimulation for activation. The B7 family of molecules on antigen-presenting cells, which include B7-1 (CD80) and B7-2 (CD86), play important roles in providing costimulatory signals required for development of antigen-specific immune responses. The CD28 molecule on T cells delivers a costimulatory signal upon engaging either of its ligands, B7.1 (CD80) or B7.2 (CD86) and possibly B7.3. A distinct signal is transduced by the CD40L (for ligand) molecule on the T cell when it is ligated to CD40. A number of other molecules on the surface of APC may serve some role in costimulation, although their full role or mechanism of action is not clear. These include VCAM-1, ICAM-1 and LFA-3 on APC and their respective ligands VLA-4, LFA-1 and CD2 on T cells. It is likely that the integrins LFA-1 and VCAM-1 are involved in initiating cell-cell contact. LFA-1 (lymphocyte function associated protein 1) which blocks killing of target cells by CD8 cytotoxic T cells. LFA-1 binds the immunoglobulin superfamily ligands ICAM-1, -2, -3. Blocking β-2 integrin is a very effective way of inhibiting immune responses and monoclonal antibodies against this protein are in clinical trial for treatment of transplant recipients and other conditions. Other immunotherapeutics in development are CTLA-Ig, which is a soluble from of a high affinity receptor for B7.1 and B7.2 (more avid than CD28), and anti-CD40L. Both block co-stimulation of T cells and anti-CD40L may also block reciprocal activation of antigen presenting cells.
- In some embodiments, the antagonist is administered in combination or alternation with an agent that activates a CD28 pathway. In certain instances, this costimulatory molecule is a B7.1 or B7-2 or B7-3 molecule. In certain instances, the costimulatory molecule is a B7-DC or B7-H1 molecule, and in particular a protein fusion of B7-DC, B7-H1, variants of these or truncates thereof with a non-B7 molecule. Certain B7 molecules are described in PCT Publications WO 08/083169, WO 08/067071, WO 07/082154, WO 06/012232, WO 02/10187, WO 01/64704 and U.S. Pat. Nos. 7,030,219, 6,803,192 and 6,891,030. In specific embodiments, the costimulatory molecule is an Fc-fusion of a B7-H1 or B7-DC molecule, a fragment of a B7-H1 or B7-DC molecule, or a variant thereof. In certain cases, the variant can include one or more mutated amino acids when compared to the native protein. In certain embodiments, the costimulatory molecule does not interact with PD-1. In other embodiments, the antagonist is administered in combination or alternation with an antibody that blocks interaction of soluble B7-H4 with its ligand. In certain embodiments, the costimulatory molecule is encoded by a vector derived from a virus. For example a costimulatory molecule can be encoded by a vector derived from a canarypox virus, ALVAC. In some embodiments, the costimulatory molecule is B7.1, encoded by a vector derived from the canarypox virus, ALVAC (ALVAC-B7.1), alone or with another molecule, such as interleukin 12 (ALVAC-IL-12).
- Checkpoint inhibitors can also be used in conjunction with the antagonists of the invention. For example, inhibitors of PD-1 could be used to reduce inhibition of T cell activity. In addition, molecules such as soluble B7-H4 can be used to stimulate T cell activities.
- In certain embodiments, the A2a antagonists are administered in combination or alternation with a specific human or humanized antibody directed against a therapeutic target. The specific antibody generally acts as a passive vaccine, providing immediate immunity against certain agents. The antibody can be directed against agents such as anthrax, toxins produced by Clostridium botulinum, Brucellosis, Q fever (caused by Coxiella burnetii), smallpox, viral meningoencephalitis syndromes (including Eastern equine encephalomyelitis virus (EEEV), Venezuelan equine encephalomyelitis virus (VEEV), and Western equine encephalomyelitis virus (WEEV)), viral hemorrhagic fevers (including Ebola, Marburg, and Junin), tularemia, biological toxins (including those causing diphtheria, tetanus, botulism, venoms, ricin, trichothecene mycotoxins, and staphylococcal enterotoxins) and plague.
- In certain embodiments, the methods of the invention are provided in combination with an anti-cancer agent to treat abnormal cell proliferation. In one embodiment, the anti-cancer agent is not an A2a receptor antagonist. Many of these drugs can be divided in to several categories: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, monoclonal antibodies against tumor antigens, and other antitumour agents. Some agents don't directly interfere with DNA. These include the new tyrosine kinase inhibitor imatinib mesylate (Gleevec® or Glivec®), which directly targets a molecular abnormality in certain types of cancer (chronic myelogenous leukemia, gastrointestinal stromal tumors).
- Alkylating agents are so named because of their ability to add alkyl groups to many electronegative groups under conditions present in cells. Cisplatin and carboplatin, as well as oxaliplatin are alkylating agents. Other agents are mechloethamine, cyclophosphamide, chlorambucil. They work by chemically modifying a cell's DNA.
- Anti-metabolites masquerade as purine ((azathioprine, mercaptopurine)) or pyrimidine—which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the “S” phase (of the cell cycle), stopping normal development and division. They also affect RNA synthesis. Due to their efficiency, these drugs are the most widely used cytostatics.
- Plant alkaloids and terpenoids are derived from plants and block cell division by preventing microtubule function. Microtubules are vital for cell division and without them it can not occur. The main examples are vinca alkaloids and taxanes. Vinca alkaloids bind to specific sites on tubulin, inhibiting the assembly of tubulin into microtubules (M phase of the cell cycle). They are derived from the Madagascar periwinkle, Catharanthus roseus (formerly known as Vinca rosea). The vinca alkaloids include: Vincristine; Vinblastine; Vinorelbine; and Vindesine. Podophyllotoxin is a plant-derived compound used to produce two other cytostatic drugs, etoposide and teniposide. They prevent the cell from entering the G1 phase (the start of DNA replication) and the replication of DNA (the S phase). The substance has been primarily obtained from the American Mayapple (Podophyllum peltatum). Recently it has been discovered that a rare Himalayan Mayapple (Podophyllum hexandrum) contains it in a much greater quantity, but as the plant is endangered, its supply is limited. Taxanes are derived from the Yew Tree. Paclitaxel (Taxol®) is derived from the bark of the Pacific Yew Tree (Taxus brevifolia). Researchers had found a much renewable source, where the precursors of Paclitaxel can be found in relatively high amounts in the leaves of the European Yew Tree (Taxus baccata), and that Paclitaxel, and Docetaxel (a semi-synthetic analogue of Paclitaxel) could be obtained by semi-synthetic conversion. Taxanes enhance stability of microtubules, preventing the separation of chromosomes during anaphase. Taxanes include: Paclitaxel and Docetaxel.
- Topoisomerase inhibitors are another class of compounds. Topoisomerases are essential enzymes that maintain the topology of DNA. Inhibition of type I or type II topoisomerases interferes with both transcription and replication of DNA by upsetting proper DNA supercoiling. Some type I topoisomerase inhibitors include camptothecins: irinotecan and topotecan. Examples of type II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide. These are semisynthetic derivatives of epipodophyllotoxins, alkaloids naturally occurring in the root of American Mayapple (Podophyllum peltatum).
- Antitumour antibiotics are another class of anti-cancer compounds. The most important immunosuppressant from this group is dactinomycin, which is used in kidney transplantations.
- Several malignancies are also potentially treated with hormonal therapy. Steroids (often dexamethasone) can inhibit tumour growth or the associated edema (tissue swelling), and may cause regression of lymph node malignancies. Prostate cancer is often sensitive to finasteride, an agent that blocks the peripheral conversion of testosterone to dihydrotestosterone. Breast cancer cells often highly express the estrogen and/or progesterone receptor. Inhibiting the production (with aromatase inhibitors) or action (with tamoxifen) of these hormones can often be used as an adjunct to therapy. Gonadotropin-releasing hormone agonists (GnRH), such as goserelin possess a paradoxic negative feedback effect followed by inhibition of the release of FSH (follicle-stimulating hormone) and LH (luteinizing hormone), when given continuously.
- General examples of anti-cancer agents also include: ifosamide, cisplatin, methotrexate, cytoxan, procarizine, etoposide, BCNU, vincristine, vinblastine, cyclophosphamide, gencitabine, 5-flurouracil, paclitaxel, and doxorubicin. Additional agents that are used to reduce cell proliferation include: AS-101 (Wyeth-Ayers” Labs.), bropirimine (Upjohn), gamma interferon (Genentech), GM-CSF (Genetics Institute), IL-2 (Cetus or Hoffman-LaRoche), human immune globulin (Cutter Biological), 20 IMREG (from Imreg of New Orleans, La.), SKF106528 (Genentech), TNF (Genentech), azathioprine, cyclophosphamide, chlorambucil, and methotrexate.
- In one particular embodiment, a method of enhancing efficacy of passive antibody therapy is provided comprising administering an A2a Receptor antagonist in combination or alternation with one or more passive antibodies. The passive antibody therapy is not a vaccination. Unlike vaccines, which require time to induce protective immunity and depend on the host's ability to mount an immune response, passive antibody therapy can confer a level of protection regardless of the immune status of the host, however is enhanced by reduction of T cell tolerance using the A2a Receptor antagonist. Passive antibody therapy can have substantial advantages over antimicrobial agents and other measures for postexposure prophylaxis, including low toxicity and high specific activity. Specific antibodies are active against the major agents of bioterrorism, including anthrax, smallpox, botulinum toxin, tularemia, and plague.
- This method can enhance the efficacy of antibody therapy for treatment of abnormal cell proliferative disorders such as cancer, or can enhance the efficacy of therapy in the treatment of infectious diseases. The antagonist can be administered in combination or alternation with antibodies such as rituximab, herceptin or erbitux, for example. In some embodiments, the antibody is an anticancer antibody. Monoclonal antibodies, including human and humanized monoclonal antibodies work by targeting tumour specific antigens, thus enhancing the host's immune response to tumour cells to which the agent attaches itself. Other antibody therapies include use of polyclonal antibodies and use of antibody fragments or regions. Examples are trastuzumab (Herceptin), cetuximab, and rituximab (Rituxan or Mabthera). Bevacizumab is a monoclonal antibody that does not directly attack tumor cells but instead blocks the formation of new tumor vessels. In some embodiments, the antibody is a humanized antibody. In other embodiments, the antibody is a human antibody. In yet further embodiments, the antibody is an antibody fragment. Antibody fragments include, for example, scFv, Fab, F(ab)′2, Fc, heavy chain, light chain or any combination or fusion thereof. Additional examples of anti-cancer antibodies are Alemtuzumab (Campath) (BTG, West Conshohocken, Pa.) targeting CD52, for chronic lymphocytic and chronic myelogenous leukemia and multiple sclerosis; Daclizumab (Zenapax) (Protein Design Labs, Fremont, Calif.), targeting the IL-2 receptor, CD25, for transplant rejection, uveitis, multiple sclerosis, leukemia, psoriasis, diabetes mellitus,
type 1, asthma and ulcerative colitis; Rituximab (Rituxan) (IDEC Pharmaceuticals, San Diego, Calif.), targeting CD20, for n lymphomas, rheumatoid arthritis, thrombocytopenic purpura; Trastuzumab (Herceptin)(Genentech), targeting p185neu for breast, lung, pancreatic cancers; Gemtuzumab (Mylotarg) (Wyeth/AHP, Collegeville, Pa.) targeting CD33/cali-cheamicin, for leukemia; Ibritumomab (Zevalin) (IDEC Pharmaceuticals) targeting CD20/yttrium 90 for lymphomas; Edrecolomab (Panorex) (GlaxoSmithKline, London, England) targeting epithelial cell adhesion molecule for colorectal cancer. Additional anticancer antibodies are listed in the table below: -
TABLE Selected Anticancer Antibodies in Clinical Trials Investigational Drug Name Source Features Indications Tositumomab Corixa, Seattle, WA Anti-CD20 murine Non-Hodgkin (Bexxar) monoclonal antibody with lymphoma iodine 131 conjugation CeaVac Titan Anti-CEA murine Cancer: colorectal, non- Pharmaceuticals, monoclonal antibody; small cell of the lung, South San Francisco, anticancer immunologic breast, liver CA vaccine Epratuzumab Immunomedics, Chimeric monoclonal Non-Hodgkin (LymphoCide) Morris Plains, NJ antibody; anticancer lymphoma immunologic; immunosuppressant Mitumomab ImClone Systems, Murine monoclonal Small cell cancer of the New York, NY antibody; anticancer lung; melanoma immunologic Bevacizumab Genentech, South Anti-VEGF humanized Cancer: colorectal, (Avastin) San Francisco, CA monoclonal antibody; breast, non-small cell of anticancer immunologic; the lung; diabetic antidiabetic; retinopathy ophthalmologic Cetuximab ImClone Systems Anti-EGFR chimeric Cancer: head and neck, (C-225; monoclonal antibody; non-small cell of the Erbitux) anticancer immunologic lung, colorectal, breast, pancreas, prostate Edrecolomab Johnson & Johnson, Murine monoclonal Cancer: colorectal and New Brunswick, NJ antibody; anticancer breast immunologic Lintuzumab Protein Design Labs, Chimeric monoclonal Acute myelogenous (Zamyl) Fremont, CA antibody; anticancer leukemia; immunologic myelodysplastic syndrome MDX-210 Medarex, Princeton, Bispecific chimeric Cancer: ovarian, NJ; Immuno- monoclonal antibody; anti- prostate, colorectal, Designed Molecules, HER-2/neu-anti-Fc gamma renal, breast Havana, Cuba RI; anticancer immunologic IGN-101 Igeneon, Vienna, Murine monoclonal Cancer: non-small cell Austria antibody; anticancer of the lung, liver, immunologic colorectal, esophageal, stomach MDX-010 Medarex Humanized anti-HER-2 Cancer: prostate, monoclonal antibody; melanoma; infection, anticancer immunologic; general immunostimulant MAb, AME Applied Molecular Chimeric monoclonal Cancer: sarcoma, Evolution, San antibody; anticancer colorectal; rheumatoid Diego, CA immunologic; imaging arthritis; psoriatic agent; antiarthritic arthritis immunologic; ophthalmologic; cardiovascular ABX-EGF Abgenix, Fremont, Monoclonal antibody, Cancer: renal, non- CA human; anticancer small cell of the lung, immunologic colorectal, prostate EMD 72 000 Merck KGaA, Chimeric monoclonal Cancer: stomach, Darmstadt, Germany antibody; anticancer cervical, non-small cell immunologic of the lung, head and neck, ovarian Apolizumab Protein Design Labs Chimeric monoclonal Non-Hodgkin antibody; anticancer lymphoma; chronic immunologic lymphocytic leukemia Labetuzumab Immunomedics Chimeric monoclonal Cancer: colorectal, antibody; breast, small cell of the immunoconjugate; lung, ovarian, pancreas, anticancer immunologic thyroid, liver ior-t1 Center of Molecular Murine monoclonal T-cell lymphoma; Immunology, antibody; anticancer psoriasis; rheumatoid Havana, Cuba immunologic; antipsoriatic; arthritis antiarthritic immunologic MDX-220 Immuno-Designed Chimeric monoclonal Cancer: prostate, Molecules antibody; anticancer colorectal immunologic MRA Chugai Chimeric monoclonal Rheumatoid arthritis; Pharmaceutical, antibody; antiarthritic cancer, myeloma; Tokyo, Japan immunologic; anticancer Crohn disease; immunologic; GI Castleman disease inflammatory and bowel disorders H-11 scFv Viventia Biotech, Humanized monoclonal Non-Hodgkin Toronto, Canada antibody; anticancer lymphoma, melanoma immunologic Oregovomab AltaRex, Waltham, Monoclonal antibody, Cancer: ovarian MA murine; anticancer immunologic; immunoconjugate huJ591 MAb, Millennium Chimeric monoclonal Cancer: prostate and BZL Pharmaceuticals, antibody; anticancer general Cambridge, MA; immunologic BZL Biologics, Framingham, MA Visilizumab Protein Design Labs Chimeric monoclonal Transplant rejection, antibody; bone marrow; cancer, immunosuppressant; T-cell lymphoma; anticancer immunologic; GI ulcerative colitis; inflammatory and bowel myelodysplastic disorders syndrome; systemic lupus erythematosus TriGem Titan Murine monoclonal Cancer: melanoma, Pharmaceuticals antibody; anticancer small cell of the lung, immunologic brain TriAb Titan Murine monoclonal Cancer: breast, non- Pharmaceuticals antibody; anticancer small cell of the lung, immunologic colorectal R3 Center of Molecular Chimeric monoclonal Cancer: head and neck; Immunology antibody; anticancer diagnosis of cancer immunologic; imaging agent; immunoconjugate MT-201 Micromet, Munich, Humanized monoclonal Cancer: prostate, Germany antibody; anticancer colorectal, stomach, immunologic non-small cell of the lung G-250, Johnson & Johnson Chimeric monoclonal Cancer: renal unconjugated antibody; anticancer immunologic ACA-125 CellControl Monoclonal antibody; Cancer: ovarian Biomedical, anticancer immunologic Martinsried, Germany Onyvax-105 Onyvax, London, Monoclonal antibody; Cancer: colorectal; England anticancer immunologic sarcoma, general CDP-860 Celltech, Slough, Humanized monoclonal Cancer: general; England antibody; anticancer restenosis immunologic; cardiovascular BrevaRex AltaRex Murine monoclonal Cancer: myeloma, MAb antibody; anticancer breast immunologic AR54 AltaRex Murine monoclonal Cancer: ovarian antibody; anticancer immunologic IMC-1C11 ImClone Systems Chimeric monoclonal Cancer: colorectal antibody; anticancer immunologic GlioMAb-H Viventia Biotech Humanized monoclonal Diagnosis of cancer; antibody; imaging agent; cancer, brain anticancer immunologic ING-1 Xoma, Berkeley, CA Chimeric monoclonal Cancer: breast, lung antibody; anticancer (general), ovarian, immunologic prostate Anti-LCG eXegenics, Dallas, Monoclonal antibody; Cancer: lung, general; MAbs TX anticancer; imaging agent diagnosis of cancer MT-103 Micromet Murine monoclonal B-cell lymphoma, non- antibody; anticancer Hodgkin lymphoma, immunologic chronic myelogenous leukemia, acute myelogenous leukemia KSB-303 KS Biomedix, Chimeric monoclonal Diagnosis of cancer; Guildford, England antibody; anticancer cancer, colorectal immunologic Therex Antisoma, London, Chimeric monoclonal Cancer: breast England antibody; anticancer immunologic KW-2871 Kyowa Hakko, Chimeric monoclonal Melanoma Tokyo, Japan antibody; anticancer immunologic Anti-HMI.24 Chugai Chimeric monoclonal Myeloma antibody; anticancer immunologic Anti-PTHrP Chugai Chimeric monoclonal Hypercalcemia of antibody; anticancer malignancy; cancer, immunologic; osteoporosis bone 2C4 antibody Genentech Chimeric monoclonal Cancer: breast antibody; anticancer immunologic SGN-30 Seattle Genetics, Monoclonal antibody; Hodgkin lymphoma Seattle, WA anticancer immunologic; multiple sclerosis treatment; immunosuppressant; immunoconjugate TRAIL-RI Cambridge Antibody Humanized monoclonal Cancer: general MAb, CAT Technology, antibody; anticancer Cambridge, England immunologic Prostate Biovation, Monoclonal antibody; Cancer: prostate cancer antibody Aberdeen, Scotland anticancer H22xKi-4 Medarex Chimeric monoclonal Hodgkin lymphoma antibody; anticancer immunologic ABX-MA1 Abgenix Humanized monoclonal Melanoma antibody; anticancer immunologic Imuteran Nonindustrial source Monoclonal antibody; Cancer: breast, ovarian anticancer immunologic Monopharm-C Viventia Biotech Monoclonal antibody; Cancer: colorectal; anticancer immunologic; diagnosis of cancer imaging agent CEA, carcinoembryonic antigen; EGFR, epidermal growth factor receptor; GI, gastrointestinal; VEGF, vascular endothelial growth factor. - In some embodiments, the antibody is an antibody to an infectious disease. Diseases to which antibodies have been used clinically include Anthrax (cutaneous, gastrointestinal, and inhalational) by passive administration of polyclonal antibodies raised against recombinant protective antigen (PA), lethal factor (LF) and edema factor (EF); Botulinum Toxins by administration of antibodies against the most common causes of human botulism, toxin types A, B, E, a heptavalent equine serum, and a human botulinum immune globulin derived from volunteers vaccinated with pentavalent botulinum toxoid (ABCDE) vaccine; Brucellosis using a antibodies specific for the 0 polysaccharide of B. abortus, to the M epitope of Brucella spp. or panels of murine MAbs; Q Fever using a antibodies against C. burnetii infection; Plague using passive antibody administration against lethal Y. pestis infection; Smallpox using neutralizing and protective antibodies to vaccinia virus; Tularemia using passive antibodies to F. tularensis; Viral Encephalitides using antibodies to Eastern equine encephalomyelitis virus (EEEV), Venezuelan equine encephalomyelitis virus (VEEV), or Western equine encephalomyelitis virus (WEEV); Viral Hemorrhagic Fevers using antibodies to Ebola, Argentine and Lassa hemorrhagic fevers. In certain embodiments, the antibody is against a respiratory syncytial virus (RSV). Such antibodies include Synagis® (Medimmune) and Numax® (Medimmune). Additional antibodies useful for modulating immune functions to stimulate a desired immune response include HGS-ETR1 and HGS-ETR2 (Medimmune).
- In one embodiment of the invention, the method provides an enhanced and prolonged immune response to an antigen. An antigen is generally any compound, composition, or agent, as well as all related antigenic epitopes, capable of being the target of inducing a specific immune response, such as stimulate the production of antibodies or a T-cell response in a subject, including compositions that are injected or absorbed into a subject. In some embodiments, the host is infected with a virus or bacteria that has an antigen prior to the administration of the antagonist. For example, the host can be infected with an HIV virus. In other embodiments, the host is infected with a flavivirus or pestivirus, or other member of the flaviviridae family such as hepatitis C. Pestiviruses and flaviviruses belong to the flaviviridae family of viruses along with hepacivirus (hepatitis C virus). The pestivirus genus includes bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV, also called hog cholera virus) and border disease virus (BDV) of sheep (Moennig, V. et al. Adv. Vir. Res. 1992, 41, 53-98). Pestivirus infections of domesticated livestock (cattle, pigs and sheep) cause significant economic losses worldwide. BVDV causes mucosal disease in cattle and is of significant economic importance to the livestock industry (Meyers, G. and Thiel, H.-J., Advances in Virus Research, 1996, 47, 53-118; Moennig V., et al, Adv. Vir. Res. 1992, 41, 53-98). In certain embodiments, the host is infected with a hepatitis B virus. In other embodiments, the host is infected with hepatitis D (also known as hepatitis delta). In certain embodiments, the host is infected with a member of the herpes family, such as Herpes simplex virus, Cytomegalovirus, and Epstein-Barr virus (EBV).
- Antigens can include: live, heat killed, or chemically attenuated viruses, bacteria, mycoplasmas, fungi, and protozoa, or fragments, extracts, subunits, metabolites and recombinant constructs of these or fragments, subunits, metabolites and recombinant constructs of mammalian proteins and glycoproteins; nucleic acids; combinations of these; or whole mammalian cells.
- Antigens can be from pathogenic and non-pathogenic organisms, viruses, and fungi. Antigens can include proteins, peptides, antigens and vaccines from smallpox, yellow fever, distemper, cholera, fowl pox, scarlet fever, diphtheria, tetanus, whooping cough, influenza, rabies, mumps, measles, foot and mouth disease, and poliomyelitis.
- The antigen can be a protein or peptide. In certain embodiments, the antigen is exogenous. The antigen can, for example, be a viral or bacterial protein or peptide, or antigenic fragment thereof. In certain instances, the antigen is from a “subunit” vaccine, composed of viral or bacterial antigenic determinants, generally in which viral or bacterial antigens made are free of nucleic acid by chemical extraction and containing only minimal amounts of non-viral or non-bacterial antigens derived from the culture medium. In other instances, the antigen is not based on a subunit vaccine.
- In certain embodiments, the antigen is a whole cell, derived from a virus, bacteria or mammal. In certain embodiments, the antigen is a “killed component” of a vaccine. In some embodiments of the invention, the antigen is derived from a human or animal pathogen. The pathogen is optionally a virus, bacterium, fungus, or a protozoan. In this instance, the antigen is prepared from a viral or bacterial cell that has been irradiated or otherwise inactivated to avoid replication. In one embodiment, the antigen is a protein produced by the pathogen, or a fragment and/or variant of a protein produced by the pathogen. In other embodiments, the antigen is a mammalian protein or peptide. In certain embodiment, the antigen is a whole mammalian cell and is not an isolated mammalian protein or peptide, or fragment thereof.
- In some embodiments, the antigen is a whole cell. In some embodiments, the antigen is a whole mammalian cell, which can be genetically modified. In certain embodiments, the cell is a whole mammalian tumor cell that has been modified to express a colony stimulating factor. In other embodiments, the antigen is a stromal antigen-presenting cell capable of antigen presentation. In other embodiments, the antigen comprises a dendritic cell or a dendritic cell preparation. The antigen can include antigens and dendritic antigen-presenting cells (APCs). Target disorders for dendritic cell therapy include disseminated single tumor cells (micrometastases) or metastases of epithelial tumors including from breast cancer, ovarian cancer, prostate cancer, colon cancer, glioblastomas and myelomas.
- In some embodiments, the antigen may be derived from Human Immunodeficiency virus (such as gp120,
gp 160, gp41, gag antigens such as p24gag and p55gag, as well as proteins derived from the pol, env, tat, vif, rev, nef, vpr, vpu and LTR regions of HIV), Feline Immunodeficiency virus, or human or animal herpes viruses. In one embodiment, the antigen is derived from herpes simplex virus (HSV)types 1 and 2 (such as gD, gB, gH, Immediate Early protein such as ICP27), from cytomegalovirus (such as gB and gH), from Epstein-Barr virus or from Varicella Zoster Virus (such as gpl, II or III). (See, e.g., Chee et al. (1990) Cytomegaloviruses (J. K. McDougall, ed., Springer Verlag, pp. 125-169; McGeoch et al. (1988) J. Gen. Virol. 69: 1531-1574; U.S. Pat. No. 5,171,568; Baer et al. (1984) Nature 310: 207-211; and Davison et al. (1986) J. Gen. Virol. 67: 1759-1816.) - In another embodiment, the antigen is derived from a hepatitis virus such as hepatitis B virus (for example, Hepatitis B Surface antigen), hepatitis A virus, hepatitis C virus, delta hepatitis virus, hepatitis E virus, or hepatitis G virus. See, e.g., WO 89/04669; WO 90/11089; and WO 90/14436. The hepatitis antigen can be a surface, core, or other associated antigen. The HCV genome encodes several viral proteins, including E1 and E2. See, e.g., Houghton et al., Hepatology 14: 381-388(1991).
- An antigen that is a viral antigen is optionally derived from a virus from any one of the families Picornaviridae (e.g., polioviruses, rhinoviruses, etc.); Caliciviridae; Togaviridae (e.g., rubella virus, dengue virus, etc.); Flaviviridae; Coronaviridae; Reoviridae (e.g., rotavirus, etc.); Birnaviridae; Rhabodoviridae (e.g., rabies virus, etc.); Orthomyxoviridae (e.g., influenza virus types A, B and C, etc.); Filoviridae; Paramyxoviridae (e.g., mumps virus, measles virus, respiratory syncytial virus, parainfluenza virus, etc.); Bunyaviridae; Arenaviridae; Retroviradae (e.g., HTLV-I; HTLV-11; HIV-1; HIVI11b; HIVSF2; HTVLAV; HIVLAI; HIVMN; HIV-1CM235; HIV-2; simian immunodeficiency virus (SIV)); Papillomavirus, the tick-borne encephalitis viruses; and the like. See, e.g. Virology, 3rd Edition (W. K. Joklik ed. 1988); Fundamental Virology, 3rd Edition (B. N. Fields, D. M. Knipe, and P. M. Howley, Eds. 1996), for a description of these and other viruses. In one embodiment, the antigen is Flu-HA (Morgan et al., J. Immunol. 160:643 (1998)).
- In one embodiment, the antigen comprises a (Myco)bacterial or viral protein or an immunogenic part, derivative and/or analogue thereof. In one aspect of the invention, the antigen comprises a Mycobacterium protein or an immunogenic part, derivative and/or analogue thereof. In one embodiment, the antigen comprises hsp65 369 412 (Ottenhof et al., 1991; Charo et al., 2001). In another embodiment, the antigen comprises a human papillomavirus (HPV) protein or an immunogenic part, derivative and/or analogue thereof. An immunogenic part, derivative and/or analogue of a protein comprises the same immunogenic capacity in kind not necessarily in amount as said protein itself. A derivative of such a protein can be obtained by conservative amino acid substitution. In one embodiment, the antigen is a killed whole pneumococci, lysate of pneumococci or isolated and purified PspA, or immunogenic fragments thereof (see U.S. Pat. No. 6,042,838). In one embodiment, the antigen is a 314 amino acid truncate (amino acids 1-314) of the mature PspA molecule. This region of the PspA molecule contains most, if not all, of the protective epitopes of PspA.
- In some embodiments, the antigen is derived from bacterial pathogens such as Mycobacterium, Bacillus, Yersinia, Salmonella, Neisseria, Borrelia (for example, OspA or OspB or derivatives thereof), Chlamydia, or Bordetella (for example, P.69, PT and FHA), or derived from parasites such as plasmodium or Toxoplasma. In one embodiment, the antigen is derived from the Mycobacterium tuberculosis (e.g. ESAT-6, 85A, 85B, 72F), Bacillus anthraces (e.g. PA), or Yersinia pestis (e.g. F1, V). In addition, antigens suitable for use in the present invention can be obtained or derived from known causative agents responsible for diseases including, but not limited to, Diptheria, Pertussis, Tetanus, Tuberculosis, Bacterial or Fungal Pneumonia, Otitis Media, Gonorrhea, Cholera, Typhoid, Meningitis, Mononucleosis, Plague, Shigellosis or Salmonellosis, Legionaire's Disease, Lyme Disease, Leprosy, Malaria, Hookworm, Onchocerciasis, Schistosomiasis, Trypamasomialsis, Lesmaniasis, Giardia, Amoebiasis, Filariasis, Borelia, and Trichinosis. Still further antigens can be obtained or derived from unconventional pathogens such as the causative agents of kuru, Creutzfeldt-Jakob disease (CJD), scrapie, transmissible mink encephalopathy, and chronic wasting diseases, or from proteinaceous infectious particles such as prions that are associated with mad cow disease.
- A large number of tumor-associated antigens that are recognized by T cells have been identified (Renkvist et al., Cancer Immunol Innumother 50:3-15 (2001)). These tumor-associated antigens may be differentiation antigens (e.g., PSMA, Tyrosinase, gp100), tissue-specific antigens (e.g. PAP, PSA), developmental antigens, tumor-associated viral antigens (e.g.
HPV 16 E7), cancer-testis antigens (e.g. MAGE, BAGE, NY-ESO-1), embryonic antigens (e.g. CEA, alpha-fetoprotein), oncoprotein antigens (e.g. Ras, p53), over-expressed protein antigens (e.g. ErbB2 (Her2/Neu), MUC1), or mutated protein antigens. - Tumor-associated antigens that may be useful in the methods of the invention include, but are not limited to, 707-AP, Annexin II, AFP, ART-4, BAGE, β-catenin/m, BCL-2, bcr-abl, bcr-abl p190, bcr-abl p210, BRCA-1, BRCA-2, CAMEL, CAP-1, CASP-8, CDC27/m, CDK-4/m, CEA (Huang et al., Exper Rev. Vaccines (2002)1:49-63), CT9, CT10, Cyp-B, Dek-cain, DAM-6 (MAGE-B2), DAM-10 (MAGE-B1), EphA2 (Zantek et al., Cell Growth Differ. (1999) 10:629-38; Carles-Kinch et al., Cancer Res. (2002) 62:2840-7), ELF2M, ETV6-AML1, G250, GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7B, GAGE-8, GnT-V, gp100, HAGE, HER2/neu, HLA-A*0201-R170I, HPV-E7, HSP70-2M, HST-2, hTERT, hTRT, iCE, inhibitors of apoptosis (e.g. survivin), KIAA0205, K-ras, LAGE, LAGE-1, LDLR/FUT, MAGE-1, MAGE-2, MAGE-3, MAGE-6, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MAGE-B5, MAGE-B6, MAGE-C2, MAGE-C3, MAGE-D, MART-1, MART-1/Melan-A, MC1R, MDM-2, mesothelin, Myosin/m, MUC1, MUC2, MUM-1, MUM-2, MUM-3, neo-polyA polymerase, NA88-A, NY-ESO-1, NY-ESO-1a (CAG-3), PAGE-4, PAP, Proteinase 3 (Molldrem et al., Blood (1996) 88:2450-7; Molldrem et al., Blood (1997) 90:2529-34), P15, p190, Pm1/RARα, PRAME, PSA, PSM, PSMA, RAGE, RAS, RCAS1, RU1, RU2, SAGE, SART-1, SART-2, SART-3, SP 17, SPAS-1, TEL/AML 1, TPI/m, Tyrosinase, TARP, TRP-1 (gp75), TRP-2, TRP-2/INT2, WT-1, and alternatively translated NY-ESO-ORF2 and CAMEL proteins.
- In some embodiments, the antigen that is not identical to a tumor-associated antigen, but rather is derived from a tumor-associated antigen. For instance, the antigen may comprise a fragment of a tumor-associated antigen, a variant of a tumor-associated antigen, or a fragment of a variant of a tumor-associated antigen. In some cases, an antigen, such as a tumor antigen, is capable of inducing a more significant immune response when the sequence differs from that endogenous to the host. In some embodiments, the variant of a tumor-associated antigen, or a fragment of a variant of a tumor-associated antigen, differs from that of the tumor-associated antigen, or its corresponding fragment, by one or more amino acids. The antigen derived from a tumor-associated antigen can comprise at least one epitope sequence capable of inducing an immune response upon administration.
- Alternatively, the antigen can be an autoimmune disease-specific antigen. In a T cell mediated autoimmune disease, a T cell response to self antigens results in the autoimmune disease. The type of antigen for use in treating an autoimmune disease with the vaccines of the present invention might target the specific T cells responsible for the autoimmune response. For example, the antigen may be part of a T cell receptor, the idiotype, specific to those T cells causing an autoimmune response, wherein the antigen incorporated into a vaccine of the invention would elicit an immune response specific to those T cells causing the autoimmune response. Eliminating those T cells would be the therapeutic mechanism to alleviating the autoimmune disease. Another possibility would be to incorporate an antigen that will result in an immune response targeting the antibodies that are generated to self antigens in an autoimmune disease or targeting the specific B cell clones that secrete the antibodies. For example, an idiotype antigen may be incorporated into the Listeria that will result in an anti-idiotype immune response to such B cells and/or the antibodies reacting with self antigens in an autoimmune disease.
- In still other embodiments, the antigen is obtained or derived from a biological agent involved in the onset or progression of neurodegenerative diseases (such as Alzheimer's disease), metabolic diseases (such as Type I diabetes), and drug addictions (such as nicotine addiction). Alternatively, the method can be used for pain management and the antigen is a pain receptor or other agent involved in the transmission of pain signals.
- In certain embodiments, the present invention can be used to treat, prevent, manage and slow the spread of cancer as well as other abnormal cell proliferation-associated diseases in a host.
- Throughout the application, a host is any multi-cellular vertebrate organism including specifically both human and non-human mammals. In one embodiment, the “host” is a human. The terms “subject” and “patient” are also included in the term “host”.
- In certain embodiments, the present invention provides methods to treat carcinomas, include tumors arising from epithelial tissue, such as glands, breast, skin, and linings of the urogenital, digestive, and respiratory systems. Lung, cancer and prostate cancers can be treated or prevented. Breast cancers that can be treated or prevented include both invasive (e.g., infiltrating ductal carcinoma, infiltrating lobular carcinoma infiltrating ductal & lobular carcinoma, medullary carcinoma, mucinous (colloid) carcinoma, comedocarcinoma, paget's disease, papillary carcinoma, tubular carcinoma, adenocarcinoma (NOS) and carcinoma (NOS)) and non-invasive carcinomas (e.g., intraductal carcinoma, lobular carcinoma in situ (LCIS), intraductal & LCIS, papillary carcinoma, comedocarcinoma). The present invention can also be used to treat or prevent metastatic breast cancer. Non-limiting examples of metastatic breast cancer include bone, lung and liver cancer.
- Prostate cancers that can be treated or prevented with the methods described herein include localized, regional and metastatic prostate cancer. Localized prostate cancers include A1-A2, T1a-T1b, T1c, B0-B2 or T2a-T2c. C1-C2 or T3a-NO, prostate cancers extending beyond the prostate but without lymph node involvement, are also contemplated. Regional prostate cancers include D1 or N1-M0, while metastatic prostate cancers include D2 or M1. Metastatic prostate cancers include bone and brain cancers.
- In certain embodiments, methods are provided to treat or prevent abnormal cell proliferation using A2a receptor antagonists in combination or alternation with a cell based vaccine. In certain of these embodiments, the cell based vaccine is based on cells that match the tumor to be prevented. For example, if a host is suffering from, or at risk of suffering from, a prostate cancer, the cell based vaccine will be based on a prostate cancer tumor cell. In these instances, the cell is typically irradiated or otherwise prevented from replicating. In particular embodiments, the cell is genetically modified to secrete a colony stimulating factor.
- Other cancers that can be treated or prevented with the present invention include, but are not limited to, cancers of the cancers include those of the bowel, bladder, brain, cervix, colon, rectum, esophagus, eye, head and neck, liver, kidney, larynx, lung, skin, ovary, pancreas, pituitary gland, stomach, testicles, thymus, thyroid, uterus, and vagina as well as adrenocortical cancer, carcinoid tumors, endocrine cancers, endometrial cancer, gastric cancer, gestational trophoblastic tumors, islet cell cancer, and mesothelioma.
- Lymphomas that can be treated or prevented with the invention include tumors arising from the lymph or spleen, which can cause excessive production of lymphocytes, including both Hodgkin's disease and Non-Non-Hodgkin's lymphoma. The term “Hodgkin's Disease” is intended to include diseases classified as such by the REAL and World Health Organization (WHO) classifications known to those of skill in the art, including classical Hodgkin's disease (i.e., nodular sclerosis, mixed cellularity, lymphocyte depletion or lymphocyte rich) or lymphocyte predominance Hodgkin's disease. The term “Non-Hodgkin's lymphoma” is used to refer 30 lymphomas classified by WHO (Harris N L et al. (2000) Lymphoma classification-from controversy to consensus: the REAL and WHO Classification of lymphoid neoplasms. Ann Oncol. 11(suppl 1):S3-S10), including but not limited to:
- B-cell non-Hodgkin's lymphomas such as small lymphocytic lymphoma (SLL/CLL), mantle cell lymphoma (MCL), follicular lymphoma marginal zone lymphoma (MZL), extranodal (MALT lymphoma), nodal (Monocytoid B-cell lymphoma), splenic, diffuse large cell lymphoma, burkitt's lymphoma and lymphoblastic lymphoma.
- T-cell non-Hodgkin's lymphoma's such as lymphoblastic lymphomas, peripheral T-cell lymphoma. Hepatosplenic gamma-delta T-cell lymphoma, subcutaneous panniculitis-like lymphoma, angioimmunoblastic T-cell lymphoma (AILD), extranodal NK/T cell lymphoma, nasal type, intestinal T-cell lymphoma (+/−enteropathy associated) (EATL), adult T-cell leukemia/lymphoma (HTLV-1 associated), mycosis fungoides/Sezary syndrome, anaplastic large cell lymphoma (ALCL), including both primary cuteous and primary systemic types.
- Leukemias that can be treated or prevented with the present invention include but are not limited to myeloid and lymphocytic (sometimes referred to as B or T cell leukemias) or myeloid leukemias, both chronic and acute. The myeloid leukemias include chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) (i.e., acute nonlymphocytic leukemia (ANLL)). The lymphocytic leukemias include acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL)(i.e., chronic granulocytic leukemia) and hairy cell leukemia (HCL).
- Sarcomas that can be treated or prevented with the present invention include both bone and soft-tissue sarcomas of the muscles, tendons, fibrous tissues, fat, blood vessels nerves, and synovial tissues. Non-limiting examples include fibrosacromas, rhabdomyosarcomas, liposarcomas, synovial sarcomas, angiosacromas, neurofibrosarcomas, gastrointestinal stroma tumors, Kaposi's sacroma, Ewing's sarcoma, alveolar soft-part sarcoma, angiosarcoma, dermatofibrosarcoma protuberans, epithelioid sarcoma, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, leiomyosarcoma, liposarcoma, malignant fibrous histiocytoma, malignant hemangiopericytoma, malignant mesenchymoma, malignant schwannoma, malignant peripheral nerve sheath tumor, parosteal osteosarcoma, peripheral neuroectodermal tumors, rhabdomyosarcoma, synovial sarcoma, and sarcoma, NOS.
- Diseases of abnormal cell proliferation other than cancer can be treated or prevented with the present invention. Diseases association with the abnormal proliferation of vascular smooth muscle cells include, as a non-limiting example, benign tumors. Non-limiting examples of benign tumors include benign bone, brain and liver tumors.
- Other diseases associated with abnormal cell proliferation include, for example, atherosclerosis and restenosis. Diseases associated with abnormal proliferation of over-proliferation and accumulation of tissue mast cells are also included, such as cutaneous mastocytosis (CM) and Urticaria pigmentosa. Diseases associated with abnormal proliferation of xesangial cell proliferation are also contemplated, including but not limited to IgA nephropathy, membranoproliferative glomerulonephritis (GN), lupus nephritis and diabetic nephropathy.
- Psoriasis can be treated or prevented by the present invention, including but not limited to, plaque psoriasis, guttate psoriasis, inverse psoriasis, seborrheic psoriasis, nail psoriasis, generalized erythrodermic psoriasis (also called psoriatic exfoliative erythroderm), pustular psoriasis, and Von Zumbusch psoriasis.
- The present invention can also be used to treat or prevent lymphangiomyomatosis (LAM), as well as other diseases associated with abnormal cell proliferation known to those skilled in the art.
- It has been discovered that A2a receptors are responsible for induction of long term T cell tolerance. These receptors can induce tolerance both by promoting T cell anergy, under which T cells fail to respond to an antigen upon re-challenge even under normally activating conditions, and by inducing regulatory T cells, which are responsible for maintained tolerance.
- Many drugs have been shown to inhibit T cells responses, for example Cyclosporine A. However, such agents require continuous administration. That is, when the drug is stopped the T cells can become activated again. It has now been found that A2a receptor agonists can stimulate and maintain T cell tolerance. As such, a finite treatment with an A2a receptor agonists will lead to sustained tolerance thus abrogating the need for chronic immunosuppression. In particular, it has been found that A2a receptor agonists can reduce the need for continued immunosuppression in preventing or treating autoimmune diseases or disorders, for example in preventing transplant rejection or Graft verus Host Disease.
- In one embodiment, a method of inducing immune tolerance in a host in need thereof is provided comprising administering an A2a receptor agonist to the host, wherein the tolerance is induced for at least one month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, or longer, such as at least one year.
- In one embodiment, the A2a agonist is administered in combination with an immunosuppressive agent other than an A2a agonist. In some embodiments, the A2a agonist is administered in combination with an immunosuppressive agent and subsequently, the A2a agonist is administered in the absence of the immunosuppressive agent.
- In a specific embodiment, the host is in need of immunosuppressive therapy. In one embodiment, the host is being treated with an immunosuppressive therapy. In certain embodiments, administration of the A2a receptor agonist reduces the amount of immunosuppressive therapy administered to the host. In some embodiments, the amount of immunosuppressive therapy is reduced by a factor of 2, or 3, or 4 or 5 or 6, or 7, or 8 or 9 or 10. In certain other embodiments, the host is able to be subject to a different immunosuppressive regimen with a reduced toxicity. In certain embodiments, the immunosuppressive agent can be administered for less than one year. In one embodiment, the immunosuppressive agent is administered for from 2 weeks to one year. In one embodiments, the immunosuppressive agent is administered for one month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months or 12 months or less.
- In certain embodiments, administration of the A2a agonist reduces immune responses against an antigen. In some embodiments, the antigen is an exogenous protein. In other embodiments, the antigen is a protein native to the host. In certain embodiments, the antigen is a cell surface antigen.
- In one particular embodiment, the host is suffering from an autoimmune disease. In another embodiment, the host is at risk for an autoimmune disorder. In another embodiment, the host is a recipient of a transplanted tissue or organ. In a particular embodiment, the host is at risk of organ rejection.
- In certain embodiments, the A2a agonist is administered in combination or alternation with a costimulatory molecule such as B7-H4 or fragments or variants thereof.
- In certain embodiments, T cell tolerance is induced for at least one month, or at least three months, or at least six months.
- In certain embodiments, the methods further comprise administering an antigen to the host in combination or alternation with the agonist. The antigen can be a protein or peptide derived from the host, or can be an exogenous protein or peptide. The antigen can also be a cell derived from the host or an exogenous cell. The administration of the agonist in combination with the antigen can cause T cell tolerance to the antigen.
- In certain embodiments, the agonist is administered less than once a week. In certain embodiments, the agonist is administered once a month. In certain other embodiments, an immunosuppressive agent is not administered to the host receiving the agonist.
- In one subembodiment, the agonist is administered every day, or less, such as every two days, every three days, every four days, every five days, every six days, every seven days or less, such as every two weeks, once a month, once every two months, four times a year, three times a year, two times a year or once a year.
- Agonists to be used in the methods of the invention are generally those that are selective for the A2a receptor, or an agonist of downstream signals such as increased cAMP, increased activation of PKA, MAP kinases, PKC, Epac or phospholipase D. Agonists can be either full or partial agonists at the receptor. In certain instances, non-selective agonists are also useful. Nonselective adenosine receptor agonist include 5-N-ethylcarboxamidoadenosine (NECA), adenosine and methylxanthines. Selective A2a receptor agonists include 2-p-(2-carboxyethyl)phenethyl-amino-5-N-ethyl-carboxamidoadenosine (CGS21680), ATL-146e, 2-chloro-N-6-cyclopentyl adenosine (CCPA) and regadenoson (also known as CVT-3146).
- Partial agonists may be present in Hypericum perforatum and Valeriana officinalis. In addition, selective agonists are being developed by Adenosine Therapeutics.
- In certain embodiments, the A2a receptor agonist is linked to a molecule to increase bioavailability and/or stability. The agonist can also be linked to a molecule that allows targeting of the antibody to particular tissues or regions, or to ‘present’ the drug to T cells. In certain instances, this molecule is a polymer such as a polyethylene glycol moiety.
- Immunosuppressive drugs or immunosuppressants are drugs that are used in immunosuppressive therapy to inhibit or prevent activity of the immune system. Clinically they are used to prevent the rejection of transplanted organs and tissues (e.g. bone marrow, heart, kidney, liver), treatment of autoimmune diseases or diseases that are most likely of autoimmune origin (e.g. rheumatoid arthritis, myasthenia gravis, systemic lupus erythematosus, Crohn's disease, and ulcerative colitis) and treatment of some other non-autoimmune inflammatory diseases (eg. long term Allergic Asthma control). In one embodiment, a method of reducing need for immunosuppressive therapy is provided comprising administering an Ata receptor agonist to a host receiving an immunosuppressive agent.
- Immunosuppressive drugs can be classified into five groups: glucocorticoids; cytostatics; antibodies; drugs acting on immunophilins; and other drugs.
- In pharmacologic (supraphysiologic) doses, glucocorticoids are used to suppress various allergic, inflammatory, and autoimmune disorders. They are also administered as posttransplantory immunosuppressants to prevent the acute transplant rejection and graft-versus-host disease. Nevertheless, they do not prevent an infection and also inhibit later reparative processes.
- Cytostatics inhibit cell division. In immunotherapy, they are used in smaller doses than in the treatment of malignant diseases. They affect the proliferation of both T cells and B cells. Due to their highest effectiveness, purine analogs are most frequently administered. Some cytostatics are alkylating agents. The alkylating agents used in immunotherapy are nitrogen mustards (cyclophosphamide), nitrosoureas, platinum compounds and others. Cyclophosphamide is probably the most potent immunosuppressive compound. In small doses, it is very efficient in the therapy of systemic lupus erythematosus, autoimmune hemolytic anemias, Wegener's granulomatosis and other immune diseases. High doses cause pancytopenia and hemorrhagic cystitis. Antimetabolites are also used as immunosuppressive compounds. Antimetabolites interfere with the synthesis of nucleic acids. These include: folic acid analogues, such as methotrexate; purine analogues such as azathioprine and mercaptopurine; pyrimidine analogues; and protein synthesis inhibitors.
- Cytotoxic antibiotics are also used for immunosuppression. Among these, dactinomycin is the most typical. It is used in kidney transplantations. Other cytotoxic antibiotics are anthracyclines, mitomycin C, bleomycin, mithramycin. Certain antibodies are also used as immunosuppressive agents.
- Approved antibodies for transplant rejection include OKT3 (R), Simulect® and Zenapax (daclizumab). Furthermore, Fc-fusion proteins can be used for transplant rejection, such as fusion with mutants of or receptors for certain interleukins (IL-15 and IL-17 receptor for example). Fc-fusion proteins can also include modifications to decrease side effects of the administration.
- Interleukin-2 is an important immune system regulator necessary for the clone expansion and survival of activated lymphocytes T. By the use of the recombinant gene technology, the mouse anti-Tac antibodies have been modified leading to the presentation of two himeric mouse/human anti-Tac antibodies in the year 1998: basiliximab (Simulect®) and daclizumab (Zenapax®). These drugs act by binding the IL-2a receptor's a chain, preventing the IL-2 induced clonal expansion of activated lymphocytes and shortening their survival. They are used in the prophylaxis of the acute organ rejection after the bilateral kidney transplantation, both being similarly effective and with only few side effects.
- Together with tacrolimus, cyclosporin is a calcineurin inhibitor. It has been in use since 1983 and is one of the most widely used immunosuppressive drugs. It is a fungal peptide, composed of 11 amino acids. Cyclosporin is thought to bind to the cytosolic protein cyclophilin (an immunophilin) of immunocompetent lymphocytes, especially T-lymphocytes. This complex of cyclosporin and cyclophilin inhibits calcineurin, which under normal circumstances induces the transcription of interleukin-2. The drug also inhibits lymphokine production and interleukin release, leading to a reduced function of effector T-cells.
- Tacrolimus (Prograf™, FK506) is a fungal product (Streptomyces tsukubaensis). It is a macrolide lactone and acts by inhibiting calcineurin. The drug is used particularly in the liver and kidney transplantations, although in some clinics it is used in heart, lung and heart/lung transplants. It binds to an immunophilin, followed by the binding of the complex to calcineurin and the inhibition of its phosphatase activity. In this way, it prevents the passage of G0 into G1 phase. Tacrolimus is more potent than cyclosporin and has less pronounced side effects.
- Sirolimus (Rapamune™, Rapamycin) s is a macrolide lactone, produced by the actinomycetes Streptomyces hygroscopicus. It is used to prevent rejection reactions. Although it is a structural analogue of tacrolimus, it acts somewhat differently and has different side effects. Other rapalogues are also useful as immunosuppressive agents in the present invention.
- Other drugs include interferons. IFN-β suppresses the production of Th1 cytokines and the activation of monocytes. It is used to slow down the progression of multiple sclerosis. IFN-γ is able to trigger lymphocytic apoptosis. In addition, opioids can be useful. Prolonged use of opioids may cause immunosuppression of both innate and adaptive immunity. Decrease in proliferation as well as immune function has been observed in macrophages as well as lymphocytes. It is thought that these effects are mediated by opioid receptors expressed on the surface of these immune cells. A TNF-α (tumor necrosis factor alpha) binding protein is a monoclonal antibody or a circulating receptor such as infliximab (Remicade®), etanercept (Enbrel®), or adalimumab (Humira®) that binds to TNF-α and prevent it from inducing the synthesis of IL-1 and IL-6 and the adhesion of lymphocyte activating molecules. They are used in the treatment of rheumatoid arthritis, ankylosing spondylitis, Crohn's disease and psoriasis. TNF or the effects of TNF are also suppressed by various natural compounds, including curcumin (an ingredient in turmeric) and catechins (in green tea).
- Mycophenolic acid acts as a non-competitive, selective and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), which is a key enzyme in the de novo guanosine nucleotide synthesis. In contrast to other human cell types, lymphocytes B and T are very dependent on this process.
- Small biological agents are also useful. FTY720 is a new synthetic immunosuppressant, currently in
phase 3 of clinical trials. It increases the expression or changes the function of certain adhesion molecules (α4/β7 integrin) in lymphocytes, so they accumulate in the lymphatic tissue (lymphatic nodes) and their number in the circulation is diminished. In this respect, it differs from all other known immunosuppressants. - Agents used to treat skin inflammatory conditions include Acitretin, Alclometasone dipropionate, Allantoin/Coal tar extract/Hydrocortisone, Alphaderm, Alphosyl HC, Asmanex, Benzalkonium chloride/Dimeticone 350/Hydrocortisone/Nystatin, Betacap, Betamethasone dipropionate, Betamethasone dipropionate/Calcipotriol hydrate, Betamethasone dipropionate/Salicylic acid, Betamethasone Valerate, Betamethasone Valerate/Clioquinol, Betamethasone Valerate/Fusidic Acid, Betamethasone valerate/Neomycin sulphate, Betnovate, Betnovate-C, Betnovate-N, Bettamousse, Calcipotriol, Calcipotriol hydrate, Calcitriol, Calmurid HC, Canesten HC, Chlorquinaldol/Hydrocortisone Butyrate, Ciclosporin, Clarelux, Clioquinol/Hydrocortisone, Clobetasol propionate, Clobetasol propionate/Neomycin sulphate/Nystatin, Clobetasone butyrate, Clobetasone butyrate/Nystatin/Oxytetracycline calcium, Clotrimazole/Hydrocortisone, Crotamiton/Hydrocortisone, Cutivate, Daktacort, Dandrazol, Dermovate, Dermovate-NN, Dioderm, Diprosalic, Diprosone, Dithranol, Dithrocream, Dovobet, Dovonex, Dovonex cream, Econacort, Econazole nitrate/Hydrocortisone, Efalizumab, Efcortelan, Elidel, Enbrel, Etanercept, Eumovate, Eurax Hydrocortisone, Fluticasone propionate, Fucibet, Fucidin H, Fucidin H ointment, Fusidic acid/Hydrocortisone acetate, Gramicidin/Neomycin sulphate/Nystatin/Triamcinolone acetonide, Hydrocortisone, Hydrocortisone acetate/Sodium fusidate, Hydrocortisone butyrate, Hydrocortisone/Lactic Acid/Urea, Hydrocortisone/Miconazole nitrate, Hydrocortisone/Urea, Infliximab, Kenalog, Ketoconazole, Locoid, Locoid C, Maxtrex, Methotrexate, Methotrexate sodium, Modrasone, Mometasone, Nasofan, Neoral, Neotigason, Nizoral, Pimecrolimus, Protopic, Raptiva, Remicade, Silkis, Tacrolimus monohydrate, Tazarotene, Timodine, Tri-Adcortyl, Triamcinolone acetonide, Trimovate, Vioform-Hydrocortisone and Zorac.
- The CD28 molecule on T cells delivers a costimulatory signal upon engaging either of its ligands, B7.1 (CD80) or B7.2 (CD86) and possibly B7.3. A distinct signal is transduced by the CD40L (for ligand) molecule on the T cell when it is ligated to CD40. A number of other molecules on the surface of APC may serve some role in costimulation, although their full role or mechanism of action is not clear. These include VCAM-1, ICAM-1 and LFA-3 on APC and their respective ligands VLA-4, LFA-1 and CD2 on T cells. It is likely that the integrins LFA-1 and VCAM-1 (which is only expressed on activated and memory T cells) are involved in initiating cell-cell contact. LFA-1 (lymphocyte function associated protein 1) which blocks killing of target cells by CD8 cytotoxic T cells. LFA-1 binds the immunoglobulin superfamily ligands ICAM-1, -2, -3. Blocking beta-2 integrin is a very effective way of inhibiting immune responses and monoclonal antibodies against this protein are in clinical trial for treatment of transplant recipients and other conditions. Other immunotherapeutics in development are CTLA4-Ig, which is a soluble from of a high affinity receptor for B7.1 and B7.2 (more avid than CD28), and anti-CD40L; both block co-stimulation of T cells and anti-CD40L may also block reciprocal activation of antigen presenting cells.
- In some embodiments, the agonist is administered in combination or alternation with an costimulatory molecule that induces anergy. In some instances, the molecule is a B7-H4 protein or fragment, or a variant or fusion protein thereof. In some instances, the molecule is one described in PCT Publication Nos. WO 08/083239, WO 08/083228, WO 07/124361, WO 07/082154, WO 02/10187 or US Patent Publication No. 2007/0218032 or U.S. Pat. No. 6,891,030.
- In some embodiments, the method comprises administration of an Ata Receptor agonist in combination or alternation with one or more suppressive antibody formulations.
- Antibodies are used as a quick and potent immunosuppression method to prevent the acute rejection reaction. Heterologous polyclonal antibodies are obtained from the serum of animals (e.g. rabbit, horse) and injected with the patient's thymocytes or lymphocytes. The antilymphocyte (ALG) and antithymocyte antigens (ATG) are being used. These compositions include Atgam®, obtained from horse serum, and Thymoglobuline®, obtained from rabbit serum. They are part of the steroid-resistant acute rejection reaction and grave aplastic anemia treatment. However, they are primarily added to other immunosuppressives to diminish their dosage and toxicity. They also allow transition to cyclosporine therapy.
- Monoclonal antibodies are directed towards exactly defined antigens. Therefore, they cause fewer side effects. Especially significant are the IL-2 receptor (CD25) and CD3 directed antibodies. They are used to prevent the rejection of transplanted organs, but also to track changes in the lymphocyte subpopulations.
- Approved antibodies for transplant rejection include OKT3 ®, Simulect® and Zenapax (daclizumab). Furthermore, Fc-fusion proteins can be used for transplant rejection, such as fusion with mutants of or receptors for certain interleukins (IL-15 and IL-17 receptor for example). Fc-fusion proteins can also include modifications to decrease side effects of the administration.
- Additional antibodies useful for treating or preventing certain disorders are those useful for autoimmune disorders, inflammation, allergic reactions and cancer (HUMIRA (Abbott) for treatment of various forms of arthritis and Chron's disease, ABT-874, CAT-354, GC-1008, MYO-029 and MEDI-528.
- In particular embodiments, the agonist is administered in combination or alternation with an Intravenous immunoglobulin (IVIG), a blood product generally administered intravenously that contains pooled IgG immunoglobulins (antibodies extracted from the plasma of over a thousand blood donors). Typically IVIG therapy is useful for treatment of Immune deficiencies such as X-linked agammaglobulinemia, hypogammaglobulinemia (primary immune deficiencies), and acquired compromised immunity conditions ([secondary immune deficiencies), featuring low antibody levels; Inflammatory and autoimmune diseases; and Acute infections. In certain embodiments, the formulations are used to treat Allogeneic bone marrow transplant, Chronic lymphocytic leukemia, Idiopathic thrombocytopenic purpura, Pediatric HIV, Primary immunodeficiencies, Kawasaki disease, Kidney transplant with a high antibody recipient or with an ABO incompatible donor or Common Variable Immune Deficiency. In some embodiments, these formulations are directed to specific infectious diseases, such as respiratory syncytial virus (RSV), hepatitis B (Hepatitis B Immune Globulin-HBIG), rabies (Rabies Immune Globulin-RIG), tetanus (Tetanus Immune Globulin-TIG) and varicella (chickenpox) (Varicella Zoster Immune Globulin-VZIG). In some embodiments, the co-administration increases generation of memory T cells in individuals receiving the antibody and enhances the efficacy of the antibody therapy.
- The Ata receptor agonists can generally be administered to a host at risk of, or suffering from, a condition related to hyperactivity of the immune system, including an autoimmune disease. These conditions can be initiated in response to a pathogenic insult. For example, the conditions can occur due to infection, allergens, autoimmune stimuli, immune response to transplanted tissue, noxious chemicals, and toxins, ischemia/reperfusion, hypoxia, mechanical and thermal trauma, as well as growth of tumors. Inflammation is normally a localized action that results in expulsion or dilution of a pathogenic agent, resulting in isolation of the damaging agent and injured tissue. In certain cases, an immune response can occur to innocuous antigens that lead to symptomatic reactions upon re-exposure are called hypersensitivity reactions. These can cause hypersensitivity diseases if they occur repetitively.
- In other embodiments, the host is suffering from, or at risk for, a transplant rejection. In some instances, the transplant is a solid organ transplant. In certain instances, the rejection is mediated by a rejection of endothelial cells in the transplant. In some instances, the rejection is not a hyperacute rejection. In other cases, the rejection is in part a hyperacute rejection. In some instances, the rejection is of a donor kidney, liver or heart, or portion thereof.
- Autoimmune diseases arise from an overactive immune response of the body against substances and tissues normally present in the body. Generally autoimmune disorders are those in which the immune system produces an immune response (e.g. a B cell or a T cell response) against an endogenous antigen, with consequent injury to tissues. There are more than 40 human diseases classified as either definite or probable autoimmune diseases, and they affect 5% to 7% of the population. Almost all autoimmune diseases appear without warning or apparent cause, and most patients suffer from fatigue. Systemic autoimmune syndromes include SLE, Sjögren's syndrome, Scleroderma, Rheumatoid Arthritis and polymyositis. Local syndromes may be endocrinologic (
DM Type 1, Hashimoto's thyroiditis, Addison's disease etc.), dermatologic (pemphigus vulgaris), haematologic (autoimmune haemolytic anaemia), neural (multiple sclerosis) or can involve virtually any circumscribed mass of body tissue. - The following diseases are generally accepted to be autoimmune related:
-
- Acute disseminated encephalomyelitis (ADEM), is a form of encephalitis caused by an autoimmune reaction and typically occurring a few days or weeks after a viral infection or a vaccination.
- Addison's disease, is often caused by autoimmune destruction of the adrenal cortex.
- Ankylosing spondylitis, is a chronic, painful, progressive inflammatory arthritis primarily affecting spine and sacroiliac joints, causing eventual fusion of the spine.
- Antiphospholipid antibody syndrome (APS), affects the blood-clotting process. It causes blood clots to form in veins and/or arteries.
- Aplastic anemia, is often caused by an autoimmune attack on the bone marrow.
- Autoimmune hepatitis, is a disorder wherein the liver is the target of the body's own immune system.
- Autoimmune Oophoritis, is a disorder in which the immune system attacks the female reproductive organs.
- Coeliac disease, is a disease characterized by chronic inflammation of the proximal portion of the small intestine caused by exposure to certain dietary gluten proteins.
- Crohn's disease, is a form of inflammatory bowel disease characterized by chronic inflammation of the intestinal tract. Major symptoms include abdominal pain and diarrhea. There is also evidence supporting the theory that Crohn's Disease is an infectious disease caused by Mycobacterium avium paratuberculosis.
-
Diabetes mellitus type 1, when it is characterized by a deficiency or absence of insulin production (Type I), is often the consequence of an autoimmune attack on the insulin-producing beta cells in the islets of Langerhans of the pancreas. - Gestational pemphigoid, is a pregnancy-related blistering condition where autoantibodies are directed against the skin.
- Goodpasture's syndrome, is a disease characterised by rapid destruction of the kidneys and haemorrhaging of the lungs through autoimmune reaction against an antigen found in both organs.
- Graves' disease, is the most common form of hyperthyroidism, and is caused by anti-thyroid antibodies that have the effect of stimulating (agonist) the thyroid into overproduction of thyroid hormone.
- Guillain-Barré syndrome (GBS), is an acquired immune-mediated inflammatory disorder of the peripheral nervous system (i.e., not the brain and spinal column). It is also called acute inflammatory demyelinating polyneuropathy, acute idiopathic polyradiculoneuritis, acute idiopathic polyneuritis and Landry's ascending paralysis.
- Hashimoto's disease, is a common form of hypothyroidism, characterised by initial inflammation of the thyroid, and, later, dysfunction and goiter. There are several characteristic antibodies (e.g., anti-thyroglobulin).
- Idiopathic thrombocytopenic purpura, is an autoimmune disease where the body produces anti-platelet antibodies resulting in a low platelet count
- Kawasaki's Disease, is often caused by an autoimmune attack on the arteries around the heart.
- Lupus erythematosus, is a chronic (long-lasting) autoimmune disease wherein the immune system, for unknown reasons, becomes hyperactive and attacks normal tissue. This attack results in inflammation and brings about symptoms. This is a “Non-organ-specific” type of autoimmune disease.
- Multiple sclerosis, is a disorder of the central nervous system (brain and spinal cord) characterised by decreased nerve function due to myelin loss and secondary axonal damage.
- Myasthenia gravis, is a disorder of neuromuscular transmission leading to fluctuating weakness and fatigue. Weakness is caused by circulating antibodies that block (antagonist) acetylcholine receptors at the neuromuscular junction.
- Opsoclonus myoclonus syndrome (OMS), is a neurological disorder that appears to the result of an autoimmune attack on the nervous system. Symptoms include opsoclonus, myoclonus, ataxia, intention tremor, dysphasia, dysarthria, mutism, hypotonia, lethargy, irritability or malaise. About half of all OMS cases occur in association with neuroblastoma.
- Optic neuritis, is an inflammation of the optic nerve that may cause a complete or partial loss of vision.
- Ord's thyroiditis, is a thyroiditis similar to Hashimoto's disease, except that the thyroid is reduced in size. In Europe, this form of thyroid inflammation is more common than Hashimoto's disease.
- Pemphigus, is an autoimmune disorder that causes blistering and raw sores on skin and mucous membranes.
- Pernicious anaemia, is an autoimmune disorder characterised by anaemia due to malabsorption of vitamin B12.
- Polyarthritis in dogs, is an immune reaction severely affecting the joints of dogs. Although rare and of unknown cause it can render a dog immobile even at a very young age. Treatment includes cortisone-type drugs.
- Primary biliary cirrhosis, appears to be an autoimmune disease that affects the biliary epithelial cells (BECs) of the small bile duct in the liver. Although the cause is yet to be determined, most of the patients (>90%) appear to have auto-mitochondrial antibodies (AMAs) against pyruvate dehydrogenase complex (PDC), an enzyme that is found in the mitochondria.
- Rheumatoid arthritis, is an autoimmune disorder that causes the body's immune system to attack the bone joints.
- Reiter's syndrome, seems to be an autoimmune attack on various body systems in response to a bacterial infection and the body's confusion over the HLA-B27 marker.
- Sjögren's syndrome, is an autoimmune disorder in which immune cells attack and destroy the exocrine glands that produce tears and saliva.
- Takayasu's arteritis, is a disorder that results in the narrowing of the lumen of arteries.
- Temporal arteritis (also known as “giant cell arteritis”), is an inflammation of blood vessels, most commonly the large and medium arteries of the head. Untreated, the disorder can lead to significant vision loss.
- Warm autoimmune hemolytic anemia, is a disorder characterized by IgM attack against red blood cells.
- Wegener's granulomatosis, is a form of vasculitis that affects the lungs, kidneys and other organs.
- In addition, several diseases are suspected or theorized to be linked to autoimmunity. These include: Alopecia universalis; Behcet's disease; Chagas' disease; Chronic fatigue syndrome; Dysautonomia; Endometriosis; Hidradenitis suppurativa; Interstitial cystitis; Lyme disease; Morphea; Neuromyotonia; Narcolepsy; Psoriasis; Sarcoidosis; Schizophrenia; Scleroderma; Ulcerative colitis; Vitiligo; and Vulvodynia.
- In one embodiment, the compounds are administered for the treatment or prophylaxis of inflammatory disorders that include, but are not limited to, respiratory disorders (including asthma, COPD, chronic bronchitis and cystic fibrosis); cardiovascular related disorders (including atherosclerosis, post-angioplasty, restenosis, coronary artery diseases and angina); inflammatory diseases of the joints (including rheumatoid and osteoarthritis); skin disorders (including dermatitis, eczematous dermatitis and psoriasis); post transplantation late and chronic solid organ rejection; multiple sclerosis; autoimmune conditions (including systemic lupus erythematosus, dermatomyositis, polymyositis, Sjogren's syndrome, polymyalgia rheumatica, temporal arteritis, Behcet's disease, Guillain Barré, Wegener's granulomatosus, polyarteritis nodosa); inflammatory neuropathies (including inflammatory polyneuropathies); vasculitis (including Churg-Strauss syndrome, Takayasu's arteritis); inflammatory disorders of adipose tissue; and proliferative disorders (including Kaposi's sarcoma and other proliferative disorders of smooth muscle cells).
- Specific disorders include rheumatoid arthritis, lupus erythematosus, Sjögren's syndrome, scleroderma (systemic sclerosis), dermatomyositis, polychondritis, polymyositis, polymyalgia rheumatica, osteoarthritis, septic arthritis, fibromyalgia, gout, pseudogout, spondyloarthropathies, such as ankylosing spondylitis, reactive arthritis (Reiter's syndrome), psoriatic arthropathy, enteropathic spondylitis and reactive arthropathy, vasculitis, such as polyarteritis nodosa, Henoch-Schonlein purpura, serum sickness, Wegener's granulomatosis, giant cell arteritis, temporal arteritis, Takayasu's arteritis, Behçet's syndrome, Kawasaki's disease (mucocutaneous lymph node syndrome) and Buerger's disease (thromboangiitis obliterans). In addition, autoimmune conditions such as acute disseminated encephalomyelitis, Addison's disease, ankylosing spondylitisis, antiphospholipid antibody syndrome, autoimmune hepatitis, Coeliac disease, Crohn's disease, diabetes mellitus, Graves' disease, Guillain-Barré syndrome, Hashimoto's disease, idiopathic thrombocytopenic purpura, Kawasaki's Disease, lupus erythematosus, multiple sclerosis, Mmyasthenia gravis, opsoclonus myoclonus syndrome, optic neuritis, Ord's thyroiditis, pemphigus, pernicious anaemia, primary biliary cirrhosis, Reiter's syndrome, Sjögren's syndrome, Takayasu's arteritis, temporal arteritis, warm autoimmune hemolytic anemia and Wegener's granulomatosis.
- In other embodiments, certain inflammatory skin disorders are treated or prevented, such as dermatitis, eczematous dermatitis and psoriasis. In general inflammatory skin disease is a broad category that includes many conditions, ranging in severity from mild itching to serious medical health complications. Other conditions that are inflammatory skin disorders include eczema generally, acne and rosacea.
- Other disorders to be treated or prophylactically prevented or reduced by the methods of the invention include post transplantation late and chronic solid organ rejection; multiple sclerosis; autoimmune conditions (including systemic lupus erythematosus, dermatomyositis, polymyositis, inflammatory neuropathies (Guillain Barré, inflammatory polyneuropathies), vasculitis (Wegener's granulomatosus, polyarteritis nodosa), and rare disorders such as polymyalgia rheumatica, temporal arteritis, Sjogren's syndrome, Bechet's disease, Churg-Strauss syndrome, and Takayasu's arteritis).
- The described compounds can be formulated as pharmaceutical compositions and administered for any of the disorders described herein, in a host, including a human, in any of a variety of forms adapted to the chosen route of administration, including systemically, such as orally, or parenterally, by intravenous, intramuscular, topical, transdermal or subcutaneous routes.
- The compounds can be included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount to treat cancer or other disorders characterized by abnormal cell proliferation or cancer or the symptoms thereof in vivo without causing serious toxic effects in the patient treated.
- A dose of the antagonists or agonists for the above-mentioned conditions will be in the range from about 1 to 75 mg/kg, or 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day. The effective dosage range of the prodrug can be calculated based on the weight of the parent derivative to be delivered.
- The compounds are conveniently administered in units of any suitable dosage form, including but not limited to one containing 7 to 3000 mg, or 70 to 1400 mg of active ingredient per unit dosage form. An oral dosage of 50-1000 mg is usually convenient, and more typically, 50-500 mg.
- In certain instances, the antagonists or agonists should be administered to achieve peak plasma concentrations of the active compound of from about 0.2 to 70 μM, or about 1.0 to 10 μM. This may be achieved, for example, by the intravenous injection of an appropriate concentration of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.
- The concentration of the antagonist or agonist in the drug composition will depend on absorption, inactivation and excretion rates of the extract as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The compounds may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
- One mode of administration of the compounds is oral. Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.
- The compounds can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. The compounds can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, anti-inflammatories, or other anti-autoimmune compounds. Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfate; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- If administered in a solution, such as intravenously, preferred carriers are physiological saline or phosphate buffered saline (PBS).
- In another embodiment, the compounds are prepared with carriers that will protect the derivatives against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) are also typical as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
- In some embodiments, the compounds can be administered in a composition that enhances the half life of the compounds in the body. For example, the antagonist or agonists molecules can be linked to a molecule, such as a polyethylene glycol. In certain embodiments, the molecule can be used to target the compounds to a cell, for example as a ligand to a receptor. In some embodiments, the linking of the compound reduces the amount of times the compound is administered in a day or in a week. In other embodiments, the linkage can enhance the oral availability of the compounds.
- In certain instances, the compositions will additionally comprise an immunogenic adjuvant. Antigens, especially when recombinantly produced, may elicit a stronger response when administered in conjunction with adjuvant. Alum is an adjuvant licensed for human use and hundreds of experimental adjuvants such as cholera toxin B are being tested. Helicobacter pylori is the spiral bacterium which selectively colonizes human gastric mucin-secreting cells and is the causative agent in most cases of nonerosive, gastritis in humans. Recent research activity indicates that H. pylori, which has a high urease activity, is responsible for most peptic ulcers as well as many gastric cancers. Many studies have suggested that urease, a complex of the products of the ureA and ureB genes, may be a protective antigen.
- Immunogenicity can be significantly improved if an antigen is co-administered with an adjuvant, commonly used as 0.001% to 50% solution in phosphate buffered saline (PBS). Adjuvants enhance the immunogenicity of an antigen but are not necessarily immunogenic themselves. Intrinsic adjuvants, such as lipopolysaccarides, normally are the components of the killed or attenuated bacteria used as vaccines. Extrinsic adjuvants are immunomodulators which are typically non-covalently linked to antigens and are formulated to enhance the host immune response. Aluminum hydroxide and aluminum phosphate (collectively commonly referred to as alum) are routinely used as adjuvants in human and veterinary vaccines. A wide range of extrinsic adjuvants can provoke potent immune responses to antigens. These include saponins complexed to membrane protein antigens (immune stimulating complexes), pluronic polymers with mineral oil, killed mycobacteria in mineral oil, Freund's complete adjuvant, bacterial products, such as muramyl dipeptide (MDP) and lipopolysaccharide (LPS), as well as lipid A, and liposomes. To efficiently induce humoral immune response (HIR) and cell-mediated immunity (CMI), immunogens are typically emulsified in adjuvants.
- U.S. Pat. No. 4,855,283 granted to Lockhoff describes glycolipid analogs including N-glycosylamides, N-glycosylureas and N-glycosylcarbamates, each of which is substituted in the sugar residue by an amino acid, as immune-modulators or adjuvants. U.S. Pat. No. 4,258,029 granted to Moloney describes that octadecyl tyrosine hydrochloride (OTH) functions as an adjuvant when complexed with tetanus toxoid and formalin inactivated type I, II and III poliomyelitis virus vaccine. Octodecyl esters of aromatic amino acids complexed with a recombinant hepatitis B surface antigen, enhanced the host immune responses against hepatitis B virus. Bessler et al., “Synthetic lipopeptides as novel adjuvants,” in the 44th Forum In Immunology (1992) at page 548 et seq. is directed to employing lipopeptides as adjuvants when given in combination with an antigen. The lipopeptides typically had P3C as the lipidated moiety and up to only 5 amino acids, e.g., P3C-SG, P3C-SK4, P3C-SS, P3C-SSNA, P3C-SSNA.
- Antigens or immunogenic fragments thereof stimulate an immune response when administered to a host. In one embodiment, the antigen is a killed whole pneumococci, lysate of pneumococci or isolated and purified PspA, as well as immunogenic fragments thereof, particularly when administered with an adjuvant (see U.S. Pat. No. 6,042,838). The S. pneumoniae cell surface protein PspA has been demonstrated to be a virulence factor and a protective antigen (see WO 92/14488). In an effort to develop an immunogenic composition based on PspA, PspA was recombinantly expressed in E. coli. To efficiently express PspA, the mature PspA molecule of the Rx1 strain was truncated from its normal length of 589 amino acids to that of 314 amino acids comprising
amino acids 1 to 314. This region of the PspA molecule contains most, if not all, of the protective epitopes of PspA. - Nardelli et al. (Vaccine (1994), 12(14):1335 1339) covalently linked a tetravalent multiple antigen peptide containing a gp120 sequence to a lipid moiety and orally administered the resulting synthetic lipopeptide to mice. Croft et al. (J. Immunol. (1991), 146(5): 793 796) have covalently coupled integral membrane proteins (Imps) isolated from E. coli to various antigens and obtained enhanced immune responses by intramuscular injection into mice and rabbits. Schlecht et al. (Zbl. Bakt. (1989) 271:493 500) relates to Salmonella typhimurium vaccines supplemented with synthetically prepared derivatives of a bacterial lipoprotein having five amino acids. Substantial effort has been directed toward the development of a vaccine for Lyme disease.
- When a compound is administered throughout the specification, the amount of antibody administered is an effective amount to effect the result indicated. Therefore, when an A2a Receptor antagonist is administered to enhance an immune response, the amount administered is an effective amount to produce the desired results.
- The compounds are generally administered for a sufficient time period to alleviate the undesired symptoms and the clinical signs associated with the condition being treated. In one embodiment, the compounds are administered less than three times daily. In one embodiment, the compounds are administered in one or two doses daily. In one embodiment, the compounds are administered once daily. In some embodiments, the compounds are administered in a single oral dosage once a day. In certain embodiments, as described above, the agonists are administered in a specific order and in a particular time frame, to provide the tolerance inducing effects and reduce the use of immunosuppressive agents.
- The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutic amount of compound in vivo in the absence of serious toxic effects. An effective dose can be determined by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication.
- Typical systemic dosages for the herein described conditions are those ranging from 0.01 mg/kg to 1500 mg/kg of body weight per day as a single daily dose or divided daily doses. Dosages for the described conditions typically range from 0.5-1500 mg per day. A more particularly dosage for the desired conditions ranges from 5-750 mg per day. Typical dosages can also range from 0.01 to 1500, 0.02 to 1000, 0.2 to 500, 0.02 to 200, 0.05 to 100, 0.05 to 50, 0.075 to 50, 0.1 to 50, 0.5 to 50, 1 to 50, 2 to 50, 5 to 50, 10 to 50, 25 to 50, 25 to 75, 25 to 100, 100 to 150, or 150 or more mg/kg/day, as a single daily dose or divided daily doses. In one embodiment, the daily dose is between 10 and 500 mg/day. In another embodiment, the dose is between about 10 and 400 mg/day, or between about 10 and 300 mg/day, or between about 20 and 300 mg/day, or between about 30 and 300 mg/day, or between about 40 and 300 mg/day, or between about 50 and 300 mg/day, or between about 60 and 300 mg/day, or between about 70 and 300 mg/day, or between about 80 and 300 mg/day, or between about 90 and 300 mg/day, or between about 100 and 300 mg/day, or about 200 mg/day. In one embodiment, the compounds are given in doses of between about 1 to about 5, about 5 to about 10, about 10 to about 25 or about 25 to about 50 mg/kg. Typical dosages for topical application are those ranging from 0.001 to 100% by weight of the active compound.
- The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the dosage ranges set forth herein are exemplary only.
- Reagents:
- Cyclosporine A (Calbiochem, Cambridge, Mass.) was dissolved in ethanol and used at 1 uM. CGS-21680 (Sigma, St. Louis, Mo.) was dissolved in PBS and used at indicated concentrations. Anti-CD3 (2C11, BD PharMingen, San Diego, Calif.) was diluted in PBS and used at 1 ug/mL, as indicated. Soluble anti-CD28 (a kind gift from Dr. J. Allison, UC Berkeley, Calif.) was used at a 1/1000 dilution. Hemagglutinin (HA) class II is an I-Ed specific peptide (SFERFEIFPKE) which was manufactured by The Johns Hopkins School of Medicine Oncology Department Peptide Synthesis Facility. Anti-phospho-ERK (Santa Cruz Biotechnology, Santa Cruz, Calif.) was used at 1:400 in 5% NFDM/TBS-tween (0.1%). Anti-p42/p44 MAPK (Cell Signaling Technology, Danvers, Mass.) was used at 1:500 in 5% BSA/TBS-tween (0.1%). Anti-jun B (Santa Cruz) and anti-Actin (Sigma) were both used at 1:1000 in 5% NFDM/TBS-tween (0.1%) mAbs used for staining: biotinylated anti-clonotypic 6.5 TCR (generously provided by H. Von Boehmer); avidin-PE (Caltag, Burlingame, Calif.); FITC-conjugated anti-CD4 (RM4-4); Cy-Chrome-conjugated anti-CD4 (RM4-5); PE-conjugated anti-Thy-1.1 (OX-7); FITC-conjugated anti-CD44 (1 M7); APC-conjugated anti-IFN-γ (XMG1.2); PE-conjugated anti-IL-17 (TC11-18H10); biotinylated anti-Thy1.2 (53-2.1) (all purchased from BD PharMingen). Anti-IFN-□ and anti-IL-4 BD PharMingen) were used at 10 ug/mL. TGF-□ (Sigma) was used at 5 ng/mL. IL-6 (Peprotech, Rocky Hill, N.J.), was used at 20 ng/mL. FACSCalibur was used for flow cytometry event collection, and events were analyzed using FlowJo software (Ashland, Oreg.). Sorting was done with FACSAria (BD Biosciences, San Jose, Calif.).
- Cell Culture: A.E7 is a clonotypic CD4+, Th1 T cell clone specific for pigeon cytochrome c (PCC) and is maintained as previously described (Powell et al. J Immunol. 1999; 162:2775-2784). A.E7s were rendered anergic with plate-bound anti-CD3 or by incubation with APC, PCC and 1 uM CGS.
- Splenocytes and lymphocytes from A2a receptor wt or null 6.5+ mice (see below) were harvested and enriched for CD4+ T cells via negative selection with the CD4+ T cell isolation kit and LS MACs column (all from Miltenyi Biotech, Auburn, Calif.). The T cells were then cultured in the presence or absence of 10 ug/mL HA class II peptide and 1 uM CGS. The T cells were rechallenged for 3-4 hours with 100 ug/mL HA class II peptide, GolgiStop (BD PharMingen) and irradiated APCs.
- cAMP Production:
- Total cAMP of naïve or previously activated cells were assayed with the Biotrak EIA system (Amersham Biosciences, Buckinghamshire, UK). For in vitro studies, A.E7 cells were mock stimulated or rendered anergic as above and rested for 24 hours. They were then harvested, extensively washed, and resuspended in media. 3.2˜o15 cells were incubated with increasing amounts of CGS (as indicated) in a total volume of 180 pL at 37° C. After 40 minutes, whole cell lysates were generated and total cAMP levels were determined. To measure A2a receptor upregulation in primary T cells, splenocytes from A2a receptor wt or null mice were harvested and the incubated overnight in the presence or absence of soluble anti-CD3 (activated and nai′ve, respectively). The cells were assessed for cAMP similar to the in vitro cAMP studies.
- Microarray:
- In vitro microarray was performed as previously described (Safford et al. Nat Immunol. 2005; 6:472-480). In vivo microarray was performed as previously described (Huang et al. Immunity. 2004; 21:503-513). Briefly, A.E7s were stimulated with either PBS alone or plate-bound anti-CD3 in the absence or presence of CSA, then washed and rested. RNA was prepared with RNeasy kit (Qiagen) and probes were prepared per Affymetrix protocol.
- Transgenic Mice:
- The C3HA expressing transgenic (recipient) mice express hemagglutinin (HA) under the rat C3 promoter and has been previously described (Huang et al. J Immunol. 2003; 170:3945-3953). The TCR-transgenic mouse line 6.5 (donor mice) has been previously described.8 A2a receptor−/− mice were bred to this 6.5 mouse line. LAG-3 knockout mice on a C57/B6 were a generous gift of Dr. Dario Vignali. The LAG-3 KO genotype was bred onto a B10.D2 6.5+ TCR background. All experiments involving the mice were performed in accordance with protocols approved by the Animal Care and Use Committee of The Johns Hopkins University School of Medicine.
- Adoptive Transfer:
- Clonotypic CD4+ T cells were harvested from 6.5+ transgenic mice. The unfractionated population was resuspended to contain 1.2×106 6.5+ T cells in 200 uL of HBSS for i.v. injection through the tail vein of C3HA mice. Recipient mice were given twice daily i.p. injections of vehicle (PBS alone) or CGS (2.5 mg/kg) in 100 uL volumes, on Days 1-4 following the transfer. No CGS was administered after
Day 4. The percentage of CD4+, 6.5 +, Thy 1.1+, Thy 1.2− clonotypic T cells was determined by flow cytometric analysis. CD44 level was also analyzed to ensure that these clonotypic T cells were not activated in donor mice and were naive in phenotype. The cells were washed three times with HBSS and the unfractionated population was resuspended to contain the appropriate number of clonotypic T cells in 200 uL of HBSS for i.v. injection through the tail vein of C3HA. - Western Blot:
- For phospho-ERK and total ERK Western blots, splenocytes from 6.5+ mice were stimulated overnight with 10 ug/mL HA class II peptide then harvested and enriched for CD4+ T cells. CD4+ purified T cells were then stimulated in 500 uL with soluble anti-CD3 (10 ug/mL) and soluble anti-CD28 (1:20 dilution).
- EMSA:
- Nuclear extracts from CD4+ purified 6.5+ T cells that were prepared. The AP-1 probe was: 5′-CGC TTG ATG ACT CAG CCG GAA-3′. The NFkB probe was: 5′-AGT TGA GGG GAC TTT CCC AGG C-3′.
- RT-PCR:
- For in vitro studies, 5cc7 splenocytes were harvested and stimulated overnight with 10 uM PCC in the presence or absence of 1 uM CGS. The cells were harvested, mRNA isolated with Trizol and cDNA was generated. RT-PCR was performed as previously described (Safford et al. Nat Immunol. 2005; 6:472-480).
- For in vivo studies, recipient C3HA mice were given 1.2×106 6.5+ donor T cells as described above. On
Day 3, donor T cells were sorted and cDNA generated as above. RT-PCR was performed as previously described (Safford et al. Nat Immunol. 2005; 6:472-480). -
LAG-3 primers and probe sets used were: (SEQ ID NO: 1) Primer 5′-ACATCAACCAGACAGTGGCCA-3′/(SEQ ID NO: 2) Primer 5′-GCATCCCCTGGTGAAGGTC-3′/(SEQ ID NO: 3) Probe 5′-6FAM-CCCACTCCCATCCCGGCCC-TAMRA-3′FoxP3 primers and probe sets used were: (SEQ ID NO: 4) Primer 5′-GGC CCT TCT CCA GGA CAG A-3′/(SEQ ID NO: 5) Primer 5′-GCT GAT CAT GGC TGG GTT GT -3′/(SEQ ID NO: 6) Probe 5′-6FAM-ACT TCA TGC ATC AGC TCT CCA CTG TGGATT AT-TAMRA-3′ - IL-6 and TGF-β primers and probe sets were purchased from Applied Biosystems (Foster City, Calif.).
- Th17 Driving Conditions:
- 4×106 5 cc7 splenocytes were stimulated as previously described (Laurence et al. Immunity. 2007; 26:371-381).
- Statistics:
- Quantitative data were expressed as mean±standard deviation and compared using paired Student t tests. Values of p<0.05 were considered significant and are indicated by an asterisk (*).
- Studies were conducted to determine the effects of A2a receptor stimulation on T cell function. A.E7 is a clonotypic CD4′, Th1 T cell clone specific for pigeon cytochrome c (PCC) and is maintained as previously described (Powell, J. D., Lerner, C. G. & Schwartz, R. H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 162, 2775-84 (1999)). A.E7s were rendered anergic with anti-CD3 or by incubation with APC, PCC and 1 pM CGS-21680. For antibody induced anergy, 6-well plates were previously coated with anti-CD3 three hours prior to stimulation and washed with PBS. For mock stimulations, the well was not coated with anti-CD3. A.E7s were incubated in the coated well overnight at 37° C., then harvested and washed extensively and rested (24 hours for CAMP measurement, 4-6 days for proliferation and cytokine production). To test whether the A2a receptor-specific agonist CGS-21680 (CGS) induced anergy, 10×106 A.E7s were incubated with 100×106 irradiated BIO.A splenocytes (3000 rads) in the presence and absence of both 10 pM PCC and 1 pM CGS for 4 days at 37° C. A.E7s were then isolated via a ficoll gradient, washed extensively, and immediately rechallenged for proliferation and cytokine production. To assess proliferation to PCC, T cells were extensively washed and 5×106 cells were added to 50×104 irradiated BIO.A splenocytes and increasing doses of PCC in triplicate in a 96-well flat-bottomed plate. After 48 hours, cells were pulsed with [3H] thymidine and harvested 16 hrs later. Tritium incorporation was determined by a Packard Matrix 96 direct beta counter (Packard bioscience). For cytokine production, a 96-well round-bottom plate was preincubated with 3 pg/mL anti-CD3 for 3 hours. The wells were washed and 105 A.E7s were added in the presence of anti-CD28 and increasing doses of CGS (as indicated) in a total volume of 200 pL. All conditions were done in triplicate and were cultured overnight. Supernatant was collected and assessed for cytokine levels (eBioscience for IL-2, IFN-y, TNF-a; R&D Systems for GM-CSF) as per manufacturers' instructions. For each sample, multiple dilutions of the supernatant were assayed and concentration was determined based upon the dilution that best fit the most linear aspect of the standard curve. For CD25 measurements, the cells used for cytokine production were stained with anti-CD25, harvested and measured by flow cytometry.
- Splenocytes and lymphocytes from A2a receptor wt or null, 6.5+ mice were harvested and enriched for CD4′ T cells via negative selection with the CD4+ T cell isolation kit and LS MACs column (all from Miltenyi Biotech, Auburn, Calif.). The T cells were then cultured for in the presence or absence of 10 pg/mL HA class II peptide and 1 pM CGS. Irradiated splenocytes from mice of the same A2a receptor genotype were used as APCs, at a 10:1 ratio with T cells. After 3 days, the T cells were harvested and isolated via a ficoll gradient, washed extensively and immediately rechallenged for intracellular staining. Briefly, the 1×105 T cells were stimulated for 3-4 hours with 5×105 irradiated A2a receptor wt APCs, I00 pg1 mL HA class II peptide and a 1:1000 dilution of GolgiStop (BD PharMingen), in a total volume of 200 pL. After the stimulation, the cells were washed, stained with anti-6.5 and anti-CD4 antibodies, permeablized and fixed, then stained with anti-IFN-y antibody. Finally, the cells were washed and IFN-y production of CD4+, 6.5 + T cells was analyzed by flow cytometry.
- Promotion of Tolerance In Vivo:
- To determine the role of the A2a receptor in the induction of tolerance in vivo, we examined the effect of CGS administration in the mouse model of autoimmunity. For 4 days following the adoptive transfer of 1.2×106 6.5 T cells into C3HA mice, the recipient mice were given twice daily i.p. injections of vehicle (PBS alone) or CGS (2.5 mglkg) in 100 uL volumes. No CGS was administered after
Day 4. A survival curve was generated from two separate experiments for a total of 17 mice for each condition. - Ex Vivo Tolerance Studies:
- 1.2×106 clonotypic 6.5+ T cells were adoptive transferred into C3HA recipient mice as described above. On the second or third day (as noted) after transfer the splenocytes and lymphocytes were harvested and pooled. 2×105 of the pooled cells were incubated in 96-well round bottom plates with varying concentrations of HA class II peptide for 24 hours. A portion of the supernatant were withdrawn and later assayed for IL-2 and IFN-γ productions by ELISA. The wells were then pulsed with [3H]thymidine for 16 hours and proliferation determined by tritium incorporation, as described above. All samples were performed in triplicate.
- In Vivo Suppression:
- It has been shown that mice that survive the initial transfer of donor T cells can survive subsequent transfer of higher numbers of clonotypic T cells. To determine if adenosine mediates the formation of T regulatory cells, in vivo, we gave the surviving mice from
FIG. 4a a transfer of 25×106 clonotypic T cells 4-6 weeks after the first transfer. No CGS is administered upon the second transfer. - RT-PCR:
- Recipient mice are given 1.2×106 donor T cells as described above. On
Day 4, cells from spleens and lymph nodes are harvested and pooled. They are enriched for CD4+T cells via negative selection using biotinylated anti-CD8 (Ly-2, 53-6.7), anti-B220 (RA3-6B2) and anti-Thy 1.2(30-H12) antibodies (all from BD Biosciences PharMingen), and MACS streptavidin microbeads and AutoMACS column (Miltenyi Biotech) to deplete CD8+ T cells, B cells and recipient cells (Thy 1.2′). The remaining cells are then sorted onThy 1. I and CD4 using FACSAria cell sorter to yield a CD4′, 6.5′ T cell population of greater than 95% purity. RT-PCR was performed as previously described′. -
LAG-3 primers and probe sets used are: (SEQ ID NO: 1) Primer 5′-ACATCAACCAGACAGTGGCCA-3′/(SEQ ID NO: 2) Primer 5′-GCATCCCCTGGTGAAGGTC-3′/(SEQ ID NO: 3) Probe 5′-6FAM-CCCACTCCCATCCCGG CCC-TAMRA-3′ - When A.E7 cells, a clonal CD4+ Th1 T cell line, are stimulated with anti-CD3, rested and then re-challenged with anti-CD3 and anti-CD28, they fail to produce IL-2. Alternatively, blocking TCR signaling during the induction with cyclosporin A (CSA) restores IL-2 production to mock-stimulated levels. Inhibition of IL-2 was the most pronounced, (ID50 of 4.7 nM) compared to GM-CSF, TNF-α□ and IFN-γ□□ID50s of 9.1 nM, 100 nM and 760 nM, respectively) (
FIG. 1a ). Maximal cytokine production, determined in the absence of A2a receptor agonist, was 233-788 pg/mL IL-2, 13.2-21.6 ng/mL GM-CSF, 102-263 ng/mL TNF-α and 507-583 ng/mL IFN-γ. - Activating A.E7 T cell clones with anti-CD3 and anti-CD28 antibodies in the presence of CGS resulted in a dose-dependent inhibition of cytokine production (see also Lappas, C. M., Rieger, J. M. & Linden, J. A2a adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174, 1073-1080 (2005); Erdmann, A. A., et al. Activation of Th1 and Tc1 cell adenosine A2a receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 105, 4707-4714 (2005); Naganuma, M., et al. Cutting Edge: Critical Role for A2a Adenosine Receptors in the T Cell-Mediated Regulation of Colitis. J Immunol 177, 2765-2769 (2006)).
- A2a receptor signaling did not inhibit TCR-induced CD25 expression suggesting that this inhibition is not due to global blockade of T cell activation (
FIG. 1b ). The cytokine profile of cells stimulated with anti-CD3 and anti-CD28 in the presence of the A2a receptor agonist, matched that of the cytokine profile seen in T cell anergy (Signal 1 alone). IL-2 production was markedly decreased followed by IFN-γ and GM-CSF (seeFIG. 1b ). Production of the chemokine MIP-1α which is induced with anti-CD3 stimulation alone, was not inhibited by CGS (FIGS. 1c and d ). Maximal IL-2 production of activated cells ranged between 6420 and 7456 pg/mL, GM-CSF between 38.6 and 76.5 ng/mL, IFN-γ from 707 to 1624 ng/mL and MIP1-α between 331 and 439 ng/mL. The overall cytokine hierarchy remained constant over the 3 independent experiments. Thus the cytokine profile of full T cell activation (Signal 1+2) in the presence of A2a receptor signaling mimicked the cytokine profile seen during the induction of anergy (Signal 1 alone). - To test if A2a receptor activation during T cell activation might promote T cell anergy, A.E7 T cells (specific for the antigen PCC) were co-incubated with irradiated APCs in the presence or absence of both CGS and PCC (induction, primary stimulation). Next, the T cells were isolated and rechallenged with APCs and peptide in the absence of CGS (secondary stimulation).
- Presence of CGS during a mock induction (no peptide present, no A2a receptor upregulation) had no effect upon subsequent rechallenge. (
FIG. 2a ). However, in the presence of peptide, the A2a receptor is upregulated and its activation promotes T cell anergy. When CGS is present during the initial stimulation, the T cells are rendered hyporesponsive such that they demonstrate reduced proliferation and IFN-γ production, even upon full stimulation. (FIGS. 2b and c ) - It is known that the presence of exogenous IL-2 has the ability to prevent T cell anergy. IL-2 was added to the cultures stimulated in the presence or absence of CGS and then determined if the cells were anergic upon rechallenge. Consistent with anergy (
Signal 1 alone), the presence of IL-2 prevented the ability of CGS to induce anergy (FIGS. 2d and e ). - Next we tested the ability of CGS to induce anergy in primary T cells. 6.5 TCR transgenic T cells were incubated with HA (their cognate antigen) in the presence or absence of CGS during the primary stimulation, and then rechallenged and assessed for IFN-□ production by intracellular staining. As was the case for the A.E7 T cell clones, A2a receptor signaling during the primary stimulation induced anergy such that the cells were hyporesponsive upon subsequent stimulation (
FIG. 3a ). A2a receptor null T cells were resistant to CGS-induced anergy, confirming the specificity of CGS for the A2a receptor. It has previously been shown that, in vivo, anergic 6.5+ transgenic T cells also develop regulatory function which is characterized by the expression of LAG-3. We thus tested the CGS-treated T cells for LAG-3 and found that A2a receptor signaling led to an increase in LAG-3 expression (FIG. 3b ). As was the case for T cell anergy, the ability of CGS to induce LAG-3 was abrogated by the addition of exogenous IL-2. - It is known that the upregulation of LAG-3 is inhibited by CsA suggesting that it might be part of the NF-AT-induced inhibitory program. Indeed, LAG-3 is markedly upregulated by ionomycin alone further supporting this hypothesis (
FIG. 3c ). In light of these observations we hypothesized that one mechanism by which A2a receptor stimulation might be promoting anergy and LAG-3 expression is by inhibiting pathways which promote AP-1 activation. To test this hypothesis A.E7 T cells were stimulated withSignal 1+2 in the presence or absence of CGS (FIG. 3d ). T cell stimulation in the absence of CGS led to robust phosphorylation of ERK, while T cell activation concomitant with A2a receptor stimulation inhibited ERK phosphorylation. Given that ERK phosphorylation ultimately leads to an increase in AP-1 activity, the effect of A2a receptor signaling on AP-1 levels in the nucleus were analyzed. Similar to the CGS effect on ERK phosphorylation, A2a receptor signaling during T cell stimulation led to reduced jun B expression in the nucleus (FIG. 3e ) and lowered AP-1 binding as a whole (FIG. 30 . These data suggest that by inhibiting the activation of AP-1, A2a receptor signaling favors the induction of genes induced by NF-AT in the absence of AP-1. - TCR transgenic 6.5+ T cells were adoptively transferred into C3HA mice that express HA as a self antigen (primarily in the lung), It is known that such cells initially are activated and proliferate but then become anergic by
Day 4. The balance between the induction of peripheral tolerance and autoimmunity can be manipulated by adjusting the input of adoptively transferred 6.5+ T cells. - The effect of A2a receptor activation on tolerance induction and survival under conditions when mice would normally succumb to autoimmunity were tested. Approximately 80% of C3HA mice that received a lethal dose of 6.5+ T cells die of autoimmunity (
FIG. 4a ). In contrast, the administration of CGS for the four days immediately following T cell transfer led to the long-term survival of 80% of the mice. The fact that the mice did not experience autoimmunity when CGS was stopped suggests that the short course of CGS promoted the induction of tolerance, in vivo. Thus, the CGS was not merely acting as an immunosuppressive agent. To confirm this, C3HA mice were given clonotypic T cells, treated with CGS or vehicle, and their lymphocytes were harvested 2 or 3 days later. Cells harvested two days after adoptive transfer display equal proliferation and cytokine production, regardless of CGS treatment. ByDay 3, however, the T cells derived from the CGS treated mice were hyporesponsive, displaying significant reduction in proliferation and IFN-γ production following in vitro stimulation when compared to T cells from vehicle-treated mice. (FIGS. 4b and c ) Note that there is no CGS present during the rechallenge. The data depict the consequence of CGS exposure in vivo prior to rechallenge. By treating the mice with pharmacologic doses of an A2a receptor agonist tolerance could thus be induced. - The role of endogenous tissue-derived adenosine on the induction of tolerance, in vivo was analyzed. To this end, we transferred 6.5+ T cells from either A2a receptor KO or Wt control mice into A2a receptor Wt C3HA recipients. The dose of adoptively transferred T cells was titrated such that 100% of the mice survived the transfer of the Wt control T cells. In contrast, only 20% of the mice receiving the T cells from the A2a receptor null mice survived (
FIG. 4d ). CGS fails to protect the mice given A2a receptor KO T cells once again confirming that CGS acts specifically on the A2a receptor. - A role for inducible regulatory T cells has been demonstrated in a number of in vivo models of tolerance. Recently, it has been shown both that the CD4 homologue LAG-3 is expressed on inducible regulatory T cells, in vivo, and that anti-LAG-3 antibodies have the ability to hasten the development of autoimmunity in the C3HA model. Alternatively, these LAG-3+ regulatory T cells have the ability to protect mice against subsequent rechallenge with normally lethal doses of clonotypic cells.
- Tests were conducted to determine the effect of A2a receptor engagement on the induction of these regulatory T cells, in vivo. We found that the kinetics of LAG-3 expression were quicker and more robust in T cells from the CGS-treated mice when compared with vehicle treated mice (
FIG. 5a ). Likewise, there was less LAG-3 expression on T cells from A2a receptor KO mice (FIG. 5b ). - Tests were conducted to determine if the ability of CGS to promote tolerance, in vivo, was in part related to the induction of LAG-3+ regulatory T cells. The ability of CGS to promote tolerance and prevent death was analyzed when LAG-3 null clonotypic T cells were adoptively transferred into C3HA mice (
FIG. 5c ). The adoptive transfer of LAG-3 KO T cells led to the rapid death of 100% of the C3HA hosts. In contrast, the adoptive transfer of Wt T cells led to delayed death and 25% survival. CGS was able to prevent death in 100% of the mice receiving Wt T cells but had no affect on the mice receiving LAG-3 null T cells. Thus, A2a receptor signaling appears to promote tolerance in part by promoting the generation of LAG-3+ T regulatory cells. - Tests were conducted to determine if the CGS-induced clonotypic regulatory cells could protect the mice upon subsequent rechallenge with a second injection of clonotypic cells. An in vivo suppression assay was performed by adoptively transferring uniformly lethal numbers of clonotypic 6.5+ T cells (2.5×106) into mice that had survived the initial adoptive transfer (and developed regulatory T cells) (
FIG. 5d ). As has been previously shown, the mice that survived the initial adoptive transfer (the 20% of the mice fromFIG. 4a ) all survive the second transfer while the transfer of cells into naïve C3HA mice resulted in 100% mortality. 100% of the mice that survived as a result of CGS treatment also survived the second adoptive transfer. Thus a short course of CGS treatment not only prevented acute autoimmunity and induced anergy, but it also promoted the induction of regulatory T cells, such that these mice were protected from a subsequent lethal challenge of autoreactive T cells over a month later. - The microenvironment surrounding tumors contains high levels of adenosine (Spychala, J. Tumor-promoting functions of adenosine. Pharmacol Ther 87, 161-173 (2000)). Tests were conducted to analyze if tumor vaccines would be more effective in A2a receptor null mice. WT and A2a null mice were vaccinated in a model of metastatic cervical cancer.
- As seen in
FIG. 6 , in this model vaccination of WT mice had no effect in preventing lung metastasis. On the other hand, vaccination of A2a receptor null mice markedly inhibited lung metastasis in the vaccinated mice. The further clinical implications of this model are seen inFIG. 7 demonstrating that at tumor doses that normally lead to death, Ata receptor−/− mice do not succumb. - The ability of the A2 antagonist ATL-264 to prevent tumor induced tolerance in vivo was tested. As seen in
FIG. 8 , A2a receptor engagement during either the induction or the effector phase of the T cell response leads to tolerance. A2a receptor engagement with CGS-21680 (CGS), an A2a receptr-specific agonist, markedly inhibits T cell activation (FIG. 8A ). In addition, signaling through the A2a receptor during antigen recognition renders the T cells hyporesponsive upon subsequent rechallenge (FIG. 8B ). That is A2a receptor engagement during T cell activation can render T cells tolerant such that they are anergic upon rechallenge even in the absence of adenosine or A2a agonists. Importantly, the A2a receptor antagonist, ZM-241385 (ZM), can block the induction of this tolerance, such that upon rechallenge, the T cells that were incubated with both CGS and ZM were actually hyper-responsive (FIG. 8B ). Furthermore, A2a receptor antagonism can actually enhance the activity of previously tolerized T cells (FIG. 8C ). Thus, A2a receptor engagement inhibits T cell activation and promotes tolerance while A2a receptor antagonism increases T cell activate and prevents the induction of tolerance. -
FIG. 9 demonstrates that antigen specific T cells from A2a receptor null mice expand to a greater extent after infection with vaccinia virus. This expansion leads to the generation of more IFN-γ producing effector cells (FIG. 10 ). Similarly there is an increase in expansion and generation of functional antigen specific effector T cells in A2a receptor null mice when these are vaccinated with a whole cell GVAX vaccine (FIGS. 11a & 11 b). A2a receptor null mice also have an increased response to the whole cell GVAX vaccine when measured by average tumor size over time (seeFIG. 12 ). - During an infection, T cells respond to antigens from the pathogen either presented by the infected cells or cross presented by professional antigen presenting cells. Experiments were designed to test whether an endogenous immune response of A2a receptor null mice would be more robust than that of Wt mice. As seen in
FIG. 13 , when give 105 lymphoma cells, A2a receptor null mice reject the tumor and remain essentially tumor free while WT mice develop tumor and die. Finally, when the mice are given 106 lymphoma cells, there is a delay in death in the A2a receptor null mice compared with the Wt mice (data not shown). Therefore we gave Wt and A2a receptor null mice GVAX, challenged them with 106 tumor cells and then followed them for disease free survival. As seen inFIG. 14 , with 1 vaccination a greater percentage of A2a receptor null mice achieved disease free survival when compared with the Wt mice.FIG. 15 shows the percent of tumor free survival over time in wild type or A2a receptor knock out mice that had been previously challenged with EL-4 lymphoma cells. Wt or KO mice were initially inoculated subcutaneously with 1×104 EL-4 cells in the left flank on Day −30. No tumor developed. OnDay 0, the mice received 1×106 EL-4 cells in the right flank. The graph follows the development of palpable tumor following the second tumor (1×106) challenge. - Antibody therapy is more effective in A2a receptor KO mice. Wt and A2a receptor null mice received 1 million B16 melanoma cells IV on
day 0. Control mice received not treatment. Treated mice received 200 ug IP of TA99 antibody on 0,2,5. The mice were sacrificed ondays Day 15 and lung metastases were counted. As shown inFIG. 16 , A2a receptor knock out animals have melanoma metastases at similar levels to mice treated with antibody. Eliminating A2a receptor activity in the mice reduced melanoma metastases by approximately 50% and treatment with the antibody reduced metastases by approximately 60%. However, when knock out mice are treated with the antibody, the level of tumor metastases dropped by approximately 80% when compared to untreated wild type, and by 50% or more when compared to either the knock out or antibody treated wild type mice. - Similarly, as seen in
FIG. 17 , treatment with a pharmacological A2a receptor antagonist (ZM 241385; “ZM”) showed enhanced reduction in melanoma metastases in the B16 tumor model tumor model. Wt mice received 1 million B16 melanoma cells onDay 0. On day +1 they received either no treatment or 200 ug of TA99 antibody. Zm treated mice received 10 mg/kg IP of ZM twice a day beginning onDay 0 and continuing for the remainder of the experiment. The mice were evaluated on Day +15. The average lung metastases in animals treated only with antibody treatment reduced by approximately 25%, however when in combination with ZM, the average lung metastases reduced by approximately 80%.
Claims (3)
1. A method of enhancing an immune response in a host, comprising administering to the host an A2a receptor antagonist in combination or alternation with a checkpoint inhibitor.
2. The method of claim 1 , wherein the checkpoint inhibitor blocks the action of PD-1 or Lag-3.
3. The method of claim 1 , wherein the checkpoint inhibitor is B7-H4 or a fragment thereof.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/420,892 US20170143726A1 (en) | 2007-09-07 | 2017-01-31 | Adenosine receptor agonists and antagonists to modulate t cell responses |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US97084107P | 2007-09-07 | 2007-09-07 | |
| US97084807P | 2007-09-07 | 2007-09-07 | |
| PCT/US2008/075610 WO2009033161A1 (en) | 2007-09-07 | 2008-09-08 | Adenosine receptor agonists and antagonists to modulate t cell responses |
| US67674110A | 2010-10-06 | 2010-10-06 | |
| US15/420,892 US20170143726A1 (en) | 2007-09-07 | 2017-01-31 | Adenosine receptor agonists and antagonists to modulate t cell responses |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/676,741 Continuation US9585957B2 (en) | 2007-09-07 | 2008-09-08 | Adenosine receptor agonists and antagonists to modulate T cell responses |
| PCT/US2008/075610 Continuation WO2009033161A1 (en) | 2007-09-07 | 2008-09-08 | Adenosine receptor agonists and antagonists to modulate t cell responses |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170143726A1 true US20170143726A1 (en) | 2017-05-25 |
Family
ID=40429414
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/676,741 Active 2030-09-28 US9585957B2 (en) | 2007-09-07 | 2008-09-08 | Adenosine receptor agonists and antagonists to modulate T cell responses |
| US15/420,892 Abandoned US20170143726A1 (en) | 2007-09-07 | 2017-01-31 | Adenosine receptor agonists and antagonists to modulate t cell responses |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/676,741 Active 2030-09-28 US9585957B2 (en) | 2007-09-07 | 2008-09-08 | Adenosine receptor agonists and antagonists to modulate T cell responses |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US9585957B2 (en) |
| WO (1) | WO2009033161A1 (en) |
Families Citing this family (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2470104C (en) | 2001-12-12 | 2015-01-27 | The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Methods for using extracellular adenosine inhibitors and adenosine receptor inhibitors to enhance immune response and inflammation |
| IL240838B (en) * | 2013-03-15 | 2022-09-01 | Glaxosmithkline Ip Dev Ltd | Anti-lag-3 binding proteins |
| ES2935257T3 (en) * | 2013-03-15 | 2023-03-03 | Univ Chicago | Methods and Compositions Related to T Cell Activity |
| GEP20237496B (en) | 2013-10-18 | 2023-04-10 | Deutsches Krebsforsch | Labeled inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer |
| RU2689558C1 (en) * | 2013-11-22 | 2019-05-28 | Селлектис | Method of constructing allogenic and drug resistant t-cells for immunotherapy |
| US11000548B2 (en) | 2015-02-18 | 2021-05-11 | Enlivex Therapeutics Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
| US11304976B2 (en) | 2015-02-18 | 2022-04-19 | Enlivex Therapeutics Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
| US11318163B2 (en) | 2015-02-18 | 2022-05-03 | Enlivex Therapeutics Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
| US11596652B2 (en) | 2015-02-18 | 2023-03-07 | Enlivex Therapeutics R&D Ltd | Early apoptotic cells for use in treating sepsis |
| US11497767B2 (en) | 2015-02-18 | 2022-11-15 | Enlivex Therapeutics R&D Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
| US11512289B2 (en) | 2015-02-18 | 2022-11-29 | Enlivex Therapeutics Rdo Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
| KR20170138534A (en) | 2015-04-21 | 2017-12-15 | 엔리벡스 테라퓨틱스 리미티드 | Therapeutically Administered Blood Apoptosis Cell Preparations and Uses Thereof |
| SG10202111808WA (en) | 2015-08-11 | 2021-11-29 | Novartis Ag | 5-bromo-2,6-di-(1h-pyrazol-1-yl)pyrimidin-4-amine for use in the treatment of cancer |
| PL3344654T3 (en) | 2015-09-02 | 2021-05-17 | Immutep S.A.S. | ANTI-LAG-3 ANTIBODIES |
| KR20180110141A (en) | 2016-02-18 | 2018-10-08 | 엔리벡스 테라퓨틱스 리미티드 | Combination of immunotherapy and cytokine regulating therapy to treat cancer |
| JP7175034B2 (en) * | 2018-06-26 | 2022-11-18 | チョーチヤン ビムグリーン ファーマシューティカルズ、リミテッド | Triazolotriazine derivatives used as A2A receptor antagonists |
| CN111051309B (en) * | 2018-06-26 | 2023-05-26 | 浙江春禾医药科技有限公司 | Triazolotriazine derivatives useful as A2A receptor antagonists |
| US20210311050A1 (en) * | 2018-08-09 | 2021-10-07 | Research Foundation For The State University Of New York | Targeting pathogenic b cells in autoimmunity |
| RU2706554C1 (en) * | 2018-12-13 | 2019-11-19 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Method for creating anti-infectious immunological protection against salmonella typhimurium and listeria monocytogenes using transgenesis of t-lymphocytes |
| JP7625524B2 (en) * | 2019-01-11 | 2025-02-03 | オメロス コーポレーション | Methods and compositions for treating cancer |
| WO2022050230A1 (en) * | 2020-09-03 | 2022-03-10 | 学校法人埼玉医科大学 | Composition inhibiting activation of adenosine receptor |
| CN119173276A (en) | 2022-04-13 | 2024-12-20 | 吉利德科学公司 | Combination therapy for the treatment of Trop-2 expressing cancers |
| WO2025137640A1 (en) | 2023-12-22 | 2025-06-26 | Gilead Sciences, Inc. | Azaspiro wrn inhibitors |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH423800A (en) | 1959-04-03 | 1966-11-15 | Ciba Geigy | Process for the preparation of new pyrazolo (3,4-d) pyrimidines |
| US6326390B1 (en) | 1998-08-25 | 2001-12-04 | King Pharmaceuticals Reseach And Development, Inc. | Use of adenosine A3 receptor antagonists to inhibit tumor growth |
| US7309688B2 (en) | 2000-10-27 | 2007-12-18 | Johnson & Johnson Consumer Companies | Topical anti-cancer compositions and methods of use thereof |
| US20020115635A1 (en) | 2001-02-21 | 2002-08-22 | Pnina Fishman | Modulation of GSK-3beta activity and its different uses |
| CA2470104C (en) * | 2001-12-12 | 2015-01-27 | The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Methods for using extracellular adenosine inhibitors and adenosine receptor inhibitors to enhance immune response and inflammation |
| JP2007531729A (en) * | 2004-04-02 | 2007-11-08 | アデノシン、セラピューティックス、リミテッド、ライアビリティ、カンパニー | Selective antagonist of A2A adenosine receptor |
-
2008
- 2008-09-08 WO PCT/US2008/075610 patent/WO2009033161A1/en not_active Ceased
- 2008-09-08 US US12/676,741 patent/US9585957B2/en active Active
-
2017
- 2017-01-31 US US15/420,892 patent/US20170143726A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US20110027295A1 (en) | 2011-02-03 |
| WO2009033161A1 (en) | 2009-03-12 |
| US9585957B2 (en) | 2017-03-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9585957B2 (en) | Adenosine receptor agonists and antagonists to modulate T cell responses | |
| US20230121530A1 (en) | Thiocarbamate derivatives as a2a inhibitors, pharmaceutical composition thereof and combinations with anticancer agents | |
| CN110475571B (en) | Replacement for cellular immunotherapy pre-conditioning for cytotoxicity | |
| US20090304711A1 (en) | Combinatorial Therapy of Cancer and Infectious Diseases with Anti-B7-H1 Antibodies | |
| JP7506981B2 (en) | Combination drugs containing TLR7 agonists | |
| AU2019355004B2 (en) | Immunoablative therapies | |
| US20220000872A1 (en) | Method of enhancing immune-based therapy | |
| JP2024167278A (en) | Methods for treating tumors with a combination of IL-7 protein and immune checkpoint inhibitors | |
| WO2017058754A1 (en) | Combination therapy for treatment of hematological cancers and solid tumors | |
| US20190008918A1 (en) | Immunomodulation therapies for cancer | |
| US20220016079A1 (en) | Combination treatment of hiv infections | |
| US11696936B2 (en) | Treatment of cancer | |
| US11376255B2 (en) | Thiocarbamate derivatives as A2A inhibitors, pharmaceutical composition thereof and combinations with anticancer agents | |
| RU2824502C2 (en) | Thiocarbamate derivatives as a2a inhibitors, pharmaceutical compositions and combinations thereof with anticancer agents | |
| EP3632446B1 (en) | Immunoablative therapies | |
| US20220257777A1 (en) | Hsp90-binding conjugates and combination therapies thereof | |
| KR20250117425A (en) | How to administer belumosudil for the treatment of multiple myeloma | |
| HK40085178A (en) | Methods, therapies and uses for treating cancer | |
| KR20220016104A (en) | Procaspase-3 Activation and Immunotherapy for Cancer Treatment | |
| HK40034217A (en) | Combination drug including tlr7 agonist | |
| HK40036176A (en) | Modulating the immune response using antibody-drug conjugates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |