US20170115106A1 - Gun powder transfer device - Google Patents
Gun powder transfer device Download PDFInfo
- Publication number
- US20170115106A1 US20170115106A1 US15/298,792 US201615298792A US2017115106A1 US 20170115106 A1 US20170115106 A1 US 20170115106A1 US 201615298792 A US201615298792 A US 201615298792A US 2017115106 A1 US2017115106 A1 US 2017115106A1
- Authority
- US
- United States
- Prior art keywords
- gun powder
- powder
- gun
- load chamber
- exit aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003721 gunpowder Substances 0.000 title claims abstract description 240
- 238000012546 transfer Methods 0.000 title claims abstract description 38
- 230000007246 mechanism Effects 0.000 claims abstract description 44
- 239000000843 powder Substances 0.000 claims abstract description 30
- 238000004891 communication Methods 0.000 claims abstract description 17
- 230000008878 coupling Effects 0.000 claims description 26
- 238000010168 coupling process Methods 0.000 claims description 26
- 238000005859 coupling reaction Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 10
- 230000004888 barrier function Effects 0.000 claims 2
- 230000008901 benefit Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B33/00—Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
- F42B33/02—Filling cartridges, missiles, or fuzes; Inserting propellant or explosive charges
- F42B33/0285—Measuring explosive-charge levels in containers or cartridge cases; Methods or devices for controlling the quantity of material fed or filled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B33/00—Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
- F42B33/02—Filling cartridges, missiles, or fuzes; Inserting propellant or explosive charges
- F42B33/0207—Processes for loading or filling propulsive or explosive charges in containers
Definitions
- the present invention relates generally to the reloading of ammunition cartridges with gun powder, and more particularly to a gun powder transfer device for effectively reloading ammunition cartridges with gun powder.
- Reloading fired ammunition casings is an increasingly popular hobby of avid shooters. Shooters can often save a significant amount of money associated with the cost of ammunition by reloading their own ammunition. In addition, reloading allows a shooter to test different loads and bullet weights that can be tailored to the gun of the shooter's choice, thus resulting in more accurate shooting.
- Those of skill in the art understand that atmospheric pressure and moisture can negatively affect the reloading process. When gun powder is inserted into commercially available powder measures for subsequent reloading of ammunition, atmospheric pressure and moisture can result in densely packed and/or clumped gun powder within the powder measure, which can negatively affect the user's ability to determine the appropriate powder charge to be reloaded into the selected ammunition.
- Densely packed and/or clumped gun powder within the powder measure can also result in difficulty associated with the release of the gun powder from the powder measure and into the ammunition casing to be reloaded. If an insufficient amount of powder is utilized in the reloading process, a squib (i.e., a bullet that becomes stuck in the barrel of the gun) may result which can be extremely dangerous for shooters. Over-loading ammunition with gun powder can also result in hazardous conditions for the shooter. Thus, there is a need in the art for devices that facilitate the process of appropriately and accurately reloading ammunition.
- the present disclosure provides methods, apparatus, instruments, and/or devices, as described by way of example in implementations set forth below.
- a gun powder transfer device includes a gun powder load chamber, a gun powder exit aperture, and a gun powder release mechanism disposed between the gun powder load chamber and the gun powder exit aperture.
- the gun powder load chamber is configured for receiving a quantity of gun powder from a powder measure.
- the gun powder release mechanism is selectively alterable between a closed state and an open state. In the closed state, the gun powder load chamber is isolated from the gun powder exit aperture such that none of the quantity of gun powder may be released form the gun powder load chamber to the gun powder exit aperture. In the open state, the gun powder release mechanism provides a flow path for enabling the quantity of gun powder to be released from the load chamber and into communication with the gun powder exit aperture.
- a method for reloading an ammunition cartridge includes coupling a powder measure to a gun powder transfer device, transferring a quantity of gun powder from the powder measure to a gun powder load chamber of the gun powder transfer device, placing an ammunition cartridge at the gun powder exit aperture, and releasing the quantity of gun powder from the gun powder load chamber and into communication with a gun powder exit aperture of the gun powder transfer device.
- FIG. 1 is an exploded view of an implementation of a gun powder transfer device according to the present invention, showing a rotatable gun powder release mechanism.
- FIG. 2 is a perspective assembled view of the gun powder transfer device illustrated in FIG. 1 , further showing the rotatable gun powder release mechanism in an open state.
- FIG. 3 is a perspective assembled view of the gun powder transfer device illustrated in FIG. 1 , further showing the gun powder transfer device coupled to a powder measure.
- FIG. 4 is an elevation view of an implementation of a gun powder load chamber according to the present invention, showing graduated markings.
- FIG. 5 is an exploded view of an implementation of a gun powder transfer device according to the present invention, showing a slidable gun powder release mechanism.
- FIGS. 1-5 illustrate various implementations of a gun powder transfer device according to the present teachings.
- the various implementations provide a highly effective and efficient solution for accurately reloading ammunition cartridges with gun powder.
- carrier may be used interchangeably with such terms as cases, casings, rounds, shells, etc.
- the gun powder transfer device according to the present teachings may be sized and configured for compatibility with any commercially available powder measure.
- the gun powder transfer device may be easily coupled to an exit aperture of a powder measure so as to allow accurate measurement and proper inspection of the charge (or quantity) of gun powder (for example, to ensure that the charge of gun powder is not moist, clumped and/or densely packed) prior to loading the charge of gun powder in an ammunition cartridge.
- FIG. 1 is an exploded view of an implementation of a gun powder transfer device 100 according to the present invention.
- the gun powder transfer device 100 may generally include a gun powder load chamber 102 , a gun powder exit aperture 104 , and a gun powder release mechanism 106 .
- FIG. 2 which is an assembled perspective view of the implementation of the gun powder transfer device 100 illustrated in FIG. 1
- the gun powder release mechanism 106 may generally be disposed between the gun powder load chamber 102 and the gun powder exit aperture 104 .
- the gun powder load chamber 102 may generally be configured to receive a quantity of gun powder (not shown) from a powder measure 302 .
- the gun powder transfer device 100 may be configured and sized for compatibility with any commercially available powder measure.
- the gun powder release mechanism 106 may be rotatable (e.g., about a horizontal axis A-A), such that the gun powder release mechanism 106 is alterable between a closed state and an open state.
- the gun powder load chamber 102 may be isolated from the gun powder exit aperture 104 such that none of the quantity of gun powder present in the gun powder load chamber 102 may be released from the gun powder load chamber 102 and into communication with the gun powder exit aperture 104 .
- a user may visually inspect the gun powder present within the gun powder load chamber 102 for any deficiencies (e.g., excess moisture, clumping, etc.).
- the gun powder release mechanism 106 may provide a flow path for enabling the quantity of gun powder present in the gun powder load chamber 102 to be released from the load chamber 102 and into communication with the gun powder exit aperture 104 for subsequent loading of an ammunition cartridge 230 (see FIG. 2 ) positioned at the exit aperture 104 .
- the gun powder release mechanism 106 may include an aperture 108 through which the quantity of gun powder may be released from the gun powder load chamber 102 when the gun powder release mechanism 106 is in the open state. As illustrated in FIGS. 2-3 , the gun powder release mechanism 106 is in the open state, as the aperture 108 is in communication (e.g., in-line) with the gun powder load chamber 102 and the gun powder exit aperture 104 .
- the gun powder release mechanism 106 may include an ergonomic handle 110 which may allow the user to easily alter (e.g., turn, push, pull, etc.) the gun powder release mechanism 106 between the open state and the closed state.
- O-rings 116 may be used to secure the gun powder release mechanism 106 between the gun powder load chamber 102 and the gun powder exit aperture 104 .
- the gun powder release mechanism 106 may be, for example, frictionally fitted or threadably coupled between the gun powder load chamber 102 and the gun powder exit aperture 104 .
- the gun powder load chamber 102 may include a housing 114 through which an inner conduit 112 extends.
- the housing may generally be constructed of transparent (or semi-transparent) material, such as any suitable polymeric material or glass, so as to allow a user to visually inspect gun powder present within the inner conduit 112 .
- the gun powder release mechanism 106 is considered to be in the open state when the aperture 108 is in communication (e.g., in-line) with the inner conduit 112 and the gun powder exit aperture 104 .
- the housing 414 of the gun powder load chamber 402 may include graduated markings 440 (i.e., according to any desired scale) to allow a user to accurately measure a quantity of gun powder 442 that is received in the gun powder load chamber 402 from the powder measure (not shown).
- the gun powder load chamber 402 may include a slidable mark to allow a user to mark the quantity of gun powder 442 present within the gun powder load chamber 402 for the subsequent reloading of ammunition cartridges.
- a user may ensure that the quantity of gun powder 442 that is received in the gun powder load chamber 402 is accurate by causing the gun powder to be released from the gun powder transfer device and weighing the quantity of gun powder on a commercially available powder scale prior to loading the gun powder into an ammunition cartridge.
- the gun powder exit aperture 104 may be coupled to a bottom portion 118 of the gun powder load chamber 102 via an O-ring 130 or other suitable coupling means.
- the gun powder exit aperture 104 may be frictionally fitted or threadably coupled to the bottom portion 118 of the gun powder load chamber 102 .
- a user may position an ammunition cartridge (not shown) at the gun powder exit aperture 104 for reloading.
- the gun powder When gun powder is present in the gun powder load chamber 102 , the gun powder may be released from the gun powder load chamber 102 and into communication with the gun powder exit aperture 104 when the gun powder release mechanism 106 is selectively altered to the open state.
- the gun powder may exit the gun powder transfer device 100 via the gun powder exit aperture 104 to be received by an ammunition cartridge positioned at the gun powder exit aperture 104 .
- the gun powder transfer device 100 may include a coupling device 120 configured for removably securing the gun powder load chamber 102 to the powder measure 302 .
- the coupling device 120 may include a first end 122 configured for removably coupling to a powder measure exit aperture 340 , and a second end 124 configured for removably coupling to a top portion 126 of the gun powder load chamber 102 .
- the second end 124 may be removably coupled to the top portion 126 via a lock nut 128 , O-ring, or other suitable fastener.
- the first end 122 of the coupling device 120 may be threadably coupled to the powder measure exit aperture 340 and the second end 124 of the coupling device 120 may be threadably coupled to the top portion 126 of the gun powder load chamber 102 .
- the first end 122 of the coupling device 120 may be configured for frictionally fitting to the powder measure exit aperture 340
- the second end 124 of the coupling device 120 may be configured for frictionally fitting to the top portion 126 of the gun powder load chamber 102 . Any suitable coupling means may be utilized.
- FIG. 5 is an exploded view of an implementation of a gun powder transfer device 500 according to the present invention, including a slidable release mechanism 506 and showing a coupling device 520 configured for coupling a gun powder load chamber 502 to a powder measure exit aperture 340 (see FIG. 3 ), and a gun powder exit aperture 504 .
- the gun powder release mechanism 506 may be slidable (e.g., movable perpendicular to a length of a housing 514 of the gun powder load chamber 502 ), such that the gun powder release mechanism 506 is alterable between a closed state and an open state.
- the gun powder load chamber 502 may be isolated from the gun powder exit aperture 504 such that none of a quantity of gun powder present in the gun powder load chamber 502 may be released from the gun powder load chamber 502 and into communication with the gun powder exit aperture 504 .
- a user may visually inspect the gun powder present within the gun powder load chamber 502 for any deficiencies (e.g., excess moisture, clumping, etc.) prior to selectively altering (e.g., sliding) the gun powder release mechanism 506 to the open state.
- the gun powder release mechanism 506 may provide a flow path for enabling the quantity of gun powder present in the gun powder load chamber 502 to be released from the load chamber 502 and into communication with the gun powder exit aperture 504 for loading into an ammunition cartridge positioned at the gun powder exit aperture 504 .
- the gun powder release mechanism 506 may include an aperture 508 through which the quantity of gun powder may be released from the gun powder load chamber 502 when the gun powder release mechanism 506 is in the open state.
- the aperture 506 is in communication (e.g., in-line) with an inner conduit 512 (extending through the housing 514 of the gun powder load chamber 502 ) and the gun powder exit aperture 504 .
- the slidable gun powder release mechanism 506 may include pins 550 (or “stoppers”) extending outward from the gun powder release mechanism 506 .
- the pins 550 may be used to secure the gun powder release mechanism 506 between the gun powder load chamber 502 and the gun powder exit aperture 504 .
- the pins 550 may limit the lateral movement of the gun powder release mechanism 506 when the pins 550 come into contact with the housing 514 as the gun powder release mechanism 506 is altered by a user.
- the gun powder release mechanism may comprise a spring-loaded release, a slidable release, a rotatable release, a ball valve or other suitable valve means, or any other suitable release means that is selectively alterable by a user between a closed state and an open state as set forth in the present teachings.
- the gun powder transfer device enables a user to inspect gun powder that is to be used to reload an ammunition cartridge prior to charging the ammunition cartridge.
- graduated markings may be used to visually inspect the charge of gun powder present in the gun powder load chamber of the gun powder transfer device.
- the user may visually inspect the charge of gun powder for moisture, packing, or clumping prior to charging the ammunition cartridge to be reloaded.
- the user may release gun powder from the gun powder transfer device (via the gun powder exit aperture) to a commercially available scale to ensure the proper charge.
- the gun powder may be returned to the gun powder load chamber (via a powder measure, for example) for subsequent reloading of an ammunition cartridge placed at the gun powder exit aperture.
- terms such as “coupled to,” and “configured for coupling to,” and “secured to,” and “configured for securing to,” and “configured for receiving,” and “in communication with” are used herein to indicate a structural, functional, mechanical, electrical, signal, optical, magnetic, electromagnetic, ionic or fluidic relationship between two or more components or elements.
- a first component is “coupled to” or “is configured for coupling to” or is “configured for securing to” or is “configured for receiving” or is “in communication with” a second component
- the fact that one component is said to be, for example, in communication with a second component is not intended to exclude the possibility that additional components may be present between, and/or operatively associated or engaged with, the first and second components.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Coating Apparatus (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
Abstract
A gun powder transfer device includes a gun powder load chamber configured for receiving a quantity of gun powder from a powder measure; a gun powder exit aperture; and a gun powder release mechanism disposed between the gun powder load chamber and the gun powder exit aperture. The gun powder release mechanism is alterable between a closed state and an open state. In the closed state, the gun powder load chamber is isolated from the gun powder exit aperture such that none of the quantity of gun powder may be released from the gun powder load chamber. In the open state, the gun powder release mechanism provides a flow path for enabling the quantity of gun powder to be released from the load chamber and into communication with the gun powder exit aperture.
Description
- This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/245,330, filed Oct. 23, 2015, titled “GUN POWDER TRANSFER AND AGITATOR DEVICES;” the content of which is incorporated by reference herein in its entirety.
- The present invention relates generally to the reloading of ammunition cartridges with gun powder, and more particularly to a gun powder transfer device for effectively reloading ammunition cartridges with gun powder.
- Reloading fired ammunition casings is an increasingly popular hobby of avid shooters. Shooters can often save a significant amount of money associated with the cost of ammunition by reloading their own ammunition. In addition, reloading allows a shooter to test different loads and bullet weights that can be tailored to the gun of the shooter's choice, thus resulting in more accurate shooting. Those of skill in the art understand that atmospheric pressure and moisture can negatively affect the reloading process. When gun powder is inserted into commercially available powder measures for subsequent reloading of ammunition, atmospheric pressure and moisture can result in densely packed and/or clumped gun powder within the powder measure, which can negatively affect the user's ability to determine the appropriate powder charge to be reloaded into the selected ammunition. Densely packed and/or clumped gun powder within the powder measure can also result in difficulty associated with the release of the gun powder from the powder measure and into the ammunition casing to be reloaded. If an insufficient amount of powder is utilized in the reloading process, a squib (i.e., a bullet that becomes stuck in the barrel of the gun) may result which can be extremely dangerous for shooters. Over-loading ammunition with gun powder can also result in hazardous conditions for the shooter. Thus, there is a need in the art for devices that facilitate the process of appropriately and accurately reloading ammunition.
- To address the foregoing problems, in whole or in part, and/or other problems that may have been observed by persons skilled in the art, the present disclosure provides methods, apparatus, instruments, and/or devices, as described by way of example in implementations set forth below.
- According to one implementation, a gun powder transfer device includes a gun powder load chamber, a gun powder exit aperture, and a gun powder release mechanism disposed between the gun powder load chamber and the gun powder exit aperture. The gun powder load chamber is configured for receiving a quantity of gun powder from a powder measure. The gun powder release mechanism is selectively alterable between a closed state and an open state. In the closed state, the gun powder load chamber is isolated from the gun powder exit aperture such that none of the quantity of gun powder may be released form the gun powder load chamber to the gun powder exit aperture. In the open state, the gun powder release mechanism provides a flow path for enabling the quantity of gun powder to be released from the load chamber and into communication with the gun powder exit aperture.
- According to another implementation, a method for reloading an ammunition cartridge includes coupling a powder measure to a gun powder transfer device, transferring a quantity of gun powder from the powder measure to a gun powder load chamber of the gun powder transfer device, placing an ammunition cartridge at the gun powder exit aperture, and releasing the quantity of gun powder from the gun powder load chamber and into communication with a gun powder exit aperture of the gun powder transfer device.
- Other devices, apparatus, systems, methods, features and advantages of the invention will be or will become apparent to those with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
- The invention can be better understood by referring to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.
-
FIG. 1 is an exploded view of an implementation of a gun powder transfer device according to the present invention, showing a rotatable gun powder release mechanism. -
FIG. 2 is a perspective assembled view of the gun powder transfer device illustrated inFIG. 1 , further showing the rotatable gun powder release mechanism in an open state. -
FIG. 3 is a perspective assembled view of the gun powder transfer device illustrated inFIG. 1 , further showing the gun powder transfer device coupled to a powder measure. -
FIG. 4 . is an elevation view of an implementation of a gun powder load chamber according to the present invention, showing graduated markings. -
FIG. 5 is an exploded view of an implementation of a gun powder transfer device according to the present invention, showing a slidable gun powder release mechanism. - By way of example,
FIGS. 1-5 illustrate various implementations of a gun powder transfer device according to the present teachings. The various implementations provide a highly effective and efficient solution for accurately reloading ammunition cartridges with gun powder. It will be understood by those of skill in the art that the term “cartridge” may be used interchangeably with such terms as cases, casings, rounds, shells, etc. The gun powder transfer device according to the present teachings may be sized and configured for compatibility with any commercially available powder measure. For example, the gun powder transfer device may be easily coupled to an exit aperture of a powder measure so as to allow accurate measurement and proper inspection of the charge (or quantity) of gun powder (for example, to ensure that the charge of gun powder is not moist, clumped and/or densely packed) prior to loading the charge of gun powder in an ammunition cartridge. -
FIG. 1 is an exploded view of an implementation of a gunpowder transfer device 100 according to the present invention. The gunpowder transfer device 100 may generally include a gunpowder load chamber 102, a gunpowder exit aperture 104, and a gunpowder release mechanism 106. As shown inFIG. 2 , which is an assembled perspective view of the implementation of the gunpowder transfer device 100 illustrated inFIG. 1 , the gunpowder release mechanism 106 may generally be disposed between the gunpowder load chamber 102 and the gunpowder exit aperture 104. As shown inFIG. 3 , the gunpowder load chamber 102 may generally be configured to receive a quantity of gun powder (not shown) from apowder measure 302. Those of skill in the art will appreciate that the gunpowder transfer device 100 may be configured and sized for compatibility with any commercially available powder measure. - As shown in
FIGS. 1-3 , the gunpowder release mechanism 106 may be rotatable (e.g., about a horizontal axis A-A), such that the gunpowder release mechanism 106 is alterable between a closed state and an open state. In the closed state, the gunpowder load chamber 102 may be isolated from the gunpowder exit aperture 104 such that none of the quantity of gun powder present in the gunpowder load chamber 102 may be released from the gunpowder load chamber 102 and into communication with the gunpowder exit aperture 104. In the closed state, a user may visually inspect the gun powder present within the gunpowder load chamber 102 for any deficiencies (e.g., excess moisture, clumping, etc.). In the open state, the gunpowder release mechanism 106 may provide a flow path for enabling the quantity of gun powder present in the gunpowder load chamber 102 to be released from theload chamber 102 and into communication with the gunpowder exit aperture 104 for subsequent loading of an ammunition cartridge 230 (seeFIG. 2 ) positioned at theexit aperture 104. The gunpowder release mechanism 106 may include anaperture 108 through which the quantity of gun powder may be released from the gunpowder load chamber 102 when the gunpowder release mechanism 106 is in the open state. As illustrated inFIGS. 2-3 , the gunpowder release mechanism 106 is in the open state, as theaperture 108 is in communication (e.g., in-line) with the gunpowder load chamber 102 and the gunpowder exit aperture 104. In some implementations, the gunpowder release mechanism 106 may include anergonomic handle 110 which may allow the user to easily alter (e.g., turn, push, pull, etc.) the gunpowder release mechanism 106 between the open state and the closed state. O-rings 116 (or any other suitable coupling means known to those of skill in the art) may be used to secure the gunpowder release mechanism 106 between the gunpowder load chamber 102 and the gunpowder exit aperture 104. In some implementations, the gunpowder release mechanism 106 may be, for example, frictionally fitted or threadably coupled between the gunpowder load chamber 102 and the gunpowder exit aperture 104. - In some implementations, the gun
powder load chamber 102 may include ahousing 114 through which aninner conduit 112 extends. The housing may generally be constructed of transparent (or semi-transparent) material, such as any suitable polymeric material or glass, so as to allow a user to visually inspect gun powder present within theinner conduit 112. In such implementations, the gunpowder release mechanism 106 is considered to be in the open state when theaperture 108 is in communication (e.g., in-line) with theinner conduit 112 and the gunpowder exit aperture 104. - As illustrated in
FIG. 4 , in some implementations thehousing 414 of the gunpowder load chamber 402 may include graduated markings 440 (i.e., according to any desired scale) to allow a user to accurately measure a quantity ofgun powder 442 that is received in the gunpowder load chamber 402 from the powder measure (not shown). In some implementations, the gunpowder load chamber 402 may include a slidable mark to allow a user to mark the quantity ofgun powder 442 present within the gunpowder load chamber 402 for the subsequent reloading of ammunition cartridges. In some implementations, a user may ensure that the quantity ofgun powder 442 that is received in the gunpowder load chamber 402 is accurate by causing the gun powder to be released from the gun powder transfer device and weighing the quantity of gun powder on a commercially available powder scale prior to loading the gun powder into an ammunition cartridge. - Returning to
FIG. 1 , in some implementations the gunpowder exit aperture 104 may be coupled to abottom portion 118 of the gunpowder load chamber 102 via an O-ring 130 or other suitable coupling means. In some implementations, the gunpowder exit aperture 104 may be frictionally fitted or threadably coupled to thebottom portion 118 of the gunpowder load chamber 102. A user may position an ammunition cartridge (not shown) at the gunpowder exit aperture 104 for reloading. When gun powder is present in the gunpowder load chamber 102, the gun powder may be released from the gunpowder load chamber 102 and into communication with the gunpowder exit aperture 104 when the gunpowder release mechanism 106 is selectively altered to the open state. The gun powder may exit the gunpowder transfer device 100 via the gunpowder exit aperture 104 to be received by an ammunition cartridge positioned at the gunpowder exit aperture 104. - As further illustrated in
FIGS. 1-3 , the gunpowder transfer device 100 may include acoupling device 120 configured for removably securing the gunpowder load chamber 102 to thepowder measure 302. Thecoupling device 120 may include afirst end 122 configured for removably coupling to a powdermeasure exit aperture 340, and asecond end 124 configured for removably coupling to atop portion 126 of the gunpowder load chamber 102. In some implementations, thesecond end 124 may be removably coupled to thetop portion 126 via alock nut 128, O-ring, or other suitable fastener. In some implementations, thefirst end 122 of thecoupling device 120 may be threadably coupled to the powdermeasure exit aperture 340 and thesecond end 124 of thecoupling device 120 may be threadably coupled to thetop portion 126 of the gunpowder load chamber 102. In some implementations, thefirst end 122 of thecoupling device 120 may be configured for frictionally fitting to the powdermeasure exit aperture 340, and thesecond end 124 of thecoupling device 120 may be configured for frictionally fitting to thetop portion 126 of the gunpowder load chamber 102. Any suitable coupling means may be utilized. -
FIG. 5 is an exploded view of an implementation of a gunpowder transfer device 500 according to the present invention, including aslidable release mechanism 506 and showing acoupling device 520 configured for coupling a gunpowder load chamber 502 to a powder measure exit aperture 340 (seeFIG. 3 ), and a gunpowder exit aperture 504. The gunpowder release mechanism 506 may be slidable (e.g., movable perpendicular to a length of ahousing 514 of the gun powder load chamber 502), such that the gunpowder release mechanism 506 is alterable between a closed state and an open state. In the closed state, the gunpowder load chamber 502 may be isolated from the gunpowder exit aperture 504 such that none of a quantity of gun powder present in the gunpowder load chamber 502 may be released from the gunpowder load chamber 502 and into communication with the gunpowder exit aperture 504. In the closed state, a user may visually inspect the gun powder present within the gunpowder load chamber 502 for any deficiencies (e.g., excess moisture, clumping, etc.) prior to selectively altering (e.g., sliding) the gunpowder release mechanism 506 to the open state. In the open state, the gunpowder release mechanism 506 may provide a flow path for enabling the quantity of gun powder present in the gunpowder load chamber 502 to be released from theload chamber 502 and into communication with the gunpowder exit aperture 504 for loading into an ammunition cartridge positioned at the gunpowder exit aperture 504. The gunpowder release mechanism 506 may include an aperture 508 through which the quantity of gun powder may be released from the gunpowder load chamber 502 when the gunpowder release mechanism 506 is in the open state. When the gunpowder release mechanism 506 is in the open state, theaperture 506 is in communication (e.g., in-line) with an inner conduit 512 (extending through thehousing 514 of the gun powder load chamber 502) and the gunpowder exit aperture 504. In some implementations, the slidable gunpowder release mechanism 506 may include pins 550 (or “stoppers”) extending outward from the gunpowder release mechanism 506. The pins 550 may be used to secure the gunpowder release mechanism 506 between the gunpowder load chamber 502 and the gunpowder exit aperture 504. For example, the pins 550 may limit the lateral movement of the gunpowder release mechanism 506 when the pins 550 come into contact with thehousing 514 as the gunpowder release mechanism 506 is altered by a user. - Those of skill in the art will appreciate that the gun powder release mechanism according to the present invention may comprise a spring-loaded release, a slidable release, a rotatable release, a ball valve or other suitable valve means, or any other suitable release means that is selectively alterable by a user between a closed state and an open state as set forth in the present teachings.
- The gun powder transfer device according to the present invention enables a user to inspect gun powder that is to be used to reload an ammunition cartridge prior to charging the ammunition cartridge. For example, graduated markings may be used to visually inspect the charge of gun powder present in the gun powder load chamber of the gun powder transfer device. The user may visually inspect the charge of gun powder for moisture, packing, or clumping prior to charging the ammunition cartridge to be reloaded. Alternatively, or in addition to the foregoing, the user may release gun powder from the gun powder transfer device (via the gun powder exit aperture) to a commercially available scale to ensure the proper charge. After verifying the proper charge, the gun powder may be returned to the gun powder load chamber (via a powder measure, for example) for subsequent reloading of an ammunition cartridge placed at the gun powder exit aperture.
- In general, terms such as “coupled to,” and “configured for coupling to,” and “secured to,” and “configured for securing to,” and “configured for receiving,” and “in communication with” (for example, a first component is “coupled to” or “is configured for coupling to” or is “configured for securing to” or is “configured for receiving” or is “in communication with” a second component) are used herein to indicate a structural, functional, mechanical, electrical, signal, optical, magnetic, electromagnetic, ionic or fluidic relationship between two or more components or elements. As such, the fact that one component is said to be, for example, in communication with a second component is not intended to exclude the possibility that additional components may be present between, and/or operatively associated or engaged with, the first and second components.
- The foregoing description of implementations has been presented for purposes of illustration and description. It is not exhaustive and does not limit the claimed inventions to the precise form disclosed. Modifications and variations are possible in light of the above description or may be acquired from practicing the invention. The claims and their equivalents define the scope of the invention.
Claims (11)
1. A gun powder transfer device, comprising:
a gun powder load chamber configured for receiving a quantity of gun powder from a powder measure;
a gun powder exit aperture; and
a gun powder release mechanism disposed between the gun powder load chamber and the gun powder exit aperture.
2. The gun powder transfer device of claim 1 , wherein the gun powder release mechanism is selectively alterable between a closed state and an open state, and:
in the closed state, the gun powder load chamber is isolated from the gun powder exit aperture such that none of the quantity of gun powder may be released from the gun powder load chamber to the gun powder exit aperture; and
in the open state, the gun powder release mechanism provides a flow path for enabling the quantity of gun powder to be released from the load chamber and into communication with the gun powder exit aperture.
3. The gun powder transfer device of claim 2 , wherein the gun powder release mechanism comprises a slidable barrier including an aperture through which the quantity of gun powder may be released when in the open state.
4. The gun powder transfer device of claim 2 , wherein the release mechanism comprises a rotatable barrier including an aperture through which the quantity of gun powder may be released when in the open state.
5. The gun powder transfer device of claim 1 , further comprising a coupling device configured for removably securing the gun powder load chamber to a powder measure.
6. The gun powder transfer device of claim 5 , wherein the coupling device includes a first end configured for removably coupling to a powder measure exit aperture and a second end configured for removably coupling to a top portion of the gun powder load chamber.
7. The gun powder transfer device of claim 1 , wherein the gun powder load chamber includes a housing through which an inner conduit extends.
8. The gun powder transfer device of claim 7 , wherein the housing includes graduated markings for measuring the quantity of gun powder present within the inner conduit.
9. A method for reloading an ammunition cartridge, comprising:
coupling a powder measure to a gun powder transfer device, the gun powder transfer device comprising a gun powder load chamber, a gun powder exit aperture, and a gun powder release mechanism disposed between the gun powder load chamber and the gun powder exit aperture;
transferring a quantity of gun powder from the powder measure to the gun powder load chamber;
placing an ammunition cartridge at the gun powder exit aperture; and
releasing the quantity of gun powder from the gun powder load chamber and into communication with the gun powder exit aperture.
10. The method of claim 9 , wherein releasing the quantity of gun powder from the gun powder load chamber and into communication with the gun powder exit aperture includes selectively altering the gun powder release mechanism from a closed state to an open state.
11. The method of claim 9 , wherein coupling the powder measure to the gun powder transfer device includes removably coupling a first end of a coupling device to a powder measure exit aperture and removably coupling a second end of the coupling device to a top portion of the gun powder load chamber.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/298,792 US20170115106A1 (en) | 2015-10-23 | 2016-10-20 | Gun powder transfer device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562245330P | 2015-10-23 | 2015-10-23 | |
| US15/298,792 US20170115106A1 (en) | 2015-10-23 | 2016-10-20 | Gun powder transfer device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170115106A1 true US20170115106A1 (en) | 2017-04-27 |
Family
ID=58562002
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/298,907 Abandoned US20170115107A1 (en) | 2015-10-23 | 2016-10-20 | Gun powder agitator device |
| US15/298,792 Abandoned US20170115106A1 (en) | 2015-10-23 | 2016-10-20 | Gun powder transfer device |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/298,907 Abandoned US20170115107A1 (en) | 2015-10-23 | 2016-10-20 | Gun powder agitator device |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20170115107A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190193923A1 (en) * | 2016-09-02 | 2019-06-27 | Wake Forest University Health Sciences | Solid Particulate Measuring Devices, Systems, And Methods |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3386329A (en) * | 1966-09-29 | 1968-06-04 | Bergandi Mfg Company Inc | Powder measure for loading cartridges |
| US4890535A (en) * | 1989-01-24 | 1990-01-02 | Bieber William J | Apparatus and method for measuring and dispensing powder |
| US6772668B2 (en) * | 2002-08-07 | 2004-08-10 | Alliant Techsystems, Inc. | Ammunition reloading apparatus with feed mechanism |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4104804A (en) * | 1974-04-18 | 1978-08-08 | Sargeant Ralph G | Method for drying explosive materials |
| GB2359762B (en) * | 2000-01-31 | 2003-03-12 | Summit Medical Ltd | Orthopaedic cement mixing device |
| GB2398741B (en) * | 2003-02-05 | 2005-04-13 | Summit Medical Ltd | Orthopaedic cement mixing device |
| US7896989B1 (en) * | 2004-02-12 | 2011-03-01 | The United States Of America As Represented By The Secretary Of The Army | Cross-sectional functionally graded propellants and method of manufacture |
-
2016
- 2016-10-20 US US15/298,907 patent/US20170115107A1/en not_active Abandoned
- 2016-10-20 US US15/298,792 patent/US20170115106A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3386329A (en) * | 1966-09-29 | 1968-06-04 | Bergandi Mfg Company Inc | Powder measure for loading cartridges |
| US4890535A (en) * | 1989-01-24 | 1990-01-02 | Bieber William J | Apparatus and method for measuring and dispensing powder |
| US6772668B2 (en) * | 2002-08-07 | 2004-08-10 | Alliant Techsystems, Inc. | Ammunition reloading apparatus with feed mechanism |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190193923A1 (en) * | 2016-09-02 | 2019-06-27 | Wake Forest University Health Sciences | Solid Particulate Measuring Devices, Systems, And Methods |
| US10870526B2 (en) * | 2016-09-02 | 2020-12-22 | Wake Forest University Health Sciences | Solid particulate measuring devices, systems, and methods |
Also Published As
| Publication number | Publication date |
|---|---|
| US20170115107A1 (en) | 2017-04-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104254752B (en) | Universal loading device with a bullet reading gauge for a magazine | |
| WO2019160742A3 (en) | Device and method of determining the force required to remove a projectile from an ammunition cartridge | |
| US20170115106A1 (en) | Gun powder transfer device | |
| US2322212A (en) | Practice sheel | |
| US9297628B2 (en) | Ammunition primer pocket gauge tool | |
| US7581497B2 (en) | Self-contained, non-intrusive data acquisition in ammunition | |
| KR20160035573A (en) | Device for simulating a mortar | |
| US8991090B2 (en) | Weapon firing simulator | |
| US9500451B2 (en) | Munition with multiple propellant chambers | |
| GB2528472A (en) | Ammunition counter for firearm magazines | |
| KR100861967B1 (en) | Male thread effective diameter measuring instrument and measuring method using same | |
| US8646187B2 (en) | Ammunition measurement tool | |
| US3016832A (en) | Round for testing shotgun condition | |
| RU2572370C1 (en) | Determination of projectiles scatter characteristics at artillery fire and data processing system to this end | |
| FI118488B (en) | Shotgun cartridges for shotgun shooting and a method for shotgun shooting | |
| US8356437B1 (en) | Firing pin position indicator for gun | |
| US8015743B2 (en) | Laser emitter mounting system for large caliber guns | |
| Wang et al. | Disturbing effect evaluation for smoke bombs. | |
| US8955502B2 (en) | Bottom loading paintball feed system | |
| US11215418B1 (en) | Firing pin indent gauge | |
| RU154836U1 (en) | INSTALLATION FOR RESEARCH OF WORK OF THE LEADING BELT OF THE APPLIANCE | |
| RU2420708C2 (en) | Cartridge for simulation of firing of dummies of automatic small arms | |
| US10161729B1 (en) | Portable IED training device | |
| CN215448275U (en) | Force measuring bullet conveying device | |
| Barton et al. | A miniaturised arrow ballistic measurement system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |