US20170002235A1 - Adhesive, adhesive layer, and adhesive sheet - Google Patents
Adhesive, adhesive layer, and adhesive sheet Download PDFInfo
- Publication number
- US20170002235A1 US20170002235A1 US15/266,653 US201615266653A US2017002235A1 US 20170002235 A1 US20170002235 A1 US 20170002235A1 US 201615266653 A US201615266653 A US 201615266653A US 2017002235 A1 US2017002235 A1 US 2017002235A1
- Authority
- US
- United States
- Prior art keywords
- pressure
- sensitive adhesive
- meth
- acrylate
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 37
- 239000000853 adhesive Substances 0.000 title claims abstract description 35
- 239000012790 adhesive layer Substances 0.000 title description 7
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims abstract description 230
- 239000010410 layer Substances 0.000 claims abstract description 155
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 145
- 239000000178 monomer Substances 0.000 claims abstract description 136
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 84
- 229920000642 polymer Polymers 0.000 claims abstract description 66
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 44
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 32
- 150000002148 esters Chemical class 0.000 claims abstract description 26
- -1 alkyl methacrylate Chemical compound 0.000 claims description 72
- 239000003431 cross linking reagent Substances 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 23
- 239000011521 glass Substances 0.000 claims description 16
- 125000000524 functional group Chemical group 0.000 claims description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 125000005250 alkyl acrylate group Chemical group 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 6
- 238000002834 transmittance Methods 0.000 claims description 6
- 150000004292 cyclic ethers Chemical group 0.000 claims description 5
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 3
- 239000010408 film Substances 0.000 description 89
- 150000002978 peroxides Chemical class 0.000 description 77
- 230000003287 optical effect Effects 0.000 description 40
- 239000003999 initiator Substances 0.000 description 36
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 229920001519 homopolymer Polymers 0.000 description 21
- 238000000034 method Methods 0.000 description 21
- 239000012788 optical film Substances 0.000 description 20
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 18
- 239000004973 liquid crystal related substance Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- COCLLEMEIJQBAG-UHFFFAOYSA-N 8-methylnonyl 2-methylprop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C(C)=C COCLLEMEIJQBAG-UHFFFAOYSA-N 0.000 description 17
- 239000012948 isocyanate Substances 0.000 description 17
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 16
- 239000002985 plastic film Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 14
- 229920003023 plastic Polymers 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 150000002513 isocyanates Chemical class 0.000 description 12
- 229920002451 polyvinyl alcohol Polymers 0.000 description 12
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 11
- 239000003995 emulsifying agent Substances 0.000 description 10
- 229920001296 polysiloxane Polymers 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000005855 radiation Effects 0.000 description 10
- 239000004593 Epoxy Substances 0.000 description 9
- 239000006087 Silane Coupling Agent Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 9
- 229920002799 BoPET Polymers 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- IAXXETNIOYFMLW-GYSYKLTISA-N [(1r,3r,4r)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@@]2(C)[C@H](OC(=O)C(=C)C)C[C@@H]1C2(C)C IAXXETNIOYFMLW-GYSYKLTISA-N 0.000 description 6
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 6
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 6
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- NWAHZAIDMVNENC-UHFFFAOYSA-N octahydro-1h-4,7-methanoinden-5-yl methacrylate Chemical compound C12CCCC2C2CC(OC(=O)C(=C)C)C1C2 NWAHZAIDMVNENC-UHFFFAOYSA-N 0.000 description 6
- 229920006267 polyester film Polymers 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 229920002554 vinyl polymer Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- STFXXRRQKFUYEU-UHFFFAOYSA-N 16-methylheptadecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)C=C STFXXRRQKFUYEU-UHFFFAOYSA-N 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 125000003700 epoxy group Chemical group 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical class O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 4
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 4
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 4
- 239000012965 benzophenone Substances 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 210000002858 crystal cell Anatomy 0.000 description 4
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 239000005056 polyisocyanate Substances 0.000 description 4
- 229920001228 polyisocyanate Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 4
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 3
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 3
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 3
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 3
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 244000028419 Styrax benzoin Species 0.000 description 3
- 235000000126 Styrax benzoin Nutrition 0.000 description 3
- 235000008411 Sumatra benzointree Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229960002130 benzoin Drugs 0.000 description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 description 3
- 239000013522 chelant Substances 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 229940057404 di-(4-tert-butylcyclohexyl)peroxydicarbonate Drugs 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000007720 emulsion polymerization reaction Methods 0.000 description 3
- 235000019382 gum benzoic Nutrition 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 229940119545 isobornyl methacrylate Drugs 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229940059574 pentaerithrityl Drugs 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- HGXJDMCMYLEZMJ-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOOC(=O)C(C)(C)C HGXJDMCMYLEZMJ-UHFFFAOYSA-N 0.000 description 2
- AGKBXKFWMQLFGZ-UHFFFAOYSA-N (4-methylbenzoyl) 4-methylbenzenecarboperoxoate Chemical compound C1=CC(C)=CC=C1C(=O)OOC(=O)C1=CC=C(C)C=C1 AGKBXKFWMQLFGZ-UHFFFAOYSA-N 0.000 description 2
- VBQCFYPTKHCPGI-UHFFFAOYSA-N 1,1-bis(2-methylpentan-2-ylperoxy)cyclohexane Chemical compound CCCC(C)(C)OOC1(OOC(C)(C)CCC)CCCCC1 VBQCFYPTKHCPGI-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 2
- YIKSHDNOAYSSPX-UHFFFAOYSA-N 1-propan-2-ylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C(C)C YIKSHDNOAYSSPX-UHFFFAOYSA-N 0.000 description 2
- DPGYCJUCJYUHTM-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-yloxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)CC(C)(C)C DPGYCJUCJYUHTM-UHFFFAOYSA-N 0.000 description 2
- CCTFAOUOYLVUFG-UHFFFAOYSA-N 2-(1-amino-1-imino-2-methylpropan-2-yl)azo-2-methylpropanimidamide Chemical compound NC(=N)C(C)(C)N=NC(C)(C)C(N)=N CCTFAOUOYLVUFG-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- KANZWHBYRHQMKZ-UHFFFAOYSA-N 2-ethenylpyrazine Chemical compound C=CC1=CN=CC=N1 KANZWHBYRHQMKZ-UHFFFAOYSA-N 0.000 description 2
- ZACVGCNKGYYQHA-UHFFFAOYSA-N 2-ethylhexoxycarbonyloxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOC(=O)OCC(CC)CCCC ZACVGCNKGYYQHA-UHFFFAOYSA-N 0.000 description 2
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical compound OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 2
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 2
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 2
- NMZSJIQGMAGSSO-UHFFFAOYSA-N 3-[[1-amino-2-[[1-amino-1-(2-carboxyethylimino)-2-methylpropan-2-yl]diazenyl]-2-methylpropylidene]amino]propanoic acid Chemical compound OC(=O)CCNC(=N)C(C)(C)N=NC(C)(C)C(=N)NCCC(O)=O NMZSJIQGMAGSSO-UHFFFAOYSA-N 0.000 description 2
- UVRCNEIYXSRHNT-UHFFFAOYSA-N 3-ethylpent-2-enamide Chemical compound CCC(CC)=CC(N)=O UVRCNEIYXSRHNT-UHFFFAOYSA-N 0.000 description 2
- CAMBAGZYTIDFBK-UHFFFAOYSA-N 3-tert-butylperoxy-2-methylpropan-1-ol Chemical compound CC(CO)COOC(C)(C)C CAMBAGZYTIDFBK-UHFFFAOYSA-N 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- LVGFPWDANALGOY-UHFFFAOYSA-N 8-methylnonyl prop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C=C LVGFPWDANALGOY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- OXCUXICYDJWRNK-UHFFFAOYSA-N [(2,4-dibutoxyphenyl)-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CCCCOC1=CC(OCCCC)=CC=C1P(=O)(C(=O)C=1C(=CC(C)=CC=1C)C)C(=O)C1=C(C)C=C(C)C=C1C OXCUXICYDJWRNK-UHFFFAOYSA-N 0.000 description 2
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 2
- AVIBWTMVEMSVJA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2-phenylethyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C(=O)C=1C(=CC=CC=1OC)OC)CCC1=CC=CC=C1 AVIBWTMVEMSVJA-UHFFFAOYSA-N 0.000 description 2
- HDCJWHCUEFWPNU-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2-phenylpropyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C(=O)C=1C(=CC=CC=1OC)OC)CC(C)C1=CC=CC=C1 HDCJWHCUEFWPNU-UHFFFAOYSA-N 0.000 description 2
- SDMNJJMGRXCEMF-UHFFFAOYSA-N [benzyl-(2,6-dimethoxybenzoyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C(=O)C=1C(=CC=CC=1OC)OC)CC1=CC=CC=C1 SDMNJJMGRXCEMF-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- NSGQRLUGQNBHLD-UHFFFAOYSA-N butan-2-yl butan-2-yloxycarbonyloxy carbonate Chemical compound CCC(C)OC(=O)OOC(=O)OC(C)CC NSGQRLUGQNBHLD-UHFFFAOYSA-N 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 2
- SRSFOMHQIATOFV-UHFFFAOYSA-N octanoyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(=O)CCCCCCC SRSFOMHQIATOFV-UHFFFAOYSA-N 0.000 description 2
- 150000001282 organosilanes Chemical class 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- 150000002923 oximes Chemical class 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- KEROTHRUZYBWCY-UHFFFAOYSA-N tridecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCOC(=O)C(C)=C KEROTHRUZYBWCY-UHFFFAOYSA-N 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- QBJOHXRRAKMFIH-UHFFFAOYSA-N (2,4,6-trimethylbenzoyl)phosphanyl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)PC(=O)C1=C(C)C=C(C)C=C1C QBJOHXRRAKMFIH-UHFFFAOYSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- QWQFVUQPHUKAMY-UHFFFAOYSA-N 1,2-diphenyl-2-propoxyethanone Chemical compound C=1C=CC=CC=1C(OCCC)C(=O)C1=CC=CC=C1 QWQFVUQPHUKAMY-UHFFFAOYSA-N 0.000 description 1
- BPXVHIRIPLPOPT-UHFFFAOYSA-N 1,3,5-tris(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound OCCN1C(=O)N(CCO)C(=O)N(CCO)C1=O BPXVHIRIPLPOPT-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- YQFIWRZWBBOPAF-UHFFFAOYSA-N 1,6-diisocyanatohexane;2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound CCC(CO)(CO)CO.O=C=NCCCCCCN=C=O YQFIWRZWBBOPAF-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- HASUCEDGKYJBDC-UHFFFAOYSA-N 1-[3-[[bis(oxiran-2-ylmethyl)amino]methyl]cyclohexyl]-n,n-bis(oxiran-2-ylmethyl)methanamine Chemical compound C1OC1CN(CC1CC(CN(CC2OC2)CC2OC2)CCC1)CC1CO1 HASUCEDGKYJBDC-UHFFFAOYSA-N 0.000 description 1
- CTOHEPRICOKHIV-UHFFFAOYSA-N 1-dodecylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C=CC=C2CCCCCCCCCCCC CTOHEPRICOKHIV-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- DCRYNQTXGUTACA-UHFFFAOYSA-N 1-ethenylpiperazine Chemical compound C=CN1CCNCC1 DCRYNQTXGUTACA-UHFFFAOYSA-N 0.000 description 1
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical compound C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- CSCSROFYRUZJJH-UHFFFAOYSA-N 1-methoxyethane-1,2-diol Chemical compound COC(O)CO CSCSROFYRUZJJH-UHFFFAOYSA-N 0.000 description 1
- RESPXSHDJQUNTN-UHFFFAOYSA-N 1-piperidin-1-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCCCC1 RESPXSHDJQUNTN-UHFFFAOYSA-N 0.000 description 1
- BFYSJBXFEVRVII-UHFFFAOYSA-N 1-prop-1-enylpyrrolidin-2-one Chemical compound CC=CN1CCCC1=O BFYSJBXFEVRVII-UHFFFAOYSA-N 0.000 description 1
- WLPAQAXAZQUXBG-UHFFFAOYSA-N 1-pyrrolidin-1-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCCC1 WLPAQAXAZQUXBG-UHFFFAOYSA-N 0.000 description 1
- BVQFZORZFCJQGB-UHFFFAOYSA-N 10-methylundecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCOC(=O)C=C BVQFZORZFCJQGB-UHFFFAOYSA-N 0.000 description 1
- VIUDSFQSAFAVGV-UHFFFAOYSA-N 10-triethoxysilyldecyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCCCCCCCCOC(=O)C(C)=C VIUDSFQSAFAVGV-UHFFFAOYSA-N 0.000 description 1
- ZZXDHSIJYPCDOM-UHFFFAOYSA-N 10-triethoxysilyldecyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCCCCCCCCOC(=O)C=C ZZXDHSIJYPCDOM-UHFFFAOYSA-N 0.000 description 1
- BXBOUPUNKULVKB-UHFFFAOYSA-N 10-trimethoxysilyldecyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCCCCCCCCOC(=O)C(C)=C BXBOUPUNKULVKB-UHFFFAOYSA-N 0.000 description 1
- CCQJKEYNLSZZNO-UHFFFAOYSA-N 10-trimethoxysilyldecyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCCCCCCCCOC(=O)C=C CCQJKEYNLSZZNO-UHFFFAOYSA-N 0.000 description 1
- NNQPQJLMERNWGN-UHFFFAOYSA-N 11-methyldodecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCOC(=O)C=C NNQPQJLMERNWGN-UHFFFAOYSA-N 0.000 description 1
- YACHPXQPMALXFH-UHFFFAOYSA-N 13-methyltetradecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCOC(=O)C=C YACHPXQPMALXFH-UHFFFAOYSA-N 0.000 description 1
- BORYKGCSYGMNTB-UHFFFAOYSA-N 14-methylpentadecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCCOC(=O)C=C BORYKGCSYGMNTB-UHFFFAOYSA-N 0.000 description 1
- JUJRIEUIDYQNAX-UHFFFAOYSA-N 15-methylhexadecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCCCOC(=O)C=C JUJRIEUIDYQNAX-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- XRDOCCGDIHPQPF-UHFFFAOYSA-N 2,2,4,4-tetramethylheptaneperoxoic acid Chemical compound CCCC(C)(C)CC(C)(C)C(=O)OO XRDOCCGDIHPQPF-UHFFFAOYSA-N 0.000 description 1
- IVIDDMGBRCPGLJ-UHFFFAOYSA-N 2,3-bis(oxiran-2-ylmethoxy)propan-1-ol Chemical compound C1OC1COC(CO)COCC1CO1 IVIDDMGBRCPGLJ-UHFFFAOYSA-N 0.000 description 1
- BRKORVYTKKLNKX-UHFFFAOYSA-N 2,4-di(propan-2-yl)thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC(C(C)C)=C3SC2=C1 BRKORVYTKKLNKX-UHFFFAOYSA-N 0.000 description 1
- UXCIJKOCUAQMKD-UHFFFAOYSA-N 2,4-dichlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC(Cl)=C3SC2=C1 UXCIJKOCUAQMKD-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- TXTIIWDWHSZBRK-UHFFFAOYSA-N 2,4-diisocyanato-1-methylbenzene;2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound CCC(CO)(CO)CO.CC1=CC=C(N=C=O)C=C1N=C=O TXTIIWDWHSZBRK-UHFFFAOYSA-N 0.000 description 1
- KQSMCAVKSJWMSI-UHFFFAOYSA-N 2,4-dimethyl-1-n,1-n,3-n,3-n-tetrakis(oxiran-2-ylmethyl)benzene-1,3-diamine Chemical compound CC1=C(N(CC2OC2)CC2OC2)C(C)=CC=C1N(CC1OC1)CC1CO1 KQSMCAVKSJWMSI-UHFFFAOYSA-N 0.000 description 1
- LCHAFMWSFCONOO-UHFFFAOYSA-N 2,4-dimethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC(C)=C3SC2=C1 LCHAFMWSFCONOO-UHFFFAOYSA-N 0.000 description 1
- WULAHPYSGCVQHM-UHFFFAOYSA-N 2-(2-ethenoxyethoxy)ethanol Chemical compound OCCOCCOC=C WULAHPYSGCVQHM-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- MTLWTRLYHAQCAM-UHFFFAOYSA-N 2-[(1-cyano-2-methylpropyl)diazenyl]-3-methylbutanenitrile Chemical compound CC(C)C(C#N)N=NC(C#N)C(C)C MTLWTRLYHAQCAM-UHFFFAOYSA-N 0.000 description 1
- SYEWHONLFGZGLK-UHFFFAOYSA-N 2-[1,3-bis(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COCC(OCC1OC1)COCC1CO1 SYEWHONLFGZGLK-UHFFFAOYSA-N 0.000 description 1
- HDPLHDGYGLENEI-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COCC1CO1 HDPLHDGYGLENEI-UHFFFAOYSA-N 0.000 description 1
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 description 1
- KUAUJXBLDYVELT-UHFFFAOYSA-N 2-[[2,2-dimethyl-3-(oxiran-2-ylmethoxy)propoxy]methyl]oxirane Chemical compound C1OC1COCC(C)(C)COCC1CO1 KUAUJXBLDYVELT-UHFFFAOYSA-N 0.000 description 1
- AGXAFZNONAXBOS-UHFFFAOYSA-N 2-[[3-(oxiran-2-ylmethyl)phenyl]methyl]oxirane Chemical compound C=1C=CC(CC2OC2)=CC=1CC1CO1 AGXAFZNONAXBOS-UHFFFAOYSA-N 0.000 description 1
- FGTYTUFKXYPTML-UHFFFAOYSA-N 2-benzoylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 FGTYTUFKXYPTML-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- VUIWJRYTWUGOOF-UHFFFAOYSA-N 2-ethenoxyethanol Chemical compound OCCOC=C VUIWJRYTWUGOOF-UHFFFAOYSA-N 0.000 description 1
- PGMMQIGGQSIEGH-UHFFFAOYSA-N 2-ethenyl-1,3-oxazole Chemical compound C=CC1=NC=CO1 PGMMQIGGQSIEGH-UHFFFAOYSA-N 0.000 description 1
- MZNSQRLUUXWLSB-UHFFFAOYSA-N 2-ethenyl-1h-pyrrole Chemical compound C=CC1=CC=CN1 MZNSQRLUUXWLSB-UHFFFAOYSA-N 0.000 description 1
- ZDHWTWWXCXEGIC-UHFFFAOYSA-N 2-ethenylpyrimidine Chemical compound C=CC1=NC=CC=N1 ZDHWTWWXCXEGIC-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- OWHSTLLOZWTNTQ-UHFFFAOYSA-N 2-ethylhexyl 2-sulfanylacetate Chemical compound CCCCC(CC)COC(=O)CS OWHSTLLOZWTNTQ-UHFFFAOYSA-N 0.000 description 1
- LRRQSCPPOIUNGX-UHFFFAOYSA-N 2-hydroxy-1,2-bis(4-methoxyphenyl)ethanone Chemical compound C1=CC(OC)=CC=C1C(O)C(=O)C1=CC=C(OC)C=C1 LRRQSCPPOIUNGX-UHFFFAOYSA-N 0.000 description 1
- CGWGNMXPEVGWGB-UHFFFAOYSA-N 2-hydroxy-1-[4-(2-hydroxyethyl)phenyl]-2-methylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=C(CCO)C=C1 CGWGNMXPEVGWGB-UHFFFAOYSA-N 0.000 description 1
- NJRHMGPRPPEGQL-UHFFFAOYSA-N 2-hydroxybutyl prop-2-enoate Chemical compound CCC(O)COC(=O)C=C NJRHMGPRPPEGQL-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical group OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- YRNDGUSDBCARGC-UHFFFAOYSA-N 2-methoxyacetophenone Chemical compound COCC(=O)C1=CC=CC=C1 YRNDGUSDBCARGC-UHFFFAOYSA-N 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- RASDUGQQSMMINZ-UHFFFAOYSA-N 2-methyl-1-piperidin-1-ylprop-2-en-1-one Chemical compound CC(=C)C(=O)N1CCCCC1 RASDUGQQSMMINZ-UHFFFAOYSA-N 0.000 description 1
- RTEZVHMDMFEURJ-UHFFFAOYSA-N 2-methylpentan-2-yl 2,2-dimethylpropaneperoxoate Chemical compound CCCC(C)(C)OOC(=O)C(C)(C)C RTEZVHMDMFEURJ-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- RXBOCDZLKBPILN-UHFFFAOYSA-N 2-propylheptyl prop-2-enoate Chemical compound CCCCCC(CCC)COC(=O)C=C RXBOCDZLKBPILN-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical group CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical group C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- XDQWJFXZTAWJST-UHFFFAOYSA-N 3-triethoxysilylpropyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C=C XDQWJFXZTAWJST-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical class C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 1
- CFZDMXAOSDDDRT-UHFFFAOYSA-N 4-ethenylmorpholine Chemical compound C=CN1CCOCC1 CFZDMXAOSDDDRT-UHFFFAOYSA-N 0.000 description 1
- PRKPGWQEKNEVEU-UHFFFAOYSA-N 4-methyl-n-(3-triethoxysilylpropyl)pentan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)CC(C)C PRKPGWQEKNEVEU-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical group FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical group CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- CUXGDKOCSSIRKK-UHFFFAOYSA-N 7-methyloctyl prop-2-enoate Chemical group CC(C)CCCCCCOC(=O)C=C CUXGDKOCSSIRKK-UHFFFAOYSA-N 0.000 description 1
- QQWIPPMMELXTAR-UHFFFAOYSA-N 9-methyldecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCOC(=O)C=C QQWIPPMMELXTAR-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- SLUBESMUCMWCBC-UHFFFAOYSA-N C=CC(=O)OCC(CCC(C)CC(C)(C)C)C(C)CC(C)(C)C Chemical compound C=CC(=O)OCC(CCC(C)CC(C)(C)C)C(C)CC(C)(C)C SLUBESMUCMWCBC-UHFFFAOYSA-N 0.000 description 1
- FORCQEHSNALWHC-UHFFFAOYSA-N COC1=C(C(=O)C(CCCCCCC[PH2]=O)C(C2=C(C=CC=C2OC)OC)=O)C(=CC=C1)OC Chemical compound COC1=C(C(=O)C(CCCCCCC[PH2]=O)C(C2=C(C=CC=C2OC)OC)=O)C(=CC=C1)OC FORCQEHSNALWHC-UHFFFAOYSA-N 0.000 description 1
- RMFWUEIYYMDSDZ-UHFFFAOYSA-N COC1=C(C(=O)P(CCCCCC2=CC=CC=C2)=O)C(=CC=C1)OC Chemical compound COC1=C(C(=O)P(CCCCCC2=CC=CC=C2)=O)C(=CC=C1)OC RMFWUEIYYMDSDZ-UHFFFAOYSA-N 0.000 description 1
- ZIQFDSPISQBGKD-UHFFFAOYSA-N COC1=C(C(=O)P(CCCCCCCCCC2=CC=CC=C2)=O)C(=CC=C1)OC Chemical compound COC1=C(C(=O)P(CCCCCCCCCC2=CC=CC=C2)=O)C(=CC=C1)OC ZIQFDSPISQBGKD-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 229910020187 CeF3 Inorganic materials 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- BWPYBAJTDILQPY-UHFFFAOYSA-N Methoxyphenone Chemical compound C1=C(C)C(OC)=CC=C1C(=O)C1=CC=CC(C)=C1 BWPYBAJTDILQPY-UHFFFAOYSA-N 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 1
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Chemical class 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- PURWASGCOFPDMP-UHFFFAOYSA-N [(2,3,5,6-tetramethylphenyl)-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C(=C(C)C=C(C)C=1C)C)C(=O)C1=C(C)C=C(C)C=C1C PURWASGCOFPDMP-UHFFFAOYSA-N 0.000 description 1
- SLQKZDBFACSQLW-UHFFFAOYSA-N [(2,4-dimethoxybenzoyl)-(2-methylpropyl)phosphoryl]-(2,4-dimethoxyphenyl)methanone Chemical compound COC1=CC(OC)=CC=C1C(=O)P(=O)(CC(C)C)C(=O)C1=CC=C(OC)C=C1OC SLQKZDBFACSQLW-UHFFFAOYSA-N 0.000 description 1
- HGBBFIVJLKAPGV-UHFFFAOYSA-N [(2,4-dipentoxyphenyl)-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CCCCCOC1=CC(OCCCCC)=CC=C1P(=O)(C(=O)C=1C(=CC(C)=CC=1C)C)C(=O)C1=C(C)C=C(C)C=C1C HGBBFIVJLKAPGV-UHFFFAOYSA-N 0.000 description 1
- HONAQIKNRXBVHA-UHFFFAOYSA-N [(2,5-diethylphenyl)-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CCC1=CC=C(CC)C(P(=O)(C(=O)C=2C(=CC(C)=CC=2C)C)C(=O)C=2C(=CC(C)=CC=2C)C)=C1 HONAQIKNRXBVHA-UHFFFAOYSA-N 0.000 description 1
- CONQEOIWPNXWFR-UHFFFAOYSA-N [(2,6-dibutoxybenzoyl)-(2-methylpropyl)phosphoryl]-(2,6-dibutoxyphenyl)methanone Chemical compound CCCCOC1=CC=CC(OCCCC)=C1C(=O)P(=O)(CC(C)C)C(=O)C1=C(OCCCC)C=CC=C1OCCCC CONQEOIWPNXWFR-UHFFFAOYSA-N 0.000 description 1
- IXDFLKJTTWPMLJ-UHFFFAOYSA-N [(2,6-diethoxybenzoyl)-(2-methylpropyl)phosphoryl]-(2,6-diethoxyphenyl)methanone Chemical compound CCOC1=CC=CC(OCC)=C1C(=O)P(=O)(CC(C)C)C(=O)C1=C(OCC)C=CC=C1OCC IXDFLKJTTWPMLJ-UHFFFAOYSA-N 0.000 description 1
- XPCBOWMTXFDHEX-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2-methylpropyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)C)C(=O)C1=C(OC)C=CC=C1OC XPCBOWMTXFDHEX-UHFFFAOYSA-N 0.000 description 1
- QISAYNXDUCNISJ-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-phenylphosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(OC)C=CC=C1OC QISAYNXDUCNISJ-UHFFFAOYSA-N 0.000 description 1
- JLZSLIPWRIENHQ-UHFFFAOYSA-N [(2-methoxybenzoyl)-(2-methylpropyl)phosphoryl]-(2-methoxyphenyl)methanone Chemical compound COC1=CC=CC=C1C(=O)P(=O)(CC(C)C)C(=O)C1=CC=CC=C1OC JLZSLIPWRIENHQ-UHFFFAOYSA-N 0.000 description 1
- KLCZHOCOIYBJFO-UHFFFAOYSA-N [(2-methylphenyl)-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C(=CC=CC=1)C)C(=O)C1=C(C)C=C(C)C=C1C KLCZHOCOIYBJFO-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FQLCSMYAZKECPZ-UHFFFAOYSA-N [(4-methylphenyl)-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound C1=CC(C)=CC=C1P(=O)(C(=O)C=1C(=CC(C)=CC=1C)C)C(=O)C1=C(C)C=C(C)C=C1C FQLCSMYAZKECPZ-UHFFFAOYSA-N 0.000 description 1
- FDPYUIXYWUBGFF-UHFFFAOYSA-N [2-methylpropyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC=1C=C(C)C=C(C)C=1C(=O)P(=O)(CC(C)C)C(=O)C1=C(C)C=C(C)C=C1C FDPYUIXYWUBGFF-UHFFFAOYSA-N 0.000 description 1
- MQJSKQRXVYFMSQ-UHFFFAOYSA-N [[2,5-di(propan-2-yl)phenyl]-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC(C)C1=CC=C(C(C)C)C(P(=O)(C(=O)C=2C(=CC(C)=CC=2C)C)C(=O)C=2C(=CC(C)=CC=2C)C)=C1 MQJSKQRXVYFMSQ-UHFFFAOYSA-N 0.000 description 1
- CTCMBSZJBGFZGH-UHFFFAOYSA-N [butan-2-yl-(2,6-diethoxybenzoyl)phosphoryl]-(2,6-diethoxyphenyl)methanone Chemical compound CCOC1=CC=CC(OCC)=C1C(=O)P(=O)(C(C)CC)C(=O)C1=C(OCC)C=CC=C1OCC CTCMBSZJBGFZGH-UHFFFAOYSA-N 0.000 description 1
- BDUKQRFEEWCHID-UHFFFAOYSA-N [butan-2-yl-(2,6-dimethoxybenzoyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC=1C=CC=C(OC)C=1C(=O)P(=O)(C(C)CC)C(=O)C1=C(OC)C=CC=C1OC BDUKQRFEEWCHID-UHFFFAOYSA-N 0.000 description 1
- YDHBVJQAXLQNAS-UHFFFAOYSA-N [butan-2-yl-(2-methoxybenzoyl)phosphoryl]-(2-methoxyphenyl)methanone Chemical compound C=1C=CC=C(OC)C=1C(=O)P(=O)(C(C)CC)C(=O)C1=CC=CC=C1OC YDHBVJQAXLQNAS-UHFFFAOYSA-N 0.000 description 1
- WXPDKFWWDLXDPH-UHFFFAOYSA-N [butyl-(2,6-dimethoxybenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound COC=1C=CC=C(OC)C=1C(=O)P(=O)(CCCC)C(=O)C1=C(C)C=C(C)C=C1C WXPDKFWWDLXDPH-UHFFFAOYSA-N 0.000 description 1
- VNDJLTOOWBUHAP-UHFFFAOYSA-N [butyl-(2,6-dimethoxybenzoyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC=1C=CC=C(OC)C=1C(=O)P(=O)(CCCC)C(=O)C1=C(OC)C=CC=C1OC VNDJLTOOWBUHAP-UHFFFAOYSA-N 0.000 description 1
- LVQYYCMNJZBCNM-UHFFFAOYSA-N [cyclohexyl-(2,6-dimethoxybenzoyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C(=O)C=1C(=CC=CC=1OC)OC)C1CCCCC1 LVQYYCMNJZBCNM-UHFFFAOYSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- CNPXBTRBZACGBZ-UHFFFAOYSA-N [tert-butyl-(2,6-dimethoxybenzoyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC CNPXBTRBZACGBZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- FRBYZNBJLWIYCC-UHFFFAOYSA-N bis(2-methylbenzoyl)phosphoryl-(2-methylphenyl)methanone Chemical compound CC1=CC=CC=C1C(=O)P(=O)(C(=O)C=1C(=CC=CC=1)C)C(=O)C1=CC=CC=C1C FRBYZNBJLWIYCC-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical group CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- UKPBEPCQTDRZSE-UHFFFAOYSA-N cyclizine hydrochloride Chemical compound Cl.C1CN(C)CCN1C(C=1C=CC=CC=1)C1=CC=CC=C1 UKPBEPCQTDRZSE-UHFFFAOYSA-N 0.000 description 1
- LLBJHMHFNBRQBD-UHFFFAOYSA-N dec-9-enyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)CCCCCCCCC=C LLBJHMHFNBRQBD-UHFFFAOYSA-N 0.000 description 1
- IIMISJTWARSKOJ-UHFFFAOYSA-N dec-9-enyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCCCCCC=C IIMISJTWARSKOJ-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical group CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- WQABCVAJNWAXTE-UHFFFAOYSA-N dimercaprol Chemical compound OCC(S)CS WQABCVAJNWAXTE-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-L disulfate(2-) Chemical compound [O-]S(=O)(=O)OS([O-])(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-L 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- PAIQEFSJYGYULU-UHFFFAOYSA-N heptadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCOC(=O)C(C)=C PAIQEFSJYGYULU-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- CGQIJXYITMTOBI-UHFFFAOYSA-N hex-5-enyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCC=C CGQIJXYITMTOBI-UHFFFAOYSA-N 0.000 description 1
- ZNAOFAIBVOMLPV-UHFFFAOYSA-N hexadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C(C)=C ZNAOFAIBVOMLPV-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229930192419 itoside Natural products 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical group CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OPECTNGATDYLSS-UHFFFAOYSA-N naphthalene-2-sulfonyl chloride Chemical compound C1=CC=CC2=CC(S(=O)(=O)Cl)=CC=C21 OPECTNGATDYLSS-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical group CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- REJKHFKLPFJGAQ-UHFFFAOYSA-N oxiran-2-ylmethanethiol Chemical compound SCC1CO1 REJKHFKLPFJGAQ-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- YOTGRUGZMVCBLS-UHFFFAOYSA-N pentadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCOC(=O)C(C)=C YOTGRUGZMVCBLS-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 150000004291 polyenes Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- ATZHWSYYKQKSSY-UHFFFAOYSA-N tetradecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCOC(=O)C(C)=C ATZHWSYYKQKSSY-UHFFFAOYSA-N 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- RKYSDIOEHLMYRS-UHFFFAOYSA-N triethoxy(hex-5-enyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCCC=C RKYSDIOEHLMYRS-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- KRLHYNPADOCLAJ-UHFFFAOYSA-N undecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCOC(=O)C(C)=C KRLHYNPADOCLAJ-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C09J7/0217—
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1818—C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1808—C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1811—C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/62—Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
- C08F220/68—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F226/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F226/06—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/6266—Polymers of amides or imides from alpha-beta ethylenically unsaturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8006—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
- C08G18/8009—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
- C08G18/8022—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
- C08G18/8029—Masked aromatic polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
- C09J7/381—Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/385—Acrylic polymers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/13338—Input devices, e.g. touch panels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/002—Auxiliary arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/516—Oriented mono-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/202—LCD, i.e. liquid crystal displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/204—Plasma displays
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
- C08F222/103—Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2170/00—Compositions for adhesives
- C08G2170/40—Compositions for pressure-sensitive adhesives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/318—Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2433/00—Presence of (meth)acrylic polymer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2467/00—Presence of polyester
- C09J2467/006—Presence of polyester in the substrate
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/28—Adhesive materials or arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2852—Adhesive compositions
- Y10T428/2878—Adhesive compositions including addition polymer from unsaturated monomer
- Y10T428/2891—Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof
Definitions
- the invention relates to a pressure-sensitive adhesive capable have a lower dielectric constant.
- the invention also relates to a pressure-sensitive adhesive layer obtained from such a pressure-sensitive adhesive and to a pressure-sensitive adhesive sheet including a support and such a pressure-sensitive adhesive layer provided on at least one side of the support.
- the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention is suitable for use in optical applications.
- the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention is suitable for use in the manufacture of image display devices such as liquid crystal display devices, organic electro-luminescent (EL) display devices, plasma display panels (PDPs), and electronic paper, and is also suitable for use in the manufacture of input devices such as touch panels including optical, ultrasonic, capacitance, and resistive types.
- the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention is advantageously used in capacitance touch panels.
- the pressure-sensitive adhesive sheet of the invention is also useful as a pressure-sensitive adhesive optical member, in which an optical member is used as the support.
- the pressure-sensitive adhesive optical member can be used as a pressure-sensitive adhesive layer-carrying transparent conductive film.
- a pressure-sensitive adhesive layer-carrying transparent conductive film may be used as a transparent electrode in the image display device or the touch panel mentioned above after it is processed appropriately.
- the pressure-sensitive adhesive layer-carrying transparent conductive film with a patterned transparent conductive thin layer is advantageously used as an electrode substrate for an input device of a capacitance touch panel.
- the pressure-sensitive adhesive layer-carrying transparent conductive film can be used for electromagnetic wave shielding or prevention of static buildup on transparent products and to form liquid crystal dimming glass products and transparent heaters.
- the pressure-sensitive adhesive optical member can be used as a pressure-sensitive adhesive layer-carrying optical film.
- the pressure-sensitive adhesive layer-carrying optical film is used for an image display device such as a liquid crystal display device and an organic electroluminescence (EL) display device.
- the optical film may be a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, a laminate thereof, or the like.
- transparent conductive films for use in touch panels, which include a laminate of a transparent plastic film substrate or a glass sheet and a transparent conductive thin layer (ITO layer).
- ITO layer transparent conductive thin layer
- a transparent conductive film can be laminated on any other member with a pressure-sensitive adhesive layer interposed therebetween.
- pressure-sensitive adhesive layers are proposed (Patent Document 1 to 4).
- the transparent conductive thin layer used is patterned.
- the transparent conductive film with the patterned transparent conductive thin layer is laminated on another transparent conductive film or any other component with a pressure-sensitive adhesive layer interposed therebetween to form a laminate to be used.
- These transparent conductive films are advantageously used for a multi-touch input device, which can be operated by touching it with two or more fingers at the same time.
- a capacitance touch panel is designed to achieve sensing when the amount of change in output signal, which is generated at a position where the touch panel is touched with a finger or the like, exceeds a certain threshold value.
- Patent Document 1 JP-A-2003-238915
- Patent Document 2 JP-A-2003-342542
- Patent Document 3 JP-A-2004-231723
- Patent Document 4 JP-A-2002-363530
- Patent Document 5 WO 2010/147047
- the dielectric constant of a component or film used to form a touch panel is an important value related to the response of the touch panel.
- touch panels have become popular, they have been required to have higher performance, and transparent conductive films or pressure-sensitive adhesive layers to be used as components thereof also have been required to have higher performance, in which a reduction in thickness is one of the requirements.
- a reduction in thickness is one of the requirements.
- simply reducing the thickness of a pressure-sensitive adhesive layer can change the designed capacitance.
- an air layer between a printed glass or film and an optical film or an air layer above an LCD is filled with a pressure-sensitive adhesive layer so that visibility can be improved.
- a pressure-sensitive adhesive may cause a malfunction if having high dielectric constant.
- adhesive layers are required to have lower dielectric constant.
- the reduction in the dielectric constant of a pressure-sensitive adhesive layer is also expected to improve the response speed or sensitivity of a touch panel.
- the pressure-sensitive adhesive layer become clouded.
- the invention relates to a pressure-sensitive adhesive, including a (meth)acryl-based polymer obtained by polymerization of a monomer component including 30 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and 0.5 to 50% by weight of a cyclic nitrogen-containing monomer.
- a (meth)acryl-based polymer obtained by polymerization of a monomer component including 30 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and 0.5 to 50% by weight of a cyclic nitrogen-containing monomer.
- alkyl (meth)acrylate having the alkyl group of 10 to 18 carbon atoms at the ester preferable alkyl group is a branched alkyl group.
- the alkyl (meth)acrylate having the alkyl group of 10 to 18 carbon atoms at the ester is also preferably an alkyl methacrylate in view of a lower dielectric constant, and is also preferably an alkyl methacrylate in view of productivity.
- the monomer component may further include 0.5% by weight or more of at least one functional group-containing monomer selected from a carboxyl group-containing monomer, a hydroxyl group-containing monomer, and a cyclic ether group-containing monomer.
- the monomer component may further include 0.5% or more by weight of at least one selected from an alkyl (meth)acrylate having an alkyl group of 1 to 9 carbon atoms at an ester end and an alkyl (meth)acrylate having a cyclic alkyl group at an ester end.
- the monomer component may further contain 3% or less by weight or less of a polyfunctional monomer.
- the pressure-sensitive adhesive preferably further include 0.01 to 5 parts by weight of a crosslinking agent based on 100 parts by weight of the (meth)acryl-based polymer.
- the pressure-sensitive adhesive is preferably for use on an optical member.
- the invention also relates to a pressure-sensitive adhesive layer obtained from the above pressure-sensitive adhesive.
- the pressure-sensitive adhesive layer preferably has a relative dielectric constant of 3.5 or less at a frequency of 100 kHz.
- the pressure-sensitive adhesive layer preferably has a gel fraction of 20 to 98% by weight.
- the pressure-sensitive adhesive layer preferably has a haze of 2% or less when having a thickness of 25 ⁇ m.
- the pressure-sensitive adhesive layer preferably has a total light transmittance of 90% or more.
- the pressure-sensitive adhesive layer is preferably for use on an optical member.
- the invention also relates to a pressure-sensitive adhesive sheet including: a support; and the above pressure-sensitive adhesive layer formed on at least one side of the support.
- the pressure-sensitive adhesive sheet preferably has an adhesive strength of 0.5 N/20 mm or more to alkali glass at a peel angle of 90° and a peel rate of 300 mm/minute.
- the pressure-sensitive adhesive sheet is preferably for use on an optical member.
- the pressure-sensitive adhesive sheet is preferably a pressure-sensitive adhesive optical member including an optical member as the support and the pressure-sensitive adhesive layer provided on at least one side of the optical member.
- the (meth)acryl-based polymer as a main component of the pressure-sensitive adhesive of the invention is obtained by polymerization of a monomer component including a predetermined amount of an alkyl (meth)acrylate having a relatively long chain alkyl group and a cyclic nitrogen-containing monomer.
- the relatively long chain alkyl group and a nitrogen atom-containing cyclic structure in the pressure-sensitive adhesive of the invention is effective in forming a pressure-sensitive adhesive layer with a lower dielectric constant and a reliable moisture resistance, and in providing a satisfactory level of adhesive performance. Also when an air layer is filled with a pressure-sensitive adhesive layer, malfunctions can be prevented because of the low dielectric constant of the adhesive layer.
- the main monomer unit of the (meth)acryl-based polymer as a main component of the pressure-sensitive adhesive of the invention is derived from an alkyl (meth)acrylate having a relatively long chain alkyl group.
- the (meth)acryl-based polymer also has a copolymerized unit derived from a monomer having a nitrogen atom-containing cyclic structure.
- the pressure-sensitive adhesive layer of the invention can have a relative dielectric constant as low as 3.5 or less at a frequency of 100 kHz. This feature makes it possible to design capacitance touch panels with no change in capacitance value even when the pressure-sensitive adhesive layer of the invention is reduced in thickness to form a transparent conductive film for use in capacitance touch panels, and the pressure-sensitive adhesive layer satisfies a reliable moisture resistance.
- FIG. 1 is a view showing an example of a capacitance touch panel produced using the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention.
- the pressure-sensitive adhesive of the invention contains a (meth)acryl-based polymer obtained by polymerization of a monomer component including 30 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and 0.5 to 50% by weight of a cyclic nitrogen-containing monomer.
- alkyl (meth)acrylate refers to alkyl acrylate and/or alkyl methacrylate, and “(meth)” is used in the same meaning in the description.
- the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is preferably capable of forming a homopolymer having a glass transition temperature (Tg) of ⁇ 80 to 0° C., more preferably ⁇ 70 to ⁇ 10° C. If the Tg of the homopolymer is ⁇ 80° C. or lower, the pressure-sensitive adhesive may have too low an elastic modulus at normal temperature, which is not preferred. If the Tg of the homopolymer is higher than 0° C., the adhesive strength may be undesirably reduced.
- the Tg of the homopolymer is the value measured using TG-DTA.
- the alkyl group has 10 to 18 carbon atoms.
- an alkyl (meth)acrylate having a suitable alkyl group can be selected as needed depending on the method of producing the (meth)acryl-based polymer.
- the alkyl group preferably has preferably 10 to 16 carbon atoms, more preferably 10 to 14 carbon atoms.
- the alkyl group preferably has 12 to 18 carbon atoms, more preferably 14 to 18 carbon atoms.
- a straight-chain alkyl group or an alkyl group of 9 or less carbon atoms is less effective in lowering the dielectric constant of the pressure-sensitive adhesive layer even though the homopolymer of the corresponding alkyl (meth)acrylate has a Tg of ⁇ 80 to 0° C.
- the alkyl group of 10 to 18 carbon atoms in the alkyl (meth)acrylate to be used may be any of a linear chain and a branched chain
- the alkyl group is preferably a branched chain in view of forming a pressure-sensitive adhesive layer with a lower dielectric constant. It is conceivable that when the long chain alkyl group of the alkyl methacrylate is a branched alkyl group, a molar volume of a molecule of the long-chain alkyl group was increased, and reduces a lower dipole moment so that it can form a pressure-sensitive adhesive layer with a good balance between them.
- alkyl (meth)acrylate having a branched alkyl group of 10 to 18 carbon atoms includes isostearyl acrylate represented by the following formula:
- alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end alkyl methacrylate is more preferable than alkyl acrylates in view of the effects of the pressure-sensitive adhesive layer lowering of dielectric constant due to an increase in molar volume and a reduction in dipole moment. It is conceivable that when the long chain alkyl group of the alkyl methacrylate is a linear alkyl group, the alkyl methacrylate can also have a higher molar volume and a lower dipole moment so that it can form a pressure-sensitive adhesive layer with a good balance between them.
- the alkyl acrylate has higher compatibility with the cyclic nitrogen-containing monomer than the alkyl methacrylate.
- the alkyl acrylate is preferable in that it can form a (meth)acryl-based polymer with good transparency, and the (meth)acryl-based polymer is preferable in that it can produced with a shorter polymerization time and higher productivity. Particularly when the (meth)acryl-based polymer is produced by radiation polymerization, the alkyl acrylate is preferred.
- the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is preferably an alkyl methacrylate having a branched alkyl group of 10 to 18 carbon atoms at the ester end.
- the content of the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is 30 to 99.5% by weight, preferably 32 to 99.5% by weight, more preferably 35 to 99.5% by weight, furthermore preferably 40 to 99.5% by weight, furthermore preferably 45 to 96% by weight, and furthermore preferably 65 to 95% by weight, based on the total weight of the monomer component used to form the (meth)acryl-based polymer.
- Use of 30% by weight or more of the alkyl (meth)acrylate is preferable in view of lowering of dielectric constant, and use of 99.5% by weight or less thereof is preferable in view of maintaining adhesive strength.
- Any monomer having a cyclic nitrogen structure and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the cyclic nitrogen-containing monomer.
- the cyclic nitrogen structure preferably has a nitrogen atom in the cyclic structure.
- cyclic nitrogen-containing monomer examples include vinyl lactam monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone; and nitrogen-containing heterocyclic vinyl monomers such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine.
- the cyclic nitrogen-containing monomer may also be a (meth)acrylic monomer having a heterocyclic ring such as a morpholine ring, a piperidine ring, a pyrrolidine ring, or a piperazine ring.
- N-acryloyl morpholine examples include N-acryloyl morpholine, N-acryloylpiperidine, N-methacryloyl piperidine, and N-acryloyl pyrrolidine.
- vinyl lactam monomers are preferred, and N-vinylpyrrolidone is particularly preferred, in view of dielectric constant and cohesiveness.
- the content of the cyclic nitrogen-containing monomer is from 0.5 to 50% by weight, preferably from 0.5 to 40% by weight, more preferably from 0.5 to 30% by weight, based on the total weight of the monomer component used to form the (meth)acryl-based polymer.
- a cyclic nitrogen-containing monomer content of 0.5% by weight or more is preferred in terms of lower dielectric constant and reliable moisture resistance.
- a cyclic nitrogen-containing monomer content of 50% by weight or less is preferred in terms of adhering strength improvement.
- the monomer component used to form the (meth)acryl-based polymer according to the invention may further include at least one functional group-containing monomer selected from a carboxyl group-containing monomer, a hydroxyl group-containing monomer, and a cyclic ether group-containing monomer.
- Any monomer having a carboxyl group and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the carboxyl group-containing monomer.
- the carboxyl group-containing monomer include (meth)acrylic acid, carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid. These may be used alone or in any combination. Itaconic acid or maleic acid can be used in the form of an anhydride. Among these, acrylic acid and methacrylic acid are preferred, and acrylic acid is particularly preferred.
- a carboxyl group-containing monomer may be or may not be used as an optional monomer to produce the (meth)acryl-based polymer.
- An adhesive containing a (meth)acryl-based polymer obtained from a monomer composition free of any carboxyl group-containing monomer can form a pressure-sensitive adhesive layer with reduced ability to corrode metals, because the ability to corrode metals would be due to any carboxyl group.
- Any monomer having a hydroxyl group and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the hydroxyl group-containing monomer.
- the hydroxyl group-containing monomer include hydroxyalkyl (meth)acrylate such as 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, or 12-hydroxylauryl (meth)acrylate; and hydroxyalkylcycloalkane (meth)acrylate such as (4-hydroxymethylcyclohexyl)methyl (meth)acrylate.
- hydroxyethyl(meth)acrylamide examples include hydroxyethyl(meth)acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. These may be used alone or in any combination. Among them, hydroxyalkyl (meth)acrylate is preferred.
- Any monomer having a cyclic ether group such as an epoxy group or an oxetane group and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the cyclic ether group-containing monomer.
- the epoxy group-containing monomer include glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, and 4-hydroxybutyl(meth)acrylate glycidyl ether.
- oxetane group-containing monomer examples include 3-oxetanylmethyl (meth)acrylate, 3-methyl-oxetanylmethyl (meth)acrylate, 3-ethyl-oxetanylmethyl (meth)acrylate, 3-butyl-oxetanylmethyl (meth)acrylate, and 3-hexyl-oxetanylmethyl (meth)acrylate. These monomers may be used alone or in any combination.
- the content of the functional group-containing monomer is preferably 0.5% or more, further preferably 0.8% or more used to form the (meth)acryl-based polymer so that adhesive strength and cohesive strength can be increased. If the content of the functional group-containing monomer is too high, a hard pressure-sensitive adhesive layer with a lower adhesive strength may be formed, and the pressure-sensitive adhesive may have too high a viscosity or may form a gel.
- the content of the functional group-containing monomer is preferably 30% by weight or less, more preferably 27% by weight or less, even more preferably 25% by weight or less based on the total weight of the monomer component used to form the (meth)acryl-based polymer.
- the monomer component used to form the (meth)acryl-based polymer according to the invention may further include a copolymerizable monomer other than the functional group-containing monomer.
- a copolymerizable monomer other than those described above may be an alkyl (meth)acrylate represented by the formula CH 2 ⁇ C(R 1 ) COOR 2 , wherein R 1 represents hydrogen or a methyl group, and R 2 represents a substituted or unsubstituted alkyl group of 1 to 9 carbon atoms.
- the substituted or unsubstituted alkyl group of 1 to 9 carbon atoms represented by R 2 may be a linear or branched alkyl group or cyclic alkyl group. Specifically, R 2 represents a branched alkyl of group of 3 to 9 carbon atoms.
- the substituted alkyl group preferably has an aryl group of 3 to 8 carbon atoms or an aryloxy group of 3 to 8 carbon atoms as a substituent.
- the aryl group is preferably, but not limited to, a phenyl group. Concerning this alkyl (meth)acrylate, the alkyl methacrylate is more preferred than the alkyl acrylate in order to lower dielectric constant by increasing molar volume and reducing dipole moment.
- Examples of the monomer represented by CH 2 ⁇ C(R 1 ) COOR 2 include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, isobutyl (meth)acrylate, n-pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, isoamyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, phenoxyethyl (meth)acrylate, benzyl (meth)acrylate, cyclo
- the content of the (meth)acrylate represented by CH 2 ⁇ C(R 1 )COOR 2 may be 69.5% by weight or less, preferably 65% by weight or less, more preferably 59.5% by weight or less, even more preferably 55% by weight or less, even more preferably 50% by weight or less, even more preferably 40% by weight or less, even more preferably 30% by weight or less, based on the total weight of the monomer component used to form the (meth)acryl-based polymer.
- the (meth)acrylate represented by CH 2 ⁇ C(R 1 )COOR 2 is preferably used in an amount of 5% by weight or more, more preferably 10% by weight or more.
- the preferred content of the (meth)acrylate represented by CH 2 ⁇ C(R 1 )COOR 2 which can be used in the amount mentioned above, may be selected as needed depending on the method of producing the (meth)acryl-based polymer.
- the content of the (meth)acrylate represented by CH 2 ⁇ C(R 1 )COOR 2 is preferably more than 0% by weight to 55% by weight, more preferably from 20 to 50% by weight, based on the total weight of all monomers, in view of adhesive properties.
- the content of the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is preferably from 30 to 80% by weight, more preferably from 30 to 70% by weight, based on the total weight of all monomers.
- copolymerizable monomers that may also be used include vinyl monomers such as vinyl acetate, vinyl propionate, styrene, ⁇ -methylstyrene; glycol acrylic ester monomers such as polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, methoxyethylene glycol (meth)acrylate, and methoxypolypropylene glycol (meth)acrylate; and acrylate ester monomers such as tetrahydrofurfuryl (meth)acrylate, fluoro(meth)acrylate, silicone (meth)acrylate, and 2-methoxyethyl acrylate; amide group-containing monomers, amino group-containing monomers, imide group-containing monomers, N-acryloyl morpholine, and vinyl ether monomers. Cyclic structure-containing monomers such as terpene (meth)acrylate and dicyclopentanyl (meth)acrylate may also be used as copolymerizable mono
- a silicon atom-containing silane monomer may be exemplified as the copolymerizable monomer.
- the silane monomers include 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane, 8-vinyloctyltriethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 10-acryloyloxydecyltrimethoxysilane, 10-methacryloyloxydecyltriethoxysilane, and 10-acryloyloxydecyltriethoxysilane.
- the monomer component used to form the (meth)acryl-based polymer may contain a polyfunctional monomer for controlling the cohesive strength of the pressure-sensitive adhesive in addition to the monofunctional monomers listed above.
- the polyfunctional monomer is a monomer having at least two polymerizable functional groups with an unsaturated double bond such as (meth)acryloyl group or vinyl group, and examples thereof include ester compounds of a polyhydric alcohol with (meth)acrylic acid such as (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritoltri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,2-ethyleneglycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate
- trimethylolpropane tri(meth)acrylate, hexanediol di(meth)acrylate, and dipentaerythritol hexa (meth)acrylate can be preferably used.
- the polyfunctional monomer can be used alone or in combination of two or more.
- the content of the polyfunctional monomer is preferably 3% by weigh or less, more preferably 2% by weight or less, even more preferably 1% by weight or less, based on the total weight of the monomer component used to form the (meth)acryl-based polymer, although it varies with the molecular weight of the monomer, the number of the functional groups, or other conditions.
- the pressure-sensitive adhesive may have too high cohesive strength and thus have lower adhesive strength.
- the (meth)acryl-based polymer described above can be produced using a method appropriately selected from known production methods, such as solution polymerization, radiation polymerization such as UV polymerization, bulk polymerization, and various radical polymerization methods including emulsion polymerization.
- the resultant (meth)acryl-based polymer may be any of a random copolymer, a block copolymer, a graft copolymer, or any other form.
- Any appropriate polymerization initiator, chain transfer agent, emulsifying agent and so on may be selected and used for radical polymerization.
- the (meth)acrylic polymer may be controlled by the reaction conditions including the amount of addition of the polymerization initiator or the chain transfer agent. The amount of the addition may be controlled as appropriate depending on the type of these materials.
- ethyl acetate, toluene or the like is used as a polymerization solvent.
- the reaction is performed under a stream of inert gas such as nitrogen at a temperature of about 50 to about 70° C. for about 5 to about 30 hours in the presence of a polymerization initiator.
- thermal polymerization initiator used for the solution polymerization process examples include, but are not limited to, azo initiators such as 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methylbutyronitrile, 2,2′-azobis(2-methylpropionic acid) dimethyl, 4,4′-azobis-4-cyanovaleric acid, azobisisovaleronitrile, 2,2′-azobis(2-amidinopropane)dihydrochloride, 2,2′-azobis[2-(5-methyl-2-imidazoline-2-yl)propane]dihydrochlorid e, 2,2′-azobis(2-methylpropionamidine)disulfate, 2,2′-azobis(N,N′-dimethyleneisobutylamidine), and 2,2′-azobis[N-(2-carboxyethyl)-2-methylpropionamidine]hydrate (VA-057, manufactured by Wako Pure Chemical Industries, Ltd.); persulfates
- One of the above polymerization initiators may be used alone, or two or more thereof may be used in a mixture.
- the content of the polymerization initiator is preferably from about 0.005 to 1 part by weight, even more preferably from about 0.02 to about 0.5 parts by weight, based on 100 parts by total weight of the monomer component.
- the polymerization initiator when 2,2′-azobisisobutyronitrile is used as a polymerization initiator for the production of the (meth)acryl-based polymer with the above weight average molecular weight, the polymerization initiator is preferably used in a content of about 0.2 parts by weight or less, more preferably of from about 0.06 to about 0.2 parts by weight, further more preferably of from about 0.08 to about 0.175 parts by weight, based on 100 parts by total weight of the monomer component.
- chain transfer agent examples include lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate and 2,3-dimercapto-1-propanol.
- chain transfer agents may be used alone, or two or more thereof may be used in a mixture.
- the total content of the chain transfer agent is preferably about 0.1 parts by weight or less, based on 100 parts by total weight of the monomer component.
- emulsifier used in emulsion polymerization examples include anionic emulsifiers such as sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, ammonium polyoxyethylene alkyl ether sulfate, and sodium polyoxyethylene alkyl phenyl ether sulfate; and nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, and polyoxyethylene-polyoxypropylene block polymers. These emulsifiers may be used alone, or two or more thereof may be used in combination.
- the emulsifier may be a reactive emulsifier.
- examples of such an emulsifier having an introduced radical-polymerizable functional group such as a propenyl group and an allyl ether group include Aqualon HS-10, HS-20, KH-10, BC-05, BC-10, and BC-20 (each manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and Adekaria Soap SE10N (manufactured by ADEKA COORPORATION).
- the reactive emulsifier is preferred, because after polymerization, it can be incorporated into a polymer chain to improve water resistance.
- the emulsifier is preferably used in a content of 0.3 to 5 parts by weight, more preferably of 0.5 to 1 part by weight, in view of polymerization stability or mechanical stability.
- the (meth)acryl-based polymer can also be produced by radiation polymerization, in which radiation, such as electron beams or UV rays, is applied to the monomer component.
- radiation such as electron beams or UV rays
- electron beams are used in the radiation polymerization
- photopolymerization initiator there is no particular need to add a photopolymerization initiator to the monomer component.
- UV polymerization is used as the radiation polymerization, however, a photopolymerization initiator may be added to the monomer component, which is advantageous particularly in that the polymerization time can be reduced. Any of the photopolymerization initiators may be used alone or in combination of two or more.
- the photopolymerization initiator is not particularly limited as long as it can initiate photopolymerization, and photopolymerization initiators that are usually used can be employed. Examples thereof that can be used include benzoin ether-based photopolymerization initiator, acetophenone-based photopolymerization initiator, ⁇ -ketol-based photopolymerization initiator, aromatic sulfonyl chloride-based photopolymerization initiator, photoactive oxime-based photopolymerization initiator, benzoin-based photopolymerization initiator, benzyl-based photopolymerization initiator, benzophenone-based photopolymerization initiator, ketal-based photopolymerization initiator, thioxanthone-based photopolymerization initiator, acylphosphine oxide-based photopolymerization initiator, and the like.
- benzoin ether-based photopolymerization initiator examples include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name: IRGACURE 651, manufactured by BASF), anisoin methyl ether, and the like.
- acetophenone-based photopolymerization initiator examples include 1-hydroxycyclohexyl phenyl ketone (trade name: IRGACURE 184, manufactured by BASF), 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one (trade name: IRGACURE 2959, manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (trade name: DAROCUR 1173, manufactured by BASF), methoxyacetophenone, and the like.
- IRGACURE 184 manufactured by BASF
- 4-phenoxydichloroacetophenone 4-t-butyl-dichloroacetophenone
- 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one trade name: IRGACURE 2959, manufactured by BASF
- Examples of the ⁇ -ketol-based photopolymerization initiator include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)-phenyl]-2-hydroxy-2-methylpropan-1-one, and the like.
- Examples of the aromatic sulfonyl chloride-based photopolymerization initiator include 2-naphthalene sulfonyl chloride and the like.
- Examples of the photoactive oxime-based photopolymerization initiator include 1-phenyl-1,2-propanedione-2-(0-ethoxycarbonyl)-oxime, and the like.
- Examples of the benzoin-based photopolymerization initiator include benzoin and the like.
- Examples of the benzyl-based photopolymerization initiator include benzyl and the like.
- Examples of the benzophenone-based photopolymerization initiators include benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone, polyvinyl benzophenone, ⁇ -hydroxycyclohexyl phenyl ketone, and the like.
- Examples of the ketal-based photopolymerization initiator include benzyl dimethyl ketal and the like.
- thioxanthone-based photopolymerization initiator examples include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone and the like.
- acylphosphine oxide-based photopolymerization initiator examples include bis(2,6-dimethoxybenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)(2,4,4-trimethylpentyl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-n-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2-methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-(1-methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-t-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)cyclohexylphosphine oxide, bis(2,6-dimethoxybenzoyl)octylphosphine oxide, bis(2-methoxybenzoyl)(2-me
- the content of the photopolymerization initiator is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, furthermore preferably 0.05 to 1.5 parts by weight, and particularly preferably 0.1 to 1 part by weight, based on 100 parts by total weight of the monomer component.
- the photopolymerization initiator may be used in an amount of less than 0.01 parts by weight, the polymerization reaction may be insufficient. If the photopolymerization initiator is used in an amount of more than 5 parts by weight, the photopolymerization initiator may absorb ultraviolet rays, so that ultraviolet rays may fail to reach the inside of the pressure-sensitive adhesive layer. In this case, the degree of polymerization may decrease, or a polymer with a lower molecular weight may be produced. This may cause the resulting pressure-sensitive adhesive layer to have lower cohesive strength, so that in the process of peeling off the pressure-sensitive adhesive layer from a film, the pressure-sensitive adhesive layer may partially remain on the film, which may make it impossible to reuse the film.
- the photopolymerization initiators may be used singly or in combination of two or more.
- the (meth)acryl-based polymer preferably has a weight average molecular weight of 400,000 to 2,500,000, more preferably 600,000 to 2,200,000.
- the weight average molecular weight is more than 400,000, the pressure-sensitive adhesive layer can have satisfactory durability and can have a cohesive strength small enough to suppress adhesive residue.
- the weight average molecular weight is more than 2,500,000, bonding ability or adhesive strength may tend to be lower. In this case, the pressure-sensitive adhesive may form a solution with too high a viscosity, which may be difficult to apply.
- weight average molecular weight refers to a polystyrene-equivalent weight average molecular weight, which is determined using gel permeation chromatography (GPC). It should be noted that the molecular weight of the (meth)acryl-based polymer obtained by radiation polymerization would be difficult to measure.
- the weight average molecular weight of the obtained (meth)acryl-based polymer was measured by gel permeation chromatography (GPC) as follows.
- the polymer sample was dissolved in tetrahydrofuran to form a 0.1% by weight solution. After allowed to stand overnight, the solution was filtered through a 0.45 ⁇ m membrane filter, and the filtrate was used for the measurement.
- the pressure-sensitive adhesive of the invention may contain a crosslinking agent.
- the crosslinking agents include an isocyanate crosslinking agent, an epoxy crosslinking agent, a silicone crosslinking agent, an oxazoline crosslinking agent, an aziridine crosslinking agent, a silane crosslinking agent, an alkyl etherified melamine crosslinking agent, a metallic chelate crosslinking agent and a peroxide.
- Such crosslinking agents may be used alone or in combination of two or more.
- An isocyanate crosslinking agent or an epoxy crosslinking agent is preferably used as the crosslinking agent.
- crosslinking agents may be used alone or in a mixture of two or more.
- the total content of the crosslinking agent(s) is preferably 5 parts by weight or less, more preferably 0.01 to 5 parts by weight, even more preferably 0.01 to 4 parts by weight, still more preferably 0.02 to 3 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer.
- isocyanate crosslinking agent refers to a compound having two or more isocyanate groups (which may include functional groups that are temporarily protected with an isocyanate blocking agent or by oligomerization and are convertible to isocyanate groups) per molecule.
- Isocyanate crosslinking agents include aromatic isocyanates such as tolylene diisocyanate and xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, and aliphatic isocyanates such as hexamethylene diisocyanate.
- isocyanate crosslinking agents include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate; aromatic diisocyanates such as 2, 4-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and polymethylene polyphenyl isocyanate; isocyanate adducts such as a trimethylolpropane-tolylene diisocyanate trimer adduct (trade name: CORONATE L, manufactured by NIPPON POLYURETHANE INDUSTRY CO., LTD.), a trimethylolpropane-hexamethylene diisocyanate trimer adduct (trade name: CORONATE HL, manufactured by
- isocyanate crosslinking agents may be used alone or in a mixture of two or more.
- the total content of the isocyanate crosslinking agent(s) is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, further more preferably 0.02 to 3 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer.
- the content may be appropriately determined taking into account cohesive strength, the ability to prevent delamination in a durability test, or other properties.
- the isocyanate crosslinking agent does not have to be used. If necessary, however, a blocked isocyanate crosslinking agent may also be used in such a case, because the isocyanate crosslinking agent itself can easily react with water.
- epoxy crosslinking agent refers to a polyfunctional epoxy compound having two or more epoxy groups per molecule.
- examples of the epoxy crosslinking agent include bisphenol A, epichlorohydrin-type epoxy resin, ethylene glycol diglycidyl ether, N,N,N′,N′-tetraglycidyl-m-xylenediamine, diglycidylaniline, N,N-diamino glycidyl amine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidy
- epoxy crosslinking agents may be used alone or in a mixture of two or more.
- the total content of the epoxy crosslinking agent(s) is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, further more preferably 0.02 to 3 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer.
- the content may be appropriately determined taking into account cohesive strength, the ability to prevent delamination in a durability test, or other properties.
- Any peroxide crosslinking agents capable of generating active radical species by heating and promoting the crosslinking of the base polymer in the pressure-sensitive adhesive may be appropriately used.
- a peroxide with a one-minute half-life temperature of 80° C. to 160° C. is preferably used, and a peroxide with a one-minute half-life temperature of 90° C. to 140° C. is more preferably used.
- peroxide for use in the invention examples include di(2-ethylhexyl) peroxydicarbonate (one-minute half-life temperature: 90.6° C.), di(4-tert-butylcyclohexyl) peroxydicarbonate (one-minute half-life temperature: 92.1° C.), di-sec-butyl peroxydicarbonate (one-minute half-life temperature: 92.4° C.), tert-butyl peroxyneodecanoate (one-minute half-life temperature: 103.5° C.), tert-hexyl peroxypivalate (one-minute half-life temperature: 109.1° C.), tert-butyl peroxypivalate (one-minute half-life temperature: 110.3° C.), dilauroyl peroxide (one-minute half-life temperature: 116.4° C.), di-n-octanoylperoxide (one-minute half-life temperature: 117.4° C.), 1,
- di(4-tert-butylcyclohexyl) peroxydicarbonate one-minute half-life temperature: 92.1° C.
- dilauroyl peroxide one-minute half-life temperature: 116.4° C.
- dibenzoyl peroxide one-minute half-life temperature: 130.0° C.
- the like is preferably used, because they can provide high crosslinking reaction efficiency.
- the half life of the peroxide is an indicator of how fast the peroxide can be decomposed and refers to the time required for the amount of the peroxide to reach one half of its original value.
- the decomposition temperature required for a certain half life and the half life time obtained at a certain temperature are shown in catalogs furnished by manufacturers, such as “Organic Peroxide Catalog, 9th Edition, May, 2003” furnished by NOF CORPORATION.
- One of the peroxide crosslinking agents may be used alone, or a mixture of two or more of the peroxide crosslinking agent may be used.
- the total content of the peroxide(s) is preferably from 0.02 to 2 parts by weight, more preferably from 0.05 to 1 part by weight, based on 100 parts by weight of the (meth)acrylic polymer.
- the content of the peroxide (s) may be appropriately selected in this range in order to control the workability, reworkability, crosslink stability or peeling properties.
- the amount of decomposition of the peroxide may be determined by measuring the peroxide residue after the reaction process by high performance liquid chromatography (HPLC).
- each pressure-sensitive adhesive composition is taken out, immersed in 10 ml of ethyl acetate, subjected to shaking extraction at 25° C. and 120 rpm for 3 hours in a shaker, and then allowed to stand at room temperature for 3 days. Thereafter, 10 ml of acetonitrile is added, and the mixture is shaken at 25° C. and 120 rpm for 30 minutes. About 10 ⁇ l of the liquid extract obtained by filtration through a membrane filter (0.45 ⁇ m) is subjected to HPLC by injection and analyzed so that the amount of the peroxide after the reaction process is determined.
- a polyfunctional metal chelate may also be used in combination with an organic crosslinking agent.
- the polyfunctional metal chelate may include a polyvalent metal and an organic compound that is covalently or coordinately bonded to the metal.
- the polyvalent metal atom include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, and Ti.
- the organic compound has a covalent or coordinate bond-forming atom such as an oxygen atom.
- the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
- the pressure-sensitive adhesive of the invention may contain a (meth)acryl-based oligomer in view of improving adhesive strength.
- the (meth)acryl-based oligomer is preferably a polymer having a Tg higher than that of the (meth)acryl-based polymer according to the invention and having a weight average molecular weight lower than that of the (meth)acryl-based polymer according to the invention.
- the (meth)acryl-based oligomer functions as a tackifying resin and is advantageous in increasing adhesive strength without raising dielectric constant.
- the (meth)acryl-based oligomer may have a Tg of from about 0° C. to about 300° C., preferably from about 20° C. to about 300° C., more preferably from about 40° C. to about 300° C. When the Tg falls within the range, the adhesive strength can be improved. Like the Tg of the (meth)acryl-based polymer, the Tg of the (meth)acryl-based oligomer is the theoretical value calculated from the Fox equation.
- the (meth)acryl-based oligomer may have a weight average molecular weight of 1,000 to less than 30,000, preferably 1,500 to less than 20,000, more preferably 2,000 to less than 10,000. If the oligomer has a weight average molecular weight of 30,000 or more, the effect of improving adhesive strength cannot be sufficiently obtained in some cases.
- the oligomer with a weight average molecular weight of less than 1,000 may lower the adhesive strength or holding performance because of its relatively low molecular weight.
- the weight average molecular weight of the (meth)acryl-based oligomer can be determined as a polystyrene-equivalent weight average molecular weight by GPC method.
- the weight average molecular weight can be determined using HPLC 8020 with two TSKgel GMH-H (20) columns manufactured by TOSOH CORPORATION under the conditions of a solvent of tetrahydrofuran and a flow rate of about 0.5 ml/minute.
- Examples of monomers that may be used to form the (meth)acryl-based oligomer include alkyl (meth)acrylate such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl
- the (meth)acryl-based oligomer preferably contains, as a monomer unit, an acrylic monomer having a relatively bulky structure, typified by an alkyl (meth)acrylate whose alkyl group has a branched structure, such as isobutyl (meth)acrylate or tert-butyl (meth)acrylate; an ester of (meth)acrylic acid and an alicyclic alcohol, such as cyclohexyl (meth)acrylate or isobornyl (meth)acrylate; or aryl (meth)acrylate such as phenyl (meth)acrylate or benzyl (meth)acrylate, or any other cyclic structure-containing (meth)acrylate.
- an acrylic monomer having a relatively bulky structure typified by an alkyl (meth)acrylate whose alkyl group has a branched structure, such as isobutyl (meth)acrylate or tert-butyl (meth)
- a (meth)acryl-based oligomer with such a bulky structure can further improve the tackiness of the pressure-sensitive adhesive layer.
- cyclic structure-containing oligomers are highly effective, and oligomers having two or more rings are more effective.
- UV light When ultraviolet (UV) light is used in the process of synthesizing the (meth)acryl-based oligomer or forming the pressure-sensitive adhesive layer, a saturated oligomer is preferred because such an oligomer is less likely to inhibit polymerization, and an alkyl (meth)acrylate whose alkyl group has a branched structure or an ester of an alicyclic alcohol and (meth)acrylic acid is preferably used as a monomer to form the (meth)acryl-based oligomer.
- preferred examples of the (meth)acryl-based oligomer include a copolymer of cyclohexyl methacrylate (CHMA) and isobutyl methacrylate (IBMA), a copolymer of cyclohexyl methacrylate (CHMA) and isobornyl methacrylate (IBXMA), a copolymer of cyclohexyl methacrylate (CHMA) and acryloyl morpholine (ACMO), a copolymer of cyclohexyl methacrylate (CHMA) and diethylacrylamide (DEAA), a copolymer of 1-adamanthyl acrylate (ADA) and methyl methacrylate (MMA), a copolymer of dicyclopentanyl methacrylate (DCPMA) and isobornyl methacrylate (IBXMA), and a homopolymer of each of dicyclopentanyl methacrylate
- the content of the (meth)acryl-based oligomer is preferably, but not limited to, 70 parts by weight or less, more preferably from 1 to 70 parts by weight, even more preferably from 2 to 50 parts by weight, still more preferably from 3 to 40 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer. If the content of the (meth)acryl-based oligomer is more than 70 parts by weight, a problem may occur such as an increase in elastic modulus or a decrease in tackiness at low temperature. Adding 1 part by weight or more of the (meth)acryl-based oligomer is effective in improving adhesive strength.
- the pressure-sensitive adhesive of the invention may further contain a silane coupling agent for improving water resistance at the interface between the pressure-sensitive adhesive layer and a hydrophilic adherend, such as glass, bonded thereto.
- the content of the silane coupling agent is preferably 1 part by weight or less, more preferably from 0.01 to 1 part by weight, even more preferably from 0.02 to 0.6 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer. If the content of the silane coupling agent is too high, the adhesive may have a higher adhesive strength to glass so that it may be less removable from glass. If the content of the silane coupling agent is too low, the durability of the adhesive may undesirably decrease.
- silane coupling agent examples include epoxy group-containing silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; amino group-containing silane coupling agents such as 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethylbutylidene)propylamine and N-phenyl- ⁇ -aminopropyltrimethoxysilane; (meth)acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane; and iso
- the pressure-sensitive adhesive composition of the invention may also contain any other known additive.
- a powder such as a colorant and a pigment, a dye, a surfactant, a plasticizer, a tackifier, a surface lubricant, a leveling agent, a softening agent, an antioxidant, an age resister, a light stabilizer, an ultraviolet absorbing agent, a polymerization inhibitor, an inorganic or organic filler, a metal powder, or a particle- or foil-shaped material may be added as appropriate depending on the intended use.
- the pressure-sensitive adhesive layer of the invention is made from the pressure-sensitive adhesive described above.
- the thickness of the pressure-sensitive adhesive layer is typically, but not limited to, about 1 to about 400 ⁇ m.
- the preferred range of the thickness of the pressure-sensitive adhesive layer may be appropriately determined depending on the method of producing the (meth)acryl-based polymer used to form the pressure-sensitive adhesive. For example, when the (meth)acryl-based polymer is produced by solution polymerization or the like, the thickness of the pressure-sensitive adhesive layer is preferably from 1 to 100 ⁇ m, more preferably from 2 to 50 ⁇ m, even more preferably from 2 to 40 ⁇ m, still more preferably from 5 to 35 ⁇ m.
- the thickness of the pressure-sensitive adhesive layer is preferably from 50 to 400 ⁇ m, more preferably from 75 to 300 ⁇ m, even more preferably from 100 to 200 ⁇ m.
- the pressure-sensitive adhesive layer of the invention preferably has a relative dielectric constant of 3.5 or less, more preferably 3.3 or less, even more preferably 3.2 or less, still more preferably 3.0 or less at a frequency of 100 kHz.
- the pressure-sensitive adhesive layer of the invention preferably has a gel fraction of 20 to 98% by weight.
- the gel fraction of the pressure-sensitive adhesive layer is more preferably from 30 to 98% by weight, even more preferably from 40 to 95% by weight.
- the gel fraction can be controlled by adjusting the total amount of the crosslinking agent (s) added, taking carefully into account the effect of the crosslinking treatment temperature and the crosslinking treatment time. As the gel fraction decreases, the cohesive strength may decrease. As the gel fraction excessively increases, the adhesive strength may degrade.
- the pressure-sensitive adhesive layer having a gel fraction in such a range is characterized in that it shows only a very small increase in adhesive strength after bonded to an adherend and that it can be easily removed from the adherend without leaving adhesive residue even after bonded thereto for a long period of time.
- the pressure-sensitive adhesive layer of the invention preferably has a haze value of 2% or less when having a thickness of 25 ⁇ m.
- the pressure-sensitive adhesive layer with a haze value of 2% or less can satisfy the requirements for transparency when it is used on optical members.
- the haze value is preferably from 0 to 1.5%, more preferably from 0 to 1%.
- a haze value of 2% or less is a satisfactory level for optical applications. If the haze value is more than 2%, cloudiness may occur, which is not preferred for optical film applications.
- the transparency of the pressure-sensitive adhesive layer is considered to depend on the total content of the hydroxyl group-containing monomer and the cyclic nitrogen-containing monomer based on the total amount of the monomer component. If the total content is high, the transparency can be high, but too high a total content may have an adverse effect on other properties. Therefore, for example, when the content of the cyclic nitrogen-containing monomer is low, the transparency can be controlled using the hydroxyl group-containing monomer.
- the pressure-sensitive adhesive layer may be formed by a method including applying the pressure-sensitive adhesive to a support, removing the polymerization solvent and so on by drying to form a pressure-sensitive adhesive sheet. Before the pressure-sensitive adhesive is applied, appropriately at least one solvent other than the polymerization solvent may be added to the pressure-sensitive adhesive.
- Various methods may be used to apply the pressure-sensitive adhesive layer. Specific examples of such methods include roll coating, kiss roll coating, gravure coating, reverse coating, roll brush coating, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, and extrusion coating with a die coater or the like.
- the heat drying temperature is preferably from 40° C. to 200° C., more preferably from 50° C. to 180° C., in particular, preferably from 70° C. to 170° C. Setting the heating temperature within the above range makes it possible to obtain a pressure-sensitive adhesive layer having good adhesive properties.
- the drying time may be any appropriate period of time. The drying time is preferably from 5 seconds to 20 minutes, more preferably from 5 seconds to 10 minutes, in particular, preferably from 10 seconds to 5 minutes.
- the pressure-sensitive adhesive layer may be formed while the (meth)acryl-based polymer is produced from the monomer component.
- Appropriate materials such as a crosslinking agent and other materials that may be added to the pressure-sensitive adhesive may also be mixed with the monomer component.
- the monomer component Before the ultraviolet irradiation, the monomer component may be partially polymerized to form a syrup before use. The ultraviolet irradiation may be performed using a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or the like.
- a release-treated sheet may be used as the support.
- a silicone release liner is preferably used as the release-treated sheet.
- the pressure-sensitive adhesive sheet include the layer pressure-sensitive adhesive layer formed on the release-treated sheet, when the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected with the release-treated sheet (a separator) before practical use.
- the release-treated sheet is peeled off before actual use.
- the material for forming the separator examples include a plastic film such as a polyethylene, polypropylene, polyethylene terephthalate, or polyester film, a porous material such as paper, cloth and nonwoven fabric, and an appropriate thin material such as a net, a foamed sheet, a metal foil, and a laminate thereof.
- a plastic film is preferably used, because of its good surface smoothness.
- the plastic film may be any film capable of protecting the pressure-sensitive adhesive layer, and examples thereof include a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, a polyvinyl chloride film, a vinyl chloride copolymer film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
- the thickness of the separator is generally from about 5 to about 200 ⁇ m, preferably from about 5 to about 100 ⁇ m.
- the separator may be treated with a release agent such as a silicone, fluorine, long-chain alkyl, or fatty acid amide release agent, or may be subjected to release and antifouling treatment with silica powder or to antistatic treatment of coating type, kneading and mixing type, vapor-deposition type, or the like.
- a release agent such as a silicone, fluorine, long-chain alkyl, or fatty acid amide release agent
- the pressure-sensitive adhesive layer and the pressure-sensitive adhesive sheet of the invention are suitable for use on optical members, and particularly in optical applications, they are preferably used and bonded to metal thin layers or metal electrodes.
- Metal thin layers include thin layers of metal, metal oxide, or a mixture of metal and metal oxide, and examples of metal thin layers include, but are not limited to, thin layers of ITO (indium tin oxide), ZnO, SnO, and CTO (cadmium tin oxide).
- the thickness of metal thin layers is typically, but not limited to, about 10 to 200 nm.
- a metal thin layer such as an ITO layer is provided on a transparent plastic film substrate such as a polyethylene terephthalate film (specifically, a PET film) to form a transparent conductive film for use.
- a transparent plastic film substrate such as a polyethylene terephthalate film (specifically, a PET film)
- the surface of the pressure-sensitive adhesive layer is preferably used as a bonding surface to the metal thin layer.
- the metal electrodes may be made of metal, metal oxide, or a mixture of metal and metal oxide, and examples include, but are not limited to, ITO, silver, copper, and carbon nanotube (CNT) electrodes.
- the pressure-sensitive adhesive sheet of the invention is a touch panel-forming pressure-sensitive adhesive sheet, which is used in the manufacture of a touch panel.
- the touch panel-forming pressure-sensitive adhesive sheet is used in the manufacture of a capacitance touch panel, where it is used to bond a transparent conductive film having a metal thin layer such as an ITO layer to a poly (methyl methacrylate) (PMMA) resin sheet, a hard-coated film, a glass lens, or any other material.
- Applications of the touch panel include, but are not limited to, cellular phones, tablet computers, and personal digital assistances.
- FIG. 1 shows a more specific example of the use of the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention, which is an example of a capacitance touch panel.
- FIG. 1 shows a capacitance touch panel 1 including a decorative panel 11 , pressure-sensitive adhesive layers or pressure-sensitive adhesive sheets 12 , ITO films 13 , and a hard coated film 14 .
- the decorative panel 11 is preferably a glass plate or a transparent acrylic plate (PMMA plate).
- Each ITO films 13 preferably includes a glass sheet or a transparent plastic film (specifically, a PET film) and an ITO layer provided thereon.
- the hard coated film 14 is preferably a hard coated transparent plastic film such as a hard coated PET film.
- the capacitance touch panel 1 having the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention can be made thinner and more stable in operation.
- the capacitance touch panel 1 also has a good appearance and good visibility.
- An optical member may be used as the support of the pressure-sensitive adhesive sheet of the invention.
- the pressure-sensitive adhesive layer can be formed by a process including applying the pressure-sensitive adhesive directly to an optical member and drying the adhesive to remove the polymerization solvent and the like, so that the pressure-sensitive adhesive layer is formed on the optical member.
- the pressure-sensitive adhesive layer may be formed on a release-treated separator and then transferred to an optical member as needed to form a pressure-sensitive adhesive optical member.
- the release-treated sheet used in the preparation of the pressure-sensitive adhesive optical member may be used by itself as a separator for the pressure-sensitive adhesive optical member, so that the process can be simplified.
- the process for forming the pressure-sensitive adhesive layer for the pressure-sensitive adhesive optical member may further include forming an anchor layer on the surface of the optical member or performing any adhesion-facilitating treatment such as a corona treatment or a plasma treatment before forming the pressure-sensitive adhesive layer.
- the surface of the pressure-sensitive adhesive layer may also be subjected to an adhesion-facilitating treatment.
- the pressure-sensitive adhesive optical member of the invention may be used as a pressure-sensitive adhesive layer-carrying transparent conductive film, which is produced using a transparent conductive film as an optical member.
- the transparent conductive film includes a transparent plastic film substrate and a transparent conductive thin layer that is formed of a metal thin layer such as the ITO layer on one surface of the substrate.
- the pressure-sensitive adhesive layer of the invention is provided on the other surface of the transparent plastic film substrate.
- the transparent conductive thin layer may be provided on the transparent plastic film substrate with an undercoat layer interposed therebetween. Two or more undercoat layers may be provided.
- An oligomer migration-preventing layer may be provided between the transparent plastic film substrate and the pressure-sensitive adhesive layer.
- the transparent plastic film substrate to be used may be, but not limited to, various transparent plastic films.
- the plastic film is generally formed of a monolayer film.
- the material for the transparent plastic film substrate include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, and polyphenylene sulfide resins.
- polyester resins, polyimide resins, and polyethersulfone resins are preferred.
- the film substrate preferably has a thickness of 15 to 200 ⁇ m.
- the surface of the film substrate may be previously subject to sputtering, corona discharge treatment, flame treatment, ultraviolet irradiation, electron beam irradiation, chemical treatment, etching treatment such as oxidation, or undercoating treatment such that the adhesion of the transparent conductive thin layer or the undercoat layer formed thereon to the transparent plastic film substrate can be improved.
- the film substrate may also be subjected to dust removing or cleaning by solvent cleaning, ultrasonic cleaning or the like, before the transparent conductive thin layer or the undercoat layer is formed.
- the material and thickness of the transparent conductive thin layer are not restricted and may be those described for the metal thin layer.
- the undercoat layer may be made of an inorganic material, an organic material or a mixture of an inorganic material and an organic material.
- the inorganic material include NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3), SiO 2 (1.46), LaF 3 (1.55), CeF 3 (1.63), and Al 2 O 3 (1.63), wherein each number inside the parentheses is the refractive index of each material.
- SiO 2 , MgF 2 , Al 2 O 3 , or the like is preferably used.
- SiO 2 is preferred.
- a complex oxide containing about 10 to about 40 parts by weight of cerium oxide and about 0 to about 20 parts by weight of tin oxide based on 100 parts by weight of the indium oxide may also be used.
- the organic material examples include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organosilane-based condensates. At least one of these organic materials may be used.
- a thermosetting resin including a mixture composed of a melamine resin, an alkyd resin and an organosilane condensate is preferably used as the organic material.
- the thickness of the undercoat layer is generally, but not limited to, from about 1 to about 300 nm, preferably from 5 to 300 nm, in view of optical design and the effect of preventing the release of an oligomer from the film substrate.
- the pressure-sensitive adhesive layer-carrying transparent conductive film can be used to form various devices such as touch panels and liquid crystal display devices.
- the pressure-sensitive adhesive layer-carrying transparent conductive film is preferably used as a touch panel-forming electrode sheet.
- the touch panel is suitable for use in different types of detection (such as resistive and capacitance types).
- a capacitance touch panel usually includes a transparent conductive film that has a transparent conductive thin layer in a specific pattern and is formed over the surface of a display unit.
- the pressure-sensitive adhesive layer-carrying transparent conductive film is a laminate in which the pressure-sensitive adhesive layer and the patterned transparent conductive thin layer are appropriately stacked facing each other.
- the pressure-sensitive adhesive optical member of the invention may be used as a pressure-sensitive adhesive layer-carrying optical film, which is produced using an image display-forming optical film as the optical member.
- the optical film may be of any type for use in forming image display devices such as liquid crystal display devices and organic electro-luminescent (EL) display devices.
- a polarizing plate is exemplified as the optical film.
- a polarizing plate including a polarizer and a transparent protective film provided on one or both sides of the polarizer is generally used.
- a polarizer is not limited especially but various kinds of polarizer may be used.
- a polarizer for example, a film that is uniaxially stretched after having dichromatic substances, such as iodine and dichromatic dye, absorbed to hydrophilic high molecular weight polymer films, such as polyvinyl alcohol type film, partially formalized polyvinyl alcohol type film, and ethylene-vinyl acetate copolymer type partially saponified film; poly-ene type alignment films, such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride, etc. may be mentioned.
- a polyvinyl alcohol type film on which dichromatic materials such as iodine, is absorbed and aligned after stretched is suitably used.
- thickness of polarizer is not especially limited, the thickness of about 5 to 80 ⁇ m is commonly adopted.
- a polarizer that is uniaxially stretched after a polyvinyl alcohol type film dyed with iodine is obtained by stretching a polyvinyl alcohol film by 3 to 7 times the original length, after dipped and dyed in aqueous solution of iodine. If needed the film may also be dipped in aqueous solutions, such as boric acid and potassium iodide, which may include zinc sulfate, zinc chloride. Furthermore, before dyeing, the polyvinyl alcohol type film may be dipped in water and rinsed if needed.
- polyvinyl alcohol type film By rinsing polyvinyl alcohol type film with water, effect of preventing un-uniformity, such as unevenness of dyeing, is expected by making polyvinyl alcohol type film swelled in addition that also soils and blocking inhibitors on the polyvinyl alcohol type film surface may be washed off. Stretching may be applied after dyed with iodine or may be applied concurrently, or conversely dyeing with iodine may be applied after stretching. Stretching is applicable in aqueous solutions, such as boric acid and potassium iodide, and in water bath.
- thermoplastic resin with a high level of transparency, mechanical strength, thermal stability, moisture blocking properties, isotropy, and the like may be used as a material for forming the transparent protective film.
- thermoplastic resin include cellulose resins such as triacetylcellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic olefin polymer resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and any mixture thereof.
- cellulose resins such as triacetylcellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic olefin polymer resins (norbornen
- the transparent protective film is generally laminated to one side of the polarizer with the adhesive layer, but thermosetting resins or ultraviolet curing resins such as (meth)acrylic, urethane, acrylic urethane, epoxy, or silicone resins may be used to other side of the polarizer for the transparent protective film.
- the transparent protective film may also contain at least one type of any appropriate additive. Examples of the additive include an ultraviolet absorbing agent, an antioxidant, a lubricant, a plasticizer, a release agent, an anti-discoloration agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a colorant.
- the content of the thermoplastic resin in the transparent protective film is preferably from 50 to 100% by weight, more preferably from 50 to 99% by weight, still more preferably from 60 to 98% by weight, particularly preferably from 70 to 97% by weight. If the content of the thermoplastic resin in the transparent protective film is 50% by weight or less, high transparency and other properties inherent in the thermoplastic resin can fail to be sufficiently exhibited.
- an optical film of the invention may be used as other optical layers, such as a reflective plate, a transflective plate, a retardation plate (a half wavelength plate and a quarter wavelength plate included), an optical compensation film and a viewing angle compensation film, which may be used for formation of a liquid crystal display device etc. These are used in practice as an optical film, or as one layer or two layers or more of optical layers laminated with polarizing plate.
- an optical film with the above described optical layer laminated to the polarizing plate may be formed by a method in which laminating is separately carried out sequentially in manufacturing process of a liquid crystal display device etc.
- an optical film in a form of being laminated beforehand has an outstanding advantage that it has excellent stability in quality and assembly workability, etc., and thus manufacturing processes ability of a liquid crystal display device etc. may be raised.
- Proper adhesion means such as a pressure-sensitive adhesive layer, may be used for laminating.
- the optical axis may be set as a suitable configuration angle according to the target retardation characteristics etc.
- the pressure-sensitive adhesive layer-carrying optical film of the invention is preferably used to form various types of image display devices such as liquid crystal display devices.
- Liquid crystal display devices may be formed according to conventional techniques. Specifically, liquid crystal display devices are generally formed by appropriately assembling a liquid crystal cell and the pressure-sensitive adhesive layer-carrying optical film and optionally other component such as a lighting system and incorporating a driving circuit according to any conventional technique, except that the pressure-sensitive layer-carrying adhesive optical film of the invention is used. Any type of liquid crystal cell may also be used such as a TN type, an STN type, a ⁇ type a VA type and IPS type.
- Suitable liquid crystal display devices such as liquid crystal display device with which the pressure-sensitive adhesive layer-carrying optical film has been located at one side or both sides of the liquid crystal cell, and with which a backlight or a reflective plate is used for a lighting system may be manufactured.
- the optical film may be installed in one side or both sides of the liquid crystal cell.
- suitable parts such as diffusion plate, anti-glare layer, antireflection film, protective plate, prism array, lens array sheet, optical diffusion plate, and backlight, may be installed in suitable position in one layer or two or more layers.
- Nitrogen gas was introduced for 1 hour to replace the air while the mixture was gently stirred, and then a polymerization reaction was performed for 15 hours while the temperature of the liquid in the flask was kept at about 55 to about 60° C. to obtain (meth)acryl-based polymer solution.
- the resulting pressure-sensitive adhesive solution was then applied to one side of a silicone-treated, 75- ⁇ m-thick, polyethylene terephthalate (PET) film (TORAY ADVANCED FILM Co., LTD., CERAPEEL) so that a 25- ⁇ m-thick pressure-sensitive adhesive layer could be formed after drying.
- PET polyethylene terephthalate
- the coating was dried at 130° C. for 3 minutes to form a pressure-sensitive adhesive layer, so that a pressure-sensitive adhesive sheet was obtained.
- Pressure-sensitive adhesive sheets were prepared using the process of Example 1, except that the type and ratio of the monomers used to form the (meth)acryl-based polymer and the type and content of the crosslinking agent were changed as shown in Table 1.
- a 38- ⁇ m-thick polyester film (Diafoil MRF (trade name) manufactured by Mitsubishi Plastics, Inc.) with its one side release-treated with silicone was provided, and the monomer component prepared as described above was applied to the release-treated surface of the polyester film so that a coating layer with a final thickness of 100 ⁇ m could be formed.
- a 38- ⁇ m-thick polyester film (Diafoil MRE (trade name) manufactured by Mitsubishi Plastics, Inc.) with its one side release-treated with silicone was provided, and the surface of the applied monomer component was covered with the polyester film in such a manner that the release-treated surface of the film faced the coating layer.
- the sheet having the coating layer obtained as described above was irradiated with ultraviolet rays from a chemical light lamp (manufactured by TOSHIBA CORPORATION) at an irradiance of 5 mW/cm 2 (as measured using TOPCON UVR-T1 having a maximum sensitivity at about 350 nm) for 360 seconds, so that the coating layer was cured to form a pressure-sensitive adhesive layer, and thus a pressure-sensitive adhesive sheet was formed.
- the polyester films placed over both sides of the pressure-sensitive adhesive layer function as release liners.
- Pressure-sensitive adhesive sheets were prepared using the same process as Example 14, except that the type and ratio of the monofunctional monomer, the type and content of the polyfunctional monomer used for the preparation of monomer component, the thickness of the pressure-sensitive adhesive layer were changed as shown in Table 2.
- a predetermined amount (initial weight W1) was sampled from the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet.
- the sample was immersed and stored in an ethyl acetate solution at room temperature for 1 week.
- the insoluble matter was then taken out and measured for dry weight (W2).
- Pressure-sensitive adhesive layers (each obtained by peeling off the silicone-treated PET film from the pressure-sensitive adhesive sheet) were stacked to form an about 100- ⁇ m-thick laminate of the pressure-sensitive adhesive layers.
- the 100- ⁇ m-thick and 175- ⁇ m-thick samples obtained by UV Polymerization in Examples 14 to 24 were used without laminating.
- the laminate of the pressure-sensitive adhesive layers (or the pressure-sensitive adhesive layer) was sandwiched between a copper foil and an electrode and then measured for relative dielectric constant at a frequency of 100 kHz using the instrument shown below. Three samples were prepared, and the average of the measurements for the three samples was determined as the dielectric constant of the samples.
- the relative dielectric constant of the pressure-sensitive adhesive layer at a frequency of 100 kHz was measured under the following conditions according to JIS K 6911.
- Measurement method capacitance method (instrument: 4294A Precision Impedance Analyzer, Agilent Technologies)
- Electrode structure 12.1 mm ⁇ , 0.5 mm thick aluminum plate
- a 25- ⁇ m-thick, PET film (Toray industries Inc., Lumirror S10) was bonded to the pressure-sensitive adhesive surface of the sample obtained in each of the examples and the comparative examples to form an evaluation sample.
- the evaluation sample was cut into a piece of 20 mm in width and about 100 mm in length.
- the PET film was then peeled off from the sample piece.
- the resulting pressure-sensitive adhesive layer was bonded to a 0.5 mm thick non-alkali glass plate (1737, manufactured by Corning Incorporated) by a reciprocating motion of a 2 kg roller. After allowed to stand at room temperature (23° C.) for 1 hour, the pressure-sensitive adhesive layer was measured for peel adhesive strength at a peel angle of 90° and a peel rate of 300 mm/minute.
- the pressure-sensitive adhesive sheet obtained in each of the examples and the comparative examples was bonded to one side of a non-alkali glass plate with a total light transmittance of 93.3% and a haze of 0.1%.
- the haze and the total light transmittance of the resulting laminate were measured with a haze meter (MR-100 manufactured by MURAKAMI COLOR RESEARCH LABORATORY).
- a haze meter MR-100 manufactured by MURAKAMI COLOR RESEARCH LABORATORY
- the pressure-sensitive adhesive sheet was placed on the light source side.
- the haze value of the non-alkali glass, 0.1% was subtracted from the measured value when the haze value of the pressure-sensitive adhesive sheet was determined.
- the measured value was used as the total light transmittance (%) of the pressure-sensitive adhesive sheet.
- a transparent conductive film (a film composed of a 50- ⁇ m-thick PET film and ITO vapor-deposited thereon) was provided.
- the pressure-sensitive adhesive layer (obtained by peeling off the silicone-treated PET film from the pressure-sensitive adhesive sheet) was bonded to the surface of the transparent conductive film opposite to its surface where the ITO was vapor-deposited.
- the resulting pressure-sensitive adhesive layer-carrying transparent conductive film was bonded to an alkali glass plate with a haze of 0.2% and then held in an autoclave at 50° C. and 5 atm for 15 minutes.
- the haze (H1) of the pressure-sensitive adhesive layer-carrying transparent conductive film was measured in such an arrangement that the ITO side of the film was placed on the light source side.
- the pressure-sensitive adhesive layer-carrying transparent conductive film was placed in a humidifying oven at 60° C. and 95% R.H. and stored for 250 hours. After the storage, the film was taken out of the oven and allowed to stand at room temperature (23° C.) for 3 hours.
- the haze (H2) of the pressure-sensitive adhesive layer-carrying transparent conductive film was then measured under the same conditions.
- a change in haze was calculated by subtracting the haze (H1) from the haze (H2). The results are shown in Tables 1 and 2.
- the change in haze is preferably less than 1.5%, more preferably 1.4% or less, even more preferably 1.3% or less.
- NVC represents N-vinyl- ⁇ -caprolactam (manufactured by BASF);
- NVP N-vinyl-2-pyrrolidone (manufactured by NIPPON SHOKUBAI CO., LTD.);
- TMPTA represents trimethylolpropane triacrylate
- HEA represents 2-hydroxyethyl acrylate
- HBA represents 4-hydroxybutyl acrylate
- BA represents butyl acrylate
- OA represents octyl acrylate
- DA decyl acrylate
- D110N represents a trimethylolpropane adduct of xylylene diisocyanate (D110N (trade name) manufactured by Mitsui Chemicals, Inc.).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Laminated Bodies (AREA)
Abstract
A pressure-sensitive adhesive of the invention include a (meth)acryl-based polymer obtained by polymerization of a monomer component including 30 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and 0.5 to 50% by weight of a cyclic nitrogen-containing monomer. The pressure-sensitive adhesive has a satisfactory level of adhesive performance and can form a pressure-sensitive adhesive layer with a lower dielectric constant and reliable moisture resistance.
Description
- The invention relates to a pressure-sensitive adhesive capable have a lower dielectric constant. The invention also relates to a pressure-sensitive adhesive layer obtained from such a pressure-sensitive adhesive and to a pressure-sensitive adhesive sheet including a support and such a pressure-sensitive adhesive layer provided on at least one side of the support.
- The pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention is suitable for use in optical applications. For example, the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention is suitable for use in the manufacture of image display devices such as liquid crystal display devices, organic electro-luminescent (EL) display devices, plasma display panels (PDPs), and electronic paper, and is also suitable for use in the manufacture of input devices such as touch panels including optical, ultrasonic, capacitance, and resistive types. In particular, the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention is advantageously used in capacitance touch panels.
- The pressure-sensitive adhesive sheet of the invention is also useful as a pressure-sensitive adhesive optical member, in which an optical member is used as the support. For example, when a transparent conductive film is used as the optical member, the pressure-sensitive adhesive optical member can be used as a pressure-sensitive adhesive layer-carrying transparent conductive film. Such a pressure-sensitive adhesive layer-carrying transparent conductive film may be used as a transparent electrode in the image display device or the touch panel mentioned above after it is processed appropriately. In particular, the pressure-sensitive adhesive layer-carrying transparent conductive film with a patterned transparent conductive thin layer is advantageously used as an electrode substrate for an input device of a capacitance touch panel. Additionally, the pressure-sensitive adhesive layer-carrying transparent conductive film can be used for electromagnetic wave shielding or prevention of static buildup on transparent products and to form liquid crystal dimming glass products and transparent heaters.
- When an optical film is used as the optical member, the pressure-sensitive adhesive optical member can be used as a pressure-sensitive adhesive layer-carrying optical film. The pressure-sensitive adhesive layer-carrying optical film is used for an image display device such as a liquid crystal display device and an organic electroluminescence (EL) display device. The optical film may be a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, a laminate thereof, or the like.
- In recent years, input devices having a combination of a touch panel and an image display device, such as cellular phones and portable music players, have become popular. In particular, capacitance touch panels have rapidly become popular because of their functionality.
- There are now many known transparent conductive films for use in touch panels, which include a laminate of a transparent plastic film substrate or a glass sheet and a transparent conductive thin layer (ITO layer). A transparent conductive film can be laminated on any other member with a pressure-sensitive adhesive layer interposed therebetween. Various types of pressure-sensitive adhesive layers are proposed (Patent Document 1 to 4).
- When the transparent conductive film is used as an electrode substrate for a capacitance touch panel, the transparent conductive thin layer used is patterned. The transparent conductive film with the patterned transparent conductive thin layer is laminated on another transparent conductive film or any other component with a pressure-sensitive adhesive layer interposed therebetween to form a laminate to be used. These transparent conductive films are advantageously used for a multi-touch input device, which can be operated by touching it with two or more fingers at the same time. Specifically, a capacitance touch panel is designed to achieve sensing when the amount of change in output signal, which is generated at a position where the touch panel is touched with a finger or the like, exceeds a certain threshold value.
- Patent Document 1: JP-A-2003-238915
- Patent Document 2: JP-A-2003-342542
- Patent Document 3: JP-A-2004-231723
- Patent Document 4: JP-A-2002-363530
- Patent Document 5: WO 2010/147047
- As mentioned above, the dielectric constant of a component or film used to form a touch panel is an important value related to the response of the touch panel. On the other hand, now, as touch panels have become popular, they have been required to have higher performance, and transparent conductive films or pressure-sensitive adhesive layers to be used as components thereof also have been required to have higher performance, in which a reduction in thickness is one of the requirements. However, there is a problem in that simply reducing the thickness of a pressure-sensitive adhesive layer can change the designed capacitance. Thus, there is a need to reduce the dielectric constant of a pressure-sensitive adhesive layer without changing the capacitance value when the pressure-sensitive adhesive layer is reduced in thickness. In some cases, an air layer between a printed glass or film and an optical film or an air layer above an LCD is filled with a pressure-sensitive adhesive layer so that visibility can be improved. On the other hand, however, such a pressure-sensitive adhesive may cause a malfunction if having high dielectric constant. To prevent such a malfunction, adhesive layers are required to have lower dielectric constant. In addition, the reduction in the dielectric constant of a pressure-sensitive adhesive layer is also expected to improve the response speed or sensitivity of a touch panel. There is also a problem in that when a laminate including a transparent conductive film and a glass sheet laminated with a pressure-sensitive adhesive layer interposed therebetween is exposed to humid conditions, the pressure-sensitive adhesive layer become clouded.
- It is therefore an object of the invention to provide a pressure-sensitive adhesive that has a satisfactory level of adhesive performance and can form a pressure-sensitive adhesive layer with a lower dielectric constant and reliable moisture resistance.
- It is another object of the invention to provide a pressure-sensitive adhesive layer made from such a pressure-sensitive adhesive and to provide a pressure-sensitive adhesive sheet having such a pressure-sensitive adhesive layer.
- As a result of intense investigations to solve the problems, the inventors have made the invention, based on the finding that the objects are achieved with a pressure-sensitive adhesive described below.
- The invention relates to a pressure-sensitive adhesive, including a (meth)acryl-based polymer obtained by polymerization of a monomer component including 30 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and 0.5 to 50% by weight of a cyclic nitrogen-containing monomer. In the alkyl (meth)acrylate having the alkyl group of 10 to 18 carbon atoms at the ester, preferable alkyl group is a branched alkyl group. The alkyl (meth)acrylate having the alkyl group of 10 to 18 carbon atoms at the ester is also preferably an alkyl methacrylate in view of a lower dielectric constant, and is also preferably an alkyl methacrylate in view of productivity.
- In the pressure-sensitive adhesive, the monomer component may further include 0.5% by weight or more of at least one functional group-containing monomer selected from a carboxyl group-containing monomer, a hydroxyl group-containing monomer, and a cyclic ether group-containing monomer.
- In the pressure-sensitive adhesive, the monomer component may further include 0.5% or more by weight of at least one selected from an alkyl (meth)acrylate having an alkyl group of 1 to 9 carbon atoms at an ester end and an alkyl (meth)acrylate having a cyclic alkyl group at an ester end.
- In the pressure-sensitive adhesive, the monomer component may further contain 3% or less by weight or less of a polyfunctional monomer.
- In the pressure-sensitive adhesive, the pressure-sensitive adhesive preferably further include 0.01 to 5 parts by weight of a crosslinking agent based on 100 parts by weight of the (meth)acryl-based polymer.
- The pressure-sensitive adhesive is preferably for use on an optical member.
- The invention also relates to a pressure-sensitive adhesive layer obtained from the above pressure-sensitive adhesive.
- The pressure-sensitive adhesive layer preferably has a relative dielectric constant of 3.5 or less at a frequency of 100 kHz.
- The pressure-sensitive adhesive layer preferably has a gel fraction of 20 to 98% by weight.
- The pressure-sensitive adhesive layer preferably has a haze of 2% or less when having a thickness of 25 μm.
- The pressure-sensitive adhesive layer preferably has a total light transmittance of 90% or more.
- The pressure-sensitive adhesive layer is preferably for use on an optical member.
- The invention also relates to a pressure-sensitive adhesive sheet including: a support; and the above pressure-sensitive adhesive layer formed on at least one side of the support.
- The pressure-sensitive adhesive sheet preferably has an adhesive strength of 0.5 N/20 mm or more to alkali glass at a peel angle of 90° and a peel rate of 300 mm/minute.
- The pressure-sensitive adhesive sheet is preferably for use on an optical member. The pressure-sensitive adhesive sheet is preferably a pressure-sensitive adhesive optical member including an optical member as the support and the pressure-sensitive adhesive layer provided on at least one side of the optical member.
- The (meth)acryl-based polymer as a main component of the pressure-sensitive adhesive of the invention is obtained by polymerization of a monomer component including a predetermined amount of an alkyl (meth)acrylate having a relatively long chain alkyl group and a cyclic nitrogen-containing monomer. The relatively long chain alkyl group and a nitrogen atom-containing cyclic structure in the pressure-sensitive adhesive of the invention is effective in forming a pressure-sensitive adhesive layer with a lower dielectric constant and a reliable moisture resistance, and in providing a satisfactory level of adhesive performance. Also when an air layer is filled with a pressure-sensitive adhesive layer, malfunctions can be prevented because of the low dielectric constant of the adhesive layer.
- To lower the dielectric constant, it is said that the dipole moment of the molecule may be reduced, and the molar volume of the molecule may be increased, according to the Clausius-Mossotti equation. The main monomer unit of the (meth)acryl-based polymer as a main component of the pressure-sensitive adhesive of the invention is derived from an alkyl (meth)acrylate having a relatively long chain alkyl group. The (meth)acryl-based polymer also has a copolymerized unit derived from a monomer having a nitrogen atom-containing cyclic structure. These features are considered to reduce the dielectric constant. The nitrogen atom-containing cyclic structure can also produce cohesive and hydrophilic effects, which are considered to provide reliable moisture resistance.
- For example, the pressure-sensitive adhesive layer of the invention can have a relative dielectric constant as low as 3.5 or less at a frequency of 100 kHz. This feature makes it possible to design capacitance touch panels with no change in capacitance value even when the pressure-sensitive adhesive layer of the invention is reduced in thickness to form a transparent conductive film for use in capacitance touch panels, and the pressure-sensitive adhesive layer satisfies a reliable moisture resistance.
-
FIG. 1 is a view showing an example of a capacitance touch panel produced using the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention. - The pressure-sensitive adhesive of the invention contains a (meth)acryl-based polymer obtained by polymerization of a monomer component including 30 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and 0.5 to 50% by weight of a cyclic nitrogen-containing monomer. As used herein, the term “alkyl (meth)acrylate” refers to alkyl acrylate and/or alkyl methacrylate, and “(meth)” is used in the same meaning in the description.
- The alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is preferably capable of forming a homopolymer having a glass transition temperature (Tg) of −80 to 0° C., more preferably −70 to −10° C. If the Tg of the homopolymer is −80° C. or lower, the pressure-sensitive adhesive may have too low an elastic modulus at normal temperature, which is not preferred. If the Tg of the homopolymer is higher than 0° C., the adhesive strength may be undesirably reduced. The Tg of the homopolymer is the value measured using TG-DTA. To achieve low dielectric constant and moderate elastic modulus, the alkyl group has 10 to 18 carbon atoms. Based on this, an alkyl (meth)acrylate having a suitable alkyl group can be selected as needed depending on the method of producing the (meth)acryl-based polymer. For example, when the (meth)acryl-based polymer is produced by solution polymerization or the like, the alkyl group preferably has preferably 10 to 16 carbon atoms, more preferably 10 to 14 carbon atoms. When the (meth)acryl-based polymer is produced by radiation polymerization or the like, the alkyl group preferably has 12 to 18 carbon atoms, more preferably 14 to 18 carbon atoms. It should be noted that a straight-chain alkyl group or an alkyl group of 9 or less carbon atoms is less effective in lowering the dielectric constant of the pressure-sensitive adhesive layer even though the homopolymer of the corresponding alkyl (meth)acrylate has a Tg of −80 to 0° C.
- Although the alkyl group of 10 to 18 carbon atoms in the alkyl (meth)acrylate to be used may be any of a linear chain and a branched chain, the alkyl group is preferably a branched chain in view of forming a pressure-sensitive adhesive layer with a lower dielectric constant. It is conceivable that when the long chain alkyl group of the alkyl methacrylate is a branched alkyl group, a molar volume of a molecule of the long-chain alkyl group was increased, and reduces a lower dipole moment so that it can form a pressure-sensitive adhesive layer with a good balance between them.
- Examples of the alkyl (meth)acrylate having a branched-alkyl group of 10 to 18 carbon atoms at the ester end include isodecyl acrylate (10 carbons, homopolymer Tg=−60° C., hereinafter, simply abbreviated as Tg), isodecyl methacrylate (10 carbons, homopolymer Tg=−41° C.), isomyristyl acrylate (14 carbons, homopolymer Tg=−56° C.), isostearyl acrylate (18 carbons, homopolymer Tg=−18° C.), 2-propylheptylacrylate, isoundecyl acrylate, isododecyl acrylate, isotridecyl acrylate, isopentadecyl acrylate, isohexadecyl acrylate, isoheptadecyl acrylate, and methacrylate monomers corresponding to the above acrylates. These monomers may be used alone or in combination of two or more.
- Of the branched alkyl group of 10 to 18 carbon atoms, those having a t-butyl group are preferable in consideration of particularly obtaining a pressure-sensitive adhesive with an increased molar volume, a lowered dipole moment, and a balance of both. An Example of the alkyl (meth)acrylate having a branched alkyl group of 10 to 18 carbon atoms, the alkyl group having t-butyl group, includes isostearyl acrylate represented by the following formula:
- Also, as the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end, alkyl methacrylate is more preferable than alkyl acrylates in view of the effects of the pressure-sensitive adhesive layer lowering of dielectric constant due to an increase in molar volume and a reduction in dipole moment. It is conceivable that when the long chain alkyl group of the alkyl methacrylate is a linear alkyl group, the alkyl methacrylate can also have a higher molar volume and a lower dipole moment so that it can form a pressure-sensitive adhesive layer with a good balance between them. On the other hand, the alkyl acrylate has higher compatibility with the cyclic nitrogen-containing monomer than the alkyl methacrylate. The alkyl acrylate is preferable in that it can form a (meth)acryl-based polymer with good transparency, and the (meth)acryl-based polymer is preferable in that it can produced with a shorter polymerization time and higher productivity. Particularly when the (meth)acryl-based polymer is produced by radiation polymerization, the alkyl acrylate is preferred.
- Examples of the alkyl methacrylate having an alkyl group of 10 to 18 carbon atoms at the ester end include lauryl methacrylate (12 carbon atoms, Tg=−65° C.), tridecyl methacrylate (13 carbon atoms, Tg=−40° C.), stearyl methacrylate (18 carbon atoms, Tg=38° C.), isodecyl methacrylate (10 carbon atoms, Tg=−41° C.), undecyl methacrylate (11 carbon atoms), tetradecyl methacrylate (14 carbon atoms), pentadecyl methacrylate (15 carbon atoms), hexadecyl methacrylate (16 carbon atoms), heptadecyl methacrylate (17 carbon atoms), etc. These may be used singly or in combination of two or more.
- As will be appreciated from the foregoing, the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is preferably an alkyl methacrylate having a branched alkyl group of 10 to 18 carbon atoms at the ester end.
- The content of the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is 30 to 99.5% by weight, preferably 32 to 99.5% by weight, more preferably 35 to 99.5% by weight, furthermore preferably 40 to 99.5% by weight, furthermore preferably 45 to 96% by weight, and furthermore preferably 65 to 95% by weight, based on the total weight of the monomer component used to form the (meth)acryl-based polymer. Use of 30% by weight or more of the alkyl (meth)acrylate is preferable in view of lowering of dielectric constant, and use of 99.5% by weight or less thereof is preferable in view of maintaining adhesive strength.
- Any monomer having a cyclic nitrogen structure and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the cyclic nitrogen-containing monomer. The cyclic nitrogen structure preferably has a nitrogen atom in the cyclic structure. Examples of the cyclic nitrogen-containing monomer include vinyl lactam monomers such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam, and methylvinylpyrrolidone; and nitrogen-containing heterocyclic vinyl monomers such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine. The cyclic nitrogen-containing monomer may also be a (meth)acrylic monomer having a heterocyclic ring such as a morpholine ring, a piperidine ring, a pyrrolidine ring, or a piperazine ring. Examples include N-acryloyl morpholine, N-acryloylpiperidine, N-methacryloyl piperidine, and N-acryloyl pyrrolidine. Among them, vinyl lactam monomers are preferred, and N-vinylpyrrolidone is particularly preferred, in view of dielectric constant and cohesiveness.
- In the invention, the content of the cyclic nitrogen-containing monomer is from 0.5 to 50% by weight, preferably from 0.5 to 40% by weight, more preferably from 0.5 to 30% by weight, based on the total weight of the monomer component used to form the (meth)acryl-based polymer. A cyclic nitrogen-containing monomer content of 0.5% by weight or more is preferred in terms of lower dielectric constant and reliable moisture resistance. A cyclic nitrogen-containing monomer content of 50% by weight or less is preferred in terms of adhering strength improvement.
- The monomer component used to form the (meth)acryl-based polymer according to the invention may further include at least one functional group-containing monomer selected from a carboxyl group-containing monomer, a hydroxyl group-containing monomer, and a cyclic ether group-containing monomer.
- Any monomer having a carboxyl group and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the carboxyl group-containing monomer. Examples of the carboxyl group-containing monomer include (meth)acrylic acid, carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid. These may be used alone or in any combination. Itaconic acid or maleic acid can be used in the form of an anhydride. Among these, acrylic acid and methacrylic acid are preferred, and acrylic acid is particularly preferred. In the invention, a carboxyl group-containing monomer may be or may not be used as an optional monomer to produce the (meth)acryl-based polymer. An adhesive containing a (meth)acryl-based polymer obtained from a monomer composition free of any carboxyl group-containing monomer can form a pressure-sensitive adhesive layer with reduced ability to corrode metals, because the ability to corrode metals would be due to any carboxyl group.
- Any monomer having a hydroxyl group and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the hydroxyl group-containing monomer. Examples of the hydroxyl group-containing monomer include hydroxyalkyl (meth)acrylate such as 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, or 12-hydroxylauryl (meth)acrylate; and hydroxyalkylcycloalkane (meth)acrylate such as (4-hydroxymethylcyclohexyl)methyl (meth)acrylate. Other examples include hydroxyethyl(meth)acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. These may be used alone or in any combination. Among them, hydroxyalkyl (meth)acrylate is preferred.
- Any monomer having a cyclic ether group such as an epoxy group or an oxetane group and an unsaturated double bond-containing polymerizable functional group such as a (meth)acryloyl group or a vinyl group may be used without restriction as the cyclic ether group-containing monomer. Examples of the epoxy group-containing monomer include glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, and 4-hydroxybutyl(meth)acrylate glycidyl ether. Examples of the oxetane group-containing monomer include 3-oxetanylmethyl (meth)acrylate, 3-methyl-oxetanylmethyl (meth)acrylate, 3-ethyl-oxetanylmethyl (meth)acrylate, 3-butyl-oxetanylmethyl (meth)acrylate, and 3-hexyl-oxetanylmethyl (meth)acrylate. These monomers may be used alone or in any combination.
- In the invention, the content of the functional group-containing monomer is preferably 0.5% or more, further preferably 0.8% or more used to form the (meth)acryl-based polymer so that adhesive strength and cohesive strength can be increased. If the content of the functional group-containing monomer is too high, a hard pressure-sensitive adhesive layer with a lower adhesive strength may be formed, and the pressure-sensitive adhesive may have too high a viscosity or may form a gel. Thus, the content of the functional group-containing monomer is preferably 30% by weight or less, more preferably 27% by weight or less, even more preferably 25% by weight or less based on the total weight of the monomer component used to form the (meth)acryl-based polymer.
- The monomer component used to form the (meth)acryl-based polymer according to the invention may further include a copolymerizable monomer other than the functional group-containing monomer. For example, a copolymerizable monomer other than those described above may be an alkyl (meth)acrylate represented by the formula CH2═C(R1) COOR2, wherein R1 represents hydrogen or a methyl group, and R2 represents a substituted or unsubstituted alkyl group of 1 to 9 carbon atoms.
- The substituted or unsubstituted alkyl group of 1 to 9 carbon atoms represented by R2 may be a linear or branched alkyl group or cyclic alkyl group. Specifically, R2 represents a branched alkyl of group of 3 to 9 carbon atoms. The substituted alkyl group preferably has an aryl group of 3 to 8 carbon atoms or an aryloxy group of 3 to 8 carbon atoms as a substituent. The aryl group is preferably, but not limited to, a phenyl group. Concerning this alkyl (meth)acrylate, the alkyl methacrylate is more preferred than the alkyl acrylate in order to lower dielectric constant by increasing molar volume and reducing dipole moment.
- Examples of the monomer represented by CH2═C(R1) COOR2 include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, isobutyl (meth)acrylate, n-pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, isoamyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, phenoxyethyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, and isobornyl (meth)acrylate. These monomers may be used alone or in any combination.
- In the invention, the content of the (meth)acrylate represented by CH2═C(R1)COOR2 may be 69.5% by weight or less, preferably 65% by weight or less, more preferably 59.5% by weight or less, even more preferably 55% by weight or less, even more preferably 50% by weight or less, even more preferably 40% by weight or less, even more preferably 30% by weight or less, based on the total weight of the monomer component used to form the (meth)acryl-based polymer. To maintain the level of adhesive strength, the (meth)acrylate represented by CH2═C(R1)COOR2 is preferably used in an amount of 5% by weight or more, more preferably 10% by weight or more.
- The preferred content of the (meth)acrylate represented by CH2═C(R1)COOR2, which can be used in the amount mentioned above, may be selected as needed depending on the method of producing the (meth)acryl-based polymer. For example, when the (meth)acryl-based polymer is produced by radiation polymerization or the like, the content of the (meth)acrylate represented by CH2═C(R1)COOR2 is preferably more than 0% by weight to 55% by weight, more preferably from 20 to 50% by weight, based on the total weight of all monomers, in view of adhesive properties. In this case, the content of the alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end is preferably from 30 to 80% by weight, more preferably from 30 to 70% by weight, based on the total weight of all monomers.
- Other copolymerizable monomers that may also be used include vinyl monomers such as vinyl acetate, vinyl propionate, styrene, α-methylstyrene; glycol acrylic ester monomers such as polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, methoxyethylene glycol (meth)acrylate, and methoxypolypropylene glycol (meth)acrylate; and acrylate ester monomers such as tetrahydrofurfuryl (meth)acrylate, fluoro(meth)acrylate, silicone (meth)acrylate, and 2-methoxyethyl acrylate; amide group-containing monomers, amino group-containing monomers, imide group-containing monomers, N-acryloyl morpholine, and vinyl ether monomers. Cyclic structure-containing monomers such as terpene (meth)acrylate and dicyclopentanyl (meth)acrylate may also be used as copolymerizable monomers.
- Besides the above, a silicon atom-containing silane monomer may be exemplified as the copolymerizable monomer. Examples of the silane monomers include 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane, 8-vinyloctyltriethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 10-acryloyloxydecyltrimethoxysilane, 10-methacryloyloxydecyltriethoxysilane, and 10-acryloyloxydecyltriethoxysilane.
- In the invention, if necessary, the monomer component used to form the (meth)acryl-based polymer may contain a polyfunctional monomer for controlling the cohesive strength of the pressure-sensitive adhesive in addition to the monofunctional monomers listed above.
- The polyfunctional monomer is a monomer having at least two polymerizable functional groups with an unsaturated double bond such as (meth)acryloyl group or vinyl group, and examples thereof include ester compounds of a polyhydric alcohol with (meth)acrylic acid such as (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritoltri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,2-ethyleneglycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate; allyl (meth)acrylate, vinyl (meth)acrylate, divinylbenzene, epoxy acrylate, polyester acrylate, urethane acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and the like. Among them, trimethylolpropane tri(meth)acrylate, hexanediol di(meth)acrylate, and dipentaerythritol hexa (meth)acrylate can be preferably used. The polyfunctional monomer can be used alone or in combination of two or more.
- The content of the polyfunctional monomer, if used, is preferably 3% by weigh or less, more preferably 2% by weight or less, even more preferably 1% by weight or less, based on the total weight of the monomer component used to form the (meth)acryl-based polymer, although it varies with the molecular weight of the monomer, the number of the functional groups, or other conditions. When the polyfunctional monomer is used in a content of more than 3% by weight, the pressure-sensitive adhesive may have too high cohesive strength and thus have lower adhesive strength.
- The (meth)acryl-based polymer described above can be produced using a method appropriately selected from known production methods, such as solution polymerization, radiation polymerization such as UV polymerization, bulk polymerization, and various radical polymerization methods including emulsion polymerization. The resultant (meth)acryl-based polymer may be any of a random copolymer, a block copolymer, a graft copolymer, or any other form.
- Any appropriate polymerization initiator, chain transfer agent, emulsifying agent and so on may be selected and used for radical polymerization. The (meth)acrylic polymer may be controlled by the reaction conditions including the amount of addition of the polymerization initiator or the chain transfer agent. The amount of the addition may be controlled as appropriate depending on the type of these materials.
- In a solution polymerization process and so on, for example, ethyl acetate, toluene or the like is used as a polymerization solvent. In a specific solution polymerization process, for example, the reaction is performed under a stream of inert gas such as nitrogen at a temperature of about 50 to about 70° C. for about 5 to about 30 hours in the presence of a polymerization initiator.
- Examples of the thermal polymerization initiator used for the solution polymerization process include, but are not limited to, azo initiators such as 2,2′-azobisisobutyronitrile, 2,2′-azobis-2-methylbutyronitrile, 2,2′-azobis(2-methylpropionic acid) dimethyl, 4,4′-azobis-4-cyanovaleric acid, azobisisovaleronitrile, 2,2′-azobis(2-amidinopropane)dihydrochloride, 2,2′-azobis[2-(5-methyl-2-imidazoline-2-yl)propane]dihydrochlorid e, 2,2′-azobis(2-methylpropionamidine)disulfate, 2,2′-azobis(N,N′-dimethyleneisobutylamidine), and 2,2′-azobis[N-(2-carboxyethyl)-2-methylpropionamidine]hydrate (VA-057, manufactured by Wako Pure Chemical Industries, Ltd.); persulfates such as potassium persulfate and ammonium persulfate; peroxide initiators such as di(2-ethylhexyl)peroxydicarbonate, di(4-tert-butylcyclohexyl)peroxydicarbonate, di-sec-butylperoxydicarbonate, tert-butylperoxyneodecanoate, tert-hexylperoxypivalate, tert-butylperoxypivalate, dilauroyl peroxide, di-n-octanoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethyl hexanoate, di(4-methylbenzoyl) peroxide, dibenzoyl peroxide, tert-butylperoxyisobutylate, 1,1-di(tert-hexylperoxy)cyclohexane, tert-butylhydroperoxide, and hydrogen peroxide; and redox system initiators of a combination of a peroxide and a reducing agent, such as a combination of a persulfate and sodium hydrogen sulfite and a combination of a peroxide and sodium ascorbate.
- One of the above polymerization initiators may be used alone, or two or more thereof may be used in a mixture. The content of the polymerization initiator is preferably from about 0.005 to 1 part by weight, even more preferably from about 0.02 to about 0.5 parts by weight, based on 100 parts by total weight of the monomer component.
- For example, when 2,2′-azobisisobutyronitrile is used as a polymerization initiator for the production of the (meth)acryl-based polymer with the above weight average molecular weight, the polymerization initiator is preferably used in a content of about 0.2 parts by weight or less, more preferably of from about 0.06 to about 0.2 parts by weight, further more preferably of from about 0.08 to about 0.175 parts by weight, based on 100 parts by total weight of the monomer component.
- Examples of the chain transfer agent include lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate and 2,3-dimercapto-1-propanol. One of these chain transfer agents may be used alone, or two or more thereof may be used in a mixture. The total content of the chain transfer agent is preferably about 0.1 parts by weight or less, based on 100 parts by total weight of the monomer component.
- Examples of the emulsifier used in emulsion polymerization include anionic emulsifiers such as sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, ammonium polyoxyethylene alkyl ether sulfate, and sodium polyoxyethylene alkyl phenyl ether sulfate; and nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, and polyoxyethylene-polyoxypropylene block polymers. These emulsifiers may be used alone, or two or more thereof may be used in combination.
- The emulsifier may be a reactive emulsifier. Examples of such an emulsifier having an introduced radical-polymerizable functional group such as a propenyl group and an allyl ether group include Aqualon HS-10, HS-20, KH-10, BC-05, BC-10, and BC-20 (each manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and Adekaria Soap SE10N (manufactured by ADEKA COORPORATION). The reactive emulsifier is preferred, because after polymerization, it can be incorporated into a polymer chain to improve water resistance. Based on 100 parts by total weight of the monomer component, the emulsifier is preferably used in a content of 0.3 to 5 parts by weight, more preferably of 0.5 to 1 part by weight, in view of polymerization stability or mechanical stability.
- The (meth)acryl-based polymer can also be produced by radiation polymerization, in which radiation, such as electron beams or UV rays, is applied to the monomer component. When electron beams are used in the radiation polymerization, there is no particular need to add a photopolymerization initiator to the monomer component. When UV polymerization is used as the radiation polymerization, however, a photopolymerization initiator may be added to the monomer component, which is advantageous particularly in that the polymerization time can be reduced. Any of the photopolymerization initiators may be used alone or in combination of two or more.
- The photopolymerization initiator is not particularly limited as long as it can initiate photopolymerization, and photopolymerization initiators that are usually used can be employed. Examples thereof that can be used include benzoin ether-based photopolymerization initiator, acetophenone-based photopolymerization initiator, α-ketol-based photopolymerization initiator, aromatic sulfonyl chloride-based photopolymerization initiator, photoactive oxime-based photopolymerization initiator, benzoin-based photopolymerization initiator, benzyl-based photopolymerization initiator, benzophenone-based photopolymerization initiator, ketal-based photopolymerization initiator, thioxanthone-based photopolymerization initiator, acylphosphine oxide-based photopolymerization initiator, and the like.
- Specific examples of the benzoin ether-based photopolymerization initiator include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name: IRGACURE 651, manufactured by BASF), anisoin methyl ether, and the like. Examples of the acetophenone-based photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone (trade name: IRGACURE 184, manufactured by BASF), 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one (trade name: IRGACURE 2959, manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (trade name: DAROCUR 1173, manufactured by BASF), methoxyacetophenone, and the like. Examples of the α-ketol-based photopolymerization initiator include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)-phenyl]-2-hydroxy-2-methylpropan-1-one, and the like. Examples of the aromatic sulfonyl chloride-based photopolymerization initiator include 2-naphthalene sulfonyl chloride and the like. Examples of the photoactive oxime-based photopolymerization initiator include 1-phenyl-1,2-propanedione-2-(0-ethoxycarbonyl)-oxime, and the like.
- Examples of the benzoin-based photopolymerization initiator include benzoin and the like. Examples of the benzyl-based photopolymerization initiator include benzyl and the like. Examples of the benzophenone-based photopolymerization initiators include benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone, polyvinyl benzophenone, α-hydroxycyclohexyl phenyl ketone, and the like. Examples of the ketal-based photopolymerization initiator include benzyl dimethyl ketal and the like. Examples of the thioxanthone-based photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone and the like.
- Examples of the acylphosphine oxide-based photopolymerization initiator include bis(2,6-dimethoxybenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)(2,4,4-trimethylpentyl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-n-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2-methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-(1-methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-t-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)cyclohexylphosphine oxide, bis(2,6-dimethoxybenzoyl)octylphosphine oxide, bis(2-methoxybenzoyl)(2-methylpropan-1-yl)phosphine oxide, bis(2-methoxybenzoyl)(1-methylpropan-1-yl)phosphine oxide, bis(2,6-diethoxybenzoyl)(2-methylpropan-1-yl)phosphine oxide, bis(2,6-diethoxybenzoyl)(1-methylpropan-1-yl)phosphine oxide, bis(2,6-dibutoxybenzoyl)(2-methylpropan-1-yl)phosphine oxide, bis(2,4-dimethoxybenzoyl)(2-methylpropan-1-yl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)(2,4-dipentoxyphenyl)phosphine oxide, bis(2,6-dimethoxybenzoyl)benzylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2-phenylpropylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2-phenylethylphosphine oxide, bis(2,6-dimethoxybenzoyl)benzylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2-phenylpropylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2-phenylethylphosphine oxide, 2,6-dimethoxybenzoyl benzylbutylphosphine oxide, 2,6-dimethoxybenzoyl benzyloctylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,5-diisopropylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2-methylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-4-methylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,5-diethylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,3,5,6-tetramethylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-di-n-butoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyl diphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)isobutylphosphine oxide, 2, 6-dimethoxybenzoyl-2, 4, 6-trimethylbenzoyl-n-butylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-dibutoxyphenylphosphine oxide, 1,10-bis[bis(2,4,6-trimethylbenzoyl)phosphine oxide]decane, tri(2-methylbenzoyl)phosphine oxide, and the like.
- The content of the photopolymerization initiator is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, furthermore preferably 0.05 to 1.5 parts by weight, and particularly preferably 0.1 to 1 part by weight, based on 100 parts by total weight of the monomer component.
- If the photopolymerization initiator is used in an amount of less than 0.01 parts by weight, the polymerization reaction may be insufficient. If the photopolymerization initiator is used in an amount of more than 5 parts by weight, the photopolymerization initiator may absorb ultraviolet rays, so that ultraviolet rays may fail to reach the inside of the pressure-sensitive adhesive layer. In this case, the degree of polymerization may decrease, or a polymer with a lower molecular weight may be produced. This may cause the resulting pressure-sensitive adhesive layer to have lower cohesive strength, so that in the process of peeling off the pressure-sensitive adhesive layer from a film, the pressure-sensitive adhesive layer may partially remain on the film, which may make it impossible to reuse the film. The photopolymerization initiators may be used singly or in combination of two or more.
- In the invention, the (meth)acryl-based polymer preferably has a weight average molecular weight of 400,000 to 2,500,000, more preferably 600,000 to 2,200,000. When the weight average molecular weight is more than 400,000, the pressure-sensitive adhesive layer can have satisfactory durability and can have a cohesive strength small enough to suppress adhesive residue. On the other hand, if the weight average molecular weight is more than 2,500,000, bonding ability or adhesive strength may tend to be lower. In this case, the pressure-sensitive adhesive may form a solution with too high a viscosity, which may be difficult to apply. As used herein, the term “weight average molecular weight” refers to a polystyrene-equivalent weight average molecular weight, which is determined using gel permeation chromatography (GPC). It should be noted that the molecular weight of the (meth)acryl-based polymer obtained by radiation polymerization would be difficult to measure.
- The weight average molecular weight of the obtained (meth)acryl-based polymer was measured by gel permeation chromatography (GPC) as follows. The polymer sample was dissolved in tetrahydrofuran to form a 0.1% by weight solution. After allowed to stand overnight, the solution was filtered through a 0.45 μm membrane filter, and the filtrate was used for the measurement.
- Analyzer: HLC-8120GPC manufactured by TOSOH CORPORATION
Columns: (meth)acryl-based polymer, GM7000HXL+GMHXL+GMHXL, manufactured by TOSOH CORPORATION, aromatic-based polymer, G3000HXL+2000HXL+G1000HXL, manufactured by TOSOH CORPORATION
Column size: each 7.8 mmφ×30 cm, 90 cm in total
Eluent: tetrahydrofuran (concentration 0.1% by weight)
Flow rate: 0.8 ml/minute
Inlet pressure: 1.6 MPa
Detector: differential refractometer (RI)
Column temperature: 40° C.
Injection volume: 100 μl
Standard sample: polystyrene - The pressure-sensitive adhesive of the invention may contain a crosslinking agent. Examples of the crosslinking agents include an isocyanate crosslinking agent, an epoxy crosslinking agent, a silicone crosslinking agent, an oxazoline crosslinking agent, an aziridine crosslinking agent, a silane crosslinking agent, an alkyl etherified melamine crosslinking agent, a metallic chelate crosslinking agent and a peroxide. Such crosslinking agents may be used alone or in combination of two or more. An isocyanate crosslinking agent or an epoxy crosslinking agent is preferably used as the crosslinking agent.
- These crosslinking agents may be used alone or in a mixture of two or more. The total content of the crosslinking agent(s) is preferably 5 parts by weight or less, more preferably 0.01 to 5 parts by weight, even more preferably 0.01 to 4 parts by weight, still more preferably 0.02 to 3 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer.
- The term “isocyanate crosslinking agent” refers to a compound having two or more isocyanate groups (which may include functional groups that are temporarily protected with an isocyanate blocking agent or by oligomerization and are convertible to isocyanate groups) per molecule.
- Isocyanate crosslinking agents include aromatic isocyanates such as tolylene diisocyanate and xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, and aliphatic isocyanates such as hexamethylene diisocyanate.
- More specifically, examples of isocyanate crosslinking agents include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate; aromatic diisocyanates such as 2, 4-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and polymethylene polyphenyl isocyanate; isocyanate adducts such as a trimethylolpropane-tolylene diisocyanate trimer adduct (trade name: CORONATE L, manufactured by NIPPON POLYURETHANE INDUSTRY CO., LTD.), a trimethylolpropane-hexamethylene diisocyanate trimer adduct (trade name: CORONATE HL, manufactured by NIPPON POLYURETHANE INDUSTRY CO., LTD.), and an isocyanurate of hexamethylene diisocyanate (trade name: CORONATE HX, manufactured by NIPPON POLYURETHANE INDUSTRY CO., LTD.); a trimethylolpropane adduct of xylylene diisocyanate (trade name: D110N, manufactured by Mitsui Chemicals, Inc.) and a trimethylolpropane adduct of hexamethylene diisocyanate (trade name: D160N, manufactured by Mitsui Chemicals, Inc.); polyether polyisocyanate and polyester polyisocyanate; adducts thereof with various polyols; and polyisocyanates polyfunctionalized with an isocyanurate bond, a biuret bond, an allophanate bond, or the like. In particular, aliphatic isocyanates are preferably used because of their high reaction speed.
- These isocyanate crosslinking agents may be used alone or in a mixture of two or more. The total content of the isocyanate crosslinking agent(s) is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, further more preferably 0.02 to 3 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer. The content may be appropriately determined taking into account cohesive strength, the ability to prevent delamination in a durability test, or other properties.
- When an aqueous dispersion of a modified (meth)acryl-based polymer produced by emulsion polymerization is used, the isocyanate crosslinking agent does not have to be used. If necessary, however, a blocked isocyanate crosslinking agent may also be used in such a case, because the isocyanate crosslinking agent itself can easily react with water.
- The term “epoxy crosslinking agent” refers to a polyfunctional epoxy compound having two or more epoxy groups per molecule. Examples of the epoxy crosslinking agent include bisphenol A, epichlorohydrin-type epoxy resin, ethylene glycol diglycidyl ether, N,N,N′,N′-tetraglycidyl-m-xylenediamine, diglycidylaniline, N,N-diamino glycidyl amine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerine diglycidyl ether, glycerine triglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, diglycidyl adipate, diglycidyl o-phthalate, triglycidyl tris(2-hydroxyethyl)isocyanurate, resorcin diglycidyl ether, bisphenol-S diglycidyl ether, and epoxy resins having two or more epoxy groups in the molecule. The epoxy crosslinking agent may also be a commercially available product such as TETRAD-C (trade name) or TETRAD-X (trade name) manufactured by MITSUBISHI GAS CHEMICAL COMPANY, INC.
- These epoxy crosslinking agents may be used alone or in a mixture of two or more. The total content of the epoxy crosslinking agent(s) is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, further more preferably 0.02 to 3 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer. The content may be appropriately determined taking into account cohesive strength, the ability to prevent delamination in a durability test, or other properties.
- Any peroxide crosslinking agents capable of generating active radical species by heating and promoting the crosslinking of the base polymer in the pressure-sensitive adhesive may be appropriately used. In view of workability and stability, a peroxide with a one-minute half-life temperature of 80° C. to 160° C. is preferably used, and a peroxide with a one-minute half-life temperature of 90° C. to 140° C. is more preferably used.
- Examples of the peroxide for use in the invention include di(2-ethylhexyl) peroxydicarbonate (one-minute half-life temperature: 90.6° C.), di(4-tert-butylcyclohexyl) peroxydicarbonate (one-minute half-life temperature: 92.1° C.), di-sec-butyl peroxydicarbonate (one-minute half-life temperature: 92.4° C.), tert-butyl peroxyneodecanoate (one-minute half-life temperature: 103.5° C.), tert-hexyl peroxypivalate (one-minute half-life temperature: 109.1° C.), tert-butyl peroxypivalate (one-minute half-life temperature: 110.3° C.), dilauroyl peroxide (one-minute half-life temperature: 116.4° C.), di-n-octanoylperoxide (one-minute half-life temperature: 117.4° C.), 1,1,3,3-tetramethylbutylperoxy-2-ethyl hexanoate (one-minute half-life temperature: 124.3° C.), di(4-methylbenzoyl) peroxide (one-minute half-life temperature: 128.2° C.), dibenzoyl peroxide (one-minute half-life temperature: 130.0° C.), tert-butyl peroxyisobutylate (one-minute half-life temperature: 136.1° C.), and 1,1-di(tert-hexylperoxy)cyclohexane (one-minute half-life temperature: 149.2° C.). In particular, di(4-tert-butylcyclohexyl) peroxydicarbonate (one-minute half-life temperature: 92.1° C.), dilauroyl peroxide (one-minute half-life temperature: 116.4° C.), dibenzoyl peroxide (one-minute half-life temperature: 130.0° C.), or the like is preferably used, because they can provide high crosslinking reaction efficiency.
- The half life of the peroxide is an indicator of how fast the peroxide can be decomposed and refers to the time required for the amount of the peroxide to reach one half of its original value. The decomposition temperature required for a certain half life and the half life time obtained at a certain temperature are shown in catalogs furnished by manufacturers, such as “Organic Peroxide Catalog, 9th Edition, May, 2003” furnished by NOF CORPORATION.
- One of the peroxide crosslinking agents may be used alone, or a mixture of two or more of the peroxide crosslinking agent may be used. The total content of the peroxide(s) is preferably from 0.02 to 2 parts by weight, more preferably from 0.05 to 1 part by weight, based on 100 parts by weight of the (meth)acrylic polymer. The content of the peroxide (s) may be appropriately selected in this range in order to control the workability, reworkability, crosslink stability or peeling properties.
- The amount of decomposition of the peroxide may be determined by measuring the peroxide residue after the reaction process by high performance liquid chromatography (HPLC).
- More specifically, for example, after the reaction process, about 0.2 g of each pressure-sensitive adhesive composition is taken out, immersed in 10 ml of ethyl acetate, subjected to shaking extraction at 25° C. and 120 rpm for 3 hours in a shaker, and then allowed to stand at room temperature for 3 days. Thereafter, 10 ml of acetonitrile is added, and the mixture is shaken at 25° C. and 120 rpm for 30 minutes. About 10 μl of the liquid extract obtained by filtration through a membrane filter (0.45 μm) is subjected to HPLC by injection and analyzed so that the amount of the peroxide after the reaction process is determined.
- As the crosslinking agent, a polyfunctional metal chelate may also be used in combination with an organic crosslinking agent. Examples of the polyfunctional metal chelate may include a polyvalent metal and an organic compound that is covalently or coordinately bonded to the metal. Examples of the polyvalent metal atom include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, and Ti. The organic compound has a covalent or coordinate bond-forming atom such as an oxygen atom. Examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
- The pressure-sensitive adhesive of the invention may contain a (meth)acryl-based oligomer in view of improving adhesive strength. The (meth)acryl-based oligomer is preferably a polymer having a Tg higher than that of the (meth)acryl-based polymer according to the invention and having a weight average molecular weight lower than that of the (meth)acryl-based polymer according to the invention. The (meth)acryl-based oligomer functions as a tackifying resin and is advantageous in increasing adhesive strength without raising dielectric constant.
- The (meth)acryl-based oligomer may have a Tg of from about 0° C. to about 300° C., preferably from about 20° C. to about 300° C., more preferably from about 40° C. to about 300° C. When the Tg falls within the range, the adhesive strength can be improved. Like the Tg of the (meth)acryl-based polymer, the Tg of the (meth)acryl-based oligomer is the theoretical value calculated from the Fox equation.
- The (meth)acryl-based oligomer may have a weight average molecular weight of 1,000 to less than 30,000, preferably 1,500 to less than 20,000, more preferably 2,000 to less than 10,000. If the oligomer has a weight average molecular weight of 30,000 or more, the effect of improving adhesive strength cannot be sufficiently obtained in some cases. The oligomer with a weight average molecular weight of less than 1,000 may lower the adhesive strength or holding performance because of its relatively low molecular weight. In the invention, the weight average molecular weight of the (meth)acryl-based oligomer can be determined as a polystyrene-equivalent weight average molecular weight by GPC method. More specifically, the weight average molecular weight can be determined using HPLC 8020 with two TSKgel GMH-H (20) columns manufactured by TOSOH CORPORATION under the conditions of a solvent of tetrahydrofuran and a flow rate of about 0.5 ml/minute.
- Examples of monomers that may be used to form the (meth)acryl-based oligomer include alkyl (meth)acrylate such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, or dodecyl (meth)acrylate; an ester of (meth)acrylic acid and an alicyclic alcohol, such as cyclohexyl (meth)acrylate or isobornyl (meth)acrylate; aryl (meth)acrylate such as phenyl (meth)acrylate or benzyl (meth)acrylate; and a (meth)acrylate derived from a terpene compound derivative alcohol. These (meth)acrylates may be used alone or in combination of two or more.
- The (meth)acryl-based oligomer preferably contains, as a monomer unit, an acrylic monomer having a relatively bulky structure, typified by an alkyl (meth)acrylate whose alkyl group has a branched structure, such as isobutyl (meth)acrylate or tert-butyl (meth)acrylate; an ester of (meth)acrylic acid and an alicyclic alcohol, such as cyclohexyl (meth)acrylate or isobornyl (meth)acrylate; or aryl (meth)acrylate such as phenyl (meth)acrylate or benzyl (meth)acrylate, or any other cyclic structure-containing (meth)acrylate. The use of a (meth)acryl-based oligomer with such a bulky structure can further improve the tackiness of the pressure-sensitive adhesive layer. In terms of bulkiness, cyclic structure-containing oligomers are highly effective, and oligomers having two or more rings are more effective. When ultraviolet (UV) light is used in the process of synthesizing the (meth)acryl-based oligomer or forming the pressure-sensitive adhesive layer, a saturated oligomer is preferred because such an oligomer is less likely to inhibit polymerization, and an alkyl (meth)acrylate whose alkyl group has a branched structure or an ester of an alicyclic alcohol and (meth)acrylic acid is preferably used as a monomer to form the (meth)acryl-based oligomer.
- From these points of view, preferred examples of the (meth)acryl-based oligomer include a copolymer of cyclohexyl methacrylate (CHMA) and isobutyl methacrylate (IBMA), a copolymer of cyclohexyl methacrylate (CHMA) and isobornyl methacrylate (IBXMA), a copolymer of cyclohexyl methacrylate (CHMA) and acryloyl morpholine (ACMO), a copolymer of cyclohexyl methacrylate (CHMA) and diethylacrylamide (DEAA), a copolymer of 1-adamanthyl acrylate (ADA) and methyl methacrylate (MMA), a copolymer of dicyclopentanyl methacrylate (DCPMA) and isobornyl methacrylate (IBXMA), and a homopolymer of each of dicyclopentanyl methacrylate (DCPMA), cyclohexyl methacrylate (CHMA), isobornyl methacrylate (IBXMA), isobornyl acrylate (IBXA), a copolymer of dicyclopentanyl methacrylate (DCPMA) and methyl methacrylate (MMA), dicyclopentanyl acrylate (DCPA), 1-adamanthyl methacrylate (ADMA), and 1-adamanthyl acrylate (ADA). In particular, an oligomer composed mainly of CHMA is preferred.
- In the pressure-sensitive adhesive of the invention, the content of the (meth)acryl-based oligomer is preferably, but not limited to, 70 parts by weight or less, more preferably from 1 to 70 parts by weight, even more preferably from 2 to 50 parts by weight, still more preferably from 3 to 40 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer. If the content of the (meth)acryl-based oligomer is more than 70 parts by weight, a problem may occur such as an increase in elastic modulus or a decrease in tackiness at low temperature. Adding 1 part by weight or more of the (meth)acryl-based oligomer is effective in improving adhesive strength.
- The pressure-sensitive adhesive of the invention may further contain a silane coupling agent for improving water resistance at the interface between the pressure-sensitive adhesive layer and a hydrophilic adherend, such as glass, bonded thereto. The content of the silane coupling agent is preferably 1 part by weight or less, more preferably from 0.01 to 1 part by weight, even more preferably from 0.02 to 0.6 parts by weight, based on 100 parts by weight of the (meth)acryl-based polymer. If the content of the silane coupling agent is too high, the adhesive may have a higher adhesive strength to glass so that it may be less removable from glass. If the content of the silane coupling agent is too low, the durability of the adhesive may undesirably decrease.
- Examples of silane coupling agent preferably can be used include epoxy group-containing silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; amino group-containing silane coupling agents such as 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethylbutylidene)propylamine and N-phenyl-γ-aminopropyltrimethoxysilane; (meth)acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane; and isocyanate group-containing silane coupling agents such as 3-isocyanatepropyltriethoxysilane.
- The pressure-sensitive adhesive composition of the invention may also contain any other known additive. For example, a powder such as a colorant and a pigment, a dye, a surfactant, a plasticizer, a tackifier, a surface lubricant, a leveling agent, a softening agent, an antioxidant, an age resister, a light stabilizer, an ultraviolet absorbing agent, a polymerization inhibitor, an inorganic or organic filler, a metal powder, or a particle- or foil-shaped material may be added as appropriate depending on the intended use.
- The pressure-sensitive adhesive layer of the invention is made from the pressure-sensitive adhesive described above. The thickness of the pressure-sensitive adhesive layer is typically, but not limited to, about 1 to about 400 μm. The preferred range of the thickness of the pressure-sensitive adhesive layer may be appropriately determined depending on the method of producing the (meth)acryl-based polymer used to form the pressure-sensitive adhesive. For example, when the (meth)acryl-based polymer is produced by solution polymerization or the like, the thickness of the pressure-sensitive adhesive layer is preferably from 1 to 100 μm, more preferably from 2 to 50 μm, even more preferably from 2 to 40 μm, still more preferably from 5 to 35 μm. When the (meth)acryl-based polymer is produced by radiation polymerization or the like, the thickness of the pressure-sensitive adhesive layer is preferably from 50 to 400 μm, more preferably from 75 to 300 μm, even more preferably from 100 to 200 μm.
- The pressure-sensitive adhesive layer of the invention preferably has a relative dielectric constant of 3.5 or less, more preferably 3.3 or less, even more preferably 3.2 or less, still more preferably 3.0 or less at a frequency of 100 kHz.
- The pressure-sensitive adhesive layer of the invention preferably has a gel fraction of 20 to 98% by weight. The gel fraction of the pressure-sensitive adhesive layer is more preferably from 30 to 98% by weight, even more preferably from 40 to 95% by weight. When the pressure-sensitive adhesive contains a crosslinking agent, the gel fraction can be controlled by adjusting the total amount of the crosslinking agent (s) added, taking carefully into account the effect of the crosslinking treatment temperature and the crosslinking treatment time. As the gel fraction decreases, the cohesive strength may decrease. As the gel fraction excessively increases, the adhesive strength may degrade. The pressure-sensitive adhesive layer having a gel fraction in such a range is characterized in that it shows only a very small increase in adhesive strength after bonded to an adherend and that it can be easily removed from the adherend without leaving adhesive residue even after bonded thereto for a long period of time.
- The pressure-sensitive adhesive layer of the invention preferably has a haze value of 2% or less when having a thickness of 25 μm. The pressure-sensitive adhesive layer with a haze value of 2% or less can satisfy the requirements for transparency when it is used on optical members. The haze value is preferably from 0 to 1.5%, more preferably from 0 to 1%. A haze value of 2% or less is a satisfactory level for optical applications. If the haze value is more than 2%, cloudiness may occur, which is not preferred for optical film applications.
- The transparency of the pressure-sensitive adhesive layer is considered to depend on the total content of the hydroxyl group-containing monomer and the cyclic nitrogen-containing monomer based on the total amount of the monomer component. If the total content is high, the transparency can be high, but too high a total content may have an adverse effect on other properties. Therefore, for example, when the content of the cyclic nitrogen-containing monomer is low, the transparency can be controlled using the hydroxyl group-containing monomer.
- For example, the pressure-sensitive adhesive layer may be formed by a method including applying the pressure-sensitive adhesive to a support, removing the polymerization solvent and so on by drying to form a pressure-sensitive adhesive sheet. Before the pressure-sensitive adhesive is applied, appropriately at least one solvent other than the polymerization solvent may be added to the pressure-sensitive adhesive.
- Various methods may be used to apply the pressure-sensitive adhesive layer. Specific examples of such methods include roll coating, kiss roll coating, gravure coating, reverse coating, roll brush coating, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, and extrusion coating with a die coater or the like.
- The heat drying temperature is preferably from 40° C. to 200° C., more preferably from 50° C. to 180° C., in particular, preferably from 70° C. to 170° C. Setting the heating temperature within the above range makes it possible to obtain a pressure-sensitive adhesive layer having good adhesive properties. The drying time may be any appropriate period of time. The drying time is preferably from 5 seconds to 20 minutes, more preferably from 5 seconds to 10 minutes, in particular, preferably from 10 seconds to 5 minutes.
- When the (meth)acryl-based polymer according to the invention is produced by ultraviolet irradiation of the monomer component to be polymerized, the pressure-sensitive adhesive layer may be formed while the (meth)acryl-based polymer is produced from the monomer component. Appropriate materials such as a crosslinking agent and other materials that may be added to the pressure-sensitive adhesive may also be mixed with the monomer component. Before the ultraviolet irradiation, the monomer component may be partially polymerized to form a syrup before use. The ultraviolet irradiation may be performed using a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or the like.
- For example, a release-treated sheet may be used as the support. A silicone release liner is preferably used as the release-treated sheet.
- In the pressure-sensitive adhesive sheet include the layer pressure-sensitive adhesive layer formed on the release-treated sheet, when the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected with the release-treated sheet (a separator) before practical use. The release-treated sheet is peeled off before actual use.
- Examples of the material for forming the separator include a plastic film such as a polyethylene, polypropylene, polyethylene terephthalate, or polyester film, a porous material such as paper, cloth and nonwoven fabric, and an appropriate thin material such as a net, a foamed sheet, a metal foil, and a laminate thereof. In particular, a plastic film is preferably used, because of its good surface smoothness.
- The plastic film may be any film capable of protecting the pressure-sensitive adhesive layer, and examples thereof include a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, a polyvinyl chloride film, a vinyl chloride copolymer film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
- The thickness of the separator is generally from about 5 to about 200 μm, preferably from about 5 to about 100 μm. If necessary, the separator may be treated with a release agent such as a silicone, fluorine, long-chain alkyl, or fatty acid amide release agent, or may be subjected to release and antifouling treatment with silica powder or to antistatic treatment of coating type, kneading and mixing type, vapor-deposition type, or the like. In particular, if the surface of the separator is appropriately subjected to release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment, the releasability from the pressure-sensitive adhesive layer can be further increased.
- The pressure-sensitive adhesive layer and the pressure-sensitive adhesive sheet of the invention are suitable for use on optical members, and particularly in optical applications, they are preferably used and bonded to metal thin layers or metal electrodes. Metal thin layers include thin layers of metal, metal oxide, or a mixture of metal and metal oxide, and examples of metal thin layers include, but are not limited to, thin layers of ITO (indium tin oxide), ZnO, SnO, and CTO (cadmium tin oxide). The thickness of metal thin layers is typically, but not limited to, about 10 to 200 nm. Usually, for example, a metal thin layer such as an ITO layer is provided on a transparent plastic film substrate such as a polyethylene terephthalate film (specifically, a PET film) to form a transparent conductive film for use. When the pressure-sensitive adhesive sheet of the invention is bonded to a metal thin layer, the surface of the pressure-sensitive adhesive layer is preferably used as a bonding surface to the metal thin layer.
- The metal electrodes may be made of metal, metal oxide, or a mixture of metal and metal oxide, and examples include, but are not limited to, ITO, silver, copper, and carbon nanotube (CNT) electrodes.
- A specific example of the use of the pressure-sensitive adhesive sheet of the invention is a touch panel-forming pressure-sensitive adhesive sheet, which is used in the manufacture of a touch panel. For example, the touch panel-forming pressure-sensitive adhesive sheet is used in the manufacture of a capacitance touch panel, where it is used to bond a transparent conductive film having a metal thin layer such as an ITO layer to a poly (methyl methacrylate) (PMMA) resin sheet, a hard-coated film, a glass lens, or any other material. Applications of the touch panel include, but are not limited to, cellular phones, tablet computers, and personal digital assistances.
-
FIG. 1 shows a more specific example of the use of the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention, which is an example of a capacitance touch panel.FIG. 1 shows a capacitance touch panel 1 including adecorative panel 11, pressure-sensitive adhesive layers or pressure-sensitive adhesive sheets 12,ITO films 13, and a hardcoated film 14. Thedecorative panel 11 is preferably a glass plate or a transparent acrylic plate (PMMA plate). EachITO films 13 preferably includes a glass sheet or a transparent plastic film (specifically, a PET film) and an ITO layer provided thereon. The hardcoated film 14 is preferably a hard coated transparent plastic film such as a hard coated PET film. The capacitance touch panel 1 having the pressure-sensitive adhesive layer or the pressure-sensitive adhesive sheet of the invention can be made thinner and more stable in operation. The capacitance touch panel 1 also has a good appearance and good visibility. - An optical member may be used as the support of the pressure-sensitive adhesive sheet of the invention. The pressure-sensitive adhesive layer can be formed by a process including applying the pressure-sensitive adhesive directly to an optical member and drying the adhesive to remove the polymerization solvent and the like, so that the pressure-sensitive adhesive layer is formed on the optical member. Alternatively, the pressure-sensitive adhesive layer may be formed on a release-treated separator and then transferred to an optical member as needed to form a pressure-sensitive adhesive optical member.
- The release-treated sheet used in the preparation of the pressure-sensitive adhesive optical member may be used by itself as a separator for the pressure-sensitive adhesive optical member, so that the process can be simplified.
- The process for forming the pressure-sensitive adhesive layer for the pressure-sensitive adhesive optical member may further include forming an anchor layer on the surface of the optical member or performing any adhesion-facilitating treatment such as a corona treatment or a plasma treatment before forming the pressure-sensitive adhesive layer. The surface of the pressure-sensitive adhesive layer may also be subjected to an adhesion-facilitating treatment.
- The pressure-sensitive adhesive optical member of the invention may be used as a pressure-sensitive adhesive layer-carrying transparent conductive film, which is produced using a transparent conductive film as an optical member. The transparent conductive film includes a transparent plastic film substrate and a transparent conductive thin layer that is formed of a metal thin layer such as the ITO layer on one surface of the substrate. The pressure-sensitive adhesive layer of the invention is provided on the other surface of the transparent plastic film substrate. The transparent conductive thin layer may be provided on the transparent plastic film substrate with an undercoat layer interposed therebetween. Two or more undercoat layers may be provided. An oligomer migration-preventing layer may be provided between the transparent plastic film substrate and the pressure-sensitive adhesive layer.
- The transparent plastic film substrate to be used may be, but not limited to, various transparent plastic films. The plastic film is generally formed of a monolayer film. Examples of the material for the transparent plastic film substrate include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, and polyphenylene sulfide resins. In particular, polyester resins, polyimide resins, and polyethersulfone resins are preferred. The film substrate preferably has a thickness of 15 to 200 μm.
- The surface of the film substrate may be previously subject to sputtering, corona discharge treatment, flame treatment, ultraviolet irradiation, electron beam irradiation, chemical treatment, etching treatment such as oxidation, or undercoating treatment such that the adhesion of the transparent conductive thin layer or the undercoat layer formed thereon to the transparent plastic film substrate can be improved. If necessary, the film substrate may also be subjected to dust removing or cleaning by solvent cleaning, ultrasonic cleaning or the like, before the transparent conductive thin layer or the undercoat layer is formed.
- The material and thickness of the transparent conductive thin layer are not restricted and may be those described for the metal thin layer. The undercoat layer may be made of an inorganic material, an organic material or a mixture of an inorganic material and an organic material. Examples of the inorganic material include NaF (1.3), Na3AlF6 (1.35), LiF (1.36), MgF2 (1.38), CaF2 (1.4), BaF2 (1.3), SiO2 (1.46), LaF3 (1.55), CeF3 (1.63), and Al2O3 (1.63), wherein each number inside the parentheses is the refractive index of each material. In particular, SiO2, MgF2, Al2O3, or the like is preferably used. In particular, SiO2 is preferred. Besides the above, a complex oxide containing about 10 to about 40 parts by weight of cerium oxide and about 0 to about 20 parts by weight of tin oxide based on 100 parts by weight of the indium oxide may also be used.
- Examples of the organic material include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organosilane-based condensates. At least one of these organic materials may be used. In particular, a thermosetting resin including a mixture composed of a melamine resin, an alkyd resin and an organosilane condensate is preferably used as the organic material.
- The thickness of the undercoat layer is generally, but not limited to, from about 1 to about 300 nm, preferably from 5 to 300 nm, in view of optical design and the effect of preventing the release of an oligomer from the film substrate.
- The pressure-sensitive adhesive layer-carrying transparent conductive film can be used to form various devices such as touch panels and liquid crystal display devices. In particular, the pressure-sensitive adhesive layer-carrying transparent conductive film is preferably used as a touch panel-forming electrode sheet. The touch panel is suitable for use in different types of detection (such as resistive and capacitance types).
- A capacitance touch panel usually includes a transparent conductive film that has a transparent conductive thin layer in a specific pattern and is formed over the surface of a display unit. The pressure-sensitive adhesive layer-carrying transparent conductive film is a laminate in which the pressure-sensitive adhesive layer and the patterned transparent conductive thin layer are appropriately stacked facing each other.
- The pressure-sensitive adhesive optical member of the invention may be used as a pressure-sensitive adhesive layer-carrying optical film, which is produced using an image display-forming optical film as the optical member.
- The optical film may be of any type for use in forming image display devices such as liquid crystal display devices and organic electro-luminescent (EL) display devices. For example, a polarizing plate is exemplified as the optical film. A polarizing plate including a polarizer and a transparent protective film provided on one or both sides of the polarizer is generally used.
- A polarizer is not limited especially but various kinds of polarizer may be used. As a polarizer, for example, a film that is uniaxially stretched after having dichromatic substances, such as iodine and dichromatic dye, absorbed to hydrophilic high molecular weight polymer films, such as polyvinyl alcohol type film, partially formalized polyvinyl alcohol type film, and ethylene-vinyl acetate copolymer type partially saponified film; poly-ene type alignment films, such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride, etc. may be mentioned. In these, a polyvinyl alcohol type film on which dichromatic materials such as iodine, is absorbed and aligned after stretched is suitably used. Although thickness of polarizer is not especially limited, the thickness of about 5 to 80 μm is commonly adopted.
- A polarizer that is uniaxially stretched after a polyvinyl alcohol type film dyed with iodine is obtained by stretching a polyvinyl alcohol film by 3 to 7 times the original length, after dipped and dyed in aqueous solution of iodine. If needed the film may also be dipped in aqueous solutions, such as boric acid and potassium iodide, which may include zinc sulfate, zinc chloride. Furthermore, before dyeing, the polyvinyl alcohol type film may be dipped in water and rinsed if needed. By rinsing polyvinyl alcohol type film with water, effect of preventing un-uniformity, such as unevenness of dyeing, is expected by making polyvinyl alcohol type film swelled in addition that also soils and blocking inhibitors on the polyvinyl alcohol type film surface may be washed off. Stretching may be applied after dyed with iodine or may be applied concurrently, or conversely dyeing with iodine may be applied after stretching. Stretching is applicable in aqueous solutions, such as boric acid and potassium iodide, and in water bath.
- A thermoplastic resin with a high level of transparency, mechanical strength, thermal stability, moisture blocking properties, isotropy, and the like may be used as a material for forming the transparent protective film. Examples of such a thermoplastic resin include cellulose resins such as triacetylcellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic olefin polymer resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and any mixture thereof. The transparent protective film is generally laminated to one side of the polarizer with the adhesive layer, but thermosetting resins or ultraviolet curing resins such as (meth)acrylic, urethane, acrylic urethane, epoxy, or silicone resins may be used to other side of the polarizer for the transparent protective film. The transparent protective film may also contain at least one type of any appropriate additive. Examples of the additive include an ultraviolet absorbing agent, an antioxidant, a lubricant, a plasticizer, a release agent, an anti-discoloration agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a colorant. The content of the thermoplastic resin in the transparent protective film is preferably from 50 to 100% by weight, more preferably from 50 to 99% by weight, still more preferably from 60 to 98% by weight, particularly preferably from 70 to 97% by weight. If the content of the thermoplastic resin in the transparent protective film is 50% by weight or less, high transparency and other properties inherent in the thermoplastic resin can fail to be sufficiently exhibited.
- Further an optical film of the invention may be used as other optical layers, such as a reflective plate, a transflective plate, a retardation plate (a half wavelength plate and a quarter wavelength plate included), an optical compensation film and a viewing angle compensation film, which may be used for formation of a liquid crystal display device etc. These are used in practice as an optical film, or as one layer or two layers or more of optical layers laminated with polarizing plate.
- Although an optical film with the above described optical layer laminated to the polarizing plate may be formed by a method in which laminating is separately carried out sequentially in manufacturing process of a liquid crystal display device etc., an optical film in a form of being laminated beforehand has an outstanding advantage that it has excellent stability in quality and assembly workability, etc., and thus manufacturing processes ability of a liquid crystal display device etc. may be raised. Proper adhesion means, such as a pressure-sensitive adhesive layer, may be used for laminating. On the occasion of adhesion of the above described polarizing plate and other optical layers, the optical axis may be set as a suitable configuration angle according to the target retardation characteristics etc.
- The pressure-sensitive adhesive layer-carrying optical film of the invention is preferably used to form various types of image display devices such as liquid crystal display devices. Liquid crystal display devices may be formed according to conventional techniques. Specifically, liquid crystal display devices are generally formed by appropriately assembling a liquid crystal cell and the pressure-sensitive adhesive layer-carrying optical film and optionally other component such as a lighting system and incorporating a driving circuit according to any conventional technique, except that the pressure-sensitive layer-carrying adhesive optical film of the invention is used. Any type of liquid crystal cell may also be used such as a TN type, an STN type, a Π type a VA type and IPS type.
- Suitable liquid crystal display devices, such as liquid crystal display device with which the pressure-sensitive adhesive layer-carrying optical film has been located at one side or both sides of the liquid crystal cell, and with which a backlight or a reflective plate is used for a lighting system may be manufactured. In this case, the optical film may be installed in one side or both sides of the liquid crystal cell. When installing the optical films in both sides, they may be of the same type or of different type. Furthermore, in assembling a liquid crystal display device, suitable parts, such as diffusion plate, anti-glare layer, antireflection film, protective plate, prism array, lens array sheet, optical diffusion plate, and backlight, may be installed in suitable position in one layer or two or more layers.
- The invention is more specifically described by the examples below, which are not intended to limit the scope of the invention. The measurements described below were performed for the evaluation items in the examples and so on.
- To a four-neck flask equipped with a stirring blade, a thermometer, a nitrogen gas introducing tube, and a condenser were added 80 parts by weight of isodecyl methacrylate (IDM), 20 parts by weight of N-vinyl-ε-caprolactam (NVP), 10 parts by weight of 2-hydroxybutyl acrylate (HEA), 0.1 parts by weight of 2,2′-azobisisobutyronitrile as a polymerization initiator, and 150 parts by weight of ethyl acetate. Nitrogen gas was introduced for 1 hour to replace the air while the mixture was gently stirred, and then a polymerization reaction was performed for 15 hours while the temperature of the liquid in the flask was kept at about 55 to about 60° C. to obtain (meth)acryl-based polymer solution.
- To the resulting (meth)acryl-based polymer solution were added 0.5 parts by weight of a trimethylolpropane adduct of xylylene diisocyanate (D110N (trade name) manufactured by Mitsui Chemicals, Inc.) as a crosslinking agent based on 100 parts by weight of the polymer solid, so that a pressure-sensitive adhesive solution was obtained.
- The resulting pressure-sensitive adhesive solution was then applied to one side of a silicone-treated, 75-μm-thick, polyethylene terephthalate (PET) film (TORAY ADVANCED FILM Co., LTD., CERAPEEL) so that a 25-μm-thick pressure-sensitive adhesive layer could be formed after drying. The coating was dried at 130° C. for 3 minutes to form a pressure-sensitive adhesive layer, so that a pressure-sensitive adhesive sheet was obtained.
- Pressure-sensitive adhesive sheets were prepared using the process of Example 1, except that the type and ratio of the monomers used to form the (meth)acryl-based polymer and the type and content of the crosslinking agent were changed as shown in Table 1.
- To a four-neck flask were added 39 parts by weight of 2-ethylhexyl acrylate (2EHA), 39 parts of isostearyl acrylate (ISA), 18 parts of N-vinyl-2-pyrrolidone (NVP), 4 parts by weight of 4-hydroxybutyl acrylate (HBA), 0.05 parts by weight of each of two photopolymerization initiators (IRGACURE 184 (trade name) manufactured by BASF and IRGACURE 651 (trade name) manufactured by BASF), so that a monomer mixture was obtained. Subsequently, the monomer mixture was partially photo-polymerized by being exposed to ultraviolet rays in a nitrogen atmosphere, so that a partial polymer (acryl-based polymer syrup) was obtained with a conversion of about 10% by weight.
- To 100 parts by weight of the above acryl-based polymer syrup) were added 0.035 parts by weight of trimethylolpropane triacrylate. Subsequently, these materials were uniformly mixed to form a monomer component.
- Subsequently, a 38-μm-thick polyester film (Diafoil MRF (trade name) manufactured by Mitsubishi Plastics, Inc.) with its one side release-treated with silicone was provided, and the monomer component prepared as described above was applied to the release-treated surface of the polyester film so that a coating layer with a final thickness of 100 μm could be formed. Subsequently, a 38-μm-thick polyester film (Diafoil MRE (trade name) manufactured by Mitsubishi Plastics, Inc.) with its one side release-treated with silicone was provided, and the surface of the applied monomer component was covered with the polyester film in such a manner that the release-treated surface of the film faced the coating layer. As a result, the coating layer of the monomer component was shielded from oxygen. The sheet having the coating layer obtained as described above was irradiated with ultraviolet rays from a chemical light lamp (manufactured by TOSHIBA CORPORATION) at an irradiance of 5 mW/cm2 (as measured using TOPCON UVR-T1 having a maximum sensitivity at about 350 nm) for 360 seconds, so that the coating layer was cured to form a pressure-sensitive adhesive layer, and thus a pressure-sensitive adhesive sheet was formed. The polyester films placed over both sides of the pressure-sensitive adhesive layer function as release liners.
- Pressure-sensitive adhesive sheets were prepared using the same process as Example 14, except that the type and ratio of the monofunctional monomer, the type and content of the polyfunctional monomer used for the preparation of monomer component, the thickness of the pressure-sensitive adhesive layer were changed as shown in Table 2.
- The pressure-sensitive adhesive sheets (samples) obtained in the examples and the comparative examples were evaluated as described below. Tables 1 and 2 show the evaluation results.
- A predetermined amount (initial weight W1) was sampled from the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet. The sample was immersed and stored in an ethyl acetate solution at room temperature for 1 week. The insoluble matter was then taken out and measured for dry weight (W2). The gel fraction of the sample was determined from the following formula: gel fraction=(W2/W1)×100.
- Pressure-sensitive adhesive layers (each obtained by peeling off the silicone-treated PET film from the pressure-sensitive adhesive sheet) were stacked to form an about 100-μm-thick laminate of the pressure-sensitive adhesive layers. The 100-μm-thick and 175-μm-thick samples obtained by UV Polymerization in Examples 14 to 24 were used without laminating. The laminate of the pressure-sensitive adhesive layers (or the pressure-sensitive adhesive layer) was sandwiched between a copper foil and an electrode and then measured for relative dielectric constant at a frequency of 100 kHz using the instrument shown below. Three samples were prepared, and the average of the measurements for the three samples was determined as the dielectric constant of the samples. The relative dielectric constant of the pressure-sensitive adhesive layer at a frequency of 100 kHz was measured under the following conditions according to JIS K 6911.
- Measurement method: capacitance method (instrument: 4294A Precision Impedance Analyzer, Agilent Technologies)
- Electrode structure: 12.1 mmφ, 0.5 mm thick aluminum plate
- Counter electrode: 3 oz copper plate
- Measurement environment: 23±1° C., 52±1% RH
- A 25-μm-thick, PET film (Toray industries Inc., Lumirror S10) was bonded to the pressure-sensitive adhesive surface of the sample obtained in each of the examples and the comparative examples to form an evaluation sample. The evaluation sample was cut into a piece of 20 mm in width and about 100 mm in length. The PET film was then peeled off from the sample piece. The resulting pressure-sensitive adhesive layer was bonded to a 0.5 mm thick non-alkali glass plate (1737, manufactured by Corning Incorporated) by a reciprocating motion of a 2 kg roller. After allowed to stand at room temperature (23° C.) for 1 hour, the pressure-sensitive adhesive layer was measured for peel adhesive strength at a peel angle of 90° and a peel rate of 300 mm/minute.
- The pressure-sensitive adhesive sheet obtained in each of the examples and the comparative examples was bonded to one side of a non-alkali glass plate with a total light transmittance of 93.3% and a haze of 0.1%. The haze and the total light transmittance of the resulting laminate were measured with a haze meter (MR-100 manufactured by MURAKAMI COLOR RESEARCH LABORATORY). For the measurement with the haze meter, the pressure-sensitive adhesive sheet was placed on the light source side. The haze value of the non-alkali glass, 0.1%, was subtracted from the measured value when the haze value of the pressure-sensitive adhesive sheet was determined. The measured value was used as the total light transmittance (%) of the pressure-sensitive adhesive sheet.
- <Change in Haze after Humidification>
- A transparent conductive film (a film composed of a 50-μm-thick PET film and ITO vapor-deposited thereon) was provided. The pressure-sensitive adhesive layer (obtained by peeling off the silicone-treated PET film from the pressure-sensitive adhesive sheet) was bonded to the surface of the transparent conductive film opposite to its surface where the ITO was vapor-deposited. The resulting pressure-sensitive adhesive layer-carrying transparent conductive film was bonded to an alkali glass plate with a haze of 0.2% and then held in an autoclave at 50° C. and 5 atm for 15 minutes. Subsequently, the haze (H1) of the pressure-sensitive adhesive layer-carrying transparent conductive film was measured in such an arrangement that the ITO side of the film was placed on the light source side. After the measurement of the haze, the pressure-sensitive adhesive layer-carrying transparent conductive film was placed in a humidifying oven at 60° C. and 95% R.H. and stored for 250 hours. After the storage, the film was taken out of the oven and allowed to stand at room temperature (23° C.) for 3 hours. The haze (H2) of the pressure-sensitive adhesive layer-carrying transparent conductive film was then measured under the same conditions. A change in haze was calculated by subtracting the haze (H1) from the haze (H2). The results are shown in Tables 1 and 2. The change in haze is preferably less than 1.5%, more preferably 1.4% or less, even more preferably 1.3% or less.
-
TABLE 1 Pressure-sensitive adhesive composition (Meth)acryl- Pressure-sensitive Evaluations based polymer Crosslinking adhesive layer Total light Change in Monomer type and agent Thick- Gel Adhesive transmit- haze after component ratio Content ness fraction Dielectric strength tance humidifi- (weight ratio) Type (weight parts) (μm) (%) constant (N/20 mm) Haze (%) cation Example 1 IDM/NVC/HEA = D110N 0.50 25 84.7 2.66 7.50 0.3 92.4 0.6 80/20/10 Example 2 IDM/NVC/HEA = D110N 0.20 25 75.4 2.75 7.00 0.3 92.2 0.5 80/20/15 Example 3 IDM/NVC/HEA = D110N 0.20 25 81.2 2.90 6.80 0.3 92 0.3 80/20/20 Example 4 IDM/NVC/HEA = D110N 0.55 25 83.0 2.50 6.88 0.2 92.3 1.1 85/15/10 Example 5 IDM/NVC/HEA = D110N 0.30 25 83.7 2.90 7.50 0.2 92.9 0.9 85/15/15 Example 6 IDM/NVC/HEA = D110N 0.50 25 81.3 3.05 8.02 0.2 92.9 0.8 85/15/20 Example 7 IDM/NVC/HEA = D110N 0.15 25 69.6 3.28 12.20 0.2 92.8 0.6 85/15/25 Example 8 IDM/NVC/HBA = D110N 0.75 25 77.0 2.36 8.11 0.3 91.9 0.4 80/20/1 Example 9 IDM/NVC/HBA = D110N 0.20 25 81.5 2.65 8.80 0.3 92.7 0.2 80/20/10 Example 10 IDM/NVC/HBA = D110N 0.20 25 84.3 2.89 10.20 0.3 92.7 0.0 80/20/20 Example 11 IDM/NVP/HBA = D110N 0.20 25 80.2 2.75 7.90 0.3 92.9 1.0 90/10/10 Example 12 LMA/NVC/HBA = D110N 0.50 25 70.0 2.55 6.90 0.4 92.5 0.6 80/20/10 Example 13 TDMA/NVC/HBA = D110N 0.35 25 70.0 2.47 5.80 0.4 92.1 0.5 70/30/10 Comparative BA/HBA = D110N 0.50 25 87.9 5.30 3.21 0.2 93.6 2.0 Example 1 100/3 Comparative i-OA/HBA = D110N 0.50 25 76.9 3.57 3.00 0.6 93.5 — Example 2 100/1 Comparative i-AA/HBA = D110N 0.50 25 88.7 4.00 3.65 0.4 93.0 — Example 3 100/1 Comparative i-NA/HBA = D110N 0.50 25 81.9 3.55 2.25 0.8 92.7 2.1 Example 4 100/1 Comparative 2EHA/HBA = D110N 0.50 25 79.0 3.70 2.81 0.2 93.0 1.9 Example 5 100/1 Comparative BA/LA/HBA = D110N 0.50 25 85.7 3.95 1.02 0.6 93.1 — Example 6 60/40/1 Comparative BA/STA/HBA = D110N 0.50 25 80.9 4.01 1.15 0.8 93.2 — Example 7 60/40/1 Comparative OA/DA/HBA = D110N 0.50 25 71.1 3.74 0.50 1.0 93.3 — Example 8 50/50/1 Comparative BA/STA/HBA = D110N 0.50 25 80.9 4.01 1.18 0.8 93.2 — Example 9 60/40/1 Comparative 2EHA/LA/HBA = D110N 0.50 25 77.6 3.57 1.33 1.0 92.8 — Example 10 55/45/1 Comparative 2EHA/NVP/HBA = D110N 0.50 25 82.0 3.21 7.89 2.0 92.1 1.7 Example 11 70/30/1 -
TABLE 2 Pressure-sensitive adhesive composition Monofunctional Pressure-sensitive Evaluations monomer Polyfunctional adhesive layer Total light Change in Monomer type and monomer Thick- Gel Adhesive transmit- haze after component ratio Content ness fraction Dielectric strength tance humidifi- (weight ratio) Type (weight parts) (μm) (%) constant (N/20 mm) Haze (%) cation Example 14 2EHA/ISTA/NVP/HBA = TMPTA 0.035 100 86.8 2.93 8.2 0.7 92.3 0.1 39/39/18/4 Example 15 2EHA/ISTA/NVP/HBA = TMPTA 0.01 100 87.0 3.10 33.0 0.6 92.4 1.2 38/38/14/10 Example 16 2EHA/ISTA/NVP/HBA = TMPTA 0.035 175 85.7 3.10 17.1 0.6 92.4 0.4 49/32/18/1 Example 17 i-NA/ISTA/NVP/HBA = TMPTA 0.01 100 78.0 3.11 35.2 0.8 92.2 0.1 47/31/18/4 Example 18 2EHA/ISTA/NVC/HBA = TMPTA 0.035 100 86.1 2.89 6.1 0.5 92.3 1.3 39/39/18/4 Example 19 2EHA/ISTA/NVP/HBA = TMPTA 0.035 100 89.5 2.90 25.2 0.6 92.4 1.0 39/39/18/4 Example 20 i-NA/ISTA/NVP/HBA = TMPTA 0.035 100 90.1 2.94 28.8 0.6 92.3 1.1 39/39/18/4 Example 21 2EHA/IDA/NVC/HBA = TMPTA 0.15 100 97.8 3.34 6.5 0.8 92.2 0.3 39/39/18/4 Example 22 2EHA/ISTA/NVP = TMPTA 0.035 175 83.8 2.88 18.8 0.7 92.3 0.7 41/41/18 Example 23 2EHA/ISTA/NVP/HBA = TMPTA 0.035 175 87.3 2.90 20.3 0.6 92.4 0.6 40.5/40.5/18/1 Example 24 2EHA/ISTA/NVP/HBA = TMPTA 0 175 51.9 2.97 22.2 0.8 92.3 0.2 39/39/18/4 - In Tables 1 and 2, IDM represents isodecyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., homopolymer Tg=−41° C.);
- LMA represents lauryl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., homopolymer Tg=−65° C.);
- TDMA represents tridecyl methacrylate (manufactured by Sartomer, homopolymer Tg=−40° C.);
- ISTA represents isostearyl acrylate (manufactured by Osaka Organic Chemical Industry Ltd., homopolymer Tg=−18° C.);
- IDA represents isodecyl acrylate (manufactured by Sartomer, homopolymer Tg=−60° C.);
- NVC represents N-vinyl-ε-caprolactam (manufactured by BASF);
- NVP represents N-vinyl-2-pyrrolidone (manufactured by NIPPON SHOKUBAI CO., LTD.);
- TMPTA represents trimethylolpropane triacrylate;
- i-OA represents isooctyl acrylate (manufactured by Osaka Organic Chemical Industry Ltd., homopolymer Tg=−58° C.);
- i-AA represents isoamyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., homopolymer Tg=−45° C.);
- i-NA represents isononyl acrylate (manufactured by Osaka Organic Chemical Industry Ltd., homopolymer Tg=−58° C.);
- 2EHA represents 2-ethylhexyl acrylate (manufactured by TOAGOSEI CO., LTD., homopolymer Tg=−70° C.);
- LA represents lauryl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., homopolymer Tg=−3° C.);
- STA represents stearyl acrylate (manufactured by Osaka Organic Chemical Industry Ltd., homopolymer Tg=30° C.);
- HEA represents 2-hydroxyethyl acrylate;
- HBA represents 4-hydroxybutyl acrylate;
- BA represents butyl acrylate;
- OA represents octyl acrylate;
- and DA represents decyl acrylate.
- D110N represents a trimethylolpropane adduct of xylylene diisocyanate (D110N (trade name) manufactured by Mitsui Chemicals, Inc.).
-
-
- Reference sign 1 represents a capacitance touch panel;
- 11 represents a decorative panel;
- 12 represents an adhesive layer or an adhesive sheet;
- 13 represents an ITO film;
- and 14 represents a hard coated film.
Claims (14)
1.-19. (canceled)
20. A pressure-sensitive adhesive sheet, comprising a transparent conductive film as a support and a pressure-sensitive adhesive layer formed on at least one side of the transparent conductive film,
wherein the pressure-sensitive adhesive layer is obtained from a pressure-sensitive adhesive composition,
wherein the pressure-sensitive adhesive composition comprises a (meth)acryl-based polymer obtained by polymerization of a monomer component including 30 to 99.5% by weight of an alkyl (meth)acrylate having an alkyl group of 10 to 18 carbon atoms at an ester end and 0.5 to 50% by weight of a cyclic nitrogen-containing monomer.
21. The pressure-sensitive adhesive sheet according to claim 20 , wherein the alkyl group of the alkyl (meth)acrylate having the alkyl group of 10 to 18 carbon atoms at the ester end is a branched alkyl group.
22. The pressure-sensitive adhesive sheet according to claim 20 , wherein the alkyl (meth)acrylate having the alkyl group of 10 to 18 carbon atoms at the ester is an alkyl methacrylate having an alkyl group of 10 to 18 carbon atoms at the ester end.
23. The pressure-sensitive adhesive sheet according to claim 20 , wherein the alkyl (meth)acrylate having the alkyl group of 10 to 18 carbon atoms at the ester is an alkyl acrylate having an alkyl group of 10 to 18 carbon atoms at the ester end.
24. The pressure-sensitive adhesive sheet according to claim 20 , wherein the monomer component further includes 0.5% by weight or more of at least one functional group-containing monomer selected from a carboxyl group-containing monomer, a hydroxyl group-containing monomer, and a cyclic ether group-containing monomer.
25. The pressure-sensitive adhesive sheet according to claim 20 , wherein the monomer component further includes 0.5% or more by weight of at least one selected from an alkyl (meth)acrylate having an alkyl group of 1 to 9 carbon atoms at an ester end and an alkyl (meth)acrylate having a cyclic alkyl group at an ester end.
26. The pressure-sensitive adhesive sheet according to claim 20 , wherein the monomer component further includes 3% or less by weight of a polyfunctional monomer.
27. The pressure-sensitive adhesive sheet according to claim 20 , wherein the pressure-sensitive adhesive composition comprises 0.01 to 5 parts by weight of a crosslinking agent based on 100 parts by weight of the (meth)acryl-based polymer.
28. The pressure-sensitive adhesive sheet according to claim 20 , wherein the pressure-sensitive adhesive layer has a relative dielectric constant of 3.5 or less at a frequency of 100 kHz.
29. The pressure-sensitive adhesive sheet according to claim 20 , wherein the pressure-sensitive adhesive layer has a gel fraction of 20 to 98% by weight.
30. The pressure-sensitive adhesive sheet according to claim 20 , wherein the pressure-sensitive adhesive layer has a haze of 2% or less when having a thickness of 25 μm.
31. The pressure-sensitive adhesive sheet according to claim 20 , wherein the pressure-sensitive adhesive layer has a total light transmittance of 90% or more.
32. The pressure-sensitive adhesive sheet according to claim 20 , which has an adhesive strength of 0.5 N/20 mm or more to alkali glass at a peel angle of 90° and a peel rate of 300 mm/minute.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/266,653 US20170002235A1 (en) | 2011-09-30 | 2016-09-15 | Adhesive, adhesive layer, and adhesive sheet |
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011217115 | 2011-09-30 | ||
| JP2011-217115 | 2011-09-30 | ||
| JP2012092125A JP5426715B2 (en) | 2011-09-30 | 2012-04-13 | Adhesive, adhesive layer, and adhesive sheet |
| JP2012-092125 | 2012-04-13 | ||
| PCT/JP2012/073354 WO2013047210A1 (en) | 2011-09-30 | 2012-09-12 | Adhesive, adhesive layer and adhesive sheet |
| US201414348170A | 2014-03-28 | 2014-03-28 | |
| US15/266,653 US20170002235A1 (en) | 2011-09-30 | 2016-09-15 | Adhesive, adhesive layer, and adhesive sheet |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/348,170 Division US9657197B2 (en) | 2011-09-30 | 2012-09-12 | Adhesive, adhesive layer, and adhesive sheet |
| PCT/JP2012/073354 Division WO2013047210A1 (en) | 2011-09-30 | 2012-09-12 | Adhesive, adhesive layer and adhesive sheet |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170002235A1 true US20170002235A1 (en) | 2017-01-05 |
Family
ID=47995244
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/348,170 Expired - Fee Related US9657197B2 (en) | 2011-09-30 | 2012-09-12 | Adhesive, adhesive layer, and adhesive sheet |
| US15/266,653 Abandoned US20170002235A1 (en) | 2011-09-30 | 2016-09-15 | Adhesive, adhesive layer, and adhesive sheet |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/348,170 Expired - Fee Related US9657197B2 (en) | 2011-09-30 | 2012-09-12 | Adhesive, adhesive layer, and adhesive sheet |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US9657197B2 (en) |
| EP (1) | EP2762544A1 (en) |
| JP (1) | JP5426715B2 (en) |
| KR (1) | KR101543975B1 (en) |
| CN (1) | CN103764781A (en) |
| TW (1) | TWI557198B (en) |
| WO (1) | WO2013047210A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190010368A1 (en) * | 2016-01-13 | 2019-01-10 | 3M Innovative Properties Company | Pressure-sensitive adhesive composition and article thereof |
| US12455407B2 (en) | 2016-03-03 | 2025-10-28 | Samsung Sdi Co., Ltd. | Adhesive film, optical member comprising the same and optical display comprising the same |
Families Citing this family (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5702440B2 (en) * | 2013-06-13 | 2015-04-15 | アイカ工業株式会社 | Adhesive composition |
| JP5700466B2 (en) * | 2013-07-19 | 2015-04-15 | 日東電工株式会社 | Re-peeling adhesive composition, adhesive sheet and tape |
| JP2015040215A (en) * | 2013-08-20 | 2015-03-02 | 積水化学工業株式会社 | Tacky adhesive composition for touch panel, and tacky-adhesive tape for touch panel |
| JP6161994B2 (en) * | 2013-08-21 | 2017-07-12 | 綜研化学株式会社 | Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive sheet, image display device and input / output device |
| KR20150026793A (en) | 2013-08-28 | 2015-03-11 | 후지모리 고교 가부시키가이샤 | Adhesive layer for electrical insulation, adhesive film for electrical insulation, and optical member attached with the same |
| DE102013219491A1 (en) * | 2013-09-27 | 2015-04-02 | Tesa Se | Reversible PSA |
| JP6162033B2 (en) * | 2013-11-29 | 2017-07-12 | 綜研化学株式会社 | Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive sheet, and image display device |
| JP6235346B2 (en) * | 2014-01-06 | 2017-11-22 | 積水化学工業株式会社 | Adhesive composition, adhesive tape and laminate |
| JP6344929B2 (en) * | 2014-02-25 | 2018-06-20 | 積水化学工業株式会社 | Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive sheet, and optical laminate |
| JP6092802B2 (en) | 2014-03-20 | 2017-03-08 | 藤森工業株式会社 | Method for producing pressure-sensitive adhesive film, pressure-sensitive adhesive composition, and pressure-sensitive adhesive film |
| JP6241345B2 (en) * | 2014-03-26 | 2017-12-06 | 東洋インキScホールディングス株式会社 | Adhesive and adhesive sheet |
| WO2015198947A1 (en) * | 2014-06-27 | 2015-12-30 | 富士フイルム株式会社 | Adhesive composition, adhesive sheet, adhesive film, laminate for touch panels, and capacitive touch panel |
| WO2016027580A1 (en) * | 2014-08-18 | 2016-02-25 | 富士フイルム株式会社 | Actinic-ray-curable resin composition, optical member, pressure-sensitive adhesive sheet, laminate for touch panel, and capacitive touch panel |
| JP6526951B2 (en) * | 2014-08-29 | 2019-06-05 | スリーエム イノベイティブ プロパティズ カンパニー | Optically transparent adhesive and optical laminate |
| JP6336897B2 (en) | 2014-12-09 | 2018-06-06 | 藤森工業株式会社 | Adhesive layer and adhesive film |
| JP6651855B2 (en) * | 2014-12-25 | 2020-02-19 | 三菱ケミカル株式会社 | Pressure-sensitive adhesive composition, pressure-sensitive adhesive, pressure-sensitive adhesive sheet, double-sided pressure-sensitive adhesive sheet, pressure-sensitive adhesive for transparent electrode, touch panel, and image display device |
| CN107407986B (en) * | 2015-03-04 | 2020-04-14 | 富士胶片株式会社 | Adhesive sheets for touch panels, laminates for touch panels, capacitive touch panels |
| JPWO2016158577A1 (en) * | 2015-04-02 | 2018-03-15 | 綜研化学株式会社 | Transparent conductive sheet, touch panel module and touch panel device |
| JP6944759B2 (en) * | 2015-10-13 | 2021-10-06 | 日東電工株式会社 | Polarizing plate with adhesive layer |
| KR102021449B1 (en) * | 2016-01-05 | 2019-09-17 | 주식회사 엘지화학 | Optically clear adhesive film for touch screen panel |
| JP6804310B2 (en) * | 2016-03-07 | 2020-12-23 | 日東電工株式会社 | Optical adhesive sheet, polarizing film with adhesive layer, and liquid crystal display |
| WO2017154226A1 (en) * | 2016-03-09 | 2017-09-14 | 三菱樹脂株式会社 | Adhesive film and method for producing same |
| KR102061117B1 (en) * | 2016-03-16 | 2020-01-02 | 주식회사 엘지화학 | Clear adhesives for touch panel |
| JP6314336B2 (en) * | 2016-03-17 | 2018-04-25 | 藤森工業株式会社 | Electrical insulating pressure-sensitive adhesive layer, electrical insulating pressure-sensitive adhesive film, and optical member on which it is bonded |
| KR102340259B1 (en) * | 2016-09-09 | 2021-12-16 | 미쯔비시 케미컬 주식회사 | Acrylic pressure-sensitive adhesive composition, pressure-sensitive adhesive and pressure-sensitive adhesive sheet |
| KR20190055207A (en) * | 2016-09-30 | 2019-05-22 | 닛토덴코 가부시키가이샤 | An optical pressure-sensitive adhesive layer, a production method of an optical pressure-sensitive adhesive layer, an optical film having a pressure-sensitive adhesive layer, and an image display device |
| JP6921836B2 (en) * | 2016-09-30 | 2021-08-18 | 日東電工株式会社 | Optical adhesive layer, manufacturing method of optical adhesive layer, optical film with adhesive layer, and image display device |
| JP6914644B2 (en) * | 2016-12-05 | 2021-08-04 | 日東電工株式会社 | Resin layer and laminated sheet |
| KR102353699B1 (en) * | 2017-06-23 | 2022-01-19 | 엘지디스플레이 주식회사 | Display device with integrated touch screen |
| JP7193227B2 (en) * | 2017-09-06 | 2022-12-20 | 日東電工株式会社 | Adhesive composition for organic EL display device, adhesive layer for organic EL display device, polarizing film with adhesive layer for organic EL display device, and organic EL display device |
| JP6514378B2 (en) * | 2018-01-24 | 2019-05-15 | 藤森工業株式会社 | Adhesive layer for electrical insulation, adhesive film for electrical insulation, and optical member bonded thereto |
| CN108912357B (en) * | 2018-06-06 | 2021-02-19 | 上海海事大学 | APU/Cu flexible composite film with dielectric constant and preparation method and application thereof |
| JP7132875B2 (en) * | 2019-03-01 | 2022-09-07 | 日東電工株式会社 | Adhesive composition for organic EL display device, adhesive layer for organic EL display device, polarizing film with adhesive layer for organic EL display device, and organic EL display device |
| JP6740416B2 (en) * | 2019-04-10 | 2020-08-12 | 藤森工業株式会社 | Electric insulation pressure-sensitive adhesive layer, electric insulation pressure-sensitive adhesive film, and optical member having the same laminated thereto |
| KR102475967B1 (en) * | 2019-07-19 | 2022-12-08 | 주식회사 엘지화학 | Adhesive coposition, protective film comprising same, foldable display device comprising same and manufacturing method of protective film |
| WO2021053430A1 (en) * | 2019-09-20 | 2021-03-25 | 3M Innovative Properties Company | High temperature sterilizable adhesive articles |
| US20220162359A1 (en) * | 2019-10-16 | 2022-05-26 | Lg Chem, Ltd. | Curable Composition |
| JP2021080383A (en) * | 2019-11-20 | 2021-05-27 | 日東電工株式会社 | Double-sided adhesive tape |
| WO2021167090A1 (en) * | 2020-02-21 | 2021-08-26 | 日東電工株式会社 | Adhesive layer, laminate, optical laminate, method for producing optical laminate, and optical device |
| JP7047024B2 (en) * | 2020-07-21 | 2022-04-04 | 藤森工業株式会社 | Adhesive layer for electrical insulation, adhesive film for electrical insulation, and optical members to which it is attached |
| CN112280488A (en) * | 2020-10-29 | 2021-01-29 | 合肥乐凯科技产业有限公司 | Polyester film protective film |
| KR102494365B1 (en) * | 2020-12-02 | 2023-02-06 | 한국전자기술연구원 | Low-dielectric thermosetting resin composition and low-dielectric material prepared therefrom |
| JP7726670B2 (en) * | 2021-05-21 | 2025-08-20 | 日東電工株式会社 | Optical adhesive sheet |
| KR20240140927A (en) | 2022-01-31 | 2024-09-24 | 닛토덴코 가부시키가이샤 | Adhesive composition, adhesive layer and adhesive sheet |
| KR20240146000A (en) | 2022-01-31 | 2024-10-07 | 닛토덴코 가부시키가이샤 | optical laminate |
| JP2023111603A (en) | 2022-01-31 | 2023-08-10 | 日東電工株式会社 | Adhesive composition, adhesive layer, and adhesive sheet |
| JP2024179974A (en) * | 2023-06-16 | 2024-12-26 | 日東電工株式会社 | Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, pressure-sensitive adhesive sheet, optical member with pressure-sensitive adhesive layer, image display device, and touch panel |
| KR20250151148A (en) | 2024-04-12 | 2025-10-21 | 오지 홀딩스 가부시키가이샤 | Adhesive Sheet and Display with Touch Sensor |
| JP2025161356A (en) | 2024-04-12 | 2025-10-24 | 王子ホールディングス株式会社 | Adhesive sheet and touch sensor display |
| CN119193030A (en) * | 2024-10-08 | 2024-12-27 | 广东皇冠新材料科技有限公司 | Optical adhesive sheet for protective film |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110039099A1 (en) * | 2008-02-21 | 2011-02-17 | Sherman Audrey A | Temporarily repositionable pressure sensitive adhesive blends |
Family Cites Families (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4818610A (en) * | 1986-08-29 | 1989-04-04 | Minnesota Mining And Manufacturing Company | Unified pressure-sensitive adhesive tape |
| US4812541A (en) * | 1987-12-23 | 1989-03-14 | Avery International Corporation | High performance pressure-sensitive adhesive polymers |
| US4988567A (en) * | 1990-02-27 | 1991-01-29 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
| JPH04153284A (en) * | 1990-10-17 | 1992-05-26 | Nitto Denko Corp | Tape for surface protection |
| JPH04153285A (en) * | 1990-10-17 | 1992-05-26 | Nitto Denko Corp | Binding tape |
| TW221061B (en) * | 1991-12-31 | 1994-02-11 | Minnesota Mining & Mfg | |
| US5683798A (en) * | 1993-11-10 | 1997-11-04 | Minnesota Mining And Manufacturing Company | Tackified pressure sensitive adhesives |
| JP3281490B2 (en) * | 1994-09-30 | 2002-05-13 | 日東電工株式会社 | Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet or sheet using the composition |
| JP2002363530A (en) | 2001-06-04 | 2002-12-18 | Daicel Chem Ind Ltd | Heat-sensitive adhesive composition for electronic materials, laminate, and method for producing the same |
| US6686425B2 (en) * | 2001-06-08 | 2004-02-03 | Adhesives Research, Inc. | High Tg acrylic polymer and epoxy-containing blend therefor as pressure sensitive adhesive |
| WO2003014247A1 (en) * | 2001-08-10 | 2003-02-20 | Cosmed. Co., Ltd. | Pressure-sensitive adhesive for the skin and tapes or sheets for the skin made by using the same |
| JP3880418B2 (en) | 2002-02-21 | 2007-02-14 | 日東電工株式会社 | Method for sticking and fixing double-sided adhesive sheet and touch panel to display device |
| JP4151828B2 (en) | 2002-05-29 | 2008-09-17 | 日東電工株式会社 | Double-sided adhesive sheet and display device with touch panel |
| JP4493273B2 (en) | 2003-01-29 | 2010-06-30 | 日東電工株式会社 | Double-sided adhesive sheet and display device with touch panel |
| JP4645797B2 (en) * | 2004-04-23 | 2011-03-09 | 株式会社スリーボンド | Photo-curable resin composition for difficult-to-adhere materials |
| US20090275705A1 (en) * | 2005-03-28 | 2009-11-05 | Kaneka Corporation | Acrylic Block Copolymer and Reactive Hot-Melt Adhesive Compositions |
| KR100830814B1 (en) * | 2005-10-14 | 2008-05-20 | 주식회사 엘지화학 | Acrylic pressure-sensitive adhesive composition |
| JP4869015B2 (en) * | 2005-10-18 | 2012-02-01 | 日東電工株式会社 | Adhesive composition, adhesive layer and method for producing the same, and optical member with adhesive |
| JP5085028B2 (en) * | 2005-10-20 | 2012-11-28 | 日東電工株式会社 | Adhesive optical film and method for producing the same |
| US20090169817A1 (en) * | 2006-06-02 | 2009-07-02 | Nitto Denko Corporation | Polymer articles with Polymer layer containing incompatible material unevenly distributed and surface-roughened tape or sheet comprising the polymer articles |
| EP2279229A2 (en) * | 2008-04-11 | 2011-02-02 | 3M Innovative Properties Company | Transparent adhesive sheet and image display device including the same |
| CN101586006A (en) | 2008-05-23 | 2009-11-25 | 日东电工株式会社 | Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for producing the same |
| JP5480477B2 (en) | 2008-05-23 | 2014-04-23 | 日東電工株式会社 | Adhesive composition, adhesive sheet and method for producing the same |
| JP5616005B2 (en) * | 2008-06-02 | 2014-10-29 | スリーエム イノベイティブ プロパティズ カンパニー | Adhesive composition and adhesive tape |
| KR101344590B1 (en) | 2009-06-18 | 2013-12-26 | 닛토덴코 가부시키가이샤 | Pressure-sensitive adhesive sheet for optical use |
| KR101938894B1 (en) | 2010-03-18 | 2019-01-15 | 세키스이가가쿠 고교가부시키가이샤 | Pressure-sensitive adhesive composition for optical members and pressure-sensitive adhesive tape for optical members |
| JP5758647B2 (en) | 2011-02-17 | 2015-08-05 | 日東電工株式会社 | Optical adhesive sheet |
| JP5469194B2 (en) * | 2011-05-02 | 2014-04-09 | 日東電工株式会社 | Adhesive, adhesive layer, and adhesive sheet |
| EP2573149A1 (en) | 2011-09-26 | 2013-03-27 | 3M Innovative Properties Company | Multilayer pressure-sensitive adhesive films with a (meth)acrylic-based elastomeric material |
| JP2014173065A (en) * | 2013-03-12 | 2014-09-22 | Nitto Denko Corp | Adhesive, adhesive layer, adhesive sheet, and touch panel |
-
2012
- 2012-04-13 JP JP2012092125A patent/JP5426715B2/en active Active
- 2012-09-12 WO PCT/JP2012/073354 patent/WO2013047210A1/en not_active Ceased
- 2012-09-12 CN CN201280040087.4A patent/CN103764781A/en active Pending
- 2012-09-12 EP EP12837537.5A patent/EP2762544A1/en not_active Withdrawn
- 2012-09-12 KR KR1020147000463A patent/KR101543975B1/en active Active
- 2012-09-12 US US14/348,170 patent/US9657197B2/en not_active Expired - Fee Related
- 2012-09-25 TW TW101135185A patent/TWI557198B/en active
-
2016
- 2016-09-15 US US15/266,653 patent/US20170002235A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110039099A1 (en) * | 2008-02-21 | 2011-02-17 | Sherman Audrey A | Temporarily repositionable pressure sensitive adhesive blends |
Non-Patent Citations (1)
| Title |
|---|
| Masahito, Niwa et al., "Pressure-Sensitive Adhesive Composition, Pressure-Sensitive Adhesive Sheet, and Method For Producing The Same", machine translation of CN 1015860006A, published 11/25/2009. * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190010368A1 (en) * | 2016-01-13 | 2019-01-10 | 3M Innovative Properties Company | Pressure-sensitive adhesive composition and article thereof |
| US12455407B2 (en) | 2016-03-03 | 2025-10-28 | Samsung Sdi Co., Ltd. | Adhesive film, optical member comprising the same and optical display comprising the same |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2762544A4 (en) | 2014-08-06 |
| KR101543975B1 (en) | 2015-08-11 |
| JP5426715B2 (en) | 2014-02-26 |
| JP2013082880A (en) | 2013-05-09 |
| US9657197B2 (en) | 2017-05-23 |
| KR20140022458A (en) | 2014-02-24 |
| CN103764781A (en) | 2014-04-30 |
| US20140248489A1 (en) | 2014-09-04 |
| TWI557198B (en) | 2016-11-11 |
| EP2762544A1 (en) | 2014-08-06 |
| WO2013047210A1 (en) | 2013-04-04 |
| TW201317314A (en) | 2013-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9657197B2 (en) | Adhesive, adhesive layer, and adhesive sheet | |
| US10308844B2 (en) | Pressure-sensitive adhesive, pressure-sensitive adhesive layer, and pressure-sensitive adhesive sheet | |
| US9650547B2 (en) | Radiation-curable pressure-sensitive adhesive, radiation-curable pressure-sensitive adhesive layer, radiation-curable pressure-sensitive adhesive sheet, and laminate | |
| US20130251990A1 (en) | Pressure-sensitive adhesive, pressure-sensitive adhesive layer, and pressure-sensitive adhesive sheet | |
| US20140272201A1 (en) | Pressure-sensitive adhesive, pressure sensitive adhesive layer, pressure-sensitive adhesive sheet, and touch panel | |
| US20140134432A1 (en) | Adhesive agent composition, adhesive agent layer, and adhesive sheet | |
| US20140044961A1 (en) | Pressure-sensitive adhesive, pressure-sensitive adhesive layer, and pressure-sensitive adhesive sheet | |
| US20150004407A1 (en) | Pressure-sensitive adhesive, pressure-sensitive adhesive layer, and pressure-sensitive adhesive sheet | |
| US20140039128A1 (en) | Radiation-curable pressure-sensitive adhesive layer, and radiation-curable pressure-sensitive adhesive sheet | |
| US20140093726A1 (en) | Adhesive composition, adhesive layer, and adhesive sheet | |
| JP5932857B2 (en) | Adhesive, adhesive layer, and adhesive sheet | |
| US20160185083A1 (en) | Pressure-sensitive-adhesive-layer-attached polarizing film, and image display device | |
| US20150010754A1 (en) | Pressure-sensitive adhesive, pressure-sensitive adhesive layer, and pressure-sensitive adhesive sheet | |
| US20170121565A1 (en) | Transparent resin layer, pressure-sensitive-adhesive-layer-attached polarizing film, and image display device | |
| WO2016204154A1 (en) | Polarizing film with pressure-sensitive adhesive layers on both surfaces, and image display device | |
| JP6306679B2 (en) | Radiation curable adhesive, radiation curable adhesive layer, radiation curable adhesive sheet and laminate |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NITTO DENKO CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIGASHI, MASATSUGU;SHIGETOMI, KIYOE;SHITARA, KOJI;AND OTHERS;SIGNING DATES FROM 20161014 TO 20161031;REEL/FRAME:040412/0247 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |