US20170036330A1 - Quick-connect chuck mechanism for screwdriver bits and the like - Google Patents
Quick-connect chuck mechanism for screwdriver bits and the like Download PDFInfo
- Publication number
- US20170036330A1 US20170036330A1 US15/305,511 US201515305511A US2017036330A1 US 20170036330 A1 US20170036330 A1 US 20170036330A1 US 201515305511 A US201515305511 A US 201515305511A US 2017036330 A1 US2017036330 A1 US 2017036330A1
- Authority
- US
- United States
- Prior art keywords
- bit
- accepting hole
- holder
- locking element
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 28
- 230000001154 acute effect Effects 0.000 claims abstract description 7
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/0007—Connections or joints between tool parts
- B25B23/0035—Connection means between socket or screwdriver bit and tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B23/00—Tailstocks; Centres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
- B23B31/10—Chucks characterised by the retaining or gripping devices or their immediate operating means
- B23B31/107—Retention by laterally-acting detents, e.g. pins, screws, wedges; Retention by loose elements, e.g. balls
- B23B31/1071—Retention by balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
- B23B31/10—Chucks characterised by the retaining or gripping devices or their immediate operating means
- B23B31/107—Retention by laterally-acting detents, e.g. pins, screws, wedges; Retention by loose elements, e.g. balls
- B23B31/1072—Retention by axially or circumferentially oriented cylindrical elements
-
- B23B31/1074—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
- B23B31/10—Chucks characterised by the retaining or gripping devices or their immediate operating means
- B23B31/107—Retention by laterally-acting detents, e.g. pins, screws, wedges; Retention by loose elements, e.g. balls
- B23B31/10741—Retention by substantially radially oriented pins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B15/00—Screwdrivers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/16—Handles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2231/00—Details of chucks, toolholder shanks or tool shanks
- B23B2231/46—Pins
Definitions
- This invention relates to a quick-change tool bit holder that can secure a tool bit by using a wedging element on its external profile.
- This kind of locking in a quick change holder provides substantially “no play” holding of a tool bit.
- the wedging element moves in a guided angular path within the body of the holder, the path making a self-locking acute angle with the centre axis of the holder.
- the invention will normally be used for standard hexagonal bits.
- the invention can be readily adapted for use with bits having any polygonal cross-section, including square bits for example, as well as for use with bits having a non-polygonal cross-section, for example ovaloid bits with two flats and two arcs, or tri-centric bits with three flats and three arcs.
- the invention can be adapted for use with virtually any non-circular cross-section.
- Typical quick change tool bit holders on the market use some kind of a locking device that engages a circumferential groove per ANSI B 107.4-1982 or an edge notch per ASME B107.600-2008 (B107.26) on the hex shank of a tool bit, resulting in restricting axial freedom of the same.
- the locking mechanism in each case is of a binary nature. This means the conditions are either, on or off, grabbed or released, locked or unlocked, etc. Due to the stack-up of tolerances in such bit holder devices, coupled with manufacturing tolerances of tool bits, there is generally excessive axial and radial play between the tool bits and the tool bit holder. Tradespersons and do-it-yourselfers accustomed to using solid screw drivers or driver/drill bits directly chucked into a hand drill strongly dislike the resulting sloppy functioning of these quick change holders.
- the quick change tool bit holder presented here offers quick interchangeability of tool bits without compromising the feel of a solid chuck, by providing a substantially no-play hold on the tool bit.
- the design is based upon at least one angularly guided locking element, the path of which makes a self-locking acute angle ‘A’ with the center axis of the bit holder.
- This locking element acts as a wedge against the outer surface of the tool bit, hence locking the bit against axial and radial freedom.
- FIG. 1 is a side cross-section of a first example of the invention, using a pin actuated by a spring-loaded sleeve, shown with a tool bit inserted;
- FIG. 2A is a cross-section corresponding to FIG. 1 , but without the tool bit;
- FIG. 2B is an end view corresponding to FIG. 2A ;
- FIG. 3A is a top view at 90 degrees to FIGS. 1 and 2A ;
- FIG. 3B is an end view corresponding to FIG. 3A ;
- FIG. 4A is a perspective view showing the sleeve and pin of FIGS. 1 to 3B ;
- FIG. 4B is an exploded perspective view corresponding to FIG. 4A ;
- FIG. 5 is a side cross-section of a second example of the invention, using a pin and a roller actuated by the spring-loaded sleeve, shown with a tool bit inserted;
- FIG. 6A is a cross-section corresponding to FIG. 5 , without the tool bit;
- FIG. 6B is an end view corresponding to FIG. 6A ;
- FIG. 7A is a top view at 90 degrees to FIGS. 5 and 6A ;
- FIG. 7B is an end view corresponding to FIG. 7A ;
- FIG. 8 is a perspective view showing the sleeve, pin and roller of FIGS. 5 to 7A ;
- FIG. 9 is a side cross-section of a third example of the invention, very similar to the second example, but with the bit-holder body in two pieces;
- FIG. 10A is a side cross-section of a fourth example of the invention, very similar to the previous examples, but using a ball;
- FIG. 10B is a side cross-section where the mechanism is identical to that of FIG. 10A , simply illustrating that for all embodiments the locking does not depend on the bit having a circumferential groove;
- FIG. 11 is a side cross-section of a fifth example of the invention, using a ball holder and a ball actuated by a spring-loaded sleeve, shown with a tool bit inserted;
- FIG. 12A is a cross-section corresponding to FIG. 11 , without the tool bit;
- FIG. 12B is an end view corresponding to FIG. 12A ;
- FIG. 13A is atop view at 90 degrees to FIGS. 11 and 12A ;
- FIG. 13B is an end view corresponding to FIG. 13A ;
- FIG. 14 is a perspective view showing the sleeve, ball holder and ball of FIGS. 11 to 13A ;
- FIG. 15A is a side cross-section of a sixth example of the invention, where the sleeve is placed in front of the open end of the body/housing, shown with a tool bit inserted;
- FIG. 15B is an end view corresponding to FIG. 15A ;
- FIG. 16A is a side cross-section of a seventh example of the invention, showing two opposing bit-locking elements one acting in one direction and the other acting in the opposite direction;
- FIG. 16B is an end view corresponding to FIG. 16A ;
- FIG. 16C is a side cross-section of the seventh example, showing the sleeve moved forwardly from the holder;
- FIG. 16D is a side cross-section of the seventh example, showing the sleeve moved rearwardly;
- FIG. 17A is a side cross-section of an eighth example of the invention, using a spring-loaded cam
- FIG. 17B is a detailed view corresponding to FIG. 17A ;
- FIG. 18 is a side cross-section showing a bit being inserted
- FIG. 19 is a side cross-section showing the bit locked in place
- FIG. 20 is a side cross-section of a ninth example of the invention, in which a wedge portion is provided on the inner diameter of a slideable sleeve;
- FIG. 21 is a corresponding view, showing a bit being inserted
- FIG. 22 is a corresponding view, showing the bit locked in place
- FIG. 23 is a side cross-section of a tenth example of the invention, similar to the ninth example, but having a spring-loaded plunger to eject the tool bit when the locking mechanism is released;
- FIG. 24 is a corresponding view, showing a bit fully inserted
- FIG. 25 is a corresponding view, showing the collar being pushed forward and the bit being ejected
- FIG. 26 is a side cross-section of an example of the mechanism combined with a typical screwdriver handle
- FIG. 27 is an end view showing three locking mechanisms offset by 120 degrees from each other;
- FIG. 28 is an end view showing two locking mechanisms offset by 180 degrees from each other;
- FIG. 29 is an end view showing two locking mechanisms offset by 120 degrees from each other;
- FIG. 30 is and end view showing an alternative bit and bit holder cross-section, namely tri-centric.
- FIG. 31 is and end view showing another alternative bit and bit holder cross-section, namely ovaloid.
- FIGS. 1-4B shows a first example of the invention.
- the main body of the bit holder 10 has a shank 11 and a bit-accepting end 12 with a blind bit-accepting hole 13 having a profile to match the profile of the tool bit 30 .
- the profile will normally be hexagonal, but as stated above, the invention can be adapted for use with bits of basically any non-circular cross-section.
- the shank 11 normally will be mounted in, for example, a screwdriver handle, as shown in FIG. 26 .
- At least one pin 15 acts as a locking element.
- a locking element preferably but not necessarily cylindrical for ease of manufacturing.
- the pin 15 preferably has a semi-spherical tip 16 , and is slideable and guided in an angularly formed path 14 , the path 14 partially opening into the bit-accepting hole 13 such that the tip 16 extends slightly into the bit-accepting hole 13 .
- the pin 15 is anchored to a slideable sleeve 20 , by a slot near 17 the end of the pin and a notch 17 ′ in the sleeve.
- the pin connects to the sleeve the end of the pin sits in the notch and the outside of the notch sits in the slot so as to anchor the pin to the sleeve.
- the angle A at which the path 14 is offset from the axis of the bit holder is preferably in the range of 5 to 13 degrees. Too large an angle increases the diameter of the mechanism excessively, and reduces the effectiveness of the locking. Conversely, too small an angle increase the length of the mechanism, and ultimately also reduces the effectiveness of the unlocking.
- the sleeve 20 is biased towards the distal end of the holder, i.e. towards the open end of the bit-accepting hole 13 , by a spring 21 that has its one flat face against the sleeve 20 while the other face is against a stop ring 22 .
- the stop ring 22 is retained by lock ring 23 sitting in a recess in the main body 10 . Axial sliding movement of sleeve 20 results in angularly sliding movement of element 15 within the guided path 14 of the body.
- a tool bit 30 When a tool bit 30 is axially inserted into the bit-accepting hole 13 , it engages with the tip 16 of the element 15 , pushing the element 15 and in turn the sleeve 20 towards the shank 11 . As the insertion of tool bit 30 continues, the element 15 is pushed fully out of the bit-accepting hole 13 and the tip 16 is in contact with the external surface 31 of the bit 30 until the bit stops against the terminating end of bit-accepting hole 13 . Due to the spring biasing, the tip 16 of element 15 is continuously pushed against the outer surface 31 of the tool bit 30 , resulting in wedging and clamping the bit 30 inside the bit-accepting hole 13 .
- the angular path makes an acute angle “A” with the center axis of the bit holder.
- the acute angle “A” is less than 20 degrees, and preferably less than 15 degrees. In the drawings, a preferred angle of 10 degrees is shown.
- FIGS. 5-8 A second example of the invention is shown in FIGS. 5-8 .
- the mechanism is essentially identical to that of FIGS. 1-4B , except that the sliding element 15 has a freely rotating roller 18 that replaces tip 16 of the pin 15 . This is most clearly seen in FIG. 8 .
- FIG. 9 shows a third example of the invention, which is a slightly modified version of the first and second examples.
- the angular path for the locking element is formed partially as a slot in portion 12 of the body 10 and partially into a coaxial collar 40 press fitted onto the end 12 . With this split construction there is better access to the guide path during manufacturing, to produce a polished finish with less friction.
- FIGS. 10A and 10B show a fourth example of the invention, where the bit locking element is a spherical ball 42 positioned at the distal end of the pin 15 within the angular path 14 .
- the bit locking function is the same as shown in the earlier examples of the invention.
- FIG. 10B is identical to FIG. 10A , except that it illustrates that the invention can be used not only with bits having a conventional circumferential groove 43 near their proximal ends ( FIG. 10A ), but also with bits having no such groove.
- FIGS. 11-14 show a fifth example of the invention, which is similar to the fourth example ( FIGS. 10A and 10B ).
- the locking element is a spherical ball 42 , but it is anchored to an extended hook portion 24 of sleeve 20 , as best seen in FIG. 14 .
- FIGS. 15A and 15B show a sixth example, which is a variation of the fifth example ( FIGS. 11-14 ).
- the sleeve 20 is placed in front of the open end of the body/housing.
- the locking function is the same as in the previous examples, but in this case, to release the bit, the movement of the sleeve pushes the ball 42 away from its locking position instead of pulling it away.
- FIGS. 16A and 16B show a seventh example of the invention, which is an enhanced version of the sixth example ( FIGS. 15A and 15B ).
- the bit can be locked in both axial directions by a dual-biased sliding sleeve 20 .
- One locking element 42 locks the bit against movement in one direction
- the other locking element 42 ′ locks the bit against movement in the other direction.
- the locking elements can be operated for bit release in one direction at a time.
- the extended anchoring portions 24 of the sleeve 20 have an open ended slot and another closed slot anchoring the locking elements.
- FIG. 16C shows the sleeve 20 pushed forward from the holder. This forward movement of the sleeve forces the locking element 42 ′ angularly away from the tool bit and thus frees the bit to be pushed deeper into the blind hole.
- FIG. 16D shows sleeve 20 pushed rearwardly, moving the locking element 42 away from the bit, hence freeing the bit to be extracted from the holder.
- FIGS. 17A-19 show an eighth and somewhat different example, where the bit locking element is at least one rotatable eccentric cam 44 .
- This cam is lightly spring biased in a counter-clockwise direction by a spring 45 .
- Point ‘B’ is the highest on the peripheral surface of the eccentric cam while point ‘C’ is the lowest.
- a slideable sleeve 20 is strongly biased towards the open end of bit insertion bit-accepting hole 13 , keeping the eccentric cam 44 pushed in a clockwise direction such that the highest portion ‘B’ extends into the bit-accepting hole 13 .
- the eccentric cam 44 As the tool bit 30 is inserted into the matching bit-accepting hole 13 of the holder, the eccentric cam 44 is pushed into counter-clockwise rotation until it rides on the bit surface 31 , at the same time pushing the sleeve 26 back against its bias.
- the cam 44 acts as a rotating wedge clamping the tool bit 30 within the bit-accepting hole 13 of the holder. Any effort to pull out the tool bit tends to rotate the eccentric cam 44 in a clockwise direction, resulting in further tightening the grip on the bit.
- the sleeve 26 In order to release the tool bit, the sleeve 26 must be pulled back against axial spring bias, allowing cam 44 to rotate counter-clockwise, thus releasing clamping force on the bit for removal.
- FIGS. 20-22 show a ninth example, in which the wedge portion 50 is provided on the inner diameter of a slideable sleeve 52 , the sleeve being biased towards the shank of the bit holder.
- the axial bias of the slideable wedge causes radial movement of a locking element 42 sitting in a radial hole 54 in the body, the hole communicating with the bit-accepting recess 13 in the holder body.
- the sleeve 52 is pushed against the bias of the spring, towards the front end of the holder to insert the tool bit into the accepting bit-accepting hole 13 .
- the sleeve is released, resulting in locking of the tool bit due to the radial force of the locking element.
- the sleeve is pushed forward.
- FIG. 23-25 show a tenth example, similar to the ninth example ( FIGS. 20-22 ).
- This tenth example provides automatic locking of the bit 30 on insertion.
- the sleeve 52 is pushed against the spring bias, resulting in taking the radial force off the locking element 42 , such that the tool bit is then ejected by a spring-loaded plunger 56 .
- FIG. 24 shows a bit fully inserted
- FIG. 25 shows the collar being pushed forward and the bit being ejected.
- FIG. 26 is a side cross-section showing a mechanism according to the invention, mounted in a typical screwdriver/bitdriver handle 100 . Obviously any one of the described examples of the invention can be so mounted.
- FIG. 27 shows three such mechanisms positioned at 120 degrees to each other, to engage three of the faces of a hexagonal tool bit.
- FIG. 28 shows two opposing mechanisms, as shown in FIG. 28 .
- FIG. 29 shows another example, where there are two mechanisms, offset by 120 degrees. Theoretically there could be six mechanisms, but clearly that would neither be necessary nor practical.
- the tool bit does not need to be a conventional hexagonal cross-section.
- Other non-circular cross-sections can be used, such as those shown in FIGS. 30 and 31 (tri-centric and ovaloid respectively).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gripping On Spindles (AREA)
- Drilling Tools (AREA)
Abstract
A bit holder has a shank at a proximal end thereof and a blind bit-accepting hole at a distal end thereof, shaped to receive a correspondingly-shaped tool bit. The bit holder has at least one locking mechanism which includes an angled path defined in the bit holder, opening into a side of the bit-accepting hole, extending away from the bit-accepting hole in a proximal direction at an acute angle A from a central axis. A locking element is slideable in the path. A sleeve around the shank is biased towards the bit-accepting hole by a spring, such that a distal end of the locking element extends slightly into the bit-accepting hole. Moving the sleeve towards the proximal end of the bit holder retracts the locking element from the bit-accepting hole, thereby releasing the bit. A spring-loaded plunger in the blind hole may be used to eject the bit automatically when the locking mechanism is released by the sleeve.
Description
- This invention relates to a quick-change tool bit holder that can secure a tool bit by using a wedging element on its external profile. This kind of locking in a quick change holder provides substantially “no play” holding of a tool bit. The wedging element moves in a guided angular path within the body of the holder, the path making a self-locking acute angle with the centre axis of the holder.
- The invention will normally be used for standard hexagonal bits. However, the invention can be readily adapted for use with bits having any polygonal cross-section, including square bits for example, as well as for use with bits having a non-polygonal cross-section, for example ovaloid bits with two flats and two arcs, or tri-centric bits with three flats and three arcs. In general, the invention can be adapted for use with virtually any non-circular cross-section. Typical quick change tool bit holders on the market use some kind of a locking device that engages a circumferential groove per ANSI B 107.4-1982 or an edge notch per ASME B107.600-2008 (B107.26) on the hex shank of a tool bit, resulting in restricting axial freedom of the same.
- Because of inherent features of the circumferential groove in the tool bits, the locking mechanism in each case is of a binary nature. This means the conditions are either, on or off, grabbed or released, locked or unlocked, etc. Due to the stack-up of tolerances in such bit holder devices, coupled with manufacturing tolerances of tool bits, there is generally excessive axial and radial play between the tool bits and the tool bit holder. Tradespersons and do-it-yourselfers accustomed to using solid screw drivers or driver/drill bits directly chucked into a hand drill strongly dislike the resulting sloppy functioning of these quick change holders.
- The quick change tool bit holder presented here offers quick interchangeability of tool bits without compromising the feel of a solid chuck, by providing a substantially no-play hold on the tool bit. The design is based upon at least one angularly guided locking element, the path of which makes a self-locking acute angle ‘A’ with the center axis of the bit holder. This locking element acts as a wedge against the outer surface of the tool bit, hence locking the bit against axial and radial freedom.
- Further details of the invention will be described or will become apparent in the course of the following detailed description and drawings of embodiments of the invention, presented as examples only.
-
FIG. 1 is a side cross-section of a first example of the invention, using a pin actuated by a spring-loaded sleeve, shown with a tool bit inserted; -
FIG. 2A is a cross-section corresponding toFIG. 1 , but without the tool bit; -
FIG. 2B is an end view corresponding toFIG. 2A ; -
FIG. 3A is a top view at 90 degrees toFIGS. 1 and 2A ; -
FIG. 3B is an end view corresponding toFIG. 3A ; -
FIG. 4A is a perspective view showing the sleeve and pin ofFIGS. 1 to 3B ; -
FIG. 4B is an exploded perspective view corresponding toFIG. 4A ; -
FIG. 5 is a side cross-section of a second example of the invention, using a pin and a roller actuated by the spring-loaded sleeve, shown with a tool bit inserted; -
FIG. 6A is a cross-section corresponding toFIG. 5 , without the tool bit; -
FIG. 6B is an end view corresponding toFIG. 6A ; -
FIG. 7A is a top view at 90 degrees toFIGS. 5 and 6A ; -
FIG. 7B is an end view corresponding toFIG. 7A ; -
FIG. 8 is a perspective view showing the sleeve, pin and roller ofFIGS. 5 to 7A ; -
FIG. 9 is a side cross-section of a third example of the invention, very similar to the second example, but with the bit-holder body in two pieces; -
FIG. 10A is a side cross-section of a fourth example of the invention, very similar to the previous examples, but using a ball; -
FIG. 10B is a side cross-section where the mechanism is identical to that ofFIG. 10A , simply illustrating that for all embodiments the locking does not depend on the bit having a circumferential groove; -
FIG. 11 is a side cross-section of a fifth example of the invention, using a ball holder and a ball actuated by a spring-loaded sleeve, shown with a tool bit inserted; -
FIG. 12A is a cross-section corresponding toFIG. 11 , without the tool bit; -
FIG. 12B is an end view corresponding toFIG. 12A ; -
FIG. 13A is atop view at 90 degrees toFIGS. 11 and 12A ; -
FIG. 13B is an end view corresponding toFIG. 13A ; -
FIG. 14 is a perspective view showing the sleeve, ball holder and ball ofFIGS. 11 to 13A ; -
FIG. 15A is a side cross-section of a sixth example of the invention, where the sleeve is placed in front of the open end of the body/housing, shown with a tool bit inserted; -
FIG. 15B is an end view corresponding toFIG. 15A ; -
FIG. 16A is a side cross-section of a seventh example of the invention, showing two opposing bit-locking elements one acting in one direction and the other acting in the opposite direction; -
FIG. 16B is an end view corresponding toFIG. 16A ; -
FIG. 16C is a side cross-section of the seventh example, showing the sleeve moved forwardly from the holder; -
FIG. 16D is a side cross-section of the seventh example, showing the sleeve moved rearwardly; -
FIG. 17A is a side cross-section of an eighth example of the invention, using a spring-loaded cam; -
FIG. 17B is a detailed view corresponding toFIG. 17A ; -
FIG. 18 is a side cross-section showing a bit being inserted;FIG. 19 is a side cross-section showing the bit locked in place; -
FIG. 20 is a side cross-section of a ninth example of the invention, in which a wedge portion is provided on the inner diameter of a slideable sleeve; -
FIG. 21 is a corresponding view, showing a bit being inserted; -
FIG. 22 is a corresponding view, showing the bit locked in place; -
FIG. 23 is a side cross-section of a tenth example of the invention, similar to the ninth example, but having a spring-loaded plunger to eject the tool bit when the locking mechanism is released; -
FIG. 24 is a corresponding view, showing a bit fully inserted; -
FIG. 25 is a corresponding view, showing the collar being pushed forward and the bit being ejected; -
FIG. 26 is a side cross-section of an example of the mechanism combined with a typical screwdriver handle; -
FIG. 27 is an end view showing three locking mechanisms offset by 120 degrees from each other; -
FIG. 28 is an end view showing two locking mechanisms offset by 180 degrees from each other; -
FIG. 29 is an end view showing two locking mechanisms offset by 120 degrees from each other; -
FIG. 30 is and end view showing an alternative bit and bit holder cross-section, namely tri-centric; and -
FIG. 31 is and end view showing another alternative bit and bit holder cross-section, namely ovaloid. -
FIGS. 1-4B shows a first example of the invention. The main body of thebit holder 10 has ashank 11 and a bit-acceptingend 12 with a blind bit-acceptinghole 13 having a profile to match the profile of thetool bit 30. The profile will normally be hexagonal, but as stated above, the invention can be adapted for use with bits of basically any non-circular cross-section. Theshank 11 normally will be mounted in, for example, a screwdriver handle, as shown inFIG. 26 . - At least one
pin 15, preferably but not necessarily cylindrical for ease of manufacturing, acts as a locking element. In the drawings and throughout this description, generally only one locking element will be described, for convenience. However, to achieve maximum “no play” performance, there should preferably be more than one locking element. Preferably, there may be three of them, offset at 120 degrees from each other. - The
pin 15 preferably has asemi-spherical tip 16, and is slideable and guided in an angularly formedpath 14, thepath 14 partially opening into the bit-acceptinghole 13 such that thetip 16 extends slightly into the bit-acceptinghole 13. As best seen inFIGS. 4A and 4B , thepin 15 is anchored to aslideable sleeve 20, by a slot near 17 the end of the pin and anotch 17′ in the sleeve. When the pin connects to the sleeve, the end of the pin sits in the notch and the outside of the notch sits in the slot so as to anchor the pin to the sleeve. - The angle A at which the
path 14 is offset from the axis of the bit holder is preferably in the range of 5 to 13 degrees. Too large an angle increases the diameter of the mechanism excessively, and reduces the effectiveness of the locking. Conversely, too small an angle increase the length of the mechanism, and ultimately also reduces the effectiveness of the unlocking. - The
sleeve 20 is biased towards the distal end of the holder, i.e. towards the open end of the bit-acceptinghole 13, by aspring 21 that has its one flat face against thesleeve 20 while the other face is against astop ring 22. Thestop ring 22 is retained bylock ring 23 sitting in a recess in themain body 10. Axial sliding movement ofsleeve 20 results in angularly sliding movement ofelement 15 within the guidedpath 14 of the body. - When a
tool bit 30 is axially inserted into the bit-acceptinghole 13, it engages with thetip 16 of theelement 15, pushing theelement 15 and in turn thesleeve 20 towards theshank 11. As the insertion oftool bit 30 continues, theelement 15 is pushed fully out of the bit-acceptinghole 13 and thetip 16 is in contact with theexternal surface 31 of thebit 30 until the bit stops against the terminating end of bit-acceptinghole 13. Due to the spring biasing, thetip 16 ofelement 15 is continuously pushed against theouter surface 31 of thetool bit 30, resulting in wedging and clamping thebit 30 inside the bit-acceptinghole 13. Any effort to pull thetool bit 30 out from the bit-acceptinghole 13 only further tightens the grip on the tool bit. This kind of locking ensures “no play” fitment of the tool bit in the holder. In order to release thetool bit 30, thesleeve 20 must be pulled back towards theshank 11 of thebody 10, against the force of thespring 21, thus withdrawing thetip 16 fromsurface 31 and therefore freeing thetool bit 30 for removal. - As shown in
FIG. 2A , the angular path makes an acute angle “A” with the center axis of the bit holder. Preferably, to make the pressing force between thepin 16 and thebit 30 more effective for preventing axial movement of thebit 30 in the bit-acceptinghole 13, the acute angle “A” is less than 20 degrees, and preferably less than 15 degrees. In the drawings, a preferred angle of 10 degrees is shown. - A second example of the invention is shown in
FIGS. 5-8 . The mechanism is essentially identical to that ofFIGS. 1-4B , except that the slidingelement 15 has a freely rotatingroller 18 that replacestip 16 of thepin 15. This is most clearly seen inFIG. 8 . -
FIG. 9 shows a third example of the invention, which is a slightly modified version of the first and second examples. In this example, the angular path for the locking element is formed partially as a slot inportion 12 of thebody 10 and partially into acoaxial collar 40 press fitted onto theend 12. With this split construction there is better access to the guide path during manufacturing, to produce a polished finish with less friction. -
FIGS. 10A and 10B show a fourth example of the invention, where the bit locking element is aspherical ball 42 positioned at the distal end of thepin 15 within theangular path 14. The bit locking function is the same as shown in the earlier examples of the invention. -
FIG. 10B is identical toFIG. 10A , except that it illustrates that the invention can be used not only with bits having a conventionalcircumferential groove 43 near their proximal ends (FIG. 10A ), but also with bits having no such groove. -
FIGS. 11-14 show a fifth example of the invention, which is similar to the fourth example (FIGS. 10A and 10B ). In this example, the locking element is aspherical ball 42, but it is anchored to anextended hook portion 24 ofsleeve 20, as best seen inFIG. 14 . -
FIGS. 15A and 15B show a sixth example, which is a variation of the fifth example (FIGS. 11-14 ). In this sixth example, thesleeve 20 is placed in front of the open end of the body/housing. The locking function is the same as in the previous examples, but in this case, to release the bit, the movement of the sleeve pushes theball 42 away from its locking position instead of pulling it away. -
FIGS. 16A and 16B show a seventh example of the invention, which is an enhanced version of the sixth example (FIGS. 15A and 15B ). In this enhanced version, the bit can be locked in both axial directions by a dual-biased slidingsleeve 20. Onelocking element 42 locks the bit against movement in one direction, and the other lockingelement 42′ locks the bit against movement in the other direction. The locking elements can be operated for bit release in one direction at a time. Theextended anchoring portions 24 of thesleeve 20 have an open ended slot and another closed slot anchoring the locking elements. -
FIG. 16C shows thesleeve 20 pushed forward from the holder. This forward movement of the sleeve forces the lockingelement 42′ angularly away from the tool bit and thus frees the bit to be pushed deeper into the blind hole.FIG. 16D showssleeve 20 pushed rearwardly, moving the lockingelement 42 away from the bit, hence freeing the bit to be extracted from the holder. -
FIGS. 17A-19 show an eighth and somewhat different example, where the bit locking element is at least one rotatableeccentric cam 44. This cam is lightly spring biased in a counter-clockwise direction by aspring 45. Point ‘B’ is the highest on the peripheral surface of the eccentric cam while point ‘C’ is the lowest. Aslideable sleeve 20 is strongly biased towards the open end of bit insertion bit-acceptinghole 13, keeping theeccentric cam 44 pushed in a clockwise direction such that the highest portion ‘B’ extends into the bit-acceptinghole 13. As thetool bit 30 is inserted into the matching bit-acceptinghole 13 of the holder, theeccentric cam 44 is pushed into counter-clockwise rotation until it rides on thebit surface 31, at the same time pushing the sleeve 26 back against its bias. Thus thecam 44 acts as a rotating wedge clamping thetool bit 30 within the bit-acceptinghole 13 of the holder. Any effort to pull out the tool bit tends to rotate theeccentric cam 44 in a clockwise direction, resulting in further tightening the grip on the bit. In order to release the tool bit, the sleeve 26 must be pulled back against axial spring bias, allowingcam 44 to rotate counter-clockwise, thus releasing clamping force on the bit for removal. -
FIGS. 20-22 show a ninth example, in which thewedge portion 50 is provided on the inner diameter of aslideable sleeve 52, the sleeve being biased towards the shank of the bit holder. The axial bias of the slideable wedge causes radial movement of a lockingelement 42 sitting in aradial hole 54 in the body, the hole communicating with the bit-acceptingrecess 13 in the holder body. Thesleeve 52 is pushed against the bias of the spring, towards the front end of the holder to insert the tool bit into the accepting bit-acceptinghole 13. Once the bit is fully inserted, the sleeve is released, resulting in locking of the tool bit due to the radial force of the locking element. To release thebit 30, the sleeve is pushed forward. -
FIG. 23-25 show a tenth example, similar to the ninth example (FIGS. 20-22 ). This tenth example provides automatic locking of thebit 30 on insertion. In order to release thebit 30, thesleeve 52 is pushed against the spring bias, resulting in taking the radial force off the lockingelement 42, such that the tool bit is then ejected by a spring-loadedplunger 56.FIG. 24 shows a bit fully inserted, andFIG. 25 shows the collar being pushed forward and the bit being ejected. - For clarity and simplicity, most drawings do not show where the mechanism is installed. However, the usual and typical application is to mount the mechanism in a screwdriver (bit-driver) handle.
FIG. 26 is a side cross-section showing a mechanism according to the invention, mounted in a typical screwdriver/bitdriver handle 100. Obviously any one of the described examples of the invention can be so mounted. - It will be evident to those knowledgeable in the field of the invention that many variations on the examples described above are conceivable within the scope of the invention. It should therefore be understood that the claims which define the invention are not restricted to the specific examples described above. Possible variations include, for example, the shape of the pin, the structure of the connectivity and the shape of the tool bit profile.
- Most of the examples described above show a single locking mechanism, for clarity of illustration, and for most applications a single mechanism may suffice. However, it should also be appreciated that there can be more than one bit-locking mechanism. For example,
FIG. 27 shows three such mechanisms positioned at 120 degrees to each other, to engage three of the faces of a hexagonal tool bit. Obviously, two opposing mechanisms could also be used, as shown inFIG. 28 .FIG. 29 shows another example, where there are two mechanisms, offset by 120 degrees. Theoretically there could be six mechanisms, but clearly that would neither be necessary nor practical. - It should also be appreciated that although most of the tool bits illustrated in the accompanying drawings are shown with a conventional circumferential groove near the proximal end of the bit, it is an advantage of this invention that the groove is not required for locking, unlike most prior art locking mechanisms. The locking means, whether a pin or a roller or a ball or other, engages a flat portion of the tool bit, such that no groove is required. See
FIGS. 10B and 16A for specific examples of tool bits without grooves. However, it should be seen that in the other drawings, even when the tool bit does have a conventional groove, that groove is not engaged. - It should also be appreciated, as stated previously, that the tool bit does not need to be a conventional hexagonal cross-section. Other non-circular cross-sections can be used, such as those shown in
FIGS. 30 and 31 (tri-centric and ovaloid respectively). - Further variations may be apparent or become apparent to those knowledgeable in the field of the invention, within the scope of the invention as defined by the claims which follow.
Claims (14)
1. A bit holder having a shank at a proximal end thereof and a blind bit-accepting hole at a distal end thereof, said bit-accepting hole being shaped to receive a correspondingly-shaped tool bit, the bit holder having at least one locking mechanism comprising an angled path defined in said bit holder, opening into a side of said bit-accepting hole, extending away from said bit-accepting hole in a proximal direction at an acute angle A from a central axis of said bit holder, and a locking element slideable in said path, such that a distal end of said locking element extends slightly into said bit-accepting hole, said bit holder further comprising a sleeve mounted around said shank, biased by a spring to urge said locking element towards said bit-accepting hole, connected to said locking element such that moving said sleeve towards the proximal end of said bit holder retracts said locking element from said bit-accepting hole.
2. A bit holder as in claim 1 , wherein said locking element comprises a pin connected to said sleeve, for a distal end of said pin to contact a tool bit.
3. A bit holder as in claim 1 , wherein said locking element comprises a pin connected to said sleeve, said pin having a roller mounted at a distal end thereof to contact a tool bit.
4. A bit holder as in claim 1 ; wherein said locking element comprises a ball and wherein said sleeve has a hook portion extending therefrom to capture said ball.
5. A bit holder as in claim 1 , further comprising a second angled path defined in said bit holder, opening into a side of said bit-accepting hole, extending away from said bit-accepting hole in a distal direction at an acute angle A from a central axis of said bit holder, and comprising a second locking element, whereby said tool bit is locked against movement in both directions until said sleeve is moved.
6. A bit holder as in claim 5 , comprising more than one said locking mechanism spaced apart radially.
7. A bit holder as in claim 6 , further comprising a spring-loaded plunger mounted in a proximal end of said blind hole, to eject a said tool bit when said locking element is released by moving said sleeve.
8. A bit holder as in claim 7 , wherein said bit and said bit-accepting hole are hexagonal in cross-section.
9. A bit holder as in claim 7 , wherein said bit and said bit-accepting hole are non-circular in cross-section.
10. A bitdriver comprising a bit holder as in claim 9 , and having a handle mounted on said shank.
11. A bit holder having a shank at a proximal end thereof and a blind bit-accepting hole at a distal end thereof, said bit-accepting hole being shaped to receive a correspondingly-shaped tool bit, the bit holder having at least one locking mechanism comprising an opening defined in said bit holder, opening into a side of said bit-accepting hole, and a locking element in said opening, said locking element comprising a rotatable eccentric cam, spring biased to rotate its largest radius away from said bit-accepting hole, said bit holder further comprising a sleeve mounted around said shank, spring-biased against said eccentric cam to prevent said eccentric cam from rotating its largest radius away from said bit-accepting hole.
12. A bitdriver comprising a bit holder as in claim 11 , and having a handle mounted on said shank.
13. A bit holder having a shank at a proximal end thereof and a blind bit-accepting hole at a distal end thereof, said bit-accepting hole being shaped to receive a correspondingly-shaped tool bit, the bit holder having at least one locking mechanism comprising an opening defined in said bit holder, opening into a side of said bit-accepting hole, and a locking element in said opening moveable towards said opening to contact a tool bit ins said bit-accepting hole, said bit holder further comprising a sleeve around a body portion of said bit holder, overlying said opening and biased by a spring towards a normal position, said sleeve having an internal ramp angled to contact said locking element to urge said locking element towards said tool bit when said sleeve is in said normal position, and to free said locking element when said sleeve is moved from said normal position against the force of said spring.
14. A bitdriver comprising a bit holder as in claim 13 , and having a handle mounted on said shank.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/305,511 US20170036330A1 (en) | 2014-04-22 | 2015-04-22 | Quick-connect chuck mechanism for screwdriver bits and the like |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461982637P | 2014-04-22 | 2014-04-22 | |
| PCT/CA2015/050334 WO2015161377A1 (en) | 2014-04-22 | 2015-04-22 | Quick-connect chuck mechanism for screwdriver bits and the like |
| US15/305,511 US20170036330A1 (en) | 2014-04-22 | 2015-04-22 | Quick-connect chuck mechanism for screwdriver bits and the like |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA2015/050334 A-371-Of-International WO2015161377A1 (en) | 2014-04-22 | 2015-04-22 | Quick-connect chuck mechanism for screwdriver bits and the like |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/226,939 Division US11090785B2 (en) | 2014-04-22 | 2018-12-20 | Quick-connect chuck mechanism for screwdriver bits and the like |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170036330A1 true US20170036330A1 (en) | 2017-02-09 |
Family
ID=54331532
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/305,511 Abandoned US20170036330A1 (en) | 2014-04-22 | 2015-04-22 | Quick-connect chuck mechanism for screwdriver bits and the like |
| US16/226,939 Expired - Fee Related US11090785B2 (en) | 2014-04-22 | 2018-12-20 | Quick-connect chuck mechanism for screwdriver bits and the like |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/226,939 Expired - Fee Related US11090785B2 (en) | 2014-04-22 | 2018-12-20 | Quick-connect chuck mechanism for screwdriver bits and the like |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20170036330A1 (en) |
| CN (2) | CN106536133B (en) |
| AU (1) | AU2015251469A1 (en) |
| CA (1) | CA2942984C (en) |
| GB (1) | GB2541320B (en) |
| WO (1) | WO2015161377A1 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102081607B1 (en) * | 2018-07-02 | 2020-04-23 | (주)세신정밀 | Handpiece assembly |
| US11958171B2 (en) * | 2019-04-23 | 2024-04-16 | Klein Tools, Inc. | Insulated reversible screwdriver |
| US12244127B2 (en) * | 2020-08-27 | 2025-03-04 | Te Connectivity Solutions Gmbh | Cutting arm for a cable preparation machine |
| CN112145527B (en) * | 2020-09-27 | 2021-09-24 | 森泰英格(成都)数控刀具股份有限公司 | Opposite-pulling locking mechanism |
| JP7651844B2 (en) * | 2020-11-24 | 2025-03-27 | 三菱マテリアル株式会社 | Indexable cutting tools |
| CN112827868A (en) * | 2020-12-31 | 2021-05-25 | 成都泽纤更贸易代理有限公司 | Automatic cleaning device for lens of cup-joint type video recording equipment |
| TWI823502B (en) * | 2022-08-01 | 2023-11-21 | 林琮淂 | End-operated quick release screwdriver bit holder |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US751345A (en) * | 1904-02-02 | Drill-chuck | ||
| US5398946A (en) * | 1993-12-29 | 1995-03-21 | Poly-Tech Industries | Chuck having one-step lock and release |
| US5536106A (en) * | 1995-02-09 | 1996-07-16 | General Motors Corporation | Connection between a shaft and a hub |
| US6053675A (en) * | 1998-06-26 | 2000-04-25 | Black & Decker Inc. | Quick-acting tool bit holder |
| US6261035B1 (en) * | 1998-11-12 | 2001-07-17 | Black & Decker Inc. | Chuck, bit, assembly thereof and methods of mounting |
| US6474656B1 (en) * | 1999-07-21 | 2002-11-05 | Black & Decker Inc. | Power drivable chuck |
| US7121774B2 (en) * | 2003-08-14 | 2006-10-17 | Atlas Copco Electric Tools Gmbh | Clamping device for hexagon bits |
| US7896355B2 (en) * | 2004-03-15 | 2011-03-01 | Wienhold James L | Dual size tool-bit holder |
| US8308168B2 (en) * | 2009-02-27 | 2012-11-13 | Irwin Industrial Tool Company | Quick change tool bit holder |
| US9469020B2 (en) * | 2012-09-12 | 2016-10-18 | Hilti Aktiengesellschaft | Hand-held machine tool |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2395534A (en) * | 1944-05-24 | 1946-02-26 | Lloyd W Miller | Chuck |
| US6347914B1 (en) * | 2000-03-09 | 2002-02-19 | Black & Decker Inc. | Rotary tool holder |
| DE10031938B4 (en) * | 2000-06-30 | 2006-03-16 | Robert Bosch Gmbh | Tool holder for a drilling and / or percussion machine tool |
| US6929266B2 (en) * | 2002-06-18 | 2005-08-16 | Black & Decker Inc. | Bit holder |
| DE10243288B4 (en) * | 2002-09-18 | 2013-02-21 | Robert Bosch Gmbh | tool holder |
| US6920810B1 (en) * | 2002-10-31 | 2005-07-26 | Snap-On Incorporated | Method and apparatus for attaching and detaching an attachable device |
| DE102005012729B4 (en) * | 2005-03-19 | 2020-09-24 | Wera Werkzeuge Gmbh | Screwdriving tool with exchangeable blade |
| CN2832369Y (en) * | 2005-09-26 | 2006-11-01 | 浙江三鸥机械股份有限公司 | Improved drill chuck pawl |
| DE102007056531A1 (en) * | 2007-11-23 | 2009-05-28 | Hilti Aktiengesellschaft | Hand tool machine with impact tool holder and associated tool |
| US8262098B2 (en) * | 2008-02-05 | 2012-09-11 | Robert Bosch Gmbh | Rotary tool system with centering member |
| CN201483466U (en) * | 2009-07-30 | 2010-05-26 | 浙江恒友机电有限公司 | Anti-falling device of electric hammer drill bit |
-
2015
- 2015-04-22 US US15/305,511 patent/US20170036330A1/en not_active Abandoned
- 2015-04-22 AU AU2015251469A patent/AU2015251469A1/en not_active Abandoned
- 2015-04-22 GB GB1619349.2A patent/GB2541320B/en not_active Expired - Fee Related
- 2015-04-22 CN CN201580020810.6A patent/CN106536133B/en not_active Expired - Fee Related
- 2015-04-22 WO PCT/CA2015/050334 patent/WO2015161377A1/en not_active Ceased
- 2015-04-22 CN CN201811386836.4A patent/CN109590937A/en active Pending
- 2015-04-22 CA CA2942984A patent/CA2942984C/en active Active
-
2018
- 2018-12-20 US US16/226,939 patent/US11090785B2/en not_active Expired - Fee Related
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US751345A (en) * | 1904-02-02 | Drill-chuck | ||
| US5398946A (en) * | 1993-12-29 | 1995-03-21 | Poly-Tech Industries | Chuck having one-step lock and release |
| US5536106A (en) * | 1995-02-09 | 1996-07-16 | General Motors Corporation | Connection between a shaft and a hub |
| US6053675A (en) * | 1998-06-26 | 2000-04-25 | Black & Decker Inc. | Quick-acting tool bit holder |
| US6261035B1 (en) * | 1998-11-12 | 2001-07-17 | Black & Decker Inc. | Chuck, bit, assembly thereof and methods of mounting |
| US6474656B1 (en) * | 1999-07-21 | 2002-11-05 | Black & Decker Inc. | Power drivable chuck |
| US7121774B2 (en) * | 2003-08-14 | 2006-10-17 | Atlas Copco Electric Tools Gmbh | Clamping device for hexagon bits |
| US7896355B2 (en) * | 2004-03-15 | 2011-03-01 | Wienhold James L | Dual size tool-bit holder |
| US8308168B2 (en) * | 2009-02-27 | 2012-11-13 | Irwin Industrial Tool Company | Quick change tool bit holder |
| US9469020B2 (en) * | 2012-09-12 | 2016-10-18 | Hilti Aktiengesellschaft | Hand-held machine tool |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106536133A (en) | 2017-03-22 |
| CN109590937A (en) | 2019-04-09 |
| CA2942984C (en) | 2022-05-03 |
| GB2541320A (en) | 2017-02-15 |
| GB2541320B (en) | 2021-06-16 |
| AU2015251469A1 (en) | 2016-11-03 |
| CN106536133B (en) | 2018-11-02 |
| CA2942984A1 (en) | 2015-10-29 |
| US11090785B2 (en) | 2021-08-17 |
| WO2015161377A1 (en) | 2015-10-29 |
| US20190143493A1 (en) | 2019-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11090785B2 (en) | Quick-connect chuck mechanism for screwdriver bits and the like | |
| US6341925B1 (en) | Plug ejecting hole saw with twist-locking interchangeable saw cups | |
| US7469909B2 (en) | Chuck for receiving tools operated by rotating around the axis thereof | |
| US6533291B2 (en) | Chuck having quick change mechanism | |
| US8636287B2 (en) | Automatic tool-bit holder | |
| US8020472B2 (en) | Nut capturing socket assembly | |
| US8844941B1 (en) | Adaptor for holding a threading device | |
| US8147173B2 (en) | Adapter for operating a keyhole saw on a driving machine | |
| US9689179B2 (en) | Padlock having a blocking plate for a spring-biased locking element | |
| CN108290226B (en) | lock chuck | |
| US11065744B2 (en) | Tool bit holder | |
| US10343266B2 (en) | Bit holder assembly | |
| US7921753B2 (en) | Screw locking tool | |
| EP3597337A1 (en) | Depth adjustment stopper for drill bit | |
| EP2979790B1 (en) | Tool bit holder for power tool | |
| US20150102567A1 (en) | Tool joint | |
| US11173585B2 (en) | Shaft securing mechanism | |
| US7503565B2 (en) | Lockable drill chuck | |
| US6517297B2 (en) | Chuck and assembly with bit | |
| US20180326506A1 (en) | Drill Chuck Assembly | |
| US20210308842A1 (en) | Multi-size tool bit holder for a rotary power tool | |
| US7370561B2 (en) | Electric driver | |
| US10702979B2 (en) | Torque adjustment device for torque wrench | |
| US11344954B2 (en) | Chuck with automatic jaw adjustment | |
| WO2024089661A1 (en) | Hand tool |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MAXTECH CONSUMER PRODUCTS LIMITED, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SINGH, SATNAM;VASUDEVA, KAILASH C.;REEL/FRAME:040262/0461 Effective date: 20150422 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |