US20160345592A1 - Compact oven - Google Patents
Compact oven Download PDFInfo
- Publication number
- US20160345592A1 US20160345592A1 US15/235,491 US201615235491A US2016345592A1 US 20160345592 A1 US20160345592 A1 US 20160345592A1 US 201615235491 A US201615235491 A US 201615235491A US 2016345592 A1 US2016345592 A1 US 2016345592A1
- Authority
- US
- United States
- Prior art keywords
- cavity
- plates
- air
- oven
- heated air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000010411 cooking Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21B—BAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
- A21B1/00—Bakers' ovens
- A21B1/02—Bakers' ovens characterised by the heating arrangements
- A21B1/24—Ovens heated by media flowing therethrough
- A21B1/245—Ovens heated by media flowing therethrough with a plurality of air nozzles to obtain an impingement effect on the food
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C15/00—Details
- F24C15/32—Arrangements of ducts for hot gases, e.g. in or around baking ovens
- F24C15/322—Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation
- F24C15/325—Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation electrically-heated
Definitions
- the present invention relates to compact ovens in general, and in particular to a compact oven having a high volume of even airflow with tight columns of air impingement.
- a conventional oven the profile of the heat energy for cooking food items located inside a cavity of the oven is typically determined by the mechanical configuration of a heating source.
- a conventional oven may contain one or more variable speed blowers that can be set at a specific rotations per minute (RPM) to deliver a given volume of heated air via one or more plenums.
- RPM rotations per minute
- the temperature of the rapidly moving heated air can be readily maintained at or near a temperature set by a temperature control feedback loop.
- Air impingement can be achieved by moving heated air rapidly from one or more plenums through a set of nozzles located in the periphery of an oven cavity, thereby causing columns of the heated air to come into more direct contact with a food item as the heated air pierces the temperature gradients that surround the food item placed within the oven cavity. Since tighter columns of air at the food surface can improve the rate of heat transfer from the impinging air, cooking times are reduced as a result.
- Increasing airflow volume which is typically measured in cubic feet per minute (CFM), can further reduce cook times of a food item because more hot air mass can be moved past the surface of the food item, thereby improving the rate of heat transfer to the food item,
- a compact oven includes a housing having a cavity for receiving food items, and one or more blowers for directing heated air into the cavity,
- the compact oven also includes an air deflection plate coupled to a nozzle plate having multiple nozzles for capturing and directing a portion of heated air from the blower to the cavity via nozzles located between the air deflection plate and the nozzle plate, while allowing the remaining heated air exiting the blower to move into the cavity via nozzles not located between the air deflection plate and the nozzle plate such that the velocities of heated air exiting all nozzles into the cavity are as close to each other as possible.
- FIG. 1 is a front view of a compact oven, in accordance with a preferred embodiment of the present invention
- FIG. 2 is a cross-sectional view of a compact cavity within the oven from FIG. 1 , in accordance with a preferred embodiment of the present invention
- FIG. 3 a is an isometric view of three top nozzle plates within the cavity from FIG. 2 , in accordance with a preferred embodiment of the present invention
- FIG. 3 b is a cress-sectional view of three top nozzle plates within the cavity from FIG. 2 , in accordance with a preferred embodiment of the present invention
- FIG. 4 is a diagram of a heating and airflow system within the compact oven from FIG. 1 , in accordance with a preferred embodiment of the present invention
- FIGS. 5 a -5 b are detailed views of the top and bottom nozzle plates within the heating and airflow system from FIG. 4 ;
- FIG. 6 is a detailed diagram of an air deflection plate attached to the top nozzle plate from FIG. 5 a.
- a compact oven 10 is defined by a housing 11 having a cavity 12 .
- Compact oven 10 is generally smaller in size than a conventional oven, and the footprint area of cavity 12 ranges between approximately 1.0 square foot and 2.5 square feet, and preferably no larger than approximately 4.0 square feet.
- Compact oven 10 includes a heating and airflow system (to be described in details later) to supply heat to cavity 12 for heating any food items placed within cavity 12 .
- Control panel 15 An operator can enter operating parameters, such as cooking temperature, cooking time, blower speed, etc., via a control panel 15 to effectuate cooking controls on any food items placed within cavity 12 .
- Control panel 15 is preferably implemented with touchscreens but it can also be implemented with keypads and liquid crystal displays.
- housing 11 there is depicted a cross-sectional view of housing 11 , in accordance with a preferred embodiment of the present invention.
- Any food item intended to be cooked by compact oven 10 can be placed inside cavity 12 where food will be heated. Since the footprint area of cavity 12 is relatively small, a food item placed within cavity 12 typically spans substantially the entire footprint area of cavity 12 .
- housing 11 also contains a top plenum 25 and a bottom plenum 28 .
- Top plenum 25 is connected to top nozzle plates 24 a - 24 c .
- Bottom plenum 28 is connected to bottom nozzle plates 27 a - 27 c .
- Top nozzle plates 24 a - 24 c , top plenum 25 , bottom nozzle plates 27 a - 27 c and bottom plenum 28 are part of the heating and airflow system for compact oven 10 . Heated air in top plenum 25 and bottom plenum 28 are in gaseous communication with cavity 12 through top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c , respectively.
- top nozzle plate 24 a includes multiple holes 31
- top nozzle plate 24 b includes multiple holes 32
- top nozzle plate 24 c includes multiple holes 33 .
- each of multiple holes 31 - 33 are themselves formed as nozzles.
- the positions (and number) of holes 31 in top nozzle plate 24 a are identical to the positions of holes 32 on top nozzle plate 24 b as well as the positions of holes 33 on top nozzle plate 24 e .
- each column of holes 31 - 33 are concentric holes.
- holes 31 are slightly larger than holes 32
- holes 32 are slightly larger than holes 33 .
- top nozzle plates 24 a - 24 c can be conveniently stacked together to allow each column of holes 31 - 33 to form an extended nozzle-like feature 35 , as shown in FIG. 3 b .
- This stack-plate configuration in essence replaces the need for using more extended nozzles to direct tighter columns of hot pressured airstream towards any food items placed within cavity 12 .
- the diameters of holes 31 , 32 and 33 are approximately 0.575 inch, 0.475 inch and 0.375 inch, respectively.
- CFM cubic feet per minute
- bottom nozzle plates 27 a - 27 c are substantially the same as top nozzle plates 24 a - 24 c , respectively, except that the nozzles in top nozzle plates 24 a - 24 c are offset from the nozzles in bottom nozzle plates 27 a - 27 c such that the air columns formed by air exiting top nozzle plates 24 a - 24 c are directed between the air columns formed by the air exiting bottom nozzle plates 27 a - 27 e .
- air enters cavity 12 via both top plenum 25 and bottom plenum 26 in FIG. 4 it is understood by those skilled in the art that air can enter cavity 12 through only one of top plenum 25 or bottom plenum 28 .
- the heating and airflow system includes a heater plenum 41 located at the back of compact oven 10 .
- Heater plenum 41 includes a heater 49 .
- the heated air is then directed to top plenum 25 via a top blower 42 and to bottom plenum 28 via a bottom blower 43 .
- the pressurized hot air formed within top plenum 25 is subsequently directed to cavity 12 via multiple nozzle-like features 35 formed by stacked top nozzle plates 24 a - 24 c (from FIGS. 3 a -3 b ).
- pressurized hot air formed within bottom plenum 28 is subsequently directed to cavity 12 via multiple nozzle-like features 36 formed by stacked bottom nozzle plates 27 a - 27 c .
- heated air is shown to be sent to top air plenum 25 and bottom plenum 28 via separate blowers, it is understood by those skilled in the art that heated air can be sent to both top plenum 25 and bottom plenum 28 via a single blower.
- the heated air within cavity 12 can be returned to heater plenum 41 via a center intake opening 44 located inside cavity 12 by following path z.
- the heated air within cavity 12 can also be returned to heater plenum 41 via a top intake opening 45 by following path x (i.e., over top air plenum 25 ) and via a bottom intake opening 46 by following path y (i.e., under bottom air plenum 28 ).
- Center intake opening 44 , path z, top intake opening 45 , path x, bottom intake opening 46 and path y are configured to allow maximum CFM of airflow to return to heater plenum 41 , preferably at a rate that exceeds 2.5 CFM per square inch of footprint surface area in cavity 12 .
- cavity 12 has a footprint area of approximately 2.125 square feet.
- Top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c each contain approximately 136 extended nozzle-like features 35 resulting in approximately one extended nozzle-like feature 35 per 2.125 square inch.
- Center intake opening 44 has an open surface area of approximately 22 square inches leading to heater plenum 41 .
- Each of top intake opening 45 and bottom intake opening 46 have an open surface area of approximately 20 square inches leading to heater plenum 41 .
- Each of top blower 42 and bottom blower 43 is configured to deliver average velocities of approximately 90 feet per second through extended nozzle-like features 35 in top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c when measured by a TSI Velocicalc hot wire anemometer with the measuring wand placed at the exit orifice of each of the 272 extended nozzle-like features 35 in top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c .
- Each of holes 33 in top nozzle plate 24 c have a diameter of approximately 0.375 inch, yielding a hole area of approximately 0.11045 square inch, and bottom nozzle plate 27 c is substantially the same as top nozzle plate 24 c ,
- the total volume of air passing through cavity 12 is determined to be approximately 1,100 CFM in the present preferred embodiment, which equates to approximately 3.4 CFM per square inch of footprint area in cavity 12 .
- top nozzle plate 24 a includes an air deflection plate 54 attached to one of its corners (or edges) most adjacent to top blower 42 .
- a detailed diagram of air deflection plate 54 is shown in FIG. 6 .
- air deflection plate 54 captures and directs a portion of the heated air exiting top blower 42 into cavity 12 via the nozzles located between air deflection plate 54 and top nozzle plate 24 a , while the remaining heated air exiting top blower 42 goes into cavity 12 via the nozzles not located between air deflection plate 54 and top nozzle plate 24 a .
- air deflection plate 54 as well as the height between air deflection plate 54 and top nozzle plate 24 a are selected to allow a sufficient portion of the air exiting top blower 42 to be directed through the nozzles in top nozzle plate 24 a located between air deflection plate 54 and top nozzle plate 24 a so that the velocity of air exiting all nozzles of top nozzle plates 24 a - 24 c into cavity 12 are as close to each other as possible,
- bottom nozzle plate 27 a includes an air deflection plate 57 attached to one of its corners (or edges) most adjacent to bottom blower 43 .
- the shape and size of air deflection plate 57 should be similar, if not identical, to air deflection plate 54 .
- air deflection plate 57 captures and directs a portion of the heated air exiting bottom blower 43 into cavity 12 via the nozzles located between air deflection plate 57 and bottom nozzle plate 27 a , while the remaining heated air exiting bottom blower 43 goes into cavity 12 via the nozzles not located between air deflection plate 57 and bottom nozzle plate 27 a .
- air deflection plate 57 as well as the height between air deflection plate 57 and bottom nozzle plate 27 a are selected to allow a sufficient portion of the air exiting bottom blower 43 to be directed through the nozzles in bottom nozzle plate 27 a located between air deflection plate 57 and bottom nozzle plate 27 a so that the velocity of air exiting all nozzles of bottom nozzle plates 27 a - 27 c into cavity 12 are as close to each other as possible.
- the standard deviation of air velocities exiting those 136 extended nozzle-like features 35 is approximately 9 feet per second
- air deflection plates 54 and 57 are not dependent on their being multiple nozzle plates 24 a - 24 c and 27 a - 27 c , respectively, and that other means of placement of air deflection plates 54 and 57 besides attachment to top nozzle plate 24 a and bottom nozzle plate 27 a would produce similar results.
- the present invention provides a compact oven having an improved method for heating food items
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Food Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Baking, Grill, Roasting (AREA)
- Electric Stoves And Ranges (AREA)
Abstract
A compact oven is disclosed. The compact oven includes a housing having a cavity for receiving food items, and one or more blowers for directing heated air into the cavity. The compact oven also includes an air deflection plate coupled to a nozzle plate having multiple nozzles for capturing and directing a portion of heated air from the blower to the cavity via nozzles located between the air deflection plate and the nozzle plate, while allowing the remaining heated air exiting the blower to move into the cavity via nozzles not located between the air deflection plate and the nozzle plate such that the velocities of heated air exiting all nozzles into the cavity are as close to each other as possible.
Description
- 1. Technical Field
- The present invention relates to compact ovens in general, and in particular to a compact oven having a high volume of even airflow with tight columns of air impingement.
- 2. Description of Related Art
- For a conventional oven, the profile of the heat energy for cooking food items located inside a cavity of the oven is typically determined by the mechanical configuration of a heating source. For example, a conventional oven may contain one or more variable speed blowers that can be set at a specific rotations per minute (RPM) to deliver a given volume of heated air via one or more plenums. The temperature of the rapidly moving heated air can be readily maintained at or near a temperature set by a temperature control feedback loop.
- In order to accelerate cook time, some ovens employ a technique known as air impingement. Air impingement can be achieved by moving heated air rapidly from one or more plenums through a set of nozzles located in the periphery of an oven cavity, thereby causing columns of the heated air to come into more direct contact with a food item as the heated air pierces the temperature gradients that surround the food item placed within the oven cavity. Since tighter columns of air at the food surface can improve the rate of heat transfer from the impinging air, cooking times are reduced as a result. Increasing airflow volume, which is typically measured in cubic feet per minute (CFM), can further reduce cook times of a food item because more hot air mass can be moved past the surface of the food item, thereby improving the rate of heat transfer to the food item,
- There are many challenges, however, to achieving tighter columns and higher CFM of heated air inside an oven cavity. At a given blower speed, reducing nozzle size increases air velocity, thereby tightening the air columns, but the air volume is also reduced due to the increase in back pressure caused by the reduced nozzle size. The opposite is true as well as a given blower speed, increased nozzle size increases air volume but reduces air velocity through the nozzles and loosens the air columns that are important to the air impingement process. Increased blower speed is a commonly used alternative, but this method is problematic in smaller ovens where elevated blower speeds cause uneven air distribution in a relatively small blower plenum.
- The present invention provides an improved method for evenly heating food items placed within a relatively small oven cavity of a compact oven, In accordance with a preferred embodiment of the present invention, a compact oven includes a housing having a cavity for receiving food items, and one or more blowers for directing heated air into the cavity, The compact oven also includes an air deflection plate coupled to a nozzle plate having multiple nozzles for capturing and directing a portion of heated air from the blower to the cavity via nozzles located between the air deflection plate and the nozzle plate, while allowing the remaining heated air exiting the blower to move into the cavity via nozzles not located between the air deflection plate and the nozzle plate such that the velocities of heated air exiting all nozzles into the cavity are as close to each other as possible.
- All features and advantages of the present invention will become apparent in the following detailed written description.
- The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is a front view of a compact oven, in accordance with a preferred embodiment of the present invention; -
FIG. 2 is a cross-sectional view of a compact cavity within the oven fromFIG. 1 , in accordance with a preferred embodiment of the present invention; -
FIG. 3a is an isometric view of three top nozzle plates within the cavity fromFIG. 2 , in accordance with a preferred embodiment of the present invention; -
FIG. 3b is a cress-sectional view of three top nozzle plates within the cavity fromFIG. 2 , in accordance with a preferred embodiment of the present invention; -
FIG. 4 is a diagram of a heating and airflow system within the compact oven fromFIG. 1 , in accordance with a preferred embodiment of the present invention; -
FIGS. 5a-5b are detailed views of the top and bottom nozzle plates within the heating and airflow system fromFIG. 4 ; and -
FIG. 6 is a detailed diagram of an air deflection plate attached to the top nozzle plate fromFIG. 5 a. - Referring now to the drawings and in particular to
FIG. 1 , there is depicted a front view of a compact oven, in accordance with a preferred embodiment of the present invention. As shown, acompact oven 10 is defined by ahousing 11 having acavity 12.Compact oven 10 is generally smaller in size than a conventional oven, and the footprint area ofcavity 12 ranges between approximately 1.0 square foot and 2.5 square feet, and preferably no larger than approximately 4.0 square feet.Compact oven 10 includes a heating and airflow system (to be described in details later) to supply heat tocavity 12 for heating any food items placed withincavity 12. - An operator can enter operating parameters, such as cooking temperature, cooking time, blower speed, etc., via a
control panel 15 to effectuate cooking controls on any food items placed withincavity 12.Control panel 15 is preferably implemented with touchscreens but it can also be implemented with keypads and liquid crystal displays. - With reference now to
FIG. 2 , there is depicted a cross-sectional view ofhousing 11, in accordance with a preferred embodiment of the present invention. Any food item intended to be cooked bycompact oven 10 can be placed insidecavity 12 where food will be heated. Since the footprint area ofcavity 12 is relatively small, a food item placed withincavity 12 typically spans substantially the entire footprint area ofcavity 12. As shown,housing 11 also contains a top plenum 25 and abottom plenum 28. Top plenum 25 is connected totop nozzle plates 24 a-24 c.Bottom plenum 28 is connected tobottom nozzle plates 27 a-27 c.Top nozzle plates 24 a-24 c, top plenum 25,bottom nozzle plates 27 a-27 c andbottom plenum 28 are part of the heating and airflow system forcompact oven 10. Heated air in top plenum 25 andbottom plenum 28 are in gaseous communication withcavity 12 throughtop nozzle plates 24 a-24 c andbottom nozzle plates 27 a-27 c, respectively. - Referring now to
FIG. 3a , there is depicted an isomeric view oftop nozzle plates 24 a-24 c, in accordance with a preferred embodiment of the present invention. As shown,top nozzle plate 24 a includesmultiple holes 31, top nozzle plate 24 b includesmultiple holes 32, and top nozzle plate 24 c includes multiple holes 33. Preferably, each of multiple holes 31-33 are themselves formed as nozzles. The positions (and number) ofholes 31 intop nozzle plate 24 a are identical to the positions ofholes 32 on top nozzle plate 24 b as well as the positions of holes 33 on top nozzle plate 24 e. Basically, each column of holes 31-33 are concentric holes. In addition,holes 31 are slightly larger thanholes 32, andholes 32 are slightly larger than holes 33. Thus,top nozzle plates 24 a-24 c can be conveniently stacked together to allow each column of holes 31-33 to form an extended nozzle-like feature 35, as shown inFIG. 3b . This stack-plate configuration in essence replaces the need for using more extended nozzles to direct tighter columns of hot pressured airstream towards any food items placed withincavity 12. - Preferably, the diameters of
31, 32 and 33 are approximately 0.575 inch, 0.475 inch and 0.375 inch, respectively. In addition, there is approximately oneholes hole 31 per 2.25 square inch on each oftop nozzle plates 24 a-24 e to allow maximum cubic feet per minute (CFM) of airflow per square inch. The configurations ofbottom nozzle plates 27 a-27 c are substantially the same astop nozzle plates 24 a-24 c, respectively, except that the nozzles intop nozzle plates 24 a-24 c are offset from the nozzles inbottom nozzle plates 27 a-27 c such that the air columns formed by air exitingtop nozzle plates 24 a-24 c are directed between the air columns formed by the air exitingbottom nozzle plates 27 a-27 e. In the present embodiment, while air enterscavity 12 via both top plenum 25 and bottom plenum 26 inFIG. 4 , it is understood by those skilled in the art that air can entercavity 12 through only one of top plenum 25 orbottom plenum 28. - With reference now to
FIG. 4 , there is depicted a diagram of the heating and airflow system withincompact oven 10, in accordance with a preferred embodiment of the present invention. As shown, the heating and airflow system includes aheater plenum 41 located at the back ofcompact oven 10.Heater plenum 41 includes aheater 49. After air has been sufficiently heated byheater 49, the heated air is then directed to top plenum 25 via atop blower 42 and tobottom plenum 28 via abottom blower 43. The pressurized hot air formed within top plenum 25 is subsequently directed tocavity 12 via multiple nozzle-like features 35 formed by stackedtop nozzle plates 24 a-24 c (fromFIGS. 3a-3b ). Similarly, pressurized hot air formed withinbottom plenum 28 is subsequently directed tocavity 12 via multiple nozzle-like features 36 formed by stackedbottom nozzle plates 27 a-27 c. Although heated air is shown to be sent to top air plenum 25 andbottom plenum 28 via separate blowers, it is understood by those skilled in the art that heated air can be sent to both top plenum 25 andbottom plenum 28 via a single blower. - The heated air within
cavity 12 can be returned toheater plenum 41 via a center intake opening 44 located insidecavity 12 by following path z. The heated air withincavity 12 can also be returned toheater plenum 41 via a top intake opening 45 by following path x (i.e., over top air plenum 25) and via abottom intake opening 46 by following path y (i.e., under bottom air plenum 28). Center intake opening 44, path z, top intake opening 45, path x,bottom intake opening 46 and path y are configured to allow maximum CFM of airflow to return toheater plenum 41, preferably at a rate that exceeds 2.5 CFM per square inch of footprint surface area incavity 12. - In a preferred embodiment of the present invention,
cavity 12 has a footprint area of approximately 2.125 square feet.Top nozzle plates 24 a-24 c andbottom nozzle plates 27 a-27 c each contain approximately 136 extended nozzle-like features 35 resulting in approximately one extended nozzle-like feature 35 per 2.125 square inch. Center intake opening 44 has an open surface area of approximately 22 square inches leading toheater plenum 41. Each of top intake opening 45 andbottom intake opening 46 have an open surface area of approximately 20 square inches leading toheater plenum 41. Each oftop blower 42 andbottom blower 43 is configured to deliver average velocities of approximately 90 feet per second through extended nozzle-like features 35 intop nozzle plates 24 a-24 c andbottom nozzle plates 27 a-27 c when measured by a TSI Velocicalc hot wire anemometer with the measuring wand placed at the exit orifice of each of the 272 extended nozzle-like features 35 intop nozzle plates 24 a-24 c andbottom nozzle plates 27 a-27 c. Each of holes 33 in top nozzle plate 24 c have a diameter of approximately 0.375 inch, yielding a hole area of approximately 0.11045 square inch, and bottom nozzle plate 27 c is substantially the same as top nozzle plate 24 c, At the average measured air velocity of approximately 90 feet per second, the total volume of air passing throughcavity 12 is determined to be approximately 1,100 CFM in the present preferred embodiment, which equates to approximately 3.4 CFM per square inch of footprint area incavity 12. - Referring now to
FIGS. 5a-5b , there are illustrated the details oftop nozzle plate 24 a andbottom nozzle plate 27 a, As shown,top nozzle plate 24 a includes anair deflection plate 54 attached to one of its corners (or edges) most adjacent totop blower 42. A detailed diagram ofair deflection plate 54 is shown inFIG. 6 . Along with a section oftop nozzle plate 24 a,air deflection plate 54 captures and directs a portion of the heated air exitingtop blower 42 intocavity 12 via the nozzles located betweenair deflection plate 54 andtop nozzle plate 24 a, while the remaining heated air exitingtop blower 42 goes intocavity 12 via the nozzles not located betweenair deflection plate 54 andtop nozzle plate 24 a. The size and shape ofair deflection plate 54 as well as the height betweenair deflection plate 54 andtop nozzle plate 24 a are selected to allow a sufficient portion of the air exitingtop blower 42 to be directed through the nozzles intop nozzle plate 24 a located betweenair deflection plate 54 andtop nozzle plate 24 a so that the velocity of air exiting all nozzles oftop nozzle plates 24 a-24 c intocavity 12 are as close to each other as possible, - Similarly,
bottom nozzle plate 27 a includes anair deflection plate 57 attached to one of its corners (or edges) most adjacent tobottom blower 43. The shape and size ofair deflection plate 57 should be similar, if not identical, to airdeflection plate 54. Along with a section ofbottom nozzle plate 27 a,air deflection plate 57 captures and directs a portion of the heated air exitingbottom blower 43 intocavity 12 via the nozzles located betweenair deflection plate 57 andbottom nozzle plate 27 a, while the remaining heated air exitingbottom blower 43 goes intocavity 12 via the nozzles not located betweenair deflection plate 57 andbottom nozzle plate 27 a. The size and shape ofair deflection plate 57 as well as the height betweenair deflection plate 57 andbottom nozzle plate 27 a are selected to allow a sufficient portion of the air exitingbottom blower 43 to be directed through the nozzles inbottom nozzle plate 27 a located betweenair deflection plate 57 andbottom nozzle plate 27 a so that the velocity of air exiting all nozzles ofbottom nozzle plates 27 a-27 c intocavity 12 are as close to each other as possible. - For the present embodiment having an average velocity of air exiting 136 extended nozzle-
like features 35 in each oftop nozzle plates 24 a-24 c andbottom nozzle plates 27 a-27 c at 90 feet per second, the standard deviation of air velocities exiting those 136 extended nozzle-like features 35 is approximately 9 feet per second, - It will be understood by those skilled in the art that the benefits derived by
54 and 57 are not dependent on their beingair deflection plates multiple nozzle plates 24 a-24 c and 27 a-27 c, respectively, and that other means of placement of 54 and 57 besides attachment toair deflection plates top nozzle plate 24 a andbottom nozzle plate 27 a would produce similar results. - As has been described, the present invention provides a compact oven having an improved method for heating food items,
- While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention,
Claims (21)
1-15. (canceled)
16. An oven comprising:
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
a plenum and a set of plates located within said cavity, wherein each plate of said set of plates includes a plurality of holes, and each of said plurality of holes forms a nozzle, and wherein said set of plates are stacked together to provide a plurality of concentric holes formed by said nozzle of one of said plurality of plates contacting another of said plurality of plates to form a plurality of nozzle-like features to direct heated air from said blower to a food item placed within said cavity for heating up said food item; and
an air deflection plate coupled to a nozzle plate having a plurality of nozzles for capturing and directing a portion of heated air from said blower to said cavity via nozzles located between said air deflection plate and said nozzle plate, while allowing the remaining heated air exiting said blower to move into said cavity via nozzles not located between said air deflection plate and said nozzle plate such that the velocities of heated air exiting all nozzles into said cavity are as close to each other as possible, said nozzle plate only allowing said heated air to pass from said blower to said cavity.)
16. The oven of claim 16 , wherein diameters of said plurality of nozzles are approximately 0.375 inch.
18. The oven of claim 16 , wherein said nozzle plate has approximately one hole per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch per cavity footprint area.
19. The oven of claim 16 , wherein said oven includes three air intakes for collecting heated air from said cavity.
20. The oven of claim 19 , wherein said three air intakes collect heated air from said cavity in three orthogonal directions,
21. An oven comprising;
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
three separate air intakes for collecting air from said cavity in three orthogonal directions at a rate greater than 2.5 cubic feet per minute (CFM) per square inch of cavity footprint area, wherein each of said three separate air intakes directly provide said collected air from said cavity to a heater plenum; and
a plenum and a set of plates located within said cavity, wherein each plate of said set of plates includes a plurality of holes, and each of said plurality of holes forms a nozzle, and wherein said set of plates are stacked together to provide a plurality of concentric holes formed by said nozzle of one of said plurality of plates contacting another of said plurality of plates to form a plurality of nozzle-like features to direct heated air from said blower to a food item placed within said cavity for heating up said food item.
21. The oven of claim 21 , wherein said cavity includes a second plenum and a second set of plates stacked together to provide a plurality of concentric holes to form a plurality of nozzle-like features to direct heated air to said cavity for heating up said food item.
23. The oven of claim 21 , wherein holes in one of said first set of plates have a different diameter from holes in another one of said first set of plates.
21. The oven of claim 21 , wherein the hole diameter in a first one of said plates is approximately 0.575 inch, the hole diameter in a second one of said plates is approximately 0.475 inch, and the hole diameter in a third one of said plates is approximately 0.375 inch.
25. The oven of claim 21 , wherein one of said plates has approximately one hole per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch of cavity footprint area.
26. An oven comprising:
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
an air deflection plate coupled to a nozzle plate having a plurality of nozzles for capturing and directing a portion of heated air from said blower to said cavity via nozzles located between said air deflection plate and said nozzle plate, while allowing the remaining heated air exiting said blower to move into said cavity via nozzles not located between said air deflection plate and said nozzle plate such that the velocities of heated air exiting all nozzles into said cavity are as close to each other as possible, said nozzle plate only allowing said heated air to pass from said blower to said cavity; and
three separate air intakes for collecting air from said cavity in three orthogonal directions at a rate greater than 2.5 cubic feet per minute (CFM) per square inch of cavity footprint area, wherein each of said three separate air intakes directly provide said collected air from said cavity to a heater plenum.
27. The oven of claim 26 , wherein said nozzle plate is formed by a plurality of plates stacked together to provide a plurality of concentric holes to form said nozzles.
28. An oven comprising:
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
a plenum and a set of plates located within said cavity, wherein each plate of said set of plates includes a plurality of holes, and each of said plurality of holes forms a nozzle, and wherein said set of plates are stacked together to provide a plurality of concentric holes formed by said nozzle of one of said plurality of plates contacting another of said plurality of plates to form a plurality of nozzle-like features to direct heated air from said blower to a food item placed within said cavity for heating up said food item;
an air deflection plate coupled to a nozzle plate having a plurality of nozzles for capturing and directing a portion of heated air from said blower to said cavity via nozzles located between said air deflection plate and said nozzle plate, while allowing the remaining heated air exiting said blower to move into said cavity via nozzles not located between said air deflection plate and said nozzle plate such that the velocities of heated air exiting all nozzles into said cavity are as close to each other as possible, said nozzle plate only allowing said heated air to pass from said blower to said cavity; and
three separate air intakes for collecting air from said cavity in three orthogonal directions at a rate greater than 2.5 cubic feet per minute (UM) per square inch of cavity footprint area, wherein each of said three separate air intakes directly provide said collected air from said cavity to a heater plenum.
29. The oven of claim 28 , wherein said cavity includes a second plenum and a second set of plates stacked together to provide a plurality of concentric holes to form a plurality of nozzle-like features to direct heated air to said cavity for heating up said food item.
30. The oven of claim 29 , wherein holes in one of said first set of plates have a different diameter from holes in another one of said first set of plates.
31. The oven of claim 28 , wherein the hole diameter in a first one of said plates is approximately 0.575 inch, the hole diameter in a second one of said plates is approximately 0.475 inch, and the hole diameter in a third one of said plates is approximately 0.375 inch.)
28. The oven of claim 28 , wherein one of said plates has approximately one hole per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch of cavity footprint area.
33. The oven of claim 28 , wherein diameters of said plurality of nozzles are approximately 0.375 inch.
34. The oven of claim 28 , wherein said nozzle plate has approximately one hold per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch per cavity footprint area.
35. The oven of claim 28 , further comprising a control panel.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/888,151 US9372006B2 (en) | 2013-05-06 | 2013-05-06 | Compact oven |
| PCT/US2014/034357 WO2014182413A2 (en) | 2013-05-06 | 2014-04-16 | Compact oven |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/034357 Continuation WO2014182413A2 (en) | 2013-05-06 | 2014-04-16 | Compact oven |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160345592A1 true US20160345592A1 (en) | 2016-12-01 |
Family
ID=50896509
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/888,151 Active 2034-03-09 US9372006B2 (en) | 2013-05-06 | 2013-05-06 | Compact oven |
| US15/235,491 Abandoned US20160345592A1 (en) | 2013-05-06 | 2016-08-12 | Compact oven |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/888,151 Active 2034-03-09 US9372006B2 (en) | 2013-05-06 | 2013-05-06 | Compact oven |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US9372006B2 (en) |
| EP (1) | EP2993987B1 (en) |
| JP (1) | JP6456363B2 (en) |
| KR (1) | KR20160005740A (en) |
| CN (2) | CN105163591B (en) |
| CA (2) | CA2910266C (en) |
| HK (2) | HK1216226A1 (en) |
| RU (1) | RU2015148007A (en) |
| SG (1) | SG11201509025SA (en) |
| WO (1) | WO2014182413A2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9677774B2 (en) | 2015-06-08 | 2017-06-13 | Alto-Shaam, Inc. | Multi-zone oven with variable cavity sizes |
| US9879865B2 (en) | 2015-06-08 | 2018-01-30 | Alto-Shaam, Inc. | Cooking oven |
| US10088172B2 (en) | 2016-07-29 | 2018-10-02 | Alto-Shaam, Inc. | Oven using structured air |
| US10337745B2 (en) | 2015-06-08 | 2019-07-02 | Alto-Shaam, Inc. | Convection oven |
| US10890336B2 (en) | 2015-06-08 | 2021-01-12 | Alto-Shaam, Inc. | Thermal management system for multizone oven |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12253264B2 (en) * | 2018-02-05 | 2025-03-18 | Alto-Shaam, Inc. | Steam generation and drain system for modular oven |
| US10986843B2 (en) * | 2018-02-05 | 2021-04-27 | Alto-Shaam, Inc. | Combination drain system for multizone oven |
| US12063732B2 (en) | 2020-04-02 | 2024-08-13 | Automation Tech, LLC | Modular cooking appliance having an auto-loading microwave oven |
| US12239255B2 (en) | 2020-04-02 | 2025-03-04 | Automation Tech, LLC | Modular cooking appliance |
| US12480662B2 (en) | 2020-04-02 | 2025-11-25 | Automation Tech, LLC | Modular cooking appliance having a user interface |
| US12178357B2 (en) | 2020-04-02 | 2024-12-31 | Automation Tech, LLC | Modular cooking appliance |
| US20220010970A1 (en) * | 2020-04-02 | 2022-01-13 | Automation Tech, LLC | Modular cooking appliance having a hot air oven with a built-in magnetron |
| US12287098B2 (en) | 2020-04-02 | 2025-04-29 | Automation Tech, LLC | Modular cooking appliance having a grease shield |
| US11737467B2 (en) | 2020-04-02 | 2023-08-29 | Automation Tech, LLC | Method for cooking in a modular cooking appliance |
| US12262846B2 (en) | 2022-01-20 | 2025-04-01 | Instafire, Llc | Portable oven configured for multiple different fuel types |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4626661A (en) * | 1984-04-16 | 1986-12-02 | Lincoln Manufacturing Company, Inc. | Air delivery system for an impingement food preparation oven |
| US4556043A (en) | 1984-09-17 | 1985-12-03 | Lincoln Manufacturing Company, Inc. | Air delivery system for an impingement food preparation oven including a conical air deflector |
| US4591333A (en) | 1985-03-26 | 1986-05-27 | Lincoln Manufacturing Company, Inc. | Impingement oven with radiant panel |
| US4749581A (en) | 1985-09-03 | 1988-06-07 | Lincoln Foodservice Products, Inc. | Method for baking a food product |
| US4781169A (en) | 1987-04-14 | 1988-11-01 | Lincoln Foodservice Products, Inc. | Oven with radiant panel |
| EP0366738A4 (en) * | 1988-03-10 | 1993-03-31 | Pizza Hut, Inc. | Method and oven for baking pizza |
| US5717192A (en) | 1990-01-10 | 1998-02-10 | Patentsmith Technology, Ltd. | Jet impingement batch oven |
| US5231920A (en) * | 1991-09-19 | 1993-08-03 | G. S. Blodgett Corporation | Conveyor oven with uniform air flow |
| US5421316A (en) * | 1994-01-31 | 1995-06-06 | G. S. Blodgett Corporation | Conveyor oven with improved air flow |
| US5584237A (en) * | 1994-12-12 | 1996-12-17 | Zesto Inc. | Heated air-circulating oven |
| US5601070A (en) * | 1996-06-17 | 1997-02-11 | Middleby Marshall, Inc. | Convection oven |
| CA2191786A1 (en) | 1996-11-29 | 1998-05-29 | Georges Moshonas | Impingement food apparatus |
| US5934178A (en) | 1997-01-04 | 1999-08-10 | Heat & Control, Inc. | Air impingement oven |
| DE10148548C5 (en) * | 2001-10-01 | 2006-03-23 | Miwe Michael Wenz Gmbh | oven |
| US6880545B2 (en) | 2003-08-28 | 2005-04-19 | Gas Research Institute | Dual conveyor jet impingement oven |
| ITMI20032120A1 (en) * | 2003-11-04 | 2005-05-05 | Oem Ali S P A | VENTILATED GAS OVEN FOR FOOD PRODUCTS AND HEAT EXCHANGER FOR SUCH OVEN |
| WO2005048720A2 (en) | 2003-11-18 | 2005-06-02 | Lincoln Foodservice Products, Inc. | Conveyor oven with energy saving baffle mechanism and method |
| CN1968609A (en) * | 2004-03-05 | 2007-05-23 | 特博切夫技术有限公司 | Conveyor oven |
| US20050205547A1 (en) | 2004-03-22 | 2005-09-22 | Hatco Corporation | Conveyor oven |
| CN101069043A (en) * | 2004-12-03 | 2007-11-07 | 特博切夫技术有限公司 | High speed convection oven |
| US7624728B1 (en) | 2004-12-22 | 2009-12-01 | David C Forbes | Impingement tunnel oven with reduced energy consumption and reduced maintenance |
| KR100743286B1 (en) | 2005-12-12 | 2007-07-26 | 엘지전자 주식회사 | Oven's door |
| WO2008112606A2 (en) | 2007-03-10 | 2008-09-18 | Turbochef Technologies, Inc. | Compact conveyor oven |
| WO2009097340A2 (en) * | 2008-01-28 | 2009-08-06 | Duke Manufacturing Co. | Convection oven |
| US8733236B2 (en) * | 2011-09-20 | 2014-05-27 | Ovention, Inc. | Matchbox oven |
-
2013
- 2013-05-06 US US13/888,151 patent/US9372006B2/en active Active
-
2014
- 2014-04-16 WO PCT/US2014/034357 patent/WO2014182413A2/en not_active Ceased
- 2014-04-16 HK HK16104220.6A patent/HK1216226A1/en unknown
- 2014-04-16 RU RU2015148007A patent/RU2015148007A/en not_active Application Discontinuation
- 2014-04-16 HK HK16106329.1A patent/HK1218233A1/en unknown
- 2014-04-16 CN CN201480025248.1A patent/CN105163591B/en active Active
- 2014-04-16 CA CA2910266A patent/CA2910266C/en active Active
- 2014-04-16 KR KR1020157034511A patent/KR20160005740A/en not_active Withdrawn
- 2014-04-16 CA CA3119253A patent/CA3119253C/en active Active
- 2014-04-16 EP EP14728717.1A patent/EP2993987B1/en active Active
- 2014-04-16 JP JP2016512906A patent/JP6456363B2/en active Active
- 2014-04-16 SG SG11201509025SA patent/SG11201509025SA/en unknown
- 2014-04-16 CN CN202110742638.2A patent/CN113508826B/en active Active
-
2016
- 2016-08-12 US US15/235,491 patent/US20160345592A1/en not_active Abandoned
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9677774B2 (en) | 2015-06-08 | 2017-06-13 | Alto-Shaam, Inc. | Multi-zone oven with variable cavity sizes |
| US9879865B2 (en) | 2015-06-08 | 2018-01-30 | Alto-Shaam, Inc. | Cooking oven |
| US10088173B2 (en) | 2015-06-08 | 2018-10-02 | Alto-Shaam, Inc. | Low-profile multi-zone oven |
| US10337745B2 (en) | 2015-06-08 | 2019-07-02 | Alto-Shaam, Inc. | Convection oven |
| US10890336B2 (en) | 2015-06-08 | 2021-01-12 | Alto-Shaam, Inc. | Thermal management system for multizone oven |
| US11754294B2 (en) | 2015-06-08 | 2023-09-12 | Alto-Shaam, Inc. | Thermal management system for multizone oven |
| US10088172B2 (en) | 2016-07-29 | 2018-10-02 | Alto-Shaam, Inc. | Oven using structured air |
Also Published As
| Publication number | Publication date |
|---|---|
| HK1218233A1 (en) | 2017-02-10 |
| KR20160005740A (en) | 2016-01-15 |
| CN113508826B (en) | 2022-10-21 |
| US20140326710A1 (en) | 2014-11-06 |
| US9372006B2 (en) | 2016-06-21 |
| JP6456363B2 (en) | 2019-01-23 |
| CA2910266A1 (en) | 2014-11-13 |
| SG11201509025SA (en) | 2015-11-27 |
| EP2993987B1 (en) | 2019-06-26 |
| JP2016518581A (en) | 2016-06-23 |
| WO2014182413A3 (en) | 2015-01-15 |
| CA3119253A1 (en) | 2014-11-13 |
| CN105163591A (en) | 2015-12-16 |
| WO2014182413A2 (en) | 2014-11-13 |
| CA2910266C (en) | 2021-06-01 |
| HK1216226A1 (en) | 2016-10-28 |
| CN105163591B (en) | 2021-09-14 |
| RU2015148007A3 (en) | 2018-03-06 |
| CA3119253C (en) | 2024-01-02 |
| CN113508826A (en) | 2021-10-19 |
| EP2993987A2 (en) | 2016-03-16 |
| RU2015148007A (en) | 2017-06-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9372006B2 (en) | Compact oven | |
| US10371391B2 (en) | Cooking oven provided for heat transfer by convection | |
| US6880545B2 (en) | Dual conveyor jet impingement oven | |
| EP1421885B1 (en) | High speed variable size toaster | |
| US6933473B2 (en) | High speed cooking oven having an air impingement heater with an improved orifice configuration | |
| US8993945B2 (en) | Oven circulating heated air | |
| US20110083657A1 (en) | Oven air flow arrangement | |
| US10088172B2 (en) | Oven using structured air | |
| CN101589283A (en) | Impinging air ovens having high mass flow orifices | |
| US20130284161A1 (en) | Oven appliance with features for selecting convection air flow direction | |
| CN109619999A (en) | Microwave oven | |
| CN206026110U (en) | Oven inner container structure | |
| TW200715980A (en) | Cooking device | |
| CN203083306U (en) | Drying box or humidification box | |
| CN201962190U (en) | Heating furnace for toughening glass | |
| CN205213972U (en) | Air ducting of oven | |
| KR101425731B1 (en) | Apparatus for steaming for manufacturing red ginseng | |
| CN206803619U (en) | A kind of electric heating constant-temperature blowing drying box for blood testing | |
| CN103598664A (en) | Areca nut baking device | |
| CN222352635U (en) | A fast cooling device for baked food | |
| CN211811209U (en) | Takeaway delivery case | |
| CN207674924U (en) | Constant temperature oven | |
| CN113367582A (en) | Steaming and baking device | |
| CN105341013A (en) | Air guide device of oven | |
| CN103822494A (en) | Precision-control distributed air-cooling treatment bench |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:HATCO CORPORATION;OVENTION, INC.;ADVANCED DESIGN MANUFACTURING, LLC;AND OTHERS;REEL/FRAME:061882/0476 Effective date: 20220930 |