US20160380496A1 - Multi-tunnel electric motor/generator - Google Patents
Multi-tunnel electric motor/generator Download PDFInfo
- Publication number
- US20160380496A1 US20160380496A1 US15/008,431 US201615008431A US2016380496A1 US 20160380496 A1 US20160380496 A1 US 20160380496A1 US 201615008431 A US201615008431 A US 201615008431A US 2016380496 A1 US2016380496 A1 US 2016380496A1
- Authority
- US
- United States
- Prior art keywords
- magnetic
- wall
- tunnel segment
- ring
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/26—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/145—Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/02—Machines with one stator and two or more rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
Definitions
- the invention relates in general to a new and improved electric motor/generator, and in particular to an improved system and method for producing rotary motion from a electro-magnetic motor or generating electrical power from a rotary motion input.
- Electric motors use electrical energy to produce mechanical energy, very typically through the interaction of magnetic fields and current-carrying conductors.
- the conversion of electrical energy into mechanical energy by electromagnetic means was first demonstrated by the British scientist Michael Faraday in 1821 and later quantified by the work of Hendrik Lorentz.
- a magnetic field is generated when electric charge carriers such as electrons move through space or within an electrical conductor.
- the geometric shapes of the magnetic flux lines produced by moving charge carriers (electric current) are similar to the shapes of the flux lines in an electrostatic field.
- Magnetic flux passes through most metals with little or no effect, with certain exceptions, notably iron and nickel. These two metals, and alloys and mixtures containing them, are known as ferromagnetic materials because they may be used to concentrate magnetic lines of flux.
- a central core of tightly wrapped current carrying material creates magnetic poles (known as the rotor) which spins or rotates at high speed between the fixed poles of a magnet (known as the stator) when an electric current is applied.
- the central core is typically coupled to a shaft which will also rotate with the rotor.
- the shaft may be used to drive gears and wheels in a rotary machine and/or convert rotational motion into motion in a straight line.
- Generators are usually based on the principle of electromagnetic induction, which was discovered by Michael Faraday in 1831. Faraday discovered that when an electrical conducting material (such as copper) is moved through a magnetic field (or vice versa), an electric current will begin to flow through that material. This electromagnetic effect induces voltage or electric current into the moving conductors.
- a motor/generator comprising: a rotor adapted to rotate about a longitudinal axis, the rotor comprising a plurality of magnetic tunnels, wherein the plurality of magnets forming each magnetic tunnel substantially have poles facing inward toward the semi-circular tunnel, when a rotor/stator is positioned within the tunnel, flux lines cross the tunnel from at least two directions, the semi-circular tunnel having an entrance and an exit, wherein the magnetic field of any magnetic tunnel is of an opposite polarity to the magnetic field of an adjacent magnetic tunnel.
- FIG. 1 is an exploded view of one embodiment of a motor/generator according to certain aspects of the present disclosure.
- FIG. 2 is a detailed isometric view of a component of the motor/generator illustrated in FIG. 1 .
- FIG. 3 is an exploded view of the component of FIG. 2 .
- FIG. 4A is an isometric view of a coil assembly illustrating a central iron core and a plurality of teeth extending from the iron core where a portion of the teeth have been removed for clarity.
- FIG. 4B is a detailed perspective view of a single tooth of the plurality of teeth of FIG. 4A .
- FIG. 4C is a detailed perspective view of an alternative embodiment for the single tooth of the plurality of teeth of FIG. 4A .
- FIG. 4D is an isometric view of the coil assembly of FIG. 4A coupled to a plurality of coil windings.
- FIG. 4E is an isometric view of the rotor/stator of FIG. 4A coupled to a plurality of coil windings showing all of the rotor/stator teeth.
- FIG. 5A illustrates a plurality of magnets forming one embodiment of a magnetic tunnel comprising eight magnetic cylinder segments.
- FIG. 5B is a detailed perspective view illustrating one embodiment of a magnetic cylinder segment.
- FIG. 5C is a detailed isometric view of one embodiment of a magnetic cylinder segment with a rotor/stator portion positioned therein illustrating the direction of the flux forces generated from the magnets comprising the magnetic cylinder segments.
- FIG. 5D is a detailed isometric view of one embodiment of a magnetic cylinder segment with a rotor/stator portion and a coil winding positioned therein illustrating the direction of the flux forces generated from the magnets and the direction of the current in the coil winding.
- FIG. 5E is a detailed isometric view of one embodiment of a magnetic cylinder segment of FIG. 5D illustrating the direction of force generated by the interaction of the flux forces generated by the magnets and the current in the windings.
- FIG. 6A is a perspective view of four magnetic cylinder segments arranged around a longitudinal axis having similar magnetic pole orientations.
- FIG. 6B is a detailed isometric view of one embodiment of a magnetic cylinder segment illustrating the magnets forming the segment have an opposite magnetic polarity to the magnets of the segment illustrated in FIG. 5C .
- FIG. 6C is an isometric view of the four magnetic cylinder segments with four additional magnetic cylinder segments where the four additional magnetic cylinder segments have a magnetic pole orientation opposite to the first four magnetic cylinder segments.
- FIG. 7A illustrates the magnetic cylinder of FIG. 6C coupled to a back iron circuit with a portion of the side back iron circuit removed fro clarity.
- FIG. 7B illustrates the magnetic cylinder of FIG. 6C coupled to a complete back iron circuit.
- FIG. 8 illustrates an exemplary switch circuit which may be used with certain embodiments of the present invention.
- FIG. 1 is an exploded perspective view of a motor/generator 100 illustrating a first portion of a back iron circuit 202 , a second portion of a back iron circuit 204 , a center hub 300 , and a magnetic disc 400 .
- the first portion back iron circuit 202 comprises a first cylindrical wall 206 made of back iron material.
- the first cylinder wall 206 may be coupled to a flat side wall 208 which is also made of back iron material.
- back iron may refer to iron or a soft magnetic material, such as any ferrous compound or alloy, such as stainless steel, any nickel or cobalt alloy, or any laminated metal comprising laminated sheets of such material.
- the second portion of the back iron circuit 204 similarly comprises a second cylindrical wall 210 coupled to a flat side wall 212 .
- the cylindrical walls 206 and 210 have slots (not shown) defined therein to allow the passage of control wires and/or electrical conductors.
- the hub 300 comprises an inner hub 302 for coupling to a mechanical load transferring device, such as a shaft (not shown).
- the hub 300 positions and structurally supports the magnetic disc 400 about the shaft (not shown).
- a plurality of radial arms 304 couple the inner hub 302 to an outer hub 306 .
- the out hub 306 also comprises a portion of the back iron circuit for the magnetic disc 400 .
- FIG. 2 is a detailed isometric view of the magnetic disc 400 .
- FIG. 3 is an exploded view of the magnetic disc 400 .
- An outer cylindrical wall or longitudinal ring of magnets 406 is longitudinally positioned between the first axial ring 402 and the second axial ring of magnets 404 .
- An inner cylindrical wall or longitudinal ring of magnets 408 is also longitudinally positioned between the first axial ring 402 and the second axial ring of magnets 408 and laterally positioned within the outer longitudinal ring of magnets 406 .
- the magnets forming the axial rings 402 - 404 and longitudinal rings 408 - 406 discussed herein may be made of out any suitable magnetic material, such as: neodymium, Alnico alloys, ceramic permanent magnets, or electromagnets.
- suitable magnetic material such as: neodymium, Alnico alloys, ceramic permanent magnets, or electromagnets.
- the exact number of magnets or electromagnets will be dependent on the required magnetic field strength or mechanical configuration.
- the illustrated embodiment is only one way of arranging the magnets, based on certain commercially available magnets. Other arrangements are possible, especially if magnets are manufactured for this specific purpose.
- a coil assembly 500 is laterally positioned between the outer longitudinal ring 406 and the inner longitudinal ring 408 and is longitudinally positioned between the first axial ring 402 and the second axial ring 404 .
- the coil assembly 500 may be a stator. In yet other embodiments, the coil assembly 500 may be a rotor.
- FIG. 4A there is a partial isometric view of a coil assembly support 502 , which in one embodiment, may be a portion of a stator used in conjunction with a rotor formed by the magnetic axial rings 402 - 404 and magnetic longitudinal cylindrical walls 406 - 408 and the back iron circuit portions 202 and 204 discussed above.
- the coil assembly support 502 comprises a cylindrical or ring core 504 coupled to a plurality of teeth 506 radially spaced about the ring core.
- FIG. 4A shows a portion of teeth 506 removed so that the ring core 504 is visible.
- the ring core 504 may be made out of iron or back iron materials so that it will act as a magnetic flux force concentrator. However, other core materials maybe used when design considerations such as mechanical strength, reduction of eddy currents, cooling channels, etc. are considered. As discussed above, back iron materials may be iron, an iron alloy, laminated steel iron or other soft magnet materials. In some embodiments, the ring core 504 may be hollow or have passages defined therein to allow liquid or air cooling.
- each tooth 506 a extends from the ring core 504 in radial (e.g., horizontal) and longitudinal (e.g., vertical) directions.
- each tooth 506 a comprises an outer vertical portion 510 extending radially away from the longitudinal axis 401 ( FIG.
- the ring core 504 is coupled to and supports the individual tooth 506 a.
- an exterior fin 520 couples to the exterior portion of the outer vertical member 510 and extends outward from the vertical portion 510 in both circumferential (or tangential) directions with respect to the longitudinal axis 401 .
- an interior fin 522 couples to an interior portion of the inner vertical portion 512 and extends outward from the vertical member 512 in both circumferential (or tangential) directions.
- the term “circumferential direction” means the tangential or rotational direction about an axis, such as axis 401 .
- FIG. 4C An alternative embodiment of an individual tooth 506 ′ a and a small portion of the ring core 504 are illustrated in FIG. 4C .
- the tooth 506 ′ a is similar to the tooth 506 a described above in reference to FIG. 4B except that the tooth 506 ′ a also has horizontal fins extending from the top horizontal portion 514 and the lower horizontal portion 516 .
- a top horizontal fin 518 extends in both horizontal circumferential directions from an edge of the top horizontal portion 514 .
- a bottom horizontal fin 519 extends in both horizontal circumferential directions from an edge of the bottom horizontal portion 516 . From a structural perspective the thickness of the fins 518 and 519 maybe thicker closer to the joint with the respective horizontal members 514 and 516 and tapers as the fins extend away from the joints.
- FIG. 4D (which omits a portion of the teeth 506 ) illustrates individual coils or coil windings 526 positioned radially about the ring core 504 and within the slots 524 formed by the teeth 506 or 506 ′.
- FIG. 4E illustrates a complete coil assembly 500 showing all of the teeth 506 and coil windings 526 positioned within the slots 524 .
- Each individual coil 526 in the coil assembly 500 may be made from a conductive material, such as copper (or a similar alloy) wire and may be constructed using conventional winding techniques known in the art. In certain embodiments, concentrated windings may be used. In certain embodiments, the individual coils 526 may be essentially cylindrical or rectangular in shape being wound around the ring core 504 having a center opening sized to allow the individual coil 526 to be secured to the ring core.
- a conductive material such as copper (or a similar alloy) wire and may be constructed using conventional winding techniques known in the art. In certain embodiments, concentrated windings may be used.
- the individual coils 526 may be essentially cylindrical or rectangular in shape being wound around the ring core 504 having a center opening sized to allow the individual coil 526 to be secured to the ring core.
- the coils are surrounded by a more substantial heat sink capabilities of the teeth which, in certain embodiments, can be can incorporate cooling passages directly into the material forming the teeth. This allows much higher current densities than conventional motor geometries. Additionally, positioning the plurality of coils 526 within the slots 524 and between teeth 506 reduces the air gap between the coils. By reducing the air gap, the coil assembly 500 can contribute to the overall torque produced by the motor or generator.
- the horizontal fins 518 and 519 , the circumferential fins 520 and 522 of the teeth 506 a or 506 ′ a of the coil assembly reduce the air gap between the structure of the coil to allow flux forces to flow from one fin to an adjacent fin when the coils are energized and the coil assembly 500 begins to move relative to the magnetic tunnel.
- all portions of the coil support assembly 502 contribute to the overall torque developed by the system.
- the number of individual coils 526 can be any number that will physically fit within the desired volume and of a conductor length and size that produces the desired electrical or mechanical output as known in the art.
- the coils 526 may be essentially one continuous coil, similar to a Gramme Ring as is known in the art.
- FIG. 5A is a perspective view of a toroidal magnetic cylinder 430 forming a ring-like magnetic tunnel positioned about the longitudinal axis 401 .
- the toroidal magnetic cylinder 430 comprises a top axial ring of side wall magnets 402 .
- An outer cylindrical wall or longitudinal ring of magnets 406 is positioned longitudinally between the first axial ring 402 and the second axial ring of magnets 404 .
- the outer longitudinal ring of magnets 406 may comprise an axial slot 410 to accommodate a support structure, a cooling mechanism, and/or wires and conductors.
- An inner cylindrical wall or longitudinal ring of magnets 408 is also longitudinally positioned between the first axial ring 402 and the second axial ring of magnets 408 and axially positioned within the outer longitudinal ring of magnets 406 .
- the inner longitudinal ring of magnets 408 may include an axial slot (similar to slot 410 , but not shown).
- the first axial ring 402 or the second axial ring of magnets 404 may include a side circular slot (not shown).
- Such slots are designed to accommodate a support structure, a cooling mechanism and/or wires or conductors.
- One advantage of a slot defined within the inner longitudinal ring of magnets 408 is that the inner longitudinal ring of magnets 408 produces less torque than the outer ring of magnets 406 . Thus, by using the full width of the outer longitudinal ring of magnets 408 , greater torque can be produced.
- the toroidal magnetic cylinder 430 comprises eight toroidal magnetic cylinder segments (or magnetic tunnel segments). In other embodiments, there may be two, four, six, ten, twelve segments or more. The number of segments will depend on the particular design and performance characteristics for particular application.
- FIG. 5B is a perspective view of a single toroidal magnetic cylinder segment 450 (or a magnetic tunnel segment) which defines a magnetic tunnel 458 or portion of a circular path.
- the toroidal magnetic cylinder segment 450 has an outer magnetic wall 452 (which is a portion of the outer cylinder wall 406 ) and an inner magnetic wall 454 (which is a portion of the inner magnetic cylinder wall 408 ).
- Axial wall 460 may be a portion of the first side or ring wall 402 and axial wall 462 may be a portion of the second side or ring wall 404 .
- the individual magnets in the magnetic walls 452 , 454 , 460 , and 462 all have their magnetic poles orientated towards or away from an interior of the tunnel 458 of the toroidal magnetic cylinder segment 450 to form a “closed” magnetic tunnel segment.
- the magnetic poles of the magnets forming the outer wall 452 and the inner wall 454 have their magnetic poles orientated to radially point towards the longitudinal axis 401 ( FIG. 5A ).
- the magnetic poles of the magnets forming the first axial wall 460 and the second axial wall 462 have their magnetic poles orientated parallel with the longitudinal axis 401 .
- closed magnetic tunnel refers to using a arrangement of the magnets forming the cylinder segment 450 that that “forces” or “bends” the flux forces from one side of the tunnel to the other (or in a circumferential direction) without letting most of the magnetic flux forces escape through a slot or other opening.
- the slot widths are limited to keep flux forces from exiting through the slots.
- additional magnets may be inserted into the slots to keep the flux forces channeled to a predetermined or a circumferential direction.
- FIG. 5C is an isometric view of the toroidal cylinder segment 450 having a portion of the coil assembly 500 positioned within the interior of the segment.
- the magnets forming the top axial wall 460 and the outer longitudinal wall 452 have their south magnetic poles facing towards the interior of the tunnel 458 .
- an “S” is placed on the side of the axial wall 460 and longitudinal 452 to indicate that their south poles are facing inward.
- the magnets forming the inner longitudinal wall 454 and the bottom axial wall 462 have their north magnetic poles facing towards the interior of the tunnel 458 (Thus, an “N” is placed on the side of the axial wall 462 and longitudinal 454 to indicate that their north poles are facing inward.).
- the flux lines tend to flow from the north poles of the magnetic walls directly across the coil assembly to the south poles on the opposing side of the magnetic walls.
- the top axial wall 460 is labeled with an “S” on its side face and an arrow 480 pointing towards the center of the toroidal segment 450 to represent the direction of the flux forces generated from the south poles of the magnet(s) forming the top axial wall 460 .
- the outer longitudinal wall 452 is labeled with an “S” on its side face and an arrow 482 pointing towards the center of the toroidal segment 450 to represent the direction of the flux forces generated from the south poles of the magnet(s) forming the outer longitudinal wall 452 .
- the bottom axial wall 462 is labeled with an “N” on its side face and an arrow 484 pointing towards the center of the toroidal segment 450 to represent the direction of the flux forces generated from the north poles of the magnet(s) forming the bottom axial wall 462 .
- the inner longitudinal wall 454 is labeled with an “N” on its side face and an arrow 486 pointing towards the center of the toroidal segment 450 to represent the direction of the flux forces generated from the north poles of the magnet(s) forming the inner longitudinal wall 454 .
- FIG. 5D is an isometric view of the toroidal cylinder segment 450 but with a coil 526 positioned around the portion of the coil assembly 500 .
- current from an external source (not shown) is applied to the coils, such as coil 526 .
- the current flows in a counterclockwise manner as illustrated by the arrow 488 which illustrates the current in the coil 526 flowing in an upwards direction.
- the current then flows in a right to left manner as illustrated by the arrow 490 when the current is in the upper portion of the coil 526 .
- the current flows in a downwardly direction as illustrated by arrow 492 when the current is in a vertical leg of the coil 526 .
- the current flows in a left to right manner when the current is in the lower portion of the coil 526 as illustrated by the arrow 494 .
- FIG. 5E is an isometric view of the cylinder segment 450 with the coil 526 positioned around the portion of the ring core 504 of the coil assembly 500 and the current flowing through the coil as explained above in reference to FIG. 5D .
- the magnets forming the outer cylindrical wall 452 generate a flux force in the direction of the arrow 482 and the current in the coil 526 flows in an upward direction relative to the illustration, a magnetic force will be generated in the direction of the arrow 602 according to the right hand rule of magnetic force.
- the magnets forming the lateral or top wall 460 generate a flux in the direction of the arrow 480 and the current in the coil 526 flows in a right-to-left direction relative to the illustration, a magnetic force will be generated in the direction of the arrow 604 .
- the magnets forming the longitudinal or inner cylindrical wall 454 generate a flux force in the direction of the arrow 486 and the current in the coil 526 flows in a downward direction relative to the illustration, a magnetic force will be generated in the direction of the arrow 606 .
- the magnets forming the lateral or bottom wall 462 generate a flux force in the direction of the arrow 484 and the current in the coil 526 flows in a left-to-right direction relative to the illustration, a magnetic force will be generated in the direction of the arrow 608 .
- the entire coil is used to generate the magnetic forces which will move the coil 526 relative to the cylinder segment 450 .
- the opposing poles of the magnets are usually aligned longitudinally.
- the magnetic flux lines will “hug” or closely follow the surface of the magnets. So, when using conventional power generating/utilization equipment, the clearances must usually be extremely tight in order to be able to act on these lines of force.
- aligning like magnetic poles radially or perpendicular to the coil assembly 500 the magnetic flux forces flow from the surface of the magnets across the coil assembly. This configuration allows for greater tolerances between coils and magnetic surfaces.
- the end turns in this case the radial section of the coils
- the axial length of the copper conductor is the section that produces power.
- the end turns are a penalty, adding weight and losses, but not producing power because the end region fields are not effectively linking the end windings.
- the entire coil winding is effectively producing torque due to the side wall or axial magnets which are axially magnetized. Therefore, essentially the entire conductor of the coils is active producing a greater force.
- each coil 526 are generally configured such that they remain transverse or perpendicular to the direction of the relative movement of the magnets comprising the coil assembly 500 and parallel with the longitudinal axis 401 .
- the coil windings are positioned such that their sides are parallel with the longitudinal axis and their ends are radially perpendicular to the longitudinal axis.
- the windings are also transverse with respect to the magnetic flux produced by the individual magnets of the rotor at their interior face as described above. Consequently, the entire coil winding or windings (including end turns) may be used to generate movement (in motor mode) or voltage (in generator mode).
- FIG. 6A illustrates four partial toroidal magnetic cylinders 450 a, 450 b, 450 c and 450 d arranged circumferentially around a common center or longitudinal axis 401 . This arrangement leaves four open spaces 610 a, 610 b, 610 c, and 610 d between the respective cylinder segments.
- FIG. 6C illustrates the complete toroidal magnetic cylinder 430 formed from combining the four toroidal magnetic cylinder segments 450 a - 450 d with the toroidal magnetic cylinder segments 420 a - 420 d in an alternating arrangement around the longitudinal axis 401 .
- the magnets creating the toroidal magnetic cylinder segments 450 a - 450 d are orientated in a specific geometric arrangement as discussed above in reference to FIG. 5E .
- the magnets forming the top magnetic walls 460 and outer cylinder wall 452 have their south poles facing inward towards the interior of the cylinder segment.
- the magnets forming the magnetic bottom wall 462 and the interior cylindrical wall 460 have their north poles facing inward towards the interior of the magnetic cylinder segment.
- the adjacent toroidal magnetic cylinder segments such as the magnetic cylinder segment 420 a have their magnetic poles orientated in the opposite direction.
- the magnets forming the magnetic walls 460 a and 452 a have their north poles facing inward towards the interior of the cylinder segment. (As before, “N” is placed on the side of the axial wall 460 a and longitudinal 452 a to indicate that their north poles are facing inward.)
- the magnets forming the magnetic walls 462 a and 454 a have their south poles facing inward towards the interior of the magnetic cylinder segment.
- the toroidal magnetic cylinder segments 420 a - 420 d have an opposite magnetic orientation relative to the toroidal magnetic cylinder segments 450 a - 450 d.
- the current running through the coil windings positioned within the toroidal magnetic cylinder segments 420 a - 420 d also runs in an opposite direction than the current running through the coil windings positioned within the magnetic cylinder segments 450 a - 450 d so that the direction of the generated magnetic force or torque is the same throughout the entire magnetic cylinder 430 .
- FIG. 6C illustrates the entire toroidal magnetic cylinder 430 where the toroidal magnetic cylinder segments 450 a - 450 d are alternated between the toroidal magnetic cylinder segments 420 a - 420 d.
- some of magnetic walls are labeled with an “S” representing a facing “South” pole of a magnet wall—as opposed to the magnetic walls labeled with an “N” representing a facing “North” pole of the magnetic wall.
- the letters “N” and “S” are superimposed on the exterior faces of the magnetic walls to indicate the direction of magnetic pole polarity of the magnets forming the respective wall.
- an eight segment toroidal magnetic cylinder 430 is illustrated in FIG.
- partial toroidal magnetic cylinders may be used.
- the number of partial toroidal magnetic cylinders selected for any given application may be based on engineering design parameters and the particular performance characteristics for an individual application.
- the scope of this invention specifically includes and contemplates multiple partial toroidal magnetic cylinders having an opposite polarity to the adjacent partial toroidal magnetic cylinders.
- an eight segment toroidal magnetic cylinder is described herein. However, this design choice is in no way meant to limit the choice or number of tunnels for any multi-tunnel toroidal magnetic cylinder.
- the partial toroidal magnetic cylinders 450 a - 450 d and 420 a - 420 d may be sized to allow radial gaps 422 to form when the partial toroidal magnetic cylinders are assembled into the complete cylinder 430 as illustrated in FIG. 6C .
- FIG. 7A illustrates an eight tunnel toroidal magnetic cylinder 430 of FIG. 6C with a portion of the back iron circuit enclosing the magnetic cylinder 430 .
- FIG. 7B illustrates the eight tunnel toroidal magnetic cylinder 430 fully enclosed by the back iron circuit.
- the hub 300 comprises an inner hub 302 for coupling to a mechanical load transferring device, such as a rod (not shown).
- a mechanical load transferring device such as a rod (not shown).
- a plurality of radial arms or spokes 304 structurally connect the inner hub 302 to an outer hub 306 .
- the outer hub 306 also comprises a portion of the back iron circuit and thus may be formed from back iron material.
- the back iron circuit may be used as part of the magnetic flux path.
- the back iron material channels the magnetic flux produced by the magnetic toroidal cylinder 430 through the back iron material (as opposed to air) to reduce the reluctance of the magnetic circuit. In certain embodiments, therefore, the amount or thickness of the magnets forming the toroidal magnetic cylinder (if permanent magnets are used) may be reduced when using the appropriately designed back iron circuit.
- the back iron circuit may include a “top” side or axial wall 208 and a “bottom” side or axial wall 210 of back iron material.
- the circuit may also include the circumferential rings 202 and 204 which may or may not couple to the axial walls 208 and 210 , respectively.
- the entire back iron circuit includes the outer cylinder wall 306 of the hub 300 , the circumferential rings 202 and 204 , and the axial walls 208 and 210 as illustrated in FIGS. 7A and 7B .
- the back iron circuit combined with the toroidal magnetic cylinder 430 may form a rotor (or a stator depending on the motor configuration).
- the individual coils 526 in the coil assembly may be selectively energized or activated by way of a switching or controller (not shown).
- the individual coils 526 in the coil assembly 500 may be electrically, physically, and communicatively coupled to switching or controller which selectively and operatively provides electrical current to the individual coils in a conventional manner.
- the controller may cause current to flow within the individual coil as indicated in FIGS. 5D and 5E when the individual coil is within a magnetic tunnel segment with a NNSS magnetic pole configuration as illustrated in FIGS. 5D and 5E .
- the controller causes the current within the individual coil to flow in a direction opposite to that shown in FIGS. 5D and 5E so that the generated magnetic force is in the same direction as illustrated by the arrows 602 , 604 , 606 , and 608 of FIG. 5E .
- the individual coils 526 may use toroidal winding without end windings and in some embodiments be connected to each other in series.
- a three phase winding may be used where adjacent coils are connected together to form a branch of each phase.
- two adjacent coils may be phase A coils
- the next two adjacent coils may be phase B coils
- the next two adjacent coils may be phase C coils.
- This three phase configuration would then repeat for all individual coils 526 within the coil assembly.
- phase B coils there are eight (8) pairs of adjacent phase B coils for a total of 16 phase B coils, and there are eight (8) pairs of adjacent phase C coils for a total of 16 phase C coils.
- the three phase winding can produce a rotating magnetic field in the air gap around the coil assembly.
- the rotating magnetic field interacts with the magnetic field generated by the toroidal magnetic tunnel producing torque and relative movement between the coil assembly and the toroidal magnetic tunnel.
- the individual coils 526 may be connected to a brushless motor controller (not shown) to be activated in a manner known in the art.
- the controller can apply forward current, reverse current, or no current.
- the controller applies current to the phases in a sequence that continuously imparts torque to turn the magnetic toroidal tunnel in a desired direction (relative to the coil assembly) in motor mode.
- the controller can decode the rotor position from signals from position sensors or can infer the rotor position based on current drawn by each phase.
- a brushed motor/generator may be used.
- one or more commutators (not shown) may be used and positioned, for instance, within the hub 300 .
- the number of brushes used may equal the number of toroidal magnetic segments used in the design of the particular motor/generator. For instance, if four toroidal magnetic segments are used, then four brushes may be used.
- the individual coils 526 in the coil assembly may be connected in series having toroidal wound windings.
- a simplified switching circuit 800 such as illustrated in FIG. 8 is all that is necessary to switch the current direction as the coils enter and exit the respective toroidal magnetic segment. As illustrated in FIG.
- a power source 802 is electrically coupled to a brushed motor 804 via four pairs of transistors 806 a - 806 d and diodes 808 a - 808 d as is known in the art to switch the current of the four toroidal magnetic segments.
- Continuous torque and continuous power are greatly increased. Furthermore, continuous torque density, continuous power density by volume, and continuous power density by weight are also increased when compared to conventional electric motors.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
- This application claims the priority date from U.S. application Ser. No. 62/185,637 entitled “An Improved Electric Motor/Generator,” filed on Jun. 28, 2015, the disclosure of which is incorporated by reference for all purposes.
- This application is commonly owned with the following U.S. patent applications: U.S. provisional patent application Ser. No. 62/144,654 entitled “A Multi-Tunnel Electric Motor/Generator,” filed on Apr. 4, 2015; U.S. provisional patent application No. “62/055,615, entitled “An Improved DC Electric Motor/Generator with Enhanced Permanent Magnetic Flux Densities,” filed on Sep. 25, 2014; U.S. provisional patent application Ser. No. 62/056,389, entitled “An Improved DC Electric Motor/Generator with Enhanced Permanent Magnetic Flux Densities,” filed on Sep. 26, 2014; U.S. application Ser. No. 13/848,048, entitled “An Improved DC Electric Motor/Generator with Enhanced Permanent Magnetic Flux Densities” filed on Mar. 20, 2013; which claims the benefit of U.S. Provisional Application Ser. No. 61/613,022, filed on Mar. 20, 2012, of which all of the disclosures are hereby incorporated by reference for all purposes.
- The invention relates in general to a new and improved electric motor/generator, and in particular to an improved system and method for producing rotary motion from a electro-magnetic motor or generating electrical power from a rotary motion input.
- Electric motors use electrical energy to produce mechanical energy, very typically through the interaction of magnetic fields and current-carrying conductors. The conversion of electrical energy into mechanical energy by electromagnetic means was first demonstrated by the British scientist Michael Faraday in 1821 and later quantified by the work of Hendrik Lorentz.
- A magnetic field is generated when electric charge carriers such as electrons move through space or within an electrical conductor. The geometric shapes of the magnetic flux lines produced by moving charge carriers (electric current) are similar to the shapes of the flux lines in an electrostatic field. Magnetic flux passes through most metals with little or no effect, with certain exceptions, notably iron and nickel. These two metals, and alloys and mixtures containing them, are known as ferromagnetic materials because they may be used to concentrate magnetic lines of flux.
- In a traditional electric motor, a central core of tightly wrapped current carrying material creates magnetic poles (known as the rotor) which spins or rotates at high speed between the fixed poles of a magnet (known as the stator) when an electric current is applied. The central core is typically coupled to a shaft which will also rotate with the rotor. The shaft may be used to drive gears and wheels in a rotary machine and/or convert rotational motion into motion in a straight line.
- Generators are usually based on the principle of electromagnetic induction, which was discovered by Michael Faraday in 1831. Faraday discovered that when an electrical conducting material (such as copper) is moved through a magnetic field (or vice versa), an electric current will begin to flow through that material. This electromagnetic effect induces voltage or electric current into the moving conductors.
- Current power generation devices such as rotary alternator/generators and linear alternators rely on Faraday's discovery to produce power. In fact, rotary generators are essentially very large quantities of wire spinning around the inside of very large magnets. In this situation, the coils of wire are called the armature because they are moving with respect to the stationary magnets (which are called the stators). Typically, the moving component is called the armature and the stationary components are called the stator or stators.
- Motors and generators used today produce or utilize a sinusoidal time varying voltage. This waveform is inherent to the operation of these devices.
- With conventional motors a pulsed electrical current of sufficient magnitude must be applied to produce a given torque/horsepower. Horsepower output and efficiency then is a function of design, electrical input power plus losses.
- With conventional generators, an electrical current is produced when the rotor is rotated. The power generated is a function of flux strength, conductor size, number of pole pieces and speed in RPM.
- In motors or generators, some form of energy drives the rotation and/or movement of the rotor. As energy becomes more scarce and expensive, what is needed are more efficient motors and generators to reduce energy consumption, and hence costs.
- In response to this and other problems, there is presented various embodiments disclosed in this application, including methods and systems of increasing flux density by permanent magnet manipulation using multiple magnetic tunnels. Disclosed are various embodiments for a motor/generator comprising: a rotor adapted to rotate about a longitudinal axis, the rotor comprising a plurality of magnetic tunnels, wherein the plurality of magnets forming each magnetic tunnel substantially have poles facing inward toward the semi-circular tunnel, when a rotor/stator is positioned within the tunnel, flux lines cross the tunnel from at least two directions, the semi-circular tunnel having an entrance and an exit, wherein the magnetic field of any magnetic tunnel is of an opposite polarity to the magnetic field of an adjacent magnetic tunnel.
- These and other features, and advantages, will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
- It is important to note the drawings are not intended to represent the only aspects of the invention.
-
FIG. 1 is an exploded view of one embodiment of a motor/generator according to certain aspects of the present disclosure. -
FIG. 2 is a detailed isometric view of a component of the motor/generator illustrated inFIG. 1 . -
FIG. 3 is an exploded view of the component ofFIG. 2 . -
FIG. 4A is an isometric view of a coil assembly illustrating a central iron core and a plurality of teeth extending from the iron core where a portion of the teeth have been removed for clarity. -
FIG. 4B is a detailed perspective view of a single tooth of the plurality of teeth ofFIG. 4A . -
FIG. 4C is a detailed perspective view of an alternative embodiment for the single tooth of the plurality of teeth ofFIG. 4A . -
FIG. 4D is an isometric view of the coil assembly ofFIG. 4A coupled to a plurality of coil windings. -
FIG. 4E is an isometric view of the rotor/stator ofFIG. 4A coupled to a plurality of coil windings showing all of the rotor/stator teeth. -
FIG. 5A illustrates a plurality of magnets forming one embodiment of a magnetic tunnel comprising eight magnetic cylinder segments. -
FIG. 5B is a detailed perspective view illustrating one embodiment of a magnetic cylinder segment. -
FIG. 5C is a detailed isometric view of one embodiment of a magnetic cylinder segment with a rotor/stator portion positioned therein illustrating the direction of the flux forces generated from the magnets comprising the magnetic cylinder segments. -
FIG. 5D is a detailed isometric view of one embodiment of a magnetic cylinder segment with a rotor/stator portion and a coil winding positioned therein illustrating the direction of the flux forces generated from the magnets and the direction of the current in the coil winding. -
FIG. 5E is a detailed isometric view of one embodiment of a magnetic cylinder segment ofFIG. 5D illustrating the direction of force generated by the interaction of the flux forces generated by the magnets and the current in the windings. -
FIG. 6A is a perspective view of four magnetic cylinder segments arranged around a longitudinal axis having similar magnetic pole orientations. -
FIG. 6B is a detailed isometric view of one embodiment of a magnetic cylinder segment illustrating the magnets forming the segment have an opposite magnetic polarity to the magnets of the segment illustrated inFIG. 5C . -
FIG. 6C is an isometric view of the four magnetic cylinder segments with four additional magnetic cylinder segments where the four additional magnetic cylinder segments have a magnetic pole orientation opposite to the first four magnetic cylinder segments. -
FIG. 7A illustrates the magnetic cylinder ofFIG. 6C coupled to a back iron circuit with a portion of the side back iron circuit removed fro clarity. -
FIG. 7B illustrates the magnetic cylinder ofFIG. 6C coupled to a complete back iron circuit. -
FIG. 8 illustrates an exemplary switch circuit which may be used with certain embodiments of the present invention. - Specific examples of components, signals, messages, protocols, and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to limit the invention from that described in the claims. Well-known elements are presented without a detailed description in order not to obscure the present invention in unnecessary detail. For the most part, details unnecessary to obtain a complete understanding of the present invention have been omitted inasmuch as such details are within the skills of persons of ordinary skill in the relevant art. Details regarding conventional control circuitry, power supplies, or circuitry used to power certain components or elements described herein are omitted, as such details are within the skills of persons of ordinary skill in the relevant art.
- When directions, such as upper, lower, top, bottom, clockwise, or counter-clockwise are discussed in this disclosure, such directions are meant to only supply reference directions for the illustrated figures and for orientation of components in the figures. The directions should not be read to imply actual directions used in any resulting invention or actual use. Under no circumstances, should such directions be read to limit or impart any meaning into the claims except for relative positioning.
-
FIG. 1 is an exploded perspective view of a motor/generator 100 illustrating a first portion of aback iron circuit 202, a second portion of aback iron circuit 204, acenter hub 300, and amagnetic disc 400. The first portion backiron circuit 202 comprises a firstcylindrical wall 206 made of back iron material. Thefirst cylinder wall 206 may be coupled to aflat side wall 208 which is also made of back iron material. For purposes of this application the term “back iron” may refer to iron or a soft magnetic material, such as any ferrous compound or alloy, such as stainless steel, any nickel or cobalt alloy, or any laminated metal comprising laminated sheets of such material. - The second portion of the
back iron circuit 204 similarly comprises a secondcylindrical wall 210 coupled to aflat side wall 212. Thus, when assembled the first portion of theback iron circuit 202 and the second portion of theback iron circuit 204 physically surrounds thecenter hub 300 and themagnetic disc 400. In other embodiments, the 206 and 210 have slots (not shown) defined therein to allow the passage of control wires and/or electrical conductors. In yet other embodiments, there may be a gap (not shown) between thecylindrical walls 206 and 210 and thecylindrical walls 208 and 212, respectively. The gap allows for the passage of control wires and/or electrical conductors as well as heat.flat side walls - In certain embodiments, the
hub 300 comprises aninner hub 302 for coupling to a mechanical load transferring device, such as a shaft (not shown). Thehub 300 positions and structurally supports themagnetic disc 400 about the shaft (not shown). A plurality ofradial arms 304 couple theinner hub 302 to anouter hub 306. In certain embodiments, theout hub 306 also comprises a portion of the back iron circuit for themagnetic disc 400. -
FIG. 2 is a detailed isometric view of themagnetic disc 400.FIG. 3 is an exploded view of themagnetic disc 400. In the embodiment illustrated inFIG. 3 , with respect to alongitudinal axis 401, there is a top or first side or axial ring ofmagnets 402. Similarly there is a bottom or second side or axial ring ofmagnets 404. An outer cylindrical wall or longitudinal ring ofmagnets 406 is longitudinally positioned between the firstaxial ring 402 and the second axial ring ofmagnets 404. An inner cylindrical wall or longitudinal ring ofmagnets 408 is also longitudinally positioned between the firstaxial ring 402 and the second axial ring ofmagnets 408 and laterally positioned within the outer longitudinal ring ofmagnets 406. - In certain embodiments, the magnets forming the axial rings 402-404 and longitudinal rings 408-406 discussed herein may be made of out any suitable magnetic material, such as: neodymium, Alnico alloys, ceramic permanent magnets, or electromagnets. The exact number of magnets or electromagnets will be dependent on the required magnetic field strength or mechanical configuration. The illustrated embodiment is only one way of arranging the magnets, based on certain commercially available magnets. Other arrangements are possible, especially if magnets are manufactured for this specific purpose.
- A
coil assembly 500 is laterally positioned between the outerlongitudinal ring 406 and the innerlongitudinal ring 408 and is longitudinally positioned between the firstaxial ring 402 and the secondaxial ring 404. In certain embodiments, thecoil assembly 500 may be a stator. In yet other embodiments, thecoil assembly 500 may be a rotor. - Turning now to
FIG. 4A , there is a partial isometric view of acoil assembly support 502, which in one embodiment, may be a portion of a stator used in conjunction with a rotor formed by the magnetic axial rings 402-404 and magnetic longitudinal cylindrical walls 406-408 and the back 202 and 204 discussed above. In certain embodiments, theiron circuit portions coil assembly support 502 comprises a cylindrical orring core 504 coupled to a plurality ofteeth 506 radially spaced about the ring core. For purposes of clarity,FIG. 4A shows a portion ofteeth 506 removed so that thering core 504 is visible. - In certain embodiments, the
ring core 504 may be made out of iron or back iron materials so that it will act as a magnetic flux force concentrator. However, other core materials maybe used when design considerations such as mechanical strength, reduction of eddy currents, cooling channels, etc. are considered. As discussed above, back iron materials may be iron, an iron alloy, laminated steel iron or other soft magnet materials. In some embodiments, thering core 504 may be hollow or have passages defined therein to allow liquid or air cooling. - One embodiment of an
individual tooth 506 a and a small portion of thering core 504 are illustrated inFIG. 4B . Thetooth 506 a may be made from a material similar to the material forming thecore 504, for example, iron or laminated steel. In the illustrated embodiment, eachtooth 506 a extends from thering core 504 in radial (e.g., horizontal) and longitudinal (e.g., vertical) directions. Thus, eachtooth 506 a comprises an outervertical portion 510 extending radially away from the longitudinal axis 401 (FIG. 3 ), an innervertical portion 512 extending radially toward thelongitudinal axis 401, a tophorizontal portion 514 extending in one vertical longitudinal direction, and a bottomhorizontal portion 516 extending in the opposing vertical or longitudinal direction. Thering core 504 is coupled to and supports theindividual tooth 506 a. - In certain embodiments, an
exterior fin 520 couples to the exterior portion of the outervertical member 510 and extends outward from thevertical portion 510 in both circumferential (or tangential) directions with respect to thelongitudinal axis 401. Similarly, aninterior fin 522 couples to an interior portion of the innervertical portion 512 and extends outward from thevertical member 512 in both circumferential (or tangential) directions. As used in this disclosure, the term “circumferential direction” means the tangential or rotational direction about an axis, such asaxis 401. - An alternative embodiment of an
individual tooth 506′a and a small portion of thering core 504 are illustrated inFIG. 4C . Thetooth 506′a is similar to thetooth 506 a described above in reference toFIG. 4B except that thetooth 506′a also has horizontal fins extending from the tophorizontal portion 514 and the lowerhorizontal portion 516. Specifically, a tophorizontal fin 518 extends in both horizontal circumferential directions from an edge of the tophorizontal portion 514. Similarly, a bottomhorizontal fin 519 extends in both horizontal circumferential directions from an edge of the bottomhorizontal portion 516. From a structural perspective the thickness of the 518 and 519 maybe thicker closer to the joint with the respectivefins 514 and 516 and tapers as the fins extend away from the joints.horizontal members -
506 or 506′ supported by theAdjacent teeth core ring 504 formradial slots 524 within the coilassembly support structure 502, as illustrated inFIG. 4A . In contrast,FIG. 4D (which omits a portion of the teeth 506) illustrates individual coils orcoil windings 526 positioned radially about thering core 504 and within theslots 524 formed by the 506 or 506′.teeth FIG. 4E illustrates acomplete coil assembly 500 showing all of theteeth 506 andcoil windings 526 positioned within theslots 524. - Each
individual coil 526 in thecoil assembly 500 may be made from a conductive material, such as copper (or a similar alloy) wire and may be constructed using conventional winding techniques known in the art. In certain embodiments, concentrated windings may be used. In certain embodiments, theindividual coils 526 may be essentially cylindrical or rectangular in shape being wound around thering core 504 having a center opening sized to allow theindividual coil 526 to be secured to the ring core. - By positioning the
individual coils 526 within theslots 524 defined by the 506 or 506′, the coils are surrounded by a more substantial heat sink capabilities of the teeth which, in certain embodiments, can be can incorporate cooling passages directly into the material forming the teeth. This allows much higher current densities than conventional motor geometries. Additionally, positioning the plurality ofteeth coils 526 within theslots 524 and betweenteeth 506 reduces the air gap between the coils. By reducing the air gap, thecoil assembly 500 can contribute to the overall torque produced by the motor or generator. In certain embodiments, the 518 and 519, thehorizontal fins 520 and 522 of thecircumferential fins 506 a or 506′a of the coil assembly reduce the air gap between the structure of the coil to allow flux forces to flow from one fin to an adjacent fin when the coils are energized and theteeth coil assembly 500 begins to move relative to the magnetic tunnel. Thus, all portions of thecoil support assembly 502 contribute to the overall torque developed by the system. - The number of
individual coils 526 can be any number that will physically fit within the desired volume and of a conductor length and size that produces the desired electrical or mechanical output as known in the art. In yet other embodiments, thecoils 526 may be essentially one continuous coil, similar to a Gramme Ring as is known in the art. -
FIG. 5A is a perspective view of a toroidalmagnetic cylinder 430 forming a ring-like magnetic tunnel positioned about thelongitudinal axis 401. As described previously, with respect to thelongitudinal axis 401, the toroidalmagnetic cylinder 430 comprises a top axial ring ofside wall magnets 402. Similarly there is a second or bottom axial ring ofside wall magnets 404. An outer cylindrical wall or longitudinal ring ofmagnets 406 is positioned longitudinally between the firstaxial ring 402 and the second axial ring ofmagnets 404. Depending on the embodiment, the outer longitudinal ring ofmagnets 406 may comprise anaxial slot 410 to accommodate a support structure, a cooling mechanism, and/or wires and conductors. An inner cylindrical wall or longitudinal ring ofmagnets 408 is also longitudinally positioned between the firstaxial ring 402 and the second axial ring ofmagnets 408 and axially positioned within the outer longitudinal ring ofmagnets 406. - In other embodiments, the inner longitudinal ring of
magnets 408 may include an axial slot (similar to slot 410, but not shown). In yet further embodiments, the firstaxial ring 402 or the second axial ring ofmagnets 404 may include a side circular slot (not shown). Such slots are designed to accommodate a support structure, a cooling mechanism and/or wires or conductors. One advantage of a slot defined within the inner longitudinal ring of magnets 408 (as opposed to the outer longitudinal ring of magnets 406) is that the inner longitudinal ring ofmagnets 408 produces less torque than the outer ring ofmagnets 406. Thus, by using the full width of the outer longitudinal ring ofmagnets 408, greater torque can be produced. - In the embodiment illustrated in
FIG. 5A , the toroidalmagnetic cylinder 430 comprises eight toroidal magnetic cylinder segments (or magnetic tunnel segments). In other embodiments, there may be two, four, six, ten, twelve segments or more. The number of segments will depend on the particular design and performance characteristics for particular application. -
FIG. 5B is a perspective view of a single toroidal magnetic cylinder segment 450 (or a magnetic tunnel segment) which defines amagnetic tunnel 458 or portion of a circular path. As illustrated, the toroidalmagnetic cylinder segment 450 has an outer magnetic wall 452 (which is a portion of the outer cylinder wall 406) and an inner magnetic wall 454 (which is a portion of the inner magnetic cylinder wall 408). In addition to the partial cylindrical 452 and 454, there are also be magnetic axial ormagnetic walls 460 and 462 which in this illustrated embodiment may be made of a plurality of wedge shape members or magnets.lateral walls Axial wall 460 may be a portion of the first side orring wall 402 andaxial wall 462 may be a portion of the second side orring wall 404. - In the illustrated embodiment, there may be slots between the walls, such as
slot 456 between thewall 454 and thewall 460. As discussed above, in certain embodiments, there may also be slots within the walls, such asslot 410 which is defined within thewall 452. The individual magnets in the 452, 454, 460, and 462 all have their magnetic poles orientated towards or away from an interior of themagnetic walls tunnel 458 of the toroidalmagnetic cylinder segment 450 to form a “closed” magnetic tunnel segment. In other words, the magnetic poles of the magnets forming theouter wall 452 and theinner wall 454 have their magnetic poles orientated to radially point towards the longitudinal axis 401 (FIG. 5A ). In contrast, the magnetic poles of the magnets forming the firstaxial wall 460 and the secondaxial wall 462 have their magnetic poles orientated parallel with thelongitudinal axis 401. - The term “closed magnetic tunnel” as used in this disclosure refers to using a arrangement of the magnets forming the
cylinder segment 450 that that “forces” or “bends” the flux forces from one side of the tunnel to the other (or in a circumferential direction) without letting most of the magnetic flux forces escape through a slot or other opening. Thus, the slot widths are limited to keep flux forces from exiting through the slots. In other embodiments, additional magnets may be inserted into the slots to keep the flux forces channeled to a predetermined or a circumferential direction. -
FIG. 5C is an isometric view of thetoroidal cylinder segment 450 having a portion of thecoil assembly 500 positioned within the interior of the segment. In this embodiment, the magnets forming the topaxial wall 460 and the outerlongitudinal wall 452 have their south magnetic poles facing towards the interior of thetunnel 458. (For a matter of drawing interpretation convenience, an “S” is placed on the side of theaxial wall 460 and longitudinal 452 to indicate that their south poles are facing inward.) In contrast, the magnets forming the innerlongitudinal wall 454 and the bottomaxial wall 462 have their north magnetic poles facing towards the interior of the tunnel 458 (Thus, an “N” is placed on the side of theaxial wall 462 and longitudinal 454 to indicate that their north poles are facing inward.). When the coil assembly is positioned within thetoroidal cylinder segment 450 as illustrated, the flux lines tend to flow from the north poles of the magnetic walls directly across the coil assembly to the south poles on the opposing side of the magnetic walls. - To illustrate, the top
axial wall 460 is labeled with an “S” on its side face and anarrow 480 pointing towards the center of thetoroidal segment 450 to represent the direction of the flux forces generated from the south poles of the magnet(s) forming the topaxial wall 460. Similarly, the outerlongitudinal wall 452 is labeled with an “S” on its side face and anarrow 482 pointing towards the center of thetoroidal segment 450 to represent the direction of the flux forces generated from the south poles of the magnet(s) forming the outerlongitudinal wall 452. In contrast, the bottomaxial wall 462 is labeled with an “N” on its side face and anarrow 484 pointing towards the center of thetoroidal segment 450 to represent the direction of the flux forces generated from the north poles of the magnet(s) forming the bottomaxial wall 462. The innerlongitudinal wall 454 is labeled with an “N” on its side face and anarrow 486 pointing towards the center of thetoroidal segment 450 to represent the direction of the flux forces generated from the north poles of the magnet(s) forming the innerlongitudinal wall 454. -
FIG. 5D is an isometric view of thetoroidal cylinder segment 450 but with acoil 526 positioned around the portion of thecoil assembly 500. When the motor/generator 100 is in motor mode, current from an external source (not shown) is applied to the coils, such ascoil 526. In the illustrated embodiment, the current flows in a counterclockwise manner as illustrated by thearrow 488 which illustrates the current in thecoil 526 flowing in an upwards direction. The current then flows in a right to left manner as illustrated by thearrow 490 when the current is in the upper portion of thecoil 526. Similarly, the current flows in a downwardly direction as illustrated byarrow 492 when the current is in a vertical leg of thecoil 526. Finally, the current flows in a left to right manner when the current is in the lower portion of thecoil 526 as illustrated by thearrow 494. -
FIG. 5E is an isometric view of thecylinder segment 450 with thecoil 526 positioned around the portion of thering core 504 of thecoil assembly 500 and the current flowing through the coil as explained above in reference toFIG. 5D . When the magnets forming the outercylindrical wall 452 generate a flux force in the direction of thearrow 482 and the current in thecoil 526 flows in an upward direction relative to the illustration, a magnetic force will be generated in the direction of thearrow 602 according to the right hand rule of magnetic force. Simultaneously, the magnets forming the lateral ortop wall 460 generate a flux in the direction of thearrow 480 and the current in thecoil 526 flows in a right-to-left direction relative to the illustration, a magnetic force will be generated in the direction of thearrow 604. Additionally, the magnets forming the longitudinal or innercylindrical wall 454 generate a flux force in the direction of thearrow 486 and the current in thecoil 526 flows in a downward direction relative to the illustration, a magnetic force will be generated in the direction of thearrow 606. Similarly, the magnets forming the lateral orbottom wall 462 generate a flux force in the direction of thearrow 484 and the current in thecoil 526 flows in a left-to-right direction relative to the illustration, a magnetic force will be generated in the direction of thearrow 608. - Thus, the entire coil is used to generate the magnetic forces which will move the
coil 526 relative to thecylinder segment 450. - In conventional configurations, the opposing poles of the magnets are usually aligned longitudinally. Thus, the magnetic flux lines will “hug” or closely follow the surface of the magnets. So, when using conventional power generating/utilization equipment, the clearances must usually be extremely tight in order to be able to act on these lines of force. By aligning like magnetic poles radially or perpendicular to the
coil assembly 500 the magnetic flux forces flow from the surface of the magnets across the coil assembly. This configuration allows for greater tolerances between coils and magnetic surfaces. - One of the advantages of this configuration over conventional motors is that the end turns (in this case the radial section of the coils) are part of the “active section” of the invention. In conventional motors, the axial length of the copper conductor is the section that produces power. In conventional motors, the end turns are a penalty, adding weight and losses, but not producing power because the end region fields are not effectively linking the end windings. However, as can be seen, the entire coil winding is effectively producing torque due to the side wall or axial magnets which are axially magnetized. Therefore, essentially the entire conductor of the coils is active producing a greater force.
- The windings of each
coil 526 are generally configured such that they remain transverse or perpendicular to the direction of the relative movement of the magnets comprising thecoil assembly 500 and parallel with thelongitudinal axis 401. In other words, the coil windings are positioned such that their sides are parallel with the longitudinal axis and their ends are radially perpendicular to the longitudinal axis. The windings are also transverse with respect to the magnetic flux produced by the individual magnets of the rotor at their interior face as described above. Consequently, the entire coil winding or windings (including end turns) may be used to generate movement (in motor mode) or voltage (in generator mode). -
FIG. 6A illustrates four partial toroidal 450 a, 450 b, 450 c and 450 d arranged circumferentially around a common center ormagnetic cylinders longitudinal axis 401. This arrangement leaves four 610 a, 610 b, 610 c, and 610 d between the respective cylinder segments.open spaces - In this embodiments, inserting or positioning four additional four toroidal magnetic cylinder segments 420 a-420 d into the spaces 610 a-610 d results in a complete toroidal
magnetic cylinder 430 as illustrated inFIG. 6C . Thus,FIG. 6C illustrates the complete toroidalmagnetic cylinder 430 formed from combining the four toroidalmagnetic cylinder segments 450 a-450 d with the toroidal magnetic cylinder segments 420 a-420 d in an alternating arrangement around thelongitudinal axis 401. - The magnets creating the toroidal
magnetic cylinder segments 450 a-450 d are orientated in a specific geometric arrangement as discussed above in reference toFIG. 5E . In other words, the magnets forming the topmagnetic walls 460 andouter cylinder wall 452 have their south poles facing inward towards the interior of the cylinder segment. The magnets forming themagnetic bottom wall 462 and the interiorcylindrical wall 460 have their north poles facing inward towards the interior of the magnetic cylinder segment. In contrast, the adjacent toroidal magnetic cylinder segments such as themagnetic cylinder segment 420 a have their magnetic poles orientated in the opposite direction. - As illustrated in
FIG. 6B , the magnets forming the 460 a and 452 a have their north poles facing inward towards the interior of the cylinder segment. (As before, “N” is placed on the side of themagnetic walls axial wall 460 a and longitudinal 452 a to indicate that their north poles are facing inward.) The magnets forming the 462 a and 454 a have their south poles facing inward towards the interior of the magnetic cylinder segment. (Similarly, an “S” is placed on the side of themagnetic walls axial wall 462 a and longitudinal 454 a to indicate that their south poles are facing inward.) Thus, the toroidal magnetic cylinder segments 420 a-420 d have an opposite magnetic orientation relative to the toroidalmagnetic cylinder segments 450 a-450 d. - When the cylinder segments 420 a-420 d are energized, the current running through the coil windings positioned within the toroidal magnetic cylinder segments 420 a-420 d also runs in an opposite direction than the current running through the coil windings positioned within the
magnetic cylinder segments 450 a-450 d so that the direction of the generated magnetic force or torque is the same throughout the entiremagnetic cylinder 430. -
FIG. 6C illustrates the entire toroidalmagnetic cylinder 430 where the toroidalmagnetic cylinder segments 450 a-450 d are alternated between the toroidal magnetic cylinder segments 420 a-420 d. For sake of illustration, some of magnetic walls are labeled with an “S” representing a facing “South” pole of a magnet wall—as opposed to the magnetic walls labeled with an “N” representing a facing “North” pole of the magnetic wall. Thus, the letters “N” and “S” are superimposed on the exterior faces of the magnetic walls to indicate the direction of magnetic pole polarity of the magnets forming the respective wall. As discussed above, although an eight segment toroidalmagnetic cylinder 430 is illustrated inFIG. 6C , in other embodiments, two, three, four, six, ten, etc. partial toroidal magnetic cylinders may be used. The number of partial toroidal magnetic cylinders selected for any given application may be based on engineering design parameters and the particular performance characteristics for an individual application. The scope of this invention specifically includes and contemplates multiple partial toroidal magnetic cylinders having an opposite polarity to the adjacent partial toroidal magnetic cylinders. For simplicity and illustrative purposes, an eight segment toroidal magnetic cylinder is described herein. However, this design choice is in no way meant to limit the choice or number of tunnels for any multi-tunnel toroidal magnetic cylinder. - In certain embodiments, the partial toroidal
magnetic cylinders 450 a-450 d and 420 a-420 d may be sized to allowradial gaps 422 to form when the partial toroidal magnetic cylinders are assembled into thecomplete cylinder 430 as illustrated inFIG. 6C . -
FIG. 7A illustrates an eight tunnel toroidalmagnetic cylinder 430 ofFIG. 6C with a portion of the back iron circuit enclosing themagnetic cylinder 430.FIG. 7B illustrates the eight tunnel toroidalmagnetic cylinder 430 fully enclosed by the back iron circuit. As discussed above, in other embodiments, there are slots or gaps between the back iron components to allow for the passage of control wires and conductors (not shown). - As discussed above, the
hub 300 comprises aninner hub 302 for coupling to a mechanical load transferring device, such as a rod (not shown). A plurality of radial arms orspokes 304 structurally connect theinner hub 302 to anouter hub 306. In certain embodiments, theouter hub 306 also comprises a portion of the back iron circuit and thus may be formed from back iron material. - In certain embodiments, the back iron circuit may be used as part of the magnetic flux path. The back iron material channels the magnetic flux produced by the magnetic
toroidal cylinder 430 through the back iron material (as opposed to air) to reduce the reluctance of the magnetic circuit. In certain embodiments, therefore, the amount or thickness of the magnets forming the toroidal magnetic cylinder (if permanent magnets are used) may be reduced when using the appropriately designed back iron circuit. - In certain embodiments, the back iron circuit may include a “top” side or
axial wall 208 and a “bottom” side oraxial wall 210 of back iron material. The circuit may also include the circumferential rings 202 and 204 which may or may not couple to the 208 and 210, respectively. Thus, the entire back iron circuit includes theaxial walls outer cylinder wall 306 of thehub 300, the circumferential rings 202 and 204, and the 208 and 210 as illustrated inaxial walls FIGS. 7A and 7B . The back iron circuit combined with the toroidalmagnetic cylinder 430 may form a rotor (or a stator depending on the motor configuration). - In order maintain the generated torque and/or power the
individual coils 526 in the coil assembly may be selectively energized or activated by way of a switching or controller (not shown). Theindividual coils 526 in thecoil assembly 500 may be electrically, physically, and communicatively coupled to switching or controller which selectively and operatively provides electrical current to the individual coils in a conventional manner. - For instance, the controller may cause current to flow within the individual coil as indicated in
FIGS. 5D and 5E when the individual coil is within a magnetic tunnel segment with a NNSS magnetic pole configuration as illustrated inFIGS. 5D and 5E . On the other hand when the same individual coil moves into an adjacent magnetic tunnel segment with a SSNN magnetic pole configuration, the controller causes the current within the individual coil to flow in a direction opposite to that shown inFIGS. 5D and 5E so that the generated magnetic force is in the same direction as illustrated by the 602, 604, 606, and 608 ofarrows FIG. 5E . - Turning back to
FIGS. 4C and 5E , theindividual coils 526 may use toroidal winding without end windings and in some embodiments be connected to each other in series. In other embodiments, a three phase winding may be used where adjacent coils are connected together to form a branch of each phase. For instance, two adjacent coils may be phase A coils, the next two adjacent coils may be phase B coils, and the next two adjacent coils may be phase C coils. This three phase configuration would then repeat for allindividual coils 526 within the coil assembly. In one embodiment, there are eight (8) pairs of adjacent phase A coils for a total of 16 phase A coils. Similarly, there are eight (8) pairs of adjacent phase B coils for a total of 16 phase B coils, and there are eight (8) pairs of adjacent phase C coils for a total of 16 phase C coils. Thus, in such an embodiment, there are 48 individual coils. - When the coils are energized, the three phase winding can produce a rotating magnetic field in the air gap around the coil assembly. The rotating magnetic field interacts with the magnetic field generated by the toroidal magnetic tunnel producing torque and relative movement between the coil assembly and the toroidal magnetic tunnel.
- In such embodiments, the
individual coils 526 may be connected to a brushless motor controller (not shown) to be activated in a manner known in the art. For each phase, the controller can apply forward current, reverse current, or no current. In operation, the controller applies current to the phases in a sequence that continuously imparts torque to turn the magnetic toroidal tunnel in a desired direction (relative to the coil assembly) in motor mode. In certain embodiments, the controller can decode the rotor position from signals from position sensors or can infer the rotor position based on current drawn by each phase. - In yet, other embodiments, a brushed motor/generator may be used. In such embodiments, one or more commutators (not shown) may be used and positioned, for instance, within the
hub 300. In certain embodiments, the number of brushes used may equal the number of toroidal magnetic segments used in the design of the particular motor/generator. For instance, if four toroidal magnetic segments are used, then four brushes may be used. Theindividual coils 526 in the coil assembly may be connected in series having toroidal wound windings. In a brushed design in motor mode, asimplified switching circuit 800 such as illustrated inFIG. 8 is all that is necessary to switch the current direction as the coils enter and exit the respective toroidal magnetic segment. As illustrated inFIG. 8 , apower source 802 is electrically coupled to a brushedmotor 804 via four pairs of transistors 806 a-806 d and diodes 808 a-808 d as is known in the art to switch the current of the four toroidal magnetic segments. - As discussed above, surrounding the coils with magnets as described above creates more flux density and the forces are now all in the direction of motion which may create more torque, minimize vibration, and minimize noise—as compared to conventional motors where forces may try to pull the coil downwards or push it upwards (depending on the polarity), not in the direction of motion.
- Continuous torque and continuous power, therefore, are greatly increased. Furthermore, continuous torque density, continuous power density by volume, and continuous power density by weight are also increased when compared to conventional electric motors.
Claims (17)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/008,431 US10476362B2 (en) | 2015-06-28 | 2016-01-27 | Multi-tunnel electric motor/generator segment |
| CN201680050018.XA CN107925328B (en) | 2015-06-28 | 2016-06-27 | Multi-channel electric motor/generator |
| EP16818559.3A EP3314736A4 (en) | 2015-06-28 | 2016-06-27 | IMPROVED MULTI-TUNNEL ELECTRICAL ENGINE / GENERATOR |
| PCT/US2016/039673 WO2017003955A1 (en) | 2015-06-28 | 2016-06-27 | An improved multi-tunnel electric motor/generator |
| US15/848,540 US10447103B2 (en) | 2015-06-28 | 2017-12-20 | Multi-tunnel electric motor/generator |
| US16/601,529 US11258320B2 (en) | 2015-06-28 | 2019-10-14 | Multi-tunnel electric motor/generator |
| US17/591,850 US11784523B2 (en) | 2015-06-28 | 2022-02-03 | Multi-tunnel electric motor/generator |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562185637P | 2015-06-28 | 2015-06-28 | |
| US15/008,431 US10476362B2 (en) | 2015-06-28 | 2016-01-27 | Multi-tunnel electric motor/generator segment |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/039673 Continuation-In-Part WO2017003955A1 (en) | 2015-06-28 | 2016-06-27 | An improved multi-tunnel electric motor/generator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20160380496A1 true US20160380496A1 (en) | 2016-12-29 |
| US10476362B2 US10476362B2 (en) | 2019-11-12 |
Family
ID=57601499
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/008,431 Active 2037-09-10 US10476362B2 (en) | 2015-06-28 | 2016-01-27 | Multi-tunnel electric motor/generator segment |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US10476362B2 (en) |
| EP (1) | EP3314736A4 (en) |
| CN (1) | CN107925328B (en) |
| WO (1) | WO2017003955A1 (en) |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170055669A1 (en) * | 2015-08-28 | 2017-03-02 | Johnson Electric S.A. | Single phase permanent magnet motor and hair dryer using the same |
| WO2018177606A3 (en) * | 2017-03-31 | 2018-11-08 | Upgrade Technology Engineering Ltd. | Combustion engine and electric generator |
| US10256680B2 (en) | 2012-03-20 | 2019-04-09 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| US10263480B2 (en) | 2012-03-20 | 2019-04-16 | Linear Labs, LLC | Brushless electric motor/generator |
| US10284029B2 (en) | 2012-03-20 | 2019-05-07 | Linear Labs, LLC | Brushed electric motor/generator |
| US20190260246A1 (en) * | 2016-11-07 | 2019-08-22 | Jude Igwemezie | Magnet motor with electromagnetic drive |
| US10447103B2 (en) | 2015-06-28 | 2019-10-15 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| WO2020264413A1 (en) * | 2019-06-26 | 2020-12-30 | Linear Labs, Inc. | Reluctance synchronous machines without permanent magnets |
| CN112688523A (en) * | 2021-01-15 | 2021-04-20 | 东南大学 | Axial magnetic field stator yoke-free magnetic flux reverse permanent magnet motor |
| US11159076B2 (en) | 2015-10-20 | 2021-10-26 | Linear Labs, Inc. | Circumferential flux electric machine with field weakening mechanisms and methods of use |
| US11218046B2 (en) | 2012-03-20 | 2022-01-04 | Linear Labs, Inc. | DC electric motor/generator with enhanced permanent magnet flux densities |
| US20220006340A1 (en) * | 2019-01-16 | 2022-01-06 | Linear Labs, Inc. | System and method for controlling a multi-tunnel electric machine |
| US20220029488A1 (en) * | 2020-07-25 | 2022-01-27 | Beta Air, Llc | Integrated electric propulsion assembly |
| US20220045582A1 (en) * | 2019-02-13 | 2022-02-10 | Linear Labs, Inc. | Method of manufacturing a three-dimensional flux structure for circumferential flux machines |
| US11309778B2 (en) * | 2016-09-05 | 2022-04-19 | Linear Labs, Inc. | Multi-tunnel electric motor/generator |
| FR3116395A1 (en) * | 2020-11-13 | 2022-05-20 | Institut National Polytechnique De Toulouse | Rotating electric machine, force feedback stick and associated propulsion system |
| US20220231561A1 (en) * | 2021-01-21 | 2022-07-21 | Beta Air, Llc | Methods and systems for a stator with helical windings configured for use in electric aircraft motor |
| WO2022256570A1 (en) * | 2021-06-02 | 2022-12-08 | Linear Labs, LLC | System for an electric motor with coil assemblies and internal radial magnetic elements |
| US20230412023A1 (en) * | 2017-12-20 | 2023-12-21 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| US20240372424A1 (en) * | 2019-01-16 | 2024-11-07 | Linear Labs, Inc. | System and method for an overlapping independent phase electric motor/generator |
| US12149141B2 (en) | 2019-08-26 | 2024-11-19 | Linear Labs, Inc. | System for an electrical motor with coil assemblies and external radial magnetic elements |
| US12170467B2 (en) | 2022-05-19 | 2024-12-17 | Linear Labs, Inc. | System and method for controlling high-torque, high speed electric motors |
| FI20247028A1 (en) * | 2024-02-29 | 2025-08-30 | Igor Bystrov | Toroid generator |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10476362B2 (en) | 2015-06-28 | 2019-11-12 | Linear Labs, LLC | Multi-tunnel electric motor/generator segment |
| US11159077B2 (en) * | 2016-07-03 | 2021-10-26 | Reza Nasirizarandi | Hybrid hysteresis motor |
| DE102018128726A1 (en) * | 2018-11-15 | 2020-05-20 | Wittenstein Se | Electrical machine |
| US11277062B2 (en) | 2019-08-19 | 2022-03-15 | Linear Labs, Inc. | System and method for an electric motor/generator with a multi-layer stator/rotor assembly |
| CN112910129B (en) * | 2021-01-27 | 2022-03-29 | 珠海格力电器股份有限公司 | Rotor structure and motor having the same |
| US20230067006A1 (en) * | 2021-07-27 | 2023-03-02 | Ramesh Chandra | Flat dc electric machine |
| US12234022B2 (en) | 2022-08-12 | 2025-02-25 | Rolls-Royce North American Technologies, Inc. | Electrical energy system for barring rotor |
| US12334859B2 (en) | 2022-08-12 | 2025-06-17 | Rolls-Royce North American Technologies, Inc. | Gas-turbine electrical start system |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080278019A1 (en) * | 2006-01-16 | 2008-11-13 | Weiting Lu | Magnetic Force Rotation Device |
| US20150171694A1 (en) * | 2013-02-20 | 2015-06-18 | Raymond James Walsh | Halbach motor and generator |
Family Cites Families (104)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2703370A (en) | 1952-07-02 | 1955-03-01 | Steensen Sverre Johan | Electric compressor or pump motor with rolling rotor |
| US3300663A (en) | 1963-12-30 | 1967-01-24 | Nils O Rosaen | Power transfer circuits |
| US3469133A (en) | 1965-10-13 | 1969-09-23 | Georges Stcherbatcheff | Electric motor with a bridge-type magnetic circuit |
| CA990772A (en) | 1973-09-24 | 1976-06-08 | Eric Whiteley | Permanent magnet field structure for dynamoelectric machines |
| US3895245A (en) | 1974-05-23 | 1975-07-15 | George Fred Bode | Electric motor utilizing permanent magnets |
| JPS51133709A (en) | 1975-05-16 | 1976-11-19 | Micro Technol Kenkyusho:Kk | Single pol d-c machine |
| US4237396A (en) | 1977-10-06 | 1980-12-02 | P A Management Consultants Limited | Electromagnetic machines with permanent magnet excitation |
| JPS5492305U (en) | 1977-12-14 | 1979-06-29 | ||
| US4441043A (en) | 1980-11-24 | 1984-04-03 | Decesare Dominic | Compound interaction/induction electric rotating machine |
| US4388547A (en) | 1980-12-15 | 1983-06-14 | Gruber John R | Current generator |
| US4488075A (en) | 1981-10-26 | 1984-12-11 | Decesare Dominic | Alternator with rotor axial flux excitation |
| US4629921A (en) | 1982-09-14 | 1986-12-16 | Gavaletz John S | Dynamoelectric machine rotor |
| US4547713A (en) | 1982-11-05 | 1985-10-15 | Kollmorgen Technologies Corporation | Toroidally wound brushless DC motor |
| GB8311997D0 (en) | 1983-05-03 | 1983-06-08 | Caterpillar Tractor Co | Electromagnetic machine |
| JPS61173658A (en) | 1985-01-25 | 1986-08-05 | Matsushita Electric Works Ltd | Dc rotary motor |
| JPS61144782U (en) | 1985-02-25 | 1986-09-06 | ||
| MX161230A (en) | 1985-12-23 | 1990-08-24 | Unique Mobility Inc | IMPROVEMENTS IN LIGHTWEIGHT ELECTROMAGNETIC TRANSDUCER |
| CA1269693A (en) | 1987-05-13 | 1990-05-29 | Robert Ross Hamilton | Explosion-proof electrical generator system |
| US5099158A (en) | 1989-03-07 | 1992-03-24 | Aura Systems, Inc. | Electromagnetic actuator |
| JP2968918B2 (en) | 1993-09-16 | 1999-11-02 | 弘平 湊 | Magnetic rotating device |
| CN2226352Y (en) | 1995-01-27 | 1996-05-01 | 郭德顺 | Improved tunnel motor |
| US5691589A (en) | 1995-06-30 | 1997-11-25 | Kaman Electromagnetics Corporation | Detachable magnet carrier for permanent magnet motor |
| JP3460912B2 (en) | 1996-10-18 | 2003-10-27 | ミネベア株式会社 | Motor structure |
| KR100242030B1 (en) | 1997-11-24 | 2000-02-01 | 윤종용 | Step motor control device and control method |
| US5886450A (en) | 1998-01-13 | 1999-03-23 | Kuehnle; Manfred R. | Toroidal electrical motor/generator |
| JP3480301B2 (en) | 1998-03-25 | 2003-12-15 | 日産自動車株式会社 | Rotating electric machine |
| US5977684A (en) | 1998-06-12 | 1999-11-02 | Lin; Ted T. | Rotating machine configurable as true DC generator or motor |
| US6104108A (en) | 1998-12-22 | 2000-08-15 | Nikon Corporation | Wedge magnet array for linear motor |
| US6093986A (en) | 1999-03-08 | 2000-07-25 | Emerson Electric Co. | Method and apparatus for powering shaft-mounted sensors on motors and generators |
| US6531799B1 (en) | 1999-12-20 | 2003-03-11 | Ford Global Technologies, Inc. | Hybrid electric machine with two rotors, permanent magnet poles and controllable field current |
| US6891299B2 (en) | 2000-05-03 | 2005-05-10 | Moteurs Leroy-Somer | Rotary electric machine having a flux-concentrating rotor and a stator with windings on teeth |
| JP4269544B2 (en) | 2000-09-14 | 2009-05-27 | 株式会社デンソー | Multi-rotor synchronous machine |
| EP1191673A3 (en) | 2000-09-14 | 2002-08-21 | Denso Corporation | Compact and reliable structure of multi-rotor synchronous machine |
| CN2452204Y (en) | 2000-09-22 | 2001-10-03 | 郭德顺 | Tunnel type motor |
| US6388352B1 (en) | 2001-02-22 | 2002-05-14 | Yung-Chi Huang | Magnetically actuated rotary apparatus |
| JP2002369473A (en) | 2001-06-07 | 2002-12-20 | Nippon Steel Corp | Synchronous motor using permanent magnet |
| US6664689B2 (en) | 2001-08-06 | 2003-12-16 | Mitchell Rose | Ring-shaped motor core with toroidally-wound coils |
| JP3671884B2 (en) | 2001-08-30 | 2005-07-13 | 日産自動車株式会社 | Rotating electric machine |
| US6664704B2 (en) | 2001-11-23 | 2003-12-16 | David Gregory Calley | Electrical machine |
| GB0130152D0 (en) | 2001-12-18 | 2002-02-06 | Johnson Electric Sa | Electric motor |
| US7765905B2 (en) | 2002-05-29 | 2010-08-03 | Massachusetts Institute Of Technology | Magnetic micropositioner and method of providing the same |
| US20040027022A1 (en) | 2002-08-12 | 2004-02-12 | Weir Stanley M. | Weir dynamos and dynamo-motors |
| DE10242833B4 (en) | 2002-09-14 | 2011-06-01 | Mtu Aero Engines Gmbh | Electric drive device |
| US7268454B2 (en) | 2003-01-17 | 2007-09-11 | Magnetic Torque International, Ltd. | Power generating systems |
| MXPA05007577A (en) | 2003-01-17 | 2006-03-17 | Magnetic Torque Int | Torque converter and system using the same. |
| US7233088B2 (en) | 2003-01-17 | 2007-06-19 | Magnetic Torque International, Ltd. | Torque converter and system using the same |
| EP1450462B1 (en) | 2003-02-18 | 2008-07-09 | Minebea Co., Ltd. | Rotor and stator for an electrical machine with reduced cogging torque |
| US6924574B2 (en) | 2003-05-30 | 2005-08-02 | Wisconsin Alumni Research Foundation | Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine |
| US7187098B2 (en) | 2004-03-03 | 2007-03-06 | Kabushikikaisha Equos Research | Axial gap rotating electrical machine |
| US7315103B2 (en) | 2004-03-03 | 2008-01-01 | General Electric Company | Superconducting rotating machines with stationary field coils |
| US20060273686A1 (en) | 2004-06-21 | 2006-12-07 | Edelson Jonathan S | Hub motors |
| US7791242B2 (en) | 2004-08-20 | 2010-09-07 | Clearwater Holdings, Ltd. | DC induction electric motor-generator |
| US7834503B2 (en) | 2004-08-20 | 2010-11-16 | Clearwater Holdings, Ltd. | Immersed windings, monopole field, electromagnetic rotating machine |
| US7348703B2 (en) | 2004-08-20 | 2008-03-25 | Dumitru Bojiuc | Monopole field electric motor-generator with switchable coil configuration |
| JP4474547B2 (en) | 2005-02-07 | 2010-06-09 | 国立大学法人 大分大学 | Permanent magnet movable electric machine |
| CN1734881A (en) | 2005-06-29 | 2006-02-15 | 陆孝庭 | Brushless rotary motor |
| CN101199099B (en) | 2005-07-20 | 2011-11-30 | 松下电器产业株式会社 | Twin rotor type motor |
| US8074922B2 (en) | 2005-08-22 | 2011-12-13 | Dumitru Bojiuc | Discoidal flying craft |
| US8159104B1 (en) | 2005-08-22 | 2012-04-17 | Clearwater Holdings, Ltd | DC induction electric motor-generator with magnetic gap self commutating laminated ferromagnetic rotating core |
| US7378749B2 (en) * | 2005-10-26 | 2008-05-27 | Moore Donald O | Electrical generator system |
| US7554241B2 (en) | 2006-03-31 | 2009-06-30 | Rao Dantam K | Three-gapped motor with outer rotor and stationary shaft |
| JP2008141853A (en) | 2006-12-01 | 2008-06-19 | Japan Servo Co Ltd | 2-axis concentric shaft motor |
| WO2008096913A1 (en) | 2007-02-06 | 2008-08-14 | Dong-Ok Yu | Single phase brushless and sensorless direct current dynamo-type motor assembly and method of driving using thereof |
| US7755244B2 (en) | 2007-05-11 | 2010-07-13 | Uqm Technologies, Inc. | Stator for permanent magnet electric motor using soft magnetic composites |
| USRE49413E1 (en) | 2007-07-09 | 2023-02-07 | Clearwater Holdings, Ltd. | Electromagnetic machine with independent removable coils, modular parts and self-sustained passive magnetic bearing |
| US7956504B2 (en) | 2007-09-13 | 2011-06-07 | Eric Stephane Quere | Composite electromechanical machines with gear mechanism |
| US8294318B2 (en) | 2007-12-26 | 2012-10-23 | Honda Motor Co., Ltd. | Electric motor and rotor for rotating electric machine |
| JP4708448B2 (en) | 2008-03-04 | 2011-06-22 | 日立オートモティブシステムズ株式会社 | Rotating electric machines and electric vehicles |
| US20090261675A1 (en) | 2008-04-19 | 2009-10-22 | Hsien-Wei Hsiao | High efficient magnetic energy shifting device |
| US7732973B2 (en) | 2008-06-25 | 2010-06-08 | Clearwater Holdings, Ltd | Electromagnetic machine with magnetic gap channels |
| FR2934433B1 (en) | 2008-07-22 | 2014-11-14 | Delachaux Sa | ECCENTRIC ROTOR ENGINE |
| JP2010104160A (en) | 2008-10-24 | 2010-05-06 | Panasonic Corp | Dual rotor motor and manufacturing method therefor |
| WO2010062766A2 (en) | 2008-11-03 | 2010-06-03 | Motor Excellence, Llc | Polyphase transverse and/or commutated flux systems |
| JP2010154699A (en) | 2008-12-26 | 2010-07-08 | Hitachi Ltd | Magnetic flux variable type rotating electrical machine |
| JP5515297B2 (en) | 2009-01-17 | 2014-06-11 | 日産自動車株式会社 | Rotating electric machine |
| EP2299566A1 (en) | 2009-09-17 | 2011-03-23 | PM-Generators GmbH | Wind or water energy assembly |
| US8063528B2 (en) | 2009-12-18 | 2011-11-22 | General Electric Company | Counter-rotatable generator |
| DE102009060959A1 (en) | 2009-12-30 | 2011-07-07 | Robert Bosch GmbH, 70469 | transverse flux |
| US7898134B1 (en) | 2009-12-31 | 2011-03-01 | Bill S. Shaw | Brushless disk DC motor |
| JP5845429B2 (en) | 2010-03-08 | 2016-01-20 | パナソニックIpマネジメント株式会社 | motor |
| EP2548288A1 (en) | 2010-03-15 | 2013-01-23 | Motor Excellence, LLC | Transverse and/or commutated flux systems configured to provide reduced flux leakage, hysteresis loss reduction, and phase matching |
| DE102010024344A1 (en) | 2010-06-18 | 2011-12-22 | Ulrich Clauss | Direct current machine e.g. generator, has armature winding enclosing annular magnetic yoke as annular coil such that force- and movement effects occur between winding and permanent magnets or pole pieces |
| US8400037B2 (en) | 2010-11-30 | 2013-03-19 | Chris Wojtowicz | Device for providing rotational torque and method of use |
| JP2012130223A (en) | 2010-12-17 | 2012-07-05 | Samsung Electronics Co Ltd | Synchronous motor |
| MX2013011852A (en) | 2011-04-12 | 2014-01-31 | Boulder Wind Power Inc | Air gap control systems and methods. |
| CN102761179A (en) | 2011-04-28 | 2012-10-31 | 中国江南航天工业集团林泉电机厂 | Duplex stator structure for permanent-magnet flux-switching motor |
| US8912699B2 (en) | 2011-09-26 | 2014-12-16 | Dennis R. Kuntz | DC field gradient motor |
| KR101276633B1 (en) | 2011-12-23 | 2013-06-18 | 한국생산기술연구원 | The stator core-unit |
| WO2013135569A2 (en) * | 2012-03-12 | 2013-09-19 | Höganäs Ab (Publ) | Stator and rotor for an electric machine |
| US20150137647A1 (en) | 2012-03-20 | 2015-05-21 | Linear Labs, Inc. | Brushless electric motor/generator |
| US10263480B2 (en) | 2012-03-20 | 2019-04-16 | Linear Labs, LLC | Brushless electric motor/generator |
| KR102048601B1 (en) | 2012-03-20 | 2019-11-25 | 리니어 랩스, 엘엘씨 | An improved dc electric motor/generator with enhanced permanent magnet flux densities |
| US10284029B2 (en) | 2012-03-20 | 2019-05-07 | Linear Labs, LLC | Brushed electric motor/generator |
| US9729016B1 (en) | 2012-03-20 | 2017-08-08 | Linear Labs, Inc. | Multi-tunnel electric motor/generator |
| US10291486B2 (en) | 2012-06-13 | 2019-05-14 | Oracle International Corporation | System and method for supporting implicit versioning in a transactional middleware machine environment |
| US9219962B2 (en) | 2012-09-03 | 2015-12-22 | Linear Labs, Inc. | Transducer and method of operation |
| CN103683768B (en) | 2012-09-06 | 2017-12-12 | 德昌电机(深圳)有限公司 | Transverse flux permanent magnetic motor |
| US9018819B2 (en) | 2012-09-07 | 2015-04-28 | Sten R. Gerfast | Brushless, ironless stator, single coil motor without laminations |
| FR3000851B1 (en) | 2013-01-09 | 2015-02-13 | Eurocopter France | ELECTRICAL MACHINE WITH SEVERAL INTERFERS AND 3D MAGNETIC FLUX |
| EP3281285B1 (en) | 2015-04-08 | 2021-06-30 | Linear Labs, Inc. | An improved multi-tunnel electric motor/generator |
| US10447103B2 (en) | 2015-06-28 | 2019-10-15 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| US10476362B2 (en) | 2015-06-28 | 2019-11-12 | Linear Labs, LLC | Multi-tunnel electric motor/generator segment |
| WO2017070403A1 (en) | 2015-10-20 | 2017-04-27 | Linear Labs, Inc. | A circumferential flux electric machine with field weakening mechanisms and methods of use |
| KR20190044634A (en) | 2016-09-05 | 2019-04-30 | 리니어 랩스, 엘엘씨 | Improved multi-tunnel electric motor / generator |
-
2016
- 2016-01-27 US US15/008,431 patent/US10476362B2/en active Active
- 2016-06-27 EP EP16818559.3A patent/EP3314736A4/en not_active Withdrawn
- 2016-06-27 WO PCT/US2016/039673 patent/WO2017003955A1/en not_active Ceased
- 2016-06-27 CN CN201680050018.XA patent/CN107925328B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080278019A1 (en) * | 2006-01-16 | 2008-11-13 | Weiting Lu | Magnetic Force Rotation Device |
| US20150171694A1 (en) * | 2013-02-20 | 2015-06-18 | Raymond James Walsh | Halbach motor and generator |
Cited By (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11387692B2 (en) | 2012-03-20 | 2022-07-12 | Linear Labs, Inc. | Brushed electric motor/generator |
| US10256680B2 (en) | 2012-03-20 | 2019-04-09 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| US10263480B2 (en) | 2012-03-20 | 2019-04-16 | Linear Labs, LLC | Brushless electric motor/generator |
| US10284029B2 (en) | 2012-03-20 | 2019-05-07 | Linear Labs, LLC | Brushed electric motor/generator |
| US20220190661A1 (en) * | 2012-03-20 | 2022-06-16 | Linear Labs, Inc. | Dc electric motor/generator with enhanced permanent magnet flux densities |
| US10439452B2 (en) | 2012-03-20 | 2019-10-08 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| US11218038B2 (en) | 2012-03-20 | 2022-01-04 | Linear Labs, Inc. | Control system for an electric motor/generator |
| US11218046B2 (en) | 2012-03-20 | 2022-01-04 | Linear Labs, Inc. | DC electric motor/generator with enhanced permanent magnet flux densities |
| US10447103B2 (en) | 2015-06-28 | 2019-10-15 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| US10299559B2 (en) * | 2015-08-28 | 2019-05-28 | Johnson Electric International AG | Single phase permanent magnet motor and hair dryer using the same |
| US20170055669A1 (en) * | 2015-08-28 | 2017-03-02 | Johnson Electric S.A. | Single phase permanent magnet motor and hair dryer using the same |
| US11159076B2 (en) | 2015-10-20 | 2021-10-26 | Linear Labs, Inc. | Circumferential flux electric machine with field weakening mechanisms and methods of use |
| US11309778B2 (en) * | 2016-09-05 | 2022-04-19 | Linear Labs, Inc. | Multi-tunnel electric motor/generator |
| US11018536B2 (en) * | 2016-11-07 | 2021-05-25 | Jude Igwemezie | Magnet motor with electromagnetic drive |
| US20190260246A1 (en) * | 2016-11-07 | 2019-08-22 | Jude Igwemezie | Magnet motor with electromagnetic drive |
| US11349372B2 (en) | 2017-03-31 | 2022-05-31 | Upgrade Technology Engineering Ltd. | Combustion engine and electric generator |
| WO2018177606A3 (en) * | 2017-03-31 | 2018-11-08 | Upgrade Technology Engineering Ltd. | Combustion engine and electric generator |
| US20230412023A1 (en) * | 2017-12-20 | 2023-12-21 | Linear Labs, LLC | Multi-tunnel electric motor/generator |
| US12261486B2 (en) * | 2019-01-16 | 2025-03-25 | Linear Labs, Inc. | System and method for an overlapping independent phase electric motor/generator |
| US20220006340A1 (en) * | 2019-01-16 | 2022-01-06 | Linear Labs, Inc. | System and method for controlling a multi-tunnel electric machine |
| US20240372424A1 (en) * | 2019-01-16 | 2024-11-07 | Linear Labs, Inc. | System and method for an overlapping independent phase electric motor/generator |
| US20240235295A1 (en) * | 2019-01-16 | 2024-07-11 | Linear Labs, Inc. | System and method for controlling a multi-tunnel electric machine |
| US11967866B2 (en) * | 2019-01-16 | 2024-04-23 | Linear Labs, Inc. | System and method for controlling a multi-tunnel electric machine |
| US20220045582A1 (en) * | 2019-02-13 | 2022-02-10 | Linear Labs, Inc. | Method of manufacturing a three-dimensional flux structure for circumferential flux machines |
| WO2020264413A1 (en) * | 2019-06-26 | 2020-12-30 | Linear Labs, Inc. | Reluctance synchronous machines without permanent magnets |
| US20220123635A1 (en) * | 2019-06-26 | 2022-04-21 | Linear Labs, Inc. | Induction machines without permanent magnets |
| US12095394B2 (en) * | 2019-06-26 | 2024-09-17 | Linear Labs, Inc. | Induction machines without permanent magnets |
| US12149141B2 (en) | 2019-08-26 | 2024-11-19 | Linear Labs, Inc. | System for an electrical motor with coil assemblies and external radial magnetic elements |
| US20220029488A1 (en) * | 2020-07-25 | 2022-01-27 | Beta Air, Llc | Integrated electric propulsion assembly |
| US11588363B2 (en) * | 2020-07-25 | 2023-02-21 | Beta Air, Llc | Integrated electric propulsion assembly |
| FR3116395A1 (en) * | 2020-11-13 | 2022-05-20 | Institut National Polytechnique De Toulouse | Rotating electric machine, force feedback stick and associated propulsion system |
| CN112688523A (en) * | 2021-01-15 | 2021-04-20 | 东南大学 | Axial magnetic field stator yoke-free magnetic flux reverse permanent magnet motor |
| US20220231561A1 (en) * | 2021-01-21 | 2022-07-21 | Beta Air, Llc | Methods and systems for a stator with helical windings configured for use in electric aircraft motor |
| US11646622B2 (en) * | 2021-01-21 | 2023-05-09 | Beta Air, Llc | Methods and systems for a stator with helical windings configured for use in electric aircraft motor |
| US12081090B2 (en) | 2021-06-02 | 2024-09-03 | Linear Labs, Inc. | System for an electric motor with coil assemblies and internal radial magnetic elements |
| US11588366B2 (en) | 2021-06-02 | 2023-02-21 | Linear Labs, LLC | System for an electric motor with coil assemblies and internal radial magnetic elements |
| WO2022256570A1 (en) * | 2021-06-02 | 2022-12-08 | Linear Labs, LLC | System for an electric motor with coil assemblies and internal radial magnetic elements |
| US12170467B2 (en) | 2022-05-19 | 2024-12-17 | Linear Labs, Inc. | System and method for controlling high-torque, high speed electric motors |
| FI20247028A1 (en) * | 2024-02-29 | 2025-08-30 | Igor Bystrov | Toroid generator |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2017003955A1 (en) | 2017-01-05 |
| EP3314736A1 (en) | 2018-05-02 |
| US10476362B2 (en) | 2019-11-12 |
| CN107925328A (en) | 2018-04-17 |
| EP3314736A4 (en) | 2019-03-27 |
| CN107925328B (en) | 2020-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11784523B2 (en) | Multi-tunnel electric motor/generator | |
| US10476362B2 (en) | Multi-tunnel electric motor/generator segment | |
| US20220302811A1 (en) | Multi-tunnel electric motor/generator | |
| US11374442B2 (en) | Multi-tunnel electric motor/generator | |
| US20220190661A1 (en) | Dc electric motor/generator with enhanced permanent magnet flux densities | |
| US20230006484A1 (en) | Brushed electric motor/generator | |
| US20200007016A1 (en) | Brushless electric motor/generator | |
| EP3281285B1 (en) | An improved multi-tunnel electric motor/generator | |
| US11777386B2 (en) | System and method for an electric motor/generator with a multi-layer stator/rotor assembly | |
| WO2017008085A1 (en) | An improved electric linear motor/generator | |
| US20230412023A1 (en) | Multi-tunnel electric motor/generator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: LINEAR LABS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUNSTABLE, FRED E.;REEL/FRAME:037602/0439 Effective date: 20160126 |
|
| AS | Assignment |
Owner name: LINEAR LABS, LLC, TEXAS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE ENTITY PREVIOUSLY RECORDED AT REEL: 037602 FRAME: 0439. ASSIGNOR(S) HEREBY CONFIRMS THE ASSGNMENT;ASSIGNOR:HUNSTABLE, FRED E.;REEL/FRAME:047159/0383 Effective date: 20160126 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: LINEAR LABS, INC., TEXAS Free format text: CONVERSION;ASSIGNOR:LINEAR LABS, LLC;REEL/FRAME:051906/0261 Effective date: 20191231 |
|
| AS | Assignment |
Owner name: VFP, LLC, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNOR:LINEAR LABS, INC.;REEL/FRAME:062992/0725 Effective date: 20230217 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |