[go: up one dir, main page]

US20160345592A1 - Compact oven - Google Patents

Compact oven Download PDF

Info

Publication number
US20160345592A1
US20160345592A1 US15/235,491 US201615235491A US2016345592A1 US 20160345592 A1 US20160345592 A1 US 20160345592A1 US 201615235491 A US201615235491 A US 201615235491A US 2016345592 A1 US2016345592 A1 US 2016345592A1
Authority
US
United States
Prior art keywords
cavity
plates
air
oven
heated air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/235,491
Inventor
Philip R. McKee
Thomas Lee Vanlanen
Alex Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ovention Inc
Original Assignee
Ovention Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ovention Inc filed Critical Ovention Inc
Publication of US20160345592A1 publication Critical patent/US20160345592A1/en
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED DESIGN MANUFACTURING, LLC, AMERICAN RANGE CORPORATION, HATCO CORPORATION, OVENTION, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B1/00Bakers' ovens
    • A21B1/02Bakers' ovens characterised by the heating arrangements
    • A21B1/24Ovens heated by media flowing therethrough
    • A21B1/245Ovens heated by media flowing therethrough with a plurality of air nozzles to obtain an impingement effect on the food
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/32Arrangements of ducts for hot gases, e.g. in or around baking ovens
    • F24C15/322Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation
    • F24C15/325Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation electrically-heated

Definitions

  • the present invention relates to compact ovens in general, and in particular to a compact oven having a high volume of even airflow with tight columns of air impingement.
  • a conventional oven the profile of the heat energy for cooking food items located inside a cavity of the oven is typically determined by the mechanical configuration of a heating source.
  • a conventional oven may contain one or more variable speed blowers that can be set at a specific rotations per minute (RPM) to deliver a given volume of heated air via one or more plenums.
  • RPM rotations per minute
  • the temperature of the rapidly moving heated air can be readily maintained at or near a temperature set by a temperature control feedback loop.
  • Air impingement can be achieved by moving heated air rapidly from one or more plenums through a set of nozzles located in the periphery of an oven cavity, thereby causing columns of the heated air to come into more direct contact with a food item as the heated air pierces the temperature gradients that surround the food item placed within the oven cavity. Since tighter columns of air at the food surface can improve the rate of heat transfer from the impinging air, cooking times are reduced as a result.
  • Increasing airflow volume which is typically measured in cubic feet per minute (CFM), can further reduce cook times of a food item because more hot air mass can be moved past the surface of the food item, thereby improving the rate of heat transfer to the food item,
  • a compact oven includes a housing having a cavity for receiving food items, and one or more blowers for directing heated air into the cavity,
  • the compact oven also includes an air deflection plate coupled to a nozzle plate having multiple nozzles for capturing and directing a portion of heated air from the blower to the cavity via nozzles located between the air deflection plate and the nozzle plate, while allowing the remaining heated air exiting the blower to move into the cavity via nozzles not located between the air deflection plate and the nozzle plate such that the velocities of heated air exiting all nozzles into the cavity are as close to each other as possible.
  • FIG. 1 is a front view of a compact oven, in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a compact cavity within the oven from FIG. 1 , in accordance with a preferred embodiment of the present invention
  • FIG. 3 a is an isometric view of three top nozzle plates within the cavity from FIG. 2 , in accordance with a preferred embodiment of the present invention
  • FIG. 3 b is a cress-sectional view of three top nozzle plates within the cavity from FIG. 2 , in accordance with a preferred embodiment of the present invention
  • FIG. 4 is a diagram of a heating and airflow system within the compact oven from FIG. 1 , in accordance with a preferred embodiment of the present invention
  • FIGS. 5 a -5 b are detailed views of the top and bottom nozzle plates within the heating and airflow system from FIG. 4 ;
  • FIG. 6 is a detailed diagram of an air deflection plate attached to the top nozzle plate from FIG. 5 a.
  • a compact oven 10 is defined by a housing 11 having a cavity 12 .
  • Compact oven 10 is generally smaller in size than a conventional oven, and the footprint area of cavity 12 ranges between approximately 1.0 square foot and 2.5 square feet, and preferably no larger than approximately 4.0 square feet.
  • Compact oven 10 includes a heating and airflow system (to be described in details later) to supply heat to cavity 12 for heating any food items placed within cavity 12 .
  • Control panel 15 An operator can enter operating parameters, such as cooking temperature, cooking time, blower speed, etc., via a control panel 15 to effectuate cooking controls on any food items placed within cavity 12 .
  • Control panel 15 is preferably implemented with touchscreens but it can also be implemented with keypads and liquid crystal displays.
  • housing 11 there is depicted a cross-sectional view of housing 11 , in accordance with a preferred embodiment of the present invention.
  • Any food item intended to be cooked by compact oven 10 can be placed inside cavity 12 where food will be heated. Since the footprint area of cavity 12 is relatively small, a food item placed within cavity 12 typically spans substantially the entire footprint area of cavity 12 .
  • housing 11 also contains a top plenum 25 and a bottom plenum 28 .
  • Top plenum 25 is connected to top nozzle plates 24 a - 24 c .
  • Bottom plenum 28 is connected to bottom nozzle plates 27 a - 27 c .
  • Top nozzle plates 24 a - 24 c , top plenum 25 , bottom nozzle plates 27 a - 27 c and bottom plenum 28 are part of the heating and airflow system for compact oven 10 . Heated air in top plenum 25 and bottom plenum 28 are in gaseous communication with cavity 12 through top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c , respectively.
  • top nozzle plate 24 a includes multiple holes 31
  • top nozzle plate 24 b includes multiple holes 32
  • top nozzle plate 24 c includes multiple holes 33 .
  • each of multiple holes 31 - 33 are themselves formed as nozzles.
  • the positions (and number) of holes 31 in top nozzle plate 24 a are identical to the positions of holes 32 on top nozzle plate 24 b as well as the positions of holes 33 on top nozzle plate 24 e .
  • each column of holes 31 - 33 are concentric holes.
  • holes 31 are slightly larger than holes 32
  • holes 32 are slightly larger than holes 33 .
  • top nozzle plates 24 a - 24 c can be conveniently stacked together to allow each column of holes 31 - 33 to form an extended nozzle-like feature 35 , as shown in FIG. 3 b .
  • This stack-plate configuration in essence replaces the need for using more extended nozzles to direct tighter columns of hot pressured airstream towards any food items placed within cavity 12 .
  • the diameters of holes 31 , 32 and 33 are approximately 0.575 inch, 0.475 inch and 0.375 inch, respectively.
  • CFM cubic feet per minute
  • bottom nozzle plates 27 a - 27 c are substantially the same as top nozzle plates 24 a - 24 c , respectively, except that the nozzles in top nozzle plates 24 a - 24 c are offset from the nozzles in bottom nozzle plates 27 a - 27 c such that the air columns formed by air exiting top nozzle plates 24 a - 24 c are directed between the air columns formed by the air exiting bottom nozzle plates 27 a - 27 e .
  • air enters cavity 12 via both top plenum 25 and bottom plenum 26 in FIG. 4 it is understood by those skilled in the art that air can enter cavity 12 through only one of top plenum 25 or bottom plenum 28 .
  • the heating and airflow system includes a heater plenum 41 located at the back of compact oven 10 .
  • Heater plenum 41 includes a heater 49 .
  • the heated air is then directed to top plenum 25 via a top blower 42 and to bottom plenum 28 via a bottom blower 43 .
  • the pressurized hot air formed within top plenum 25 is subsequently directed to cavity 12 via multiple nozzle-like features 35 formed by stacked top nozzle plates 24 a - 24 c (from FIGS. 3 a -3 b ).
  • pressurized hot air formed within bottom plenum 28 is subsequently directed to cavity 12 via multiple nozzle-like features 36 formed by stacked bottom nozzle plates 27 a - 27 c .
  • heated air is shown to be sent to top air plenum 25 and bottom plenum 28 via separate blowers, it is understood by those skilled in the art that heated air can be sent to both top plenum 25 and bottom plenum 28 via a single blower.
  • the heated air within cavity 12 can be returned to heater plenum 41 via a center intake opening 44 located inside cavity 12 by following path z.
  • the heated air within cavity 12 can also be returned to heater plenum 41 via a top intake opening 45 by following path x (i.e., over top air plenum 25 ) and via a bottom intake opening 46 by following path y (i.e., under bottom air plenum 28 ).
  • Center intake opening 44 , path z, top intake opening 45 , path x, bottom intake opening 46 and path y are configured to allow maximum CFM of airflow to return to heater plenum 41 , preferably at a rate that exceeds 2.5 CFM per square inch of footprint surface area in cavity 12 .
  • cavity 12 has a footprint area of approximately 2.125 square feet.
  • Top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c each contain approximately 136 extended nozzle-like features 35 resulting in approximately one extended nozzle-like feature 35 per 2.125 square inch.
  • Center intake opening 44 has an open surface area of approximately 22 square inches leading to heater plenum 41 .
  • Each of top intake opening 45 and bottom intake opening 46 have an open surface area of approximately 20 square inches leading to heater plenum 41 .
  • Each of top blower 42 and bottom blower 43 is configured to deliver average velocities of approximately 90 feet per second through extended nozzle-like features 35 in top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c when measured by a TSI Velocicalc hot wire anemometer with the measuring wand placed at the exit orifice of each of the 272 extended nozzle-like features 35 in top nozzle plates 24 a - 24 c and bottom nozzle plates 27 a - 27 c .
  • Each of holes 33 in top nozzle plate 24 c have a diameter of approximately 0.375 inch, yielding a hole area of approximately 0.11045 square inch, and bottom nozzle plate 27 c is substantially the same as top nozzle plate 24 c ,
  • the total volume of air passing through cavity 12 is determined to be approximately 1,100 CFM in the present preferred embodiment, which equates to approximately 3.4 CFM per square inch of footprint area in cavity 12 .
  • top nozzle plate 24 a includes an air deflection plate 54 attached to one of its corners (or edges) most adjacent to top blower 42 .
  • a detailed diagram of air deflection plate 54 is shown in FIG. 6 .
  • air deflection plate 54 captures and directs a portion of the heated air exiting top blower 42 into cavity 12 via the nozzles located between air deflection plate 54 and top nozzle plate 24 a , while the remaining heated air exiting top blower 42 goes into cavity 12 via the nozzles not located between air deflection plate 54 and top nozzle plate 24 a .
  • air deflection plate 54 as well as the height between air deflection plate 54 and top nozzle plate 24 a are selected to allow a sufficient portion of the air exiting top blower 42 to be directed through the nozzles in top nozzle plate 24 a located between air deflection plate 54 and top nozzle plate 24 a so that the velocity of air exiting all nozzles of top nozzle plates 24 a - 24 c into cavity 12 are as close to each other as possible,
  • bottom nozzle plate 27 a includes an air deflection plate 57 attached to one of its corners (or edges) most adjacent to bottom blower 43 .
  • the shape and size of air deflection plate 57 should be similar, if not identical, to air deflection plate 54 .
  • air deflection plate 57 captures and directs a portion of the heated air exiting bottom blower 43 into cavity 12 via the nozzles located between air deflection plate 57 and bottom nozzle plate 27 a , while the remaining heated air exiting bottom blower 43 goes into cavity 12 via the nozzles not located between air deflection plate 57 and bottom nozzle plate 27 a .
  • air deflection plate 57 as well as the height between air deflection plate 57 and bottom nozzle plate 27 a are selected to allow a sufficient portion of the air exiting bottom blower 43 to be directed through the nozzles in bottom nozzle plate 27 a located between air deflection plate 57 and bottom nozzle plate 27 a so that the velocity of air exiting all nozzles of bottom nozzle plates 27 a - 27 c into cavity 12 are as close to each other as possible.
  • the standard deviation of air velocities exiting those 136 extended nozzle-like features 35 is approximately 9 feet per second
  • air deflection plates 54 and 57 are not dependent on their being multiple nozzle plates 24 a - 24 c and 27 a - 27 c , respectively, and that other means of placement of air deflection plates 54 and 57 besides attachment to top nozzle plate 24 a and bottom nozzle plate 27 a would produce similar results.
  • the present invention provides a compact oven having an improved method for heating food items

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Baking, Grill, Roasting (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

A compact oven is disclosed. The compact oven includes a housing having a cavity for receiving food items, and one or more blowers for directing heated air into the cavity. The compact oven also includes an air deflection plate coupled to a nozzle plate having multiple nozzles for capturing and directing a portion of heated air from the blower to the cavity via nozzles located between the air deflection plate and the nozzle plate, while allowing the remaining heated air exiting the blower to move into the cavity via nozzles not located between the air deflection plate and the nozzle plate such that the velocities of heated air exiting all nozzles into the cavity are as close to each other as possible.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to compact ovens in general, and in particular to a compact oven having a high volume of even airflow with tight columns of air impingement.
  • 2. Description of Related Art
  • For a conventional oven, the profile of the heat energy for cooking food items located inside a cavity of the oven is typically determined by the mechanical configuration of a heating source. For example, a conventional oven may contain one or more variable speed blowers that can be set at a specific rotations per minute (RPM) to deliver a given volume of heated air via one or more plenums. The temperature of the rapidly moving heated air can be readily maintained at or near a temperature set by a temperature control feedback loop.
  • In order to accelerate cook time, some ovens employ a technique known as air impingement. Air impingement can be achieved by moving heated air rapidly from one or more plenums through a set of nozzles located in the periphery of an oven cavity, thereby causing columns of the heated air to come into more direct contact with a food item as the heated air pierces the temperature gradients that surround the food item placed within the oven cavity. Since tighter columns of air at the food surface can improve the rate of heat transfer from the impinging air, cooking times are reduced as a result. Increasing airflow volume, which is typically measured in cubic feet per minute (CFM), can further reduce cook times of a food item because more hot air mass can be moved past the surface of the food item, thereby improving the rate of heat transfer to the food item,
  • There are many challenges, however, to achieving tighter columns and higher CFM of heated air inside an oven cavity. At a given blower speed, reducing nozzle size increases air velocity, thereby tightening the air columns, but the air volume is also reduced due to the increase in back pressure caused by the reduced nozzle size. The opposite is true as well as a given blower speed, increased nozzle size increases air volume but reduces air velocity through the nozzles and loosens the air columns that are important to the air impingement process. Increased blower speed is a commonly used alternative, but this method is problematic in smaller ovens where elevated blower speeds cause uneven air distribution in a relatively small blower plenum.
  • SUMMARY OF THE INVENTION
  • The present invention provides an improved method for evenly heating food items placed within a relatively small oven cavity of a compact oven, In accordance with a preferred embodiment of the present invention, a compact oven includes a housing having a cavity for receiving food items, and one or more blowers for directing heated air into the cavity, The compact oven also includes an air deflection plate coupled to a nozzle plate having multiple nozzles for capturing and directing a portion of heated air from the blower to the cavity via nozzles located between the air deflection plate and the nozzle plate, while allowing the remaining heated air exiting the blower to move into the cavity via nozzles not located between the air deflection plate and the nozzle plate such that the velocities of heated air exiting all nozzles into the cavity are as close to each other as possible.
  • All features and advantages of the present invention will become apparent in the following detailed written description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is a front view of a compact oven, in accordance with a preferred embodiment of the present invention;
  • FIG. 2 is a cross-sectional view of a compact cavity within the oven from FIG. 1, in accordance with a preferred embodiment of the present invention;
  • FIG. 3a is an isometric view of three top nozzle plates within the cavity from FIG. 2, in accordance with a preferred embodiment of the present invention;
  • FIG. 3b is a cress-sectional view of three top nozzle plates within the cavity from FIG. 2, in accordance with a preferred embodiment of the present invention;
  • FIG. 4 is a diagram of a heating and airflow system within the compact oven from FIG. 1, in accordance with a preferred embodiment of the present invention;
  • FIGS. 5a-5b are detailed views of the top and bottom nozzle plates within the heating and airflow system from FIG. 4; and
  • FIG. 6 is a detailed diagram of an air deflection plate attached to the top nozzle plate from FIG. 5 a.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings and in particular to FIG. 1, there is depicted a front view of a compact oven, in accordance with a preferred embodiment of the present invention. As shown, a compact oven 10 is defined by a housing 11 having a cavity 12. Compact oven 10 is generally smaller in size than a conventional oven, and the footprint area of cavity 12 ranges between approximately 1.0 square foot and 2.5 square feet, and preferably no larger than approximately 4.0 square feet. Compact oven 10 includes a heating and airflow system (to be described in details later) to supply heat to cavity 12 for heating any food items placed within cavity 12.
  • An operator can enter operating parameters, such as cooking temperature, cooking time, blower speed, etc., via a control panel 15 to effectuate cooking controls on any food items placed within cavity 12. Control panel 15 is preferably implemented with touchscreens but it can also be implemented with keypads and liquid crystal displays.
  • With reference now to FIG. 2, there is depicted a cross-sectional view of housing 11, in accordance with a preferred embodiment of the present invention. Any food item intended to be cooked by compact oven 10 can be placed inside cavity 12 where food will be heated. Since the footprint area of cavity 12 is relatively small, a food item placed within cavity 12 typically spans substantially the entire footprint area of cavity 12. As shown, housing 11 also contains a top plenum 25 and a bottom plenum 28. Top plenum 25 is connected to top nozzle plates 24 a-24 c. Bottom plenum 28 is connected to bottom nozzle plates 27 a-27 c. Top nozzle plates 24 a-24 c, top plenum 25, bottom nozzle plates 27 a-27 c and bottom plenum 28 are part of the heating and airflow system for compact oven 10. Heated air in top plenum 25 and bottom plenum 28 are in gaseous communication with cavity 12 through top nozzle plates 24 a-24 c and bottom nozzle plates 27 a-27 c, respectively.
  • Referring now to FIG. 3a , there is depicted an isomeric view of top nozzle plates 24 a-24 c, in accordance with a preferred embodiment of the present invention. As shown, top nozzle plate 24 a includes multiple holes 31, top nozzle plate 24 b includes multiple holes 32, and top nozzle plate 24 c includes multiple holes 33. Preferably, each of multiple holes 31-33 are themselves formed as nozzles. The positions (and number) of holes 31 in top nozzle plate 24 a are identical to the positions of holes 32 on top nozzle plate 24 b as well as the positions of holes 33 on top nozzle plate 24 e. Basically, each column of holes 31-33 are concentric holes. In addition, holes 31 are slightly larger than holes 32, and holes 32 are slightly larger than holes 33. Thus, top nozzle plates 24 a-24 c can be conveniently stacked together to allow each column of holes 31-33 to form an extended nozzle-like feature 35, as shown in FIG. 3b . This stack-plate configuration in essence replaces the need for using more extended nozzles to direct tighter columns of hot pressured airstream towards any food items placed within cavity 12.
  • Preferably, the diameters of holes 31, 32 and 33 are approximately 0.575 inch, 0.475 inch and 0.375 inch, respectively. In addition, there is approximately one hole 31 per 2.25 square inch on each of top nozzle plates 24 a-24 e to allow maximum cubic feet per minute (CFM) of airflow per square inch. The configurations of bottom nozzle plates 27 a-27 c are substantially the same as top nozzle plates 24 a-24 c, respectively, except that the nozzles in top nozzle plates 24 a-24 c are offset from the nozzles in bottom nozzle plates 27 a-27 c such that the air columns formed by air exiting top nozzle plates 24 a-24 c are directed between the air columns formed by the air exiting bottom nozzle plates 27 a-27 e. In the present embodiment, while air enters cavity 12 via both top plenum 25 and bottom plenum 26 in FIG. 4, it is understood by those skilled in the art that air can enter cavity 12 through only one of top plenum 25 or bottom plenum 28.
  • With reference now to FIG. 4, there is depicted a diagram of the heating and airflow system within compact oven 10, in accordance with a preferred embodiment of the present invention. As shown, the heating and airflow system includes a heater plenum 41 located at the back of compact oven 10. Heater plenum 41 includes a heater 49. After air has been sufficiently heated by heater 49, the heated air is then directed to top plenum 25 via a top blower 42 and to bottom plenum 28 via a bottom blower 43. The pressurized hot air formed within top plenum 25 is subsequently directed to cavity 12 via multiple nozzle-like features 35 formed by stacked top nozzle plates 24 a-24 c (from FIGS. 3a-3b ). Similarly, pressurized hot air formed within bottom plenum 28 is subsequently directed to cavity 12 via multiple nozzle-like features 36 formed by stacked bottom nozzle plates 27 a-27 c. Although heated air is shown to be sent to top air plenum 25 and bottom plenum 28 via separate blowers, it is understood by those skilled in the art that heated air can be sent to both top plenum 25 and bottom plenum 28 via a single blower.
  • The heated air within cavity 12 can be returned to heater plenum 41 via a center intake opening 44 located inside cavity 12 by following path z. The heated air within cavity 12 can also be returned to heater plenum 41 via a top intake opening 45 by following path x (i.e., over top air plenum 25) and via a bottom intake opening 46 by following path y (i.e., under bottom air plenum 28). Center intake opening 44, path z, top intake opening 45, path x, bottom intake opening 46 and path y are configured to allow maximum CFM of airflow to return to heater plenum 41, preferably at a rate that exceeds 2.5 CFM per square inch of footprint surface area in cavity 12.
  • In a preferred embodiment of the present invention, cavity 12 has a footprint area of approximately 2.125 square feet. Top nozzle plates 24 a-24 c and bottom nozzle plates 27 a-27 c each contain approximately 136 extended nozzle-like features 35 resulting in approximately one extended nozzle-like feature 35 per 2.125 square inch. Center intake opening 44 has an open surface area of approximately 22 square inches leading to heater plenum 41. Each of top intake opening 45 and bottom intake opening 46 have an open surface area of approximately 20 square inches leading to heater plenum 41. Each of top blower 42 and bottom blower 43 is configured to deliver average velocities of approximately 90 feet per second through extended nozzle-like features 35 in top nozzle plates 24 a-24 c and bottom nozzle plates 27 a-27 c when measured by a TSI Velocicalc hot wire anemometer with the measuring wand placed at the exit orifice of each of the 272 extended nozzle-like features 35 in top nozzle plates 24 a-24 c and bottom nozzle plates 27 a-27 c. Each of holes 33 in top nozzle plate 24 c have a diameter of approximately 0.375 inch, yielding a hole area of approximately 0.11045 square inch, and bottom nozzle plate 27 c is substantially the same as top nozzle plate 24 c, At the average measured air velocity of approximately 90 feet per second, the total volume of air passing through cavity 12 is determined to be approximately 1,100 CFM in the present preferred embodiment, which equates to approximately 3.4 CFM per square inch of footprint area in cavity 12.
  • Referring now to FIGS. 5a-5b , there are illustrated the details of top nozzle plate 24 a and bottom nozzle plate 27 a, As shown, top nozzle plate 24 a includes an air deflection plate 54 attached to one of its corners (or edges) most adjacent to top blower 42. A detailed diagram of air deflection plate 54 is shown in FIG. 6. Along with a section of top nozzle plate 24 a, air deflection plate 54 captures and directs a portion of the heated air exiting top blower 42 into cavity 12 via the nozzles located between air deflection plate 54 and top nozzle plate 24 a, while the remaining heated air exiting top blower 42 goes into cavity 12 via the nozzles not located between air deflection plate 54 and top nozzle plate 24 a. The size and shape of air deflection plate 54 as well as the height between air deflection plate 54 and top nozzle plate 24 a are selected to allow a sufficient portion of the air exiting top blower 42 to be directed through the nozzles in top nozzle plate 24 a located between air deflection plate 54 and top nozzle plate 24 a so that the velocity of air exiting all nozzles of top nozzle plates 24 a-24 c into cavity 12 are as close to each other as possible,
  • Similarly, bottom nozzle plate 27 a includes an air deflection plate 57 attached to one of its corners (or edges) most adjacent to bottom blower 43. The shape and size of air deflection plate 57 should be similar, if not identical, to air deflection plate 54. Along with a section of bottom nozzle plate 27 a, air deflection plate 57 captures and directs a portion of the heated air exiting bottom blower 43 into cavity 12 via the nozzles located between air deflection plate 57 and bottom nozzle plate 27 a, while the remaining heated air exiting bottom blower 43 goes into cavity 12 via the nozzles not located between air deflection plate 57 and bottom nozzle plate 27 a. The size and shape of air deflection plate 57 as well as the height between air deflection plate 57 and bottom nozzle plate 27 a are selected to allow a sufficient portion of the air exiting bottom blower 43 to be directed through the nozzles in bottom nozzle plate 27 a located between air deflection plate 57 and bottom nozzle plate 27 a so that the velocity of air exiting all nozzles of bottom nozzle plates 27 a-27 c into cavity 12 are as close to each other as possible.
  • For the present embodiment having an average velocity of air exiting 136 extended nozzle-like features 35 in each of top nozzle plates 24 a-24 c and bottom nozzle plates 27 a-27 c at 90 feet per second, the standard deviation of air velocities exiting those 136 extended nozzle-like features 35 is approximately 9 feet per second,
  • It will be understood by those skilled in the art that the benefits derived by air deflection plates 54 and 57 are not dependent on their being multiple nozzle plates 24 a-24 c and 27 a-27 c, respectively, and that other means of placement of air deflection plates 54 and 57 besides attachment to top nozzle plate 24 a and bottom nozzle plate 27 a would produce similar results.
  • As has been described, the present invention provides a compact oven having an improved method for heating food items,
  • While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention,

Claims (21)

1-15. (canceled)
16. An oven comprising:
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
a plenum and a set of plates located within said cavity, wherein each plate of said set of plates includes a plurality of holes, and each of said plurality of holes forms a nozzle, and wherein said set of plates are stacked together to provide a plurality of concentric holes formed by said nozzle of one of said plurality of plates contacting another of said plurality of plates to form a plurality of nozzle-like features to direct heated air from said blower to a food item placed within said cavity for heating up said food item; and
an air deflection plate coupled to a nozzle plate having a plurality of nozzles for capturing and directing a portion of heated air from said blower to said cavity via nozzles located between said air deflection plate and said nozzle plate, while allowing the remaining heated air exiting said blower to move into said cavity via nozzles not located between said air deflection plate and said nozzle plate such that the velocities of heated air exiting all nozzles into said cavity are as close to each other as possible, said nozzle plate only allowing said heated air to pass from said blower to said cavity.)
16. The oven of claim 16, wherein diameters of said plurality of nozzles are approximately 0.375 inch.
18. The oven of claim 16, wherein said nozzle plate has approximately one hole per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch per cavity footprint area.
19. The oven of claim 16, wherein said oven includes three air intakes for collecting heated air from said cavity.
20. The oven of claim 19, wherein said three air intakes collect heated air from said cavity in three orthogonal directions,
21. An oven comprising;
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
three separate air intakes for collecting air from said cavity in three orthogonal directions at a rate greater than 2.5 cubic feet per minute (CFM) per square inch of cavity footprint area, wherein each of said three separate air intakes directly provide said collected air from said cavity to a heater plenum; and
a plenum and a set of plates located within said cavity, wherein each plate of said set of plates includes a plurality of holes, and each of said plurality of holes forms a nozzle, and wherein said set of plates are stacked together to provide a plurality of concentric holes formed by said nozzle of one of said plurality of plates contacting another of said plurality of plates to form a plurality of nozzle-like features to direct heated air from said blower to a food item placed within said cavity for heating up said food item.
21. The oven of claim 21, wherein said cavity includes a second plenum and a second set of plates stacked together to provide a plurality of concentric holes to form a plurality of nozzle-like features to direct heated air to said cavity for heating up said food item.
23. The oven of claim 21, wherein holes in one of said first set of plates have a different diameter from holes in another one of said first set of plates.
21. The oven of claim 21, wherein the hole diameter in a first one of said plates is approximately 0.575 inch, the hole diameter in a second one of said plates is approximately 0.475 inch, and the hole diameter in a third one of said plates is approximately 0.375 inch.
25. The oven of claim 21, wherein one of said plates has approximately one hole per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch of cavity footprint area.
26. An oven comprising:
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
an air deflection plate coupled to a nozzle plate having a plurality of nozzles for capturing and directing a portion of heated air from said blower to said cavity via nozzles located between said air deflection plate and said nozzle plate, while allowing the remaining heated air exiting said blower to move into said cavity via nozzles not located between said air deflection plate and said nozzle plate such that the velocities of heated air exiting all nozzles into said cavity are as close to each other as possible, said nozzle plate only allowing said heated air to pass from said blower to said cavity; and
three separate air intakes for collecting air from said cavity in three orthogonal directions at a rate greater than 2.5 cubic feet per minute (CFM) per square inch of cavity footprint area, wherein each of said three separate air intakes directly provide said collected air from said cavity to a heater plenum.
27. The oven of claim 26, wherein said nozzle plate is formed by a plurality of plates stacked together to provide a plurality of concentric holes to form said nozzles.
28. An oven comprising:
a housing;
a cavity, located within said housing, for receiving food items;
a blower for delivering heated air to said cavity;
a plenum and a set of plates located within said cavity, wherein each plate of said set of plates includes a plurality of holes, and each of said plurality of holes forms a nozzle, and wherein said set of plates are stacked together to provide a plurality of concentric holes formed by said nozzle of one of said plurality of plates contacting another of said plurality of plates to form a plurality of nozzle-like features to direct heated air from said blower to a food item placed within said cavity for heating up said food item;
an air deflection plate coupled to a nozzle plate having a plurality of nozzles for capturing and directing a portion of heated air from said blower to said cavity via nozzles located between said air deflection plate and said nozzle plate, while allowing the remaining heated air exiting said blower to move into said cavity via nozzles not located between said air deflection plate and said nozzle plate such that the velocities of heated air exiting all nozzles into said cavity are as close to each other as possible, said nozzle plate only allowing said heated air to pass from said blower to said cavity; and
three separate air intakes for collecting air from said cavity in three orthogonal directions at a rate greater than 2.5 cubic feet per minute (UM) per square inch of cavity footprint area, wherein each of said three separate air intakes directly provide said collected air from said cavity to a heater plenum.
29. The oven of claim 28, wherein said cavity includes a second plenum and a second set of plates stacked together to provide a plurality of concentric holes to form a plurality of nozzle-like features to direct heated air to said cavity for heating up said food item.
30. The oven of claim 29, wherein holes in one of said first set of plates have a different diameter from holes in another one of said first set of plates.
31. The oven of claim 28, wherein the hole diameter in a first one of said plates is approximately 0.575 inch, the hole diameter in a second one of said plates is approximately 0.475 inch, and the hole diameter in a third one of said plates is approximately 0.375 inch.)
28. The oven of claim 28, wherein one of said plates has approximately one hole per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch of cavity footprint area.
33. The oven of claim 28, wherein diameters of said plurality of nozzles are approximately 0.375 inch.
34. The oven of claim 28, wherein said nozzle plate has approximately one hold per 2.25 square inch to allow maximum cubic feet per minute (CFM) of airflow per square inch per cavity footprint area.
35. The oven of claim 28, further comprising a control panel.
US15/235,491 2013-05-06 2016-08-12 Compact oven Abandoned US20160345592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/888,151 US9372006B2 (en) 2013-05-06 2013-05-06 Compact oven
PCT/US2014/034357 WO2014182413A2 (en) 2013-05-06 2014-04-16 Compact oven

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/034357 Continuation WO2014182413A2 (en) 2013-05-06 2014-04-16 Compact oven

Publications (1)

Publication Number Publication Date
US20160345592A1 true US20160345592A1 (en) 2016-12-01

Family

ID=50896509

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/888,151 Active 2034-03-09 US9372006B2 (en) 2013-05-06 2013-05-06 Compact oven
US15/235,491 Abandoned US20160345592A1 (en) 2013-05-06 2016-08-12 Compact oven

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/888,151 Active 2034-03-09 US9372006B2 (en) 2013-05-06 2013-05-06 Compact oven

Country Status (10)

Country Link
US (2) US9372006B2 (en)
EP (1) EP2993987B1 (en)
JP (1) JP6456363B2 (en)
KR (1) KR20160005740A (en)
CN (2) CN105163591B (en)
CA (2) CA2910266C (en)
HK (2) HK1216226A1 (en)
RU (1) RU2015148007A (en)
SG (1) SG11201509025SA (en)
WO (1) WO2014182413A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677774B2 (en) 2015-06-08 2017-06-13 Alto-Shaam, Inc. Multi-zone oven with variable cavity sizes
US9879865B2 (en) 2015-06-08 2018-01-30 Alto-Shaam, Inc. Cooking oven
US10088172B2 (en) 2016-07-29 2018-10-02 Alto-Shaam, Inc. Oven using structured air
US10337745B2 (en) 2015-06-08 2019-07-02 Alto-Shaam, Inc. Convection oven
US10890336B2 (en) 2015-06-08 2021-01-12 Alto-Shaam, Inc. Thermal management system for multizone oven

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12253264B2 (en) * 2018-02-05 2025-03-18 Alto-Shaam, Inc. Steam generation and drain system for modular oven
US10986843B2 (en) * 2018-02-05 2021-04-27 Alto-Shaam, Inc. Combination drain system for multizone oven
US12063732B2 (en) 2020-04-02 2024-08-13 Automation Tech, LLC Modular cooking appliance having an auto-loading microwave oven
US12239255B2 (en) 2020-04-02 2025-03-04 Automation Tech, LLC Modular cooking appliance
US12480662B2 (en) 2020-04-02 2025-11-25 Automation Tech, LLC Modular cooking appliance having a user interface
US12178357B2 (en) 2020-04-02 2024-12-31 Automation Tech, LLC Modular cooking appliance
US20220010970A1 (en) * 2020-04-02 2022-01-13 Automation Tech, LLC Modular cooking appliance having a hot air oven with a built-in magnetron
US12287098B2 (en) 2020-04-02 2025-04-29 Automation Tech, LLC Modular cooking appliance having a grease shield
US11737467B2 (en) 2020-04-02 2023-08-29 Automation Tech, LLC Method for cooking in a modular cooking appliance
US12262846B2 (en) 2022-01-20 2025-04-01 Instafire, Llc Portable oven configured for multiple different fuel types

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626661A (en) * 1984-04-16 1986-12-02 Lincoln Manufacturing Company, Inc. Air delivery system for an impingement food preparation oven
US4556043A (en) 1984-09-17 1985-12-03 Lincoln Manufacturing Company, Inc. Air delivery system for an impingement food preparation oven including a conical air deflector
US4591333A (en) 1985-03-26 1986-05-27 Lincoln Manufacturing Company, Inc. Impingement oven with radiant panel
US4749581A (en) 1985-09-03 1988-06-07 Lincoln Foodservice Products, Inc. Method for baking a food product
US4781169A (en) 1987-04-14 1988-11-01 Lincoln Foodservice Products, Inc. Oven with radiant panel
EP0366738A4 (en) * 1988-03-10 1993-03-31 Pizza Hut, Inc. Method and oven for baking pizza
US5717192A (en) 1990-01-10 1998-02-10 Patentsmith Technology, Ltd. Jet impingement batch oven
US5231920A (en) * 1991-09-19 1993-08-03 G. S. Blodgett Corporation Conveyor oven with uniform air flow
US5421316A (en) * 1994-01-31 1995-06-06 G. S. Blodgett Corporation Conveyor oven with improved air flow
US5584237A (en) * 1994-12-12 1996-12-17 Zesto Inc. Heated air-circulating oven
US5601070A (en) * 1996-06-17 1997-02-11 Middleby Marshall, Inc. Convection oven
CA2191786A1 (en) 1996-11-29 1998-05-29 Georges Moshonas Impingement food apparatus
US5934178A (en) 1997-01-04 1999-08-10 Heat & Control, Inc. Air impingement oven
DE10148548C5 (en) * 2001-10-01 2006-03-23 Miwe Michael Wenz Gmbh oven
US6880545B2 (en) 2003-08-28 2005-04-19 Gas Research Institute Dual conveyor jet impingement oven
ITMI20032120A1 (en) * 2003-11-04 2005-05-05 Oem Ali S P A VENTILATED GAS OVEN FOR FOOD PRODUCTS AND HEAT EXCHANGER FOR SUCH OVEN
WO2005048720A2 (en) 2003-11-18 2005-06-02 Lincoln Foodservice Products, Inc. Conveyor oven with energy saving baffle mechanism and method
CN1968609A (en) * 2004-03-05 2007-05-23 特博切夫技术有限公司 Conveyor oven
US20050205547A1 (en) 2004-03-22 2005-09-22 Hatco Corporation Conveyor oven
CN101069043A (en) * 2004-12-03 2007-11-07 特博切夫技术有限公司 High speed convection oven
US7624728B1 (en) 2004-12-22 2009-12-01 David C Forbes Impingement tunnel oven with reduced energy consumption and reduced maintenance
KR100743286B1 (en) 2005-12-12 2007-07-26 엘지전자 주식회사 Oven's door
WO2008112606A2 (en) 2007-03-10 2008-09-18 Turbochef Technologies, Inc. Compact conveyor oven
WO2009097340A2 (en) * 2008-01-28 2009-08-06 Duke Manufacturing Co. Convection oven
US8733236B2 (en) * 2011-09-20 2014-05-27 Ovention, Inc. Matchbox oven

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677774B2 (en) 2015-06-08 2017-06-13 Alto-Shaam, Inc. Multi-zone oven with variable cavity sizes
US9879865B2 (en) 2015-06-08 2018-01-30 Alto-Shaam, Inc. Cooking oven
US10088173B2 (en) 2015-06-08 2018-10-02 Alto-Shaam, Inc. Low-profile multi-zone oven
US10337745B2 (en) 2015-06-08 2019-07-02 Alto-Shaam, Inc. Convection oven
US10890336B2 (en) 2015-06-08 2021-01-12 Alto-Shaam, Inc. Thermal management system for multizone oven
US11754294B2 (en) 2015-06-08 2023-09-12 Alto-Shaam, Inc. Thermal management system for multizone oven
US10088172B2 (en) 2016-07-29 2018-10-02 Alto-Shaam, Inc. Oven using structured air

Also Published As

Publication number Publication date
HK1218233A1 (en) 2017-02-10
KR20160005740A (en) 2016-01-15
CN113508826B (en) 2022-10-21
US20140326710A1 (en) 2014-11-06
US9372006B2 (en) 2016-06-21
JP6456363B2 (en) 2019-01-23
CA2910266A1 (en) 2014-11-13
SG11201509025SA (en) 2015-11-27
EP2993987B1 (en) 2019-06-26
JP2016518581A (en) 2016-06-23
WO2014182413A3 (en) 2015-01-15
CA3119253A1 (en) 2014-11-13
CN105163591A (en) 2015-12-16
WO2014182413A2 (en) 2014-11-13
CA2910266C (en) 2021-06-01
HK1216226A1 (en) 2016-10-28
CN105163591B (en) 2021-09-14
RU2015148007A3 (en) 2018-03-06
CA3119253C (en) 2024-01-02
CN113508826A (en) 2021-10-19
EP2993987A2 (en) 2016-03-16
RU2015148007A (en) 2017-06-13

Similar Documents

Publication Publication Date Title
US9372006B2 (en) Compact oven
US10371391B2 (en) Cooking oven provided for heat transfer by convection
US6880545B2 (en) Dual conveyor jet impingement oven
EP1421885B1 (en) High speed variable size toaster
US6933473B2 (en) High speed cooking oven having an air impingement heater with an improved orifice configuration
US8993945B2 (en) Oven circulating heated air
US20110083657A1 (en) Oven air flow arrangement
US10088172B2 (en) Oven using structured air
CN101589283A (en) Impinging air ovens having high mass flow orifices
US20130284161A1 (en) Oven appliance with features for selecting convection air flow direction
CN109619999A (en) Microwave oven
CN206026110U (en) Oven inner container structure
TW200715980A (en) Cooking device
CN203083306U (en) Drying box or humidification box
CN201962190U (en) Heating furnace for toughening glass
CN205213972U (en) Air ducting of oven
KR101425731B1 (en) Apparatus for steaming for manufacturing red ginseng
CN206803619U (en) A kind of electric heating constant-temperature blowing drying box for blood testing
CN103598664A (en) Areca nut baking device
CN222352635U (en) A fast cooling device for baked food
CN211811209U (en) Takeaway delivery case
CN207674924U (en) Constant temperature oven
CN113367582A (en) Steaming and baking device
CN105341013A (en) Air guide device of oven
CN103822494A (en) Precision-control distributed air-cooling treatment bench

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:HATCO CORPORATION;OVENTION, INC.;ADVANCED DESIGN MANUFACTURING, LLC;AND OTHERS;REEL/FRAME:061882/0476

Effective date: 20220930