US20170037066A1 - Novel bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same - Google Patents
Novel bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same Download PDFInfo
- Publication number
- US20170037066A1 US20170037066A1 US15/304,254 US201515304254A US2017037066A1 US 20170037066 A1 US20170037066 A1 US 20170037066A1 US 201515304254 A US201515304254 A US 201515304254A US 2017037066 A1 US2017037066 A1 US 2017037066A1
- Authority
- US
- United States
- Prior art keywords
- group
- carbon atoms
- vinylene
- silicon compound
- alkoxysilyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000003377 silicon compounds Chemical class 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 20
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 7
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 3
- -1 2 Chemical class 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 238000007259 addition reaction Methods 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 229910000077 silane Inorganic materials 0.000 claims description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 3
- 238000006459 hydrosilylation reaction Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 38
- 239000002210 silicon-based material Substances 0.000 abstract description 10
- 229920001296 polysiloxane Polymers 0.000 abstract description 9
- 230000000052 comparative effect Effects 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 15
- 239000000047 product Substances 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- YGYMKTARHZBMNY-UHFFFAOYSA-N C[SiH2]C.CO[Si](OC)(OC)C#C.CO[Si](OC)(OC)C#C Chemical compound C[SiH2]C.CO[Si](OC)(OC)C#C.CO[Si](OC)(OC)C#C YGYMKTARHZBMNY-UHFFFAOYSA-N 0.000 description 7
- 125000005370 alkoxysilyl group Chemical group 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 4
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 4
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- MWCKAHGTDSPMKV-UHFFFAOYSA-N ethynyl(trimethoxy)silane Chemical group CO[Si](OC)(OC)C#C MWCKAHGTDSPMKV-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- VDCSGNNYCFPWFK-UHFFFAOYSA-N diphenylsilane Chemical compound C=1C=CC=CC=1[SiH2]C1=CC=CC=C1 VDCSGNNYCFPWFK-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910003594 H2PtCl6.6H2O Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical group CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- SRNLFSKWPCUYHC-UHFFFAOYSA-N ethynylsilane Chemical group [SiH3]C#C SRNLFSKWPCUYHC-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 2
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 2
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- YFNUHCGUUQVURP-UHFFFAOYSA-N C#C[Si](C#C)(C1=CC=CC=C1)C1=CC=CC=C1.CO[Si](C=C[Si](C=C[Si](CO)(CO)CO)(C1=CC=CC=C1)C1=CC=CC=C1)(OC)OC.[H][Si](OC)(OC)OC Chemical compound C#C[Si](C#C)(C1=CC=CC=C1)C1=CC=CC=C1.CO[Si](C=C[Si](C=C[Si](CO)(CO)CO)(C1=CC=CC=C1)C1=CC=CC=C1)(OC)OC.[H][Si](OC)(OC)OC YFNUHCGUUQVURP-UHFFFAOYSA-N 0.000 description 1
- JVSHJTTVYUJJSZ-UHFFFAOYSA-N C#C[Si](C)(C)C#C.CO[Si](C=C[Si](C)(C)C=C[Si](CO)(CO)CO)(OC)OC.[H][Si](OC)(OC)OC Chemical compound C#C[Si](C)(C)C#C.CO[Si](C=C[Si](C)(C)C=C[Si](CO)(CO)CO)(OC)OC.[H][Si](OC)(OC)OC JVSHJTTVYUJJSZ-UHFFFAOYSA-N 0.000 description 1
- ZCDJFURFRAEYNV-CXWYYQLFSA-N C#C[Si](C)(C)C.[H]/C(=C(/[H])[Si](OC)(OC)OC)[Si](C)(C)C.[H]/C(=C(\[H])[Si](OC)(OC)OC)[Si](C)(C)C.[H][Si](CO)(OC)OC Chemical compound C#C[Si](C)(C)C.[H]/C(=C(/[H])[Si](OC)(OC)OC)[Si](C)(C)C.[H]/C(=C(\[H])[Si](OC)(OC)OC)[Si](C)(C)C.[H][Si](CO)(OC)OC ZCDJFURFRAEYNV-CXWYYQLFSA-N 0.000 description 1
- LEFWMCKPHNNCJE-UHFFFAOYSA-N C1(=CC=CC=C1)[SiH2]C1=CC=CC=C1.CO[Si](OC)(OC)C=C.CO[Si](OC)(OC)C=C Chemical compound C1(=CC=CC=C1)[SiH2]C1=CC=CC=C1.CO[Si](OC)(OC)C=C.CO[Si](OC)(OC)C=C LEFWMCKPHNNCJE-UHFFFAOYSA-N 0.000 description 1
- RNRNSPBRRVLALN-UHFFFAOYSA-N CCN=P(CNC)(N(C)C)N(C)C Chemical compound CCN=P(CNC)(N(C)C)N(C)C RNRNSPBRRVLALN-UHFFFAOYSA-N 0.000 description 1
- PPYORZFQARRYQD-DFEDLJBWSA-K CCOC1=O[Al]23(OC(C)=CC(C)=O2)(OC(C)=C1)OC(C(C)(C)C)=CC(C(C)(C)C)=O3 Chemical compound CCOC1=O[Al]23(OC(C)=CC(C)=O2)(OC(C)=C1)OC(C(C)(C)C)=CC(C(C)(C)C)=O3 PPYORZFQARRYQD-DFEDLJBWSA-K 0.000 description 1
- BNKGFXXKIAXNPQ-UHFFFAOYSA-N CCO[Si](C)(C=C[Si](C)(C)C=C[Si](C)(C)C)OCC.CCO[Si](C)(C=C[Si](C=C[Si](C)(C)C)(CC)CC)OCC.CCO[Si](C=C[Si](C)(C)C=C[Si](C)(C)C)(OCC)OCC.CCO[Si](C=C[Si](C=C[Si](C)(C)C)(CC)CC)(OCC)OCC.CC[Si](C=C[Si](C)(CO)CO)(C=C[Si](C)(OC)OC)CC.CC[Si](C=C[Si](CO)(CO)CO)(C=C[Si](OC)(OC)OC)CC.CO[Si](C)(C=C[Si](C)(C)C=C[Si](C)(CO)CO)OC.CO[Si](C)(C=C[Si](C=C[Si](C)(CO)CO)(C1=CC=CC=C1)C1=CC=CC=C1)OC.CO[Si](C=C[Si](C)(C)C=C[Si](CO)(CO)CO)(OC)OC.CO[Si](C=C[Si](C=C[Si](CO)(CO)CO)(C1=CC=CC=C1)C1=CC=CC=C1)(OC)OC Chemical compound CCO[Si](C)(C=C[Si](C)(C)C=C[Si](C)(C)C)OCC.CCO[Si](C)(C=C[Si](C=C[Si](C)(C)C)(CC)CC)OCC.CCO[Si](C=C[Si](C)(C)C=C[Si](C)(C)C)(OCC)OCC.CCO[Si](C=C[Si](C=C[Si](C)(C)C)(CC)CC)(OCC)OCC.CC[Si](C=C[Si](C)(CO)CO)(C=C[Si](C)(OC)OC)CC.CC[Si](C=C[Si](CO)(CO)CO)(C=C[Si](OC)(OC)OC)CC.CO[Si](C)(C=C[Si](C)(C)C=C[Si](C)(CO)CO)OC.CO[Si](C)(C=C[Si](C=C[Si](C)(CO)CO)(C1=CC=CC=C1)C1=CC=CC=C1)OC.CO[Si](C=C[Si](C)(C)C=C[Si](CO)(CO)CO)(OC)OC.CO[Si](C=C[Si](C=C[Si](CO)(CO)CO)(C1=CC=CC=C1)C1=CC=CC=C1)(OC)OC BNKGFXXKIAXNPQ-UHFFFAOYSA-N 0.000 description 1
- CDRQUVWTWGMPIV-UHFFFAOYSA-N CCO[Si](C)(C=C[Si](C)(C=C[Si](C)(C)C)C1=CC=CC=C1)OCC.CCO[Si](C)(C=C[Si](C=C[Si](C)(C)C)(C1=CC=CC=C1)C1=CC=CC=C1)OCC.CCO[Si](C=C[Si](C)(C=C[Si](C)(C)C)C1=CC=CC=C1)(OCC)OCC.CCO[Si](C=C[Si](C=C[Si](C)(C)C)(C1=CC=CC=C1)C1=CC=CC=C1)(OCC)OCC.CO[Si](C)(C=C[Si](C)(C=C[Si](C)(CO)CO)C1=CC=CC=C1)OC.CO[Si](C=C[Si](C)(C=C[Si](CO)(CO)CO)C1=CC=CC=C1)(OC)OC Chemical compound CCO[Si](C)(C=C[Si](C)(C=C[Si](C)(C)C)C1=CC=CC=C1)OCC.CCO[Si](C)(C=C[Si](C=C[Si](C)(C)C)(C1=CC=CC=C1)C1=CC=CC=C1)OCC.CCO[Si](C=C[Si](C)(C=C[Si](C)(C)C)C1=CC=CC=C1)(OCC)OCC.CCO[Si](C=C[Si](C=C[Si](C)(C)C)(C1=CC=CC=C1)C1=CC=CC=C1)(OCC)OCC.CO[Si](C)(C=C[Si](C)(C=C[Si](C)(CO)CO)C1=CC=CC=C1)OC.CO[Si](C=C[Si](C)(C=C[Si](CO)(CO)CO)C1=CC=CC=C1)(OC)OC CDRQUVWTWGMPIV-UHFFFAOYSA-N 0.000 description 1
- 0 CN(*)*CCC(*)* Chemical compound CN(*)*CCC(*)* 0.000 description 1
- UAHOTJNCRSAMGV-UHFFFAOYSA-N CO[Si](CCCCCC[Si](CO)(CO)CO)(OC)OC Chemical compound CO[Si](CCCCCC[Si](CO)(CO)CO)(OC)OC UAHOTJNCRSAMGV-UHFFFAOYSA-N 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- MYYOABOTICLXRY-UHFFFAOYSA-N N-[bis(dimethylamino)-(trimethylsilylmethylimino)-lambda5-phosphanyl]-N-methylmethanamine Chemical compound CN(P(N(C)C)(N(C)C)=NC[Si](C)(C)C)C MYYOABOTICLXRY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000003386 deoximation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- PEMATDLNMXTNGL-UHFFFAOYSA-N diethynyl(dimethyl)silane Chemical compound C#C[Si](C)(C)C#C PEMATDLNMXTNGL-UHFFFAOYSA-N 0.000 description 1
- GXVUNEVBRUNGTK-UHFFFAOYSA-N diethynyl(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](C#C)(C#C)C1=CC=CC=C1 GXVUNEVBRUNGTK-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- GFKCWAROGHMSTC-UHFFFAOYSA-N trimethoxy(6-trimethoxysilylhexyl)silane Chemical compound CO[Si](OC)(OC)CCCCCC[Si](OC)(OC)OC GFKCWAROGHMSTC-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Images
Classifications
-
- C07F7/1808—
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
- C07F7/1872—Preparation; Treatments not provided for in C07F7/20
- C07F7/1876—Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-C linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/22—Amides of acids of phosphorus
- C07F9/222—Amides of phosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
Definitions
- the present invention relates to a novel organic silicon compound, especially a novel organic silicon compound useful as a curing agent with an effect of imparting a superior fast curability to a room temperature-curable orgariopolysiloxane composition; and a production method thereof
- a hydrolyzable silyl group such as an alkoxysilyl group
- a structure where two silicon atoms are bonded to each other through a carbon-carbon double bond i.e. silyl-vinylene structure or silyl-ethenylene structure.
- Typical examples of the above type of room temperature-curable composition include a composition composed of a hydroxyl group-terminated polyorganosiloxane, alkoxysilane and an organic titanium compound; a composition composed of an alkoxysilyl group-terminated polyorganosiloxane, alkoxysilane and alkoxy titanium, a composition composed of a linear polyorganosiloxane containing a silethylene group(s) and terminated by alkoxysilyl groups ; alkoxysilane and alkoxy titanium; and a composition composed of a hydroxyl group-terminated polyorganosiloxane or an alkoxy group-terminated polyorganosiloxane and an alkoxy-u-silylester compound (Patent documents 1 to 4).
- compositions exhibit a storage stability, a water resistance and a moisture resistance to a certain degree, these properties are not yet completely satisfactory. Further, these compositions have so far exhibited an insufficient fast curability.
- polymers having reactiv a koxysilyl groups on their terminal ends are known. Since these polymers have their polymer terminal ends blocked by alkoxysilyl groups from the beginning, the curability of a composition containing the same is less likely to change (deteriorate) with time, and a superior storage stability can thus be achieved. Further, a workability (viscosity, thixotropy) of such composition can be arbitrarily controlled, and superior properties (hardness, tensile strength and elongation at break) can also be achieved as those polymers form elastomers through reactions with the moisture in the air and then through cross-liking reactions.
- Patent document 1 Japanese Examined Patent Publication No. Sho 39-27643
- Patent document 2 JP-A-Sho 55-43119
- Patent document 3 Japanese Examined Patent Publication No. Hei 7-39547
- Patent document 4 JP-A-Hei 7-331076
- Patent document 5 Japanese Unexamined Patent Application Publication (Translation of PCT Application) No, 2012-511607
- the present invention was made in view of the above issues, and it is an object of the present invention to provide a curing agent for a room temperature-curable organopolysiloxane composition.
- the curing agent is especially capable of imparting a fast curability to the room temperature-curable organopolysiloxane composition, and can thus provide a cured product superior in storage stability and durability.
- the room temperature-curable organopolysiloxane composition can be industrially advantageously produced using a highly general material(s).
- the inventors of the present invention diligently conducted a series of studies and completed the invention as follows. That is, the inventors found that the hydrolyzability of an alkoxy group in an alkoxysilyl group could be dramatically improved, only when a linking group adjacent to such alkoxysilyl group was a vinylene group (ethenylene group). Specifically, the inventors found that by using a compound that is represented by the following formula (1) and contains alkoxysilyl-vinylene groups, there could be obtained a room temperature-curable composition especially superior in fast curability and capable of forming a cured product with a favorable storage stability and durability.
- the inventors were able to arrive at a room temperature-curable organopolysiloxane composition that can be industrially advantageously produced due to the fact that a highly general material(s) (e.g. diorgano dichlorosilane) can be used as a part of a stalling material(s) for producing the above alkoxysilyl-vinylene group-containing compound.
- a highly general material(s) e.g. diorgano dichlorosilane
- the present invention is to provide an organic silicon compound represented by the following general formula (1)
- R 1 represents either an alkyl group that has 1 to 20 carbon atoms and may have a substituted group or a cycloalkyl group that has 3 to 20 carbon atoms and may have a substituted group
- R 2 represents either a hydrogen atom or a monovalent hydrocarbon group that has 1 to 20 carbon atoms and may have a substituted group, and R 2 may be either identical or different
- each a independently represents an integer of 1 to 3
- ethenylene group represented by —CH ⁇ CH— may be referred to as vinylene group or the like hereunder.
- the present invention provides a production method of the organic silicon compound as set forth in ⁇ 1>, comprising adding two hydrogenalkoxysilanes (3) to one silane compound (2) having two ethynyl groups on an identical silicon atom, through a hydrosilylation addition reaction
- R 1 represents either an alkyl group that has 1 to 20 carbon atoms and may have a substituted group or a cycloalkyl group that has 3 to 20 carbon atoms and may have a substituted group
- R 2 represents either a hydrogen atom or a monovalent hydrocarbon group that has 1 to 20 carbon atoms and may have a substituted group, and R 2 may be either identical different
- the novel silicon-containing compound of the present invention provides a cured product superior in fast curability, and allows a composition using the same to be quickly cured when exposed to the air even after the composition had been stored for 12 months.
- cured product thus obtained exhibits superior properties. Therefore, a composition having, as a curing agent, the novel silicon-containing compound of the present invention (e.g., room temperature-curable organopolysiloxane composition) is useful as a sealing agent, coating material or adhesive agent for use in certain locations where heat resistance, water resistance and moisture resistance are required.
- such composition can be effectively used for construction purposes and applied to an adhesive agent for electric and electronic pans, where steam resistance and water resistance are required.
- the silicon-containing compound of the present invention uses a general-purpose chlorosilane, it can be easily industrialized.
- FIG. 1 is a diagram showing a 1 H-NMR spectrum of a reaction product ([bis (trimethoxysilyl-vinylene) dimethylsilane]) in a synthesis example 1.
- FIG. 2 is a diagram showing a 1 H-NMR spectrum of a reaction product ([bis (trimethoxysilyl-vinylene) diphenylsilane]) in a synthesis example 2.
- the silicon-containing compound terminated by alkoxysilyl-vinylene group which is represented by the above general formula (1) is that having not less than two alkoxysilyl-vinylene bonds on an identical silicon atom (i.e. bis (alkoxysilyl-vinylene) silane compound).
- examples of R I as an alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group and an eicosyl group.
- Examples of a cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
- Examples of an alkyl group that has 1 to 20 carbon atoms and may have a substituted group(s), include an aralkyl group such as a benzyl group, a 2-phenylethyl group and a 3-phenylpropyl group.
- all or a part of the hydrogen atoms in any of these (substituted) alkyl groups may be substituted by, for example, cyano groups and/or halogen atoms such as F, Cl and Br.
- Examples of a substituted group thus obtained include a 3-chlompropyl group, a 3,3,3-trifluoropropyl group and a 2-cyanoethyl group.
- preferred as R 1 are alkyl groups having 1 to 6, particularly 1 to 4 carbon atoms.
- a methyl group and an ethyl group are more preferred as le, where a methyl group is even more preferred in terms of availability, productivity and cost.
- R 2 represents a substituted or unsubstitutecl monovalent hydrocarbon group having 1 to 20 carbon atoms.
- R 2 s may be identical to or different from one another.
- Examples of such R 2 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an
- R 2 may also be a group obtained by substituting a part of or all the hydrogen atoms in any of these groups with, for example, cyano groups and/or halogen atoms such as F, Cl and Br.
- substituted group include a 3-chloropropyl group, 3,3,3-trifluoropropyl group and a 2-cyanoethyl group.
- monovalent hydrocarbon groups having 1 to 10. particularly 1 to 6 carbon atoms.
- a methyl group, an ethyl group and a phenyl group are more preferred, where a methyl group and a phenyl group are even more preferred in terms of availability, productivity and cost.
- Each a independently represents an integer of 1 to 3. However, it is preferred that a be either 2 or 3, more preferably 3.
- the organic silicon compound represented by the general formula (1) of the present invention is mainly used as a curing agent for a (room temperature) curable composition.
- a (room temperature) curable composition Particularly, those having three methoxy groups on an identical silicon atom in a molecule (six in total per molecule) contain a trifunctional alkoxysilane site(s), and are thus useful as curing agents (cross-linking agent) for a dealcoholized silicone RTV (room temperature-curable organopolysiloxane composition).
- the silicon-containing compound of the invention which has two alkoxysilyl-vinylene bonds on an identical silicon atom can, for example, be easily produced through an addition reaction such as a hydrosilylation reaction between a silane having two ethynyl groups on an identical silicon atom and two alkoxysilanes (hydrogenalkoxysilane). This reaction is expressed by the following formula [1].
- platinum group metal-based catalysts such as a platinum-based catalyst, a palladium-based catalyst, a rhodium-based catalyst and a ruthenium-based catalyst are available.
- a platinum-based catalyst is particularly preferred.
- platinum-based catalyst include a platinum black; a catalyst with a solid platinum being supported on a support such as alumina and silica; a chloroplatinic acid; an alcohol-modified chloroplatinic acid; a complex of a chloroplatinic acid and olefin; and a complex of platinum and vinylsiloxane.
- platinum may be used in a so-called catalytic amount, and may, for example, be used in an amount of 0.1 to 1,000 ppm, particularly 0.5 to 100 ppm in terms of platinum group metal, with respect to alkoxysilanes.
- this reaction be performed at a temperature of 50 to 120° C., particularly 60 to 100° C., for 0.5 to 12 hours, particularly 1 to 6 hours, and the reaction can be performed without a solvent.
- an appropriate solvent such as toluene and xylene may be used, provided that no adverse impact will be inflicted upon the above addition reaction or the like.
- organic silicon compound represented by the general formula (1) of the invention include those represented by the following structural formulae.
- part refers to “part by mass,” and viscosity refers to a value measured by a rotary viscometer at 25° C.
- Diethynyldiphenylsilane of 34.9 g (0.151 mol), a 0.5 wt % toluene solution of a chloroplatinic acid (H 2 PtCl 6 .6H 2 O) of 0.10 g and toluene of 50 mL were put into a 500 mL four-necked separable flask equipped with a mechanical stirrer, a thermometer and a dropping funnel, followed by delivering thereinto 38.5 g (0.315 mol) of trimethoxysilane by drops. Later, stirring was performed at 85° C.
- H 2 PtCl 6 .6H 2 O chloroplatinic acid
- a composition was obtained in the similar manner as reference example 1, except that 6,6 parts of bis (trimethoxysilyl-ethylene) diphenylsilane was used instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- compositions were obtained in the similar manners as reference examples 1 to 3, except that there were used 4.1 parts of a silicon compo (vinyltrunethoxysilane) represented by the following structural formula (4) instead of bis (trimethoxy -vinylene) dimethylsilane.
- compositions were obtained in the manners as reference examples 1 to 3, except that there used 3.8 parts of a silicon compound (methyltrimethoxysilane) represented by the following structural formula (5) instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- a silicon compound methyltrimethoxysilane represented by the following structural formula (5) instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- a composition was obtained in the similar manner as reference example 1, except that there were used 4.5 parts of a silicon compound (1,6-bis (trimethoxysilyl) hexane) represented by the following structural formula (6) instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- a silicon compound (1,6-bis (trimethoxysilyl) hexane) represented by the following structural formula (6) instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- each of the compositions obtained in reference examples 1 to 4; and comparative reference examples 1 to 7 was pushed out into a sheet-like shape of a thickness of 2 mm, immediately after they had been produced.
- the sheet-shaped composition was then exposed to an air of 23 ⁇ 2° C., 50 ⁇ 5% RH, and left under the same atmosphere for three days so as to obtain a cured product whose properties(initial properties) were then measured in accordance with HS K-6249.
- a hardness was measured by a hardness meter which was an A-type durometer described in JIS K-6249.
- Table 1 shows the results of reference examples 1 and d comparative reference examples 1, 4 and 7.
- Table 2 shows the results of reference example 2; and comparative reference examples 2 and 5.
- Table 3 shows the results of reference example 3; and comparative reference examples 3 and 6.
- Example 4 Tack-free time (min) 5 3 60 ⁇ 60 ⁇ 60 ⁇ Initial Hardness 22 25 16 6 24 RTV (Durometer A) 7 days Elongation (%) 105 130 110 235 0.33 Tensile strength 0.45 0.52 0.27 0.19 100 (MPa) Moisture Hardness 10 16 4 1 8 resistance (Durometer A) 85° C./85% RH Elongation (%) 155 165 430 365 120 7 days Tensile strength 0.25 0.27 0.22 0.08 0.15 (MPa) Heat Hardness 20 20 15 12 23 resistance (Durometer A) 150° C. Elongation (%) 140 130 105 100 120 10 days Tensile strength 0.47 0.35 0.23 0.22 0.29 (MPa)
- the organic silicon compound of the present invention provides a cured product superior in fast curability and durability, and can thus serve as a curing agent component effective for a room temperature-curable organopolysiloxane composition.
- the present invention is not limited to the above embodiment.
- the above embodiment is simply an example; and any embodiment belongs to the technical scope of the present invention, if the embodiment has a composition substantially identical to that of the technical ideas described in the claims of the invention, and brines about the similar function effects.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Provided is an organic silicon compound represented by the following general formula (1)
(wherein R1 represents either an alkyl group that has 1 to 20 carbon atoms and may have a substituted group or a cycloallcyl group that has 3 to 20 carbon atoms and may have a substituted group; R2 represents either a hydrogen atom or a monovalent hydrocarbon group that has 1 to 20 carbon atoms and may have a substituted group, and R2 may be either identical or different; and each a independently represents an integer of 1 to 3).
The novel silicon-containing compound of the present invention provides a cured product of a room temperature-curable organopolysiloxane composition that is particularly superior in fast curability.
Description
- The present invention relates to a novel organic silicon compound, especially a novel organic silicon compound useful as a curing agent with an effect of imparting a superior fast curability to a room temperature-curable orgariopolysiloxane composition; and a production method thereof In each molecule of such organic silicon compound, provided on an identical silicon atom are two sets of: a hydrolyzable silyl group such as an alkoxysilyl group; and a structure where two silicon atoms are bonded to each other through a carbon-carbon double bond (i.e. silyl-vinylene structure or silyl-ethenylene structure).
- Conventionally, there have been known various types of room temperature-curable compositions capable of being cured into elastomer-like products at room temperature by coming into contact with the moisture in the air. Particularly, those releasing alcohols as they cure are characterized in that they do not produce unpleasant odors and corrode metals, which is why such a type of room temperature-curable compositions have been preferably used in performing sealing, bonding and coating in, for example, electric and electronic equipments.
- Typical examples of the above type of room temperature-curable composition include a composition composed of a hydroxyl group-terminated polyorganosiloxane, alkoxysilane and an organic titanium compound; a composition composed of an alkoxysilyl group-terminated polyorganosiloxane, alkoxysilane and alkoxy titanium, a composition composed of a linear polyorganosiloxane containing a silethylene group(s) and terminated by alkoxysilyl groups; alkoxysilane and alkoxy titanium; and a composition composed of a hydroxyl group-terminated polyorganosiloxane or an alkoxy group-terminated polyorganosiloxane and an alkoxy-u-silylester compound (Patent documents 1 to 4).
- Although these compositions exhibit a storage stability, a water resistance and a moisture resistance to a certain degree, these properties are not yet completely satisfactory. Further, these compositions have so far exhibited an insufficient fast curability.
- As described above, polymers having reactiv a koxysilyl groups on their terminal ends are known. Since these polymers have their polymer terminal ends blocked by alkoxysilyl groups from the beginning, the curability of a composition containing the same is less likely to change (deteriorate) with time, and a superior storage stability can thus be achieved. Further, a workability (viscosity, thixotropy) of such composition can be arbitrarily controlled, and superior properties (hardness, tensile strength and elongation at break) can also be achieved as those polymers form elastomers through reactions with the moisture in the air and then through cross-liking reactions.
- However, those of dealcoholization type have exhibited an insufficient curability, since they are less reactive with the moisture in the air as compared to those of other known curing types such as deoximation type, dc-acetic acid type and deacetone type.
- Here, while developments have been made on a room temperature-curable polyorganosiloxane composition superior in fast curability and capable of forming a cured product superior in moisture resistance, those that can be industrially advantageously produced have not yet been found.
- Patent document 1: Japanese Examined Patent Publication No. Sho 39-27643
- Patent document 2: JP-A-Sho 55-43119
- Patent document 3: Japanese Examined Patent Publication No. Hei 7-39547
- Patent document 4: JP-A-Hei 7-331076
- Patent document 5: Japanese Unexamined Patent Application Publication (Translation of PCT Application) No, 2012-511607
- The present invention was made in view of the above issues, and it is an object of the present invention to provide a curing agent for a room temperature-curable organopolysiloxane composition. The curing agent is especially capable of imparting a fast curability to the room temperature-curable organopolysiloxane composition, and can thus provide a cured product superior in storage stability and durability. Further, the room temperature-curable organopolysiloxane composition can be industrially advantageously produced using a highly general material(s).
- The inventors of the present invention diligently conducted a series of studies and completed the invention as follows. That is, the inventors found that the hydrolyzability of an alkoxy group in an alkoxysilyl group could be dramatically improved, only when a linking group adjacent to such alkoxysilyl group was a vinylene group (ethenylene group). Specifically, the inventors found that by using a compound that is represented by the following formula (1) and contains alkoxysilyl-vinylene groups, there could be obtained a room temperature-curable composition especially superior in fast curability and capable of forming a cured product with a favorable storage stability and durability. More specifically, the inventors were able to arrive at a room temperature-curable organopolysiloxane composition that can be industrially advantageously produced due to the fact that a highly general material(s) (e.g. diorgano dichlorosilane) can be used as a part of a stalling material(s) for producing the above alkoxysilyl-vinylene group-containing compound.
- That is, the present invention is to provide an organic silicon compound represented by the following general formula (1)
- (wherein R1 represents either an alkyl group that has 1 to 20 carbon atoms and may have a substituted group or a cycloalkyl group that has 3 to 20 carbon atoms and may have a substituted group; R2 represents either a hydrogen atom or a monovalent hydrocarbon group that has 1 to 20 carbon atoms and may have a substituted group, and R2 may be either identical or different; and each a independently represents an integer of 1 to 3). Here, in the present invention, ethenylene group represented by —CH═CH— may be referred to as vinylene group or the like hereunder.
- Further, the present invention provides a production method of the organic silicon compound as set forth in <1>, comprising adding two hydrogenalkoxysilanes (3) to one silane compound (2) having two ethynyl groups on an identical silicon atom, through a hydrosilylation addition reaction
- (wherein R1 represents either an alkyl group that has 1 to 20 carbon atoms and may have a substituted group or a cycloalkyl group that has 3 to 20 carbon atoms and may have a substituted group; R2 represents either a hydrogen atom or a monovalent hydrocarbon group that has 1 to 20 carbon atoms and may have a substituted group, and R2 may be either identical different; and each a independently represents an integer of 1 to 3).
- The novel silicon-containing compound of the present invention provides a cured product superior in fast curability, and allows a composition using the same to be quickly cured when exposed to the air even after the composition had been stored for 12 months. Here, cured product thus obtained exhibits superior properties. Therefore, a composition having, as a curing agent, the novel silicon-containing compound of the present invention (e.g., room temperature-curable organopolysiloxane composition) is useful as a sealing agent, coating material or adhesive agent for use in certain locations where heat resistance, water resistance and moisture resistance are required. Particularly, such composition can be effectively used for construction purposes and applied to an adhesive agent for electric and electronic pans, where steam resistance and water resistance are required. Further, since the silicon-containing compound of the present invention uses a general-purpose chlorosilane, it can be easily industrialized.
-
FIG. 1 is a diagram showing a 1H-NMR spectrum of a reaction product ([bis (trimethoxysilyl-vinylene) dimethylsilane]) in a synthesis example 1. -
FIG. 2 is a diagram showing a 1H-NMR spectrum of a reaction product ([bis (trimethoxysilyl-vinylene) diphenylsilane]) in a synthesis example 2. - The present invention is described in greater detail hereunder.
- The silicon-containing compound terminated by alkoxysilyl-vinylene group which is represented by the above general formula (1) is that having not less than two alkoxysilyl-vinylene bonds on an identical silicon atom (i.e. bis (alkoxysilyl-vinylene) silane compound).
- Here, in the above general formula (1), examples of RI as an alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group and an eicosyl group. Examples of a cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of an alkyl group that has 1 to 20 carbon atoms and may have a substituted group(s), include an aralkyl group such as a benzyl group, a 2-phenylethyl group and a 3-phenylpropyl group. Further, all or a part of the hydrogen atoms in any of these (substituted) alkyl groups may be substituted by, for example, cyano groups and/or halogen atoms such as F, Cl and Br. Examples of a substituted group thus obtained include a 3-chlompropyl group, a 3,3,3-trifluoropropyl group and a 2-cyanoethyl group. Among all the above examples, preferred as R1 are alkyl groups having 1 to 6, particularly 1 to 4 carbon atoms. A methyl group and an ethyl group are more preferred as le, where a methyl group is even more preferred in terms of availability, productivity and cost.
- R2 represents a substituted or unsubstitutecl monovalent hydrocarbon group having 1 to 20 carbon atoms. R2s may be identical to or different from one another. Examples of such R2 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group and an eicosyl group; a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; an alkenyl group such as a vinyl group, an allyl group, a butenyl group, a pentenyl group and a hexenyl group; an aryl group such as a phenyl group, a tolyl group, a xylyl group and an α-, β-naphthyl group; and an aralkyl group such as a benzyl group, a 2-phenylethyl group and a 3-phenylpropyl group. R2 may also be a group obtained by substituting a part of or all the hydrogen atoms in any of these groups with, for example, cyano groups and/or halogen atoms such as F, Cl and Br. Examples of such substituted group include a 3-chloropropyl group, 3,3,3-trifluoropropyl group and a 2-cyanoethyl group. Among all the above examples, preferred are monovalent hydrocarbon groups having 1 to 10. particularly 1 to 6 carbon atoms.
- A methyl group, an ethyl group and a phenyl group are more preferred, where a methyl group and a phenyl group are even more preferred in terms of availability, productivity and cost. Each a independently represents an integer of 1 to 3. However, it is preferred that a be either 2 or 3, more preferably 3.
- The organic silicon compound represented by the general formula (1) of the present invention is mainly used as a curing agent for a (room temperature) curable composition. Particularly, those having three methoxy groups on an identical silicon atom in a molecule (six in total per molecule) contain a trifunctional alkoxysilane site(s), and are thus useful as curing agents (cross-linking agent) for a dealcoholized silicone RTV (room temperature-curable organopolysiloxane composition).
- The silicon-containing compound of the invention which has two alkoxysilyl-vinylene bonds on an identical silicon atom can, for example, be easily produced through an addition reaction such as a hydrosilylation reaction between a silane having two ethynyl groups on an identical silicon atom and two alkoxysilanes (hydrogenalkoxysilane). This reaction is expressed by the following formula [1].
- (In the above formula, R1, R2 and a are defined as above.)
- As an addition reaction catalyst used when adding alkoxysilane (hydrogenalkoxysilane), platinum group metal-based catalysts such as a platinum-based catalyst, a palladium-based catalyst, a rhodium-based catalyst and a ruthenium-based catalyst are available. Here, a platinum-based catalyst is particularly preferred. Examples of such platinum-based catalyst include a platinum black; a catalyst with a solid platinum being supported on a support such as alumina and silica; a chloroplatinic acid; an alcohol-modified chloroplatinic acid; a complex of a chloroplatinic acid and olefin; and a complex of platinum and vinylsiloxane. These kinds of platinum may be used in a so-called catalytic amount, and may, for example, be used in an amount of 0.1 to 1,000 ppm, particularly 0.5 to 100 ppm in terms of platinum group metal, with respect to alkoxysilanes.
- It is desired that this reaction be performed at a temperature of 50 to 120° C., particularly 60 to 100° C., for 0.5 to 12 hours, particularly 1 to 6 hours, and the reaction can be performed without a solvent. However, an appropriate solvent such as toluene and xylene may be used, provided that no adverse impact will be inflicted upon the above addition reaction or the like.
- In an addition reaction to silyl-acetylene group (silyl-ethynyl group), a geometric isomer represented by the following reaction formula [2] will, for example be produced. In such geometric isomer, the production of E isomer (trans isomer) is highly selective and highly reactive. Since there will be no adverse impact on the properties of the silicon-containing compound of the present invention, these geometric isomers need not be separated at the time of use.
- Specific examples of the organic silicon compound represented by the general formula (1) of the invention include those represented by the following structural formulae.
- The present invention is described in detail hereunder with reference to working examples (synthesis examples), reference examples and comparative reference examples. However, the present invention is not limited to the following working examples. Further, in the specific examples below, “part” refers to “part by mass,” and viscosity refers to a value measured by a rotary viscometer at 25° C.
- Diethynyldimethylsilane of 35.0 g (0.323 mol), a 0.5 wt % toluene solution of a chloroplatinic acid (H2PtCl6.6H2O) of 0.10 g and toluene of 50 mL were put into a 500 mL four-necked separable flask equipped with a mechanical stirrer, a thermometer and a dropping funnel, followed by delivering thereinto 83.01 g (0.678 mol) of trimethoxysilane by drops. Later, stirring was performed at 85° C. for 6 hours, followed by performing distillation so as to obtain 106.2 g (yield 90%) of a silicon compound [bis (trimethoxysilyl-ethylene) dimethylsilane] shown below. Next, a 1HNMR chart of this silicon compound was analyzed, and it was confirmed that the silicon compound was the target bis (trimethoxysilyl-vinylene) dimethylsilane (trans:cis=8:1) (compound shown below). This reaction is shown in the following formula [3].
- The 1H-NMR spectrum data of this compound are as follows.
- 1H-NMR (400 MHz, C6D6, δ (ppm)):0.00 (s, 6H), 3.36 (s, 18H), 6.47 (d, 2H), 7.10 (d, 2H)
- Diethynyldiphenylsilane of 34.9 g (0.151 mol), a 0.5 wt % toluene solution of a chloroplatinic acid (H2PtCl6.6H2O) of 0.10 g and toluene of 50 mL were put into a 500 mL four-necked separable flask equipped with a mechanical stirrer, a thermometer and a dropping funnel, followed by delivering thereinto 38.5 g (0.315 mol) of trimethoxysilane by drops. Later, stirring was performed at 85° C. for 6 hours, followed by performing distillation so as to obtain 56.5 g (yield 88%) of a silicon compound [bis (trimethoxysilyl-ethylene diphenylsilane] shown below. Next, a 1HNMR chart of this silicon compound was analyzed, and it was confirmed that the silicon compound was the target his (trimethoxysilyl-vinylene) diphenylsilane (trans:cis=9:1) (compound shown below). This reaction is shown in the following formula [4].
- The 1H-NMR spectrum data of this compound are as follows.
- 1H-NMR (400 MHz, C6D6, δ (ppm)): 3.61 (s, 18H), 6.45 (d, 2H), 7.31 (d, 2H), 7.36-7.55 (in, 10H),
- Combined were 100 parts of a dimethylpolysiloxane having a viscosity of 5,000 mPa·s, and a molecular chain whose two ends are blocked by hydroxyl groups (or hydroxydimethylsiloxy groups); 4.9 parts of bis (trimethoxysilyl-vinylene) dimethylsilane; and 0.75 parts of tetramethylguanidylpropyltrimethoxysilane, followed by keeping mixing them under a moisture-blocked condition until a uniform level had been reached, thus obtaining a composition.
- Combined were 100 parts of a dimethylpolysiloxane having a viscosity of 5,000 mPa·s, and a molecular chain whose two ends are blocked by hydroxyl groups (or hydroxydimethylsiloxy groups); 4.9 parts of bis (trimethoxysilyl-vinylene) dimethylsilane; and 1.0 part of an organic aluminum compound which was a mono (dipivaloylmethane) aluminum bis (ethylacetoacetate) chelate having an average structure represented by the following structural formula (2), followed by keeping mixing them under a moisture-blocked condition until a uniform level had been reached, thus obtaining a composition.
- Combined were 100 parts of a dimethylpolysiloxane having a viscosity of 5,000 mPa·s, and a molecular chain whose two ends are blocked by hydroxyl groups (or hydroxydimethylsiloxy groups); 4.9 parts of bis (trimethoxysilyl-vinylene) dimethylsilane; and 0.2 parts of a compound which was an N,N,N′,N′,N″, N″-hexamethyl-N″′-(trimethylsilylmethyl)- phosphorimidic tri amide represented by the following structural formula (3), followed by keeping mixing them under a moisture-blocked condition until a uniform level had been reached, thus obtaining a composition.
- A composition was obtained in the similar manner as reference example 1, except that 6,6 parts of bis (trimethoxysilyl-ethylene) diphenylsilane was used instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- Compositions were obtained in the similar manners as reference examples 1 to 3, except that there were used 4.1 parts of a silicon compo (vinyltrunethoxysilane) represented by the following structural formula (4) instead of bis (trimethoxy -vinylene) dimethylsilane.
- Compositions were obtained in the manners as reference examples 1 to 3, except that there used 3.8 parts of a silicon compound (methyltrimethoxysilane) represented by the following structural formula (5) instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- A composition was obtained in the similar manner as reference example 1, except that there were used 4.5 parts of a silicon compound (1,6-bis (trimethoxysilyl) hexane) represented by the following structural formula (6) instead of bis (trimethoxysilyl-vinylene) dimethylsilane.
- There was measured a tack-free time of each of the compositions obtained in reference examples 1 to 4; and comparative reference examples 1 to 7.
- In addition, each of the compositions obtained in reference examples 1 to 4; and comparative reference examples 1 to 7 was pushed out into a sheet-like shape of a thickness of 2 mm, immediately after they had been produced. The sheet-shaped composition was then exposed to an air of 23±2° C., 50±5% RH, and left under the same atmosphere for three days so as to obtain a cured product whose properties(initial properties) were then measured in accordance with HS K-6249. Here, a hardness was measured by a hardness meter which was an A-type durometer described in JIS K-6249.
- Further, similar measurements were performed on a product obtained by storing the above cured product in a thermo-hygrostat of 85° C., 85% RH for 7 days. Furthermore, similar measurements were also performed on a product obtained by heating the above cured product in an oven of 150° C. for 10 days.
- Table 1 shows the results of reference examples 1 and d comparative reference examples 1, 4 and 7. Table 2 shows the results of reference example 2; and comparative reference examples 2 and 5. Table 3 shows the results of reference example 3; and comparative reference examples 3 and 6.
-
TABLE 1 Comparative Comparative Comparative Reference Reference Reference Reference Reference Measurement result Example 1 Example 4 Example 1 Example 4 Example 7 Tack-free time (min) 5 3 60< 60< 60< Initial Hardness 22 25 16 6 24 RTV (Durometer A) 7 days Elongation (%) 105 130 110 235 0.33 Tensile strength 0.45 0.52 0.27 0.19 100 (MPa) Moisture Hardness 10 16 4 1 8 resistance (Durometer A) 85° C./85% RH Elongation (%) 155 165 430 365 120 7 days Tensile strength 0.25 0.27 0.22 0.08 0.15 (MPa) Heat Hardness 20 20 15 12 23 resistance (Durometer A) 150° C. Elongation (%) 140 130 105 100 120 10 days Tensile strength 0.47 0.35 0.23 0.22 0.29 (MPa) -
TABLE 2 Comparative Comparative Reference Reference Reference Example Example Example Measurement result 2 2 5 Tack-free time (min) 2 10 15< Initial Hardness 12 4 0 RTV (Durometer A) 7 days Elongation (%) 105 210 430 Tensile strength 0.27 0.15 0.13 (MPa) Moisture Hardness 11 0.5 0 resistance (Durometer A) 85° C./85% Elongation (%) 150 375 530 RH 7 daysTensile strength 0.33 0.16 0.13 (MPa) Heat Hardness 18 15 14 resistance (Durometer A) 150° C. Elongation (%) 125 190 215 10 days Tensile strength 0.45 0.38 0.38 (MPa) -
TABLE 3 Comparative Comparative Reference Reference Reference Example Example Example Measurement result 3 3 6 Tack-free time (min) 4 60< 60< Initial Hardness 25 16 8 RTV (Durometer A) 7 days Elongation (%) 100 105 215 Tensile strength 0.46 0.29 0.22 (MPa) Moisture Hardness 15 10 6 resistance (Durometer A) 85° C./85% Elongation (%) 135 165 260 RH 7 daysTensile strength 0.33 0.26 0.25 (MPa) Heat Hardness 26 18 10 resistance (Durometer A) 150° C. Elongation (%) 115 135 100 10 days Tensile strength 0.51 0.31 0.16 (MPa) - As described above, the organic silicon compound of the present invention provides a cured product superior in fast curability and durability, and can thus serve as a curing agent component effective for a room temperature-curable organopolysiloxane composition.
- However, the present invention is not limited to the above embodiment. The above embodiment is simply an example; and any embodiment belongs to the technical scope of the present invention, if the embodiment has a composition substantially identical to that of the technical ideas described in the claims of the invention, and brines about the similar function effects.
Claims (2)
1. An organic silicon compound (A) represented by the following general formula (1)
(wherein R1 represents either an alkyl group that has 1 to 20 carbon atoms and may have a substituted group or a cycloalkyl group that has 3 to 20 carbon atoms and may have a substituted group; R2 represents either a hydrogen atom or a monovalent hydrocarbon group that has 1 to 20 carbon atoms and may have a substituted group, and R2 may be either identical or different; and each a independently represents an integer of 1 to 3).
2. A production method of the organic silicon compound as set forth in claim 1 , comprising adding two hydrogenalkoxysilanes (3) to one silane compound (2) having two ethynyl groups on an identical silicon atom, through a hydrosilylation addition reaction
(wherein R1 represents either an alkyl group that has 1 to 20 carbon atoms and may have a substituted group or a cycloalkyl group that has 3 to 20 carbon atoms and may have a substituted group; R2 represents either a hydrogen atom or a monovalent hydrocarbon group that has 1 to 20 carbon atoms and may have a substituted group, and R2 may be either identical or different; and each a independently represents an integer of 1 to 3).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/683,994 US10005799B2 (en) | 2014-04-25 | 2017-08-23 | Bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014-091240 | 2014-04-25 | ||
| JP2014091240 | 2014-04-25 | ||
| PCT/JP2015/052809 WO2015162962A1 (en) | 2014-04-25 | 2015-02-02 | Novel bis (alkoxysilyl-vinylene) group-containing silicon compound and manufacturing method therefor |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2015/052809 A-371-Of-International WO2015162962A1 (en) | 2014-04-25 | 2015-02-02 | Novel bis (alkoxysilyl-vinylene) group-containing silicon compound and manufacturing method therefor |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/683,994 Division US10005799B2 (en) | 2014-04-25 | 2017-08-23 | Bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170037066A1 true US20170037066A1 (en) | 2017-02-09 |
Family
ID=54332136
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/304,254 Abandoned US20170037066A1 (en) | 2014-04-25 | 2015-02-02 | Novel bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same |
| US15/683,994 Active US10005799B2 (en) | 2014-04-25 | 2017-08-23 | Bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/683,994 Active US10005799B2 (en) | 2014-04-25 | 2017-08-23 | Bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20170037066A1 (en) |
| EP (1) | EP3135679B1 (en) |
| JP (1) | JP6187681B2 (en) |
| KR (1) | KR102448206B1 (en) |
| CN (2) | CN109705397B (en) |
| WO (1) | WO2015162962A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11578209B2 (en) | 2017-12-15 | 2023-02-14 | Shtn-Etsu Chemical Co., Ltd. | Room temperature moisture-curable silicone gel composition, and cured product and article therefrom |
| EP4421128A4 (en) * | 2021-10-19 | 2025-10-29 | Shinetsu Chemical Co | Room temperature curable organopolysiloxane composition, adhesive, sealant and coating agent |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102619534B1 (en) * | 2016-04-26 | 2023-12-29 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Room temperature curable compositions, sealing materials, and articles |
| JP7300993B2 (en) * | 2017-10-17 | 2023-06-30 | 信越化学工業株式会社 | Room temperature curable composition, sealant and article |
| US20230250287A1 (en) * | 2020-07-07 | 2023-08-10 | Shin-Etsu Chemical Co., Ltd. | Two-component type room temperature fast-curing organopolysiloxane composition, cured product thereof and article |
| JP2024015717A (en) * | 2022-07-25 | 2024-02-06 | 信越化学工業株式会社 | One-end modified organopolysiloxane, its manufacturing method, surface treatment agent, and silicone composition |
| JP2024015716A (en) * | 2022-07-25 | 2024-02-06 | 信越化学工業株式会社 | Modifier consisting of bissilane compound, its production method and its use |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5162478A (en) * | 1990-09-17 | 1992-11-10 | Iowa State University Research Foundation, Inc. | Poly(silylene)vinylenes from ethynylhydridosilanes |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5543119A (en) | 1978-09-20 | 1980-03-26 | Sws Silicones Corp | Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture |
| JPH0627197B2 (en) * | 1990-03-13 | 1994-04-13 | 信越化学工業株式会社 | Poly (silivinylene) and method for producing the same |
| JPH0739547B2 (en) | 1992-01-10 | 1995-05-01 | 東レ・ダウコーニング・シリコーン株式会社 | Room temperature curable organopolysiloxane composition |
| JP2998505B2 (en) | 1993-07-29 | 2000-01-11 | 富士写真光機株式会社 | Radial ultrasonic scanner |
| JPH07331076A (en) | 1994-06-03 | 1995-12-19 | Shin Etsu Chem Co Ltd | Room temperature curable organopolysiloxane composition |
| JP4438937B2 (en) * | 2004-02-05 | 2010-03-24 | 信越化学工業株式会社 | Room temperature curable organopolysiloxane composition |
| JP4821958B2 (en) * | 2005-05-13 | 2011-11-24 | 信越化学工業株式会社 | Room temperature curable organopolysiloxane composition |
| JP4302721B2 (en) * | 2006-07-10 | 2009-07-29 | 信越化学工業株式会社 | Curable organopolysiloxane composition, sealant for flat panel display containing the same, and flat panel display element |
| DE102008054541A1 (en) | 2008-12-11 | 2010-06-17 | Wacker Chemie Ag | Alkoxysilane-terminated polymers containing polymer blends |
| KR102326223B1 (en) | 2014-06-16 | 2021-11-15 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Room-temperature-curable organopolysiloxane composition, and moulded product comprising cured product of said room- temperature-curable organopolysiloxane composition |
-
2015
- 2015-02-02 US US15/304,254 patent/US20170037066A1/en not_active Abandoned
- 2015-02-02 WO PCT/JP2015/052809 patent/WO2015162962A1/en not_active Ceased
- 2015-02-02 JP JP2016514742A patent/JP6187681B2/en active Active
- 2015-02-02 CN CN201811624384.9A patent/CN109705397B/en active Active
- 2015-02-02 CN CN201580021814.6A patent/CN106255696A/en active Pending
- 2015-02-02 EP EP15782603.3A patent/EP3135679B1/en active Active
- 2015-02-02 KR KR1020167032494A patent/KR102448206B1/en active Active
-
2017
- 2017-08-23 US US15/683,994 patent/US10005799B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5162478A (en) * | 1990-09-17 | 1992-11-10 | Iowa State University Research Foundation, Inc. | Poly(silylene)vinylenes from ethynylhydridosilanes |
Non-Patent Citations (2)
| Title |
|---|
| Shostakovskii et al. "Hydrosilylation of Ethynylsilanes" Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR, 7, 1971, 1478-1481. * |
| Voronkov et al. "Methyl-Substituted trans-1,2-Disilylethylene Derivatives" Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR, 9, 1974, 2066-2070. * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11578209B2 (en) | 2017-12-15 | 2023-02-14 | Shtn-Etsu Chemical Co., Ltd. | Room temperature moisture-curable silicone gel composition, and cured product and article therefrom |
| EP4421128A4 (en) * | 2021-10-19 | 2025-10-29 | Shinetsu Chemical Co | Room temperature curable organopolysiloxane composition, adhesive, sealant and coating agent |
Also Published As
| Publication number | Publication date |
|---|---|
| US20180037596A1 (en) | 2018-02-08 |
| KR20160148617A (en) | 2016-12-26 |
| CN106255696A (en) | 2016-12-21 |
| EP3135679A1 (en) | 2017-03-01 |
| JPWO2015162962A1 (en) | 2017-04-13 |
| US10005799B2 (en) | 2018-06-26 |
| EP3135679B1 (en) | 2019-10-30 |
| CN109705397B (en) | 2020-11-10 |
| WO2015162962A1 (en) | 2015-10-29 |
| JP6187681B2 (en) | 2017-08-30 |
| EP3135679A4 (en) | 2017-10-25 |
| KR102448206B1 (en) | 2022-09-28 |
| CN109705397A (en) | 2019-05-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10005799B2 (en) | Bis (alkoxysilyl-vinylene) group-containing silicon compound and production method of same | |
| KR101598325B1 (en) | Curable resin composition, and cured product of same | |
| JP6497390B2 (en) | Room temperature curable organopolysiloxane composition and molded article which is a cured product of the room temperature curable organopolysiloxane composition | |
| EP3085739B1 (en) | Multicomponent room temperature-curable organopolysiloxane composition, cured product of said composition, and molded product comprising said cured product | |
| KR20150099526A (en) | Novel alkoxysilyl-ethylene-group-terminated silicon-containing compound, room-temperature-curable organopolysiloxane composition, and molded article obtained by curing said composition | |
| JP6747507B2 (en) | Room temperature curable composition, sealant and article | |
| TWI794401B (en) | Room temperature curable organopolysiloxane composition and electric/electronic apparatus | |
| EP3705535B1 (en) | Organopolysiloxane composition, and organic silicon compound and production method therefor | |
| KR20160008234A (en) | Aluminium chelate compound, and room-temperature-curable resin composition including same | |
| JP7126999B2 (en) | Alkynyl group-containing cyclic organopolysiloxane and hydrosilylation reaction control agent | |
| JP2009513594A (en) | Hydrosilylation process | |
| EP3950786A1 (en) | Organopolysiloxane modified with lactate silyl at both ends and method for producing same | |
| JP2017203065A (en) | Terminal silanol group-containing polyoxyalkylene compound and method for producing the same | |
| JP2024015716A (en) | Modifier consisting of bissilane compound, its production method and its use | |
| JP6225888B2 (en) | Organopolysiloxane compound and method for producing the same | |
| JP2021534295A (en) | Crosslinkable organosiloxane composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SHIN-ETSU CHEMICAL CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAGUCHI, TAKAHIRO;SAKAMOTO, TAKAFUMI;KATAYAMA, TAIKI;REEL/FRAME:040020/0678 Effective date: 20160928 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |