[go: up one dir, main page]

US20170042806A1 - Orally disintegrating compositions - Google Patents

Orally disintegrating compositions Download PDF

Info

Publication number
US20170042806A1
US20170042806A1 US15/118,594 US201615118594A US2017042806A1 US 20170042806 A1 US20170042806 A1 US 20170042806A1 US 201615118594 A US201615118594 A US 201615118594A US 2017042806 A1 US2017042806 A1 US 2017042806A1
Authority
US
United States
Prior art keywords
composition
orally disintegrating
disintegrating composition
proton pump
pump inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/118,594
Inventor
Sheera Moses-Heller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexcel Pharma Technologies Ltd
Original Assignee
Dexcel Pharma Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexcel Pharma Technologies Ltd filed Critical Dexcel Pharma Technologies Ltd
Priority to US15/118,594 priority Critical patent/US20170042806A1/en
Assigned to DEXCEL PHARMA TECHNOLOGIES LTD. reassignment DEXCEL PHARMA TECHNOLOGIES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOSES-HELLER, SHEERA
Publication of US20170042806A1 publication Critical patent/US20170042806A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2886Dragees; Coated pills or tablets, e.g. with film or compression coating having two or more different drug-free coatings; Tablets of the type inert core-drug layer-inactive layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • A61K9/5047Cellulose ethers containing no ester groups, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core

Definitions

  • An orally disintegrating dosage form comprising a proton pump inhibitor, methods for its production and use thereof are provided.
  • Orally disintegrating compositions have gained considerable attention as an alternative to conventional tablets and capsules. These compositions, which are also referred to as orodisperse formulations, usually afford the rapid disintegration of the constituents therein in the oral cavity in less than 60 seconds. Orally disintegrating compositions provide improved patient compliance, particularly in patients who experience difficulties swallowing conventional dosage forms such as pediatric and geriatric patients, subjects who suffer from impaired swallowing and subjects who suffer from psychiatric disorders.
  • PPIs Proton pump inhibitors
  • H + /K + -ATPase enzyme system at the secretory surface of the gastric parietal cells.
  • PPIs are typically benzimidazole derivatives such as omeprazole, lansoprazole and pantoprazole.
  • PPIs are known to be susceptible to degradation and transformation in acidic media. When in contact with the stomach content, which is highly acidic, these compounds become degraded. Accordingly, formulations containing PPIs typically include an enteric coating layer which is designed to protect the active ingredients during their passage through the stomach.
  • Enteric coating materials are polymers which contain acidic functional groups capable of being ionized at elevated pH values. At low pH values (e.g. the acidic environment of the stomach), the enteric polymers are not ionized, and therefore, insoluble. As the pH increases (e.g. when entering the small intestine), the acidic functional groups ionize and the polymer becomes soluble. Thus, an enteric coating allows a delayed release of the active substance and the absorption of the same through the intestinal mucosa.
  • Enteric coating materials are mainly composed of cellulose, vinyl, and acrylic derivatives which are known to dissolve in the presence of alcohol. Consumption of enteric coated compositions along with alcohol adversely affects the gastro-resistance of the enteric coating material and may further induce dose dumping which is characterized by unintended release of the active substance. Dose dumping may also lead to fluctuations in the concentration of the active substance in the body thereby posing a serious safety concern and, in some instances, may also lead to lack of therapeutic efficacy of the drug.
  • WO 2014/032741 discloses a gastric resistant pharmaceutical or nutraceutical composition with resistance against the influence of ethanol comprising a) a core, comprising a pharmaceutical or a nutraceutical active ingredient, b) an inner coating layer comprising at least 30% by weight of one or more salts of alginic acid, and c) an outer coating layer comprising at least 30% by weight of one or more polymers or copolymers comprising anionic side groups.
  • WO 2012/022498 discloses a gastric resistant pharmaceutical or nutraceutical composition
  • a gastric resistant pharmaceutical or nutraceutical composition comprising a core, comprising a pharmaceutical or nutraceutical active ingredient and a gastric resistant coating layer onto the core, wherein the release of the pharmaceutical or nutraceutical active ingredient is not more than 15% under in-vitro conditions at pH 1.2 for 2 hours in medium according to USP with and without the addition of 40% (v/v) ethanol, wherein the gastric resistant coating layer comprises 10 to 100% by weight of one or more salts of alginic acid with a viscosity of 30 to 720 cP of a 1% aqueous solution.
  • WO 2011/039768 discloses a pharmaceutical composition
  • a pharmaceutical composition comprising a core comprising an active substance or a salt thereof; a separating layer comprising at least one sugar; and a functional layer comprising at least one pharmaceutically acceptable polymer, wherein the composition is resistant to dose dumping in presence of alcohol.
  • WO 2010/105673 and WO 2010/105672 disclose controlled release pharmaceutical compositions with resistance against the influence of ethanol employing a coating comprising vinyl polymers.
  • WO 2009/036811 and WO 2010/034344 disclose a pH-dependent controlled release pharmaceutical composition, comprising at least one pharmaceutical active ingredient, with the exception of opioids, wherein the core is coated at least by one coating layer, controlling the release of the pharmaceutical composition, wherein the coating layer comprises a polymer mixture of neutral vinyl polymer or copolymer and an anionic polymer or copolymer.
  • the composition is resistant against the influence of ethanol.
  • WO 2011/112709 discloses an alcohol-resistant pharmaceutical composition
  • an active agent i) an enteric system; and iii) an alcohol protectant in an amount sufficient to prevent release of the active agent in the presence of alcohol.
  • compositions comprising a PPI which afford reduced risk of alcohol induced dose dumping.
  • the present disclosure relates to orally disintegrating compositions comprising a therapeutically effective amount of a proton pump inhibitor (PPI), wherein after administration, the composition substantially disintegrates in the oral cavity of a subject within less than about 60 seconds.
  • PPI proton pump inhibitor
  • the composition provides a release profile of the active ingredient which is substantially the same as the release profile of a conventional non-orally disintegrating composition in the absence of alcohol while showing markedly improved resistance to dose dumping in the presence of alcohol.
  • the present disclosure further relates to methods of preparing said orally disintegrating compositions and use thereof in the treatment or prevention of, inter alia, peptic ulcers.
  • the present disclosure is based, in part, on the unexpected finding of a PPI formulation which is an orally disintegrating formulation, preferably an orally disintegrating tablet, and which provides improved resistance to alcohol induced dose dumping. It was not previously realized that enteric coated active cores which are resistant to alcohol induced dose dumping can be compressed into orally disintegrating tablets without losing their alcohol resistance characteristics. The advantage of using orally disintegrating dosage forms, for example high compliance with the end-user, can be maintained while still affording resistance to alcohol induced dose dumping.
  • an orally disintegrating composition comprising (i) enteric coated active cores comprising a therapeutically effective amount of a proton pump inhibitor; and (ii) at least one pharmaceutically acceptable excipient comprising a disintegrant, wherein the composition substantially disintegrates in the oral cavity of a subject in need thereof within less than about 60 seconds after administration, and wherein in vitro drug release in 15 minutes at 0.1N HCl and 40% ethanol is less than about 20%.
  • the orally disintegrating composition substantially disintegrates in the oral cavity of a subject in need thereof within less than about 30 seconds after administration.
  • the orally disintegrating composition provides a release profile of the PPI which is substantially the same as the release profile of a non-orally disintegrating composition in the absence of alcohol.
  • the orally disintegrating composition results in a C max or AUC after administration which is substantially equivalent to a non-orally disintegrating composition comprising a PPI in the absence of alcohol.
  • the orally disintegrating composition disclosed herein provides a release profile of the PPI in the presence of up to 40% ethanol which is substantially the same as the release profile of the composition in the absence of alcohol thereby being substantially resistant to alcohol induced dose dumping.
  • the active cores comprise a plurality of inert seeds coated with a therapeutically effective amount of a proton pump inhibitor.
  • the active cores comprise a plurality of units comprising a therapeutically effective amount of a proton pump inhibitor embedded in a matrix.
  • the active cores comprise a plurality of units comprising a first portion of a proton pump inhibitor embedded in a matrix and a second portion of a proton pump inhibitor coating said units, wherein the first and second portions of the proton pump inhibitor together constitute a therapeutically effective amount of the proton pump inhibitor.
  • the proton pump inhibitor comprises lansoprazole, omeprazole, pantoprazole, leminoprazole, perprazole, rabeprazole, or a pharmaceutically acceptable salt thereof.
  • any pharmaceutically acceptable form of the proton pump inhibitor including, but not limited to, salts (e.g. alkaline salts), solvates (e.g. hydrates), isomers, isomorphs, polymorphs, pseudopolymorphs, and prodrugs thereof are within the scope of the present disclosure.
  • the proton pump inhibitor comprises a proton pump inhibitor salt.
  • the proton pump inhibitor comprises a proton pump inhibitor enantiomer.
  • the proton pump inhibitor comprises a salt of a proton pump inhibitor enantiomer.
  • the proton pump inhibitor comprises lansoprazole or a pharmaceutically acceptable salt thereof.
  • the inert seeds comprise sugar spheres. In other embodiments, the inert seeds comprise microcrystalline cellulose particles.
  • the active cores may further comprise at least one excipient such as a binder, a filler, a surfactant, and any combination thereof.
  • the active cores may further comprise an alkalizing agent.
  • the active cores are coated with enteric coating comprising one or more enteric polymers selected from the group consisting of cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinyl acetate phthalate, cellulose acetate trimellitate, polymethacrylic acid, polymethyl methacrylate, and polyethyl methacrylate, with each possibility representing a separate embodiment.
  • the active cores are coated with enteric coating comprising hydroxypropyl methylcellulose phthalate.
  • the active cores are further coated with a subcoating layer over the active cores, to protect the enteric coating, once applied, from reacting with the alkaline active cores containing the proton pump inhibitor.
  • the subcoating layer comprises at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol with each possibility representing a separate embodiment.
  • the enteric coated active cores may optionally comprise an additional taste-masking layer over the enteric coating, the taste-masking layer comprising a substantially water-insoluble taste-masking polymer.
  • the substantially water-insoluble taste-masking polymer is selected from the group consisting of ethyl cellulose, polyvinyl acetate (PVA), cellulose acetate (CA), cellulose acetate butyrate (CAB), and methacrylate copolymers including dimethylaminoethyl methacrylate, butyl methacrylate, methyl methacrylate copolymers such as those available under the trade name “Eudragit®” (e.g. Eudragit® RL, Eudragit® RS, Eudragit® E, Eudragit® NE30D, etc.). Each possibility represents a separate embodiment of the disclosure.
  • the enteric coated active cores may optionally comprise an additional over-coating layer which may be layered over the enteric coating or over the taste-masking layer, the over-coating layer comprising at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol with each possibility representing a separate embodiment.
  • each of the coating layers may further comprise a plastisizer, a surfactant, a filler, a lubricant, an anti-tacking agent or a combination thereof, with each possibility representing a separate embodiment.
  • an orally disintegrating composition comprising at least one excipient comprising a disintegrant.
  • the disintegrant is selected from the group consisting of crospovidone (cross-linked PVP), croscarmelose sodium, a sugar alcohol, a cellulose derivative, cross-linked derivatives of starch, pregelatinized starch and any combination or mixture thereof, with each possibility representing a separate embodiment.
  • the sugar alcohol is selected from the group consisting of mannitol, sorbitol, maltitol, xylitol, and any combination or mixtures thereof. Each possibility represents a separate embodiment.
  • the cellulose derivative is selected from the group consisting of methylcellulose, cross-linked carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose, microcrystalline cellulose, low substituted hydroxypropyl cellulose and any combination or mixtures thereof. Each possibility represents a separate embodiment.
  • the cross-linked derivatives of starch comprise sodium starch glycolate.
  • the orally disintegrating composition disclosed herein comprises a plurality of excipients as compression additives, the plurality of excipients comprising a disintegrant and at least one of a binder, a filler, an anti-tacking agent, a lubricant, a glidant, a surfactant, a plasticizer or any combination thereof, with each possibility representing a separate embodiment.
  • an orally disintegrating composition in the form of an orally disintegrating tablet.
  • the orally disintegrating tablet is characterized by hardness of at least 20 Newtons, for example about 20-80 Newtons, about 30-70 Newtons, or about 40-60 Newtons. Each possibility represents a separate embodiment.
  • the orally disintegrating composition described herein comprises: (a) inert seeds in an amount of about 2% to about 10% by weight of the total composition; (b) a proton pump inhibitor in an amount of about 3% to about 9% by weight of the total composition; (c) a subcoating layer in an amount of about 5% to about 15% by weight of the total composition; (d) an enteric coating in an amount of about 10% to about 25% by weight of the total composition; (e) at least one disintegrant in an amount of about 2% to about 15% by weight of the total composition; and (f) optionally one or more additional excipients selected from a binder, a filler, an anti-tacking agent, an alkalizing agent, a lubricant, a glidant, a surfactant, a plasticizer and any combination thereof in an amount of not more than about 30% by weight of the total composition, wherein presence of all components add to 100% (w/w).
  • the orally disintegrating pharmaceutical composition of the present disclosure is useful for inhibiting gastric acid secretion in the treatment of gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) and erosive esophagitis, with each possibility representing a separate embodiment.
  • a method of inhibiting gastric acid secretion comprising administering to a subject in need thereof the orally disintegrating composition disclosed herein.
  • a method of treating a disease or disorder selected from the group consisting of gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) and erosive esophagitis comprising administering to a subject in need thereof the orally disintegrating composition disclosed herein.
  • an orally disintegrating dosage form such as, but not limited to, an orally disintegrating tablet (ODT) comprising a therapeutically effective amount of a proton pump inhibitor that enables fast disintegration of the composition in the oral cavity.
  • ODT orally disintegrating tablet
  • the orally disintegrating dosage form is particularly suitable for subjects who may be incapable of, or are having difficulties in swallowing.
  • the orally disintegrating dosage form is substantially resistant to alcohol induced dose dumping. Contrary to dosage forms that are inserted into capsules for oral administration through the gastrointestinal tract, the composition disclosed herein is designed to disintegrate in the oral cavity of a subject in need thereof.
  • the enteric coating used in the disclosed composition maintains its integrity in the oral cavity and when passing through the stomach in the absence/presence of alcohol such that it affords the delayed release of the active ingredient in the upper intestine.
  • a composition comprising a therapeutically effective amount of a proton pump inhibitor, wherein the composition rapidly disintegrates in the oral cavity after oral administration.
  • the composition is in a form of an orally disintegrating tablet.
  • the term “orally disintegrating composition” or “orally disintegrating dosage form” refers to a composition that disintegrates in the oral cavity of the subject in need thereof upon coming into contact with the mucosal tissue of the tongue, cheek, and/or mouth within a short period of time, for example in less than about 60 seconds, preferably in less than about 30 seconds after administration.
  • the composition Upon administration of the orally disintegrating pharmaceutical composition to the oral cavity of a subject in need thereof, the composition disintegrates rapidly into the subject's oral cavity to form a smooth suspension of particles that can be readily swallowed.
  • the orally disintegrating composition provides a release profile of the proton pump inhibitor which is substantially the same as the release profile of a conventional composition which is not an orally disintegrating composition in the absence of alcohol.
  • substantially the same refers to a release profile of the orally disintegrating composition disclosed herein which varies in less than about 20%, for example, about 15%, about 10%, about 5% or is substantially identical to the release profile of a non-orally disintegrating composition which contains about the same dosage of the proton pump inhibitor.
  • the term “release profile” refers to in vitro release in an appropriate testing medium as well as to in vivo release so that the orally disintegrating composition disclosed herein is substantially bioequivalent to a conventional composition which is a non-orally disintegrating composition containing about the same dosage of the proton pump inhibitor in the absence of alcohol. It is contemplated that the composition disclosed herein results in a C. or AUC after administration which is substantially equivalent to a conventional composition which is not an orally disintegrating composition in the absence of alcohol.
  • the term “a conventional composition which is not an orally disintegrating composition” refers to an oral dosage form which is designed to be swallowed as a whole e.g. swallowable tablets and capsules.
  • the orally disintegrating composition provides a release profile of the PPI in the presence of alcohol which is substantially the same as the release profile of the composition in the absence of alcohol.
  • the composition provided herein is substantially resistant to alcohol induced dose dumping.
  • alcohol induced dose dumping refers to undesired release of the active ingredient when taken together with alcohol.
  • resistant to alcohol induced dose dumping refers to a composition which provides in vitro drug release in 15 minutes at 0.1N hydrochloric acid (HCl) and 40% ethanol (v/v) of less than about 20%, for example about 15%, about 10%, about 5% or about 0%.
  • this term refers to a composition which provides not more than about 20%, for example about 15%, about 10%, about 5% or about 0% of active compound being released when the composition is exposed to 0.1N hydrochloric acid (HCl) and 40% ethanol (v/v) for 15 minutes in paddle dissolution apparatus at 100 rpm.
  • the test is performed in 300 ml of 0.1N HCl and 40% ethanol (v/v).
  • the test is performed in 500 ml of 0.1N HCl and 40% ethanol (v/v).
  • the test is performed in 900 ml of 0.1N HCl and 40% ethanol (v/v). It is contemplated that the composition disclosed herein results in a C max or AUC after administration which are superior to a conventional composition which is not an orally disintegrating composition in the presence of alcohol.
  • enteric coated active cores also referred to herein as pellets
  • enteric coated active cores which are resistant to alcohol induced dose dumping
  • at least one pharmaceutical excipient comprising a disintegrant
  • orally disintegrating compositions e.g. tablets
  • the orally disintegrating composition thus obtained is characterized by having an enteric layer with superior mechanical properties such that it substantially maintains its integrity at compression while still affording resistance to alcohol induced dose dumping.
  • the formed composition is sufficiently hard (e.g. tablets which are characterized by hardness of at least 20 Newtons, e.g. about 20-80 Newtons, about 30-70 Newtons, or about 40-60 Newtons) while still allowing disintegration in the oral cavity in less than about 60 seconds.
  • the proton pump inhibitors suitable as being incorporated in the orally-disintegrating compositions include, but are not limited to, lansoprazole, omeprazole, pantoprazole, leminoprazole, perprazole, and rabeprazole. Each possibility represents a separate embodiment of the disclosure.
  • any pharmaceutically acceptable form of the proton pump inhibitor including, but not limited to, salts (e.g. alkali metal or alkaline earth metal salts such as omeprazole magnesium), solvates (e.g. hydrates), isomers (e.g. enantiomers such as dexlansoprazole or esomeprazole), isomorphs, polymorphs, pseudopolymorphs, and prodrugs thereof are within the scope of the present disclosure.
  • salts e.g. alkali metal or alkaline earth metal salts such as omeprazole magnesium
  • solvates e.g. hydrates
  • isomers e.g. enantiomers such as dexlansoprazole or esomeprazole
  • isomorphs polymorphs, pseudopolymorphs, and prodrugs thereof are within the scope of the present disclosure.
  • the proton pump inhibitor is present in the composition as a racemic mixture. In other embodiments, the proton pump inhibitor is present in the composition as a single enantiomeric form. In another embodiment, the proton pump inhibitor is present in the composition as a salt. In further embodiments, the proton pump inhibitor is present in the composition as an alkaline earth metal salt of the PPI such as, but not limited to, a calcium or magnesium salt. In several embodiments, the proton pump inhibitor is present in the composition as an amorphous form. In other embodiments, the proton pump inhibitor is present in the composition as a crystalline form.
  • an orally disintegrating composition comprising a mixture of enteric coated active cores and at least one pharmaceutically acceptable excipient comprising a disintegrant.
  • active cores refers to a plurality of units comprising a therapeutically effective amount of a proton pump inhibitor.
  • the units may be in any form known to those of skill in the art such as, but not limited to, granules, spheroids, beads and the like.
  • the units comprise a therapeutically effective amount of a proton pump inhibitor embedded in a matrix of pharmaceutically acceptable excipients.
  • the units comprise a first portion of a proton pump inhibitor embedded in a matrix as described herein which are further coated with a second portion of a proton pump inhibitor so that the combination of the first and second portions constitute a therapeutically effective amount of the proton pump inhibitor.
  • the units comprising a proton pump inhibitor embedded in a matrix may be formed, for example, by extrusion and/or spheronization as is known in the art.
  • the units comprise inert seeds which are coated with a layer (also referred to herein as a drug layer) comprising a therapeutically effective amount of a proton pump inhibitor.
  • the inert seeds of the compositions described herein can be comprised of any pharmaceutically inert compound, e.g., a filler.
  • the inert seeds onto which the layer of the active ingredient is applied are usually comprised of sugars, starch or cellulosic materials or combinations thereof, for example sugar derivatives such as lactose, sucrose, hydrolyzed starch (maltodextrins) or celluloses or mixtures thereof.
  • the inert seeds comprise nonpareils comprising a blend of starch and sugar.
  • the nonpareils, also called sugar spheres typically comprise spheres composed of sucrose and starch (for example, maize starch).
  • the inert seeds comprise microcrystalline cellulose particles. Other types of seeds may also be 20 used.
  • the proton pump inhibitor may be admixed with an alkalizing agent.
  • Suitable alkalizing agents include, but are not limited to, organic and inorganic alkaline substances.
  • Suitable organic alkaline substances include, but are not limited to, basic amino acids such as arginine and lysine, amine derivatives and salts, amino sugars such as meglumine, salts of stearic acid such as sodium stearate and the like, with each possibility representing a separate embodiment.
  • Suitable inorganic alkaline agents include, but are not limited to, hydroxides such as sodium or potassium hydroxide, carbonates such as calcium, magnesium or zinc carbonate and the like, with each possibility representing a separate embodiment.
  • enteric coated active cores which are preferably coated with subcoating over the drug layer or drug matrix to separate the active cores from the enteric coating.
  • the subcoating is typically layered between the core containing a therapeutically effective amount of a proton pump inhibitor and the enteric coating to afford physical separation between the alkaline core containing a therapeutically effective amount of a proton pump inhibitor and the acidic enteric coating.
  • Suitable subcoating comprises at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol, with each possibility representing a separate embodiment.
  • the subcoating does not contain alginic acid salts or derivatives thereof.
  • Suitable enteric coating includes, but is not limited to, cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinyl acetate phthalate, cellulose acetate trimellitate, polymethacrylic acid, polymethyl methacrylate, and polyethyl methacrylate, with each possibility representing a separate embodiment.
  • the enteric coating does not contain vinyl polymers or derivatives thereof. In other embodiments, the enteric coating does not contain alginic acid salts or derivatives thereof.
  • the enteric coating is selected from the group consisting of cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), cellulose acetate trimellitate, polymethacrylic acid, polymethyl methacrylate, and polyethyl methacrylate, with each possibility representing a separate embodiment.
  • the enteric coating comprises hydroxypropyl methylcellulose phthalate (HPMCP). It is contemplated that a single enteric coating layer comprised of a single enteric polymer is sufficient to impart the composition of the present disclosure its beneficial attributes.
  • the enteric coated active cores may optionally comprise an additional taste-masking layer over the enteric coating.
  • a taste-masking layer may be applied in order to improve the organoleptic characteristics of the composition, such that the taste and mouth feel of the disintegrated composition remain acceptable to a subject until the contents of the dosage form are swallowed, usually without water or other fluids. Typically, the contents of the composition remain in the oral cavity for several minutes (e.g. 2-3 minutes) until they are swallowed.
  • the taste-masking layer comprises a substantially water-insoluble polymer including, but not limited to, ethyl cellulose, polyvinyl acetate (PVA), cellulose acetate (CA), cellulose acetate butyrate (CAB), and methacrylate copolymers including dimethylaminoethyl methacrylate, butyl methacrylate, methyl methacrylate copolymers and the like.
  • ethyl cellulose polyvinyl acetate (PVA), cellulose acetate (CA), cellulose acetate butyrate (CAB), and methacrylate copolymers including dimethylaminoethyl methacrylate, butyl methacrylate, methyl methacrylate copolymers and the like.
  • Commercially available polymers suitable for taste-masking include, but are not limited to, “Eudragit®” polymers such as Eudragit® RL, Eudragit® RS, Eudragit® E, Eudragit® NE30D
  • the enteric coated active cores may optionally comprise an additional over-coating layer which may be layered over the enteric coating or the taste masking layer, with each possibility representing a separate embodiment.
  • the over-coating layer may comprise at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol, with each possibility representing a separate embodiment.
  • each of the coating layers may further comprise a plastisizer, a surfactant, a filler, a lubricant, an anti-tacking agent or a combination thereof.
  • these substances may be added to the coating layer(s) to facilitate the application of the coating layer(s) onto the substrate.
  • the pellets of the orally disintegrating composition described herein are admixed with at least one excipient comprising a disintegrant.
  • the pellets are admixed with a plurality of excipients (i.e. compression additives) comprising at least one disintegrant.
  • the pellets as well as the pharmaceutically acceptable excipient(s) typically have average sizes of less than about 1,000 ⁇ m, for example about 100-900 ⁇ m, about 200-800 ⁇ m, about 300-700 ⁇ m, or about 400-600 ⁇ m thereby affording reduced sensation of roughness when disintegrated in the oral cavity. Each possibility represents a separate embodiment.
  • Suitable disintegrants within the scope of the present disclosure include, but are not limited to, crospovidone, croscarmelose sodium, a sugar alcohol, a cellulose derivative, cross-linked derivatives of starch (e.g. sodium starch glycolate), pregelatinized starch, cross-linked sodium carboxymethyl cellulose, low substituted hydroxypropylcellulose and any combination or mixture thereof, with each possibility representing a separate embodiment.
  • Additional disintegrants include, but are not limited to, silicates, carbonates, polyoxyethylene sorbitan fatty acid esters, stearic monoglyceride, guar gum, and lactose. Each possibility represents a separate embodiment.
  • Suitable sugar alcohols include, but are not limited to, mannitol, sorbitol, maltitol, xylitol, and any combination or mixtures thereof. Each possibility represents a separate embodiment. Additional sugar alcohols include, but are not limited to, arabitol, isomalt, erythritol, glycerol, lactitol, and any combination or mixtures thereof. Each possibility represents a separate embodiment. Suitable cellulose derivatives include, but are not limited to, methylcellulose, cross-linked carboxymethyl celluloses, microcrystalline cellulose and any combination or mixtures thereof. Each possibility represents a separate embodiment.
  • the orally disintegrating compositions may further comprise at least one additional excipient such as a binder, a filler, an anti-tacking agent, a lubricant, a glidant, a surfactant, a plasticizer or any combination thereof as is known in the art.
  • additional excipient such as a binder, a filler, an anti-tacking agent, a lubricant, a glidant, a surfactant, a plasticizer or any combination thereof as is known in the art.
  • the excipient(s) may be added to the pellets for example applied together with the therapeutically effective amount of the proton pump inhibitor, the subcoating, enteric coating, taste-masking layer and/or over-coating and/or the excipient(s) may be admixed with the pellets and the at least one disintegrant to form the compositions disclosed herein.
  • Each possibility represents a separate embodiment.
  • Suitable binders include, but are not limited to, polyvinylpyrrolidone, copovidone, hydroxypropylmethyl cellulose, starch, gelatin, or sugars.
  • Sugars include sucrose, dextrose, molasses, and lactose. Each possibility represents a separate embodiment.
  • Suitable fillers include, but are not limited to, sugars such as lactose, sucrose, mannitol or sorbitol and derivatives therefore (e g amino sugars), ethylcellulose, microcrystalline cellulose, silicified microcrystalline cellulose and the like. Each possibility represents a separate embodiment.
  • Suitable anti-tacking agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, talc, colloidal silicon and the like among others. Each possibility represents a separate embodiment.
  • Suitable lubricants include, but are not limited to, sodium stearyl fumarate, stearic acid, polyethylene glycol or stearates, such as magnesium stearate. Each possibility represents a separate embodiment.
  • a suitable glidant within the scope of the present disclosure is e.g., colloidal silicon dioxide.
  • Suitable surfactants include, but are not limited to, non-ionic, anionic or 15 cationic surfactants.
  • surfactants may have one lipophilic and one hydrophilic group in the molecule.
  • the surfactant may optionally comprise one or more of soaps, detergents, emulsifiers, dispersing and wetting agents.
  • surfactants may optionally comprise, for example, one or more of polysorbate, stearyltriethanolamine, sodium lauryl sulfate, sodium taurocholate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride and glycerin monostearate; and hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose sodium, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose among others.
  • hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose sodium, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose among others.
  • Suitable plasticizers include, but are not limited to, cetyl alcohol, dibutyl sebacate, polyethylene glycol, polypropylene glycol, dibutyl phthalate, diethyl phthalate, triethyl citrate, tributyl citrate, acetylated monoglyceride, acetyl tributyl citrate, triacetin, dimethyl phthalate, benzyl benzoate, butyl and/or glycol esters of fatty acids, refined mineral oils, oleic acid, castor oil, corn oil, camphor, glycerol and sorbitol among others. Each possibility represents a separate embodiment.
  • the orally disintegrating compositions may further comprise additional excipients in the pellets and/or admixed with the pellets and the at least one disintegrant such as stabilizers, tonicity enhancing agents, buffering substances, preservatives, thickeners, diluents, emulsifying agents, wetting agents, flavoring agents, colorants, and complexing agents as is known in the art.
  • additional excipients in the pellets and/or admixed with the pellets and the at least one disintegrant such as stabilizers, tonicity enhancing agents, buffering substances, preservatives, thickeners, diluents, emulsifying agents, wetting agents, flavoring agents, colorants, and complexing agents as is known in the art.
  • Suitable tonicity enhancing agents are selected from ionic and non-ionic agents.
  • ionic compounds include, but are not limited to, alkali metal or alkaline earth metal halides, such as, for example, CaCl 2 KBr, KCl, LiCl, NaI, NaBr or NaCl, or boric acid.
  • Non-ionic tonicity enhancing agents are, for example, urea, glycerol, sorbitol, mannitol, propylene glycol, or dextrose. Each possibility represents a separate embodiment.
  • preservatives are quaternary ammonium salts such as benzalkonium chloride, benzoxonium chloride or polymeric quaternary ammonium salts, alkyl-mercury salts of thiosalicylic acid, such as, for example, thiomersal, phenylmercuric nitrate, phenylmercuric acetate or phenylmercuric borate, parabens, such as, for example, methylparaben or propylparaben, alcohols, such as, for example, chlorobutanol, benzyl alcohol or phenyl ethanol, guanidine derivatives, such as, for example, chlorohexidine or polyhexamethylene biguanide, sorbic acid or ascorbic acid.
  • quaternary ammonium salts such as benzalkonium chloride, benzoxonium chloride or polymeric quaternary ammonium salts
  • Suitable diluents include, but are not limited to, dicalcium phosphate dihydrate, sugars, lactose, calcium phosphate, cellulose, kaolin, mannitol, sodium chloride, and dry starch. Each possibility represents a separate embodiment.
  • Suitable wetting agents include, but are not limited to, glycerin, starches, and the like. Each possibility represents a separate embodiment.
  • Suitable buffering substances include, but are not limited to, acidic buffering agents such as short chain fatty acids, citric acid, acetic acid, hydrochloric acid, sulfuric acid and fumaric acid; and basic buffering agents such as tris, sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide and magnesium hydroxide. Each possibility represents a separate embodiment.
  • Suitable colorants include, but are not limited to, alumina (dried aluminum hydroxide), annatto extract, calcium carbonate, canthaxanthin, caramel, ⁇ -carotene, cochineal extract, carmine, potassium sodium copper chlorophyllin (chlorophyllin-copper complex), dihydroxyacetone, bismuth oxychloride, synthetic iron oxide, ferric ammonium ferrocyanide, ferric ferrocyanide, chromium hydroxide green, chromium oxide greens, guanine, mica-based pearlescent pigments, pyrophyllite, mica, dentifrices, talc, titanium dioxide, aluminum powder, bronze powder, copper powder, and zinc oxide.
  • alumina dried aluminum hydroxide
  • annatto extract calcium carbonate
  • canthaxanthin caramel
  • ⁇ -carotene cochineal extract
  • carmine potassium sodium copper chlorophyllin (chlorophyllin-copper complex)
  • dihydroxyacetone bismut
  • Suitable flavoring agents include, but are not limited to, sweeteners such as sucralose and synthetic flavor oils and flavoring aromatics, natural oils, extracts from plants, leaves, flowers, and fruits, and combinations thereof.
  • Exemplary flavoring agents include cinnamon oils, oil of wintergreen, peppermint oils, clover oil, hay oil, anise oil, eucalyptus, vanilla, citrus oil such as lemon oil, orange oil, grape and grapefruit oil, and fruit essences including apple, peach, pear, strawberry, raspberry, cherry, plum, pineapple, and apricot. Each possibility represents a separate embodiment.
  • the orally disintegrating composition comprises: (a) inert seeds in an amount of about 2% to about 10% by weight of the total composition; (b) a proton pump inhibitor in an amount of about 3% to about 9% by weight of the total composition; (c) a subcoating layer in an amount of about 5% to about 15% by weight of the total composition; (d) an enteric coating in an amount of about 10% to about 25% by weight of the total composition; (e) at least one disintegrant in an amount of about 2% to about 15% by weight of the total composition; and (f) optionally one or more additional excipients selected from a binder, a filler, an anti-tacking agent, an alkalizing agent, a lubricant, a glidant, a surfactant, a plasticizer or any combination thereof in an amount of not more than about 30% by weight of the total composition, wherein presence of all components add to 100%.
  • the orally disintegrating composition comprises at least one alkalizing agent in an amount
  • the orally disintegrating composition is an orally disintegrating tablet that comprises:
  • the orally disintegrating compositions can be manufactured using conventional processes as is known in the art such as, but not limited to, spheronization, milling, de-agglomeration, precipitation, and/or crystallization. Each possibility represents a separate embodiment.
  • Exemplary method of preparing an orally disintegrating tablet (ODT) according to the principles disclosed herein comprises the following steps: (a) applying a dispersion or solution of a proton pump inhibitor and optionally a pharmaceutically acceptable excipient comprising an alkalizing agent onto a plurality of inert seeds to obtain active cores; (b) optionally applying a subcoating onto the active cores; (c) applying an enteric coating onto the active cores obtained in step (a) or (b); (d) optionally applying a taste-masking layer and/or an over-coating layer onto the enteric coated active cores obtained in step (c); (e) blending the enteric coated active cores obtained in step (c) or (d) with particles comprising at least one excipient comprising
  • the method of preparing the orally disintegrating composition involves additional processing steps including, but not limited to heating, drying, sieving, lubricating and packaging as is known in the art.
  • the various coatings may be applied to the seeds/cores in the form of an organic or aqueous solution or dispersion, with 25 each possibility representing a separate embodiment.
  • the application of the coatings may be performed as is known in the art using standard equipment such as, but not limited to, a fluid bed coater (e.g. a Wurster coater or a rotary bed coater), extruder, or spray dryer.
  • various apparatus may be employed including, but not limited to, rotary disks, single-fluid high pressure swirl nozzles, two-fluid nozzles or ultrasonic nozzles, Single stage dryer, Two stage dryer, Horizontal dryer, Fluidized spray coater (e.g., TURBOJET), Multi stage drier, Compact spray dryer, Integrated filter drier, FILTERMAT® dryer, including, e.g., Glatt, Gea-Niro, BWI Malin, and Allgaier among others, with each possibility representing a separate embodiment.
  • Fluidized spray coater e.g., TURBOJET
  • Multi stage drier e.g., TURBOJET
  • Multi stage drier e.g., Compact spray dryer, Integrated filter drier
  • FILTERMAT® dryer including, e.g., Glatt, Gea-Niro, BWI Malin, and Allgaier among others, with each possibility representing a separate embodiment.
  • the orally disintegrating pharmaceutical composition is useful for inhibiting gastric acid secretion.
  • the orally disintegrating pharmaceutical composition is useful in the treatment of gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) or erosive esophagitis, with each possibility representing a separate embodiment.
  • a method of inhibiting gastric acid secretion in the treatment of a disease or disorder selected from gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) and erosive esophagitis comprising administering to a subject in need thereof the orally disintegrating composition disclosed herein.
  • the method further comprises the disintegration of the composition in the oral cavity of the subject to provide a plurality of particles comprising enteric coated active cores as described herein, the method further comprises the release of a majority of the proton-pump inhibitor from the enteric coated active cores in the upper intestine.
  • the subject in need thereof is typically a mammal, preferably a human.
  • the orally disintegrating composition may be administered in a solid dosage form to be placed on the tongue (lingual administration), or under the tongue (sublingual administration), or applied to the buccal mucosa (buccal administration).
  • Lingual administration typically stimulates saliva generation, which enhances disintegration of the composition.
  • the composition is a dosage form suitable for forming a suspension of undissolved particles in saliva, which can then be swallowed, allowing for absorption of the active ingredient in the GI tract, generally in the upper intestine.
  • the amount of a composition to be administered depends on various factors including the subject being treated (age and gender) and the severity of the disease, and can be determined by the judgment of the prescribing physician.
  • the orally disintegrating compositions may contain any dosage of the proton pump inhibitor, for example from about 2 mg to about 50 mg of the active ingredient such as, but not limited to, 5 mg, 10 mg, 20 mg, 30 mg or 40 mg, with each possibility representing a separate embodiment.
  • terapéuticaally effective amount refers to a quantity of a compound which is sufficient to provide a beneficial effect to the subject to which the compound is administered.
  • the effective amount according to the principles disclosed herein can be determined by any one of ordinary skill in the art and can be tested on various models both in vitro and in vivo.
  • treating refers to stopping or slowing down the progression of the disease.
  • treating further includes the reduction in the occurrence of various symptoms associated with gastric acid secretion.
  • An orally disintegrating tablet was prepared as follows: Inert sugar spheres or microcrystalline cellulose particles were coated with a drug layer containing 15, 15.5 or 30 mg lansoprazole and typically further containing a binder (e.g. hydroxypropyl methylcellulose, i.e. HPMC or hypromellose) and an alkalizing agent (e.g. meglumine) A subcoating layer containing hypromellose and typically an anti-tacking agent (e.g. talc), and an enteric coating layer containing enteric polymer such as hypromellose phthalate, hypromellose acetate succinate or metacrylic acid copolymer and typically further containing a plasticizer (e.g.
  • a binder e.g. hydroxypropyl methylcellulose, i.e. HPMC or hypromellose
  • an alkalizing agent e.g. meglumine
  • enteric coated active cores were blended with a mixture of powders containing crospovidone, Pharmaburst®, microcrystalline cellulose or croscarmellose sodium as disintegrant, lubricated (e.g. with sodium stearyl fumarate) and compressed into orally disintegrating tablets.
  • Friability and disintegration of an exemplary orally disintegrating tablet were tested according to US Pharmacopeia ⁇ 1216> and ⁇ 701>, respectively. The average results are presented in Table 6:
  • composition of the present disclosure provides improved resistance to alcohol-induced dose dumping which is maintained even after storage for 7 months.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)

Abstract

An orally disintegrating dosage form of a proton pump inhibitor, methods for its production and use thereof are provided. The dosage form includes a plurality of pellets containing a proton pump inhibitor admixed with a disintegrant to afford rapid

Description

    TECHNICAL FIELD
  • An orally disintegrating dosage form comprising a proton pump inhibitor, methods for its production and use thereof are provided.
  • BACKGROUND
  • Orally disintegrating compositions have gained considerable attention as an alternative to conventional tablets and capsules. These compositions, which are also referred to as orodisperse formulations, usually afford the rapid disintegration of the constituents therein in the oral cavity in less than 60 seconds. Orally disintegrating compositions provide improved patient compliance, particularly in patients who experience difficulties swallowing conventional dosage forms such as pediatric and geriatric patients, subjects who suffer from impaired swallowing and subjects who suffer from psychiatric disorders.
  • Proton pump inhibitors (PPIs) are potent inhibitors of gastric acid secretion by specific inhibition of the H+/K+-ATPase enzyme system at the secretory surface of the gastric parietal cells. PPIs are typically benzimidazole derivatives such as omeprazole, lansoprazole and pantoprazole. U.S. Pat. Nos. 4,045,563; 4,255,431; 4,359,465; 4,472,409; 4,508,905; 4,628,098; 4,738,975; 4,786,505; 4,853,230; 5,045,321; 5,045,552; and 5,312,824 disclose benzimidazole compounds which can be used as proton pump inhibitors.
  • PPIs are known to be susceptible to degradation and transformation in acidic media. When in contact with the stomach content, which is highly acidic, these compounds become degraded. Accordingly, formulations containing PPIs typically include an enteric coating layer which is designed to protect the active ingredients during their passage through the stomach.
  • Enteric coating materials are polymers which contain acidic functional groups capable of being ionized at elevated pH values. At low pH values (e.g. the acidic environment of the stomach), the enteric polymers are not ionized, and therefore, insoluble. As the pH increases (e.g. when entering the small intestine), the acidic functional groups ionize and the polymer becomes soluble. Thus, an enteric coating allows a delayed release of the active substance and the absorption of the same through the intestinal mucosa.
  • Enteric coating materials are mainly composed of cellulose, vinyl, and acrylic derivatives which are known to dissolve in the presence of alcohol. Consumption of enteric coated compositions along with alcohol adversely affects the gastro-resistance of the enteric coating material and may further induce dose dumping which is characterized by unintended release of the active substance. Dose dumping may also lead to fluctuations in the concentration of the active substance in the body thereby posing a serious safety concern and, in some instances, may also lead to lack of therapeutic efficacy of the drug.
  • WO 2014/032741 discloses a gastric resistant pharmaceutical or nutraceutical composition with resistance against the influence of ethanol comprising a) a core, comprising a pharmaceutical or a nutraceutical active ingredient, b) an inner coating layer comprising at least 30% by weight of one or more salts of alginic acid, and c) an outer coating layer comprising at least 30% by weight of one or more polymers or copolymers comprising anionic side groups.
  • WO 2012/022498 discloses a gastric resistant pharmaceutical or nutraceutical composition comprising a core, comprising a pharmaceutical or nutraceutical active ingredient and a gastric resistant coating layer onto the core, wherein the release of the pharmaceutical or nutraceutical active ingredient is not more than 15% under in-vitro conditions at pH 1.2 for 2 hours in medium according to USP with and without the addition of 40% (v/v) ethanol, wherein the gastric resistant coating layer comprises 10 to 100% by weight of one or more salts of alginic acid with a viscosity of 30 to 720 cP of a 1% aqueous solution.
  • WO 2011/039768 discloses a pharmaceutical composition comprising a core comprising an active substance or a salt thereof; a separating layer comprising at least one sugar; and a functional layer comprising at least one pharmaceutically acceptable polymer, wherein the composition is resistant to dose dumping in presence of alcohol.
  • WO 2010/105673 and WO 2010/105672 disclose controlled release pharmaceutical compositions with resistance against the influence of ethanol employing a coating comprising vinyl polymers.
  • WO 2009/036811 and WO 2010/034344 disclose a pH-dependent controlled release pharmaceutical composition, comprising at least one pharmaceutical active ingredient, with the exception of opioids, wherein the core is coated at least by one coating layer, controlling the release of the pharmaceutical composition, wherein the coating layer comprises a polymer mixture of neutral vinyl polymer or copolymer and an anionic polymer or copolymer. The composition is resistant against the influence of ethanol.
  • WO 2011/112709 discloses an alcohol-resistant pharmaceutical composition comprising i) an active agent; ii) an enteric system; and iii) an alcohol protectant in an amount sufficient to prevent release of the active agent in the presence of alcohol.
  • Thus far, only a limited number of robust dosage forms that withstand the impact of alcohol are available and the development of such dosage forms is still challenging.
  • There is an unmet need for orally disintegrating compositions comprising a PPI which afford reduced risk of alcohol induced dose dumping.
  • SUMMARY
  • The present disclosure relates to orally disintegrating compositions comprising a therapeutically effective amount of a proton pump inhibitor (PPI), wherein after administration, the composition substantially disintegrates in the oral cavity of a subject within less than about 60 seconds. The composition provides a release profile of the active ingredient which is substantially the same as the release profile of a conventional non-orally disintegrating composition in the absence of alcohol while showing markedly improved resistance to dose dumping in the presence of alcohol. The present disclosure further relates to methods of preparing said orally disintegrating compositions and use thereof in the treatment or prevention of, inter alia, peptic ulcers.
  • The present disclosure is based, in part, on the unexpected finding of a PPI formulation which is an orally disintegrating formulation, preferably an orally disintegrating tablet, and which provides improved resistance to alcohol induced dose dumping. It was not previously realized that enteric coated active cores which are resistant to alcohol induced dose dumping can be compressed into orally disintegrating tablets without losing their alcohol resistance characteristics. The advantage of using orally disintegrating dosage forms, for example high compliance with the end-user, can be maintained while still affording resistance to alcohol induced dose dumping.
  • According to a first aspect, there is provided an orally disintegrating composition comprising (i) enteric coated active cores comprising a therapeutically effective amount of a proton pump inhibitor; and (ii) at least one pharmaceutically acceptable excipient comprising a disintegrant, wherein the composition substantially disintegrates in the oral cavity of a subject in need thereof within less than about 60 seconds after administration, and wherein in vitro drug release in 15 minutes at 0.1N HCl and 40% ethanol is less than about 20%.
  • In certain embodiments, the orally disintegrating composition substantially disintegrates in the oral cavity of a subject in need thereof within less than about 30 seconds after administration.
  • In further embodiments, the orally disintegrating composition provides a release profile of the PPI which is substantially the same as the release profile of a non-orally disintegrating composition in the absence of alcohol. In accordance with these embodiments, the orally disintegrating composition results in a Cmax or AUC after administration which is substantially equivalent to a non-orally disintegrating composition comprising a PPI in the absence of alcohol. In specific embodiments, the orally disintegrating composition disclosed herein provides a release profile of the PPI in the presence of up to 40% ethanol which is substantially the same as the release profile of the composition in the absence of alcohol thereby being substantially resistant to alcohol induced dose dumping.
  • In one embodiment, the active cores comprise a plurality of inert seeds coated with a therapeutically effective amount of a proton pump inhibitor. In another embodiment, the active cores comprise a plurality of units comprising a therapeutically effective amount of a proton pump inhibitor embedded in a matrix. In yet another embodiment, the active cores comprise a plurality of units comprising a first portion of a proton pump inhibitor embedded in a matrix and a second portion of a proton pump inhibitor coating said units, wherein the first and second portions of the proton pump inhibitor together constitute a therapeutically effective amount of the proton pump inhibitor.
  • In several embodiments, the proton pump inhibitor comprises lansoprazole, omeprazole, pantoprazole, leminoprazole, perprazole, rabeprazole, or a pharmaceutically acceptable salt thereof.
  • It is contemplated that any pharmaceutically acceptable form of the proton pump inhibitor including, but not limited to, salts (e.g. alkaline salts), solvates (e.g. hydrates), isomers, isomorphs, polymorphs, pseudopolymorphs, and prodrugs thereof are within the scope of the present disclosure.
  • In one embodiment, the proton pump inhibitor comprises a proton pump inhibitor salt.
  • In another embodiment, the proton pump inhibitor comprises a proton pump inhibitor enantiomer.
  • In further embodiments, the proton pump inhibitor comprises a salt of a proton pump inhibitor enantiomer.
  • In particular embodiments, the proton pump inhibitor comprises lansoprazole or a pharmaceutically acceptable salt thereof.
  • In certain embodiments, the inert seeds comprise sugar spheres. In other embodiments, the inert seeds comprise microcrystalline cellulose particles.
  • In some embodiments, the active cores may further comprise at least one excipient such as a binder, a filler, a surfactant, and any combination thereof.
  • In particular embodiments, the active cores may further comprise an alkalizing agent.
  • In various embodiments, the active cores are coated with enteric coating comprising one or more enteric polymers selected from the group consisting of cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinyl acetate phthalate, cellulose acetate trimellitate, polymethacrylic acid, polymethyl methacrylate, and polyethyl methacrylate, with each possibility representing a separate embodiment. In one embodiment, the active cores are coated with enteric coating comprising hydroxypropyl methylcellulose phthalate.
  • In certain aspects and embodiments, the active cores are further coated with a subcoating layer over the active cores, to protect the enteric coating, once applied, from reacting with the alkaline active cores containing the proton pump inhibitor. In some embodiments, the subcoating layer comprises at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol with each possibility representing a separate embodiment.
  • In additional embodiments, the enteric coated active cores may optionally comprise an additional taste-masking layer over the enteric coating, the taste-masking layer comprising a substantially water-insoluble taste-masking polymer. In particular embodiments, the substantially water-insoluble taste-masking polymer is selected from the group consisting of ethyl cellulose, polyvinyl acetate (PVA), cellulose acetate (CA), cellulose acetate butyrate (CAB), and methacrylate copolymers including dimethylaminoethyl methacrylate, butyl methacrylate, methyl methacrylate copolymers such as those available under the trade name “Eudragit®” (e.g. Eudragit® RL, Eudragit® RS, Eudragit® E, Eudragit® NE30D, etc.). Each possibility represents a separate embodiment of the disclosure.
  • In further embodiments, the enteric coated active cores may optionally comprise an additional over-coating layer which may be layered over the enteric coating or over the taste-masking layer, the over-coating layer comprising at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol with each possibility representing a separate embodiment.
  • It will be recognized by one of skill in the art that each of the coating layers may further comprise a plastisizer, a surfactant, a filler, a lubricant, an anti-tacking agent or a combination thereof, with each possibility representing a separate embodiment.
  • In certain embodiments, there is provided an orally disintegrating composition comprising at least one excipient comprising a disintegrant.
  • In exemplary embodiments, the disintegrant is selected from the group consisting of crospovidone (cross-linked PVP), croscarmelose sodium, a sugar alcohol, a cellulose derivative, cross-linked derivatives of starch, pregelatinized starch and any combination or mixture thereof, with each possibility representing a separate embodiment.
  • In some embodiments, the sugar alcohol is selected from the group consisting of mannitol, sorbitol, maltitol, xylitol, and any combination or mixtures thereof. Each possibility represents a separate embodiment.
  • In other embodiments, the cellulose derivative is selected from the group consisting of methylcellulose, cross-linked carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose, microcrystalline cellulose, low substituted hydroxypropyl cellulose and any combination or mixtures thereof. Each possibility represents a separate embodiment.
  • In yet other embodiments, the cross-linked derivatives of starch comprise sodium starch glycolate.
  • In further embodiments, the orally disintegrating composition disclosed herein comprises a plurality of excipients as compression additives, the plurality of excipients comprising a disintegrant and at least one of a binder, a filler, an anti-tacking agent, a lubricant, a glidant, a surfactant, a plasticizer or any combination thereof, with each possibility representing a separate embodiment.
  • In some embodiments, there is provided an orally disintegrating composition in the form of an orally disintegrating tablet. In accordance with these embodiments, the orally disintegrating tablet is characterized by hardness of at least 20 Newtons, for example about 20-80 Newtons, about 30-70 Newtons, or about 40-60 Newtons. Each possibility represents a separate embodiment.
  • In specific embodiments, the orally disintegrating composition described herein comprises: (a) inert seeds in an amount of about 2% to about 10% by weight of the total composition; (b) a proton pump inhibitor in an amount of about 3% to about 9% by weight of the total composition; (c) a subcoating layer in an amount of about 5% to about 15% by weight of the total composition; (d) an enteric coating in an amount of about 10% to about 25% by weight of the total composition; (e) at least one disintegrant in an amount of about 2% to about 15% by weight of the total composition; and (f) optionally one or more additional excipients selected from a binder, a filler, an anti-tacking agent, an alkalizing agent, a lubricant, a glidant, a surfactant, a plasticizer and any combination thereof in an amount of not more than about 30% by weight of the total composition, wherein presence of all components add to 100% (w/w).
  • The orally disintegrating pharmaceutical composition of the present disclosure is useful for inhibiting gastric acid secretion in the treatment of gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) and erosive esophagitis, with each possibility representing a separate embodiment.
  • Accordingly, there is provided a method of inhibiting gastric acid secretion, the method comprising administering to a subject in need thereof the orally disintegrating composition disclosed herein. In other embodiments, there is provided a method of treating a disease or disorder selected from the group consisting of gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) and erosive esophagitis, the method comprising administering to a subject in need thereof the orally disintegrating composition disclosed herein.
  • Further embodiments and the full scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
  • DETAILED DESCRIPTION
  • There is provided an orally disintegrating dosage form such as, but not limited to, an orally disintegrating tablet (ODT) comprising a therapeutically effective amount of a proton pump inhibitor that enables fast disintegration of the composition in the oral cavity. The orally disintegrating dosage form is particularly suitable for subjects who may be incapable of, or are having difficulties in swallowing. The orally disintegrating dosage form is substantially resistant to alcohol induced dose dumping. Contrary to dosage forms that are inserted into capsules for oral administration through the gastrointestinal tract, the composition disclosed herein is designed to disintegrate in the oral cavity of a subject in need thereof. Even though the pH in the oral cavity is similar to the pH of the upper intestine, where the enteric coating disintegrates to release the active ingredient, the enteric coating used in the disclosed composition maintains its integrity in the oral cavity and when passing through the stomach in the absence/presence of alcohol such that it affords the delayed release of the active ingredient in the upper intestine.
  • According to certain aspects and embodiments, there is provided a composition comprising a therapeutically effective amount of a proton pump inhibitor, wherein the composition rapidly disintegrates in the oral cavity after oral administration. In particular embodiments, the composition is in a form of an orally disintegrating tablet. As used herein, the term “orally disintegrating composition” or “orally disintegrating dosage form” refers to a composition that disintegrates in the oral cavity of the subject in need thereof upon coming into contact with the mucosal tissue of the tongue, cheek, and/or mouth within a short period of time, for example in less than about 60 seconds, preferably in less than about 30 seconds after administration. Upon administration of the orally disintegrating pharmaceutical composition to the oral cavity of a subject in need thereof, the composition disintegrates rapidly into the subject's oral cavity to form a smooth suspension of particles that can be readily swallowed.
  • According to some embodiments, the orally disintegrating composition provides a release profile of the proton pump inhibitor which is substantially the same as the release profile of a conventional composition which is not an orally disintegrating composition in the absence of alcohol. As used herein, the term “substantially the same” refers to a release profile of the orally disintegrating composition disclosed herein which varies in less than about 20%, for example, about 15%, about 10%, about 5% or is substantially identical to the release profile of a non-orally disintegrating composition which contains about the same dosage of the proton pump inhibitor. As used herein, the term “release profile” refers to in vitro release in an appropriate testing medium as well as to in vivo release so that the orally disintegrating composition disclosed herein is substantially bioequivalent to a conventional composition which is a non-orally disintegrating composition containing about the same dosage of the proton pump inhibitor in the absence of alcohol. It is contemplated that the composition disclosed herein results in a C. or AUC after administration which is substantially equivalent to a conventional composition which is not an orally disintegrating composition in the absence of alcohol. As used herein, the term “a conventional composition which is not an orally disintegrating composition” refers to an oral dosage form which is designed to be swallowed as a whole e.g. swallowable tablets and capsules.
  • In some aspects and embodiments, the orally disintegrating composition provides a release profile of the PPI in the presence of alcohol which is substantially the same as the release profile of the composition in the absence of alcohol. In other words, the composition provided herein is substantially resistant to alcohol induced dose dumping. As used herein, the term “alcohol induced dose dumping” refers to undesired release of the active ingredient when taken together with alcohol. The term “resistant to alcohol induced dose dumping” as used herein refers to a composition which provides in vitro drug release in 15 minutes at 0.1N hydrochloric acid (HCl) and 40% ethanol (v/v) of less than about 20%, for example about 15%, about 10%, about 5% or about 0%. Alternatively, this term refers to a composition which provides not more than about 20%, for example about 15%, about 10%, about 5% or about 0% of active compound being released when the composition is exposed to 0.1N hydrochloric acid (HCl) and 40% ethanol (v/v) for 15 minutes in paddle dissolution apparatus at 100 rpm. In one embodiment, the test is performed in 300 ml of 0.1N HCl and 40% ethanol (v/v). In another embodiment, the test is performed in 500 ml of 0.1N HCl and 40% ethanol (v/v). In yet another embodiment, the test is performed in 900 ml of 0.1N HCl and 40% ethanol (v/v). It is contemplated that the composition disclosed herein results in a Cmax or AUC after administration which are superior to a conventional composition which is not an orally disintegrating composition in the presence of alcohol.
  • The orally disintegrating composition according to the principles described herein provides unexpected resistance to alcohol induced dose dumping. Surprisingly, it is now being disclosed that enteric coated active cores (also referred to herein as pellets) which are resistant to alcohol induced dose dumping can be admixed with at least one pharmaceutical excipient comprising a disintegrant and compressed into orally disintegrating compositions (e.g. tablets) without adversely affecting their resistance to alcohol induced dose dumping. The orally disintegrating composition thus obtained is characterized by having an enteric layer with superior mechanical properties such that it substantially maintains its integrity at compression while still affording resistance to alcohol induced dose dumping. Moreover, the formed composition is sufficiently hard (e.g. tablets which are characterized by hardness of at least 20 Newtons, e.g. about 20-80 Newtons, about 30-70 Newtons, or about 40-60 Newtons) while still allowing disintegration in the oral cavity in less than about 60 seconds.
  • The proton pump inhibitors suitable as being incorporated in the orally-disintegrating compositions include, but are not limited to, lansoprazole, omeprazole, pantoprazole, leminoprazole, perprazole, and rabeprazole. Each possibility represents a separate embodiment of the disclosure.
  • It is contemplated that any pharmaceutically acceptable form of the proton pump inhibitor including, but not limited to, salts (e.g. alkali metal or alkaline earth metal salts such as omeprazole magnesium), solvates (e.g. hydrates), isomers (e.g. enantiomers such as dexlansoprazole or esomeprazole), isomorphs, polymorphs, pseudopolymorphs, and prodrugs thereof are within the scope of the present disclosure.
  • In various embodiments, the proton pump inhibitor is present in the composition as a racemic mixture. In other embodiments, the proton pump inhibitor is present in the composition as a single enantiomeric form. In another embodiment, the proton pump inhibitor is present in the composition as a salt. In further embodiments, the proton pump inhibitor is present in the composition as an alkaline earth metal salt of the PPI such as, but not limited to, a calcium or magnesium salt. In several embodiments, the proton pump inhibitor is present in the composition as an amorphous form. In other embodiments, the proton pump inhibitor is present in the composition as a crystalline form.
  • According to certain aspects and embodiments, there is provided an orally disintegrating composition comprising a mixture of enteric coated active cores and at least one pharmaceutically acceptable excipient comprising a disintegrant. As used herein, the term “active cores” refers to a plurality of units comprising a therapeutically effective amount of a proton pump inhibitor. The units may be in any form known to those of skill in the art such as, but not limited to, granules, spheroids, beads and the like. In certain embodiments, the units comprise a therapeutically effective amount of a proton pump inhibitor embedded in a matrix of pharmaceutically acceptable excipients. In other embodiments, the units comprise a first portion of a proton pump inhibitor embedded in a matrix as described herein which are further coated with a second portion of a proton pump inhibitor so that the combination of the first and second portions constitute a therapeutically effective amount of the proton pump inhibitor. The units comprising a proton pump inhibitor embedded in a matrix may be formed, for example, by extrusion and/or spheronization as is known in the art. In some embodiments, the units comprise inert seeds which are coated with a layer (also referred to herein as a drug layer) comprising a therapeutically effective amount of a proton pump inhibitor.
  • The inert seeds of the compositions described herein can be comprised of any pharmaceutically inert compound, e.g., a filler. The inert seeds onto which the layer of the active ingredient is applied are usually comprised of sugars, starch or cellulosic materials or combinations thereof, for example sugar derivatives such as lactose, sucrose, hydrolyzed starch (maltodextrins) or celluloses or mixtures thereof. In one embodiment, the inert seeds comprise nonpareils comprising a blend of starch and sugar. The nonpareils, also called sugar spheres, typically comprise spheres composed of sucrose and starch (for example, maize starch). In another embodiment, the inert seeds comprise microcrystalline cellulose particles. Other types of seeds may also be 20 used.
  • In order to stabilize the drug substance, which is susceptible to degradation in acidic environment, the proton pump inhibitor may be admixed with an alkalizing agent. Suitable alkalizing agents include, but are not limited to, organic and inorganic alkaline substances. Suitable organic alkaline substances include, but are not limited to, basic amino acids such as arginine and lysine, amine derivatives and salts, amino sugars such as meglumine, salts of stearic acid such as sodium stearate and the like, with each possibility representing a separate embodiment. Suitable inorganic alkaline agents include, but are not limited to, hydroxides such as sodium or potassium hydroxide, carbonates such as calcium, magnesium or zinc carbonate and the like, with each possibility representing a separate embodiment.
  • Within the scope of the present disclosure are enteric coated active cores which are preferably coated with subcoating over the drug layer or drug matrix to separate the active cores from the enteric coating. The subcoating is typically layered between the core containing a therapeutically effective amount of a proton pump inhibitor and the enteric coating to afford physical separation between the alkaline core containing a therapeutically effective amount of a proton pump inhibitor and the acidic enteric coating. Suitable subcoating comprises at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol, with each possibility representing a separate embodiment. In some embodiments, the subcoating does not contain alginic acid salts or derivatives thereof.
  • Suitable enteric coating includes, but is not limited to, cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinyl acetate phthalate, cellulose acetate trimellitate, polymethacrylic acid, polymethyl methacrylate, and polyethyl methacrylate, with each possibility representing a separate embodiment. In certain embodiments, the enteric coating does not contain vinyl polymers or derivatives thereof. In other embodiments, the enteric coating does not contain alginic acid salts or derivatives thereof. In exemplary embodiments, the enteric coating is selected from the group consisting of cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), cellulose acetate trimellitate, polymethacrylic acid, polymethyl methacrylate, and polyethyl methacrylate, with each possibility representing a separate embodiment. In particular embodiments, the enteric coating comprises hydroxypropyl methylcellulose phthalate (HPMCP). It is contemplated that a single enteric coating layer comprised of a single enteric polymer is sufficient to impart the composition of the present disclosure its beneficial attributes.
  • The enteric coated active cores may optionally comprise an additional taste-masking layer over the enteric coating. A taste-masking layer may be applied in order to improve the organoleptic characteristics of the composition, such that the taste and mouth feel of the disintegrated composition remain acceptable to a subject until the contents of the dosage form are swallowed, usually without water or other fluids. Typically, the contents of the composition remain in the oral cavity for several minutes (e.g. 2-3 minutes) until they are swallowed. In certain embodiments, the taste-masking layer comprises a substantially water-insoluble polymer including, but not limited to, ethyl cellulose, polyvinyl acetate (PVA), cellulose acetate (CA), cellulose acetate butyrate (CAB), and methacrylate copolymers including dimethylaminoethyl methacrylate, butyl methacrylate, methyl methacrylate copolymers and the like. Commercially available polymers suitable for taste-masking include, but are not limited to, “Eudragit®” polymers such as Eudragit® RL, Eudragit® RS, Eudragit® E, Eudragit® NE30D, etc., with each possibility representing a separate embodiment. In particular embodiments, the taste-masking layer comprises at least one of a cellulose derivative, an acrylate based polymer, PVA or any other polymer currently used for this purpose, with each possibility representing a separate embodiment.
  • The enteric coated active cores may optionally comprise an additional over-coating layer which may be layered over the enteric coating or the taste masking layer, with each possibility representing a separate embodiment. The over-coating layer may comprise at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol, with each possibility representing a separate embodiment.
  • It is contemplated that each of the coating layers may further comprise a plastisizer, a surfactant, a filler, a lubricant, an anti-tacking agent or a combination thereof. In certain embodiment, these substances may be added to the coating layer(s) to facilitate the application of the coating layer(s) onto the substrate.
  • The pellets of the orally disintegrating composition described herein are admixed with at least one excipient comprising a disintegrant. In some embodiments, the pellets are admixed with a plurality of excipients (i.e. compression additives) comprising at least one disintegrant. The pellets as well as the pharmaceutically acceptable excipient(s) typically have average sizes of less than about 1,000 μm, for example about 100-900 μm, about 200-800 μm, about 300-700 μm, or about 400-600 μm thereby affording reduced sensation of roughness when disintegrated in the oral cavity. Each possibility represents a separate embodiment.
  • Suitable disintegrants within the scope of the present disclosure include, but are not limited to, crospovidone, croscarmelose sodium, a sugar alcohol, a cellulose derivative, cross-linked derivatives of starch (e.g. sodium starch glycolate), pregelatinized starch, cross-linked sodium carboxymethyl cellulose, low substituted hydroxypropylcellulose and any combination or mixture thereof, with each possibility representing a separate embodiment. Additional disintegrants include, but are not limited to, silicates, carbonates, polyoxyethylene sorbitan fatty acid esters, stearic monoglyceride, guar gum, and lactose. Each possibility represents a separate embodiment. Suitable sugar alcohols include, but are not limited to, mannitol, sorbitol, maltitol, xylitol, and any combination or mixtures thereof. Each possibility represents a separate embodiment. Additional sugar alcohols include, but are not limited to, arabitol, isomalt, erythritol, glycerol, lactitol, and any combination or mixtures thereof. Each possibility represents a separate embodiment. Suitable cellulose derivatives include, but are not limited to, methylcellulose, cross-linked carboxymethyl celluloses, microcrystalline cellulose and any combination or mixtures thereof. Each possibility represents a separate embodiment.
  • According to the principles disclosed herein, the orally disintegrating compositions may further comprise at least one additional excipient such as a binder, a filler, an anti-tacking agent, a lubricant, a glidant, a surfactant, a plasticizer or any combination thereof as is known in the art. Each possibility represents a separate embodiment. The excipient(s) may be added to the pellets for example applied together with the therapeutically effective amount of the proton pump inhibitor, the subcoating, enteric coating, taste-masking layer and/or over-coating and/or the excipient(s) may be admixed with the pellets and the at least one disintegrant to form the compositions disclosed herein. Each possibility represents a separate embodiment.
  • Suitable binders include, but are not limited to, polyvinylpyrrolidone, copovidone, hydroxypropylmethyl cellulose, starch, gelatin, or sugars. Sugars include sucrose, dextrose, molasses, and lactose. Each possibility represents a separate embodiment.
  • Suitable fillers include, but are not limited to, sugars such as lactose, sucrose, mannitol or sorbitol and derivatives therefore (e g amino sugars), ethylcellulose, microcrystalline cellulose, silicified microcrystalline cellulose and the like. Each possibility represents a separate embodiment.
  • Suitable anti-tacking agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, talc, colloidal silicon and the like among others. Each possibility represents a separate embodiment.
  • Suitable lubricants include, but are not limited to, sodium stearyl fumarate, stearic acid, polyethylene glycol or stearates, such as magnesium stearate. Each possibility represents a separate embodiment.
  • A suitable glidant within the scope of the present disclosure is e.g., colloidal silicon dioxide.
  • Suitable surfactants include, but are not limited to, non-ionic, anionic or 15 cationic surfactants. Typically, surfactants may have one lipophilic and one hydrophilic group in the molecule. The surfactant may optionally comprise one or more of soaps, detergents, emulsifiers, dispersing and wetting agents. More specifically, surfactants may optionally comprise, for example, one or more of polysorbate, stearyltriethanolamine, sodium lauryl sulfate, sodium taurocholate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride and glycerin monostearate; and hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose sodium, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose among others. Each possibility represents a separate embodiment.
  • Suitable plasticizers include, but are not limited to, cetyl alcohol, dibutyl sebacate, polyethylene glycol, polypropylene glycol, dibutyl phthalate, diethyl phthalate, triethyl citrate, tributyl citrate, acetylated monoglyceride, acetyl tributyl citrate, triacetin, dimethyl phthalate, benzyl benzoate, butyl and/or glycol esters of fatty acids, refined mineral oils, oleic acid, castor oil, corn oil, camphor, glycerol and sorbitol among others. Each possibility represents a separate embodiment.
  • The orally disintegrating compositions may further comprise additional excipients in the pellets and/or admixed with the pellets and the at least one disintegrant such as stabilizers, tonicity enhancing agents, buffering substances, preservatives, thickeners, diluents, emulsifying agents, wetting agents, flavoring agents, colorants, and complexing agents as is known in the art.
  • Suitable tonicity enhancing agents are selected from ionic and non-ionic agents. For example, ionic compounds include, but are not limited to, alkali metal or alkaline earth metal halides, such as, for example, CaCl2 KBr, KCl, LiCl, NaI, NaBr or NaCl, or boric acid. Non-ionic tonicity enhancing agents are, for example, urea, glycerol, sorbitol, mannitol, propylene glycol, or dextrose. Each possibility represents a separate embodiment.
  • Examples of preservatives are quaternary ammonium salts such as benzalkonium chloride, benzoxonium chloride or polymeric quaternary ammonium salts, alkyl-mercury salts of thiosalicylic acid, such as, for example, thiomersal, phenylmercuric nitrate, phenylmercuric acetate or phenylmercuric borate, parabens, such as, for example, methylparaben or propylparaben, alcohols, such as, for example, chlorobutanol, benzyl alcohol or phenyl ethanol, guanidine derivatives, such as, for example, chlorohexidine or polyhexamethylene biguanide, sorbic acid or ascorbic acid. Each possibility represents a separate embodiment.
  • Suitable diluents include, but are not limited to, dicalcium phosphate dihydrate, sugars, lactose, calcium phosphate, cellulose, kaolin, mannitol, sodium chloride, and dry starch. Each possibility represents a separate embodiment.
  • Suitable wetting agents include, but are not limited to, glycerin, starches, and the like. Each possibility represents a separate embodiment.
  • Suitable buffering substances include, but are not limited to, acidic buffering agents such as short chain fatty acids, citric acid, acetic acid, hydrochloric acid, sulfuric acid and fumaric acid; and basic buffering agents such as tris, sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide and magnesium hydroxide. Each possibility represents a separate embodiment.
  • Suitable colorants include, but are not limited to, alumina (dried aluminum hydroxide), annatto extract, calcium carbonate, canthaxanthin, caramel, β-carotene, cochineal extract, carmine, potassium sodium copper chlorophyllin (chlorophyllin-copper complex), dihydroxyacetone, bismuth oxychloride, synthetic iron oxide, ferric ammonium ferrocyanide, ferric ferrocyanide, chromium hydroxide green, chromium oxide greens, guanine, mica-based pearlescent pigments, pyrophyllite, mica, dentifrices, talc, titanium dioxide, aluminum powder, bronze powder, copper powder, and zinc oxide. Each possibility represents a separate embodiment.
  • Suitable flavoring agents include, but are not limited to, sweeteners such as sucralose and synthetic flavor oils and flavoring aromatics, natural oils, extracts from plants, leaves, flowers, and fruits, and combinations thereof. Exemplary flavoring agents include cinnamon oils, oil of wintergreen, peppermint oils, clover oil, hay oil, anise oil, eucalyptus, vanilla, citrus oil such as lemon oil, orange oil, grape and grapefruit oil, and fruit essences including apple, peach, pear, strawberry, raspberry, cherry, plum, pineapple, and apricot. Each possibility represents a separate embodiment.
  • In specific embodiments, the orally disintegrating composition comprises: (a) inert seeds in an amount of about 2% to about 10% by weight of the total composition; (b) a proton pump inhibitor in an amount of about 3% to about 9% by weight of the total composition; (c) a subcoating layer in an amount of about 5% to about 15% by weight of the total composition; (d) an enteric coating in an amount of about 10% to about 25% by weight of the total composition; (e) at least one disintegrant in an amount of about 2% to about 15% by weight of the total composition; and (f) optionally one or more additional excipients selected from a binder, a filler, an anti-tacking agent, an alkalizing agent, a lubricant, a glidant, a surfactant, a plasticizer or any combination thereof in an amount of not more than about 30% by weight of the total composition, wherein presence of all components add to 100%. In certain embodiments, the orally disintegrating composition comprises at least one alkalizing agent in an amount of about 1% to about 5% by weight of the total composition typically admixed with the proton pump inhibitor.
  • In some embodiments, the orally disintegrating composition is an orally disintegrating tablet that comprises:
      • enteric coated active cores that include inert seeds, a drug coating layer, a subcoating layer, an enteric coating layer, and optionally a taste-masking layer and/or an over-coating layer;
        • the inert seeds comprise a filler, e.g. sugar spheres and/or microcrystalline cellulose particles;
        • the drug coating layer covering the inert seeds comprises a proton-pump inhibitor, e.g. lansoprazole; an alkalizing agent, e.g. meglumine; a binder, e.g. hydroxypropylmethyl cellulose (HPMC) and/or polyvinylpyrrolidone (PVP); and optionally a surfactant, e.g. polysorbate; and/or a filler, e.g. mannitol;
        • the subcoating layer covering the drug coating layer comprises a binder, e.g. hydroxypropylmethyl cellulose (HPMC) and/or polyvinylpyrrolidone (PVP); an anti-tacking agent, e.g. talc; and optionally a surfactant, e.g. polysorbate and/or a filler, e g mannitol;
        • the enteric coating layer covering the subcoating layer comprises one or more enteric coating polymers, e.g. hydroxypropyl methylcellulose phthalate (HPMCP); an anti-tacking agent, e.g. talc; a plasticizer, e.g. cetyl alcohol and/or triethyl citrate; and optionally a colorant, e.g. titanium dioxide;
        • the optional taste-masking layer covering the enteric coating comprises a taste-masking polymer, e.g. a methacrylate-based copolymer; and a gildant, e.g. colloidal silicon dioxide;
        • the optional over-coating layer covering the enteric coating or the taste-masking layer comprises a binder, e.g. hydroxypropylmethyl cellulose (HPMC) and/or polyvinylpyrrolidone (PVP); an anti-tacking agent, e.g. talc; and optionally a surfactant, e.g. polysorbate and/or a filler, e g mannitol; and
      • one or more disintegrants, e.g. crospovidone; and optionally one or more preservatives, e.g. ascorbic acid; one or more flavoring agents, e.g. strawberry flavor; and/or one or more lubricants, e.g. sodium stearyl fumarate; blended with the enteric coated active cores and compressed into a tablet.
  • The orally disintegrating compositions can be manufactured using conventional processes as is known in the art such as, but not limited to, spheronization, milling, de-agglomeration, precipitation, and/or crystallization. Each possibility represents a separate embodiment. Exemplary method of preparing an orally disintegrating tablet (ODT) according to the principles disclosed herein comprises the following steps: (a) applying a dispersion or solution of a proton pump inhibitor and optionally a pharmaceutically acceptable excipient comprising an alkalizing agent onto a plurality of inert seeds to obtain active cores; (b) optionally applying a subcoating onto the active cores; (c) applying an enteric coating onto the active cores obtained in step (a) or (b); (d) optionally applying a taste-masking layer and/or an over-coating layer onto the enteric coated active cores obtained in step (c); (e) blending the enteric coated active cores obtained in step (c) or (d) with particles comprising at least one excipient comprising a disintegrant; and (f) compressing the mixture obtained in step (e) into an orally disintegrating tablet as is known in the art. Optionally, the method of preparing the orally disintegrating composition involves additional processing steps including, but not limited to heating, drying, sieving, lubricating and packaging as is known in the art. The various coatings may be applied to the seeds/cores in the form of an organic or aqueous solution or dispersion, with 25 each possibility representing a separate embodiment. The application of the coatings (e.g. drug layer, subcoating, enteric coating, taste-masking, over-coating etc.) may be performed as is known in the art using standard equipment such as, but not limited to, a fluid bed coater (e.g. a Wurster coater or a rotary bed coater), extruder, or spray dryer. When using spray coating technique, various apparatus may be employed including, but not limited to, rotary disks, single-fluid high pressure swirl nozzles, two-fluid nozzles or ultrasonic nozzles, Single stage dryer, Two stage dryer, Horizontal dryer, Fluidized spray coater (e.g., TURBOJET), Multi stage drier, Compact spray dryer, Integrated filter drier, FILTERMAT® dryer, including, e.g., Glatt, Gea-Niro, BWI Malin, and Allgaier among others, with each possibility representing a separate embodiment.
  • The orally disintegrating pharmaceutical composition is useful for inhibiting gastric acid secretion. In certain embodiments, the orally disintegrating pharmaceutical composition is useful in the treatment of gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) or erosive esophagitis, with each possibility representing a separate embodiment.
  • Accordingly, there is provided a method of inhibiting gastric acid secretion in the treatment of a disease or disorder selected from gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) and erosive esophagitis, the method comprising administering to a subject in need thereof the orally disintegrating composition disclosed herein. In some embodiments, the method further comprises the disintegration of the composition in the oral cavity of the subject to provide a plurality of particles comprising enteric coated active cores as described herein, the method further comprises the release of a majority of the proton-pump inhibitor from the enteric coated active cores in the upper intestine.
  • The subject in need thereof is typically a mammal, preferably a human. The orally disintegrating composition may be administered in a solid dosage form to be placed on the tongue (lingual administration), or under the tongue (sublingual administration), or applied to the buccal mucosa (buccal administration). Lingual administration typically stimulates saliva generation, which enhances disintegration of the composition. In some embodiments, the composition is a dosage form suitable for forming a suspension of undissolved particles in saliva, which can then be swallowed, allowing for absorption of the active ingredient in the GI tract, generally in the upper intestine. The amount of a composition to be administered depends on various factors including the subject being treated (age and gender) and the severity of the disease, and can be determined by the judgment of the prescribing physician. Because of patient-to-patient variability, dosages are a guideline only and the physician may adjust doses of the compounds to achieve the level of effective treatment that the physician considers appropriate for the patient. In considering the degree of treatment desired, the physician must balance a variety of factors such as the age of the patient and the presence of other diseases or conditions. The orally disintegrating compositions may contain any dosage of the proton pump inhibitor, for example from about 2 mg to about 50 mg of the active ingredient such as, but not limited to, 5 mg, 10 mg, 20 mg, 30 mg or 40 mg, with each possibility representing a separate embodiment.
  • The term “therapeutically effective amount” or “an effective amount” as used herein refers to a quantity of a compound which is sufficient to provide a beneficial effect to the subject to which the compound is administered. The effective amount, according to the principles disclosed herein can be determined by any one of ordinary skill in the art and can be tested on various models both in vitro and in vivo.
  • The term “treating” as used herein refers to stopping or slowing down the progression of the disease. The term “treating” further includes the reduction in the occurrence of various symptoms associated with gastric acid secretion.
  • As used herein and in the appended claims, the term “about” refers to ±10%.
  • As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a layer” includes a plurality of such layers and equivalents thereof known to those skilled in the art, and so forth. It should be noted that the term “and” or the term “or” are generally employed in its sense including “and/or” unless the context clearly dictates otherwise.
  • The following examples are presented in order to more fully illustrate some embodiments of the invention. They should, in no way be construed, however, as limiting the broad scope of the invention. One skilled in the art can readily devise many variations and modifications of the principles disclosed herein without departing from the scope of the invention.
  • EXAMPLES: Example 1
  • An orally disintegrating tablet was prepared as follows: Inert sugar spheres or microcrystalline cellulose particles were coated with a drug layer containing 15, 15.5 or 30 mg lansoprazole and typically further containing a binder (e.g. hydroxypropyl methylcellulose, i.e. HPMC or hypromellose) and an alkalizing agent (e.g. meglumine) A subcoating layer containing hypromellose and typically an anti-tacking agent (e.g. talc), and an enteric coating layer containing enteric polymer such as hypromellose phthalate, hypromellose acetate succinate or metacrylic acid copolymer and typically further containing a plasticizer (e.g. triethyl citrate) and an anti-tacking agent (e.g. talc) were then sequentially applied. An over-coating layer containing polyvinyl pyrrolidone was optionally applied. The enteric coated active cores were blended with a mixture of powders containing crospovidone, Pharmaburst®, microcrystalline cellulose or croscarmellose sodium as disintegrant, lubricated (e.g. with sodium stearyl fumarate) and compressed into orally disintegrating tablets.
  • Exemplary formulations of the present disclosure are outlined in Tables 1-5 below:
  • TABLE 1
    Substance Mg/tab
    Lansoprazole 30.0
    Sugar Spheres 42.4
    Mannitol fine 33.2
    Meglumine 9.4
    Polysorbate (Tween-80) 9.8
    Hypromellose (HPMC E5) 36.7
    Talc micronized 9.5
    Hypromellose Phthalate (HP50) 54.8
    Cetyl alcohol 9.8
    Triethyl citrate (TEC) 4.5
    Titanium dioxide 1.1
    Pharmaburst ® 203.0
    Crospovidone (Kollidon CL) 16.1
    Sucralose micronized 7.2
    Ascorbic acid 5.2
    Pulv. mint extra 1013044 flavor 3.6
    Silica colloidal anhydrous 2.4
    Sodium stearyl fumarate 3.6
    Total 482.3
  • TABLE 2
    Substance Mg/tab
    Lansoprazole 15.5
    Microcrystalline cellulose (MCC) 62.5
    particles
    Polysorbate 80 (Tween 80) 6.1
    Lactose DCL11 19.9
    Hydroxypropyl methylcellulose (HPMC) 19.9
    2910/5 (Methocel E5)
    Meglumine 5.2
    Hydroxypropyl methylcellulose acetate 149.8
    succinate
    Polyvinylpyrrolidone (PVP) 7.1
    Polyethylene glycol (PEG) 4.5
    Croscarmellose sodium 7.1
    Mannitol 50.8
    Sorbitol 16.7
    Microcrystalline cellulose (Avicel) 31.6
    Acesulfame K 3.3
    Total 400
  • TABLE 3
    Substance Mg/tab
    Lansoprazole 30.0
    Sugar Spheres 42.0
    Hypromellose (HPMC E5) 36.6
    Mannitol fine 33.0
    Meglumine 9.2
    Polysorbate (Tween-80) 9.4
    Talc micronized 12.1
    Hypromellose Phthalate (HP555) 80.0
    Cetyl alcohol 14.4
    Triethyl citrate (TEC) 6.7
    Titanium dioxide 1.6
    Pharmaburst ® 194.0
    Crospovidone 20.6
    Copovidone Fine 12.0
    Sucralose 0.9
    Ascorbic Acid 4.7
    Strawberry flavor 2.4
    Colloidal Silicon Dioxide 2.8
    Sodium Stearyl Fumarate 3.6
    Total 516
  • TABLE 4
    Substance Mg/tab
    Lansoprazole 15.0
    Sugar Spheres 21.0
    Mannitol fine 16.5
    Meglumine 4.6
    Polysorbate (Tween-80) 4.7
    Hypromellose (HPMC E5) 18.3
    Talc micronized 5.1
    Hypromellose Phthalate (HP55) 30.2
    Cetyl alcohol 5.5
    Triethyl citrate (TEC) 2.5
    Titanium dioxide 0.6
    Pharmaburst ® 108.5
    Crospovidone (Kollidon CL) 8.3
    Sucralose micronized 0.5
    Ascorbic acid 2.3
    Strawberry AP52311 1.2
    Silica colloidal anhydrous 1.3
    Sodium stearyl fumarate 1.9
    Total 248
  • TABLE 5
    Substance Mg/tab
    Lansoprazole 30.0
    Sugar Spheres 44.2
    Mannitol fine 32.5
    Meglumine 9.2
    Polysorbate (Tween-80) 9.6
    Hypromellose (HPMC E5) 36.0
    Talc micronized 16.9
    Hypromellose Phthalate (HP50) 131.4
    Cetyl alcohol 23.6
    Triethyl citrate (TEC) 10.7
    Titanium dioxide 2.7
    Pharmaburst ® 291.9
    Crospovidone (Kollidon CL) 22.9
    Sucralose micronized 10.4
    Ascorbic acid 7.6
    Pulv. mint extra 1013044 flavor 5.2
    Silica colloidal anhydrous 3.5
    Sodium stearyl fumarate 5.2
    Total 693.5
  • Example 2
  • Friability and disintegration of an exemplary orally disintegrating tablet were tested according to US Pharmacopeia <1216> and <701>, respectively. The average results are presented in Table 6:
  • TABLE 6
    Acceptable
    Response ranges Results
    Friability (%) NMT 1.0% 0% 0% 0.22%
    Disintegration NMT 60 sec 23 seconds 30 seconds 17 seconds
    (sec)
  • Example 3
  • An in vitro alcohol-induced dose dumping study was conducted on an exemplary orally disintegrating tablet using 0.1N HCl with 5%, 20% and 40% (v/v) of ethanol (App. 2 (paddles); 100 rpm; 500 ml). Data was collected every 15 minutes for a total of 1 hour.
  • The drug release at each level of alcohol (added to 0.1N HCl) was tested on an orally disintegrating tablet containing 15 mg lansoprazole. Control testing was performed using Prevacid®24 HR capsules containing 15 mg lansoprazole. The results are depicted in Table 7:
  • TABLE 7
    Drug release
    Time ODT of the present Prevacid ® 24
    Medium (min) disclosure HR capsules
    HCl 0.1N + 15 2% 4%
    5% ethanol 30 3% 5%
    45 4% 5%
    60 5% 5%
    HCl 0.1N + 15 1% 1%
    20% ethanol 30 3% 2%
    45 5% 3%
    60 13%  8%
    HCl 0.1N + 15 19%  94% 
    40% ethanol 30 63%  107% 
    45 96%  111% 
    60 104%  114% 
  • While drug release at 5% and 20% alcohol levels were comparable, the formulation of the present disclosure showed significant difference of drug release at 40% ethanol with almost 5 times less drug release at 15 minutes.
  • The drug release of the formulation was further tested after 7 months at 25° C. and 60% Relative Humidity using 0.1N HCl with 40% ethanol Control testing of the Prevacid®24 HR capsules was also performed. The results are depicted in Table 8:
  • TABLE 8
    Drug release
    Time ODT of the present Prevacid ® 24
    Medium (min) disclosure HR capsules
    HCl 0.1N + 15 10%  84%
    40% ethanol 30 74% 121%
    45 98% 125%
    60 102%  122%
  • It is noted that after 30 minutes at 0.1N HCl and 40% (v/v) ethanol the drug release of the control Prevacid®24HR capsules exceeds 100%. It is believed that these results may stem from the instability of lansoprazole in the tested medium (Ethanolic HCl). Nonetheless, the results are considered indicative for comparison with the composition of the disclosure.
  • Accordingly, the composition of the present disclosure provides improved resistance to alcohol-induced dose dumping which is maintained even after storage for 7 months.
  • While certain embodiments of the invention have been illustrated and described, it will be clear that the invention is not limited to the embodiments described herein. Numerous modifications, changes, variations, substitutions and equivalents will be apparent to those skilled in the art without departing from the spirit and scope or the present invention as described by the claims, which follow.

Claims (24)

1. An orally disintegrating composition comprising (i) enteric coated active cores comprising a therapeutically effective amount of a proton pump inhibitor; and (ii) at least one pharmaceutically acceptable excipient comprising a disintegrant, wherein the composition substantially disintegrates in the oral cavity of a subject in need thereof within less than about 60 seconds after administration, and wherein in vitro drug release in 15 minutes at 0.1N HCl and 40% ethanol is less than about 20%.
2. The orally disintegrating composition of claim 1, wherein after administration the composition provides a release profile of the proton pump inhibitor which is substantially the same as the release profile of a non-orally disintegrating composition in the absence of alcohol.
3. The orally disintegrating composition of claim 1, wherein after administration the composition provides a release profile of the proton pump inhibitor in the presence of up to 40% ethanol which is substantially the same as the release profile of the composition in the absence of alcohol.
4. The orally disintegrating composition of claim 1, wherein after administration the composition results in a Cmax or AUC substantially equivalent to a non-orally disintegrating composition in the absence of alcohol.
5. The orally disintegrating composition of claim 1 in the form of an orally disintegrating tablet.
6. The orally disintegrating composition of claim 5, wherein the tablet is characterized by hardness of at least 20 Newtons.
7. The orally disintegrating composition of claim 1, wherein the proton pump inhibitor comprises lansoprazole, omeprazole, pantoprazole, leminoprazole, perprazole, rabeprazole, or a pharmaceutically acceptable salt thereof.
8. The orally disintegrating composition of claim 1, wherein the active cores comprise a plurality of inert seeds coated with a therapeutically effective amount of a proton pump inhibitor.
9. The orally disintegrating composition of claim 8, wherein the inert seeds comprise sugar spheres.
10. The orally disintegrating composition of claim 1, wherein the active cores further comprise at least one excipient selected from a binder, a filler, a surfactant, and a combination thereof.
11. The orally disintegrating composition of claim 1, wherein the active cores further comprise an alkalizing agent.
12. The orally disintegrating composition of claim 1, wherein the enteric coated active cores comprise one or more enteric polymers over the active cores, wherein the enteric polymer is selected from the group consisting of cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinyl acetate phthalate, cellulose acetate trimellitate, polymethacrylic acid, polymethyl methacrylate, and polyethyl methacrylate.
13. The orally disintegrating composition of claim 1, wherein the enteric coated active cores comprise a subcoating layer over the active cores and an enteric coating over the subcoating layer.
14. The orally disintegrating composition of claim 13, wherein the subcoating layer comprises at least one of hydroxypropyl methylcellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol.
15. The orally disintegrating composition of claim 1, wherein the disintegrant is selected from the group consisting of crospovidone, croscarmelose sodium, a sugar alcohol, a cellulose derivative, cross-linked derivatives of starch, pregelatinized starch and a combination or mixture thereof.
16. The orally disintegrating composition of claim 15, wherein the sugar alcohol is selected from the group consisting of mannitol, sorbitol, maltitol, xylitol, and a combination or mixture thereof.
17. The orally disintegrating composition of claim 15, wherein the cellulose derivative is selected from the group consisting of methylcellulose, cross-linked carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose, low substituted hydroxypropylcellulose, microcrystalline cellulose and a combination or mixture thereof.
18. The orally disintegrating composition of claim 15, wherein the cross-linked derivatives of starch comprise sodium starch glycolate.
19. The orally disintegrating composition of claim 1, comprising:
(a) inert seeds in an amount of about 2% to about 10% by weight of the total composition;
(b) a proton pump inhibitor in an amount of about 3% to about 9% by weight of the total composition;
(c) a subcoating layer in an amount of about 5% to about 15% by weight of the total composition;
(d) an enteric coating in an amount of about 10% to about 25% by weight of the total composition;
(e) at least one disintegrant in an amount of about 2% to about 15% by weight of the total composition; and
(f) optionally one or more excipients selected from a binder, a filler, an anti-tacking agent, an alkalizing agent, a lubricant, a glidant, a surfactant, a plasticizer or a combination thereof in an amount of not more than about 30% by weight of the total composition,
wherein presence of all components add to 100% (w/w).
20. The orally disintegrating composition of claim 19, further comprising at least one alkalizing agent in an amount of about 1% to about 5% by weight of the total composition.
21. (canceled)
22. (canceled)
23. A method of inhibiting gastric acid secretion, the method comprising administering to a subject in need thereof the orally disintegrating composition of claim 1.
24. A method of treating a disease or disorder selected from gastroesophageal reflux disease, gastritis, peptic ulcers (duodenal and gastric) and erosive esophagitis, the method comprising administering to a subject in need thereof the orally disintegrating composition of claim 1.
US15/118,594 2015-04-29 2016-04-21 Orally disintegrating compositions Abandoned US20170042806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/118,594 US20170042806A1 (en) 2015-04-29 2016-04-21 Orally disintegrating compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562154250P 2015-04-29 2015-04-29
US15/118,594 US20170042806A1 (en) 2015-04-29 2016-04-21 Orally disintegrating compositions
PCT/IL2016/050425 WO2016174664A1 (en) 2015-04-29 2016-04-21 Orally disintegrating compositions

Publications (1)

Publication Number Publication Date
US20170042806A1 true US20170042806A1 (en) 2017-02-16

Family

ID=57199110

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/118,594 Abandoned US20170042806A1 (en) 2015-04-29 2016-04-21 Orally disintegrating compositions
US15/238,109 Active US11077055B2 (en) 2015-04-29 2016-08-16 Orally disintegrating compositions
US17/389,612 Active 2037-02-18 US11986554B2 (en) 2015-04-29 2021-07-30 Orally disintegrating compositions

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/238,109 Active US11077055B2 (en) 2015-04-29 2016-08-16 Orally disintegrating compositions
US17/389,612 Active 2037-02-18 US11986554B2 (en) 2015-04-29 2021-07-30 Orally disintegrating compositions

Country Status (4)

Country Link
US (3) US20170042806A1 (en)
EP (1) EP3288556A4 (en)
IL (1) IL255048B (en)
WO (1) WO2016174664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835488B2 (en) 2016-06-16 2020-11-17 Dexcel Pharma Technologies Ltd. Stable orally disintegrating pharmaceutical compositions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170042806A1 (en) 2015-04-29 2017-02-16 Dexcel Pharma Technologies Ltd. Orally disintegrating compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567201A2 (en) * 1986-04-30 1993-10-27 Aktiebolaget Hässle Vehicles for oral administration of a specific pharmaceutically active acid labile substance
US5385739A (en) * 1992-06-16 1995-01-31 Ethypharm Stable compositions of gastroprotected omerprazole microgranules and process for the production thereof
US6183776B1 (en) * 1996-01-08 2001-02-06 Astra Aktiebolag Oral pharmaceutical dosage forms comprising a proton pump inhibitor and an antacid agent or alginate
US20050106237A1 (en) * 2002-01-23 2005-05-19 Patrick Wuthrich Orodispersible pharmaceutical composition comprising perindopril
US20130202688A1 (en) * 2010-05-04 2013-08-08 Sunilendu Bhushan Roy Delayed release oral disintegrating pharmaceutical compositions of lansoprazole
US20140248341A1 (en) * 2010-03-09 2014-09-04 Alkermes Pharma Ireland Limited Alcohol resistant enteric pharmaceutical compositions

Family Cites Families (382)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2757124A (en) 1952-03-08 1956-07-31 Merck & Co Inc Tablets and method of producing same
SE416649B (en) 1974-05-16 1981-01-26 Haessle Ab PROCEDURE FOR THE PREPARATION OF SUBSTANCES WHICH PREVENT Gastric acid secretion
SE7804231L (en) 1978-04-14 1979-10-15 Haessle Ab Gastric acid secretion
GB2067900B (en) 1980-01-25 1983-06-22 Ddsa Pharmaceuticals Ltd Medicinal tablets
US4359465A (en) 1980-07-28 1982-11-16 The Upjohn Company Methods for treating gastrointestinal inflammation
US4472409A (en) 1981-11-05 1984-09-18 Byk Gulden Lomberg Chemische Fabrik Gesellschaft Mit Beschrankter Haftung 2-Pyridylmethyl thio(sulfinyl)benzimidazoles with gastric acid secretion inhibiting effects
SE8301182D0 (en) 1983-03-04 1983-03-04 Haessle Ab NOVEL COMPOUNDS
DE3314003A1 (en) 1983-04-18 1984-10-18 Boehringer Ingelheim KG, 6507 Ingelheim DIVISIBLE TABLET WITH DELAYED ACTIVE SUBSTANCE RELEASE AND METHOD FOR THE PRODUCTION THEREOF
US4749575A (en) 1983-10-03 1988-06-07 Bio-Dar Ltd. Microencapsulated medicament in sweet matrix
CH658188A5 (en) 1984-03-23 1986-10-31 Ciba Geigy Ag STORAGE STABLE QUICK DISASSEMBLING PHARMACEUTICAL PRESSELS.
JPS6150978A (en) 1984-08-16 1986-03-13 Takeda Chem Ind Ltd Pyridine derivative and preparation thereof
IE58110B1 (en) 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
US4874614A (en) 1985-03-25 1989-10-17 Abbott Laboratories Pharmaceutical tableting method
US4738975A (en) 1985-07-02 1988-04-19 Takeda Chemical Industries, Ltd. Pyridine derivatives, and use as anti-ulcer agents
US6749864B2 (en) 1986-02-13 2004-06-15 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
US5433959A (en) 1986-02-13 1995-07-18 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
CA1327010C (en) 1986-02-13 1994-02-15 Tadashi Makino Stabilized solid pharmaceutical composition containing antiulcer benzimidazole compound and its production
SE457326B (en) 1986-02-14 1988-12-19 Lejus Medical Ab PROCEDURES FOR PREPARING A QUICK SUBSTANTIAL CANDLES CONTAINING BLA MICROCRISTALLIN CELLULOSA
GB2189699A (en) 1986-04-30 1987-11-04 Haessle Ab Coated acid-labile medicaments
IT1200178B (en) 1986-07-23 1989-01-05 Alfa Farmaceutici Spa GALENIC FORMULATIONS WITH SCHEDULED SALE CONTAINING DRUGS WITH ANTI-FLOGISTIC ACTIVITY
US4710384A (en) 1986-07-28 1987-12-01 Avner Rotman Sustained release tablets made from microcapsules
FI90544C (en) 1986-11-13 1994-02-25 Eisai Co Ltd Process for Preparation as Drug Useful 2-Pyridin-2-yl-methylthio- and sulfinyl-1H-benzimidazole derivatives
US5026560A (en) 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
EP0281200B1 (en) 1987-03-02 1994-01-19 Yamanouchi Europe B.V. Pharmaceutical composition, pharmaceutical granulate and process for their preparation
GB8724763D0 (en) 1987-10-22 1987-11-25 Aps Research Ltd Sustained-release formulations
GB8809421D0 (en) 1988-04-21 1988-05-25 Fordonal Sa Antacid compositions with prolonged gastric residence time
NZ230763A (en) 1988-09-27 1991-10-25 Takeda Chemical Industries Ltd Production of granules having a core by spraying the cores with a dispersion of hydroxypropylcellulose, optionally incorporating an active ingredient
US5073374A (en) 1988-11-30 1991-12-17 Schering Corporation Fast dissolving buccal tablet
CA2007181C (en) 1989-01-06 1998-11-24 Angelo Mario Morella Sustained release pharmaceutical composition
EP0382489B1 (en) 1989-02-10 1994-11-17 Takeda Chemical Industries, Ltd. Use of benzimidazole derivatives as antibacterial agents
US5006344A (en) 1989-07-10 1991-04-09 E. R. Squibb & Sons, Inc. Fosinopril tablet formulations
US5013557A (en) 1989-10-03 1991-05-07 Warner-Lambert Company Taste masking compositions comprising spray dried microcapsules containing sucralfate and methods for preparing same
US5215756A (en) 1989-12-22 1993-06-01 Gole Dilip J Preparation of pharmaceutical and other matrix systems by solid-state dissolution
KR930000861B1 (en) 1990-02-27 1993-02-08 한미약품공업 주식회사 Omeprazole rectal composition
IT1246383B (en) 1990-04-17 1994-11-18 Eurand Int METHOD FOR MASKING THE TASTE OF DRUGS
IE61651B1 (en) 1990-07-04 1994-11-16 Zambon Spa Programmed release oral solid pharmaceutical dosage form
KR930006431B1 (en) 1990-10-11 1993-07-16 재단법인 한국화학연구소 Microcapsulation of drugs
US5312824A (en) 1990-10-17 1994-05-17 Takeda Chemical Industries, Ltd. Certain 2-[(4-difluoromethoxy-2-pyridyl)-methylthio or methylsulfinyl-5-benzimidazoles useful for treating peptic ulcers
US5232706A (en) 1990-12-31 1993-08-03 Esteve Quimica, S.A. Oral pharmaceutical preparation containing omeprazol
US5244670A (en) 1991-04-04 1993-09-14 The Procter & Gamble Company Ingestible pharmaceutical compositions for treating upper gastrointestinal tract distress
YU48263B (en) 1991-06-17 1997-09-30 Byk Gulden Lomberg Chemische Fabrik Gmbh. PROCEDURE FOR OBTAINING PANTOPRAZOLE PHARMACEUTICAL PRODUCT
ATE156707T1 (en) 1991-06-21 1997-08-15 Ilsan Ilac Ve Hammaddeleri San NEW GALENIC PROCESS FOR PELLETS CONTAINING OMEPRAZOLE
US5464632C1 (en) 1991-07-22 2001-02-20 Prographarm Lab Rapidly disintegratable multiparticular tablet
DE69231281T2 (en) 1991-12-17 2001-03-01 Biovail Technologies Ltd.(N.D.Ges.D.Staates Delaware), Chantilly COMPOSITION AND METHOD FOR ULCUS PREVENTION AND TREATMENT
US5968551A (en) 1991-12-24 1999-10-19 Purdue Pharma L.P. Orally administrable opioid formulations having extended duration of effect
TW224049B (en) 1991-12-31 1994-05-21 Sunkyong Ind Ltd
US6231881B1 (en) 1992-02-24 2001-05-15 Anton-Lewis Usala Medium and matrix for long-term proliferation of cells
SE9200858L (en) 1992-03-20 1993-09-21 Kabi Pharmacia Ab Method for producing delayed release pellets
US5582837A (en) 1992-03-25 1996-12-10 Depomed, Inc. Alkyl-substituted cellulose-based sustained-release oral drug dosage forms
US5518730A (en) 1992-06-03 1996-05-21 Fuisz Technologies Ltd. Biodegradable controlled release flash flow melt-spun delivery system
SE9301489D0 (en) 1993-04-30 1993-04-30 Ab Astra VETERINARY COMPOSITION
SE9302395D0 (en) 1993-07-09 1993-07-09 Ab Astra NEW PHARMACEUTICAL FORMULATION
SE9302396D0 (en) 1993-07-09 1993-07-09 Ab Astra A NOVEL COMPOUND FORM
CA2173506C (en) 1993-10-12 2006-05-09 Tomohisa Matsushita Enteric granule-containing tablets
US5554147A (en) 1994-02-01 1996-09-10 Caphco, Inc. Compositions and devices for controlled release of active ingredients
US5505713A (en) 1994-04-01 1996-04-09 Minimed Inc. Indwelling catheter with stable enzyme coating
DE723436T1 (en) 1994-07-08 1997-09-11 Astra Ab DOSAGE FORM IN TABLET FORM COMPOSED FROM SEVERAL UNITS
SE9402431D0 (en) 1994-07-08 1994-07-08 Astra Ab New tablet formulation
SE9402422D0 (en) 1994-07-08 1994-07-08 Astra Ab New beads for controlled release and a pharmaceutical preparation containing the same
GB2290965A (en) 1994-07-11 1996-01-17 Therapicon Srl Multiple layer capsules for drugs
DE69519685T2 (en) 1994-09-30 2001-08-02 Takeda Chemical Industries, Ltd. ORAL MEDICINAL PRODUCT WITH DELAYED DELIVERY OF ACTIVE SUBSTANCES
FR2725623A1 (en) 1994-10-18 1996-04-19 Flamel Tech Sa MEDICINAL AND / OR NUTRITION MICROCAPSULES FOR PER OS ADMINISTRATION
ES2094694B1 (en) 1995-02-01 1997-12-16 Esteve Quimica Sa NEW PHARMACEUTICALLY STABLE FORMULATION OF A COMPOUND OF BENZMIDAZOLE AND ITS PROCESS OF OBTAINING.
SE9500422D0 (en) 1995-02-06 1995-02-06 Astra Ab New oral pharmaceutical dosage forms
SE9500478D0 (en) 1995-02-09 1995-02-09 Astra Ab New pharmaceutical formulation and process
US5708017A (en) 1995-04-04 1998-01-13 Merck & Co., Inc. Stable, ready-to-use pharmaceutical paste composition containing proton pump inhibitors
CH687810A5 (en) 1995-05-24 1997-02-28 Mepha Ag Pellet Formulation with omeprazole.
US5945124A (en) 1995-07-05 1999-08-31 Byk Gulden Chemische Fabrik Gmbh Oral pharmaceutical composition with delayed release of active ingredient for pantoprazole
US5750145A (en) 1995-07-28 1998-05-12 Bristol-Myers Squibb Company Stable gelatin coated aspirin tablets
US5824339A (en) 1995-09-08 1998-10-20 Takeda Chemical Industries, Ltd Effervescent composition and its production
PT1308159E (en) 1995-09-21 2005-02-28 Pharma Pass Ii Llc PHARMACEUTICAL COMPOSITION CONTAINING AN OMEPRAZOLE LABIL FOR ACIDS AND PROCESS FOR THEIR PREPARATION
US6645988B2 (en) 1996-01-04 2003-11-11 Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
US6489346B1 (en) 1996-01-04 2002-12-03 The Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
US6699885B2 (en) 1996-01-04 2004-03-02 The Curators Of The University Of Missouri Substituted benzimidazole dosage forms and methods of using same
US5840737A (en) 1996-01-04 1998-11-24 The Curators Of The University Of Missouri Omeprazole solution and method for using same
SE512835C2 (en) 1996-01-08 2000-05-22 Astrazeneca Ab Dosage form containing a plurality of units all containing acid labile H + K + ATPase inhibitors
SE9600070D0 (en) 1996-01-08 1996-01-08 Astra Ab New oral pharmaceutical dosage forms
SE9600072D0 (en) 1996-01-08 1996-01-08 Astra Ab New oral formulation of two active ingredients II
US6231888B1 (en) 1996-01-18 2001-05-15 Perio Products Ltd. Local delivery of non steroidal anti inflammatory drugs (NSAIDS) to the colon as a treatment for colonic polyps
IT1282650B1 (en) 1996-02-19 1998-03-31 Jagotec Ag PHARMACEUTICAL TABLET, CHARACTERIZED BY A HIGH INCREASE IN VOLUME IN CONTACT WITH BIOLOGICAL LIQUIDS
US6623759B2 (en) 1996-06-28 2003-09-23 Astrazeneca Ab Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof
US5972389A (en) 1996-09-19 1999-10-26 Depomed, Inc. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter
US5891474A (en) 1997-01-29 1999-04-06 Poli Industria Chimica, S.P.A. Time-specific controlled release dosage formulations and method of preparing same
CN1113649C (en) 1997-03-13 2003-07-09 赫克萨尔股份公司 Stabilization of acid sensitive benzimidazoles with amino acid/cyclodextrin combinations
TW550090B (en) 1997-05-09 2003-09-01 Sage Pharmaceuticals Inc Stable oral pharmaceutical dosage forms for acid-unstable drug
US20010053387A1 (en) 1997-05-23 2001-12-20 Hamied Yusuf Khwaja Benzimidazole pharmaceutical composition and process of prepatation
TW580397B (en) 1997-05-27 2004-03-21 Takeda Chemical Industries Ltd Solid preparation
SE9702000D0 (en) 1997-05-28 1997-05-28 Astra Ab New pharmaceutical formulation
US5910319A (en) 1997-05-29 1999-06-08 Eli Lilly And Company Fluoxetine enteric pellets and methods for their preparation and use
SE9702533D0 (en) 1997-07-01 1997-07-01 Astra Ab New oral formulation
SI9700186B (en) 1997-07-14 2006-10-31 Lek, Tovarna Farmacevtskih In Kemicnih Izdelkov, D.D. Novel pharmaceutical preparation with controlled release of active healing substances
ES2137862B1 (en) 1997-07-31 2000-09-16 Intexim S A ORAL PHARMACEUTICAL PREPARATION INCLUDING A COMPOUND OF ANTI-ULCER ACTIVITY AND PROCEDURE FOR ITS OBTAINING.
US5869098A (en) 1997-08-20 1999-02-09 Fuisz Technologies Ltd. Fast-dissolving comestible units formed under high-speed/high-pressure conditions
CN1277550A (en) 1997-09-11 2000-12-20 尼科梅德丹麦有限公司 Compound composition for improved release of non-steroidal anti-inflammatory drugs (NSAIDs)
WO1999013872A1 (en) 1997-09-17 1999-03-25 Eisai Co., Ltd. Antimicrobials
US6296876B1 (en) 1997-10-06 2001-10-02 Isa Odidi Pharmaceutical formulations for acid labile substances
US6174548B1 (en) 1998-08-28 2001-01-16 Andrx Pharmaceuticals, Inc. Omeprazole formulation
US6602522B1 (en) 1997-11-14 2003-08-05 Andrx Pharmaceuticals L.L.C. Pharmaceutical formulation for acid-labile compounds
US6096340A (en) 1997-11-14 2000-08-01 Andrx Pharmaceuticals, Inc. Omeprazole formulation
AU1671799A (en) 1997-11-28 1999-06-16 Byk Gulden Lomberg Chemische Fabrik Gmbh Medicament preparation in the form of a tablet or pellet for acid-labile active substances
DE19752843C2 (en) 1997-11-28 2003-01-09 Byk Gulden Lomberg Chem Fab Pharmaceutical preparation in tablet or pellet form for pantoprazole and omeprazole
DE69842173D1 (en) 1997-12-08 2011-04-21 Nycomed Gmbh New suppository form with acid-sensitive active ingredient
SE9704869D0 (en) 1997-12-22 1997-12-22 Astra Ab New pharmaceutical formulaton II
SE9704870D0 (en) 1997-12-22 1997-12-22 Astra Ab New pharmaceutical formulation I
FR2774288B1 (en) 1998-01-30 2001-09-07 Ethypharm Sa GASTROPROTEGED OMEPRAZOLE MICROGRANULES, PROCESS FOR OBTAINING AND PHARMACEUTICAL PREPARATIONS
DK173431B1 (en) 1998-03-20 2000-10-23 Gea Farmaceutisk Fabrik As Pharmaceutical formulation comprising a 2 - [[(2-pyridinyl) methyl] sulfinyl] benzimidazole with anti-ulcer activity and progress
US6372254B1 (en) 1998-04-02 2002-04-16 Impax Pharmaceuticals Inc. Press coated, pulsatile drug delivery system suitable for oral administration
US6270804B1 (en) 1998-04-03 2001-08-07 Biovail Technologies Ltd. Sachet formulations
EP1004305B1 (en) 1998-04-20 2011-09-28 Eisai R&D Management Co., Ltd. Stabilized compositions containing benzimidazole-type compounds
ES2559766T3 (en) 1998-05-18 2016-02-15 Takeda Pharmaceutical Company Limited Disintegrable tablets in the mouth
ZA9810765B (en) 1998-05-28 1999-08-06 Ranbaxy Lab Ltd Stable oral pharmaceutical composition containing a substituted pyridylsulfinyl benzimidazole.
KR100501022B1 (en) 1998-07-28 2005-07-18 다나베 세이야꾸 가부시키가이샤 Preparation capable of releasing drug at target site in intestine
DE69924381T2 (en) 1998-07-28 2006-04-20 Takeda Pharmaceutical Co. Ltd. EASILY FALLING SOLID PREPARATION
US6733778B1 (en) * 1999-08-27 2004-05-11 Andrx Pharmaceuticals, Inc. Omeprazole formulation
US8231899B2 (en) 1998-09-10 2012-07-31 Nycomed Danmark Aps Quick release pharmaceutical compositions of drug substances
US6139875A (en) 1998-09-29 2000-10-31 Eastman Chemical Company Aqueous enteric coating composition and low gastric permeability enteric coating
KR100314351B1 (en) 1998-10-01 2002-03-21 민경윤 Enteric preparation of benzimidazole derivatives and preparation method thereof
US6165512A (en) 1998-10-30 2000-12-26 Fuisz Technologies Ltd. Dosage forms containing taste masked active agents
SE9803772D0 (en) 1998-11-05 1998-11-05 Astra Ab Pharmaceutical formulation
PT1131316E (en) 1998-11-18 2004-10-29 Astrazeneca Ab IMPROVED CHEMICAL PROCESS AND PHARMACEUTICAL FORMULA
SE9804003D0 (en) 1998-11-23 1998-11-23 Astra Ab A method of producing drug particles
SE9804314D0 (en) 1998-12-14 1998-12-14 Astra Ab New pharmaceutical formulation
JP2002535353A (en) 1999-01-29 2002-10-22 ロザン ファルマ ゲゼルシャフトミットベシュレンクテルハフツンク Pharmaceutical composition
US6294192B1 (en) 1999-02-26 2001-09-25 Lipocine, Inc. Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6383471B1 (en) 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
FR2793688B1 (en) 1999-05-21 2003-06-13 Ethypharm Lab Prod Ethiques GASTROPROTEGED MICROGRANULES, PROCESS FOR OBTAINING AND PHARMACEUTICAL PREPARATIONS
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
CA2374760A1 (en) 1999-06-18 2000-12-28 Takeda Chemical Industries, Ltd. Quickly disintegrating solid preparations
SE9902386D0 (en) 1999-06-22 1999-06-22 Astra Ab New formulation
IL130602A0 (en) 1999-06-22 2000-06-01 Dexcel Ltd Stable benzimidazole formulation
US6458383B2 (en) 1999-08-17 2002-10-01 Lipocine, Inc. Pharmaceutical dosage form for oral administration of hydrophilic drugs, particularly low molecular weight heparin
US6982281B1 (en) 2000-11-17 2006-01-03 Lipocine Inc Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
US6500459B1 (en) 1999-07-21 2002-12-31 Harinderpal Chhabra Controlled onset and sustained release dosage forms and the preparation thereof
US6428809B1 (en) 1999-08-18 2002-08-06 Microdose Technologies, Inc. Metering and packaging of controlled release medication
ES2168043B1 (en) 1999-09-13 2003-04-01 Esteve Labor Dr PHARMACEUTICAL FORM ORAL SOLID MODIFIED RELEASE CONTAINING A COMPOSITE OF BENCIMIDAZOL LABIL IN THE MIDDLE ACID.
US6228400B1 (en) 1999-09-28 2001-05-08 Carlsbad Technology, Inc. Orally administered pharmaceutical formulations of benzimidazole derivatives and the method of preparing the same
DE60016617T2 (en) 1999-10-01 2005-04-28 Natco Pharma Ltd., Banjara Hills NON-ADVENTURES BELLY SOAP CAPSULES
US20040202714A1 (en) 1999-10-12 2004-10-14 Daiichi Suntory Pharma Co., Ltd. Oral pharmaceutical composition
US6720001B2 (en) 1999-10-18 2004-04-13 Lipocine, Inc. Emulsion compositions for polyfunctional active ingredients
SE9903831D0 (en) 1999-10-22 1999-10-22 Astra Ab Formulation of substituted benzimidazoles
DE19959419A1 (en) 1999-12-09 2001-06-21 Ratiopharm Gmbh Stable pharmaceutical preparations comprising a benzimidazole and process for their preparation
EP1108425B1 (en) 1999-12-16 2005-06-08 Laboratorio Medinfar-Produtos Farmaceuticos, S.A. New stable multi-unitary pharmaceutical preparations containing substituted benzimidazoles
EP2517710B1 (en) 2000-02-08 2015-03-25 Euro-Celtique S.A. Tamper-resistant oral opioid agonist formulations
US6627223B2 (en) 2000-02-11 2003-09-30 Eurand Pharmaceuticals Ltd. Timed pulsatile drug delivery systems
US6346269B1 (en) 2000-05-08 2002-02-12 Standard Chem. & Pharm. Co., Ltd. Method for preparing an oral formulation containing acid-sensitive drugs and oral formulation made thereby
US6316029B1 (en) 2000-05-18 2001-11-13 Flak Pharma International, Ltd. Rapidly disintegrating solid oral dosage form
US6881420B2 (en) 2000-06-23 2005-04-19 Teva Pharmaceutical Industries Ltd. Compositions and dosage forms for gastric delivery of irinotecan and methods of treatment that use it to inhibit cancer cell proliferation
US7223421B2 (en) 2000-06-30 2007-05-29 Mcneil-Ppc, Inc. Teste masked pharmaceutical particles
TWI232761B (en) 2000-07-01 2005-05-21 Pharmaceutical Ind Tech & Dev Capsule preparation for oral administration and the preparation method thereof
US6375982B1 (en) 2000-07-05 2002-04-23 Capricorn Pharma, Inc. Rapid-melt semi-solid compositions, methods of making same and method of using same
US6544556B1 (en) 2000-09-11 2003-04-08 Andrx Corporation Pharmaceutical formulations containing a non-steroidal antiinflammatory drug and a proton pump inhibitor
US6344215B1 (en) 2000-10-27 2002-02-05 Eurand America, Inc. Methylphenidate modified release formulations
MY137726A (en) 2000-11-22 2009-03-31 Nycomed Gmbh Freeze-dried pantoprazole preparation and pantoprazole injection
US6749867B2 (en) 2000-11-29 2004-06-15 Joseph R. Robinson Delivery system for omeprazole and its salts
AU2141202A (en) 2000-12-05 2002-06-18 Alexander Macgregor Hydrostatic delivery system for controlled delivery of agent
UA80393C2 (en) 2000-12-07 2007-09-25 Алтана Фарма Аг Pharmaceutical preparation comprising an pde inhibitor dispersed on a matrix
BR0115986A (en) 2000-12-07 2003-12-23 Altana Pharma Ag Rapidly disintegrating tablet containing an acid-labile active ingredient
CA2403670C (en) 2001-01-31 2010-02-09 Rohm Gmbh & Co. Kg Multiparticulate drug form comprising at least two differently coated pellet forms
SE0101379D0 (en) 2001-04-18 2001-04-18 Diabact Ab Composition that inhibits gastric acid secretion
US6960357B2 (en) 2001-05-25 2005-11-01 Mistral Pharma Inc. Chemical delivery device
WO2002096392A1 (en) 2001-05-31 2002-12-05 Cima Labs Inc. Taste-masking of highly water-soluble drugs
EP1405621B1 (en) 2001-06-20 2011-05-11 Takeda Pharmaceutical Company Limited Method of manufacturing tablet
PL367686A1 (en) 2001-07-16 2005-03-07 Astrazeneca Ab Pharmaceutical formulation comprising a proton pump inhibitor and antacids
US8101209B2 (en) 2001-10-09 2012-01-24 Flamel Technologies Microparticulate oral galenical form for the delayed and controlled release of pharmaceutical active principles
ES2426723T3 (en) 2001-10-17 2013-10-24 Takeda Pharmaceutical Company Limited Granules containing large amount of chemical compound unstable in acidic medium
ES2198195B1 (en) 2001-12-18 2004-10-01 Laboratorios Del Dr. Esteve, S.A. COMPRESSED ORAL PHARMACEUTICAL DOSAGE FORM, WITH ENTERIC COATING, CONTAINING A LABIL BENCIMIDAZOL COMPOUND IN THE MIDDLE ACID.
US6489646B1 (en) 2002-01-23 2002-12-03 Winbond Electronics Corporation DRAM cells with buried trench capacitors
WO2003075884A1 (en) 2002-03-06 2003-09-18 Lifizz, Inc. Effervescent compositions comprising bisphosphonates and methods related thereto
DE10209982A1 (en) 2002-03-07 2003-09-25 Boehringer Ingelheim Pharma Dosage form to be administered orally for poorly soluble basic active ingredients
WO2003086343A2 (en) 2002-04-05 2003-10-23 Cadila Healthcare Limited Fast disintegrating oral dosage forms
AU2003226041A1 (en) 2002-04-08 2003-10-27 Lavipharm Laboratories, Inc. Multi-layer mucoadhesive drug delivery device with bursting release layer
WO2003086293A2 (en) 2002-04-09 2003-10-23 Taisho Pharmaceutical Co., Ltd. Pharmaceutical preparation for taste masking
TW200404544A (en) 2002-06-17 2004-04-01 Kowa Co Controlled release pharmaceutical composition
RU2336863C2 (en) 2002-06-27 2008-10-27 Цилаг Аг Ball shaped medications in form of pellets
JP2005536527A (en) 2002-08-02 2005-12-02 ラティオファルム ゲー・エム・ベー・ハー Pharmaceutical preparation containing benzimidazole compound mixed with microcrystalline cellulose and method for producing the same
US20040028737A1 (en) 2002-08-12 2004-02-12 Kopran Research Laboratories Limited Enteric coated stable oral pharmaceutical composition of acid unstable drug and process for preparing the same
US20050191353A1 (en) 2002-08-16 2005-09-01 Amit Krishna Antarkar Process for manufacture of stable oral multiple unit pharmaceutical composition containing benzimidazoles
SE0203065D0 (en) 2002-10-16 2002-10-16 Diabact Ab Gastric acid secretion inhibiting composition
WO2004035052A1 (en) 2002-10-16 2004-04-29 Takeda Pharmaceutical Company Limited Stable solid preparations
US7670627B2 (en) 2002-12-09 2010-03-02 Salvona Ip Llc pH triggered targeted controlled release systems for the delivery of pharmaceutical active ingredients
CA2509043C (en) 2002-12-10 2013-08-13 Cps Orocel Llc Method of preparing biologically active formulations
US9107804B2 (en) 2002-12-10 2015-08-18 Nortec Development Associates, Inc. Method of preparing biologically active formulations
US20040126422A1 (en) 2002-12-31 2004-07-01 Tony Yu Cheng Der Novel co-processing method for oral drug delivery
US20040166162A1 (en) 2003-01-24 2004-08-26 Robert Niecestro Novel pharmaceutical formulation containing a proton pump inhibitor and an antacid
TWI367759B (en) 2003-02-20 2012-07-11 Santarus Inc A novel formulation, omeprazole antacid complex-immediate release, for rapid and sustained suppression of gastric acid
CA2518780C (en) 2003-03-12 2014-05-13 Takeda Pharmaceutical Company Limited Drug composition having active ingredient adhered at high concentration to spherical core
EP1607088B1 (en) 2003-03-17 2019-02-27 Takeda Pharmaceutical Company Limited Controlled release composition
TW200503783A (en) 2003-04-11 2005-02-01 Altana Pharma Ag Oral pharmaceutical preparation for proton pump antagonists
US20040213847A1 (en) 2003-04-23 2004-10-28 Matharu Amol Singh Delayed release pharmaceutical compositions containing proton pump inhibitors
EP1620075B1 (en) 2003-05-07 2020-06-24 Samyang Biopharmaceuticals Corporation Highly plastic granules for making fast melting tablets
PE20050150A1 (en) 2003-05-08 2005-03-22 Altana Pharma Ag A DOSAGE FORM CONTAINING (S) -PANTOPRAZOLE AS AN ACTIVE INGREDIENT
CL2004000983A1 (en) 2003-05-08 2005-03-04 Altana Pharma Ag ORAL PHARMACEUTICAL COMPOSITION IN THE FORM OF A TABLET THAT INCLUDES DIHYDRATED MAGNETIC PANTOPRAZOL, WHERE THE TABLET FORM IS COMPOSED BY A NUCLEUS, A MIDDLE COAT AND AN OUTER LAYER; AND USE OF PHARMACEUTICAL COMPOSITION IN ULCERAS AND
WO2004098573A1 (en) 2003-05-08 2004-11-18 Natco Pharma Limited An improved and stable pharmaceutical composition containing substituted benzimidazoles and a process for its preparation
EP1638529B1 (en) 2003-06-16 2016-08-10 ANDRX Pharmaceuticals, LLC. Oral extended-release composition
JP2007522086A (en) 2003-07-11 2007-08-09 アストラゼネカ・アクチエボラーグ Solid composition containing a proton pump inhibitor
US8993599B2 (en) 2003-07-18 2015-03-31 Santarus, Inc. Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them
AR045068A1 (en) 2003-07-23 2005-10-12 Univ Missouri FORMULATION OF IMMEDIATE RELEASE OF PHARMACEUTICAL COMPOSITIONS
US20050043300A1 (en) 2003-08-14 2005-02-24 Pfizer Inc. Piperazine derivatives
WO2005020954A2 (en) 2003-09-03 2005-03-10 Agi Therapeutics Limited Proton pump inhibitor formulations, and methods of preparing and using such formulations
US20050053655A1 (en) 2003-09-05 2005-03-10 Pharmaceutical Industry Technology And Development Center Rapid disintegrating tablets (RDTs) for pharmaceutical use and method for preparing the same
ATE459379T1 (en) 2003-09-08 2010-03-15 Fmc Biopolymer As BIOPOLYMER-BASED GEL FOAM
AU2003272086A1 (en) 2003-10-14 2005-04-27 Natco Pharma Limited Enteric coated pellets comprising esomeprazole, hard gelatin capsule containing them, and method of preparation
JP3841804B2 (en) 2003-10-15 2006-11-08 富士化学工業株式会社 Composition for intraorally rapidly disintegrating tablets
US20070065513A1 (en) 2003-10-31 2007-03-22 Avi Avramoff Stable lansoprazole formulation
WO2005041934A2 (en) 2003-10-31 2005-05-12 Hexal Ag Pharmaceutical agent-containing formulation comprising a coating
KR100581967B1 (en) 2003-12-18 2006-05-22 한국유나이티드제약 주식회사 Dual pellet formulation containing proton pump inhibitor and clarithromycin for the treatment of peptic ulcer and preparation method thereof
US20050136112A1 (en) 2003-12-19 2005-06-23 Pediamed Pharmaceuticals, Inc. Oral medicament delivery system
CA2558535A1 (en) 2004-03-03 2005-10-06 Teva Pharmaceutical Industries Ltd. A stable pharmaceutical composition comprising an acid labile drug
US8545881B2 (en) 2004-04-19 2013-10-01 Eurand Pharmaceuticals, Ltd. Orally disintegrating tablets and methods of manufacture
RU2382637C2 (en) 2004-04-30 2010-02-27 Астеллас Фарма Инк. Pharmaceutical composition for peroral introduction in form of particles with calculated time of release and quickly decomposing tablets containing said composition
ATE531361T1 (en) 2004-05-07 2011-11-15 Nycomed Gmbh NEW PHARMACEUTICAL DOSAGE FORM AND PRODUCTION PROCESS
JP5154924B2 (en) 2004-05-11 2013-02-27 エガレット エイ/エス Inflatable dosage form containing gellan gum
WO2005115340A1 (en) 2004-05-19 2005-12-08 Glatt Air Techniques, Inc. Micropellet containing pellets and method of preparing such pellets
AU2005257977A1 (en) 2004-06-15 2006-01-05 Teva Pharmaceutical Industries Ltd. Stable pharmaceutical formulations of benzimidazole compounds
WO2006011159A2 (en) 2004-06-21 2006-02-02 Torrent Pharmaceuticals Limited Stabilized pharmaceutical composition containing rabeprazole sodium with improved bioavailability
EP1621187A1 (en) 2004-07-26 2006-02-01 AstraZeneca AB Pharmaceutical multiparticulate tablet formulations and process for their preparation
MX2007001058A (en) 2004-07-26 2007-04-16 Teva Pharma Dosage forms with an enterically coated core tablet.
US20060024362A1 (en) 2004-07-29 2006-02-02 Pawan Seth Composition comprising a benzimidazole and process for its manufacture
WO2006026829A1 (en) 2004-09-09 2006-03-16 Metelli Pty Ltd Stable paste composition of enteric coated acid labile active agent and use thereof
US20080102133A1 (en) 2004-10-05 2008-05-01 Antje Brueck-Scheffler Oral Pharmaceutical Preparation for Proton Pump Antagonists
JP2008515787A (en) 2004-10-05 2008-05-15 ニコメッド ゲゼルシャフト ミット ベシュレンクテル ハフツング Oral pharmaceutical formulation containing a proton pump antagonist and a basic excipient
US9884014B2 (en) 2004-10-12 2018-02-06 Adare Pharmaceuticals, Inc. Taste-masked pharmaceutical compositions
CA2584957C (en) 2004-10-21 2015-08-25 Eurand Pharmaceuticals Limited Taste-masked pharmaceutical compositions with gastrosoluble pore-formers
AR052225A1 (en) 2004-11-04 2007-03-07 Astrazeneca Ab FORMULATIONS OF MODIFIED RELEASE TABLETS FOR INHIBITORS OF THE PUMP OF PROTONS
AR051654A1 (en) 2004-11-04 2007-01-31 Astrazeneca Ab NEW FORMULATIONS OF MODIFIED RELEASE PELLETS FOR PROTON PUMP INHIBITORS
FR2878159B1 (en) 2004-11-24 2008-10-17 Flamel Technologies Sa ORAL MEDICATION WITH MODIFIED RELEASE OF AT LEAST ONE ACTIVE PRINCIPLE IN MULTIMICROCAPSULAR FORM
WO2006058250A2 (en) 2004-11-24 2006-06-01 Spi Pharma, Inc. Orally disintegrating compositions
US20060134210A1 (en) 2004-12-22 2006-06-22 Astrazeneca Ab Solid dosage form comprising proton pump inhibitor and suspension made thereof
CN101111233A (en) * 2004-12-23 2008-01-23 兰贝克赛实验室有限公司 Stable oral benzimidazole composition and preparation method thereof
EP1830822A1 (en) 2004-12-24 2007-09-12 LEK Pharmaceuticals D.D. Stable pharmaceutical composition comprising an active substance in the form of solid solution
WO2006070845A1 (en) 2004-12-28 2006-07-06 Eisai R & D Management Co., Ltd. Quick disintegration tablet and method of producing the same
EP1852100B1 (en) 2005-02-25 2018-05-09 Takeda Pharmaceutical Company Limited Method for producing coated granules of a benzimidazole compound
US20080033027A1 (en) 2005-03-21 2008-02-07 Vicus Therapeutics Spe 1, Llc Drug combination pharmaceutical compositions and methods for using them
WO2006104703A1 (en) 2005-03-29 2006-10-05 Mcneil-Ppc, Inc. Compositions with hydrophilic drugs in a hydrophobic medium
WO2006116582A2 (en) 2005-04-26 2006-11-02 The Curators Of The University Of Missouri Pharmaceutical compositions comprising a substituted benzimidazole, buffering agent and vitamin b12
US20060276500A1 (en) 2005-04-26 2006-12-07 Phillips Jeffrey O Compositions and methods for treating nocturnal acid breakthrough and other acid related disorders
US9040564B2 (en) 2005-04-28 2015-05-26 Eisai R&D Management Co., Ltd. Stabilized composition
US7803817B2 (en) 2005-05-11 2010-09-28 Vecta, Ltd. Composition and methods for inhibiting gastric acid secretion
DE102005024614A1 (en) 2005-05-25 2006-11-30 Röhm Gmbh Use of polymer blends for the production of coated drug forms and drug form with polymeric blend coating
WO2007052289A2 (en) 2005-07-22 2007-05-10 Rubicon Research Pvt Ltd. Novel dispersible tablet composition
CA2617164A1 (en) 2005-08-01 2007-02-08 Alpharma Inc. Alcohol resistant pharmaceutical formulations
ES2576633T3 (en) 2005-08-08 2016-07-08 Abbvie Deutschland Gmbh & Co Kg Dosage forms with improved bioavailability
US9198871B2 (en) 2005-08-15 2015-12-01 Abbott Products Gmbh Delayed release pancreatin compositions
FR2891459B1 (en) 2005-09-30 2007-12-28 Flamel Technologies Sa MICROPARTICLES WITH MODIFIED RELEASE OF AT LEAST ONE ACTIVE INGREDIENT AND ORAL GALENIC FORM COMPRISING THE SAME
WO2007070164A1 (en) 2005-10-19 2007-06-21 The Curators Of The University Of Missouri Pharmaceutical composition comprising a proton pump inhibitor, a buffering agent and an anti-h. pylori active substance and methods of using same
US8329744B2 (en) 2005-11-02 2012-12-11 Relmada Therapeutics, Inc. Methods of preventing the serotonin syndrome and compositions for use thereof
CN100431526C (en) 2005-11-07 2008-11-12 上海艾力斯医药科技有限公司 A rapidly disintegrating tablet for an acid-sensitive drug
JP2009519334A (en) * 2005-12-20 2009-05-14 テバ ファーマシューティカル インダストリーズ リミティド Lansoprazole Orally Disintegrating Tablet
US20070141151A1 (en) 2005-12-20 2007-06-21 Silver David I Lansoprazole orally disintegrating tablets
EP1813275A1 (en) * 2005-12-20 2007-08-01 Teva Pharmaceutical Industries Ltd Lansoprazole orally disintegrating tablets
WO2007074856A1 (en) 2005-12-28 2007-07-05 Takeda Pharmaceutical Company Limited Method of producing solid preparation disintegrating in the oral cavity
JP2009523784A (en) 2006-01-16 2009-06-25 ジュビラント・オルガノシス・リミテッド Stable pharmaceutical preparation of acid labile compound and method for producing the same
FR2897267A1 (en) * 2006-02-16 2007-08-17 Flamel Technologies Sa MULTIMICROPARTICULAR PHARMACEUTICAL FORMS FOR PER OS ADMINISTRATION
EP1837016A3 (en) * 2006-03-08 2008-01-02 KRKA, tovarna zdravil, d.d., Novo mesto Pharmaceutical multiple-unit composition
EP1834634A3 (en) 2006-03-08 2007-10-03 Rentschler Pharma GmbH Pharmaceutical multiple-unit composition
BRPI0709909A2 (en) 2006-03-31 2011-07-26 Rubicon Res Private Ltd oral disintegration tablets
US20190083399A9 (en) 2006-04-03 2019-03-21 Isa Odidi Drug delivery composition
CA2648280C (en) 2006-04-03 2014-03-11 Isa Odidi Controlled release delivery device comprising an organosol coat
WO2007122478A2 (en) * 2006-04-20 2007-11-01 Themis Laboratories Private Limited Multiple unit compositions
US20070259040A1 (en) * 2006-05-01 2007-11-08 Cherukuri S R Novel triptan formulations and methods for making them
CA2654402A1 (en) * 2006-06-01 2007-12-06 Adel Penhasi Multiple unit pharmaceutical formulation
AR056062A1 (en) 2006-06-05 2007-09-19 Bago Sa Labor ANTI-AGED PHARMACEUTICAL COMPOSITION IN DUST FORM, PHARMACEUTICAL PREPARATION THAT UNDERSTANDS IT AND PROCESS FOR PREPARATION
SI2040684T1 (en) 2006-07-11 2013-06-28 Lek Pharmaceuticals D.D. Multiple unit tablets
US20080014257A1 (en) 2006-07-14 2008-01-17 Par Pharmaceutical, Inc. Oral dosage forms
US20080014228A1 (en) 2006-07-14 2008-01-17 Olivia Darmuzey Solid form
DE102006035549A1 (en) 2006-07-27 2008-01-31 Evonik Röhm Gmbh Pharmaceutical form with at least two-layer separating layer
BRPI0714915A2 (en) 2006-07-28 2013-05-28 Reddys Lab Ltd Dr pharmaceutical compositions; pharmaceutical dosage forms; and process for the preparation of a pharmaceutical composition
EP2068854A2 (en) 2006-07-29 2009-06-17 Graceway Pharmaceuticals, LLC Business method to treat and/or prevent a gastric acid disorder with a proton pump inhibitor (ppi) and a cholinergic agonist to induce rapid onset of ppi action with or without food
GEP20125420B (en) 2006-08-10 2012-03-26 Takeda Pharmaceutical Solid pharmaceutical composition comprising benzimidazole compound
BRPI0716196A2 (en) 2006-08-31 2013-11-12 Eurand Inc Drug delivery systems comprising solid solutions of weakly basic drugs.
AU2007311493B2 (en) 2006-10-17 2013-01-31 Ranbaxy Laboratories Limited Multiple unit tablet compositions of benzimidazole compounds
JP5366558B2 (en) 2006-12-28 2013-12-11 武田薬品工業株式会社 Orally disintegrating solid preparation
WO2008112826A1 (en) 2007-03-12 2008-09-18 Board Of Regents, The University Of Texas System Method and process for the production of multi-coated recognitive and releasing systems
DE102007012105A1 (en) 2007-03-13 2008-09-18 Add Advanced Drug Delivery Technologies Ltd. Pellets containing pharmaceutical substance, process for their preparation and their use
EP1972336A1 (en) 2007-03-19 2008-09-24 LEK Pharmaceuticals D.D. Hot-melt micropellets
US8530463B2 (en) 2007-05-07 2013-09-10 Hale Biopharma Ventures Llc Multimodal particulate formulations
ES2745438T3 (en) 2007-05-08 2020-03-02 Hercules Llc Robust formulation of fast disintegrating tablets
WO2008140459A1 (en) 2007-05-16 2008-11-20 Fmc Corporation Solid form
WO2009022670A1 (en) 2007-08-10 2009-02-19 Takeda Pharmaceutical Company Limited Quickly disintegrating tablet
JP5204846B2 (en) 2007-09-21 2013-06-05 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング PH-dependent controlled release pharmaceutical composition of non-opioid drugs resistant to the effects of ethanol
EP2044932A1 (en) 2007-10-04 2009-04-08 Laboratorios del Dr. Esteve S.A. Mechanical protective layer for solid dosage forms
EP2044929A1 (en) 2007-10-04 2009-04-08 Laboratorios del Dr. Esteve S.A. Oral fast distintegrating tablets
JP5629581B2 (en) 2007-10-12 2014-11-19 タケダ ファーマシューティカルズ ユー.エス.エー. インコーポレイティド Method for treating digestive disorders independent of food intake
ITFI20070253A1 (en) 2007-11-09 2009-05-10 Valpharma Internat S P A PHARMACEUTICAL FORMULATIONS FOR THE ADMINISTRATION OF IPP.
EP2227462A1 (en) 2007-12-31 2010-09-15 Takeda Pharmaceutical Company Limited Crystalline solvated forms of (r) -2- [[[3-methyl-4- (2, 2, 2-trifluoroethoxy) -2-pyridinyl]methyl]sulfinyl]-1h-benz imidazole
CA2716367C (en) 2008-02-20 2015-05-26 The Curators Of The University Of Missouri Composition comprising a combination of omeprazole and lansoprazole, and a buffering agent, and methods of using same
US8911787B2 (en) 2008-02-26 2014-12-16 Ranbaxy Laboratories Limited Stable oral benzimidazole compositions and process of preparation thereof
NZ588407A (en) 2008-03-11 2012-07-27 Takeda Pharmaceutical Orally-disintegrating solid preparation
JP5399749B2 (en) 2008-03-27 2014-01-29 沢井製薬株式会社 Coated microparticles containing proton pump inhibitors
WO2010018593A2 (en) 2008-07-03 2010-02-18 Torrent Pharmaceuticals Ltd. Gastric acid resistant benzimidazole multiple unit tablet composition
WO2010008569A1 (en) 2008-07-17 2010-01-21 Barr Laboratories, Inc. Orally disintegrating solid pharmaceutical dosage forms comprising delayed-release lansoprazole and methods of making and using the same
US8343978B2 (en) 2008-08-04 2013-01-01 Adds Pharmaceuticals Llc Fast onset orodispersable tablets
DE102008045339A1 (en) 2008-09-01 2010-03-04 Stada Arzneimittel Ag Pharmaceutical pellet
CA2737247C (en) 2008-09-15 2016-10-11 Labopharm Inc. Starch-based microparticles for the release of agents disposed therein
DE102008048729A1 (en) 2008-09-24 2010-03-25 Add Technologies Ltd Advanced Drug Delivery Multiparticulate tablets and process for their preparation
KR101535701B1 (en) 2008-09-24 2015-07-09 에보니크 룀 게엠베하 Ph-dependent controlled release pharmaceutical composition for non-opioids with resistance against the influence of ethanol
US20110177164A1 (en) 2008-10-06 2011-07-21 Gopal Rajan Pharmaceutical Compositions Comprising Amorphous Esomeprazole, Dosage Forms And Process Thereof
WO2010056059A2 (en) 2008-11-14 2010-05-20 Hanmi Pharm. Co., Ltd. Novel crystalline dexlansoprazole and pharmaceutical composition comprising same
EP2368544A4 (en) 2008-11-25 2012-08-15 Mitsubishi Tanabe Pharma Corp RASCH IN MOUTH DAMAGING TABLET AND METHOD FOR THEIR MANUFACTURE
EP2198857A1 (en) 2008-12-19 2010-06-23 Ratiopharm GmbH Oral dispersible tablet
EP2210591B1 (en) 2009-01-26 2016-03-30 Shin-Etsu Chemical Co., Ltd. Wet granulation tableting method using aqueous dispersion of low-substituted hydroxypropyl cellulose
JP5637624B2 (en) 2009-02-12 2014-12-10 富士化学工業株式会社 Disintegrating particle composition and fast disintegrating compression molding using the same
WO2010096814A1 (en) * 2009-02-23 2010-08-26 Eurand, Inc. Controlled-release compositions comprising a proton pump inhibitor
EP2409688A4 (en) 2009-03-16 2013-06-05 Nipro Corp Orally disintegrating tablet
WO2010105672A1 (en) 2009-03-18 2010-09-23 Evonik Röhm Gmbh Controlled release pharmaceutical composition with resistance against the influence of ethanol employing a coating comprising neutral vinyl polymers and excipients
BRPI0924427A2 (en) 2009-03-18 2016-01-26 Evonik Roehm Gmbh controlled release pharmaceutical composition, its preparation process and its use
EP2410995A1 (en) 2009-03-26 2012-02-01 Royal College of Surgeons in Ireland Orodispersible tablets
TWI455733B (en) 2009-03-30 2014-10-11 Toray Industries A coating tablet collapsible in the oral cavity
WO2010116385A2 (en) 2009-04-08 2010-10-14 Rubicon Research Private Limited Pharmaceutical compositions for alleviating unpleasant taste
SI2238974T1 (en) 2009-04-09 2013-09-30 E-Pharma Trento S.P.A. Granulate for the formulation of orodispersible tablets
GR1006780B (en) 2009-04-10 2010-05-20 Specifar Abee ���������� ������� ��� ������������� ��������� Process for producing rapidly disintegrating spheroids (pellets), granules and/or mixtures therof.
WO2010122583A2 (en) * 2009-04-24 2010-10-28 Rubicon Research Private Limited Oral pharmaceutical compositions of acid labile substances
EP2255794A1 (en) 2009-05-29 2010-12-01 H e x a l Aktiengesellschaft Enteric coating
EP2470019A4 (en) 2009-08-25 2013-03-13 Cardiokine Biopharma Llc Compositions for delivery of insoluble agents
US20120141584A1 (en) 2009-08-26 2012-06-07 Aptapharma, Inc. Multilayer Minitablets
US8187617B2 (en) 2009-09-11 2012-05-29 William Wayne Howard Immediate release compositions and methods for delivering drug formulations using weak acid ion exchange resins in abnormally high pH environments
US20120207825A1 (en) 2009-09-17 2012-08-16 Sunilendu Bhushan Roy Pharmaceutical compositions for reducing alcohol-induced dose dumping
RS59241B1 (en) 2009-10-01 2019-10-31 Adare Development I L P Orally administered corticosteroid compositions
CN102933207B (en) 2009-10-30 2018-02-02 Ix生物医药有限公司 Fast Dissolving Solid Dosage Forms
EP2319504A1 (en) 2009-11-07 2011-05-11 Laboratorios Del. Dr. Esteve, S.A. Pharmaceutical solid dosage form
WO2011080502A2 (en) 2009-12-29 2011-07-07 Orexo Ab New pharmaceutical dosage form for the treatment of gastric acid-related disorders
WO2011083402A2 (en) 2010-01-11 2011-07-14 Muneera Mohamed Shafee Immediate release compositions of acid labile drugs
US20110189271A1 (en) 2010-02-02 2011-08-04 Vishal Lad Pharmaceutical formulations of acid-labile drugs
WO2011111027A2 (en) 2010-03-11 2011-09-15 Dexcel Pharma Technologies Ltd. Oral dispersible delayed release tablet formulation
US9186409B2 (en) * 2010-04-23 2015-11-17 S-Biotek Holidng Aps Solid pharmaceutical composition for neutralizing stomach acid
WO2011140446A2 (en) 2010-05-06 2011-11-10 Dr. Reddy's Laboratories Ltd. Pharmaceutical formulations
CN102762198A (en) 2010-05-15 2012-10-31 欢腾生命科学有限公司 multi-unit composition
US20130216617A1 (en) 2010-06-29 2013-08-22 Cadila Healthcare Limited Pharmaceutical compositions of (r)-lansoprazole
EP2595611A2 (en) 2010-07-22 2013-05-29 Lupin Limited Multiple unit tablet composition
EP2601936A4 (en) 2010-08-03 2014-03-19 Eisai R&D Man Co Ltd Compressed composition
IT1401284B1 (en) 2010-08-06 2013-07-18 Valpharma S P A NEW PHARMACEUTICAL FORMULATIONS SUITABLE FOR ORAL ADMINISTRATION OF DIHYDRATE ESOMEPRAZOLE MAGNESIUM, IN THE FORM OF MUPS TABLETS (MULTI UNIT PELLETS SYSTEM).
BR112013003581B8 (en) * 2010-08-18 2022-07-05 Evonik Roehm Gmbh GASTRO-RESISTANT PHARMACEUTICAL OR NUTRACEUTICAL COMPOSITION, INCLUDING ONE OR MORE SALTS OF ALGINIC ACID, AND ITS PRODUCTION PROCESS
DE102010052847A1 (en) 2010-11-29 2012-05-31 Temmler Werke Gmbh Process for the preparation of a PPI-containing pharmaceutical preparation
NZ611467A (en) 2010-12-02 2015-06-26 Aptalis Pharmatech Inc Rapidly dispersing granules, orally disintegrating tablets and methods
PE20140005A1 (en) 2010-12-03 2014-01-23 Takeda Pharmaceutical ORALLY DISINTEGRATING TABLET
EA028217B1 (en) 2010-12-27 2017-10-31 Такеда Фармасьютикал Компани Лимитед Orally disintegrating tablet (variants)
EA201390979A1 (en) 2010-12-29 2013-12-30 Др. Редди'С Лабораторис Лтд. COMPOSITIONS OF BENZIMIDAZOLES WITH MODIFIED SURVIVAL
AR085406A1 (en) 2011-02-25 2013-09-25 Takeda Pharmaceutical N-SUBSTITUTED OXAZINOPTERIDINS AND N-REPLACED OXAZINOPTERIDINONES
CA2832291C (en) 2011-04-05 2015-12-01 Pfizer Limited Pyrrolo[2,3-d)pyrimidine tropomyosin-related kinase inhibitors
EP2535045A1 (en) 2011-06-15 2012-12-19 Laboratorios Del. Dr. Esteve, S.A. Pharmaceutical composition of lansoprazole
WO2013026724A1 (en) 2011-08-22 2013-02-28 Syngenta Participations Ag Dihydrofuran derivatives as insecticidal compounds
HUE036400T2 (en) 2011-11-02 2018-07-30 Esteve Labor Dr Pharmaceutical composition of omeprazole
BR112014010631A2 (en) 2011-11-04 2017-04-25 Afraxis Holdings Inc pak inhibitors for the treatment of fragile x syndrome
KR101494180B1 (en) 2011-12-28 2015-02-25 주식회사 삼양바이오팜 Fast disintegrating tablet suitable for environmentally sensitive drug and process for manufacturing the same
KR20130076015A (en) 2011-12-28 2013-07-08 주식회사 삼양바이오팜 Highly robust fast disintegrating tablet and process for manufacturing the same
WO2013114250A1 (en) 2012-02-03 2013-08-08 Pfizer Inc. Benziimidazole and imidazopyridine derivatives as sodium channel modulators
KR101390647B1 (en) 2012-02-15 2014-04-30 주식회사 대웅제약 Oral formulation comprising lansoprazole and the preparation method thereof
CA2865519C (en) 2012-02-27 2018-01-02 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions comprising a solid dispersion of n-[2,4-bis(1,1-dimethylethyl0-5-hydroxyphenyl-1]-1,4-dihydro-4-oxoquinolone-3-carboxamide for treating cystic fibrosis
US9434743B2 (en) 2012-03-02 2016-09-06 Takeda Pharmaceutical Company Limited Indazole derivatives
WO2013141827A1 (en) 2012-03-21 2013-09-26 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi Enteric coated solid pharmaceutical compositions for proton pump inhibitors
WO2013140120A1 (en) 2012-03-22 2013-09-26 Cipla Limited Glycerol solvate forms of (r) - 2 - [ [ [3 -methyl -4 (2,2, 2 - trifluoroethoxy) pyridin- 2 - yl] methyl] sulphinyl] - 1h - ben zimidazole
WO2013148603A1 (en) 2012-03-27 2013-10-03 Takeda Pharmaceutical Company Limited Cinnoline derivatives as as btk inhibitors
DE102012007671A1 (en) 2012-04-16 2013-10-17 Acino Pharma Ag High active ingredient pellets
KR102092002B1 (en) 2012-04-27 2020-03-23 메르크 파텐트 게엠베하 Tablets with coating and the production thereof
WO2013175511A1 (en) 2012-05-24 2013-11-28 V.B. Medicare Pvt. Ltd. Taste masked pharmaceutical compositions
WO2013183497A1 (en) 2012-06-05 2013-12-12 武田薬品工業株式会社 Dry-coated tablet
GB201210530D0 (en) 2012-06-13 2012-07-25 Addex Pharmaceuticals Sa Extended release formulations
WO2014007228A1 (en) 2012-07-03 2014-01-09 小野薬品工業株式会社 Compound having agonistic activity on somatostatin receptor, and use thereof for medical purposes
US20150209432A1 (en) 2012-07-26 2015-07-30 Lupin Limited Pharmaceutical compositions of proton pump inhibitor
AU2012388440B2 (en) * 2012-08-27 2017-08-31 Evonik Operations Gmbh Gastric resistant pharmaceutical or nutraceutical composition with resistance against the influence of ethanol
RU2015110824A (en) 2012-08-27 2016-10-20 Эвоник Индустрис Аг PHARMACEUTICAL OR NUTRICEVITIC COMPOSITION WITH SLOW DELIVERY AND RESISTANCE TO ETHANOL
AU2013308403B2 (en) 2012-08-29 2019-02-07 Salix Pharmaceuticals, Inc. Laxative compositions and methods for treating constipation and related gastrointestinal diseases and conditions
US9573958B2 (en) 2012-08-31 2017-02-21 Principia Biopharma, Inc. Benzimidazole derivatives as ITK inhibitors
EP2909212B1 (en) 2012-09-07 2017-02-22 Takeda Pharmaceutical Company Limited Substituted 1,4-dihydropyrazolo[4,3-b]indoles
KR101453320B1 (en) 2012-09-19 2014-10-23 중앙대학교 산학협력단 Oral Formulation and Preparation Method thereof
TW201422254A (en) 2012-11-21 2014-06-16 Ferring Bv Composition for immediate and extended release
AU2013350328A1 (en) 2012-11-26 2015-07-09 Thomas Julius Borody Compositions for the restoration of a fecal microbiota and methods for making and using them
BR112015020836B1 (en) 2013-03-01 2022-09-20 Bpsi Holdings, Llc DELAYED RELEASE FILM COATINGS CONTAINING CALCIUM SILICATE AND SUBSTRATES COATED WITH THE SAME
UA119324C2 (en) 2013-04-02 2019-06-10 Теміс Медікер Лімітед Compositions of pharmaceutical actives containing diethylene glycol monoethyl ether or other alkyl derivatives
WO2014189034A1 (en) 2013-05-21 2014-11-27 武田薬品工業株式会社 Orally disintegrable tablet
KR101407922B1 (en) 2013-11-14 2014-06-17 주식회사 서울제약 Porous Orally Disintegrating Film comprising pharmacologically active substance and Precess For Producing thereof
WO2015120201A1 (en) 2014-02-05 2015-08-13 Kashiv Pharma, Llc Abuse-resistant drug formulations with built-in overdose protection
WO2015134210A1 (en) 2014-03-03 2015-09-11 Principia Biopharma, Inc. BENZIMIDAZOLE DERIVATIVES AS RLK and ITK INHIBITORS
EP2927780A1 (en) 2014-04-03 2015-10-07 SMR Patents S.à.r.l. Pivotable internal mirror for a vehicle
JP2017516789A (en) 2014-05-26 2017-06-22 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Multiparticulates protected against ethanol overdose
WO2016092387A1 (en) 2014-12-12 2016-06-16 Jagadeesh Induru Powder combinations to get in-situ sponge/patch -gel/sol formulations
RU2679652C1 (en) 2015-03-31 2019-02-12 Лабораториос Баго С. А. Method of obtaining enteric coated granules containing proton pump inhibitor, and pharmaceutical compositions, containing multiple particles and such granules
US20170042806A1 (en) 2015-04-29 2017-02-16 Dexcel Pharma Technologies Ltd. Orally disintegrating compositions
US20170119660A1 (en) 2015-10-29 2017-05-04 Solubest Ltd Pharmaceutical compositions for transmucosal delivery
DK3411031T3 (en) 2016-02-04 2024-10-21 Cindome Pharma Inc Deuterated domperidone preparations and methods for therapy of disorders
KR101884230B1 (en) 2016-02-29 2018-08-01 주식회사 유영제약 Formulation containing esomeprazole

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567201A2 (en) * 1986-04-30 1993-10-27 Aktiebolaget Hässle Vehicles for oral administration of a specific pharmaceutically active acid labile substance
US5385739A (en) * 1992-06-16 1995-01-31 Ethypharm Stable compositions of gastroprotected omerprazole microgranules and process for the production thereof
US6183776B1 (en) * 1996-01-08 2001-02-06 Astra Aktiebolag Oral pharmaceutical dosage forms comprising a proton pump inhibitor and an antacid agent or alginate
US20050106237A1 (en) * 2002-01-23 2005-05-19 Patrick Wuthrich Orodispersible pharmaceutical composition comprising perindopril
US20140248341A1 (en) * 2010-03-09 2014-09-04 Alkermes Pharma Ireland Limited Alcohol resistant enteric pharmaceutical compositions
US20130202688A1 (en) * 2010-05-04 2013-08-08 Sunilendu Bhushan Roy Delayed release oral disintegrating pharmaceutical compositions of lansoprazole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835488B2 (en) 2016-06-16 2020-11-17 Dexcel Pharma Technologies Ltd. Stable orally disintegrating pharmaceutical compositions

Also Published As

Publication number Publication date
US20210353535A1 (en) 2021-11-18
US11986554B2 (en) 2024-05-21
EP3288556A1 (en) 2018-03-07
WO2016174664A1 (en) 2016-11-03
IL255048B (en) 2022-03-01
EP3288556A4 (en) 2018-09-19
US11077055B2 (en) 2021-08-03
IL255048A0 (en) 2017-12-31
US20160354356A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US20110003006A1 (en) Orally Disintegrating Tablet Compositions Comprising Combinations of Non-Opioid and Opioid Analgesics
US20130273157A1 (en) Orally disintegrating tablet
US10835488B2 (en) Stable orally disintegrating pharmaceutical compositions
KR20100129761A (en) Oral Disintegrating Solid Formulations
CA2753444A1 (en) Controlled-release compositions comprising a proton pump inhibitor
US11986554B2 (en) Orally disintegrating compositions
AU2002350750B2 (en) Compressed oral pharmaceutical dosage form, with an enteric coating, which contains an acid-labile benzimidazole compound
WO2022020464A1 (en) Modified release rapidly disintegrating compositions of proton pump inhibitors
US20110256218A1 (en) Controlled release compositions comprising meclizine or related piperazine derivatives
WO2017017679A1 (en) Compositions comprising atorvastatin or a pharmaceutically acceptable salt thereof
US20090214599A1 (en) Proton pump inhibitor formulations, and methods of preparing and using such formulations
US20220125730A1 (en) Method of manufacturing an orally disintigrating tablet
US10736855B2 (en) Compositions comprising proton pump inhibitors
CN100431526C (en) A rapidly disintegrating tablet for an acid-sensitive drug
WO2023119331A1 (en) Solid oral dosage forms of rabeprazole
US20100151015A1 (en) Compositions Comprising Melperone and Controlled-Release Dosage Forms
WO2011136750A1 (en) Pharmaceutical compositions inducing synergistic effect

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEXCEL PHARMA TECHNOLOGIES LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOSES-HELLER, SHEERA;REEL/FRAME:039419/0355

Effective date: 20160807

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION