US20170035812A1 - Novel cell-derived composition - Google Patents
Novel cell-derived composition Download PDFInfo
- Publication number
- US20170035812A1 US20170035812A1 US15/289,362 US201615289362A US2017035812A1 US 20170035812 A1 US20170035812 A1 US 20170035812A1 US 201615289362 A US201615289362 A US 201615289362A US 2017035812 A1 US2017035812 A1 US 2017035812A1
- Authority
- US
- United States
- Prior art keywords
- accs
- cells
- bone
- composition
- term
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 92
- 230000008468 bone growth Effects 0.000 claims abstract description 26
- 210000001691 amnion Anatomy 0.000 claims abstract description 22
- 102000004127 Cytokines Human genes 0.000 claims abstract description 19
- 108090000695 Cytokines Proteins 0.000 claims abstract description 19
- 230000001413 cellular effect Effects 0.000 claims abstract description 11
- 230000001737 promoting effect Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 38
- 239000001963 growth medium Substances 0.000 claims description 12
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 8
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 7
- 101000851176 Homo sapiens Pro-epidermal growth factor Proteins 0.000 claims description 6
- 239000007640 basal medium Substances 0.000 claims description 6
- GVUGOAYIVIDWIO-UFWWTJHBSA-N nepidermin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CS)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C(C)C)C(C)C)C1=CC=C(O)C=C1 GVUGOAYIVIDWIO-UFWWTJHBSA-N 0.000 claims description 6
- 230000008439 repair process Effects 0.000 abstract description 27
- 230000010478 bone regeneration Effects 0.000 abstract description 25
- 238000011069 regeneration method Methods 0.000 abstract description 25
- 210000004027 cell Anatomy 0.000 description 109
- 102100021283 1-aminocyclopropane-1-carboxylate synthase-like protein 1 Human genes 0.000 description 24
- 101000675558 Homo sapiens 1-aminocyclopropane-1-carboxylate synthase-like protein 1 Proteins 0.000 description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 24
- 210000001519 tissue Anatomy 0.000 description 23
- 238000013268 sustained release Methods 0.000 description 21
- 239000012730 sustained-release form Substances 0.000 description 21
- 208000027418 Wounds and injury Diseases 0.000 description 20
- 201000010099 disease Diseases 0.000 description 20
- 238000009472 formulation Methods 0.000 description 20
- 210000000988 bone and bone Anatomy 0.000 description 19
- 238000011282 treatment Methods 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 14
- 239000003814 drug Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 239000008194 pharmaceutical composition Substances 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 14
- 230000001225 therapeutic effect Effects 0.000 description 14
- 239000013543 active substance Substances 0.000 description 13
- 230000006378 damage Effects 0.000 description 13
- -1 growth conditions Substances 0.000 description 13
- 241000282414 Homo sapiens Species 0.000 description 12
- 208000014674 injury Diseases 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 241000605862 Porphyromonas gingivalis Species 0.000 description 9
- 206010052428 Wound Diseases 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000001356 surgical procedure Methods 0.000 description 9
- 208000010392 Bone Fractures Diseases 0.000 description 8
- 206010017076 Fracture Diseases 0.000 description 8
- 239000003636 conditioned culture medium Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 229940079593 drug Drugs 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000003102 growth factor Substances 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- 239000002674 ointment Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 210000000130 stem cell Anatomy 0.000 description 7
- 230000000699 topical effect Effects 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 230000001464 adherent effect Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 230000035876 healing Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000005022 packaging material Substances 0.000 description 6
- 201000001245 periodontitis Diseases 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 102100022987 Angiogenin Human genes 0.000 description 5
- 206010065687 Bone loss Diseases 0.000 description 5
- 102100039364 Metalloproteinase inhibitor 1 Human genes 0.000 description 5
- 102100026262 Metalloproteinase inhibitor 2 Human genes 0.000 description 5
- 108010031374 Tissue Inhibitor of Metalloproteinase-1 Proteins 0.000 description 5
- 108010031372 Tissue Inhibitor of Metalloproteinase-2 Proteins 0.000 description 5
- 108010072788 angiogenin Proteins 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 208000028169 periodontal disease Diseases 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 4
- 206010061363 Skeletal injury Diseases 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000002826 placenta Anatomy 0.000 description 4
- 210000001778 pluripotent stem cell Anatomy 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 208000018084 Bone neoplasm Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 3
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 102000004264 Osteopontin Human genes 0.000 description 3
- 108010081689 Osteopontin Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 238000002266 amputation Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000033077 cellular process Effects 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 239000003349 gelling agent Substances 0.000 description 3
- 230000002962 histologic effect Effects 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000003232 mucoadhesive effect Effects 0.000 description 3
- 230000003239 periodontal effect Effects 0.000 description 3
- 230000001766 physiological effect Effects 0.000 description 3
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000011200 topical administration Methods 0.000 description 3
- 210000002993 trophoblast Anatomy 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 2
- 244000105975 Antidesma platyphyllum Species 0.000 description 2
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- 108010081589 Becaplermin Proteins 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 2
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 102000016359 Fibronectins Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 2
- 101000762379 Homo sapiens Bone morphogenetic protein 4 Proteins 0.000 description 2
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 206010072574 Periodontal inflammation Diseases 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 229920001710 Polyorthoester Polymers 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 210000004763 bicuspid Anatomy 0.000 description 2
- 229920013641 bioerodible polymer Polymers 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 239000000679 carrageenan Substances 0.000 description 2
- 229940113118 carrageenan Drugs 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 210000002219 extraembryonic membrane Anatomy 0.000 description 2
- 210000001654 germ layer Anatomy 0.000 description 2
- 235000009424 haa Nutrition 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 210000004373 mandible Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000003562 morphometric effect Effects 0.000 description 2
- 238000013425 morphometry Methods 0.000 description 2
- 210000002894 multi-fate stem cell Anatomy 0.000 description 2
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 2
- 238000011587 new zealand white rabbit Methods 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 231100000397 ulcer Toxicity 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- JCIIKRHCWVHVFF-UHFFFAOYSA-N 1,2,4-thiadiazol-5-amine;hydrochloride Chemical compound Cl.NC1=NC=NS1 JCIIKRHCWVHVFF-UHFFFAOYSA-N 0.000 description 1
- VVFYQBFGXTYSMW-UHFFFAOYSA-N 1-chloro-1-phenoxyethanol Chemical compound CC(O)(Cl)OC1=CC=CC=C1 VVFYQBFGXTYSMW-UHFFFAOYSA-N 0.000 description 1
- OAAZUWWNSYWWHG-UHFFFAOYSA-N 1-phenoxypropan-1-ol Chemical compound CCC(O)OC1=CC=CC=C1 OAAZUWWNSYWWHG-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 101150061927 BMP2 gene Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 208000018035 Dental disease Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical class NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 206010016717 Fistula Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000762366 Homo sapiens Bone morphogenetic protein 2 Proteins 0.000 description 1
- 101000871708 Homo sapiens Proheparin-binding EGF-like growth factor Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010021620 Incisional hernias Diseases 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 108010079944 Interferon-alpha2b Proteins 0.000 description 1
- 208000032984 Intraoperative Complications Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 229940124761 MMP inhibitor Drugs 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229920000148 Polycarbophil calcium Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100033762 Proheparin-binding EGF-like growth factor Human genes 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 206010041290 Soft tissue inflammation Diseases 0.000 description 1
- 208000005250 Spontaneous Fractures Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000014151 Stomatognathic disease Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- UGPMCIBIHRSCBV-XNBOLLIBSA-N Thymosin beta 4 Chemical compound N([C@@H](CC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)C(=O)[C@@H]1CCCN1C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(C)=O UGPMCIBIHRSCBV-XNBOLLIBSA-N 0.000 description 1
- 102100035000 Thymosin beta-4 Human genes 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- ZNOZWUKQPJXOIG-XSBHQQIPSA-L [(2r,3s,4r,5r,6s)-6-[[(1r,3s,4r,5r,8s)-3,4-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-[[(1r,3r,4r,5r,8s)-8-[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-sulfonatooxyoxan-2-yl]oxy-4-hydroxy-2,6-dioxabicyclo[3.2.1]octan-3-yl]oxy]-5-hydroxy-2-( Chemical compound O[C@@H]1[C@@H](O)[C@@H](OS([O-])(=O)=O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H]2OC[C@H]1O[C@H](O[C@H]1[C@H]([C@@H](CO)O[C@@H](O[C@@H]3[C@@H]4OC[C@H]3O[C@H](O)[C@@H]4O)[C@@H]1O)OS([O-])(=O)=O)[C@@H]2O ZNOZWUKQPJXOIG-XSBHQQIPSA-L 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 210000001643 allantois Anatomy 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940067596 butylparaben Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229960002242 chlorocresol Drugs 0.000 description 1
- 210000001136 chorion Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 206010010121 compartment syndrome Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000009519 contusion Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000003890 fistula Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010100 freeform fabrication Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 208000007565 gingivitis Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 230000010005 growth-factor like effect Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 208000038020 incisional injury Diseases 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000007916 intrasternal administration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000011542 limb amputation Methods 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000007433 macroscopic evaluation Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100001221 nontumorigenic Toxicity 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000001599 osteoclastic effect Effects 0.000 description 1
- 230000002177 osteoclastogenic effect Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000011129 pharmaceutical packaging material Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- 229940096826 phenylmercuric acetate Drugs 0.000 description 1
- 229960000247 phenylmercuric borate Drugs 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001987 poloxamine Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 1
- 229940065514 poly(lactide) Drugs 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229950005134 polycarbophil Drugs 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 108010079996 thymosin beta(4) Proteins 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/50—Placenta; Placental stem cells; Amniotic fluid; Amnion; Amniotic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0605—Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/11—Epidermal growth factor [EGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/998—Proteins not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/02—Coculture with; Conditioned medium produced by embryonic cells
- C12N2502/025—Coculture with; Conditioned medium produced by embryonic cells extra-embryonic cells, e.g. amniotic epithelium, placental cells, Wharton's jelly
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/03—Coculture with; Conditioned medium produced by non-embryonic pluripotent stem cells
Definitions
- the field of the invention is directed to a novel cell-derived composition having bone growth, regeneration, and repair promoting properties.
- the field of the invention is directed to a novel cell-derived composition having bone growth, regeneration, and repair promoting properties termed Amnion-derived Cellular Cytokine Solution-B (ACCS-B).
- the field of the invention is further directed to the use of this novel composition to promote bone growth and/or regeneration and/or repair.
- This novel cell-derived composition is created by culturing AMP cells under specific conditions such that genes important for bone growth and/or regeneration and/or repair promoting properties are up-regulated as compared to AMP cells cultured under standard conditions.
- a first aspect of the invention is a composition comprising Amnion-derived Cellular Cytokine Solution-B (ACCS-B).
- the ACCS-B is a pharmaceutical composition.
- the ACCS-B pharmaceutical composition is contained in an article of manufacture, wherein the article of manufacture comprises the pharmaceutical composition, packaging material, and instructions for use of the pharmaceutical composition to promote bone growth, regeneration and/or repair.
- the ACCS-B is formulated for sustained-release (SR-ACCS-B).
- a second aspect of the invention is a method for treating a bone injury comprising administering to a subject in need thereof a therapeutically effective dose of a composition selected from the group consisting of ACCS-B and SR-ACCS-B.
- a composition selected from the group consisting of ACCS-B and SR-ACCS-B.
- the bone injury is a fracture.
- the bone injury is a surgical injury.
- a fourth aspect of the invention is an ACCS-B composition made by aspect three of the invention.
- isolated refers to material removed from its original environment and is thus altered “by the hand of man” from its natural state.
- protein marker means any protein molecule characteristic of the plasma membrane of a cell or in some cases of a specific cell type.
- enriched means to selectively concentrate or to increase the amount of one or more materials by elimination of the unwanted materials or selection and separation of desirable materials from a mixture (i.e. separate cells with specific cell markers from a heterogeneous cell population in which not all cells in the population express the marker).
- substantially purified means a population of cells substantially homogeneous for a particular marker or combination of markers.
- substantially homogeneous is meant at least 90%, and preferably 95% homogeneous for a particular marker or combination of markers.
- placenta means both preterm and term placenta.
- totipotent cells In mammals, totipotent cells have the potential to become any cell type in the adult body; any cell type(s) of the extraembryonic membranes (e.g., placenta). Totipotent cells are the fertilized egg and approximately the first 4 cells produced by its cleavage.
- pluripotent stem cells shall have the following meaning. Pluripotent stem cells are true stem cells with the potential to make any differentiated cell in the body, but cannot contribute to making the components of the extraembryonic membranes which are derived from the trophoblast. The amnion develops from the epiblast, not the trophoblast.
- pluripotent stem cells Four types have been confirmed to date: Embryonic Stem (ES) Cells (may also be totipotent in primates), Embryonic Germ (EG) Cells, Embryonic Carcinoma (EC) Cells, and late Epiblast Stem Cells (EpiSCs). Recently, artificially produced pluripotent stem cells, called induced pluripotent cells (iPCs) have been created in the laboratory.
- ES Embryonic Stem
- EG Embryonic Germ
- EC Embryonic Carcinoma
- EpiSCs late Epiblast Stem Cells
- multipotent stem cells are true stem cells but can only differentiate into a limited number of types.
- the bone marrow contains multipotent stem cells that give rise to all the cells of the blood but may not be able to differentiate into other cells types.
- extraembryonic tissue means tissue located outside the embryonic body which is involved with the embryo's protection, nutrition, waste removal, etc. Extraembryonic tissue is discarded at birth. Extraembryonic tissue includes but is not limited to the amnion, chorion (trophoblast and extraembryonic mesoderm including umbilical cord and vessels), yolk sac, allantois and amniotic fluid (including all components contained therein). Extraembryonic tissue and cells derived therefrom have the same genotype as the developing embryo.
- extraembryonic cytokine secreting cells or “ECS cells” means a population of cells derived from the extraembryonic tissue which have the characteristics of secreting a unique combination of physiologically relevant cytokines in a physiologically relevant temporal manner into the extracellular space or into surrounding culture media and which have not been cultured in the presence of any animal-derived products, making them and cell products derived from them suitable for human clinical use.
- the ECS cells secrete the cytokines VEGF, Angiogenin, PDGF and TGF ⁇ 2 and the MMP inhibitors TIMP-1 and/or TIMP-2.
- AMP cell means a specific population of ECS cells that are epithelial cells derived from the amnion.
- ECS cells have the following characteristics. They have not been cultured in the presence of any animal-derived products, making them and cell products derived from them suitable for human clinical use. They grow without feeder layers, do not express the protein telomerase and are non-tumorigenic. AMP cells do not express the hematopoietic stem cell marker CD34 protein. The absence of CD34 positive cells in this population indicates the isolates are not contaminated with hematopoietic stem cells such as umbilical cord blood or embryonic fibroblasts.
- animal-free when referring to certain compositions, growth conditions, culture media, etc. described herein, is meant that no non-human animal-derived materials, such as non-human animal-derived serum, other than clinical grade human materials, such as recombinantly produced human proteins, are used in the preparation, growth, culturing, expansion, storage or formulation of the certain composition or process.
- an “expanded” population has at least a 2 fold, and up to a 10 fold, improvement in cell numbers per gram of amniotic tissue over previous methods.
- the term “expanded” is meant to cover only those situations in which a person has intervened to elevate the number of the cells.
- conditioned medium is a medium in which a specific cell or population of cells has been cultured, and then removed. When cells are cultured in a medium, they may secrete cellular factors that can provide support to or affect the behavior of other cells. Such factors include, but are not limited to hormones, cytokines, extracellular matrix (ECM), proteins, vesicles, antibodies, chemokines, receptors, inhibitors and granules.
- the medium containing the cellular factors is the conditioned medium. Examples of methods of preparing conditioned media are described in U.S. Pat. No. 6,372,494 which is incorporated by reference in its entirety herein.
- conditioned medium also refers to components, such as proteins, that are recovered and/or purified from conditioned medium or from ECS cells, including AMP cells.
- Amnion-derived Cellular Cytokine Solution or “ACCS” means conditioned medium that has been derived from AMP cells or expanded AMP cells.
- the term “suspension” means a liquid containing dispersed components, i.e. cytokines.
- the dispersed components may be fully solubilized, partially solubilized, suspended or otherwise dispersed in the liquid.
- Suitable liquids include, but are not limited to, water, osmotic solutions such as salt and/or sugar solutions, cell culture media, and other aqueous or non-aqueous solutions.
- lysate refers to the composition obtained when cells, for example, AMP cells, are lysed and optionally the cellular debris (e.g., cellular membranes) is removed. This may be achieved by mechanical means, by freezing and thawing, by sonication, by use of detergents, such as EDTA, or by enzymatic digestion using, for example, hyaluronidase, dispase, proteases, and nucleases. In certain instances, it may be desirable to retain the cell membranes, as well.
- cellular debris e.g., cellular membranes
- physiologic or “physiological level” as used herein means the level that a substance in a living system is found and that is relevant to the proper functioning of a biochemical and/or biological process.
- cell product refers to any and all substances made by and secreted from a cell, including but not limited to, protein factors (i.e. growth factors, differentiation factors, engraftment factors, cytokines, morphogens, proteases (i.e. to promote endogenous cell delamination, protease inhibitors), extracellular matrix components (i.e. fibronectin, etc.), and the like.
- protein factors i.e. growth factors, differentiation factors, engraftment factors, cytokines, morphogens, proteases (i.e. to promote endogenous cell delamination, protease inhibitors), extracellular matrix components (i.e. fibronectin, etc.), and the like.
- terapéuticaally effective amount means that amount of a therapeutic agent necessary to achieve a desired physiological effect (i.e. to promote bone growth, regeneration, and/or repair).
- the term “pharmaceutically acceptable” means that the components, in addition to the therapeutic agent, comprising the formulation, are suitable for administration to the patient being treated in accordance with the present invention.
- the term “therapeutic component” means a component of the composition which exerts a therapeutic benefit when the composition is administered to a subject.
- therapeutic protein includes a wide range of biologically active proteins including, but not limited to, growth factors, enzymes, hormones, cytokines, inhibitors of cytokines, blood clotting factors, peptide growth and differentiation factors.
- tissue refers to an aggregation of similarly specialized cells united in the performance of a particular function.
- the terms “a” or “an” means one or more; at least one.
- agent means an active agent or an inactive agent.
- active agent an agent that is capable of having a physiological effect when administered to a subject.
- active agents include growth factors, cytokines, antibiotics, cells, conditioned media from cells, etc.
- active agent an agent that does not have a physiological effect when administered.
- agents may alternatively be called “pharmaceutically acceptable excipients”.
- Non-limiting examples include time release capsules and the like.
- enteral administration means any route of drug administration that involves absorption of the drug through the gastrointestinal tract. Enteral administration may be divided into three different categories, oral, gastric, and rectal. Gastric introduction involves the use of a tube through the nasal passage or a tube in the abdomen leading directly to the stomach.
- topical administration means a medication that is applied to body surfaces such as the skin or mucous membranes to treat ailments via a large range of classes including but not limited to liquids, sprays, creams, foams, gels, lotions, salves and ointments. This can also include injection into the skin layers, i.e., subcutaneous.
- Treatment covers any treatment of a disease or condition of a mammal, particularly a human, and includes: (a) preventing the disease or condition from occurring in a subject which may be predisposed to the disease or condition but has not yet been diagnosed as having it; (b) inhibiting the disease or condition, i.e., arresting its development; (c) relieving and or ameliorating the disease or condition, i.e., causing regression of the disease or condition; or (d) curing the disease or condition, i.e., stopping its development or progression.
- the population of subjects treated by the methods of the invention includes subjects suffering from the undesirable condition or disease, as well as subjects at risk for development of the condition or disease.
- a “wound” is any disruption, from whatever cause, of normal anatomy (internal and/or external anatomy) including but not limited to traumatic injuries such as mechanical (i.e. contusion, penetrating), thermal, chemical, electrical, radiation, concussive and incisional injuries; elective injuries such as operative surgery and resultant incisional hernias, fistulas, etc.; acute wounds, chronic wounds, infected wounds, and sterile wounds, as well as wounds associated with disease states (i.e. ulcers caused by diabetic neuropathy or ulcers of the gastrointestinal or genitourinary tract).
- traumatic injuries such as mechanical (i.e. contusion, penetrating), thermal, chemical, electrical, radiation, concussive and incisional injuries
- elective injuries such as operative surgery and resultant incisional hernias, fistulas, etc.
- acute wounds, chronic wounds, infected wounds, and sterile wounds as well as wound
- wound healing refers to improving, by some form of intervention, the natural cellular processes and humoral substances of tissue repair such that healing is faster, and/or the resulting healed area has less scaring and/or the wounded area possesses tissue strength that is closer to that of uninjured tissue and/or the wounded tissue attains some degree of functional recovery.
- compositions comprising ACCS-B may be administered to a subject to provide various cellular or tissue functions, for example, to promote bone growth, regeneration, and/or repair.
- subject may mean either a human or non-human animal.
- compositions may be formulated in any conventional manner using one or more physiologically acceptable carriers optionally comprising excipients and auxiliaries. Proper formulation is dependent upon the route of administration chosen.
- the compositions may be packaged with written instructions for their use to promote bone growth, regeneration, and/or repair.
- the compositions may also be administered to the recipient in one or more physiologically acceptable carriers.
- Carriers for the ACCS-B may include but are not limited to solutions of phosphate buffered saline (PBS) or lactated Ringer's solution containing a mixture of salts in physiologic concentrations, basal culture medium and the like.
- the liquid composition is aqueous.
- the composition can take the form of an ointment.
- the composition is an in situ gellable aqueous composition.
- a gelling agent in a concentration effective to promote gelling upon contact with the body.
- Suitable gelling agents non-restrictively include thermosetting polymers such as tetra-substituted ethylene diamine block copolymers of ethylene oxide and propylene oxide (e.g., poloxamine 1307); polycarbophil; and polysaccharides such as gellan, carrageenan (e.g., kappa-carrageenan and iota-carrageenan), chitosan and alginate gums.
- in situ gellable includes not only liquids of low viscosity that can form gels, but also more viscous liquids such as semi-fluid and thixotropic gels that exhibit substantially increased viscosity or gel stiffness upon administration.
- Aqueous compositions of the invention have physiologically compatible pH and osmolality.
- these compositions incorporate means to inhibit microbial growth, for example through preparation and packaging under sterile conditions and/or through inclusion of an antimicrobially effective amount of an acceptable preservative.
- Suitable preservatives non-restrictively include mercury-containing substances such as phenylmercuric salts (e.g., phenylmercuric acetate, borate and nitrate) and thimerosal; stabilized chlorine dioxide; quaternary ammonium compounds such as benzalkonium chloride, cetyltrimethylammonium bromide and cetylpyridinium chloride; imidazolidinyl urea; parabens such as methylparaben, ethylparaben, propylparaben and butylparaben, and salts thereof; phenoxyethanol; chlorophenoxyethanol; phenoxypropanol; chlorobutanol; chlorocresol; phenylethyl alcohol; disodium EDTA; and sorbic acid and salts thereof.
- mercury-containing substances such as phenylmercuric salts (e.g., phenylmercuric acetate, borate and nitrate)
- the composition can comprise a depot formulation comprising an active agent for administration.
- the depot formulation comprises a composition of the invention (i.e., ACCS-B).
- the microparticles comprising the compositions can be embedded in a biocompatible pharmaceutically acceptable polymer or a lipid encapsulating agent.
- the depot formulations may be adapted to release all or substantially all of the active material over an extended period of time.
- the polymer or lipid matrix if present, may be adapted to degrade sufficiently to be transported from the site of administration after release of all, or substantially all, of the active agent.
- the depot formulation can be liquid formulation, comprising a pharmaceutical acceptable polymer and a dissolved or dispersed active agent. Upon injection, the polymer forms a depot at the injections site, e.g. by gelifying or precipitating.
- the composition can comprise a solid article that can be inserted or implanted in a suitable location in the disease or injury site, where the article releases the active agent.
- Solid articles suitable for insertion or implantation generally comprise polymers and can be bioerodible or non-bioerodible.
- Bioerodible polymers that can be used in preparation of implants carrying a composition in accordance with the present invention include without restriction aliphatic polyesters such as polymers and copolymers of poly(glycolide), poly(lactide), poly(epsilon-caprolactone), poly(hydroxybutyrate) and poly(hydroxyvalerate), polyamino acids, polyorthoesters, polyanhydrides, aliphatic polycarbonates and polyether lactose.
- suitable non-bioerodible polymers are silicone elastomers.
- Natural and/or synthetic biodegradable matrices are examples of such matrices.
- Natural biodegradable matrices include plasma clots, e.g., derived from a mammal, collagen, fibronectin, and laminin matrices.
- Suitable synthetic matrix material must be biocompatible to preclude immunological complications. It must also be resorbable.
- the matrix should be configurable into a variety of shapes and should have sufficient strength to prevent collapse upon implantation. Recent studies indicate that the biodegradable polyester polymers made of polyglycolic acid fulfill all of these criteria (Vacanti, et al. J. Ped. Surg. 23:3-9 (1988); Cima, et al. Biotechnol. Bioeng.
- ACCS-B can be incorporated directly into the support matrix so that it is slowly released as the support matrix degrades in vivo.
- other factors including nutrients, growth factors, inducers of differentiation or de-differentiation (i.e., causing differentiated cells to lose characteristics of differentiation and acquire characteristics such as proliferation and more general function), products of secretion, immunomodulators, inhibitors of inflammation, regression factors, biologically active compounds which enhance or allow ingrowth of the lymphatic network or nerve fibers, hyaluronic acid, and drugs, which are known to those skilled in the art and commercially available with instructions as to what constitutes an effective amount, from suppliers such as Collaborative Research, Sigma Chemical Co., growth factors such as epidermal growth factor (EGF) and heparin binding epidermal growth factor like growth factor (HB-EGF), could be incorporated into the matrix or be provided in conjunction with the matrix.
- EGF epidermal growth factor
- HB-EGF heparin binding epidermal growth factor like growth factor
- polymers containing peptides such as the attachment peptide RGD can be synthesized for use in forming matrices (see e.g. U.S. Pat. Nos. 4,988,621, 4,792,525, 5,965,997, 4,879,237 and 4,789,734).
- the ACCS-B may be incorporated in a gel matrix (such as Gelfoam from Upjohn Company).
- a gel matrix such as Gelfoam from Upjohn Company.
- encapsulation technologies have been developed (e.g. Lacy et al., Science 254:1782-84 (1991); Sullivan et al., Science 252:718-712 (1991); WO 91/10470; WO 91/10425; U.S. Pat. No. 5,837,234; U.S. Pat. No. 5,011,472; U.S. Pat. No. 4,892,538).
- During open surgical procedures involving direct physical access to diseased or damaged tissue all of the described forms of the ACCS-B delivery preparations are available options. These compositions can be repeatedly administered at intervals until a desired therapeutic effect is achieved, for example, to promote bone growth, regeneration, and/or repair.
- the three-dimensional matrices to be used are structural matrices that provide a scaffold to guide the process of tissue healing and formation.
- Scaffolds can take forms ranging from fibers, gels, fabrics, sponge-like sheets, and complex 3-D structures with pores and channels fabricated using complex Solid Free Form Fabrication (SFFF) approaches.
- SFFF Solid Free Form Fabrication
- the term “scaffold” means a three-dimensional (3D) structure (substrate and/or matrix). It may be composed of biological components, synthetic components or a combination of both. Further, it may be naturally constructed by cells or artificially constructed.
- the scaffold may contain components that have biological activity under appropriate conditions.
- the structure of the scaffold can include a mesh, a sponge or can be formed from a hydrogel.
- the polymeric matrix may be made flexible or rigid, depending on the desired final form, structure and function.
- a flexible fibrous mat is cut to approximate the entire defect then fitted to the surgically prepared defect as necessary during implantation.
- An advantage of using the fibrous matrices is the ease in reshaping and rearranging the structures at the time of implantation.
- the invention also provides for the delivery of ACCS-B in conjunction with any of the above support matrices as well as amnion-derived membranes.
- Such membranes may be obtained as a by-product of the process described herein for the recovery of AMP cells, or by other methods, such as are described, for example, in U.S. Pat. No. 6,326,019 which describes a method for making, storing and using a surgical graft from human amniotic membrane, US 2003/0235580 which describes reconstituted and recombinant amniotic membranes for sustained delivery of therapeutic molecules, proteins or metabolites, to a site in a host, U.S.
- a preferred dose is one which produces a therapeutic effect, such as promoting bone growth, regeneration, and/or repair, in a patient in need thereof.
- proper doses of the ACCS-B will require empirical determination at time of use based on several variables including but not limited to the severity and type of disease, injury, disorder or condition being treated; patient age, weight, sex, health; other medications and treatments being administered to the patient; and the like.
- doses dosing regimen
- number of doses (dosing regimen) to be administered needs also to be empirically determined based on, for example, severity and type of disease, injury, disorder or condition being treated. In one embodiment, one dose is sufficient. Other embodiments contemplate, 2, 3, 4, or more doses.
- the present invention provides a method of promoting bone growth, regeneration, and/or repair by administering to a subject ACCS-B in a therapeutically effective amount.
- therapeutically effective amount is meant the dose of ACCS-B which is sufficient to elicit a therapeutic effect.
- concentration of ACCS-B in an administered dose unit in accordance with the present invention is effective in, for example, to promote bone growth, regeneration, and/or repair.
- a preferred dose for topical administration is in the range of about 0.1-to-1000 micrograms per square centimeter of applied area. Other preferred dose ranges are 1.0-to-50.0 micrograms/applied area. In a particular embodiment, it is expected that relatively small amounts of the ACCS-B will be therapeutically useful.
- the number of doses to be administered needs also to be empirically determined based on, for example, severity and type of disease, disorder or injury being treated. For example, in a specific embodiment, one dose is sufficient to have a therapeutic effect. Other specific embodiments contemplate, 2, 3, 4, or more doses for therapeutic effect.
- active agents include but are not limited to cytokines, chemokines, antibodies, inhibitors, antibiotics, anti-fungals, anti-virals, immunosuppressive agents, various cell types, and the like.
- Inactive agents include carriers, diluents, stabilizers, gelling agents, delivery vehicles, ECMs (natural and synthetic), scaffolds, matrices, nanoparticles and the like.
- ACCS-B can be administered by injection into a target site of a subject via a delivery device, such as a tube, catheter, syringe, needle, atomizer, nebulizer, and the like, through which the ACCS-B can be introduced into the subject at a desired location.
- a delivery device such as a tube, catheter, syringe, needle, atomizer, nebulizer, and the like, through which the ACCS-B can be introduced into the subject at a desired location.
- Routes of administration include enteral, topical, intranasal, transmucosal, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articulare, subcapsular, subarachnoid, intraspinal, epidural, intracerebral and intrasternal administration.
- the appropriate route of administration will depend upon the disease, disorder, injury and site being treated.
- the timing of administration of ACCS-B will depend upon the type and severity of the bone defect or injury being treated. In a particular embodiment, the ACCS-B is administered as soon as possible after a defect is diagnosed or an injury occurs. In other particular embodiments, the ACCS-B is administered more than one time following diagnosis or injury.
- the ACCS-B may be formulated as a sustained-release composition.
- Skilled artisans are familiar with methodologies to create sustained-release compositions of therapeutic agents, including protein-based therapeutic agents such as ACCS-B.
- the sustained-release compositions may be made by any of the methods described herein.
- multivesicular liposome formulation technology is useful for the sustained-release of protein and peptide therapeutics.
- Qui, J., et al, (ACTA Pharmacol Sin, 2005, 26(11):1395-401) describe this methodology for the formulation of sustained-release interferon alpha-2b.
- Vyas, S. P., et al, (Drug Dev Ind Pharm, 2006, 32(6):699-707) describe encapsulating pegylated interferon alpha in multivesicular liposomes.
- ACCS-B is suitable for use in multivesicular liposome sustained-release formulations.
- Nanoparticle technology is also useful for creating sustained-release compositions.
- Packhaeuser, C. B., et al, (J Control Release, 2007, 123(2):131-40) describe biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticules and conclude that nanoparticle-based depots are suitable candidates for the design of controlled-release devices for bioactive macromolecules (i.e. proteins).
- bioactive macromolecules i.e. proteins
- sustained-release methodologies familiar to skilled artisans, while not specifically described herein, are also suitable for use with ACCS-B.
- the present invention provides for a pharmaceutical composition of ACCS-B and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly, in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the composition is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
- Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin, and still others are familiar to skilled artisans.
- compositions useful in the practice of certain embodiments of the invention include a therapeutically effective amount of an active agent with a pharmaceutically acceptable carrier.
- Such pharmaceutical compositions may be liquid, gel, ointment, salve, slow release/sustained release formulations or other formulations suitable for administration to promote bone growth, regeneration, and/or repair.
- the pharmaceutical composition comprises a composition of the invention (i.e., ACCS-B) and, optionally, at least one pharmaceutically acceptable excipient.
- composition of the invention can be formulated in neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- the invention also provides for an article of manufacture or a kit comprising packaging material and a pharmaceutical composition of the invention contained within the packaging material, wherein the pharmaceutical composition comprises compositions ACCS-B.
- the packaging material comprises a label or package insert which indicates that the ACCS-B can be used to promote bone growth, regeneration, and/or repair.
- a bone fracture can be the result of high force impact or stress, or injury as a result of certain medical conditions that weaken the bones, such as osteoporosis, bone cancer, or osteogenesis imperfecta, where the fracture is then properly termed a pathologic fracture.
- Treatment of bone fractures are broadly classified as surgical or conservative, the latter referring to any non-surgical procedure, such as pain management, immobilization or other non-surgical stabilization.
- a similar classification is “open” versus “closed” treatment. Open treatment refers to any treatment in which the fracture site is surgically opened, regardless of whether the fracture itself is an open (through the skin) or closed (not through the skin) fracture.
- Some fractures can lead to serious complications including a condition known as compartment syndrome which if not treated can lead to amputation of the affected limb.
- Other complications may include non-union, where the fractured bone fails to heal, or mal-union, where the fractured bone heals in a deformed manner. It is an object of the instant invention to administer ACCS-B to aid in the healing of fractured bones.
- Bone is often injured as a result of a surgical procedure, for example, removal of a tumor from bone.
- a bone tumor is a neoplastic growth of tissue in bone. Abnormal growths found in the bone can be either benign or malignant.
- Treatment for some bone cancers may involve surgery, such as limb amputation, or limb sparing surgery (often in combination with chemotherapy and radiation therapy).
- Limb sparing surgery, or limb salvage surgery means the limb is spared from amputation. Instead of amputation the affected bone is removed and is done in two ways (a) bone graft, in which a bone from elsewhere from the body is taken or (b) artificial bone is put in. In upper leg surgeries, limb salvage prostheses are available. It is an object of the instant invention to administer ACCS-B to aid in the healing of surgically injured bones.
- compositions of the invention are useful in preventing, reversing, ameliorating or treating dental diseases, disorders, or injuries, including but not limited to gingivitis and periodontitis.
- Amnion epithelial cells were dissociated from starting amniotic membrane using the dissociation agent PXXIII.
- the average weight range of an amnion was 18-27 g.
- the number of cells recovered per g of amnion was about 10-15 ⁇ 10 6 .
- Amnion epithelial cells were plated immediately upon isolation from the amnion. After ⁇ 2-3 days in culture non-adherent cells were removed and the adherent cells were kept. This attachment to a plastic tissue culture vessel is the selection method used to obtain the desired population of AMP cells for culture. Adherent and non-adherent AMP cells appear to have a similar cell surface marker expression profile but the adherent cells have greater viability and are the desired population of cells. Adherent AMP cells were cultured in basal medium supplemented with human serum albumin until they reached ⁇ 120,000-150,000 cells/cm 2 . At this point, the cultures were confluent. Suitable cell cultures will reach this number of cells between ⁇ 5-14 days.
- Attaining this criterion is an indicator of the proliferative potential of the AMP cells and cells that do not achieve this criterion are not selected for further analysis and use.
- AMP cells Once the AMP cells reached ⁇ 120,000-150,000 cells/cm 2 , they were collected and cryopreserved. This collection time point is called p0.
- ACCS-B was evaluated using standard ELISA to identify secreted factors.
- Angiogenin, PDGF-BB, TIMP-1 and TIMP-2 were all present at levels significantly different from those found in ACCS, which is about 3.5-4.5 ng/mL (3500-4500 pg/mL) for Angiogenin, about 100-165 pg/mL for PDGF, about 0.68 ⁇ g/mL (680,000 pg/mL) for TIMP-1, and about 1.04 ⁇ g/mL (1,040,000 pg/mL) for TIMP-2.
- ACCS and ACCS-B (bone ACCS) were compared in a modified scratch assay using an ibidi® ⁇ -dish insert.
- Normal human osteoblast (NHOst) cells were seeded onto either side of the ⁇ -dish insert and grown to 100% confluent. Once confluent, the ⁇ -dish insert was removed leaving a uniform gap down the center.
- the experimental treatments (100% of ACCS, ACCS-B, growth media or STM100) were added to the cells and photos of cell growth, or gap closure, were taken at regular intervals from 0 to 48 hours. The amount of closure from cell growth into the gap was measured and compared to time 0 photos to calculate percent gap closure.
- Topical ACCS application prevents periodontal inflammatory changes and bone loss induced by P. gingivalis as shown both at clinical and histopathological level. ACCS has potential as a therapeutic approach for the prevention of periodontal diseases
- the aim of this study was to evaluate the therapeutic actions of ACCS in the treatment of periodontitis induced by P. gingivalis.
- the study was conducted using a two-phase rabbit periodontitis protocol: 1—Disease induction (6 weeks) and 2—Treatment (6 weeks). Periodontal disease was induced in 16 New-Zealand White rabbits by every-other-day application of topical P. gingivalis to ligatured mandibular premolars. At the end of Phase 1, 4 randomly selected rabbits were sacrificed to serve as the baseline disease group. For Phase 2, the remaining 12 rabbits were distributed into 3 groups (n 4), 1—Untreated, 2—Control (unconditioned ACCS culture media) and 3—ACCS treatment. At the end of Phase 2, morphometric, radiographic and histologic evaluations were performed on harvested mandibles.
- Topical application of ACCS stopped the progression of periodontal inflammation and resulted in tissue regeneration in rabbit periodontitis indicating its potential therapeutic efficacy.
- ACCS-B is evaluated in a standard in vivo model for bone growth, regeneration and/or repair.
- An example of a suitable in vivo model is the one described in, for example, Kisiel M, et al., 2013, Evaluation of Injectable Constructs for Bone Repair with a Subperiosteal Cranial Model in the Rat. PLoS ONE 8(8): e71683. doi:10.1371/journal.pone.0071683.
- Sustained-release compositions of ACCS-B are produced by combining ACCS-B compositions with any of the sustained-release formulation technologies described herein (see Detailed Description) or otherwise familiar to skilled artisans.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Developmental Biology & Embryology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Reproductive Health (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Pregnancy & Childbirth (AREA)
- Gynecology & Obstetrics (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Virology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This invention was made in part with United States government support awarded by the following agency: US ARMY MEDICAL RESEARCH ACQUISITION ACT, contract no. W81XWH1110591. The United States may have certain rights to this invention.
- The field of the invention is directed to a novel cell-derived composition having bone growth, regeneration, and repair promoting properties. In particular, the field of the invention is directed to a novel cell-derived composition having bone growth, regeneration, and repair promoting properties termed Amnion-derived Cellular Cytokine Solution-B (ACCS-B). The field of the invention is further directed to the use of this novel composition to promote bone growth and/or regeneration and/or repair.
- It is an object of the instant invention to provide a novel cell-derived composition having bone growth and/or regeneration and/or repair promoting properties. This novel cell-derived composition is created by culturing AMP cells under specific conditions such that genes important for bone growth and/or regeneration and/or repair promoting properties are up-regulated as compared to AMP cells cultured under standard conditions.
- Accordingly, a first aspect of the invention is a composition comprising Amnion-derived Cellular Cytokine Solution-B (ACCS-B).
- In a specific embodiment, the ACCS-B is a pharmaceutical composition.
- In another specific embodiment, the ACCS-B pharmaceutical composition is contained in an article of manufacture, wherein the article of manufacture comprises the pharmaceutical composition, packaging material, and instructions for use of the pharmaceutical composition to promote bone growth, regeneration and/or repair.
- In another specific embodiment, the ACCS-B is formulated for sustained-release (SR-ACCS-B).
- A second aspect of the invention is a method for treating a bone injury comprising administering to a subject in need thereof a therapeutically effective dose of a composition selected from the group consisting of ACCS-B and SR-ACCS-B. In one embodiment the bone injury is a fracture. In another embodiment the bone injury is a surgical injury.
- A third aspect of the invention is a method for making ACCS-B comprising the step of culturing Amnion-derived Multipotent Progenitor (AMP) cells in Basal Medium Eagle (BME) culture medium supplemented with human serum albumin and human EGF. In a specific embodiment, the human serum albumin is at 0.5% and the human EGF is at 10 ng/mL.
- A fourth aspect of the invention is an ACCS-B composition made by aspect three of the invention.
- Other features and advantages of the invention will be apparent from the accompanying description, examples and the claims. The contents of all references, pending patent applications and issued patents, cited throughout this application are hereby expressly incorporated by reference. In case of conflict, the present specification, including definitions, will control.
- As defined herein “isolated” refers to material removed from its original environment and is thus altered “by the hand of man” from its natural state.
- As used herein, the term “protein marker” means any protein molecule characteristic of the plasma membrane of a cell or in some cases of a specific cell type.
- As used herein, “enriched” means to selectively concentrate or to increase the amount of one or more materials by elimination of the unwanted materials or selection and separation of desirable materials from a mixture (i.e. separate cells with specific cell markers from a heterogeneous cell population in which not all cells in the population express the marker).
- As used herein, the term “substantially purified” means a population of cells substantially homogeneous for a particular marker or combination of markers. By substantially homogeneous is meant at least 90%, and preferably 95% homogeneous for a particular marker or combination of markers.
- The term “placenta” as used herein means both preterm and term placenta.
- As used herein, the term “totipotent cells” shall have the following meaning. In mammals, totipotent cells have the potential to become any cell type in the adult body; any cell type(s) of the extraembryonic membranes (e.g., placenta). Totipotent cells are the fertilized egg and approximately the first 4 cells produced by its cleavage.
- As used herein, the term “pluripotent stem cells” shall have the following meaning. Pluripotent stem cells are true stem cells with the potential to make any differentiated cell in the body, but cannot contribute to making the components of the extraembryonic membranes which are derived from the trophoblast. The amnion develops from the epiblast, not the trophoblast. Four types of pluripotent stem cells have been confirmed to date: Embryonic Stem (ES) Cells (may also be totipotent in primates), Embryonic Germ (EG) Cells, Embryonic Carcinoma (EC) Cells, and late Epiblast Stem Cells (EpiSCs). Recently, artificially produced pluripotent stem cells, called induced pluripotent cells (iPCs) have been created in the laboratory.
- As used herein, the term “multipotent stem cells” are true stem cells but can only differentiate into a limited number of types. For example, the bone marrow contains multipotent stem cells that give rise to all the cells of the blood but may not be able to differentiate into other cells types.
- As used herein, the term “extraembryonic tissue” means tissue located outside the embryonic body which is involved with the embryo's protection, nutrition, waste removal, etc. Extraembryonic tissue is discarded at birth. Extraembryonic tissue includes but is not limited to the amnion, chorion (trophoblast and extraembryonic mesoderm including umbilical cord and vessels), yolk sac, allantois and amniotic fluid (including all components contained therein). Extraembryonic tissue and cells derived therefrom have the same genotype as the developing embryo.
- As used herein, the term “extraembryonic cytokine secreting cells” or “ECS cells” means a population of cells derived from the extraembryonic tissue which have the characteristics of secreting a unique combination of physiologically relevant cytokines in a physiologically relevant temporal manner into the extracellular space or into surrounding culture media and which have not been cultured in the presence of any animal-derived products, making them and cell products derived from them suitable for human clinical use. In a preferred embodiment, the ECS cells secrete the cytokines VEGF, Angiogenin, PDGF and TGFβ2 and the MMP inhibitors TIMP-1 and/or TIMP-2. The physiological range of the cytokine or cytokines in the unique combination is as follows: ˜5-16 ng/mL for VEGF, ˜3.5-4.5 ng/mL for Angiogenin, ˜100-165 pg/mL for PDGF, ˜2.5-2.7 ng/mL for TGFβ2, ˜0.68 μg/mL for TIMP-1 and ˜1.04 μg/mL for TIMP-2. The ECS cells may optionally express Thymosin β4.
- As used herein, the term “Amnion-derived Multipotent Progenitor Cell” or “AMP cell” means a specific population of ECS cells that are epithelial cells derived from the amnion. In addition to the characteristics described above for ECS cells, AMP cells have the following characteristics. They have not been cultured in the presence of any animal-derived products, making them and cell products derived from them suitable for human clinical use. They grow without feeder layers, do not express the protein telomerase and are non-tumorigenic. AMP cells do not express the hematopoietic stem cell marker CD34 protein. The absence of CD34 positive cells in this population indicates the isolates are not contaminated with hematopoietic stem cells such as umbilical cord blood or embryonic fibroblasts. Virtually 100% of the cells react with antibodies to low molecular weight cytokeratins, confirming their epithelial nature. Freshly isolated amnion-epithelial cells will not react with antibodies to the stem/progenitor cell markers c-kit (CD117) and Thy-1 (CD90). Several procedures used to obtain cells from full term or pre-term placenta are known in the art (see, for example, US 2004/0110287; Anker et al., 2005, Stem Cells 22:1338-1345; Ramkumar et al., 1995, Am. J. Ob. Gyn. 172:493-500). However, the methods used herein provide improved, novel compositions and populations of cells.
- By the term “animal-free” when referring to certain compositions, growth conditions, culture media, etc. described herein, is meant that no non-human animal-derived materials, such as non-human animal-derived serum, other than clinical grade human materials, such as recombinantly produced human proteins, are used in the preparation, growth, culturing, expansion, storage or formulation of the certain composition or process.
- By the term “serum-free” when referring to certain compositions, growth conditions, culture media, etc. described herein, is meant that no non-human animal-derived serum is used in the preparation, growth, culturing, expansion, storage or formulation of the certain composition or process.
- By the term “expanded”, in reference to cell compositions, means that the cell population constitutes a significantly higher concentration of cells than is obtained using previous methods. For example, the level of cells per gram of amniotic tissue in expanded compositions of AMP cells is at least 50 and up to 150 fold higher than the number of cells in the primary culture after 5 passages, as compared to about a 20 fold increase in such cells using previous methods. In another example, the level of cells per gram of amniotic tissue in expanded compositions of AMP cells is at least 30 and up to 100 fold higher than the number of cells in the primary culture after 3 passages. Accordingly, an “expanded” population has at least a 2 fold, and up to a 10 fold, improvement in cell numbers per gram of amniotic tissue over previous methods. The term “expanded” is meant to cover only those situations in which a person has intervened to elevate the number of the cells.
- As used herein, “conditioned medium” is a medium in which a specific cell or population of cells has been cultured, and then removed. When cells are cultured in a medium, they may secrete cellular factors that can provide support to or affect the behavior of other cells. Such factors include, but are not limited to hormones, cytokines, extracellular matrix (ECM), proteins, vesicles, antibodies, chemokines, receptors, inhibitors and granules. The medium containing the cellular factors is the conditioned medium. Examples of methods of preparing conditioned media are described in U.S. Pat. No. 6,372,494 which is incorporated by reference in its entirety herein. As used herein, conditioned medium also refers to components, such as proteins, that are recovered and/or purified from conditioned medium or from ECS cells, including AMP cells.
- As used herein, the term “Amnion-derived Cellular Cytokine Solution” or “ACCS” means conditioned medium that has been derived from AMP cells or expanded AMP cells.
- As used herein, “ACCS-B” means a novel composition that is created by culturing AMP cells in Basal Medium Eagle (BME) culture medium supplemented with 0.5% human serum albumin and 10 ng/mL recombinant human EGF.
- As used herein, the term “suspension” means a liquid containing dispersed components, i.e. cytokines. The dispersed components may be fully solubilized, partially solubilized, suspended or otherwise dispersed in the liquid. Suitable liquids include, but are not limited to, water, osmotic solutions such as salt and/or sugar solutions, cell culture media, and other aqueous or non-aqueous solutions.
- The term “lysate” as used herein refers to the composition obtained when cells, for example, AMP cells, are lysed and optionally the cellular debris (e.g., cellular membranes) is removed. This may be achieved by mechanical means, by freezing and thawing, by sonication, by use of detergents, such as EDTA, or by enzymatic digestion using, for example, hyaluronidase, dispase, proteases, and nucleases. In certain instances, it may be desirable to retain the cell membranes, as well.
- The term “physiologic” or “physiological level” as used herein means the level that a substance in a living system is found and that is relevant to the proper functioning of a biochemical and/or biological process.
- As used herein, the term “substrate” means a defined coating on a surface that cells attach to, grown on, and/or migrate on. As used herein, the term “matrix” means a substance that cells grow in or on that may or may not be defined in its components. The matrix includes both biological and non-biological substances. As used herein, the term “scaffold” means a three-dimensional (3D) structure (substrate and/or matrix) that cells grow in or on. It may be composed of biological components, synthetic components or a combination of both. Further, it may be naturally constructed by cells or artificially constructed. In addition, the scaffold may contain components that have biological activity under appropriate conditions.
- The term “cell product” or “cell products” as used herein refers to any and all substances made by and secreted from a cell, including but not limited to, protein factors (i.e. growth factors, differentiation factors, engraftment factors, cytokines, morphogens, proteases (i.e. to promote endogenous cell delamination, protease inhibitors), extracellular matrix components (i.e. fibronectin, etc.), and the like.
- The term “therapeutically effective amount” means that amount of a therapeutic agent necessary to achieve a desired physiological effect (i.e. to promote bone growth, regeneration, and/or repair).
- As used herein, the term “pharmaceutically acceptable” means that the components, in addition to the therapeutic agent, comprising the formulation, are suitable for administration to the patient being treated in accordance with the present invention.
- As used herein, the term “therapeutic component” means a component of the composition which exerts a therapeutic benefit when the composition is administered to a subject.
- As used herein, the term “therapeutic protein” includes a wide range of biologically active proteins including, but not limited to, growth factors, enzymes, hormones, cytokines, inhibitors of cytokines, blood clotting factors, peptide growth and differentiation factors.
- As used herein, the term “tissue” refers to an aggregation of similarly specialized cells united in the performance of a particular function.
- As used herein, the terms “a” or “an” means one or more; at least one.
- As used herein, the term “adjunctive” means jointly, together with, in addition to, in conjunction with, and the like.
- As used herein, the term “co-administer” can include simultaneous or sequential administration of two or more agents.
- As used herein, the term “agent” means an active agent or an inactive agent. By the term “active agent” is meant an agent that is capable of having a physiological effect when administered to a subject. Non-limiting examples of active agents include growth factors, cytokines, antibiotics, cells, conditioned media from cells, etc. By the term “inactive agent” is meant an agent that does not have a physiological effect when administered. Such agents may alternatively be called “pharmaceutically acceptable excipients”. Non-limiting examples include time release capsules and the like.
- The terms “parenteral administration” and “administered parenterally” are art-recognized and refer to modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraosseous, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articulare, subcapsular, subarachnoid, intraspinal, epidural, intracerebral and intrasternal injection or infusion.
- As used herein, the term “enteral” administration means any route of drug administration that involves absorption of the drug through the gastrointestinal tract. Enteral administration may be divided into three different categories, oral, gastric, and rectal. Gastric introduction involves the use of a tube through the nasal passage or a tube in the abdomen leading directly to the stomach.
- As used herein, the term “topical” administration means a medication that is applied to body surfaces such as the skin or mucous membranes to treat ailments via a large range of classes including but not limited to liquids, sprays, creams, foams, gels, lotions, salves and ointments. This can also include injection into the skin layers, i.e., subcutaneous.
- The terms “sustained-release”, “extended-release”, “time-release”, “controlled-release”, or “continuous-release” as used herein means an agent, typically a therapeutic agent or drug, that is formulated to dissolve slowly and be released over time.
- “Treatment,” “treat,” or “treating,” as used herein covers any treatment of a disease or condition of a mammal, particularly a human, and includes: (a) preventing the disease or condition from occurring in a subject which may be predisposed to the disease or condition but has not yet been diagnosed as having it; (b) inhibiting the disease or condition, i.e., arresting its development; (c) relieving and or ameliorating the disease or condition, i.e., causing regression of the disease or condition; or (d) curing the disease or condition, i.e., stopping its development or progression. The population of subjects treated by the methods of the invention includes subjects suffering from the undesirable condition or disease, as well as subjects at risk for development of the condition or disease.
- As used herein, a “wound” is any disruption, from whatever cause, of normal anatomy (internal and/or external anatomy) including but not limited to traumatic injuries such as mechanical (i.e. contusion, penetrating), thermal, chemical, electrical, radiation, concussive and incisional injuries; elective injuries such as operative surgery and resultant incisional hernias, fistulas, etc.; acute wounds, chronic wounds, infected wounds, and sterile wounds, as well as wounds associated with disease states (i.e. ulcers caused by diabetic neuropathy or ulcers of the gastrointestinal or genitourinary tract). A wound is dynamic and the process of healing is a continuum requiring a series of integrated and interrelated cellular processes that begin at the time of wounding and proceed beyond initial wound closure through arrival at a stable scar. These cellular processes are mediated or modulated by humoral substances including but not limited to cytokines, lymphokines, growth factors, and hormones. In accordance with the subject invention, “wound healing” refers to improving, by some form of intervention, the natural cellular processes and humoral substances of tissue repair such that healing is faster, and/or the resulting healed area has less scaring and/or the wounded area possesses tissue strength that is closer to that of uninjured tissue and/or the wounded tissue attains some degree of functional recovery.
- As used herein the term “standard animal model” refers to any art-accepted animal model in which the compositions of the invention exhibit efficacy.
- In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook et al, 2001, “Molecular Cloning: A Laboratory Manual”; Ausubel, ed., 1994, “Current Protocols in Molecular Biology” Volumes I-III; Celis, ed., 1994, “Cell Biology: A Laboratory Handbook” Volumes I-III; Coligan, ed., 1994, “Current Protocols in Immunology” Volumes I-III; Gait ed., 1984, “Oligonucleotide Synthesis”; Hames & Higgins eds., 1985, “Nucleic Acid Hybridization”; Hames & Higgins, eds., 1984, “Transcription And Translation”; Freshney, ed., 1986, “Animal Cell Culture”; IRL Press, 1986, “Immobilized Cells And Enzymes”; Perbal, 1984, “A Practical Guide To Molecular Cloning.”
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the invention.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described.
- It must be noted that as used herein and in the appended claims, the singular forms “a,” “and” and “the” include plural references unless the context clearly dictates otherwise.
- Detailed information and methods on the preparation of AMP cell compositions, generation of ACCS, detection of cytokines in ACCS using ELISA and/or antibody array, and generation of sustained-release compositions can be found in U.S. Pat. Nos. 8,058,066 and 8,088,732, both of which are incorporated herein by reference in their entirety.
- The invention provides for an article of manufacture comprising packaging material and a pharmaceutical composition of the invention contained within the packaging material, wherein the pharmaceutical composition comprises ACCS-B. The packaging material comprises a label or package insert which indicates that the ACCS-B contained therein can be used for therapeutic applications such as, for example, promoting bone growth, regeneration, and/or repair.
- The compositions of the invention can be prepared in a variety of ways depending on the intended use of the compositions. For example, a composition useful in practicing the invention may be a liquid comprising an agent of the invention, i.e., ACCS-B, in solution, in suspension, or both (solution/suspension). The term “solution/suspension” refers to a liquid composition where a first portion of the active agent is present in solution and a second portion of the active agent is present in particulate form, in suspension in a liquid matrix. A liquid composition also includes a gel. The liquid composition may be aqueous or in the form of an ointment, salve, cream, or the like.
- An aqueous suspension or solution/suspension of the invention may contain one or more polymers as suspending agents. Useful polymers include water-soluble polymers such as cellulosic polymers and water-insoluble polymers such as cross-linked carboxyl-containing polymers. An aqueous suspension or solution/suspension of the present invention may be viscous or muco-adhesive or both viscous and muco-adhesive.
- Compositions comprising ACCS-B may be administered to a subject to provide various cellular or tissue functions, for example, to promote bone growth, regeneration, and/or repair. As used herein “subject” may mean either a human or non-human animal.
- Such compositions may be formulated in any conventional manner using one or more physiologically acceptable carriers optionally comprising excipients and auxiliaries. Proper formulation is dependent upon the route of administration chosen. The compositions may be packaged with written instructions for their use to promote bone growth, regeneration, and/or repair. The compositions may also be administered to the recipient in one or more physiologically acceptable carriers. Carriers for the ACCS-B may include but are not limited to solutions of phosphate buffered saline (PBS) or lactated Ringer's solution containing a mixture of salts in physiologic concentrations, basal culture medium and the like.
- Preferably the liquid composition is aqueous. Alternatively, the composition can take the form of an ointment. In a particular embodiment, the composition is an in situ gellable aqueous composition. Such a composition can comprise a gelling agent in a concentration effective to promote gelling upon contact with the body. Suitable gelling agents non-restrictively include thermosetting polymers such as tetra-substituted ethylene diamine block copolymers of ethylene oxide and propylene oxide (e.g., poloxamine 1307); polycarbophil; and polysaccharides such as gellan, carrageenan (e.g., kappa-carrageenan and iota-carrageenan), chitosan and alginate gums. The phrase “in situ gellable” includes not only liquids of low viscosity that can form gels, but also more viscous liquids such as semi-fluid and thixotropic gels that exhibit substantially increased viscosity or gel stiffness upon administration.
- Aqueous compositions of the invention have physiologically compatible pH and osmolality. Typically, these compositions incorporate means to inhibit microbial growth, for example through preparation and packaging under sterile conditions and/or through inclusion of an antimicrobially effective amount of an acceptable preservative. Suitable preservatives non-restrictively include mercury-containing substances such as phenylmercuric salts (e.g., phenylmercuric acetate, borate and nitrate) and thimerosal; stabilized chlorine dioxide; quaternary ammonium compounds such as benzalkonium chloride, cetyltrimethylammonium bromide and cetylpyridinium chloride; imidazolidinyl urea; parabens such as methylparaben, ethylparaben, propylparaben and butylparaben, and salts thereof; phenoxyethanol; chlorophenoxyethanol; phenoxypropanol; chlorobutanol; chlorocresol; phenylethyl alcohol; disodium EDTA; and sorbic acid and salts thereof.
- The composition can comprise a depot formulation comprising an active agent for administration. The depot formulation comprises a composition of the invention (i.e., ACCS-B). The microparticles comprising the compositions can be embedded in a biocompatible pharmaceutically acceptable polymer or a lipid encapsulating agent. The depot formulations may be adapted to release all or substantially all of the active material over an extended period of time. The polymer or lipid matrix, if present, may be adapted to degrade sufficiently to be transported from the site of administration after release of all, or substantially all, of the active agent. The depot formulation can be liquid formulation, comprising a pharmaceutical acceptable polymer and a dissolved or dispersed active agent. Upon injection, the polymer forms a depot at the injections site, e.g. by gelifying or precipitating.
- The composition can comprise a solid article that can be inserted or implanted in a suitable location in the disease or injury site, where the article releases the active agent. Solid articles suitable for insertion or implantation generally comprise polymers and can be bioerodible or non-bioerodible. Bioerodible polymers that can be used in preparation of implants carrying a composition in accordance with the present invention include without restriction aliphatic polyesters such as polymers and copolymers of poly(glycolide), poly(lactide), poly(epsilon-caprolactone), poly(hydroxybutyrate) and poly(hydroxyvalerate), polyamino acids, polyorthoesters, polyanhydrides, aliphatic polycarbonates and polyether lactose. Illustrative of suitable non-bioerodible polymers are silicone elastomers.
- Support matrices into which the ACCS-B can be incorporated or embedded include matrices which are recipient-compatible and which degrade into products which are not harmful to the recipient.
- Natural and/or synthetic biodegradable matrices are examples of such matrices. Natural biodegradable matrices include plasma clots, e.g., derived from a mammal, collagen, fibronectin, and laminin matrices. Suitable synthetic matrix material must be biocompatible to preclude immunological complications. It must also be resorbable. The matrix should be configurable into a variety of shapes and should have sufficient strength to prevent collapse upon implantation. Recent studies indicate that the biodegradable polyester polymers made of polyglycolic acid fulfill all of these criteria (Vacanti, et al. J. Ped. Surg. 23:3-9 (1988); Cima, et al. Biotechnol. Bioeng. 38:145 (1991); Vacanti, et al. Plast. Reconstr. Surg. 88:753-9 (1991)). Other synthetic biodegradable support matrices include synthetic polymers such as polyanhydrides, polyorthoesters, and polylactic acid. Further examples of synthetic polymers and methods of incorporating or embedding compositions into these matrices are also known in the art. See e.g., U.S. Pat. Nos. 4,298,002 and 5,308,701.
- One of the advantages of a biodegradable polymeric matrix is that ACCS-B can be incorporated directly into the support matrix so that it is slowly released as the support matrix degrades in vivo. In addition to the ACCS-B, other factors, including nutrients, growth factors, inducers of differentiation or de-differentiation (i.e., causing differentiated cells to lose characteristics of differentiation and acquire characteristics such as proliferation and more general function), products of secretion, immunomodulators, inhibitors of inflammation, regression factors, biologically active compounds which enhance or allow ingrowth of the lymphatic network or nerve fibers, hyaluronic acid, and drugs, which are known to those skilled in the art and commercially available with instructions as to what constitutes an effective amount, from suppliers such as Collaborative Research, Sigma Chemical Co., growth factors such as epidermal growth factor (EGF) and heparin binding epidermal growth factor like growth factor (HB-EGF), could be incorporated into the matrix or be provided in conjunction with the matrix. Similarly, polymers containing peptides such as the attachment peptide RGD (Arg-Gly-Asp) can be synthesized for use in forming matrices (see e.g. U.S. Pat. Nos. 4,988,621, 4,792,525, 5,965,997, 4,879,237 and 4,789,734).
- In another example, the ACCS-B may be incorporated in a gel matrix (such as Gelfoam from Upjohn Company). A variety of encapsulation technologies have been developed (e.g. Lacy et al., Science 254:1782-84 (1991); Sullivan et al., Science 252:718-712 (1991); WO 91/10470; WO 91/10425; U.S. Pat. No. 5,837,234; U.S. Pat. No. 5,011,472; U.S. Pat. No. 4,892,538). During open surgical procedures involving direct physical access to diseased or damaged tissue, all of the described forms of the ACCS-B delivery preparations are available options. These compositions can be repeatedly administered at intervals until a desired therapeutic effect is achieved, for example, to promote bone growth, regeneration, and/or repair.
- The three-dimensional matrices to be used are structural matrices that provide a scaffold to guide the process of tissue healing and formation. Scaffolds can take forms ranging from fibers, gels, fabrics, sponge-like sheets, and complex 3-D structures with pores and channels fabricated using complex Solid Free Form Fabrication (SFFF) approaches. As used herein, the term “scaffold” means a three-dimensional (3D) structure (substrate and/or matrix). It may be composed of biological components, synthetic components or a combination of both. Further, it may be naturally constructed by cells or artificially constructed. In addition, the scaffold may contain components that have biological activity under appropriate conditions. The structure of the scaffold can include a mesh, a sponge or can be formed from a hydrogel.
- The polymeric matrix may be made flexible or rigid, depending on the desired final form, structure and function. For repair of a defect, for example, a flexible fibrous mat is cut to approximate the entire defect then fitted to the surgically prepared defect as necessary during implantation. An advantage of using the fibrous matrices is the ease in reshaping and rearranging the structures at the time of implantation.
- The invention also provides for the delivery of ACCS-B in conjunction with any of the above support matrices as well as amnion-derived membranes. Such membranes may be obtained as a by-product of the process described herein for the recovery of AMP cells, or by other methods, such as are described, for example, in U.S. Pat. No. 6,326,019 which describes a method for making, storing and using a surgical graft from human amniotic membrane, US 2003/0235580 which describes reconstituted and recombinant amniotic membranes for sustained delivery of therapeutic molecules, proteins or metabolites, to a site in a host, U.S. 2004/0181240, which describes an amniotic membrane covering for a tissue surface which may prevent adhesions, exclude bacteria or inhibit bacterial activity, or to promote healing or growth of tissue, and U.S. Pat. No. 4,361,552, which pertains to the preparation of cross-linked amnion membranes and their use in methods for treating burns and wounds. In accordance with the present invention, ACCS-B may be incorporated into such membranes.
- One of skill in the art may readily determine the appropriate concentration, or dose, of the ACCS-B, for a particular purpose. The skilled artisan will recognize that a preferred dose is one which produces a therapeutic effect, such as promoting bone growth, regeneration, and/or repair, in a patient in need thereof. Of course, proper doses of the ACCS-B will require empirical determination at time of use based on several variables including but not limited to the severity and type of disease, injury, disorder or condition being treated; patient age, weight, sex, health; other medications and treatments being administered to the patient; and the like. One of skill in the art will also recognize that number of doses (dosing regimen) to be administered needs also to be empirically determined based on, for example, severity and type of disease, injury, disorder or condition being treated. In one embodiment, one dose is sufficient. Other embodiments contemplate, 2, 3, 4, or more doses.
- The present invention provides a method of promoting bone growth, regeneration, and/or repair by administering to a subject ACCS-B in a therapeutically effective amount. By “therapeutically effective amount” is meant the dose of ACCS-B which is sufficient to elicit a therapeutic effect. Thus, the concentration of ACCS-B in an administered dose unit in accordance with the present invention is effective in, for example, to promote bone growth, regeneration, and/or repair.
- In addition, one of skill in the art may readily determine the appropriate dose of the ACCS-B for a particular purpose. For example, a preferred dose for topical administration is in the range of about 0.1-to-1000 micrograms per square centimeter of applied area. Other preferred dose ranges are 1.0-to-50.0 micrograms/applied area. In a particular embodiment, it is expected that relatively small amounts of the ACCS-B will be therapeutically useful. One of skill in the art will also recognize that the number of doses to be administered needs also to be empirically determined based on, for example, severity and type of disease, disorder or injury being treated. For example, in a specific embodiment, one dose is sufficient to have a therapeutic effect. Other specific embodiments contemplate, 2, 3, 4, or more doses for therapeutic effect.
- In further embodiments of the present invention, it may be desirable to co-administer other agents, including active agents and/or inactive agents, with the ACCS-B to promote bone growth, regeneration, and/or repair. Active agents include but are not limited to cytokines, chemokines, antibodies, inhibitors, antibiotics, anti-fungals, anti-virals, immunosuppressive agents, various cell types, and the like. Inactive agents include carriers, diluents, stabilizers, gelling agents, delivery vehicles, ECMs (natural and synthetic), scaffolds, matrices, nanoparticles and the like. When the ACCS-B is administered conjointly with other pharmaceutically active agents, even less of the ACCS-B may be needed to be therapeutically effective.
- ACCS-B can be administered by injection into a target site of a subject via a delivery device, such as a tube, catheter, syringe, needle, atomizer, nebulizer, and the like, through which the ACCS-B can be introduced into the subject at a desired location.
- Routes of administration include enteral, topical, intranasal, transmucosal, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articulare, subcapsular, subarachnoid, intraspinal, epidural, intracerebral and intrasternal administration. The appropriate route of administration will depend upon the disease, disorder, injury and site being treated.
- The timing of administration of ACCS-B will depend upon the type and severity of the bone defect or injury being treated. In a particular embodiment, the ACCS-B is administered as soon as possible after a defect is diagnosed or an injury occurs. In other particular embodiments, the ACCS-B is administered more than one time following diagnosis or injury.
- The ACCS-B may be formulated as a sustained-release composition. Skilled artisans are familiar with methodologies to create sustained-release compositions of therapeutic agents, including protein-based therapeutic agents such as ACCS-B.
- The sustained-release compositions may be made by any of the methods described herein. For example, multivesicular liposome formulation technology is useful for the sustained-release of protein and peptide therapeutics. Qui, J., et al, (ACTA Pharmacol Sin, 2005, 26(11):1395-401) describe this methodology for the formulation of sustained-release interferon alpha-2b. Vyas, S. P., et al, (Drug Dev Ind Pharm, 2006, 32(6):699-707) describe encapsulating pegylated interferon alpha in multivesicular liposomes. ACCS-B is suitable for use in multivesicular liposome sustained-release formulations.
- Nanoparticle technology is also useful for creating sustained-release compositions. For example, Packhaeuser, C. B., et al, (J Control Release, 2007, 123(2):131-40) describe biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticules and conclude that nanoparticle-based depots are suitable candidates for the design of controlled-release devices for bioactive macromolecules (i.e. proteins). Dailey, L. A., et al, (Pharm Res 2003, 20(12):2011-20) describe surfactant-free, biodegradable nanoparticles for aerosol therapy which is based on the branched polymers DEAPA-PVAL-g-PLGA and conclude that DEAPA-PVAL-g-PLGA are versatile drug delivery systems. ACCS-B is suitable for use in nanoparticle-based sustained-release formulations.
- Polymer-based sustained-release formulations are also very useful. Chan, Y. P., et al, (Expert Opin Drug Deliv, 2007, 4(4):441-51) provide a review of the Medusa system (Flamel Technologies), which is used for sustained-release of protein and peptide therapies. Thus far, the Medusa system has been applied to subcutaneous injection of IL-2 and IFN-alpha(2b), in animal models (rats, dogs, monkeys), and in clinical trials in renal cancer (IL-2) and hepatitis C (IFN-alpha(2b)) patients. Chavanpatil, M. D., et al, (Pharm Res, 2007, 24(4):803-10) describe surfactant-polymer nanoparticles as a novel platform for sustained and enhanced cellular delivery of water-soluble molecules. Takeuchi, H., et al, (Adv Drug Deliv Res, 2001, 47(1):39-54) describe mucoadhesive nanoparticulate systems for peptide drug delivery, including liposomes and polymeric nanoparticles. Wong, H. L., et al, (Pharm Res, 2006, 23(7):1574-85) describe a new polymer-lipid hybrid system which has been shown to increase cytotoxicity of doxorubicin against multidrug-resistant breast cancer cells. ACCS-B is suitable for use in the aforementioned sustained-release formulation methodologies.
- In addition, other sustained-release methodologies familiar to skilled artisans, while not specifically described herein, are also suitable for use with ACCS-B.
- The present invention provides for a pharmaceutical composition of ACCS-B and a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly, in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the composition is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin, and still others are familiar to skilled artisans.
- Pharmaceutical compositions useful in the practice of certain embodiments of the invention (i.e. those embodiments utilizing topical administration) include a therapeutically effective amount of an active agent with a pharmaceutically acceptable carrier. Such pharmaceutical compositions may be liquid, gel, ointment, salve, slow release/sustained release formulations or other formulations suitable for administration to promote bone growth, regeneration, and/or repair. The pharmaceutical composition comprises a composition of the invention (i.e., ACCS-B) and, optionally, at least one pharmaceutically acceptable excipient.
- The pharmaceutical composition of the invention can be formulated in neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- The invention also provides for an article of manufacture or a kit comprising packaging material and a pharmaceutical composition of the invention contained within the packaging material, wherein the pharmaceutical composition comprises compositions ACCS-B. The packaging material comprises a label or package insert which indicates that the ACCS-B can be used to promote bone growth, regeneration, and/or repair.
- The most common bone injury is fracture. A bone fracture can be the result of high force impact or stress, or injury as a result of certain medical conditions that weaken the bones, such as osteoporosis, bone cancer, or osteogenesis imperfecta, where the fracture is then properly termed a pathologic fracture. Treatment of bone fractures are broadly classified as surgical or conservative, the latter referring to any non-surgical procedure, such as pain management, immobilization or other non-surgical stabilization. A similar classification is “open” versus “closed” treatment. Open treatment refers to any treatment in which the fracture site is surgically opened, regardless of whether the fracture itself is an open (through the skin) or closed (not through the skin) fracture. Some fractures can lead to serious complications including a condition known as compartment syndrome which if not treated can lead to amputation of the affected limb. Other complications may include non-union, where the fractured bone fails to heal, or mal-union, where the fractured bone heals in a deformed manner. It is an object of the instant invention to administer ACCS-B to aid in the healing of fractured bones.
- Bone is often injured as a result of a surgical procedure, for example, removal of a tumor from bone. A bone tumor is a neoplastic growth of tissue in bone. Abnormal growths found in the bone can be either benign or malignant. Treatment for some bone cancers may involve surgery, such as limb amputation, or limb sparing surgery (often in combination with chemotherapy and radiation therapy). Limb sparing surgery, or limb salvage surgery, means the limb is spared from amputation. Instead of amputation the affected bone is removed and is done in two ways (a) bone graft, in which a bone from elsewhere from the body is taken or (b) artificial bone is put in. In upper leg surgeries, limb salvage prostheses are available. It is an object of the instant invention to administer ACCS-B to aid in the healing of surgically injured bones.
- The compositions of the invention are useful in preventing, reversing, ameliorating or treating dental diseases, disorders, or injuries, including but not limited to gingivitis and periodontitis.
- Skilled artisans will recognize that any and all of the standard methods and modalities for promoting bone growth, regeneration, and/or repair currently in clinical practice and clinical development are suitable for practicing the methods of the invention. Routes of administration, formulation, co-administration with other agents (if appropriate) and the like are discussed in detail elsewhere herein.
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the methods and compositions of the invention, and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.
- Amnion epithelial cells were dissociated from starting amniotic membrane using the dissociation agent PXXIII. The average weight range of an amnion was 18-27 g. The number of cells recovered per g of amnion was about 10-15×106.
- Amnion epithelial cells were plated immediately upon isolation from the amnion. After ˜2-3 days in culture non-adherent cells were removed and the adherent cells were kept. This attachment to a plastic tissue culture vessel is the selection method used to obtain the desired population of AMP cells for culture. Adherent and non-adherent AMP cells appear to have a similar cell surface marker expression profile but the adherent cells have greater viability and are the desired population of cells. Adherent AMP cells were cultured in basal medium supplemented with human serum albumin until they reached ˜120,000-150,000 cells/cm2. At this point, the cultures were confluent. Suitable cell cultures will reach this number of cells between ˜5-14 days. Attaining this criterion is an indicator of the proliferative potential of the AMP cells and cells that do not achieve this criterion are not selected for further analysis and use. Once the AMP cells reached ˜120,000-150,000 cells/cm2, they were collected and cryopreserved. This collection time point is called p0.
- ACCS-B was prepared by culturing AMP cells in Basal Medium Eagle (BME) culture medium supplemented with 0.5% human serum albumin (HSA) and 10 ng/mL recombinant human EGF. Spent medium was replaced with fresh medium every 3 days. Conditioned medium (ACCS-B) was collected at 15 and 21 days of culture and evaluated by ELISA for the presence of secreted factors.
- ACCS-B was evaluated using standard ELISA to identify secreted factors.
- VEGF was detected at about 5567 pg/mL, Angiogenin was detected at about 302 pg/mL, PDGF-BB was detected at about 25 pg/mL, TIMP-1 was detected at about 314,433 pg/mL and TIMP-2 was detected at about 95,807 pg/mL. Angiogenin, PDGF-BB, TIMP-1 and TIMP-2 were all present at levels significantly different from those found in ACCS, which is about 3.5-4.5 ng/mL (3500-4500 pg/mL) for Angiogenin, about 100-165 pg/mL for PDGF, about 0.68 μg/mL (680,000 pg/mL) for TIMP-1, and about 1.04 μg/mL (1,040,000 pg/mL) for TIMP-2.
- In addition, the AMP cells that had been cultured in Basal Medium Eagle (BME) culture medium supplemented with 0.5% HSA and 10 ng/mL recombinant human EGF were harvested at day 21 of culture, RNA was isolated and gene expression analysis was performed to look for expression of the following genes critical for bone growth, regeneration, and/or repair: RunX, osteopontin (OPN), osteoclastin (OCN), BMP2 and BMP4. AMP cells cultured under normal conditions were used as a comparator.
- OPN, OCN and BMP2 gene expression was up-regulated in the BME-cultured cells as compared to AMP cells (p=<0.05). RunX2 and BMP4 were also up-regulated, but they were not statistically significant in this experiment.
- ACCS and ACCS-B (bone ACCS) were compared in a modified scratch assay using an ibidi® μ-dish insert. Normal human osteoblast (NHOst) cells were seeded onto either side of the μ-dish insert and grown to 100% confluent. Once confluent, the μ-dish insert was removed leaving a uniform gap down the center. The experimental treatments (100% of ACCS, ACCS-B, growth media or STM100) were added to the cells and photos of cell growth, or gap closure, were taken at regular intervals from 0 to 48 hours. The amount of closure from cell growth into the gap was measured and compared to time 0 photos to calculate percent gap closure.
- At the 24 hour time point, the ACCS-B treatment was near 60% closed and ACCS was at 80% closure.
- The aim of this study was to evaluate the preventive role of ACCS in Porphyromonas gingivalis (P. gingivalis)-induced experimental periodontitis in rabbits
- Eight New-Zealand White rabbits were distributed into 3 groups: 1. Untreated (n=2), 2. Control (unconditioned ACCS culture media) (n=3), and 3. ACCS (n=3). At baseline, all rabbits received silk ligatures bilaterally tied around mandibular second premolars under general anesthesia. The assigned test materials, ACCS or control, in volumes of 10 μL were topically applied to the ligated sites with a blunt needled-Hamilton Syringe from the time of ligature; control animals received ligature, but no treatment. Topical P. gingivalis-containing slurry (1 mL) was subsequently applied to induce the periodontal inflammation. The application of test materials and P. gingivalis continued for 6 weeks on an every-other-day schedule. At 6 weeks, following euthanasia, the mandibles were surgically harvested. Morphometric, radiographic and histologic evaluations were performed.
- Macroscopic evaluations including soft tissue assessments, crestal bone and infrabony measurements showed significant periodontal breakdown induced by P. gingivalis in control and no treatment groups at 6 weeks compared to historical ligature-alone groups (p=0.05, p=0.03, respectively). ACCS application significantly inhibited soft tissue inflammation and prevented both crestal bone loss and infrabony defect formation compared to untreated and control groups (p=0.01, p=0.05, respectively). Histologic assessments and histomorphometric measurements supported the clinical findings; ACCS treated animals demonstrated significantly less inflammation in soft tissue and less bone loss compared to the untreated and control groups (p=0.05).
- Topical ACCS application prevents periodontal inflammatory changes and bone loss induced by P. gingivalis as shown both at clinical and histopathological level. ACCS has potential as a therapeutic approach for the prevention of periodontal diseases
- The aim of this study was to evaluate the therapeutic actions of ACCS in the treatment of periodontitis induced by P. gingivalis.
- The study was conducted using a two-phase rabbit periodontitis protocol: 1—Disease induction (6 weeks) and 2—Treatment (6 weeks). Periodontal disease was induced in 16 New-Zealand White rabbits by every-other-day application of topical P. gingivalis to ligatured mandibular premolars. At the end of Phase 1, 4 randomly selected rabbits were sacrificed to serve as the baseline disease group. For Phase 2, the remaining 12 rabbits were distributed into 3 groups (n=4), 1—Untreated, 2—Control (unconditioned ACCS culture media) and 3—ACCS treatment. At the end of Phase 2, morphometric, radiographic and histologic evaluations were performed on harvested mandibles.
- The baseline disease group exhibited experimental periodontitis evidenced by tissue inflammation and bone loss. At the end of Phase 2, the untreated group showed significant disease progression characterized by increased soft and hard tissue destruction (p=0.05). The tissue inflammation and bone loss was significantly reduced by topical ACCS compared to baseline disease and untreated groups (p=0.05; p=0.002, respectively). The control treatment also arrested disease progression compared to untreated group (p=0.01), but there was no improvement in periodontal health compared to baseline disease (p=0.4). Histopathological assessments revealed similar findings; ACCS stopped the progression of inflammatory process (p=0.003) and reversed bone destruction induced by P. gingivalis (p=0.008). The ACCS-treated group had minimal osteoclastic activity limited to crestal area compared to untreated and control groups, which showed a profound osteoclastogenic activity at the bone crest as well as at interproximal sites.
- Topical application of ACCS stopped the progression of periodontal inflammation and resulted in tissue regeneration in rabbit periodontitis indicating its potential therapeutic efficacy.
- ACCS-B is evaluated in a standard in vivo model for bone growth, regeneration and/or repair. An example of a suitable in vivo model is the one described in, for example, Kisiel M, et al., 2013, Evaluation of Injectable Constructs for Bone Repair with a Subperiosteal Cranial Model in the Rat. PLoS ONE 8(8): e71683. doi:10.1371/journal.pone.0071683.
- Sustained-release compositions of ACCS-B are produced by combining ACCS-B compositions with any of the sustained-release formulation technologies described herein (see Detailed Description) or otherwise familiar to skilled artisans.
- Throughout the specification various publications have been referred to. It is intended that each publication be incorporated by reference in its entirety into this specification.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/289,362 US20170035812A1 (en) | 2013-12-12 | 2016-10-10 | Novel cell-derived composition |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361915054P | 2013-12-12 | 2013-12-12 | |
| US14/567,457 US9464272B2 (en) | 2013-12-12 | 2014-12-11 | Cell-derived composition |
| US15/289,362 US20170035812A1 (en) | 2013-12-12 | 2016-10-10 | Novel cell-derived composition |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/567,457 Continuation US9464272B2 (en) | 2013-12-12 | 2014-12-11 | Cell-derived composition |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/294,023 Division US10864027B2 (en) | 2016-10-20 | 2019-03-06 | Pre-contoured buttress plate for posterior wall acetabular fractures |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170035812A1 true US20170035812A1 (en) | 2017-02-09 |
Family
ID=53367678
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/567,457 Active 2035-01-25 US9464272B2 (en) | 2013-12-12 | 2014-12-11 | Cell-derived composition |
| US15/289,362 Abandoned US20170035812A1 (en) | 2013-12-12 | 2016-10-10 | Novel cell-derived composition |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/567,457 Active 2035-01-25 US9464272B2 (en) | 2013-12-12 | 2014-12-11 | Cell-derived composition |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US9464272B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10758571B1 (en) | 2019-04-09 | 2020-09-01 | Combangio, Inc. | Processes for making and using a mesenchymal stem cell derived secretome |
| US12186430B2 (en) | 2020-04-07 | 2025-01-07 | Combangio, Inc. | Lyophilized mesenchymal stem cell derived secretome and uses thereof |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| HUE063486T2 (en) * | 2015-07-31 | 2024-01-28 | Exotropin Llc | Exosome compositions and methods for preparation and use thereof for regulating and conditioning skin and hair |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120046601A1 (en) * | 2010-08-23 | 2012-02-23 | Sing George L | Methods for delivering novel cell and cell-based compositions |
| WO2012092480A1 (en) * | 2010-12-30 | 2012-07-05 | Anthirogenesis Corporation | Compositions comprising amnion derived adherent cells and platelet-rich plasma |
-
2014
- 2014-12-11 US US14/567,457 patent/US9464272B2/en active Active
-
2016
- 2016-10-10 US US15/289,362 patent/US20170035812A1/en not_active Abandoned
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10758571B1 (en) | 2019-04-09 | 2020-09-01 | Combangio, Inc. | Processes for making and using a mesenchymal stem cell derived secretome |
| US10881693B2 (en) | 2019-04-09 | 2021-01-05 | Combangio, Inc. | Processes for making and using a mesenchymal stem cell derived secretome |
| US11129853B2 (en) | 2019-04-09 | 2021-09-28 | Combangio, Inc. | Processes for making and using a mesenchymal stem cell derived secretome |
| US11654160B2 (en) | 2019-04-09 | 2023-05-23 | Combangio, Inc. | Processes for making and using a mesenchymal stem cell derived secretome |
| US12186430B2 (en) | 2020-04-07 | 2025-01-07 | Combangio, Inc. | Lyophilized mesenchymal stem cell derived secretome and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US20150166951A1 (en) | 2015-06-18 |
| US9464272B2 (en) | 2016-10-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9173927B2 (en) | Methods to reduce scarring | |
| CA2823705C (en) | Wound healing device comprising protein factors adsorbed onto a suture | |
| US20170202919A1 (en) | Methods for preventing or treating optic neuritis | |
| US9464272B2 (en) | Cell-derived composition | |
| US9636364B2 (en) | Methods for treating ocular contusion and blunt injury and traumatic injury to the optic nerve | |
| CN103338643B (en) | Methods of Treating Dental Disease and Injury | |
| US9662417B2 (en) | Medical device | |
| US8980251B2 (en) | Methods for preventing and treating hemorrhoids | |
| US20160015785A1 (en) | Modulating Ischemic Injury |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NOVEOME BIOTHERAPEUTICS, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUPP, RANDALL G;FRIED, CHRISTOPHER A;OLEJNICAK, DONNA M;AND OTHERS;SIGNING DATES FROM 20170523 TO 20170606;REEL/FRAME:042784/0489 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: THE GOVERNMENT OF THE UNITED STATES, AS REPRESENTE Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NOVEOME BIOTHERAPEUTICS, INC.;REEL/FRAME:051044/0424 Effective date: 20180412 Owner name: THE GOVERNMENT OF THE UNITED STATES, AS REPRESENTE Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NOVEOME BIOTHERAPEUTICS, INC.;REEL/FRAME:051045/0467 Effective date: 20180412 |