US20170082860A1 - Hmd apparatus with adjustable eye tracking device - Google Patents
Hmd apparatus with adjustable eye tracking device Download PDFInfo
- Publication number
- US20170082860A1 US20170082860A1 US15/365,256 US201615365256A US2017082860A1 US 20170082860 A1 US20170082860 A1 US 20170082860A1 US 201615365256 A US201615365256 A US 201615365256A US 2017082860 A1 US2017082860 A1 US 2017082860A1
- Authority
- US
- United States
- Prior art keywords
- eye
- camera
- setting angle
- head
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0176—Head mounted characterised by mechanical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0093—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G06K9/00604—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/19—Sensors therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0138—Head-up displays characterised by optical features comprising image capture systems, e.g. camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/014—Head-up displays characterised by optical features comprising information/image processing systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
- G02B2027/0187—Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
Definitions
- the invention relates to an HMD apparatus with an imaging optical system for each of the two eyes of a user, which comprises at least one display unit to be viewed by the respective eye, as well as to a device for the acquisition of the viewing direction of at least one eye within a field of view of the display unit using an eye camera.
- HMD Head-Mounted Display
- caps that can be placed on the head and that have two small monitor screens each of which is viewed with one eye of the user. Onto these monitor screens, a real or virtual environment is projected taking into consideration the different viewing angles of the two eyes. Furthermore, position changes of the HMD apparatuses are acquired, so that the represented image is changed accordingly. For example, when the user turns his/her head, the corresponding image is represented in this real or virtual direction. More recent HMD apparatuses, as disclosed in U.S. Pat. No.
- 6,433,760 for example, moreover acquire the eye movements of the user (so-called eye tracking system), in order to change, on the basis of this, the represented image analogously to the head movement toward the viewing direction relative to the head.
- the acquisition of the eye position or eye movement can occur by means of a camera that looks at an eye, wherein it is preferable for the position of the pupil to be determined by image processing.
- the eye is illuminated with infrared light, to which the camera is sensitive.
- the camera For an optimal position acquisition of the position of the eye, the camera has to acquire the entire eye, wherein the pupil representation in the “forward viewing” has to be as much in the center of the image section of the camera as possible. If an HMD apparatus with an eye tracking apparatus is used by only one person, an individual adaptation of the camera viewing direction can occur a single time, so that the required adjustment effort is not essential. On the other hand, if such an HMD apparatus is used by changing users having necessarily different facial features, such as distance between the eyes, nose and cheek shape, etc., then the rapid adaptation of the eye camera represents a problem.
- the aim of the invention is to provide an HMD apparatus, which allows a rapid adaptation of the eye camera to different users.
- an HMD apparatus having an imaging optical system for each one of the eyes of the user, which comprises at least one display unit to be viewed by the respective eye, and which is provided with a device for the acquisition of the viewing direction of at least one eye within a field of view of the display unit using an eye camera, wherein the eye camera is provided with a camera holder which can be adjusted in terms of a peripheral angle around a viewing central axis of the field of view and in terms of a setting angle with respect to the viewing central axis.
- the invention allows a rapid and sufficiently precise adjusting of the eye camera, so that the HMD apparatus according to the invention can be installed or prepared rapidly for use by different users, and then an optimal acquisition of the eye position can occur.
- detailed attention is paid to the individual physical features as well as to the optimal horizontal alignment of the representation of the eye.
- a substantial advantage among others is a rapid adaptation of the camera alignment, in order to ensure optimal recording by eye tracking software in as brief a time as possible.
- the wearer comfort of the HMD apparatus is maintained, since the center of gravity of the HMD apparatus is not changed significantly.
- a user profile for the respective user can be established and applied, to which reference can be made quickly in order to shorten the adjusting process of the camera system.
- a peripheral position ring which surrounds the field of view and which is used for moving the camera holder.
- a peripheral position ring can be mounted in a space saving manner, in particular if, in front of the display unit, a lens is arranged, which preferably can be enclosed by the peripheral position ring.
- the camera holder is manually adjustable along at least one section of the peripheral position ring.
- a manual adjustment is structurally simple and not failure-prone.
- the camera holder it is preferable for the camera holder to be adjustable in discrete notch steps. The discrete notch steps entail only a slight worsening of the setting quality, but allow a reproducible setting. If, a certain position is determined and recorded for a given user, then the camera holder can be set in an uncomplicated manner later to this notch value.
- the camera holder is designed so that it can be adjusted continuously using an electric motor.
- An adjustment by the electric motor allows a rapid setting without manual mounting and thus without any risk of damage due to incorrect handling or dropping.
- a control device which evaluates the signal of the eye camera on a current basis and accordingly controls the adjustment by using the electric motor, a rapid camera setting can be achieved even by first users.
- the camera holder is mounted on the setting angle unit, which enables movability of the eye camera with a setting angle in a plane that includes the viewing central axis.
- the setting angle unit which enables movability of the eye camera with a setting angle in a plane that includes the viewing central axis.
- the setting angle unit is designed so that it can be manually adjusted in discrete notch steps. It is particularly preferable to provide a set of setting angle units for different setting angles, wherein the camera holder can be mounted detachably on a selectable setting angle unit, and the selectable setting angle unit can be mounted detachably on the peripheral position ring.
- a setting can be carried out reproducibly by selecting an appropriate setting angle unit.
- the setting angle unit in such a manner that different angles can be set either continuously or preferably in notch steps.
- the values for the setting of the peripheral position ring and for the setting angle unit can be stored, and a setting for this user can then be carried out particularly rapidly at a later time.
- the setting angle unit can be adjusted continuously using the electric motor.
- a largely automatic alignment of the eye camera can occur.
- At least one display unit is provided for the illumination of the eye with infrared light for the eye camera.
- sufficient light is made available for the eye camera, since the interior of an HMD apparatus is usually shielded from ambient light in order to prevent impairment of vision.
- Said one or more illumination units can be adjusted preferably by using a control device in terms of the luminosity so that an image processing unit contained in the control device acquires the pupil as optimally as possible.
- a control unit which evaluates the eye image recorded by the eye camera and determines correction values which are to be set manually and sends them out in the form of signals.
- a table stored in the control unit it is possible, in connection with a table stored in the control unit, to display correction values for the two parameters, namely the peripheral angle and the setting angle, on the display unit, for example.
- an optimal adjustment of the eye camera can be carried out by manual adjustment by the appropriate number of notch positions, or by substitution of the appropriate setting angle unit.
- the apparatus comprises two electrical actuating apparatuses for moving the setting angle unit along the peripheral position ring and for adjusting the eye camera by the setting angle unit, as well as a control unit which evaluates the eye image recorded by the eye camera and adjusts the operating apparatuses on this basis.
- the image of the pupil recorded by the eye camera can be used for controlling, in a control circuit, the two electrical operating actuating apparatuses accordingly, and thus an optimal adjustment of the eye camera can occur very rapidly.
- a readjustment can occur if a change is observed during use.
- the HMD apparatus includes two eye cameras for the two eyes and appropriate adjusting devices for the eye cameras.
- an optimal determination of the viewing direction can occur, especially in the case of users with eye disorders that make it impossible to move the two eyes in the same way.
- said design includes an adjustment apparatus for an HMD apparatus with an imaging optical system for each one of the eyes of a user, which comprises at least one display unit to be viewed by the respective eye, wherein this apparatus includes an eye camera for acquiring the viewing direction of at least one eye within a field of view of the display unit, and, furthermore, the eye camera is provided with a camera holder which is adjustable in terms of a peripheral angle around a viewing central axis of the field of view and in terms of a setting angle with respect to the viewing central axis of the HMD apparatus.
- Such a device can be mounted advantageously on an HMD apparatus without eye tracking function, that is to say without eye camera, and thus expand the range of features of said apparatus.
- FIG. 1 shows a diagrammatic representation of the beam path in an HMD display
- FIG. 2 shows a perspective representation of a device for the adjustment of an eye camera in terms of two angles
- FIG. 3 shows a perspective representation of a setting angle unit
- FIG. 4 shows a block diagram representation of a control device.
- FIG. 1 an eye 10 with a pupil 11 , of the user of an HMD apparatus not represented in further detail and a display unit 12 are represented.
- the HMD apparatus is usually in the form of oversized glasses or a cap or a helmet, in order to immobilize the display units 12 located in front of the two eyes 10 with respect to the head of the user so that, in the case of movements of the head, the display units 12 always remain in the same position with respect to the head or the eyes 10 .
- the display unit 12 for each eye 10 usually includes a small monitor screen, in most cases with a lens arranged in front.
- the display unit 12 here defines a field of view 14 having a viewing central axis 16 .
- the eye camera 18 is used to acquire the position of the pupil 11 with respect to the eye 10 , in order to determine, in the context of image processing, where the pupil 11 is located or in which direction the user is looking.
- At least one eye illumination device 20 is provided in order to illuminate the eye 10 . It is preferable to provide three infrared LEDs distributed regularly over the periphery of the field of view 14 , in order to ensure the most uniform illumination of the eye 10 possible.
- the eye camera 18 It is important for the eye camera 18 to have the most optimal possible view of the eye 10 , which means a positioning of the pupil 11 looking “forward” as much as possible in the center in the recorded image section.
- the position of the eye camera 18 can be changed with two parameters with respect to the viewing central axis 16 , first, the peripheral angle ⁇ in a plane 22 is perpendicular to the viewing central axis 16 , and, second, the setting angle ⁇ , which the central axis 24 of eye camera 18 of the plane 22 includes.
- FIG. 2 shows a perspective representation of a preferred design of the invention in the form of an apparatus 30 for adjusting an eye camera 18 in terms of two angles.
- This apparatus includes a peripheral position ring 32 which encloses the field of view 14 , and preferably a lens—not shown—of an HMD apparatus—not shown—or which is attached thereto, for example, by gluing or by locking projections 34 that engage behind such a lens.
- a peripheral position ring 32 On the periphery of the peripheral position ring 32 , distributed swallowtail grooves 36 are formed in the represented embodiment, into which appropriately shaped swallowtail counterpieces 38 can be inserted from the viewing central axis 16 .
- a setting angle unit 40 which is shown from another perspective in FIG.
- swallowtail counterpieces 38 which can allow said setting angle unit to be mounted on the peripheral position ring 32 .
- thirty two swallowtail grooves 36 are formed, so that the setting angle unit 40 can be inserted in thirty two different positions with correspondingly thirty two different angles ⁇ .
- the setting angle unit 40 comprises, in addition to the swallowtail counterpieces 38 , a camera holder-receiving port 41 for receiving a camera holder 42 which receives an eye camera 18 not represented in FIG. 2 . Furthermore, a holding bore 44 for an LED for illuminating the eye 10 with infrared light is represented.
- the two LED holders 46 are separated, relative to the camera holder-receiving port 41 , by 120° with respect to the viewing central axis 16 , in order to achieve an optimal illumination of the eye 10 .
- FIGS. 2 and 3 only one embodiment of a setting angle unit 40 is represented, which allows an alignment of the eye camera 18 at a particular setting angle with respect to the viewing central axis 16 . Therefore, it is preferable to provide a set of different setting angle units 40 , which differ in terms of the setting angle, and are thus designed for different setting angles ⁇ .
- a base setting for the two angles is carried out or the existing setting is used.
- suitable markings are applied for this purpose, at which the user has to stare.
- the position of the pupil 11 is acquired by the eye camera 18 and evaluated in a control unit.
- a determination is made, preferably based on a stored table, as to which changes of the two parameters (peripheral angle and setting angle) are required.
- the user is provided, preferably by display in the display unit 12 , either with incremental data, that is to say data showing by how much the respective angle has to be changed, or with absolute values of the angles to be set.
- the different setting angle units 40 can be numbered consecutively and in that case only the corresponding reference number has to be issued.
- the setting angle unit 40 is then simply pulled out axially from the peripheral position ring 32 ; furthermore, the camera holder 42 with a mounted eye camera 18 is also removed axially from the camera holder-receiving port 41 .
- Another setting angle unit 40 with the correct setting angle ⁇ is taken, and the camera holder 42 with mounted eye camera 18 is inserted in the camera holder-receiving port 41 .
- the setting angle unit 40 with its swallowtail counterpieces 38 is inserted into the correct swallowtail grooves 36 . It is preferable for the LED holders 46 to be then also reinserted accordingly.
- control device 50 which is supplied by the eye camera 18 and evaluates the image thereof.
- the control device 50 includes image processing software in order to determine the position of the pupil 11 from the image recorded by the eye camera 18 .
- the control unit calculates the alignment of the pupil 11 and it provides the appropriate signal for corresponding applications, for example, the representation of a virtual environment on the display unit 12 .
- an electromotor-driven peripheral angle setting apparatus 52 and an electromotor-driven setting angle-setting apparatus 54 are provided.
- the adjusting apparatuses 52 , 54 are activated in such a manner that the eye camera 18 is adjusted accordingly, so that the pupil image generated is arranged in the center of the image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Provided is a head-mounted display apparatus that includes an imaging optical system and a camera holder. The imaging optical system includes a display unit, an eye camera, and a control device. The display unit is to be viewed by an eye of a user, and the control device is to acquire a viewing direction of the eye within a field of view of the display unit using eye camera, wherein the field of view has a viewing central axis. The camera holder is to receive the eye camera, wherein the camera holder is selectively adjustable in relationship to the display unit to align the eye camera to the eye of the user in terms of a peripheral angle (δ) around a viewing central axis and in terms of a setting angle (α) with respect to the viewing central axis.
Description
- This application is a continuation of U.S. patent application Ser. No. 14/316,100, filed on Jun. 26, 2014, which claims priority to European Patent Application No. EP 13 174 990, filed on Jul. 3, 2013, both of which are incorporated herein by reference in their entireties.
- Field of Technology
- The invention relates to an HMD apparatus with an imaging optical system for each of the two eyes of a user, which comprises at least one display unit to be viewed by the respective eye, as well as to a device for the acquisition of the viewing direction of at least one eye within a field of view of the display unit using an eye camera.
- Brief discussion of Related Art
- So-called HMD [Head-Mounted Display] apparatuses are caps that can be placed on the head and that have two small monitor screens each of which is viewed with one eye of the user. Onto these monitor screens, a real or virtual environment is projected taking into consideration the different viewing angles of the two eyes. Furthermore, position changes of the HMD apparatuses are acquired, so that the represented image is changed accordingly. For example, when the user turns his/her head, the corresponding image is represented in this real or virtual direction. More recent HMD apparatuses, as disclosed in U.S. Pat. No. 6,433,760, for example, moreover acquire the eye movements of the user (so-called eye tracking system), in order to change, on the basis of this, the represented image analogously to the head movement toward the viewing direction relative to the head. The acquisition of the eye position or eye movement can occur by means of a camera that looks at an eye, wherein it is preferable for the position of the pupil to be determined by image processing. For this purpose, the eye is illuminated with infrared light, to which the camera is sensitive.
- For an optimal position acquisition of the position of the eye, the camera has to acquire the entire eye, wherein the pupil representation in the “forward viewing” has to be as much in the center of the image section of the camera as possible. If an HMD apparatus with an eye tracking apparatus is used by only one person, an individual adaptation of the camera viewing direction can occur a single time, so that the required adjustment effort is not essential. On the other hand, if such an HMD apparatus is used by changing users having necessarily different facial features, such as distance between the eyes, nose and cheek shape, etc., then the rapid adaptation of the eye camera represents a problem.
- Therefore, the aim of the invention is to provide an HMD apparatus, which allows a rapid adaptation of the eye camera to different users.
- According to the invention, this aim is achieved by several features. In particular, the aim is achieved by an HMD apparatus having an imaging optical system for each one of the eyes of the user, which comprises at least one display unit to be viewed by the respective eye, and which is provided with a device for the acquisition of the viewing direction of at least one eye within a field of view of the display unit using an eye camera, wherein the eye camera is provided with a camera holder which can be adjusted in terms of a peripheral angle around a viewing central axis of the field of view and in terms of a setting angle with respect to the viewing central axis.
- The invention allows a rapid and sufficiently precise adjusting of the eye camera, so that the HMD apparatus according to the invention can be installed or prepared rapidly for use by different users, and then an optimal acquisition of the eye position can occur. Here, detailed attention is paid to the individual physical features as well as to the optimal horizontal alignment of the representation of the eye.
- A substantial advantage among others is a rapid adaptation of the camera alignment, in order to ensure optimal recording by eye tracking software in as brief a time as possible. Moreover, there is no limitation with regard to the physiognomic features of the user resulting from the eye tracking system. In addition, the wearer comfort of the HMD apparatus is maintained, since the center of gravity of the HMD apparatus is not changed significantly. In addition, a user profile for the respective user can be established and applied, to which reference can be made quickly in order to shorten the adjusting process of the camera system. In addition to the individual user profiles, it is also possible to perform a rough preliminary adjustment of the camera with the help of face recognition software in the case of unregistered users. This would only entail an additional fine tuning of the system, in turn leading to a time saving for the adjusting process.
- According to an advantageous variant of the invention, for the adjustment of the eye camera in terms of the peripheral direction, a peripheral position ring is provided, which surrounds the field of view and which is used for moving the camera holder. Such a peripheral position ring can be mounted in a space saving manner, in particular if, in front of the display unit, a lens is arranged, which preferably can be enclosed by the peripheral position ring.
- According to an advantageous variant of the invention, the camera holder is manually adjustable along at least one section of the peripheral position ring. A manual adjustment is structurally simple and not failure-prone. Here it is preferable for the camera holder to be adjustable in discrete notch steps. The discrete notch steps entail only a slight worsening of the setting quality, but allow a reproducible setting. If, a certain position is determined and recorded for a given user, then the camera holder can be set in an uncomplicated manner later to this notch value.
- According to an alternative advantageous variant of the invention, the camera holder is designed so that it can be adjusted continuously using an electric motor. An adjustment by the electric motor allows a rapid setting without manual mounting and thus without any risk of damage due to incorrect handling or dropping. In particular in connection with a control device which evaluates the signal of the eye camera on a current basis and accordingly controls the adjustment by using the electric motor, a rapid camera setting can be achieved even by first users.
- According to an advantageous variant of the invention, the camera holder is mounted on the setting angle unit, which enables movability of the eye camera with a setting angle in a plane that includes the viewing central axis. In this manner, as second parameter, it is possible to set the setting angle in addition to the peripheral angle, and thus to achieve an optimal camera alignment.
- According to an advantageous variant, the setting angle unit is designed so that it can be manually adjusted in discrete notch steps. It is particularly preferable to provide a set of setting angle units for different setting angles, wherein the camera holder can be mounted detachably on a selectable setting angle unit, and the selectable setting angle unit can be mounted detachably on the peripheral position ring. Thus, as in the case of the setting of the peripheral position ring, a setting can be carried out reproducibly by selecting an appropriate setting angle unit.
- Alternatively, it is also possible to design the setting angle unit in such a manner that different angles can be set either continuously or preferably in notch steps.
- For example, for each user for whom a setting has been carried out once, the values for the setting of the peripheral position ring and for the setting angle unit can be stored, and a setting for this user can then be carried out particularly rapidly at a later time.
- According to an alternative advantageous variant of the invention, the setting angle unit can be adjusted continuously using the electric motor. In particular, in connection with an adjustment by means of an electrical motor of the setting angle unit on the peripheral position ring, a largely automatic alignment of the eye camera can occur.
- According to an advantageous variant of the invention, at least one display unit is provided for the illumination of the eye with infrared light for the eye camera. As a result, sufficient light is made available for the eye camera, since the interior of an HMD apparatus is usually shielded from ambient light in order to prevent impairment of vision. It is preferable to arrange three infrared LEDs mutually separated by 120° in a plane that perpendicularly intersects the viewing central axis. Said one or more illumination units can be adjusted preferably by using a control device in terms of the luminosity so that an image processing unit contained in the control device acquires the pupil as optimally as possible.
- According to an advantageous variant of the invention with manual adjustment, a control unit is provided which evaluates the eye image recorded by the eye camera and determines correction values which are to be set manually and sends them out in the form of signals. In this manner, it is possible to display, in particular on the display unit, a point to be looked at that is arranged in the center. Using the representation of the pupil acquired by the eye camera, it is possible, in connection with a table stored in the control unit, to display correction values for the two parameters, namely the peripheral angle and the setting angle, on the display unit, for example. Then an optimal adjustment of the eye camera can be carried out by manual adjustment by the appropriate number of notch positions, or by substitution of the appropriate setting angle unit.
- According to an alternative advantageous variant of the invention, the apparatus comprises two electrical actuating apparatuses for moving the setting angle unit along the peripheral position ring and for adjusting the eye camera by the setting angle unit, as well as a control unit which evaluates the eye image recorded by the eye camera and adjusts the operating apparatuses on this basis. Thus, after image processing, the image of the pupil recorded by the eye camera can be used for controlling, in a control circuit, the two electrical operating actuating apparatuses accordingly, and thus an optimal adjustment of the eye camera can occur very rapidly. In addition, if a change is observed during use, a readjustment can occur.
- According to an advantageous variant of the invention, the HMD apparatus includes two eye cameras for the two eyes and appropriate adjusting devices for the eye cameras. Thus, on the basis of the acquired eye positions, an optimal determination of the viewing direction can occur, especially in the case of users with eye disorders that make it impossible to move the two eyes in the same way.
- According to an alternative design of the invention, said design includes an adjustment apparatus for an HMD apparatus with an imaging optical system for each one of the eyes of a user, which comprises at least one display unit to be viewed by the respective eye, wherein this apparatus includes an eye camera for acquiring the viewing direction of at least one eye within a field of view of the display unit, and, furthermore, the eye camera is provided with a camera holder which is adjustable in terms of a peripheral angle around a viewing central axis of the field of view and in terms of a setting angle with respect to the viewing central axis of the HMD apparatus. Such a device can be mounted advantageously on an HMD apparatus without eye tracking function, that is to say without eye camera, and thus expand the range of features of said apparatus.
- The invention is further explained below in reference to the appended drawings, in which:
-
FIG. 1 shows a diagrammatic representation of the beam path in an HMD display; -
FIG. 2 shows a perspective representation of a device for the adjustment of an eye camera in terms of two angles; -
FIG. 3 shows a perspective representation of a setting angle unit; and -
FIG. 4 shows a block diagram representation of a control device. - In
FIG. 1 , aneye 10 with apupil 11, of the user of an HMD apparatus not represented in further detail and adisplay unit 12 are represented. The HMD apparatus is usually in the form of oversized glasses or a cap or a helmet, in order to immobilize thedisplay units 12 located in front of the twoeyes 10 with respect to the head of the user so that, in the case of movements of the head, thedisplay units 12 always remain in the same position with respect to the head or theeyes 10. Thedisplay unit 12 for eacheye 10 usually includes a small monitor screen, in most cases with a lens arranged in front. Thedisplay unit 12 here defines a field ofview 14 having a viewingcentral axis 16. - The
eye camera 18 is used to acquire the position of thepupil 11 with respect to theeye 10, in order to determine, in the context of image processing, where thepupil 11 is located or in which direction the user is looking. At least oneeye illumination device 20 is provided in order to illuminate theeye 10. It is preferable to provide three infrared LEDs distributed regularly over the periphery of the field ofview 14, in order to ensure the most uniform illumination of theeye 10 possible. - It is important for the
eye camera 18 to have the most optimal possible view of theeye 10, which means a positioning of thepupil 11 looking “forward” as much as possible in the center in the recorded image section. For this purpose, the position of theeye camera 18 can be changed with two parameters with respect to the viewingcentral axis 16, first, the peripheral angle δ in aplane 22 is perpendicular to the viewingcentral axis 16, and, second, the setting angle α, which thecentral axis 24 ofeye camera 18 of theplane 22 includes. -
FIG. 2 shows a perspective representation of a preferred design of the invention in the form of anapparatus 30 for adjusting aneye camera 18 in terms of two angles. This apparatus includes aperipheral position ring 32 which encloses the field ofview 14, and preferably a lens—not shown—of an HMD apparatus—not shown—or which is attached thereto, for example, by gluing or by lockingprojections 34 that engage behind such a lens. On the periphery of theperipheral position ring 32, distributedswallowtail grooves 36 are formed in the represented embodiment, into which appropriately shapedswallowtail counterpieces 38 can be inserted from the viewingcentral axis 16. A settingangle unit 40—which is shown from another perspective inFIG. 3 —comprisessuch swallowtail counterpieces 38 which can allow said setting angle unit to be mounted on theperipheral position ring 32. In the represented embodiment, thirty twoswallowtail grooves 36 are formed, so that thesetting angle unit 40 can be inserted in thirty two different positions with correspondingly thirty two different angles δ. Naturally, it is also possible to provide more than or fewer than thirty twoswallowtail grooves 36 or to provide securing shapes other than swallowtail shapes. - The setting
angle unit 40 comprises, in addition to theswallowtail counterpieces 38, a camera holder-receivingport 41 for receiving acamera holder 42 which receives aneye camera 18 not represented inFIG. 2 . Furthermore, a holdingbore 44 for an LED for illuminating theeye 10 with infrared light is represented. - Furthermore, it is preferable to provide two
separate LED holders 46 for holding LEDs—not shown—which also comprise swallowtail counterpieces which are also not shown (analogously to theswallowtail counterpieces 38 shown inFIG. 3 ) and which can be inserted intosuitable swallowtail grooves 36. In the represented embodiment, the twoLED holders 46 are separated, relative to the camera holder-receivingport 41, by 120° with respect to the viewingcentral axis 16, in order to achieve an optimal illumination of theeye 10. - In
FIGS. 2 and 3 , only one embodiment of asetting angle unit 40 is represented, which allows an alignment of theeye camera 18 at a particular setting angle with respect to the viewingcentral axis 16. Therefore, it is preferable to provide a set of differentsetting angle units 40, which differ in terms of the setting angle, and are thus designed for different setting angles α. - For the setting of the
eye camera 18, first a base setting for the two angles is carried out or the existing setting is used. On thedisplay unit 12, suitable markings are applied for this purpose, at which the user has to stare. Subsequently, the position of thepupil 11 is acquired by theeye camera 18 and evaluated in a control unit. On the basis of the measured deviation of thepupil 11 from the center of the image, a determination is made, preferably based on a stored table, as to which changes of the two parameters (peripheral angle and setting angle) are required. The user is provided, preferably by display in thedisplay unit 12, either with incremental data, that is to say data showing by how much the respective angle has to be changed, or with absolute values of the angles to be set. For example, the differentsetting angle units 40 can be numbered consecutively and in that case only the corresponding reference number has to be issued. Likewise, it is appropriate to provide theswallowtail grooves 36 with markings, in particular numbers. - After the removal of the HMD apparatus, the setting
angle unit 40 is then simply pulled out axially from theperipheral position ring 32; furthermore, thecamera holder 42 with amounted eye camera 18 is also removed axially from the camera holder-receivingport 41. Anothersetting angle unit 40 with the correct setting angle α is taken, and thecamera holder 42 with mountedeye camera 18 is inserted in the camera holder-receivingport 41. Subsequently, in accordance with the predetermined peripheral angle setting, the settingangle unit 40 with itsswallowtail counterpieces 38 is inserted into thecorrect swallowtail grooves 36. It is preferable for theLED holders 46 to be then also reinserted accordingly. - In
FIG. 4 , a block diagram of acontrol device 50 is represented, control device which is supplied by theeye camera 18 and evaluates the image thereof. In particular, thecontrol device 50 includes image processing software in order to determine the position of thepupil 11 from the image recorded by theeye camera 18. For the normal operation of the HMD apparatus, the control unit calculates the alignment of thepupil 11 and it provides the appropriate signal for corresponding applications, for example, the representation of a virtual environment on thedisplay unit 12. - In an embodiment having a drive using an electromotor for setting the setting angles α and peripheral angles δ, an electromotor-driven peripheral
angle setting apparatus 52 and an electromotor-driven setting angle-settingapparatus 54 are provided. During the setting phase of theeye camera 18, the adjusting 52, 54 are activated in such a manner that theapparatuses eye camera 18 is adjusted accordingly, so that the pupil image generated is arranged in the center of the image.
Claims (22)
1. A head-mounted display apparatus comprising:
an imaging optical system comprising a display unit, an eye camera, and a control device, the display unit to be viewed by an eye of a user, and the control device to acquire a viewing direction of the eye within a field of view of the display unit using the eye camera, the field of view having a viewing central axis; and
a camera holder to receive the eye camera, the camera holder being selectively adjustable in relationship to the display unit to align the eye camera to the eye of the user in terms of a peripheral angle (δ) around the viewing central axis and in terms of a setting angle (α) with respect to the viewing central axis.
2. The head-mounted display apparatus according to claim 1 , wherein the apparatus comprises a peripheral position ring that surrounds the field of view, the peripheral position ring allowing movement of the camera holder along the peripheral position ring to adjust the alignment of eye camera in a peripheral direction around the viewing central axis.
3. The head-mounted display apparatus according to claim 2 , wherein the camera holder is manually adjustable along at least one section of the peripheral position ring.
4. The head-mounted display apparatus according to claim 3 , wherein the camera holder is manually adjustable in discrete notch steps.
5. The head-mounted display apparatus according to claim 2 , wherein the camera holder is continuously adjustable.
6. The head-mounted display apparatus according to claim 2 , wherein the apparatus comprises a setting angle unit to mount the camera holder, the setting angle unit allowing movement of the eye camera in a plane including the viewing central axis.
7. The head-mounted display apparatus according to claim 6 , wherein the setting angle unit is manually adjustable in discrete notch steps.
8. The head-mounted display apparatus according to claim 6 , wherein the setting angle unit is continuously adjustable.
9. The head-mounted display apparatus according to claim 2 , wherein the apparatus comprises a set of setting angle units for different setting angles, wherein the camera holder is mountable detachably on a selectable setting angle unit, and the selectable setting angle unit is mountable detachably on the peripheral position ring.
10. The head-mounted display apparatus according to claim 1 , wherein the control device is to evaluate an eye image recorded by the eye camera and to determine correction values that are settable, the control device further to send the correction values as signals.
11. The head-mounted display apparatus according to claim 10 , wherein the apparatus comprises a setting angle setting apparatus to adjust the eye camera by using the setting angle unit, the control device further to evaluate an eye image recorded by the eye camera and to set the setting angle setting apparatus based on the evaluation.
12. The head-mounted display apparatus according to claim 1 , wherein the apparatus comprises at least one illumination unit to illuminate the eye with infrared light for the eye camera.
13. An adjustment apparatus for a head-mounted display apparatus, the head-mounted display apparatus comprising an imaging optical system for an eye of a user, the imaging optical system comprising a display unit to be viewed by the eye, the adjustment apparatus comprising:
an eye camera to acquire an eye image for acquisition of a viewing direction of the eye within a field of view of the display unit, the field of view having a viewing central axis; and
a camera holder to receive the eye camera, the camera holder being selectively adjustable in relationship to the display unit to align the eye camera to the eye of the user in terms of a peripheral angle (δ) around a viewing central axis and in terms of a setting angle (α) with respect to the viewing central axis.
14. The adjustment apparatus according to claim 13 , wherein the apparatus comprises a peripheral position ring that surrounds the field of view, the peripheral position ring allowing movement of the camera holder along the peripheral position ring to adjust the alignment of eye camera in a peripheral direction around the viewing central axis.
15. The adjustment apparatus according to claim 14 , wherein the camera holder is manually adjustable along at least one section of the peripheral position ring.
16. The adjustment apparatus according to claim 15 , wherein the camera holder is manually adjustable in discrete notch steps.
17. The adjustment apparatus according to claim 14 , wherein the camera holder is continuously adjustable.
18. The adjustment apparatus according to claim 14 , wherein the apparatus comprises a setting angle unit to mount the camera holder, the setting angle unit allowing movement of the eye camera in a plane including the viewing central axis.
19. The adjustment apparatus according to claim 18 , wherein the setting angle unit is manually adjustable in discrete notch step.
20. The adjustment apparatus according to claim 18 , wherein the setting angle unit is continuously adjustable.
21. The adjustment apparatus according to claim 14 , wherein the apparatus comprises a set of setting angle units for different setting angles, wherein the camera holder is mountable detachably on a selectable setting angle unit, and the selectable setting angle unit is mountable detachably on the peripheral position ring.
22. The adjustment apparatus according to claim 13 , wherein the apparatus comprises at least one illumination unit to illuminate the eye with infrared light for the eye camera.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/365,256 US20170082860A1 (en) | 2013-07-03 | 2016-11-30 | Hmd apparatus with adjustable eye tracking device |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13174990.5A EP2821839A1 (en) | 2013-07-03 | 2013-07-03 | HMD device with adjustable eye tracking device |
| EP13174990 | 2013-07-03 | ||
| US14/316,100 US9535251B2 (en) | 2013-07-03 | 2014-06-26 | HMD apparatus with adjustable eye tracking device |
| US15/365,256 US20170082860A1 (en) | 2013-07-03 | 2016-11-30 | Hmd apparatus with adjustable eye tracking device |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/316,100 Continuation US9535251B2 (en) | 2013-07-03 | 2014-06-26 | HMD apparatus with adjustable eye tracking device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170082860A1 true US20170082860A1 (en) | 2017-03-23 |
Family
ID=48740944
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/316,100 Expired - Fee Related US9535251B2 (en) | 2013-07-03 | 2014-06-26 | HMD apparatus with adjustable eye tracking device |
| US15/365,256 Abandoned US20170082860A1 (en) | 2013-07-03 | 2016-11-30 | Hmd apparatus with adjustable eye tracking device |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/316,100 Expired - Fee Related US9535251B2 (en) | 2013-07-03 | 2014-06-26 | HMD apparatus with adjustable eye tracking device |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US9535251B2 (en) |
| EP (1) | EP2821839A1 (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102015103735A1 (en) | 2015-03-13 | 2016-09-15 | Airbus Defence and Space GmbH | Method and device for testing a device to be operated in an aircraft |
| JP6699658B2 (en) * | 2015-04-22 | 2020-05-27 | ソニー株式会社 | Information processing apparatus, information processing method, and program |
| US10444972B2 (en) | 2015-11-28 | 2019-10-15 | International Business Machines Corporation | Assisting a user with efficient navigation between a selection of entries with elements of interest to the user within a stream of entries |
| WO2017156486A1 (en) * | 2016-03-11 | 2017-09-14 | Oculus Vr, Llc | Corneal sphere tracking for generating an eye model |
| US10109067B2 (en) | 2016-03-11 | 2018-10-23 | Oculus Vr, Llc | Corneal sphere tracking for generating an eye model |
| US10115205B2 (en) | 2016-03-11 | 2018-10-30 | Facebook Technologies, Llc | Eye tracking system with single point calibration |
| CN206178658U (en) | 2016-08-10 | 2017-05-17 | 北京七鑫易维信息技术有限公司 | Module is tracked to eyeball of video glasses |
| US10877556B2 (en) | 2016-10-21 | 2020-12-29 | Apple Inc. | Eye tracking system |
| CN106908951A (en) * | 2017-02-27 | 2017-06-30 | 阿里巴巴集团控股有限公司 | Virtual reality helmet |
| CN106873158A (en) * | 2017-02-27 | 2017-06-20 | 阿里巴巴集团控股有限公司 | Virtual reality helmet |
| CN106873159A (en) | 2017-02-27 | 2017-06-20 | 阿里巴巴集团控股有限公司 | Virtual reality helmet |
| CN108732764B (en) * | 2018-06-06 | 2024-05-31 | 北京七鑫易维信息技术有限公司 | Smart glasses, eyeball trajectory tracking method, device and storage medium |
| TWI826221B (en) * | 2022-03-29 | 2023-12-11 | 宏達國際電子股份有限公司 | Head mounted display device and control method for eye-tracking operation |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120293773A1 (en) * | 2011-05-20 | 2012-11-22 | Eye-Com Corporation | Systems and methods for measuring reactions of head, eyes, eyelids and pupils |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4852988A (en) * | 1988-09-12 | 1989-08-01 | Applied Science Laboratories | Visor and camera providing a parallax-free field-of-view image for a head-mounted eye movement measurement system |
| JPH0521593U (en) | 1991-08-29 | 1993-03-19 | ヤシマ電気株式会社 | Head set |
| US5481622A (en) * | 1994-03-01 | 1996-01-02 | Rensselaer Polytechnic Institute | Eye tracking apparatus and method employing grayscale threshold values |
| US6433760B1 (en) | 1999-01-14 | 2002-08-13 | University Of Central Florida | Head mounted display with eyetracking capability |
| US6572282B1 (en) * | 2001-12-18 | 2003-06-03 | Intel Corporation | Digital camera stand with indexed tilt feature |
| DE102005026371B4 (en) * | 2005-06-07 | 2024-02-08 | Oculus Optikgeräte GmbH | Method for operating an ophthalmological analysis system |
| EP2786196A4 (en) * | 2011-12-02 | 2015-11-11 | Jerry G Aguren | Wide field-of-view 3d stereo vision platform with dynamic control of immersive or heads-up display operation |
-
2013
- 2013-07-03 EP EP13174990.5A patent/EP2821839A1/en not_active Withdrawn
-
2014
- 2014-06-26 US US14/316,100 patent/US9535251B2/en not_active Expired - Fee Related
-
2016
- 2016-11-30 US US15/365,256 patent/US20170082860A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120293773A1 (en) * | 2011-05-20 | 2012-11-22 | Eye-Com Corporation | Systems and methods for measuring reactions of head, eyes, eyelids and pupils |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2821839A1 (en) | 2015-01-07 |
| US9535251B2 (en) | 2017-01-03 |
| US20150009574A1 (en) | 2015-01-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9535251B2 (en) | HMD apparatus with adjustable eye tracking device | |
| EP2923638B1 (en) | Optical measuring device and system | |
| US9897813B2 (en) | Ocular vision system with optical guide that can be positioned in two positions | |
| EP3204816B1 (en) | Head-mounted displaying of magnified images locked on an object of interest | |
| US9545202B2 (en) | Device and method for measuring objective ocular refraction and at least one geometric-morphological parameter of an individual | |
| US10162168B2 (en) | Binocular bridge for thermal viewing device | |
| CN102918834A (en) | Systems and methods for spatially controlled scene lighting | |
| JP2003532137A (en) | Optical loupe | |
| JP6556133B2 (en) | Apparatus and method for measuring subjective refractive power | |
| US20170181619A1 (en) | Vision Testing System and Method For Testing The Eyes | |
| US20170181618A1 (en) | Vision Testing System and Method For Testing The Eyes | |
| US20150331258A1 (en) | Ttl adjustable binocular loupes device | |
| US20160242643A1 (en) | Transparent Camera for Imaging the Eye | |
| JP7286767B2 (en) | Device and method for placing phoropter head in horizontal position | |
| US8665381B2 (en) | Viewing cone adjustment system | |
| CA2963584C (en) | Method for precisely measuring optico-physiognomic parameters of a subject for the adjustment of eyeglass lenses to the subject in a near viewing situation | |
| WO2025056988A1 (en) | Digital ocular system comprising proximity sensor | |
| AU750854B2 (en) | Optical head | |
| US20200107716A1 (en) | Apparatus for comprehensive multi-sensory screening and methods therefor | |
| JPH02297356A (en) | Illumination module |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: EADS DEUTSCHLAND GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIESECKE, STEPHAN;DREYER, DANIEL;KOCVARA, FRANZ;SIGNING DATES FROM 20140905 TO 20141007;REEL/FRAME:040470/0563 Owner name: AIRBUS DEFENCE AND SPACE GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:EADS DEUTSCHLAND GMBH;REEL/FRAME:040839/0129 Effective date: 20140701 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |