US20170135624A1 - Assessing Neural State from Action Potentials - Google Patents
Assessing Neural State from Action Potentials Download PDFInfo
- Publication number
- US20170135624A1 US20170135624A1 US15/129,407 US201515129407A US2017135624A1 US 20170135624 A1 US20170135624 A1 US 20170135624A1 US 201515129407 A US201515129407 A US 201515129407A US 2017135624 A1 US2017135624 A1 US 2017135624A1
- Authority
- US
- United States
- Prior art keywords
- recorded
- action potential
- compound action
- neural
- anomalies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000036982 action potential Effects 0.000 title claims abstract description 48
- 230000001537 neural effect Effects 0.000 title claims abstract description 41
- 150000001875 compounds Chemical class 0.000 claims abstract description 43
- 230000002547 anomalous effect Effects 0.000 claims abstract description 19
- 230000004044 response Effects 0.000 claims description 43
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 201000010099 disease Diseases 0.000 claims description 25
- 238000002560 therapeutic procedure Methods 0.000 claims description 12
- 208000004296 neuralgia Diseases 0.000 claims description 9
- 208000021722 neuropathic pain Diseases 0.000 claims description 9
- 230000008904 neural response Effects 0.000 claims description 8
- 230000002981 neuropathic effect Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims description 2
- 230000000750 progressive effect Effects 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 210000005036 nerve Anatomy 0.000 description 7
- 230000001191 orthodromic effect Effects 0.000 description 7
- 230000003459 anti-dromic effect Effects 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 5
- 230000000763 evoking effect Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 210000000278 spinal cord Anatomy 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 4
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 description 3
- 208000002193 Pain Diseases 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 208000035824 paresthesia Diseases 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 230000036279 refractory period Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 208000027520 Somatoform disease Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229960002870 gabapentin Drugs 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 208000027753 pain disease Diseases 0.000 description 1
- 210000005037 parasympathetic nerve Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
-
- A61B5/04001—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/388—Nerve conduction study, e.g. detecting action potential of peripheral nerves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4029—Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
- A61B5/4041—Evaluating nerves condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/407—Evaluating the spinal cord
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4824—Touch or pain perception evaluation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36071—Pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36135—Control systems using physiological parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36182—Direction of the electrical field, e.g. with sleeve around stimulating electrode
- A61N1/36185—Selection of the electrode configuration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/291—Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
Definitions
- the present invention relates to assessing a neural state from neural potentials, and in particular relates to obtaining a recording of a neural potential arising on neural tissue, and monitoring for an anomalous profile of the recording, in order to assess the existence, state or progress of a neural disease.
- CRPS complex regional pain syndrome
- Advanced therapies for treating neuropathic pain include spinal cord stimulation.
- the present invention provides a method of assessing a neural state of a subject, the method comprising:
- a method for determining whether a human patient has neuropathic disease comprising:
- diagnosing the patient as having neuropathic disease if a profile of the recorded compound action potential is anomalous.
- a non-transitory computer readable medium for assessing a neural state of a subject comprising instructions which, when executed by one or more processors, causes performance of the following:
- the detection of irregularities or anomalies in the recorded response may comprise any one or more of:
- Some embodiments may determine whether more than three peaks exist in the recorded compound action potential by measuring an amplitude or power of the recorded compound action potential in a time window positioned after cessation of a normal response.
- the amplitude or power of the recorded compound action potential in such a time window can be used to assess the presence or absence of an abnormal response arising later than a normal P 2 peak.
- a matched filter or other signal processing means may be used to detect the presence of an extra lobe in the recorded compound action potential.
- Some embodiments of the present invention thus recognise that when considering a recorded compound action potential (CAP) obtained from a person suffering from an altered neural state such as CRPS, rather than the CAP taking a typical three lobed profile, lobe deformation or additional lobes referred to herein as doublets can be observed to arise in the ECAP. Moreover, the degree of lobe deformation and/or the relative size of the additional lobes appearing in the response can be measured, in order to give not only a binary diagnosis but also a quantitative measure of the severity of the disease suffered by the person. Absence of such response profile anomalies may be used to eliminate some diseases from a diagnosis for the person.
- CAP recorded compound action potential
- Repeated assessment of the recorded response profile from time to time, for example throughout administration of a therapy may be used to assess disease state, disease progress, and therapy efficacy, and may be used to guide therapy modifications and optimisation over time.
- Therapy modifications may include modifications of dosage of a medicament and/or modification of a stimulus regime applied by a spinal column stimulator.
- the present invention recognises that monitoring for the occurrence and severity of anomalies such as doublets in the recorded response profile gives a diagnostic for neuropathic pain or neural damage or in general any neural disease which gives rise to atypical neural response profiles.
- some embodiments of the present invention further recognise that when application of a stimulus to a first neural site gives rise to anomalies in a recorded neural response profile, application of the same stimulus to an alternative neural site might give rise to a recorded neural response without abnormalities. Such embodiments may thus provide for identifying a locus of neuropathic pain.
- the method of the present invention may in some embodiments be performed intra-operatively for example to effect electrode array implantation site optimisation.
- the method of the present invention may additionally or alternatively be performed during an implant programming stage in order to optimise electrode selection to a site at which a locus of neuropathic pain is identified.
- the invention may further provide for intra-operative monitoring of the response profile during a sympathectomy procedure, in order to provide an intra-operative progressive indication of efficacy of the sympathectomy.
- the present invention provides a method of treating a neural disease, the method comprising:
- the compound action potential may arise from deliberate stimulation, whether peripheral stimulation or direct spinal column stimulation, for example.
- FIG. 1 a schematically illustrates an implanted spinal cord stimulator suitable for implementing the present invention
- FIG. 1 b is a block diagram of the implanted neurostimulator
- FIG. 1 c is a schematic illustrating interaction of the implanted stimulator with a nerve
- FIG. 2 a illustrates the typical form of an electrically evoked compound action potential of a healthy subject
- FIGS. 2 b and 2 c illustrate how the CAP manifests in the recording when using a differential recording arrangement with an epidural ground
- FIG. 3 illustrates an actual ECAP recording obtained from a subject having a normal neural state
- FIG. 4 illustrates anomalous ECAP recordings obtained from a subject suffering a neural disease
- FIG. 5 illustrates anomalous ECAP recordings obtained from another subject suffering a neural disease
- FIG. 6 is a plot of the differences between the N 1 , N 2 peaks measured doublets
- FIG. 7 shows the normalised antidromic responses from three patients plotted together
- FIG. 8 shows an example of a large doublet response in the antidromic response of one patient
- FIG. 9 is a plot of the normalized masker probe results for the refractory period of three patients.
- FIGS. 10-12 illustrate the relative severity of doublet formation for three respective patients.
- FIG. 13 illustrates a control system by which a therapy may be modified in accordance with one embodiment of the invention.
- FIG. 1 schematically illustrates an implanted spinal cord stimulator 100 suitable for implementing the present invention.
- Stimulator 100 comprises an electronics module 110 implanted at a suitable location in the patient's lower abdominal area or posterior superior gluteal region, and an electrode assembly 150 implanted within the epidural space and connected to the module 110 by a suitable lead.
- Numerous aspects of operation of implanted neural device 100 are reconfigurable by an external control device 192 .
- implanted neural device 100 serves a data gathering role, with gathered data being communicated to external device 192 .
- FIG. 1 b is a block diagram of the implanted neurostimulator 100 .
- Module 110 contains a battery 112 and a telemetry module 114 .
- any suitable type of transcutaneous communication 190 such as infrared (IR), electromagnetic, capacitive and inductive transfer, may be used by telemetry module 114 to transfer power and/or data between an external device 192 and the electronics module 110 .
- Module controller 116 has an associated memory 118 storing patient settings 120 , control programs 122 and the like. Controller 116 controls a pulse generator 124 to generate stimuli in the form of current pulses in accordance with the patient settings 120 and control programs 122 . Electrode selection module 126 switches the generated pulses to the appropriate electrode(s) of electrode array 150 , for delivery of the current pulse to the tissue surrounding the selected electrode(s). Measurement circuitry 128 is configured to capture measurements of neural responses sensed at sense electrode(s) of the electrode array as selected by electrode selection module 126 .
- FIG. 1c is a schematic illustrating interaction of the implanted stimulator 100 with a nerve 180 , in this case the spinal cord however alternative embodiments may be positioned adjacent any desired neural tissue including a peripheral nerve, visceral nerve, parasympathetic nerve or a brain structure.
- Electrode selection module 126 selects a stimulation electrode 2 of electrode array 150 to deliver an electrical current pulse to surrounding tissue including nerve 180 , and also selects a return electrode 4 of the array 150 for stimulus current recovery to maintain a zero net charge transfer.
- an appropriate stimulus to the nerve 180 evokes a neural response comprising a compound action potential which will propagate along the nerve 180 as illustrated, for therapeutic purposes which in the case of a spinal cord stimulator for chronic pain might be to create paraesthesia at a desired location.
- the stimulus electrodes are used to deliver stimuli at 30 Hz.
- a clinician applies stimuli which produce a sensation that is experienced by the user as a paraesthesia. When the paraesthesia is in a location and of a size which is congruent with the area of the user's body affected by pain, the clinician nominates that configuration for ongoing use.
- the device 100 is further configured to sense the existence and intensity of compound action potentials (CAPs) propagating along nerve 180 , whether such CAPs are evoked by the stimulus from electrodes 2 and 4 , or otherwise evoked.
- CAPs compound action potentials
- any electrodes of the array 150 may be selected by the electrode selection module 126 to serve as measurement electrode 6 and measurement reference electrode 8 .
- Signals sensed by the measurement electrodes 6 and 8 are passed to measurement circuitry 128 , which for example may operate in accordance with the teachings of International Patent Application Publication No. WO2012155183 by the present applicant, the content of which is incorporated herein by reference.
- FIG. 2 a illustrates the typical form of an electrically evoked compound action potential of a healthy subject.
- the shape of the compound action potential shown in FIG. 2 a is predictable because it is a result of the ion currents produced by the ensemble of axons generating action potentials in response to stimulation.
- the action potentials generated among a large number of fibres sum to form a compound action potential (CAP).
- the CAP is the sum of responses from a large number of single fibre action potentials.
- the CAP recorded is the result of a large number of different fibres depolarising.
- the propagation velocity is determined largely by the fibre diameter.
- the CAP generated from the firing of a group of similar fibres is measured as a positive peak potential P 1 , then a negative peak N 1 , followed by a second positive peak P 2 . This is caused by the region of activation passing the recording electrode as the action potentials propagate along the individual fibres.
- An observed CAP signal will typically have a maximum amplitude in the range of microvolts.
- the CAP profile takes a typical form and can be characterised by any suitable parameter(s) of which some are indicated in FIG. 2 a .
- the positions and amplitudes of the peaks can for example be used alone or in combination to generate a correlation between them and the state and severity of a central nervous system (CNS) disorder.
- a normal recorded profile may take an inverse form to that shown in FIG. 2 a , i.e. having two negative peaks N 1 and N 2 , and one positive peak P 1 .
- FIG. 2 b illustrates how the CAP manifests in the recording, when using a differential recording arrangement with an epidural ground.
- a normal ECAP shape A
- the differential measure will look like the envelope of C.
- FIG. 2 c shows the corresponding manifestation in relation to an anomalous CAP (D).
- the anomalous CAP has a strong doublet, which is inverted and delayed by the propagation distance to the epidural ground electrode (E), and so the differential measure will look like the envelope of F.
- the actual recording obtained typically does not include the first positive peak as it is obscured by the stimulus.
- the present invention thus recognises that the shape or profile of the compound action potential reflects changes in the ion channel characteristics as a result of pathological or natural change.
- FIG. 3 shows a “normal” ECAP, being a triphasic P 1 , N 1 , P 2 response, as obtained from “patient 25 ”.
- the use of epidural ground inverts the N 1 at a time when the response passes the ground electrode.
- Patient 25 can be diagnosed as having no measurable neuropathic disease.
- FIG. 4 shows data from patient 34 , measured in both the orthodromic and antidromic directions at respective electrodes either side of the stimulus electrode, each spaced apart from the stimulus electrode by three electrodes.
- the N 1 peak 402 is broader in the orthodromic direction, displays a faster rise time and is larger in amplitude.
- an additional lobe 404 has emerged in the orthodromic response, in deviation from the expected response of FIG. 3 . Any or all of these abnormalities may be detected and/or quantified in order to produce an automated diagnosis of the existence or severity of neural disease in patient 34 .
- a measurement may be taken of the signal amplitude or power occurring within a time window covering the anomalous peak 404 . When the amplitude or power in such a time window exceeds a threshold the response may be flagged as being anomalous.
- FIG. 5 illustrates the recordings of the corresponding orthodromic and antidromic responses arising from patient 22 .
- the N 1 peak 502 is broader in the orthodromic direction, displays a faster rise time and is larger in amplitude.
- An additional lobe 504 has emerged in the orthodromic response, in deviation from the expected response of FIG. 3 .
- patient 22 exhibits doublets which may be detected and/or quantified in order to produce an automated diagnosis of the existence or severity of neural disease in patient 22 .
- FIG. 6 is a histogram of N 1 peak latencies in ms, measured at the same stimulus electrode to recording electrode separation, for a large number of patients. This illustrates that N 1 peak latency is predictable within quite a narrow time range as the peaks have quite a narrow spread over a large number of patients.
- FIG. 7 shows the normalised antidromic responses from three patients plotted together.
- the N 1 peaks have very similar latencies.
- the peak shapes 702 and 704 are normal, noting the effects described in relation to FIGS. 2 b and 2 c.
- FIG. 8 shows an example of a large doublet response in the antidromic response of one patient, illustrating that severity of the neural state can be distinguished, for example by comparing the normalised height of lobe 804 to say lobe 404 or 504 .
- FIG. 9 is a plot of the normalized masker probe results for 3 patients, denoted patient nos 16 , 19 and 35 respectively. For patient 35 the masked amplitude was divided by the unmasked amplitude. To allow for differences in the measurement mode for patients 16 and 19 , the results were normalized against the responses at ⁇ 5000 micro seconds inter-stimulus interval (ISI). In general the results are consistent between patients. As shown in FIGS.
- the CAP profile of patient 35 had the largest double peaks or doublets of the three patients, and also at short ISI's of the order of 100-200 us patient 35 had the largest additional recruitment as indicated at 902 .
- the data for patient 16 was collected with an 80 us pulse width, and so this will affect the additional recruitment at the short ISI's.
- FIG. 10 illustrates the progression of CAP profile as the CAP travels away from the stimulus site, for patient 35 .
- FIG. 11 shows a response obtained from patient 16
- FIG. 12 shows a response obtained from patient 19 , revealing that of these three patients Patient 35 has the most severe doublet formation in their neural response.
- N 1 latency may not be a suitable parameter for diagnosing neural state.
- Some embodiments may provide for repeated assessment of the recorded response profile from time to time, for example throughout administration of a therapy, in order to assess disease state, disease progress, and therapy efficacy, and may be used to guide therapy modifications and optimisation over time.
- Therapy modifications may include modifications of dosage of a medicament and/or modification of a stimulus regime applied by a spinal column stimulator.
- FIG. 13 illustrates a control loop by which drug dosage or electrical stimuli dosage is adjusted in a dynamic manner, with the magnitude of the doublet ( 404 , 504 ) being used as a control variable for a feedback loop.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Neurosurgery (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Pain & Pain Management (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
- This application claims the benefit of Australian Provisional Patent Application No. 2014901110 filed 28 Mar. 2014, which is incorporated herein by reference.
- The present invention relates to assessing a neural state from neural potentials, and in particular relates to obtaining a recording of a neural potential arising on neural tissue, and monitoring for an anomalous profile of the recording, in order to assess the existence, state or progress of a neural disease.
- Neuropathic pain arises from damage or disease affecting the somatosensory system, and may result from disorders of the peripheral nervous system or the central nervous system. For example, complex regional pain syndrome (CRPS) is a severe type of pain disorder.
- There is no known single pathognomonic symptom or sign of neuropathic disease. Consequently, it is difficult to diagnose neuropathic disease and to monitor the progress of neuropathic disease. No conclusive objective diagnostic exists for neuropathic pain, and clinicians must rely largely on a subjective clinical observation of the patient's responses. Neuropathic pain is also difficult to treat and often responds poorly to standard pain treatments.
- A range of medications for treating neuropathic pain exist, including gabapentin for example. Careful documentation and appropriate monitoring of treatment are important for the safe and effective use of such medications, however this is difficult to achieve due to the difficulty of determining the disease state or monitoring the progress of the disease or symptoms. Advanced therapies for treating neuropathic pain include spinal cord stimulation.
- Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
- Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
- In this specification, a statement that an element may be “at least one of” a list of options is to be understood that the element may be any one of the listed options, or may be any combination of two or more of the listed options.
- According to a first aspect the present invention provides a method of assessing a neural state of a subject, the method comprising:
- obtaining a recording of a compound action potential arising in neural tissue of the subject;
- processing the recording to determine whether a profile of the recorded compound action potential is anomalous; and
- outputting an indication regarding the neural state of the subject based on determined anomalies in the recorded compound action potential.
- A method for determining whether a human patient has neuropathic disease, comprising:
- obtaining a recording of a compound action potential arising in neural tissue of the patient; and
- diagnosing the patient as having neuropathic disease if a profile of the recorded compound action potential is anomalous.
- A non-transitory computer readable medium for assessing a neural state of a subject, comprising instructions which, when executed by one or more processors, causes performance of the following:
- obtaining a recording of a compound action potential arising in neural tissue of the subject;
- processing the recording to determine whether a profile of the recorded compound action potential is anomalous; and
- outputting an indication regarding the neural state of the subject based on determined anomalies in the recorded compound action potential.
- The detection of irregularities or anomalies in the recorded response may comprise any one or more of:
- determining whether more than three peaks exist in the recorded compound action potential;
- determining whether a peak in the recorded compound action potential is unexpectedly broad;
- determining whether a peak in the recorded compound action potential has an atypically swift rate of rise;
- determining whether anomalous frequency components exist in the recorded compound action potential when assessed in the frequency domain;
- determining a degree of deviation of the recorded compound action potential from a predefined expected response profile and, if the degree of deviation exceeds a predetermined threshold, indicating that the recorded response is anomalous.
- Some embodiments may determine whether more than three peaks exist in the recorded compound action potential by measuring an amplitude or power of the recorded compound action potential in a time window positioned after cessation of a normal response. The amplitude or power of the recorded compound action potential in such a time window can be used to assess the presence or absence of an abnormal response arising later than a normal P2 peak. Additionally or alternatively, a matched filter or other signal processing means may be used to detect the presence of an extra lobe in the recorded compound action potential.
- Some embodiments of the present invention thus recognise that when considering a recorded compound action potential (CAP) obtained from a person suffering from an altered neural state such as CRPS, rather than the CAP taking a typical three lobed profile, lobe deformation or additional lobes referred to herein as doublets can be observed to arise in the ECAP. Moreover, the degree of lobe deformation and/or the relative size of the additional lobes appearing in the response can be measured, in order to give not only a binary diagnosis but also a quantitative measure of the severity of the disease suffered by the person. Absence of such response profile anomalies may be used to eliminate some diseases from a diagnosis for the person. Repeated assessment of the recorded response profile from time to time, for example throughout administration of a therapy, may be used to assess disease state, disease progress, and therapy efficacy, and may be used to guide therapy modifications and optimisation over time. Therapy modifications may include modifications of dosage of a medicament and/or modification of a stimulus regime applied by a spinal column stimulator.
- Accordingly, the present invention recognises that monitoring for the occurrence and severity of anomalies such as doublets in the recorded response profile gives a diagnostic for neuropathic pain or neural damage or in general any neural disease which gives rise to atypical neural response profiles.
- Notably, some embodiments of the present invention further recognise that when application of a stimulus to a first neural site gives rise to anomalies in a recorded neural response profile, application of the same stimulus to an alternative neural site might give rise to a recorded neural response without abnormalities. Such embodiments may thus provide for identifying a locus of neuropathic pain.
- The method of the present invention may in some embodiments be performed intra-operatively for example to effect electrode array implantation site optimisation. The method of the present invention may additionally or alternatively be performed during an implant programming stage in order to optimise electrode selection to a site at which a locus of neuropathic pain is identified.
- The invention may further provide for intra-operative monitoring of the response profile during a sympathectomy procedure, in order to provide an intra-operative progressive indication of efficacy of the sympathectomy.
- According to a further aspect the present invention provides a method of treating a neural disease, the method comprising:
- ordering or requesting the result of the method of the first aspect; and
- administering or modifying a therapy in a manner responsive to the ordered result.
- The compound action potential may arise from deliberate stimulation, whether peripheral stimulation or direct spinal column stimulation, for example.
- An example of the invention will now be described with reference to the accompanying drawings, in which:
-
FIG. 1a schematically illustrates an implanted spinal cord stimulator suitable for implementing the present invention; -
FIG. 1b is a block diagram of the implanted neurostimulator; -
FIG. 1c is a schematic illustrating interaction of the implanted stimulator with a nerve; -
FIG. 2a illustrates the typical form of an electrically evoked compound action potential of a healthy subject, andFIGS. 2b and 2c illustrate how the CAP manifests in the recording when using a differential recording arrangement with an epidural ground; -
FIG. 3 illustrates an actual ECAP recording obtained from a subject having a normal neural state; -
FIG. 4 illustrates anomalous ECAP recordings obtained from a subject suffering a neural disease; -
FIG. 5 illustrates anomalous ECAP recordings obtained from another subject suffering a neural disease; -
FIG. 6 is a plot of the differences between the N1, N2 peaks measured doublets; -
FIG. 7 shows the normalised antidromic responses from three patients plotted together; -
FIG. 8 shows an example of a large doublet response in the antidromic response of one patient; -
FIG. 9 is a plot of the normalized masker probe results for the refractory period of three patients; -
FIGS. 10-12 illustrate the relative severity of doublet formation for three respective patients; and -
FIG. 13 illustrates a control system by which a therapy may be modified in accordance with one embodiment of the invention. -
FIG. 1 schematically illustrates an implantedspinal cord stimulator 100 suitable for implementing the present invention.Stimulator 100 comprises anelectronics module 110 implanted at a suitable location in the patient's lower abdominal area or posterior superior gluteal region, and anelectrode assembly 150 implanted within the epidural space and connected to themodule 110 by a suitable lead. Numerous aspects of operation of implantedneural device 100 are reconfigurable by anexternal control device 192. Moreover, implantedneural device 100 serves a data gathering role, with gathered data being communicated toexternal device 192. -
FIG. 1b is a block diagram of the implantedneurostimulator 100.Module 110 contains abattery 112 and atelemetry module 114. In embodiments of the present invention, any suitable type oftranscutaneous communication 190, such as infrared (IR), electromagnetic, capacitive and inductive transfer, may be used bytelemetry module 114 to transfer power and/or data between anexternal device 192 and theelectronics module 110. -
Module controller 116 has an associatedmemory 118 storingpatient settings 120,control programs 122 and the like.Controller 116 controls apulse generator 124 to generate stimuli in the form of current pulses in accordance with thepatient settings 120 andcontrol programs 122.Electrode selection module 126 switches the generated pulses to the appropriate electrode(s) ofelectrode array 150, for delivery of the current pulse to the tissue surrounding the selected electrode(s).Measurement circuitry 128 is configured to capture measurements of neural responses sensed at sense electrode(s) of the electrode array as selected byelectrode selection module 126. -
FIG. 1c is a schematic illustrating interaction of the implantedstimulator 100 with anerve 180, in this case the spinal cord however alternative embodiments may be positioned adjacent any desired neural tissue including a peripheral nerve, visceral nerve, parasympathetic nerve or a brain structure.Electrode selection module 126 selects astimulation electrode 2 ofelectrode array 150 to deliver an electrical current pulse to surroundingtissue including nerve 180, and also selects areturn electrode 4 of thearray 150 for stimulus current recovery to maintain a zero net charge transfer. - Delivery of an appropriate stimulus to the
nerve 180 evokes a neural response comprising a compound action potential which will propagate along thenerve 180 as illustrated, for therapeutic purposes which in the case of a spinal cord stimulator for chronic pain might be to create paraesthesia at a desired location. To this end the stimulus electrodes are used to deliver stimuli at 30 Hz. To fit the device, a clinician applies stimuli which produce a sensation that is experienced by the user as a paraesthesia. When the paraesthesia is in a location and of a size which is congruent with the area of the user's body affected by pain, the clinician nominates that configuration for ongoing use. - The
device 100 is further configured to sense the existence and intensity of compound action potentials (CAPs) propagating alongnerve 180, whether such CAPs are evoked by the stimulus from 2 and 4, or otherwise evoked. To this end, any electrodes of theelectrodes array 150 may be selected by theelectrode selection module 126 to serve asmeasurement electrode 6 andmeasurement reference electrode 8. Signals sensed by the 6 and 8 are passed tomeasurement electrodes measurement circuitry 128, which for example may operate in accordance with the teachings of International Patent Application Publication No. WO2012155183 by the present applicant, the content of which is incorporated herein by reference. -
FIG. 2a illustrates the typical form of an electrically evoked compound action potential of a healthy subject. The shape of the compound action potential shown inFIG. 2a is predictable because it is a result of the ion currents produced by the ensemble of axons generating action potentials in response to stimulation. The action potentials generated among a large number of fibres sum to form a compound action potential (CAP). The CAP is the sum of responses from a large number of single fibre action potentials. The CAP recorded is the result of a large number of different fibres depolarising. The propagation velocity is determined largely by the fibre diameter. The CAP generated from the firing of a group of similar fibres is measured as a positive peak potential P1, then a negative peak N1, followed by a second positive peak P2. This is caused by the region of activation passing the recording electrode as the action potentials propagate along the individual fibres. An observed CAP signal will typically have a maximum amplitude in the range of microvolts. - The CAP profile takes a typical form and can be characterised by any suitable parameter(s) of which some are indicated in
FIG. 2a . The positions and amplitudes of the peaks can for example be used alone or in combination to generate a correlation between them and the state and severity of a central nervous system (CNS) disorder. Depending on the polarity of recording, a normal recorded profile may take an inverse form to that shown inFIG. 2a , i.e. having two negative peaks N1 and N2, and one positive peak P1. -
FIG. 2b illustrates how the CAP manifests in the recording, when using a differential recording arrangement with an epidural ground. InFIG. 2b a normal ECAP shape (A) is inverted and delayed by the propagation distance to the epidural ground electrode (B), and so the differential measure will look like the envelope of C.FIG. 2c shows the corresponding manifestation in relation to an anomalous CAP (D). The anomalous CAP has a strong doublet, which is inverted and delayed by the propagation distance to the epidural ground electrode (E), and so the differential measure will look like the envelope of F. As shown inFIG. 2c , and also being the case forFIG. 2b , the actual recording obtained typically does not include the first positive peak as it is obscured by the stimulus. - The present invention thus recognises that the shape or profile of the compound action potential reflects changes in the ion channel characteristics as a result of pathological or natural change.
- Comparison of ECAP measurements from the dorsal column of a number of different human subjects was undertaken in order to identify systematic differences which relate to either genetic or pathological differences between subjects. Measurements of dorsal column evoked compound action potentials show distinct differences between the ECAP shapes measured at different electrodes along the array.
-
FIG. 3 shows a “normal” ECAP, being a triphasic P1, N1, P2 response, as obtained from “patient 25”. The use of epidural ground inverts the N1 at a time when the response passes the ground electrode. As the recorded response ofFIG. 3 exhibits no significant abnormalities as compared to the predicted response ofFIG. 2 ,Patient 25 can be diagnosed as having no measurable neuropathic disease. - In contrast,
FIG. 4 shows data from patient 34, measured in both the orthodromic and antidromic directions at respective electrodes either side of the stimulus electrode, each spaced apart from the stimulus electrode by three electrodes. TheN1 peak 402 is broader in the orthodromic direction, displays a faster rise time and is larger in amplitude. Moreover, anadditional lobe 404 has emerged in the orthodromic response, in deviation from the expected response ofFIG. 3 . Any or all of these abnormalities may be detected and/or quantified in order to produce an automated diagnosis of the existence or severity of neural disease in patient 34. For example in some embodiments a measurement may be taken of the signal amplitude or power occurring within a time window covering theanomalous peak 404. When the amplitude or power in such a time window exceeds a threshold the response may be flagged as being anomalous. -
FIG. 5 illustrates the recordings of the corresponding orthodromic and antidromic responses arising from patient 22. As seen at 502 in the N1 peak of the orthodromic response, theN1 peak 502 is broader in the orthodromic direction, displays a faster rise time and is larger in amplitude. Anadditional lobe 504 has emerged in the orthodromic response, in deviation from the expected response ofFIG. 3 . Thus patient 22 exhibits doublets which may be detected and/or quantified in order to produce an automated diagnosis of the existence or severity of neural disease in patient 22. -
FIG. 6 is a histogram of N1 peak latencies in ms, measured at the same stimulus electrode to recording electrode separation, for a large number of patients. This illustrates that N1 peak latency is predictable within quite a narrow time range as the peaks have quite a narrow spread over a large number of patients. -
FIG. 7 shows the normalised antidromic responses from three patients plotted together. The N1 peaks have very similar latencies. The peak shapes 702 and 704 are normal, noting the effects described in relation toFIGS. 2b and 2 c. -
FIG. 8 shows an example of a large doublet response in the antidromic response of one patient, illustrating that severity of the neural state can be distinguished, for example by comparing the normalised height oflobe 804 to say 404 or 504.lobe - To explore the question of ectopic discharge, the refractory period was investigated using the “masker probe” techniques set forth in International Patent Application Publication No. WO2012/155189, the contents of which are incorporated herein by reference.
FIG. 9 is a plot of the normalized masker probe results for 3 patients, denoted patient nos 16, 19 and 35 respectively. Forpatient 35 the masked amplitude was divided by the unmasked amplitude. To allow for differences in the measurement mode forpatients 16 and 19, the results were normalized against the responses at ˜5000 micro seconds inter-stimulus interval (ISI). In general the results are consistent between patients. As shown inFIGS. 10-12 , the CAP profile ofpatient 35 had the largest double peaks or doublets of the three patients, and also at short ISI's of the order of 100-200 us patient 35 had the largest additional recruitment as indicated at 902. The data for patient 16 was collected with an 80 us pulse width, and so this will affect the additional recruitment at the short ISI's. -
FIG. 10 illustrates the progression of CAP profile as the CAP travels away from the stimulus site, forpatient 35. This indicates that the existence of an atypical CAP profile may best be detected by making recordings very close to the stimulus site. It is noted that the anomalous peaks propagate with distance, which indicates that they are neural responses from the same group or class of fibres.FIG. 11 shows a response obtained from patient 16, andFIG. 12 shows a response obtained frompatient 19, revealing that of these threepatients Patient 35 has the most severe doublet formation in their neural response. - There appears to be little consistency between the N1 latency and the appearance of the double response so N1 latency may not be a suitable parameter for diagnosing neural state.
- Some embodiments may provide for repeated assessment of the recorded response profile from time to time, for example throughout administration of a therapy, in order to assess disease state, disease progress, and therapy efficacy, and may be used to guide therapy modifications and optimisation over time. Therapy modifications may include modifications of dosage of a medicament and/or modification of a stimulus regime applied by a spinal column stimulator.
FIG. 13 illustrates a control loop by which drug dosage or electrical stimuli dosage is adjusted in a dynamic manner, with the magnitude of the doublet (404, 504) being used as a control variable for a feedback loop. - It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Claims (13)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2014901110 | 2014-03-28 | ||
| AU2014901110A AU2014901110A0 (en) | 2014-03-28 | Assessing Neural State from Action Potentials | |
| PCT/AU2015/050135 WO2015143509A1 (en) | 2014-03-28 | 2015-03-27 | Assessing neural state from action potentials |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2015/050135 A-371-Of-International WO2015143509A1 (en) | 2014-03-28 | 2015-03-27 | Assessing neural state from action potentials |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/804,846 Continuation US12285263B2 (en) | 2014-03-28 | 2022-05-31 | Assessing neural state from action potentials |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170135624A1 true US20170135624A1 (en) | 2017-05-18 |
Family
ID=54193790
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/129,407 Abandoned US20170135624A1 (en) | 2014-03-28 | 2015-03-27 | Assessing Neural State from Action Potentials |
| US17/804,846 Active 2035-11-27 US12285263B2 (en) | 2014-03-28 | 2022-05-31 | Assessing neural state from action potentials |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/804,846 Active 2035-11-27 US12285263B2 (en) | 2014-03-28 | 2022-05-31 | Assessing neural state from action potentials |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20170135624A1 (en) |
| EP (1) | EP3122247B1 (en) |
| WO (1) | WO2015143509A1 (en) |
Cited By (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9872990B2 (en) | 2011-05-13 | 2018-01-23 | Saluda Medical Pty Limited | Method and apparatus for application of a neural stimulus |
| US9974455B2 (en) | 2011-05-13 | 2018-05-22 | Saluda Medical Pty Ltd. | Method and apparatus for estimating neural recruitment |
| US10206596B2 (en) | 2012-11-06 | 2019-02-19 | Saluda Medical Pty Ltd | Method and system for controlling electrical conditions of tissue |
| US10278600B2 (en) | 2011-05-13 | 2019-05-07 | Saluda Medical Pty Ltd. | Method and apparatus for measurement of neural response |
| US10368762B2 (en) | 2014-05-05 | 2019-08-06 | Saluda Medical Pty Ltd. | Neural measurement |
| US10406368B2 (en) | 2016-04-19 | 2019-09-10 | Boston Scientific Neuromodulation Corporation | Pulse generator system for promoting desynchronized firing of recruited neural populations |
| US10426409B2 (en) | 2013-11-22 | 2019-10-01 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in a neural measurement |
| US10500399B2 (en) | 2014-12-11 | 2019-12-10 | Saluda Medical Pty Ltd | Method and device for feedback control of neural stimulation |
| US10568559B2 (en) | 2011-05-13 | 2020-02-25 | Saluda Medical Pty Ltd | Method and apparatus for measurement of neural response |
| US10588698B2 (en) | 2014-12-11 | 2020-03-17 | Saluda Medical Pty Ltd | Implantable electrode positioning |
| US10588524B2 (en) | 2011-05-13 | 2020-03-17 | Saluda Medical Pty Ltd | Method and apparatus for measurement of neural response |
| US10632307B2 (en) | 2014-07-25 | 2020-04-28 | Saluda Medical Pty Ltd | Neural stimulation dosing |
| US10849525B2 (en) | 2015-05-31 | 2020-12-01 | Saluda Medical Pty Ltd | Monitoring brain neural activity |
| US10894158B2 (en) | 2015-04-09 | 2021-01-19 | Saluda Medical Pty Ltd | Electrode to nerve distance estimation |
| US10918872B2 (en) | 2015-01-19 | 2021-02-16 | Saluda Medical Pty Ltd | Method and device for neural implant communication |
| US10926092B2 (en) | 2018-01-08 | 2021-02-23 | Boston Scientific Neuromodulation Corporation | Automatic adjustment of sub-perception therapy in an implantable stimulator using detected compound action potentials |
| US10940316B2 (en) | 2010-06-18 | 2021-03-09 | Cardiac Pacemakers, Inc. | Methods and apparatus for adjusting neurostimulation intensity using evoked responses |
| US10974042B2 (en) | 2018-03-26 | 2021-04-13 | Boston Scientific Neuromodulation Corporation | System and methods for heart rate and electrocardiogram extraction from a spinal cord stimulation system |
| US11006857B2 (en) | 2015-06-01 | 2021-05-18 | Closed Loop Medical Pty Ltd | Motor fibre neuromodulation |
| US11006846B2 (en) | 2014-11-17 | 2021-05-18 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in neural measurements |
| US11040202B2 (en) | 2018-03-30 | 2021-06-22 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device |
| US11110270B2 (en) | 2015-05-31 | 2021-09-07 | Closed Loop Medical Pty Ltd | Brain neurostimulator electrode fitting |
| US11129989B2 (en) | 2018-06-21 | 2021-09-28 | Medtronic, Inc. | ECAP based control of electrical stimulation therapy |
| US11129987B2 (en) | 2017-10-04 | 2021-09-28 | Boston Scientific Neuromodulation Corporation | Adjustment of stimulation in a stimulator using detected evoked compound action potentials |
| US11129991B2 (en) | 2018-06-21 | 2021-09-28 | Medtronic, Inc. | ECAP based control of electrical stimulation therapy |
| US11172864B2 (en) | 2013-11-15 | 2021-11-16 | Closed Loop Medical Pty Ltd | Monitoring brain neural potentials |
| US11179567B2 (en) | 2019-12-19 | 2021-11-23 | Medtronic, Inc. | Hysteresis compensation for detection of ECAPs |
| US11179091B2 (en) | 2016-06-24 | 2021-11-23 | Saluda Medical Pty Ltd | Neural stimulation for reduced artefact |
| US11191966B2 (en) | 2016-04-05 | 2021-12-07 | Saluda Medical Pty Ltd | Feedback control of neuromodulation |
| US11202912B2 (en) | 2019-12-19 | 2021-12-21 | Medtronic, Inc. | Posture-based control of electrical stimulation therapy |
| US11241580B2 (en) | 2018-06-01 | 2022-02-08 | Boston Scientific Neuromodulation Corporation | Artifact reduction in a sensed neural response |
| US11259733B2 (en) | 2019-03-29 | 2022-03-01 | Boston Scientific Neuromodulation Corporation | Neural sensing in an implantable stimulator device during the provision of active stimulation |
| US11439825B2 (en) | 2019-12-19 | 2022-09-13 | Medtronic, Inc. | Determining posture state from ECAPs |
| US11504526B2 (en) | 2019-05-30 | 2022-11-22 | Boston Scientific Neuromodulation Corporation | Methods and systems for discrete measurement of electrical characteristics |
| US11547855B2 (en) | 2019-10-25 | 2023-01-10 | Medtronic, Inc. | ECAP sensing for high frequency neurostimulation |
| US11612751B2 (en) | 2017-08-11 | 2023-03-28 | Boston Scientific Neuromodulation Corporation | Stimulation configuration variation to control evoked temporal patterns |
| US11623095B2 (en) | 2019-06-20 | 2023-04-11 | Boston Scientific Neuromodulation Corporation | Methods and systems for interleaving waveforms for electrical stimulation and measurement |
| US11633138B2 (en) | 2019-03-29 | 2023-04-25 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device in the presence of stimulation artifacts |
| US11707626B2 (en) | 2020-09-02 | 2023-07-25 | Medtronic, Inc. | Analyzing ECAP signals |
| US11857793B2 (en) | 2020-06-10 | 2024-01-02 | Medtronic, Inc. | Managing storage of sensed information |
| US11896828B2 (en) | 2020-10-30 | 2024-02-13 | Medtronic, Inc. | Implantable lead location using ECAP |
| US11931582B2 (en) | 2019-10-25 | 2024-03-19 | Medtronic, Inc. | Managing transient overstimulation based on ECAPs |
| US11938323B2 (en) | 2018-03-12 | 2024-03-26 | Boston Scientific Neuromodulation Corporation | Neural stimulation with decomposition of evoked compound action potentials |
| US11944820B2 (en) | 2018-04-27 | 2024-04-02 | Saluda Medical Pty Ltd | Neurostimulation of mixed nerves |
| US12011595B2 (en) | 2019-12-19 | 2024-06-18 | Medtronic, Inc. | Control pulses and posture for ECAPs |
| US12053632B2 (en) | 2019-07-26 | 2024-08-06 | Boston Scientific Neuromodulation Corporation | Methods and systems for making electrical stimulation adjustments based on patient-specific factors |
| US12064631B2 (en) | 2019-12-19 | 2024-08-20 | Medtronic, Inc. | ECAP and posture state control of electrical stimulation |
| US12097373B2 (en) | 2020-06-10 | 2024-09-24 | Medtronic, Inc. | Control policy settings for electrical stimulation therapy |
| US12130753B2 (en) | 2019-07-26 | 2024-10-29 | Boston Scientific Neuromodulation Corporation | Methods and systems for storage, retrieval, and visualization of signals and signal features |
| US12128235B2 (en) | 2020-03-06 | 2024-10-29 | Medtronic, Inc. | Controlling electrical stimulation based on a sensed stimulation signal |
| US12257436B2 (en) | 2019-08-06 | 2025-03-25 | Boston Scientific Neuromodulation Corporation | Neural sensing in an implantable stimulator device during passive charge recovery |
| US12285263B2 (en) | 2014-03-28 | 2025-04-29 | Saluda Medical Pty Ltd | Assessing neural state from action potentials |
| US12343147B2 (en) | 2012-11-06 | 2025-07-01 | Saluda Medical Pty Ltd | Method and system for controlling electrical conditions of tissue II |
| US12357830B2 (en) | 2019-10-25 | 2025-07-15 | Medtronic, Inc. | Sub-threshold stimulation based on ECAP detection |
| US12377273B2 (en) | 2021-12-02 | 2025-08-05 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device in the presence of stimulation artifacts |
| US12440678B2 (en) | 2021-10-29 | 2025-10-14 | Boston Scientific Neuromodulation Corporation | Stimulation circuitry in an implantable stimulator device for providing a tissue voltage as useful during neural response sensing |
| US12496449B2 (en) * | 2022-02-14 | 2025-12-16 | Saluda Medical Pty Ltd | Detection of neural responses to neurostimulation |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104799841A (en) * | 2015-04-27 | 2015-07-29 | 成都腾悦科技有限公司 | Biological electrical signal double-closed loop system |
| WO2017106539A1 (en) | 2015-12-18 | 2017-06-22 | Medtronic, Inc. | High duty cycle electrical stimulation therapy |
| US10525268B2 (en) | 2016-08-23 | 2020-01-07 | Medtronic, Inc. | Delivery of independent interleaved programs to produce higher-frequency electrical stimulation therapy |
| US10569088B2 (en) * | 2016-09-16 | 2020-02-25 | Medtronic, Inc. | Dorsal spinal column characterization with evoked potentials |
| WO2018080754A1 (en) | 2016-10-28 | 2018-05-03 | Medtronic, Inc. | High frequency stimulation based on low frequency titration gauge |
| WO2019074949A1 (en) | 2017-10-10 | 2019-04-18 | Medtronic, Inc. | Management of electrical stimulation therapy |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060287609A1 (en) * | 2005-06-01 | 2006-12-21 | Litvak Leonid M | Methods and systems for automatically identifying whether a neural recording signal includes a neural response signal |
| US20070185409A1 (en) * | 2005-04-20 | 2007-08-09 | Jianping Wu | Method and system for determining an operable stimulus intensity for nerve conduction testing |
| US20080077191A1 (en) * | 2006-09-21 | 2008-03-27 | Morrell Martha J | Treatment of language, behavior and social disorders |
| US20110270343A1 (en) * | 2010-04-29 | 2011-11-03 | Medtronic, Inc. | Therapy using perturbation and effect of physiological systems |
| US8190251B2 (en) * | 2006-03-24 | 2012-05-29 | Medtronic, Inc. | Method and apparatus for the treatment of movement disorders |
| US20140243926A1 (en) * | 2013-02-22 | 2014-08-28 | Boston Scientific Neuromodulation Corporation | Neurostimulation system and method for automatically adjusting stimulation and reducing energy requirements using evoked action potential |
| US20140249396A1 (en) * | 2011-08-04 | 2014-09-04 | Ramot At Tel Aviv University Ltd. | Il-1 receptor antagonist-coated electrode and uses thereof |
Family Cites Families (345)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3724467A (en) | 1971-04-23 | 1973-04-03 | Avery Labor Inc | Electrode implant for the neuro-stimulation of the spinal cord |
| US3736434A (en) | 1971-06-07 | 1973-05-29 | Westinghouse Air Brake Co | Fail-safe electronic comparator circuit |
| US3817254A (en) | 1972-05-08 | 1974-06-18 | Medtronic Inc | Transcutaneous stimulator and stimulation method |
| US3898472A (en) | 1973-10-23 | 1975-08-05 | Fairchild Camera Instr Co | Occupancy detector apparatus for automotive safety system |
| US4158196A (en) | 1977-04-11 | 1979-06-12 | Crawford George E Jr | Man-machine interface system |
| FR2419720A1 (en) | 1978-03-14 | 1979-10-12 | Cardiofrance Co | IMPLANTABLE HEART STIMULATOR WITH THERAPEUTIC AND DIAGNOSTIC FUNCTIONS |
| US4474186A (en) | 1979-07-17 | 1984-10-02 | Georgetown University | Computerized electro-oculographic (CEOG) system with feedback control of stimuli |
| US4807643A (en) | 1982-08-16 | 1989-02-28 | University Of Iowa Research Foundation | Digital electroneurometer |
| US4628934A (en) | 1984-08-07 | 1986-12-16 | Cordis Corporation | Method and means of electrode selection for pacemaker with multielectrode leads |
| CA1279101C (en) | 1985-10-10 | 1991-01-15 | Christopher Van Den Honert | Multichannel electrical stimulator with improved channel isolation |
| US4817628A (en) | 1985-10-18 | 1989-04-04 | David L. Zealear | System and method for evaluating neurological function controlling muscular movements |
| DE3831809A1 (en) | 1988-09-19 | 1990-03-22 | Funke Hermann | DEVICE DETERMINED AT LEAST PARTLY IN THE LIVING BODY |
| US5143081A (en) | 1990-07-27 | 1992-09-01 | New York University | Randomized double pulse stimulus and paired event analysis |
| US5172690A (en) | 1990-10-26 | 1992-12-22 | Telectronics Pacing Systems, Inc. | Automatic stimulus artifact reduction for accurate analysis of the heart's stimulated response |
| US5184615A (en) | 1991-03-08 | 1993-02-09 | Telectronics Pacing Systems, Inc. | Apparatus and method for detecting abnormal cardiac rhythms using evoked potential measurements in an arrhythmia control system |
| US5156154A (en) | 1991-03-08 | 1992-10-20 | Telectronics Pacing Systems, Inc. | Monitoring the hemodynamic state of a patient from measurements of myocardial contractility using doppler ultrasound techniques |
| US5139020A (en) | 1991-03-08 | 1992-08-18 | Telectronics Pacing Systems, Inc. | Method and apparatus for controlling the hemodynamic state of a patient based on systolic time interval measurements detecting using doppler ultrasound techniques |
| US5188106A (en) | 1991-03-08 | 1993-02-23 | Telectronics Pacing Systems, Inc. | Method and apparatus for chronically monitoring the hemodynamic state of a patient using doppler ultrasound |
| US5215100A (en) | 1991-04-29 | 1993-06-01 | Occupational Preventive Diagnostic, Inc. | Nerve condition monitoring system and electrode supporting structure |
| WO1993001863A1 (en) | 1991-07-15 | 1993-02-04 | Medtronic, Inc. | Medical stimulator with operational amplifier output circuit |
| US5324311A (en) | 1992-09-04 | 1994-06-28 | Siemens Pacesetter, Inc. | Coaxial bipolar connector assembly for implantable medical device |
| US5497781A (en) | 1992-10-30 | 1996-03-12 | Chen; Yunquan | Recording biological signals using Hilbert transforms |
| US5758651A (en) | 1992-12-22 | 1998-06-02 | Nygard; Tony Mikeal | Telemetry system and apparatus |
| GB9302335D0 (en) | 1993-02-05 | 1993-03-24 | Macdonald Alexander J R | Electrotherapeutic apparatus |
| US5417719A (en) | 1993-08-25 | 1995-05-23 | Medtronic, Inc. | Method of using a spinal cord stimulation lead |
| US5431693A (en) | 1993-12-10 | 1995-07-11 | Intermedics, Inc. | Method of verifying capture of the heart by a pacemaker |
| US5476486A (en) | 1994-03-04 | 1995-12-19 | Telectronics Pacing Systems, Inc. | Automatic atrial pacing pulse threshold determination utilizing an external programmer and a V-sense electrode |
| US5458623A (en) | 1994-03-04 | 1995-10-17 | Telectronics Pacing Systems, Inc. | Automatic atrial pacing threshold determination utilizing an external programmer and a surface electrogram |
| JP2596372B2 (en) | 1994-04-21 | 1997-04-02 | 日本電気株式会社 | Evoked potential measurement device |
| AUPM883794A0 (en) | 1994-10-17 | 1994-11-10 | University Of Melbourne, The | Multiple pulse stimulation |
| US5785651A (en) | 1995-06-07 | 1998-07-28 | Keravision, Inc. | Distance measuring confocal microscope |
| US6463328B1 (en) | 1996-02-02 | 2002-10-08 | Michael Sasha John | Adaptive brain stimulation method and system |
| US6066163A (en) | 1996-02-02 | 2000-05-23 | John; Michael Sasha | Adaptive brain stimulation method and system |
| JP2000508201A (en) | 1996-04-04 | 2000-07-04 | メドトロニック・インコーポレーテッド | Biological tissue stimulation and recording technology |
| US5702429A (en) | 1996-04-04 | 1997-12-30 | Medtronic, Inc. | Neural stimulation techniques with feedback |
| FR2796562B1 (en) | 1996-04-04 | 2005-06-24 | Medtronic Inc | TECHNIQUES FOR STIMULATING LIVING TISSUE AND RECORDING WITH LOCAL CONTROL OF ACTIVE SITES |
| US6493576B1 (en) | 1996-06-17 | 2002-12-10 | Erich Jaeger Gmbh | Method and apparatus for measuring stimulus-evoked potentials of the brain |
| DE69728173T2 (en) | 1996-06-20 | 2005-02-03 | Advanced Bionics Corp., Sylmar | SELF-ADJUSTING COCHLEAR IMPLANT SYSTEM |
| US6246912B1 (en) | 1996-06-27 | 2001-06-12 | Sherwood Services Ag | Modulated high frequency tissue modification |
| US5792212A (en) | 1997-03-07 | 1998-08-11 | Medtronic, Inc. | Nerve evoked potential measurement system using chaotic sequences for noise rejection |
| US5895416A (en) | 1997-03-12 | 1999-04-20 | Medtronic, Inc. | Method and apparatus for controlling and steering an electric field |
| US5873898A (en) | 1997-04-29 | 1999-02-23 | Medtronic, Inc. | Microprocessor capture detection circuit and method |
| US5851191A (en) | 1997-07-01 | 1998-12-22 | Neurometrix, Inc. | Apparatus and methods for assessment of neuromuscular function |
| US7628761B2 (en) | 1997-07-01 | 2009-12-08 | Neurometrix, Inc. | Apparatus and method for performing nerve conduction studies with localization of evoked responses |
| US5999848A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Daisy chainable sensors and stimulators for implantation in living tissue |
| US6522932B1 (en) | 1998-02-10 | 2003-02-18 | Advanced Bionics Corporation | Implantable, expandable, multicontact electrodes and tools for use therewith |
| CA2223668C (en) | 1998-02-23 | 2000-07-11 | James Stanley Podger | The strengthened quad antenna structure |
| US6421566B1 (en) | 1998-04-30 | 2002-07-16 | Medtronic, Inc. | Selective dorsal column stimulation in SCS, using conditioning pulses |
| US6027456A (en) | 1998-07-10 | 2000-02-22 | Advanced Neuromodulation Systems, Inc. | Apparatus and method for positioning spinal cord stimulation leads |
| US7277758B2 (en) | 1998-08-05 | 2007-10-02 | Neurovista Corporation | Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder |
| US7231254B2 (en) | 1998-08-05 | 2007-06-12 | Bioneuronics Corporation | Closed-loop feedback-driven neuromodulation |
| US6212431B1 (en) | 1998-09-08 | 2001-04-03 | Advanced Bionics Corporation | Power transfer circuit for implanted devices |
| US20060217782A1 (en) | 1998-10-26 | 2006-09-28 | Boveja Birinder R | Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components |
| US7062330B1 (en) | 1998-10-26 | 2006-06-13 | Boveja Birinder R | Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator |
| US6253109B1 (en) | 1998-11-05 | 2001-06-26 | Medtronic Inc. | System for optimized brain stimulation |
| US6114164A (en) | 1998-12-07 | 2000-09-05 | The Regents Of The University Of Michigan | System and method for emulating an in vivo environment of a muscle tissue specimen |
| US6898582B2 (en) | 1998-12-30 | 2005-05-24 | Algodyne, Ltd. | Method and apparatus for extracting low SNR transient signals from noise |
| US6909917B2 (en) | 1999-01-07 | 2005-06-21 | Advanced Bionics Corporation | Implantable generator having current steering means |
| AU769596B2 (en) | 1999-07-21 | 2004-01-29 | Med-El Elektromedizinische Gerate Gmbh | A circuit and method for generating sign-correlated simultaneous pulsatile |
| US6516227B1 (en) | 1999-07-27 | 2003-02-04 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
| US6381496B1 (en) | 1999-10-01 | 2002-04-30 | Advanced Bionics Corporation | Parameter context switching for an implanted device |
| WO2001043818A1 (en) | 1999-12-17 | 2001-06-21 | Advanced Bionics Corporation | Magnitude programming for implantable electrical stimulator |
| US6473649B1 (en) | 1999-12-22 | 2002-10-29 | Cardiac Pacemakers, Inc. | Rate management during automatic capture verification |
| US20020055688A1 (en) | 2000-05-18 | 2002-05-09 | Jefferson Jacob Katims | Nervous tissue stimulation device and method |
| US6782292B2 (en) | 2000-06-20 | 2004-08-24 | Advanced Bionics Corporation | System and method for treatment of mood and/or anxiety disorders by electrical brain stimulation and/or drug infusion |
| US7305268B2 (en) | 2000-07-13 | 2007-12-04 | Northstar Neurscience, Inc. | Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators |
| US7831305B2 (en) | 2001-10-15 | 2010-11-09 | Advanced Neuromodulation Systems, Inc. | Neural stimulation system and method responsive to collateral neural activity |
| AU2001237911A1 (en) | 2000-10-30 | 2002-05-21 | Neuropace, Inc. | System and method for determining stimulation parameters for the treatment of epileptic seizures |
| US7089059B1 (en) | 2000-11-03 | 2006-08-08 | Pless Benjamin D | Predicting susceptibility to neurological dysfunction based on measured neural electrophysiology |
| US6594524B2 (en) | 2000-12-12 | 2003-07-15 | The Trustees Of The University Of Pennsylvania | Adaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control |
| US6600954B2 (en) | 2001-01-25 | 2003-07-29 | Biocontrol Medical Bcm Ltd. | Method and apparatus for selective control of nerve fibers |
| US8060208B2 (en) | 2001-02-20 | 2011-11-15 | Case Western Reserve University | Action potential conduction prevention |
| US20050101878A1 (en) | 2001-04-18 | 2005-05-12 | Daly Christopher N. | Method and apparatus for measurement of evoked neural response |
| US6658293B2 (en) | 2001-04-27 | 2003-12-02 | Medtronic, Inc. | Method and system for atrial capture detection based on far-field R-wave sensing |
| CN1287729C (en) | 2001-05-29 | 2006-12-06 | 生殖健康技术公司 | System for detection and analysis of material uterine, material and fetal cardiac and fetal brain activity |
| US6936012B2 (en) | 2001-06-18 | 2005-08-30 | Neurometrix, Inc. | Method and apparatus for identifying constituent signal components from a plurality of evoked physiological composite signals |
| AU2002329590B2 (en) | 2001-07-11 | 2006-10-19 | Mynd Analytics, Inc. | Electroencephalography based systems and methods for selecting therapies and predicting outcomes |
| US6449512B1 (en) | 2001-08-29 | 2002-09-10 | Birinder R. Boveja | Apparatus and method for treatment of urological disorders using programmerless implantable pulse generator system |
| US20140046407A1 (en) | 2001-08-31 | 2014-02-13 | Bio Control Medical (B.C.M.) Ltd. | Nerve stimulation techniques |
| US8571653B2 (en) | 2001-08-31 | 2013-10-29 | Bio Control Medical (B.C.M.) Ltd. | Nerve stimulation techniques |
| US7778703B2 (en) | 2001-08-31 | 2010-08-17 | Bio Control Medical (B.C.M.) Ltd. | Selective nerve fiber stimulation for treating heart conditions |
| US7778711B2 (en) | 2001-08-31 | 2010-08-17 | Bio Control Medical (B.C.M.) Ltd. | Reduction of heart rate variability by parasympathetic stimulation |
| IL145700A0 (en) | 2001-09-30 | 2002-06-30 | Younis Imad | Electrode system for neural applications |
| DE10151020A1 (en) | 2001-10-16 | 2003-04-30 | Infineon Technologies Ag | Circuit arrangement, sensor array and biosensor array |
| US7493157B2 (en) | 2001-10-24 | 2009-02-17 | Gozani Shai N | Devices and methods for the non-invasive detection of spontaneous myoelectrical activity |
| US7286876B2 (en) | 2001-10-26 | 2007-10-23 | Cardiac Pacemakers, Inc. | Template-based capture verification for multi-site pacing |
| US7286878B2 (en) | 2001-11-09 | 2007-10-23 | Medtronic, Inc. | Multiplexed electrode array extension |
| US6993384B2 (en) | 2001-12-04 | 2006-01-31 | Advanced Bionics Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
| US7881805B2 (en) | 2002-02-04 | 2011-02-01 | Boston Scientific Neuromodulation Corporation | Method for optimizing search for spinal cord stimulation parameter settings |
| US20030153959A1 (en) | 2002-02-12 | 2003-08-14 | Thacker James R. | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed coupling efficiency |
| US7317948B1 (en) | 2002-02-12 | 2008-01-08 | Boston Scientific Scimed, Inc. | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
| US6931281B2 (en) | 2002-04-12 | 2005-08-16 | Pacesetter, Inc. | Method and apparatus for monitoring myocardial conduction velocity for diagnostics of therapy optimization |
| WO2003103484A2 (en) | 2002-06-05 | 2003-12-18 | Nervetrack Ltd. | Method and apparatus for measuring nerve signals in nerve fibers |
| US7203548B2 (en) | 2002-06-20 | 2007-04-10 | Advanced Bionics Corporation | Cavernous nerve stimulation via unidirectional propagation of action potentials |
| CA2492555A1 (en) | 2002-07-17 | 2004-01-22 | Remidi (Uk) Limited | Apparatus for the application of electrical pulses to the human body |
| AU2002951218A0 (en) | 2002-09-04 | 2002-09-19 | Cochlear Limited | Method and apparatus for measurement of evoked neural response |
| US7328068B2 (en) | 2003-03-31 | 2008-02-05 | Medtronic, Inc. | Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith |
| US7415307B2 (en) | 2002-10-31 | 2008-08-19 | Medtronic, Inc. | Ischemia detection based on cardiac conduction time |
| AU2003286842A1 (en) | 2002-11-01 | 2004-06-07 | George Mason Intellectual Properties, Inc. | Methods and devices for determining brain state |
| US7206640B1 (en) | 2002-11-08 | 2007-04-17 | Advanced Bionics Corporation | Method and system for generating a cochlear implant program using multi-electrode stimulation to elicit the electrically-evoked compound action potential |
| US7174215B2 (en) | 2002-12-06 | 2007-02-06 | Advanced Bionics Corporation | Method for determining stimulation parameters |
| US9854985B2 (en) * | 2002-12-09 | 2018-01-02 | Bio-Signal Group Corp. | Brain signal telemetry and seizure prediction |
| US20040122482A1 (en) | 2002-12-20 | 2004-06-24 | James Tung | Nerve proximity method and device |
| US7171261B1 (en) | 2002-12-20 | 2007-01-30 | Advanced Bionics Corporation | Forward masking method for estimating neural response |
| WO2004087256A1 (en) | 2003-04-02 | 2004-10-14 | Neurostream Technologies Inc. | Implantable nerve signal sensing and stimulation device for treating foot drop and other neurological disorders |
| DE10318071A1 (en) | 2003-04-17 | 2004-11-25 | Forschungszentrum Jülich GmbH | Device for desynchronizing neuronal brain activity |
| US20040254494A1 (en) | 2003-06-11 | 2004-12-16 | Spokoyny Eleonora S. | Method and appartaus for use in nerve conduction studies |
| US7582062B2 (en) | 2003-09-12 | 2009-09-01 | Medical Research Council | Methods of neural centre location and electrode placement in the central nervous system |
| US7930037B2 (en) | 2003-09-30 | 2011-04-19 | Medtronic, Inc. | Field steerable electrical stimulation paddle, lead system, and medical device incorporating the same |
| US20050107674A1 (en) | 2003-09-30 | 2005-05-19 | Jayant Parthasarathy | DC offset cancellation techniques |
| US8489196B2 (en) | 2003-10-03 | 2013-07-16 | Medtronic, Inc. | System, apparatus and method for interacting with a targeted tissue of a patient |
| US7236834B2 (en) | 2003-12-19 | 2007-06-26 | Medtronic, Inc. | Electrical lead body including an in-line hermetic electronic package and implantable medical device using the same |
| US7412287B2 (en) | 2003-12-22 | 2008-08-12 | Cardiac Pacemakers, Inc. | Automatic sensing vector selection for morphology-based capture verification |
| US7783349B2 (en) | 2006-04-10 | 2010-08-24 | Cardiac Pacemakers, Inc. | System and method for closed-loop neural stimulation |
| US7295881B2 (en) | 2003-12-29 | 2007-11-13 | Biocontrol Medical Ltd. | Nerve-branch-specific action-potential activation, inhibition, and monitoring |
| US20060020291A1 (en) | 2004-03-09 | 2006-01-26 | Gozani Shai N | Apparatus and method for performing nerve conduction studies with multiple neuromuscular electrodes |
| US20050203600A1 (en) | 2004-03-12 | 2005-09-15 | Scimed Life Systems, Inc. | Collapsible/expandable tubular electrode leads |
| WO2005089646A1 (en) | 2004-03-16 | 2005-09-29 | Medtronic, Inc. | Sensitivity analysis for selecting therapy parameter sets |
| US8224459B1 (en) | 2004-04-30 | 2012-07-17 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
| GB0409806D0 (en) | 2004-04-30 | 2004-06-09 | Univ Brunel | Nerve blocking method and system |
| US7369900B2 (en) | 2004-05-08 | 2008-05-06 | Bojan Zdravkovic | Neural bridge devices and methods for restoring and modulating neural activity |
| US8078284B2 (en) | 2004-05-25 | 2011-12-13 | Second Sight Medical Products, Inc. | Retinal prosthesis with a new configuration |
| US7993906B2 (en) | 2004-05-28 | 2011-08-09 | The Board Of Trustees Of The Leland Stanford Junior University | Closed-loop electrical stimulation system for cell cultures |
| EP1765459B1 (en) | 2004-06-15 | 2018-11-28 | Cochlear Limited | Automatic determination of the threshold of an evoked neural response |
| US8249698B2 (en) | 2004-08-31 | 2012-08-21 | The University Of Akron | General diagnostic and real-time applications of discrete hermite functions to digital data |
| WO2006047291A2 (en) | 2004-10-21 | 2006-05-04 | Advanced Neuromodulation Systems, Inc. | Spinal cord stimulation to treat auditory dysfunction |
| US8332047B2 (en) | 2004-11-18 | 2012-12-11 | Cardiac Pacemakers, Inc. | System and method for closed-loop neural stimulation |
| US8103352B2 (en) | 2004-12-03 | 2012-01-24 | Second Sight Medical Products, Inc. | Mimicking neural coding in retinal ganglion cells with short pulse electrical stimulation |
| US10537741B2 (en) | 2004-12-03 | 2020-01-21 | Boston Scientific Neuromodulation Corporation | System and method for choosing electrodes in an implanted stimulator device |
| US20110307030A1 (en) | 2005-03-24 | 2011-12-15 | Michael Sasha John | Methods for Evaluating and Selecting Electrode Sites of a Brain Network to Treat Brain Disorders |
| US7706992B2 (en) | 2005-02-23 | 2010-04-27 | Digital Intelligence, L.L.C. | System and method for signal decomposition, analysis and reconstruction |
| US20060264752A1 (en) | 2005-04-27 | 2006-11-23 | The Regents Of The University Of California | Electroporation controlled with real time imaging |
| US7343200B2 (en) | 2005-06-01 | 2008-03-11 | Advanced Bionics, Llc | Methods and systems for automatically determining a neural response threshold current level |
| US7450992B1 (en) | 2005-08-18 | 2008-11-11 | Advanced Neuromodulation Systems, Inc. | Method for controlling or regulating therapeutic nerve stimulation using electrical feedback |
| US8639329B2 (en) | 2005-08-30 | 2014-01-28 | Georgia Tech Research Corporation | Circuits and methods for artifact elimination |
| US20070073354A1 (en) | 2005-09-26 | 2007-03-29 | Knudson Mark B | Neural blocking therapy |
| US9168383B2 (en) | 2005-10-14 | 2015-10-27 | Pacesetter, Inc. | Leadless cardiac pacemaker with conducted communication |
| US8929991B2 (en) | 2005-10-19 | 2015-01-06 | Advanced Neuromodulation Systems, Inc. | Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits |
| US7616990B2 (en) | 2005-10-24 | 2009-11-10 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
| US7957796B2 (en) | 2005-10-28 | 2011-06-07 | Cyberonics, Inc. | Using physiological sensor data with an implantable medical device |
| US7853322B2 (en) | 2005-12-02 | 2010-12-14 | Medtronic, Inc. | Closed-loop therapy adjustment |
| US20090306533A1 (en) | 2006-01-26 | 2009-12-10 | Rousche Patrick J | Stroke Inducing and Monitoring System and Method for Using the Same |
| US20070287931A1 (en) | 2006-02-14 | 2007-12-13 | Dilorenzo Daniel J | Methods and systems for administering an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
| US7894905B2 (en) | 2006-03-13 | 2011-02-22 | Neuropace, Inc. | Implantable system enabling responsive therapy for pain |
| US7689289B2 (en) | 2006-03-22 | 2010-03-30 | Medtronic, Inc. | Technique for adjusting the locus of excitation of electrically excitable tissue with paired pulses |
| US7835804B2 (en) | 2006-04-18 | 2010-11-16 | Advanced Bionics, Llc | Removing artifact in evoked compound action potential recordings in neural stimulators |
| DE102006018851A1 (en) | 2006-04-22 | 2007-10-25 | Biotronik Crm Patent Ag | Active medical device implant with at least two diagnostic and / or therapeutic functions |
| US7792584B2 (en) | 2006-04-25 | 2010-09-07 | Medtronic, Inc. | System and method for characterization of atrial wall using digital signal processing |
| US9084901B2 (en) | 2006-04-28 | 2015-07-21 | Medtronic, Inc. | Cranial implant |
| US7515968B2 (en) | 2006-04-28 | 2009-04-07 | Medtronic, Inc. | Assembly method for spinal cord stimulation lead |
| US8099172B2 (en) | 2006-04-28 | 2012-01-17 | Advanced Neuromodulation Systems, Inc. | Spinal cord stimulation paddle lead and method of making the same |
| US20080051647A1 (en) | 2006-05-11 | 2008-02-28 | Changwang Wu | Non-invasive acquisition of large nerve action potentials (NAPs) with closely spaced surface electrodes and reduced stimulus artifacts |
| US20070282217A1 (en) | 2006-06-01 | 2007-12-06 | Mcginnis William J | Methods & systems for intraoperatively monitoring nerve & muscle frequency latency and amplitude |
| WO2008004204A1 (en) | 2006-07-06 | 2008-01-10 | University Of Limerick | An electrical stimulation device for nerves or muscles |
| US8532741B2 (en) | 2006-09-08 | 2013-09-10 | Medtronic, Inc. | Method and apparatus to optimize electrode placement for neurological stimulation |
| EP2069011B1 (en) | 2006-10-06 | 2013-11-20 | Neurostream Technologies General Partnership | Implantable pulse generator |
| US7881803B2 (en) | 2006-10-18 | 2011-02-01 | Boston Scientific Neuromodulation Corporation | Multi-electrode implantable stimulator device with a single current path decoupling capacitor |
| US8280514B2 (en) | 2006-10-31 | 2012-10-02 | Advanced Neuromodulation Systems, Inc. | Identifying areas of the brain by examining the neuronal signals |
| EP1935449B1 (en) | 2006-12-19 | 2011-10-19 | Greatbatch Ltd. | Braided electrical lead |
| US8057390B2 (en) | 2007-01-26 | 2011-11-15 | The Regents Of The University Of Michigan | High-resolution mapping of bio-electric fields |
| US8224453B2 (en) | 2007-03-15 | 2012-07-17 | Advanced Neuromodulation Systems, Inc. | Spinal cord stimulation to treat pain |
| US8406877B2 (en) | 2007-03-19 | 2013-03-26 | Cardiac Pacemakers, Inc. | Selective nerve stimulation with optionally closed-loop capabilities |
| US8083685B2 (en) | 2007-05-08 | 2011-12-27 | Propep, Llc | System and method for laparoscopic nerve detection |
| US9042978B2 (en) | 2007-05-11 | 2015-05-26 | Neurometrix, Inc. | Method and apparatus for quantitative nerve localization |
| US7742810B2 (en) | 2007-05-23 | 2010-06-22 | Boston Scientific Neuromodulation Corporation | Short duration pre-pulsing to reduce stimulation-evoked side-effects |
| US7634315B2 (en) * | 2007-05-31 | 2009-12-15 | Pacesetter, Inc. | Techniques to monitor and trend nerve damage and recovery |
| KR100897528B1 (en) | 2007-06-22 | 2009-05-15 | 주식회사 사이버메드 | Determination method of the position of the electrodes |
| US8649858B2 (en) | 2007-06-25 | 2014-02-11 | Boston Scientific Neuromodulation Corporation | Architectures for an implantable medical device system |
| US8417342B1 (en) | 2007-07-03 | 2013-04-09 | University Of Mississippi Medical Center | Gastrointestinal electrical stimulation device and method for treating gastrointestinal disorders |
| US8880180B2 (en) * | 2007-07-13 | 2014-11-04 | Cochlear Limited | Assessing neural survival |
| US8063770B2 (en) | 2007-08-01 | 2011-11-22 | Peter Costantino | System and method for facial nerve monitoring |
| WO2009026625A1 (en) | 2007-08-29 | 2009-03-05 | Cochlear Limited | Method and device for intracochlea impedance measurement |
| US7978062B2 (en) | 2007-08-31 | 2011-07-12 | Cardiac Pacemakers, Inc. | Medical data transport over wireless life critical network |
| EP2200692B1 (en) | 2007-09-26 | 2016-11-09 | Medtronic, Inc. | Frequency selective monitoring of physiological signals |
| WO2009046764A1 (en) | 2007-10-10 | 2009-04-16 | Neurotech S.A. | Neurostimulator and method for regulting the same |
| DE102007051847B4 (en) | 2007-10-30 | 2014-07-17 | Forschungszentrum Jülich GmbH | Device for stimulating neurons with a pathologically synchronous and oscillatory neuronal activity |
| EP2217323B1 (en) | 2007-11-14 | 2017-02-01 | Med-El Elektromedizinische Geräte GmbH | Cochlear implant stimulation artifacts |
| US8195287B2 (en) | 2007-12-05 | 2012-06-05 | The Invention Science Fund I, Llc | Method for electrical modulation of neural conduction |
| US20090157155A1 (en) | 2007-12-18 | 2009-06-18 | Advanced Bionics Corporation | Graphical display of environmental measurements for implantable therapies |
| GB0800797D0 (en) | 2008-01-16 | 2008-02-27 | Cambridge Entpr Ltd | Neural interface |
| WO2009119236A1 (en) | 2008-03-26 | 2009-10-01 | テルモ株式会社 | Treatment apparatus |
| GR1006568B (en) | 2008-04-22 | 2009-10-13 | Αλεξανδρος Μπερης | Method and system for recording of, and aiding in, the regeneration of a peripheral nerve. |
| US9492655B2 (en) | 2008-04-25 | 2016-11-15 | Boston Scientific Neuromodulation Corporation | Stimulation system with percutaneously deliverable paddle lead and methods of making and using |
| US8958870B2 (en) | 2008-04-29 | 2015-02-17 | Medtronic, Inc. | Therapy program modification |
| US8315703B2 (en) | 2008-04-30 | 2012-11-20 | Advanced Neuromodulation Systems, Inc. | Methods for targeting deep brain sites to treat mood and/or anxiety disorders |
| EP2318091B1 (en) | 2008-05-09 | 2016-09-14 | Medtronic, Inc. | Peripheral nerve field stimulation control |
| US7890182B2 (en) | 2008-05-15 | 2011-02-15 | Boston Scientific Neuromodulation Corporation | Current steering for an implantable stimulator device involving fractionalized stimulation pulses |
| US20090287277A1 (en) | 2008-05-19 | 2009-11-19 | Otologics, Llc | Implantable neurostimulation electrode interface |
| WO2009146427A1 (en) | 2008-05-29 | 2009-12-03 | Neurometrix, Inc. | Method and apparatus for quantitative nerve localization |
| US20090306491A1 (en) | 2008-05-30 | 2009-12-10 | Marcus Haggers | Implantable neural prosthetic device and methods of use |
| WO2009143553A1 (en) | 2008-05-30 | 2009-12-03 | Cochlear Limited | Sound processing method and system |
| US9592387B2 (en) | 2008-07-11 | 2017-03-14 | Medtronic, Inc. | Patient-defined posture states for posture responsive therapy |
| US8200340B2 (en) | 2008-07-11 | 2012-06-12 | Medtronic, Inc. | Guided programming for posture-state responsive therapy |
| CN102112045B (en) | 2008-07-29 | 2013-08-07 | 皇家飞利浦电子股份有限公司 | System and method for communicating information between implantable devices |
| US7941713B2 (en) | 2008-08-27 | 2011-05-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Programmable self-test for random access memories |
| WO2010032132A1 (en) | 2008-09-17 | 2010-03-25 | Med-El Elektromedizinische Geraete Gmbh | Stimulus artifact removal for neuronal recordings |
| AU2009293508A1 (en) | 2008-09-17 | 2010-03-25 | Saluda Medical Pty Limited | Knitted catheter |
| US8428733B2 (en) | 2008-10-16 | 2013-04-23 | Medtronic, Inc. | Stimulation electrode selection |
| EP2351467A1 (en) | 2008-10-27 | 2011-08-03 | Philips Intellectual Property & Standards GmbH | Method of driving a short-arc discharge lamp |
| US9987493B2 (en) | 2008-10-28 | 2018-06-05 | Medtronic, Inc. | Medical devices and methods for delivery of current-based electrical stimulation therapy |
| US8560060B2 (en) | 2008-10-31 | 2013-10-15 | Medtronic, Inc. | Isolation of sensing and stimulation circuitry |
| US8688210B2 (en) | 2008-10-31 | 2014-04-01 | Medtronic, Inc. | Implantable medical device crosstalk evaluation and mitigation |
| WO2010051382A1 (en) | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Mood circuit monitoring to control therapy delivery |
| US8301263B2 (en) | 2008-10-31 | 2012-10-30 | Medtronic, Inc. | Therapy module crosstalk mitigation |
| US8255057B2 (en) | 2009-01-29 | 2012-08-28 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
| EP2346567A4 (en) | 2008-11-13 | 2012-04-25 | Proteus Biomedical Inc | Multiplexed multi-electrode neurostimulation devices |
| US9463321B2 (en) | 2008-11-14 | 2016-10-11 | Boston Scientific Neuromodulation Corporation | System and method for adjusting automatic pulse parameters to selectively activate nerve fibers |
| US8504160B2 (en) | 2008-11-14 | 2013-08-06 | Boston Scientific Neuromodulation Corporation | System and method for modulating action potential propagation during spinal cord stimulation |
| AU2009322898B2 (en) | 2008-12-05 | 2015-03-12 | Spr Therapeutics, Inc. | Systems and methods to place one or more leads in tissue to electrically stimulate nerves of passage to treat pain |
| US9084551B2 (en) | 2008-12-08 | 2015-07-21 | Medtronic Xomed, Inc. | Method and system for monitoring a nerve |
| US20100179626A1 (en) | 2009-01-09 | 2010-07-15 | Medtronic, Inc. | System and method for implanting a paddle lead |
| US20100222858A1 (en) | 2009-02-27 | 2010-09-02 | Meloy T Stuart | Method and system for neurally augmenting sexual function during sexual activity |
| EP2405823A4 (en) | 2009-03-13 | 2012-07-04 | Baxano Inc | Flexible neural localization devices and methods |
| US10286212B2 (en) | 2009-03-20 | 2019-05-14 | Electrocore, Inc. | Nerve stimulation methods for averting imminent onset or episode of a disease |
| US10252074B2 (en) | 2009-03-20 | 2019-04-09 | ElectroCore, LLC | Nerve stimulation methods for averting imminent onset or episode of a disease |
| US8504154B2 (en) | 2009-03-30 | 2013-08-06 | Medtronic, Inc. | Physiological signal amplifier with voltage protection and fast signal recovery |
| AU2009344196A1 (en) | 2009-04-08 | 2011-12-01 | Saluda Medical Pty Limited | Electronics package for an active implantable medical device |
| US9089714B2 (en) | 2009-04-08 | 2015-07-28 | Saluda Medical Pty Limited | Stitched components of an active implantable medical device |
| US20100258342A1 (en) | 2009-04-08 | 2010-10-14 | National Ict Australia Limited (Nicta) | Bonded hermetic feed through for an active implantable medical device |
| DE202010018338U1 (en) | 2009-04-22 | 2015-10-12 | Nevro Corporation | Spinal cord modulation system for the relief of chronic pain |
| US8744588B2 (en) | 2009-05-07 | 2014-06-03 | Hani Midani | Method and system for connecting an impaired nervous system to a muscle or a group of muscles based on template matching and intelligent end points |
| US20120226187A1 (en) * | 2009-05-29 | 2012-09-06 | University of Washington Center for Commercialization | Vestibular Implant |
| US20100331926A1 (en) | 2009-06-24 | 2010-12-30 | Boston Scientific Neuromodulation Corporation | Reversing recruitment order by anode intensification |
| EP2456515A4 (en) | 2009-07-20 | 2013-01-23 | Nat Ict Australia Ltd | NEURO-STIMULATION |
| US8498710B2 (en) | 2009-07-28 | 2013-07-30 | Nevro Corporation | Linked area parameter adjustment for spinal cord stimulation and associated systems and methods |
| US20110028859A1 (en) | 2009-07-31 | 2011-02-03 | Neuropace, Inc. | Methods, Systems and Devices for Monitoring a Target in a Neural System and Facilitating or Controlling a Cell Therapy |
| US10595772B2 (en) | 2009-08-14 | 2020-03-24 | David Burton | Anaesthesia and consciousness depth monitoring system |
| US20110093042A1 (en) | 2009-10-21 | 2011-04-21 | Medtronic, Inc. | Stimulation with utilization of case electrode |
| US11045221B2 (en) | 2009-10-30 | 2021-06-29 | Medtronic, Inc. | Steerable percutaneous paddle stimulation lead |
| EP2504500B1 (en) | 2009-11-26 | 2015-04-15 | Saluda Medical Pty Limited | Forming feedthroughs for hermetically sealed housings using two-material powder injection molding |
| US8886323B2 (en) | 2010-02-05 | 2014-11-11 | Medtronic, Inc. | Electrical brain stimulation in gamma band |
| AU2011224323B2 (en) | 2010-03-11 | 2016-06-23 | Mainstay Medical Limited | Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use |
| EP3381366A1 (en) * | 2010-03-12 | 2018-10-03 | Inspire Medical Systems, Inc. | System for identifying a location for nerve stimulation |
| KR101866252B1 (en) | 2010-03-22 | 2018-06-11 | 리서치 파운데이션 오브 더 시티 유니버시티 오브 뉴욕 | Charge-enhanced neural electric stimulation system |
| US9814885B2 (en) | 2010-04-27 | 2017-11-14 | Medtronic, Inc. | Stimulation electrode selection |
| US20110288391A1 (en) | 2010-05-19 | 2011-11-24 | Purdue Research Foundation | Titanium-Based Multi-Channel Microelectrode Array for Electrophysiological Recording and Stimulation of Neural Tissue |
| JP5464072B2 (en) | 2010-06-16 | 2014-04-09 | ソニー株式会社 | Muscle activity diagnosis apparatus and method, and program |
| EP2582429B1 (en) | 2010-06-18 | 2016-01-13 | Cardiac Pacemakers, Inc. | Neurostimulation system with control using evoked responses |
| AU2013277009B2 (en) | 2010-06-18 | 2016-01-07 | Cardiac Pacemakers, Inc. | Neurostimulation system with control using evoked responses |
| WO2012016138A1 (en) | 2010-07-29 | 2012-02-02 | Med-El Elektromedizinische Geraete Gmbh | Electrically evoked brainstem response measurements via implant prosthesis |
| AU2011293575A1 (en) | 2010-08-23 | 2013-04-11 | Rafael Development Corporation Ltd. | Synchronizing defibrillation pulse delivery with the breathing cycle |
| WO2012027791A1 (en) | 2010-08-31 | 2012-03-08 | National Ict Australia Ltd | Distributed implant systems |
| EP2443995A3 (en) | 2010-10-21 | 2013-02-27 | Syncrophi Systems Ltd. | An ECG apparatus with lead-off detection |
| US9420960B2 (en) | 2010-10-21 | 2016-08-23 | Medtronic, Inc. | Stereo data representation of biomedical signals along a lead |
| US8805697B2 (en) | 2010-10-25 | 2014-08-12 | Qualcomm Incorporated | Decomposition of music signals using basis functions with time-evolution information |
| US9155503B2 (en) | 2010-10-27 | 2015-10-13 | Cadwell Labs | Apparatus, system, and method for mapping the location of a nerve |
| JPWO2012056882A1 (en) | 2010-10-27 | 2014-03-20 | 株式会社村田製作所 | Detection circuit |
| US8788047B2 (en) | 2010-11-11 | 2014-07-22 | Spr Therapeutics, Llc | Systems and methods for the treatment of pain through neural fiber stimulation |
| KR101198515B1 (en) | 2010-12-15 | 2012-11-06 | 에스케이하이닉스 주식회사 | Operating method of semiconductor memory device |
| US9326698B2 (en) | 2011-02-18 | 2016-05-03 | The Trustees Of The University Of Pennsylvania | Method for automatic, unsupervised classification of high-frequency oscillations in physiological recordings |
| KR101241943B1 (en) | 2011-03-29 | 2013-03-11 | 한국과학기술연구원 | Artificial Nerve Networking System and Method for Functional Recovery of Damaged Nerve |
| US9155879B2 (en) | 2011-04-08 | 2015-10-13 | University Of Utah Research Foundation | Virtual electrodes for high-density electrode arrays |
| US10448889B2 (en) | 2011-04-29 | 2019-10-22 | Medtronic, Inc. | Determining nerve location relative to electrodes |
| US8515545B2 (en) | 2011-04-29 | 2013-08-20 | Greatbatch Ltd. | Current steering neurostimulator device with unidirectional current sources |
| US9789307B2 (en) | 2011-04-29 | 2017-10-17 | Medtronic, Inc. | Dual prophylactic and abortive electrical stimulation |
| WO2012155185A1 (en) | 2011-05-13 | 2012-11-22 | National Ict Australia Ltd | Method and apparatus for measurement of neural response |
| US9872990B2 (en) | 2011-05-13 | 2018-01-23 | Saluda Medical Pty Limited | Method and apparatus for application of a neural stimulus |
| US10588524B2 (en) | 2011-05-13 | 2020-03-17 | Saluda Medical Pty Ltd | Method and apparatus for measurement of neural response |
| US9974455B2 (en) | 2011-05-13 | 2018-05-22 | Saluda Medical Pty Ltd. | Method and apparatus for estimating neural recruitment |
| WO2012155183A1 (en) | 2011-05-13 | 2012-11-22 | National Ict Australia Ltd | Method and apparatus for measurement of neural response - a |
| EP3434324B1 (en) | 2011-05-13 | 2022-11-02 | Saluda Medical Pty Ltd | Device for application of a neural stimulus |
| AU2012255676B2 (en) | 2011-05-13 | 2017-04-06 | Saluda Medical Pty Limited | Method and apparatus for controlling a neural stimulus - e |
| EP2716073B1 (en) | 2011-05-24 | 2016-08-24 | Med-El Elektromedizinische Geraete GmbH | Progressive parameter scan for cochlear implants |
| US20130172774A1 (en) | 2011-07-01 | 2013-07-04 | Neuropace, Inc. | Systems and Methods for Assessing the Effectiveness of a Therapy Including a Drug Regimen Using an Implantable Medical Device |
| US9888861B2 (en) | 2011-08-25 | 2018-02-13 | Medtronic, Inc. | Method and apparatus for detecting a biomarker in the presence of electrical stimulation |
| US8483836B2 (en) | 2011-09-07 | 2013-07-09 | Greatbatch Ltd. | Automated search to identify a location for electrical stimulation to treat a patient |
| US10335547B2 (en) | 2011-10-24 | 2019-07-02 | Purdue Research Foundation | Method and apparatus for closed-loop control of nerve activation |
| US20140288577A1 (en) | 2011-11-24 | 2014-09-25 | Saluda Medical Pty Limited | Electrode Assembly for an Active Implantable Medical Device |
| WO2013116161A1 (en) | 2012-01-30 | 2013-08-08 | The Regents Of The University Of California | System and methods for closed-loop cochlear implant |
| FR2988996B1 (en) | 2012-04-06 | 2015-01-23 | Uromems | METHOD AND DEVICE FOR CONTROLLING AN IMPLANTABLE DEVICE |
| AU2013252839B2 (en) | 2012-04-27 | 2015-09-17 | Boston Scientific Neuromodulation Corporation | Timing channel circuitry for creating pulses in an implantable stimulator device |
| EP2849839A4 (en) | 2012-05-16 | 2015-12-09 | Univ Utah Res Found | HIGH DENSITY ELECTRODE MATRIX PILOT BY LOAD |
| WO2013188871A1 (en) | 2012-06-15 | 2013-12-19 | Case Western Reserve University | Implantable cuff and method for functional electrical stimulation and monitoring |
| WO2013191612A1 (en) | 2012-06-21 | 2013-12-27 | Neuronano Ab | Medical microelectrode, method for its manufacture, and use thereof |
| TWI498101B (en) | 2012-08-30 | 2015-09-01 | Univ Nat Chiao Tung | Method of analyzing nerve fiber distribution and measuring standardized induced compound motion electric potential |
| DE102012218057A1 (en) | 2012-10-02 | 2014-04-03 | Forschungszentrum Jülich GmbH | DEVICE AND METHOD FOR INVESTIGATING A NARROW INTERACTION BETWEEN DIFFERENT BRAIN SIZES |
| DK2908905T3 (en) | 2012-11-06 | 2020-12-14 | Saluda Medical Pty Ltd | SYSTEM FOR CONTROLLING ELECTRICAL CONDITIONS IN TISSUE |
| US10206596B2 (en) | 2012-11-06 | 2019-02-19 | Saluda Medical Pty Ltd | Method and system for controlling electrical conditions of tissue |
| US8880167B2 (en) | 2013-02-13 | 2014-11-04 | Flint Hills Scientific, Llc | Selective recruitment and activation of fiber types in nerves for the control of undesirable brain state changes |
| US20140276925A1 (en) | 2013-03-12 | 2014-09-18 | Spinal Modulation, Inc. | Methods and systems for use in guiding implantation of a neuromodulation lead |
| US10105091B2 (en) | 2013-03-12 | 2018-10-23 | The Cleveland Clinic Foundation | Methods of using nerve evoked potentials to monitor a surgical procedure |
| US9446235B2 (en) | 2013-03-14 | 2016-09-20 | Medtronic, Inc. | Low frequency electrical stimulation therapy for pelvic floor disorders |
| CN105120946B (en) | 2013-03-15 | 2017-05-17 | 波士顿科学神经调制公司 | Techniques for current steering directional programming in a neurostimulation system |
| EP3583979B1 (en) | 2013-03-15 | 2021-04-28 | Boston Scientific Neuromodulation Corporation | Systems for delivering subthreshold therapy to a patient |
| US9610444B2 (en) | 2013-03-15 | 2017-04-04 | Pacesetter, Inc. | Erythropoeitin production by electrical stimulation |
| US9427581B2 (en) | 2013-04-28 | 2016-08-30 | ElectroCore, LLC | Devices and methods for treating medical disorders with evoked potentials and vagus nerve stimulation |
| EP2999514B1 (en) | 2013-05-21 | 2024-12-11 | Duke University | Methods for deep brain stimulation parameters |
| US11083402B2 (en) | 2013-06-04 | 2021-08-10 | Medtronic, Inc. | Patient state determination based on one or more spectral characteristics of a bioelectrical brain signal |
| DE202013102868U1 (en) * | 2013-07-01 | 2014-10-13 | Glasbau Hahn Gmbh | Showcase for a footprint for the display of objects |
| EP3021804B1 (en) | 2013-07-19 | 2020-09-02 | MED-EL Elektromedizinische Geräte GmbH | Triphasic pulses to reduce undesirable side-effects in cochlear implants |
| US9545516B2 (en) | 2013-07-19 | 2017-01-17 | Med-El Elektromedizinische Geraete Gmbh | Triphasic pulses to reduce undesirable side-effects in cochlear implants |
| CA2917977A1 (en) | 2013-07-26 | 2015-01-29 | Boston Scientific Neuromodulation Corporation | Systems of providing modulation therapy without perception |
| AU2014341908B2 (en) | 2013-11-01 | 2018-08-30 | Medtronic Xomed, Inc. | Foley catheter with ring electrodes |
| CN105848575B (en) | 2013-11-15 | 2019-11-19 | 萨鲁达医疗有限公司 | monitor brain potential |
| WO2015074121A1 (en) | 2013-11-22 | 2015-05-28 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in a neural measurement |
| EP3094371B1 (en) | 2014-01-17 | 2019-04-03 | Medtronic Inc. | Movement disorder symptom control |
| US20170135624A1 (en) | 2014-03-28 | 2017-05-18 | Saluda Medical Pty Ltd | Assessing Neural State from Action Potentials |
| CN106659894B (en) | 2014-05-05 | 2020-01-24 | 萨鲁达医疗有限公司 | Improved neurometrics |
| US9302112B2 (en) | 2014-06-13 | 2016-04-05 | Pacesetter, Inc. | Method and system for non-linear feedback control of spinal cord stimulation |
| ES2873255T3 (en) | 2014-07-25 | 2021-11-03 | Saluda Medical Pty Ltd | Neurological stimulation dosage |
| CN106714897B (en) | 2014-09-23 | 2020-02-07 | 波士顿科学神经调制公司 | System for calibrating dorsal horn stimulation |
| WO2016048974A1 (en) | 2014-09-23 | 2016-03-31 | Boston Scientific Neuromodulation Corporation | Short pulse width stimulation |
| CN107073266B (en) | 2014-09-23 | 2020-08-11 | 波士顿科学神经调制公司 | System and method for receiving user-provided selections of electrode lists |
| WO2016061045A1 (en) | 2014-10-13 | 2016-04-21 | Cardiac Pacemakers, Inc. | Systems and methods for delivering vagal therapy |
| US10471268B2 (en) | 2014-10-16 | 2019-11-12 | Mainstay Medical Limited | Systems and methods for monitoring muscle rehabilitation |
| US9597507B2 (en) | 2014-10-31 | 2017-03-21 | Medtronic, Inc. | Paired stimulation pulses based on sensed compound action potential |
| US9610448B2 (en) | 2014-11-12 | 2017-04-04 | Pacesetter, Inc. | System and method to control a non-paresthesia stimulation based on sensory action potentials |
| AU2015349614B2 (en) | 2014-11-17 | 2020-10-22 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in neural measurements |
| US10603484B2 (en) | 2014-11-25 | 2020-03-31 | Medtronic Bakken Research Center B.V. | System and method for neurostimulation and/or neurorecording |
| EP3229890B1 (en) | 2014-12-11 | 2020-05-27 | Saluda Medical Pty Limited | Implantable electrode positioning |
| US20160166164A1 (en) | 2014-12-11 | 2016-06-16 | Saluda Medical Pty Limited | Method and Apparatus for Detecting Neural Injury |
| EP3218046B1 (en) | 2014-12-11 | 2024-04-17 | Saluda Medical Pty Ltd | Device and computer program for feedback control of neural stimulation |
| US9387325B1 (en) | 2014-12-19 | 2016-07-12 | Pacesetter, Inc. | System and method to control dorsal root stimulation parameters based on frequency decomposition |
| AU2016208972B2 (en) | 2015-01-19 | 2021-06-24 | Saluda Medical Pty Ltd | Method and device for neural implant communication |
| JP7071121B2 (en) | 2015-04-09 | 2022-05-18 | サルーダ・メディカル・ピーティーワイ・リミテッド | Estimating the distance between the electrode and the nerve |
| WO2016168798A1 (en) | 2015-04-17 | 2016-10-20 | Micron Devices Llc | Flexible circuit for an impantable device |
| JP7071257B2 (en) | 2015-05-31 | 2022-05-18 | クローズド・ループ・メディカル・ピーティーワイ・リミテッド | Installation of cranial nerve stimulator electrodes |
| JP2018516150A (en) | 2015-05-31 | 2018-06-21 | サルーダ・メディカル・ピーティーワイ・リミテッド | Cranial nerve activity monitoring |
| CN107613861B (en) | 2015-06-01 | 2021-10-26 | 闭环医疗私人有限公司 | Motor fiber neuromodulation |
| CN108367149B (en) | 2015-09-22 | 2021-10-22 | 心脏起搏器股份公司 | System and method for monitoring autonomic health |
| CN108367153A (en) | 2015-12-04 | 2018-08-03 | 波士顿科学神经调制公司 | System and method for sharing treatment example in neural modulation system |
| US9925379B2 (en) | 2015-12-22 | 2018-03-27 | Pacesetter, Inc. | System and method for managing stimulation of select A-beta fiber components |
| EP4378520A1 (en) | 2015-12-22 | 2024-06-05 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | System for selective spatiotemporal stimulation of the spinal cord |
| AU2017221321B2 (en) | 2016-02-19 | 2021-04-15 | Nalu Medical, Inc. | Apparatus with enhanced stimulation waveforms |
| CN109219467B (en) | 2016-04-05 | 2022-08-16 | 萨鲁达医疗有限公司 | Improved feedback control of neuromodulation |
| AU2017273638A1 (en) | 2016-05-31 | 2018-12-06 | The Regents Of The University Of California | Systems and methods for reducing noise caused by stimulation artifacts in neural signals received by neuro-modulation devices |
| EP3474747A4 (en) | 2016-06-24 | 2020-01-22 | Saluda Medical Pty Ltd | NEURAL STIMULATION FOR A REDUCED ARTIFACT |
| US10576265B2 (en) | 2016-09-10 | 2020-03-03 | Boston Scientific Neuromodulation Corporation | Pulse definition circuitry for creating stimulation waveforms in an implantable pulse generator |
| US20180104493A1 (en) | 2016-10-19 | 2018-04-19 | Boston Scientific Neuromodulation Corporation | Methods to program sub-perception spinal cord stimulation |
| WO2018080754A1 (en) | 2016-10-28 | 2018-05-03 | Medtronic, Inc. | High frequency stimulation based on low frequency titration gauge |
| US11351378B2 (en) | 2016-12-21 | 2022-06-07 | Duke University | Method to design temporal patterns of nervous system stimulation |
| EP3589188B1 (en) | 2017-03-02 | 2024-07-24 | Cornell University | A sensory evoked diagnostic for the assessment of cognitive brain function |
| US11596797B2 (en) | 2017-03-15 | 2023-03-07 | The Regents Of The University Of California | Removal of stimulation artifact in multi-channel neural recordings |
| EP3434321A1 (en) | 2017-07-26 | 2019-01-30 | BIOTRONIK SE & Co. KG | Neural stimulation and recording, particularly for neuromodulation closed-loop control |
| EP3752244B1 (en) | 2018-02-15 | 2024-09-11 | Saluda Medical Pty Limited | Power efficient stimulators |
| CN112153939A (en) | 2018-03-23 | 2020-12-29 | 萨鲁达医疗有限公司 | System for managing clinical data |
| EP4434461A3 (en) | 2018-04-27 | 2025-03-05 | Saluda Medical Pty Ltd | Neurostimulation of mixed nerves |
| AU2019276972B2 (en) | 2018-06-01 | 2022-02-10 | Boston Scientific Neuromodulation Corporation | Artifact reduction in a sensed neural response |
| EP3870273B1 (en) | 2018-10-23 | 2023-09-06 | Saluda Medical Pty Ltd | Current source for neurostimulation |
| JP2022505633A (en) | 2018-10-23 | 2022-01-14 | サルーダ・メディカル・ピーティーワイ・リミテッド | Minimize artifacts in neurostimulation therapy |
| CA3117230A1 (en) | 2018-10-23 | 2020-04-30 | Saluda Medical Pty Ltd | Method and device for controlled neural stimulation |
| WO2020087123A1 (en) | 2018-10-30 | 2020-05-07 | Saluda Medical Pty Ltd | Automated neural conduction velocity estimation |
| JP7466537B2 (en) | 2018-11-02 | 2024-04-12 | サルーダ・メディカル・ピーティーワイ・リミテッド | System and non-transitory computer readable medium for evaluating the therapeutic effect of electrical nerve stimulation therapy |
| CA3123328A1 (en) | 2018-12-17 | 2020-06-25 | Saluda Medical Pty Ltd | Improved detection of action potentials |
| JP7595639B2 (en) | 2019-07-12 | 2024-12-06 | サルーダ・メディカル・ピーティーワイ・リミテッド | SYSTEM, METHOD, AND NON-TRANSITORY COMPUTER READABLE MEDIUM FOR AUTOMATED ASSESSMENT OF NEURAL RESPONSE RECORDINGS - Patent application |
-
2015
- 2015-03-27 US US15/129,407 patent/US20170135624A1/en not_active Abandoned
- 2015-03-27 WO PCT/AU2015/050135 patent/WO2015143509A1/en not_active Ceased
- 2015-03-27 EP EP15768956.3A patent/EP3122247B1/en active Active
-
2022
- 2022-05-31 US US17/804,846 patent/US12285263B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070185409A1 (en) * | 2005-04-20 | 2007-08-09 | Jianping Wu | Method and system for determining an operable stimulus intensity for nerve conduction testing |
| US20060287609A1 (en) * | 2005-06-01 | 2006-12-21 | Litvak Leonid M | Methods and systems for automatically identifying whether a neural recording signal includes a neural response signal |
| US8190251B2 (en) * | 2006-03-24 | 2012-05-29 | Medtronic, Inc. | Method and apparatus for the treatment of movement disorders |
| US20080077191A1 (en) * | 2006-09-21 | 2008-03-27 | Morrell Martha J | Treatment of language, behavior and social disorders |
| US20110270343A1 (en) * | 2010-04-29 | 2011-11-03 | Medtronic, Inc. | Therapy using perturbation and effect of physiological systems |
| US20140249396A1 (en) * | 2011-08-04 | 2014-09-04 | Ramot At Tel Aviv University Ltd. | Il-1 receptor antagonist-coated electrode and uses thereof |
| US20140243926A1 (en) * | 2013-02-22 | 2014-08-28 | Boston Scientific Neuromodulation Corporation | Neurostimulation system and method for automatically adjusting stimulation and reducing energy requirements using evoked action potential |
Non-Patent Citations (1)
| Title |
|---|
| Herreras, Oscar, Local Field Potentials: Myths and Misunderstandings, 15 December 2016, Frontiers in Neural Circuits * |
Cited By (112)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11577083B2 (en) | 2010-06-18 | 2023-02-14 | Cardiac Pacemakers, Inc. | Methods and apparatus for adjusting neurostimulation intensity using evoked responses |
| US10940316B2 (en) | 2010-06-18 | 2021-03-09 | Cardiac Pacemakers, Inc. | Methods and apparatus for adjusting neurostimulation intensity using evoked responses |
| US10568559B2 (en) | 2011-05-13 | 2020-02-25 | Saluda Medical Pty Ltd | Method and apparatus for measurement of neural response |
| US11045129B2 (en) | 2011-05-13 | 2021-06-29 | Saluda Medical Pty Ltd. | Method and apparatus for estimating neural recruitment |
| US11944440B2 (en) | 2011-05-13 | 2024-04-02 | Saluda Medical Pty Ltd | Method and apparatus for estimating neural recruitment |
| US11324427B2 (en) | 2011-05-13 | 2022-05-10 | Saluda Medical Pty Ltd | Method and apparatus for measurement of neural response |
| US9872990B2 (en) | 2011-05-13 | 2018-01-23 | Saluda Medical Pty Limited | Method and apparatus for application of a neural stimulus |
| US11819332B2 (en) | 2011-05-13 | 2023-11-21 | Saluda Medical Pty Ltd | Method and apparatus for measurement of neural response |
| US11420064B2 (en) | 2011-05-13 | 2022-08-23 | Saluda Medical Pty Ltd | Method and apparatus for application of a neural stimulus |
| US11554265B2 (en) | 2011-05-13 | 2023-01-17 | Saluda Medical Pty Ltd | Method and apparatus for application of a neural stimulus |
| US10588524B2 (en) | 2011-05-13 | 2020-03-17 | Saluda Medical Pty Ltd | Method and apparatus for measurement of neural response |
| US11445958B2 (en) | 2011-05-13 | 2022-09-20 | Saluda Medical Pty Ltd | Method and apparatus for estimating neural recruitment |
| US11491334B2 (en) | 2011-05-13 | 2022-11-08 | Saluda Medical Pty Ltd | Method and apparatus for application of a neural stimulus |
| US11464979B2 (en) | 2011-05-13 | 2022-10-11 | Saluda Medical Pty Ltd | Method and apparatus for application of a neural stimulus |
| US11426587B2 (en) | 2011-05-13 | 2022-08-30 | Saluda Medical Pty Ltd | Method and apparatus for application of a neural stimulus |
| US11439828B2 (en) | 2011-05-13 | 2022-09-13 | Saluda Medical Pty Ltd | Method and apparatus for application of a neural stimulus |
| US10278600B2 (en) | 2011-05-13 | 2019-05-07 | Saluda Medical Pty Ltd. | Method and apparatus for measurement of neural response |
| US9974455B2 (en) | 2011-05-13 | 2018-05-22 | Saluda Medical Pty Ltd. | Method and apparatus for estimating neural recruitment |
| US11413460B2 (en) | 2011-05-13 | 2022-08-16 | Saluda Medical Pty Ltd | Method and apparatus for application of a neural stimulus |
| US11944439B2 (en) | 2012-11-06 | 2024-04-02 | Saluda Medical Pty Ltd | Method and system for controlling electrical conditions of tissue |
| US10206596B2 (en) | 2012-11-06 | 2019-02-19 | Saluda Medical Pty Ltd | Method and system for controlling electrical conditions of tissue |
| US12343147B2 (en) | 2012-11-06 | 2025-07-01 | Saluda Medical Pty Ltd | Method and system for controlling electrical conditions of tissue II |
| US11389098B2 (en) | 2012-11-06 | 2022-07-19 | Saluda Medical Pty Ltd | Method and system for controlling electrical conditions of tissue |
| US11172864B2 (en) | 2013-11-15 | 2021-11-16 | Closed Loop Medical Pty Ltd | Monitoring brain neural potentials |
| US12376780B2 (en) | 2013-11-15 | 2025-08-05 | Closed Loop Medical Pty Ltd | Monitoring brain neural potentials |
| US11890113B2 (en) | 2013-11-22 | 2024-02-06 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in a neural measurement |
| US10426409B2 (en) | 2013-11-22 | 2019-10-01 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in a neural measurement |
| US11337658B2 (en) | 2013-11-22 | 2022-05-24 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in a neural measurement |
| US12285263B2 (en) | 2014-03-28 | 2025-04-29 | Saluda Medical Pty Ltd | Assessing neural state from action potentials |
| US11457849B2 (en) | 2014-05-05 | 2022-10-04 | Saluda Medical Pty Ltd | Neural measurement |
| US12369826B2 (en) | 2014-05-05 | 2025-07-29 | Saluda Medical Pty Ltd | Neural measurement |
| US10368762B2 (en) | 2014-05-05 | 2019-08-06 | Saluda Medical Pty Ltd. | Neural measurement |
| US11167129B2 (en) | 2014-07-25 | 2021-11-09 | Saluda Medical Pty Ltd | Neural stimulation dosing |
| US10632307B2 (en) | 2014-07-25 | 2020-04-28 | Saluda Medical Pty Ltd | Neural stimulation dosing |
| US12329527B2 (en) | 2014-11-17 | 2025-06-17 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in neural measurements |
| US11006846B2 (en) | 2014-11-17 | 2021-05-18 | Saluda Medical Pty Ltd | Method and device for detecting a neural response in neural measurements |
| US11219766B2 (en) | 2014-12-11 | 2022-01-11 | Saluda Medical Pty Ltd | Method and device for feedback control of neural stimulation |
| US12064632B2 (en) | 2014-12-11 | 2024-08-20 | Saluda Medical Pty Ltd | Method and device for feedback control of neural stimulation |
| US10500399B2 (en) | 2014-12-11 | 2019-12-10 | Saluda Medical Pty Ltd | Method and device for feedback control of neural stimulation |
| US10588698B2 (en) | 2014-12-11 | 2020-03-17 | Saluda Medical Pty Ltd | Implantable electrode positioning |
| US11344729B1 (en) | 2014-12-11 | 2022-05-31 | Saluda Medical Pty Ltd | Method and device for feedback control of neural stimulation |
| US11464980B2 (en) | 2014-12-11 | 2022-10-11 | Saluda Medical Pty Ltd | Method and device for feedback control of neural stimulation |
| US10918872B2 (en) | 2015-01-19 | 2021-02-16 | Saluda Medical Pty Ltd | Method and device for neural implant communication |
| US11938320B2 (en) | 2015-04-09 | 2024-03-26 | Saluda Medical Pty Ltd | Electrode to nerve distance estimation |
| US10894158B2 (en) | 2015-04-09 | 2021-01-19 | Saluda Medical Pty Ltd | Electrode to nerve distance estimation |
| US11110270B2 (en) | 2015-05-31 | 2021-09-07 | Closed Loop Medical Pty Ltd | Brain neurostimulator electrode fitting |
| US10849525B2 (en) | 2015-05-31 | 2020-12-01 | Saluda Medical Pty Ltd | Monitoring brain neural activity |
| US11006857B2 (en) | 2015-06-01 | 2021-05-18 | Closed Loop Medical Pty Ltd | Motor fibre neuromodulation |
| US12138457B2 (en) | 2016-04-05 | 2024-11-12 | Saluda Medical Pty Ltd | Feedback control of neuromodulation |
| US11191966B2 (en) | 2016-04-05 | 2021-12-07 | Saluda Medical Pty Ltd | Feedback control of neuromodulation |
| US10960211B2 (en) | 2016-04-19 | 2021-03-30 | Boston Scientific Neuromodulation Corporation | Pulse generator system for promoting desynchronized firing of recruited neural populations |
| US12128236B2 (en) | 2016-04-19 | 2024-10-29 | Boston Scientific Neuromodulation Corporation | Pulse generator system for promoting desynchronized firing of recruited neural populations |
| US10406368B2 (en) | 2016-04-19 | 2019-09-10 | Boston Scientific Neuromodulation Corporation | Pulse generator system for promoting desynchronized firing of recruited neural populations |
| US11623097B2 (en) | 2016-04-19 | 2023-04-11 | Boston Scientific Neuromodulation Corporation | Pulse generator system for promoting desynchronized firing of recruited neural populations |
| US11826156B2 (en) | 2016-06-24 | 2023-11-28 | Saluda Medical Pty Ltd | Neural stimulation for reduced artefact |
| US11179091B2 (en) | 2016-06-24 | 2021-11-23 | Saluda Medical Pty Ltd | Neural stimulation for reduced artefact |
| US11612751B2 (en) | 2017-08-11 | 2023-03-28 | Boston Scientific Neuromodulation Corporation | Stimulation configuration variation to control evoked temporal patterns |
| US12318615B2 (en) | 2017-08-11 | 2025-06-03 | Boston Scientific Neuromodulation Corporation | Stimulation configuration variation to control evoked temporal patterns |
| US12017074B2 (en) | 2017-10-04 | 2024-06-25 | Boston Scientific Neuromodulation Corporation | Adjustment of stimulation in a stimulator using detected evoked compound action potentials |
| US11129987B2 (en) | 2017-10-04 | 2021-09-28 | Boston Scientific Neuromodulation Corporation | Adjustment of stimulation in a stimulator using detected evoked compound action potentials |
| US10926092B2 (en) | 2018-01-08 | 2021-02-23 | Boston Scientific Neuromodulation Corporation | Automatic adjustment of sub-perception therapy in an implantable stimulator using detected compound action potentials |
| US11786737B2 (en) | 2018-01-08 | 2023-10-17 | Boston Scientific Neuromodulation Corporation | Automatic adjustment of sub-perception therapy in an implantable stimulator using detected compound action potentials |
| US11938323B2 (en) | 2018-03-12 | 2024-03-26 | Boston Scientific Neuromodulation Corporation | Neural stimulation with decomposition of evoked compound action potentials |
| US11850418B2 (en) | 2018-03-26 | 2023-12-26 | Boston Scientific Neuromodulation Corporation | System and methods for heart rate and electrocardiogram extraction from a spinal cord stimulation system |
| US10974042B2 (en) | 2018-03-26 | 2021-04-13 | Boston Scientific Neuromodulation Corporation | System and methods for heart rate and electrocardiogram extraction from a spinal cord stimulation system |
| US11571566B2 (en) | 2018-03-26 | 2023-02-07 | Boston Scientific Neuromodulation Corporation | System and methods for heart rate and electrocardiogram extraction from a spinal cord stimulation system |
| US11607549B2 (en) | 2018-03-30 | 2023-03-21 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device |
| US11931579B2 (en) | 2018-03-30 | 2024-03-19 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device |
| US11040202B2 (en) | 2018-03-30 | 2021-06-22 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device |
| US12383744B2 (en) | 2018-03-30 | 2025-08-12 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device |
| US11944820B2 (en) | 2018-04-27 | 2024-04-02 | Saluda Medical Pty Ltd | Neurostimulation of mixed nerves |
| US11241580B2 (en) | 2018-06-01 | 2022-02-08 | Boston Scientific Neuromodulation Corporation | Artifact reduction in a sensed neural response |
| US11998745B2 (en) | 2018-06-01 | 2024-06-04 | Boston Scientific Neuromodulation Corporation | Artifact reduction in a sensed neural response |
| US12023501B2 (en) | 2018-06-21 | 2024-07-02 | Medtronic, Inc. | ECAP based control of electrical stimulation therapy |
| US11129989B2 (en) | 2018-06-21 | 2021-09-28 | Medtronic, Inc. | ECAP based control of electrical stimulation therapy |
| US12133982B2 (en) | 2018-06-21 | 2024-11-05 | Medtronic, Inc. | ECAP based control of electrical stimulation therapy |
| US11129991B2 (en) | 2018-06-21 | 2021-09-28 | Medtronic, Inc. | ECAP based control of electrical stimulation therapy |
| US11793438B2 (en) | 2019-03-29 | 2023-10-24 | Boston Scientific Neuromodulation Corporation | Neural sensing in an implantable stimulator device during the provision of active stimulation |
| US11259733B2 (en) | 2019-03-29 | 2022-03-01 | Boston Scientific Neuromodulation Corporation | Neural sensing in an implantable stimulator device during the provision of active stimulation |
| US12042291B2 (en) | 2019-03-29 | 2024-07-23 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device in the presence of stimulation artifacts |
| US11633138B2 (en) | 2019-03-29 | 2023-04-25 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device in the presence of stimulation artifacts |
| US11504526B2 (en) | 2019-05-30 | 2022-11-22 | Boston Scientific Neuromodulation Corporation | Methods and systems for discrete measurement of electrical characteristics |
| US12357819B2 (en) | 2019-05-30 | 2025-07-15 | Boston Scientific Neuromodulation Corporation | Methods and systems for discrete measurement of electrical characteristics |
| US11938315B2 (en) | 2019-05-30 | 2024-03-26 | Boston Scientific Neuromodulation Corporation | Methods and systems for discrete measurement of electrical characteristics |
| US11623095B2 (en) | 2019-06-20 | 2023-04-11 | Boston Scientific Neuromodulation Corporation | Methods and systems for interleaving waveforms for electrical stimulation and measurement |
| US12053632B2 (en) | 2019-07-26 | 2024-08-06 | Boston Scientific Neuromodulation Corporation | Methods and systems for making electrical stimulation adjustments based on patient-specific factors |
| US12130753B2 (en) | 2019-07-26 | 2024-10-29 | Boston Scientific Neuromodulation Corporation | Methods and systems for storage, retrieval, and visualization of signals and signal features |
| US12257436B2 (en) | 2019-08-06 | 2025-03-25 | Boston Scientific Neuromodulation Corporation | Neural sensing in an implantable stimulator device during passive charge recovery |
| US11931582B2 (en) | 2019-10-25 | 2024-03-19 | Medtronic, Inc. | Managing transient overstimulation based on ECAPs |
| US11547855B2 (en) | 2019-10-25 | 2023-01-10 | Medtronic, Inc. | ECAP sensing for high frequency neurostimulation |
| US12370366B2 (en) | 2019-10-25 | 2025-07-29 | Medtronic, Inc. | ECAP sensing for high frequency neurostimulation |
| US12357830B2 (en) | 2019-10-25 | 2025-07-15 | Medtronic, Inc. | Sub-threshold stimulation based on ECAP detection |
| US11202912B2 (en) | 2019-12-19 | 2021-12-21 | Medtronic, Inc. | Posture-based control of electrical stimulation therapy |
| US11179567B2 (en) | 2019-12-19 | 2021-11-23 | Medtronic, Inc. | Hysteresis compensation for detection of ECAPs |
| US12121730B2 (en) | 2019-12-19 | 2024-10-22 | Medtronic, Inc. | Determining posture state from ECAPs |
| US12168131B2 (en) | 2019-12-19 | 2024-12-17 | Medtronic, Inc. | Posture-based control of electrical stimulation therapy |
| US12186566B2 (en) | 2019-12-19 | 2025-01-07 | Medtronic, Inc. | Hysteresis compensation for detection of ECAPs |
| US12064631B2 (en) | 2019-12-19 | 2024-08-20 | Medtronic, Inc. | ECAP and posture state control of electrical stimulation |
| US12011595B2 (en) | 2019-12-19 | 2024-06-18 | Medtronic, Inc. | Control pulses and posture for ECAPs |
| US11779765B2 (en) | 2019-12-19 | 2023-10-10 | Medtronic, Inc. | Posture-based control of electrical stimulation therapy |
| US11439825B2 (en) | 2019-12-19 | 2022-09-13 | Medtronic, Inc. | Determining posture state from ECAPs |
| US11813457B2 (en) | 2019-12-19 | 2023-11-14 | Medtronic, Inc. | Hysteresis compensation for detection of ECAPs |
| US12128235B2 (en) | 2020-03-06 | 2024-10-29 | Medtronic, Inc. | Controlling electrical stimulation based on a sensed stimulation signal |
| US11857793B2 (en) | 2020-06-10 | 2024-01-02 | Medtronic, Inc. | Managing storage of sensed information |
| US12097373B2 (en) | 2020-06-10 | 2024-09-24 | Medtronic, Inc. | Control policy settings for electrical stimulation therapy |
| US12036412B2 (en) | 2020-09-02 | 2024-07-16 | Medtronic, Inc. | Analyzing ECAP signals |
| US11707626B2 (en) | 2020-09-02 | 2023-07-25 | Medtronic, Inc. | Analyzing ECAP signals |
| US11896828B2 (en) | 2020-10-30 | 2024-02-13 | Medtronic, Inc. | Implantable lead location using ECAP |
| US12311176B2 (en) | 2020-10-30 | 2025-05-27 | Medtronic, Inc. | Implantable lead location using ECAP |
| US12440678B2 (en) | 2021-10-29 | 2025-10-14 | Boston Scientific Neuromodulation Corporation | Stimulation circuitry in an implantable stimulator device for providing a tissue voltage as useful during neural response sensing |
| US12377273B2 (en) | 2021-12-02 | 2025-08-05 | Boston Scientific Neuromodulation Corporation | Circuitry to assist with neural sensing in an implantable stimulator device in the presence of stimulation artifacts |
| US12496449B2 (en) * | 2022-02-14 | 2025-12-16 | Saluda Medical Pty Ltd | Detection of neural responses to neurostimulation |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3122247A4 (en) | 2017-11-08 |
| EP3122247B1 (en) | 2025-05-07 |
| EP3122247A1 (en) | 2017-02-01 |
| US20220287620A1 (en) | 2022-09-15 |
| US12285263B2 (en) | 2025-04-29 |
| WO2015143509A1 (en) | 2015-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12285263B2 (en) | Assessing neural state from action potentials | |
| US12214199B2 (en) | Treatment for loss of control disorders | |
| US8918176B2 (en) | Assessing cognitive disorders based on non-motor epileptiform bioelectrical brain activity | |
| CN107613860B (en) | Cranial nerve activity monitoring | |
| US20200289815A1 (en) | Method and System For Physiological Target Localization From Macroelectrode Recordings and Monitoring Spinal Cord Function | |
| US20210016091A1 (en) | Method and Apparatus for Application of a Neural Stimulus | |
| US20180110987A1 (en) | Electrode to Nerve Distance Estimation | |
| US20160166164A1 (en) | Method and Apparatus for Detecting Neural Injury | |
| EP2814565B1 (en) | Brain stimulation response profiling | |
| US20230139790A1 (en) | Neuromodulation of Primary and/or Postsynaptic Neurons | |
| Bialer et al. | Seizure detection and neuromodulation: A summary of data presented at the XIII conference on new antiepileptic drug and devices (EILAT XIII) | |
| Verma et al. | Characterization and applications of evoked responses during epidural electrical stimulation | |
| Brinda et al. | Longitudinal analysis of local field potentials recorded from directional deep brain stimulation lead implants in the subthalamic nucleus | |
| Deshmukh et al. | Epidural spinal cord recordings (ESRs): sources of neural-appearing artifact in stimulation evoked compound action potentials | |
| US20240016437A1 (en) | Systems and methods for detecting evoked compound action potential (ecap) and/or stimulation artifact features in response to neurostimulation | |
| Testini et al. | Motor evoked potentials as a side effect biomarker for deep brain stimulation programming | |
| US11511111B2 (en) | System and method for gastric electrical stimulation using compound nerve action potential feedback | |
| Su et al. | Peripheral direct current suppresses physiologically evoked nociceptive responses at the spinal cord in rodent models of pain | |
| Luu et al. | Transcutaneous afferent patterned stimulation reduces essential tremor symptoms through modulation of neural activity in the ventral intermediate nucleus of the thalamus | |
| Deshmukh et al. | Epidural Spinal Cord Recordings (ESRs): Sources of Artifact in Stimulation Evoked Compound Action Potentials | |
| Huang et al. | Applying a Sensing-Enabled System for Ensuring Safe Anterior Cingulate Deep Brain | |
| CN119604332A (en) | Intraluminal medical device with induced biopotential sensing capability | |
| Libelius et al. | P5-18 Quantitative EMG abnormalities of the external anal sphincter were found in patients with parkinsonism within three months after the first visit | |
| Borgohain et al. | P5-17 Autonomic function and quantitative sensory testing (QST) in PD and PD plus syndromes | |
| Hama et al. | P5-16 Pain related SEP and cortical SEP in Parkinson's disease |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SALUDA MEDICAL PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARKER, JOHN LOUIS;REEL/FRAME:040592/0961 Effective date: 20161109 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |