US20160296664A1 - Methods for host cell homing and dental pulp regeneration - Google Patents
Methods for host cell homing and dental pulp regeneration Download PDFInfo
- Publication number
- US20160296664A1 US20160296664A1 US14/783,778 US201414783778A US2016296664A1 US 20160296664 A1 US20160296664 A1 US 20160296664A1 US 201414783778 A US201414783778 A US 201414783778A US 2016296664 A1 US2016296664 A1 US 2016296664A1
- Authority
- US
- United States
- Prior art keywords
- hydrogel
- fibrinogen
- based scaffold
- peg
- scaffold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 210000003074 dental pulp Anatomy 0.000 title claims description 9
- 230000008929 regeneration Effects 0.000 title claims description 8
- 238000011069 regeneration method Methods 0.000 title claims description 8
- 239000000017 hydrogel Substances 0.000 claims abstract description 87
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 26
- 230000010261 cell growth Effects 0.000 claims abstract description 14
- 230000001737 promoting effect Effects 0.000 claims abstract description 12
- 230000001105 regulatory effect Effects 0.000 claims abstract description 10
- 230000012292 cell migration Effects 0.000 claims abstract 2
- 229940012952 fibrinogen Drugs 0.000 claims description 96
- 102000008946 Fibrinogen Human genes 0.000 claims description 80
- 108010049003 Fibrinogen Proteins 0.000 claims description 80
- 210000004027 cell Anatomy 0.000 claims description 46
- 229920000671 polyethylene glycol diacrylate Polymers 0.000 claims description 33
- 210000000130 stem cell Anatomy 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 13
- 239000002202 Polyethylene glycol Substances 0.000 claims description 11
- 229920001223 polyethylene glycol Polymers 0.000 claims description 11
- 239000004971 Cross linker Substances 0.000 claims description 10
- 210000001968 dental pulp cell Anatomy 0.000 claims description 10
- 230000008595 infiltration Effects 0.000 claims description 10
- 238000001764 infiltration Methods 0.000 claims description 10
- 238000013508 migration Methods 0.000 claims description 10
- 230000005012 migration Effects 0.000 claims description 10
- 230000004069 differentiation Effects 0.000 claims description 6
- 238000001727 in vivo Methods 0.000 claims description 5
- 230000003115 biocidal effect Effects 0.000 claims description 4
- 230000001851 biosynthetic effect Effects 0.000 claims description 4
- 238000000338 in vitro Methods 0.000 claims description 4
- 231100000252 nontoxic Toxicity 0.000 claims description 4
- 230000003000 nontoxic effect Effects 0.000 claims description 4
- 230000008439 repair process Effects 0.000 claims description 4
- 239000003242 anti bacterial agent Substances 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 210000002889 endothelial cell Anatomy 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 229920001436 collagen Polymers 0.000 description 23
- 102000008186 Collagen Human genes 0.000 description 22
- 108010035532 Collagen Proteins 0.000 description 22
- 238000010186 staining Methods 0.000 description 16
- 102100021253 Antileukoproteinase Human genes 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000000499 gel Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 9
- 102100029792 Dentin sialophosphoprotein Human genes 0.000 description 8
- 108010088492 dentin sialophosphoprotein Proteins 0.000 description 8
- 230000003833 cell viability Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 102000012422 Collagen Type I Human genes 0.000 description 6
- 108010022452 Collagen Type I Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 5
- 230000033558 biomineral tissue development Effects 0.000 description 5
- 239000004202 carbamide Substances 0.000 description 5
- 210000004268 dentin Anatomy 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 102000001187 Collagen Type III Human genes 0.000 description 4
- 108010069502 Collagen Type III Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229940096422 collagen type i Drugs 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- -1 polyalditol Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 3
- 101150080498 ALP gene Proteins 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 239000000560 biocompatible material Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 210000004262 dental pulp cavity Anatomy 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 229960002591 hydroxyproline Drugs 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 3
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108091006006 PEGylated Proteins Proteins 0.000 description 2
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- YIQKLZYTHXTDDT-UHFFFAOYSA-H Sirius red F3B Chemical compound C1=CC(=CC=C1N=NC2=CC(=C(C=C2)N=NC3=C(C=C4C=C(C=CC4=C3[O-])NC(=O)NC5=CC6=CC(=C(C(=C6C=C5)[O-])N=NC7=C(C=C(C=C7)N=NC8=CC=C(C=C8)S(=O)(=O)[O-])S(=O)(=O)[O-])S(=O)(=O)O)S(=O)(=O)O)S(=O)(=O)[O-])S(=O)(=O)[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] YIQKLZYTHXTDDT-UHFFFAOYSA-H 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 2
- 208000008312 Tooth Loss Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003592 biomimetic effect Effects 0.000 description 2
- 210000001612 chondrocyte Anatomy 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 150000001945 cysteines Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000011532 immunohistochemical staining Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 229920002113 octoxynol Polymers 0.000 description 2
- 210000004416 odontoblast Anatomy 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- VFFFESPCCPXZOQ-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;oxirane Chemical compound C1CO1.OCC(CO)(CO)CO VFFFESPCCPXZOQ-UHFFFAOYSA-N 0.000 description 1
- SRSAMLMFVUJPSR-UHFFFAOYSA-N 2-carboxyethylphosphanium;chloride Chemical compound Cl.OC(=O)CCP SRSAMLMFVUJPSR-UHFFFAOYSA-N 0.000 description 1
- RSROEZYGRKHVMN-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;oxirane Chemical compound C1CO1.CCC(CO)(CO)CO RSROEZYGRKHVMN-UHFFFAOYSA-N 0.000 description 1
- JKYKXTRKURYNGW-UHFFFAOYSA-N 3,4-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=C(O)C(S(O)(=O)=O)=C2 JKYKXTRKURYNGW-UHFFFAOYSA-N 0.000 description 1
- PBVAJRFEEOIAGW-UHFFFAOYSA-N 3-[bis(2-carboxyethyl)phosphanyl]propanoic acid;hydrochloride Chemical compound Cl.OC(=O)CCP(CCC(O)=O)CCC(O)=O PBVAJRFEEOIAGW-UHFFFAOYSA-N 0.000 description 1
- BGNGWHSBYQYVRX-UHFFFAOYSA-N 4-(dimethylamino)benzaldehyde Chemical compound CN(C)C1=CC=C(C=O)C=C1 BGNGWHSBYQYVRX-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 101150106774 9 gene Proteins 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 238000000116 DAPI staining Methods 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002581 Glucomannan Polymers 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101001066129 Homo sapiens Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 229920000288 Keratan sulfate Polymers 0.000 description 1
- QIJRTFXNRTXDIP-JIZZDEOASA-N L-cysteine hydrochloride hydrate Chemical compound O.Cl.SC[C@H](N)C(O)=O QIJRTFXNRTXDIP-JIZZDEOASA-N 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 206010062544 Tooth fracture Diseases 0.000 description 1
- 238000012290 Total DNA Assay Methods 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 230000037319 collagen production Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 102000047486 human GAPDH Human genes 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229940043138 pentosan polysulfate Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001390 poly(hydroxyalkylmethacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000010149 post-hoc-test Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000021749 root development Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- GWIKYPMLNBTJHR-UHFFFAOYSA-M thiosulfonate group Chemical group S(=S)(=O)[O-] GWIKYPMLNBTJHR-UHFFFAOYSA-M 0.000 description 1
- 230000007838 tissue remodeling Effects 0.000 description 1
- 239000002407 tissue scaffold Substances 0.000 description 1
- 229960001479 tosylchloramide sodium Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/225—Fibrin; Fibrinogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/32—Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/26—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3808—Endothelial cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3834—Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3839—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
- A61L27/3843—Connective tissue
- A61L27/3865—Dental/periodontal tissues
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/48—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0664—Dental pulp stem cells, Dental follicle stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
- A61L2300/406—Antibiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/64—Animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/12—Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/12—Materials or treatment for tissue regeneration for dental implants or prostheses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
Definitions
- the disclosed subject matter relates to hydrogel-based scaffolds useful in dental pulp tissue engineering and methods for use of these scaffolds in promoting pulp cell growth and biosynthesis, regulating cell infiltration into, migration and morphology within a hydrogel-based scaffold, in vitro methods for differentiation and expansion of stem cells, and promoting tooth vitality in subjects in need thereof.
- Dental pulp is a soft non-mineralized connective tissue found at the core of the tooth, which is highly vascularized and innervated. Its extracellular matrix consists primarily of collagen type one and collagen type three. Dental pulp is an essential component of the tooth as it provides nutrients and sensitivity to dentin as well as new odontoblasts for dentin repair. Its primary function is to respond to dentinal injuries.
- a dental pulp is susceptible to infection due to caries. Teeth with inflamed pulp are often treated by root canal therapy (RCT). Approximately 15 million root canal procedures are performed annually in the United States. This procedure includes pulp extirpation, followed by filling of the root canal which causes permanent loss of tooth vitality, halts root development in immature teeth and increases risk of infection, tooth fracture, and tooth lost.
- RCT root canal therapy
- Pulpotomy has been developed as an alternative approach to RCT. This procedure involves partial pulp removal which preserves pulp vitality. However, this procedure is uncommon as it is limited to nature of injury, young patient, and severity of pupal infection. Further, its long-term success rate is low.
- the goal is to utilize biodegradable scaffolds and stem cells to regenerate pulp.
- An aspect of this application relates to hydrogel-based scaffolds for dental pulp tissue engineering.
- Scaffolds of this application comprise a biosynthetic hydrogel of polymer and fibrinogen.
- fibrinogen is present in the scaffold at a concentration sufficient for promoting pulp cell growth and biosynthesis, regulating pulp cell infiltration into, migration and morphology, or both.
- crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold can be modified.
- Another aspect of this application relates to a method of promoting pulp cell growth and biosynthesis in a hydrogel-based scaffold.
- fibrinogen concentration, crosslinker content and/or PEG- diacrylate:fibrinogen ratio in the hydrogel-based scaffold is modulated to promote pulp cell growth and biosynthesis.
- Another aspect of this application relates to a method of regulating cell infiltration into, migration and morphology within a hydrogel-based scaffold.
- fibrinogen concentration, crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold is modulated to regulate cell infiltration into, migration and morphology.
- Another aspect of this application relates to an in vitro method for differentiation and expansion of stem cells into dental pulp cells.
- This method comprises culturing stem cells on a scaffold comprising a biosynthetic hydrogel of polymer and fibrinogen.
- Another aspect of this application relates to a method for promoting tooth vitality in a subject in need thereof.
- the method comprises injecting a hydrogel-based scaffold comprising a polymeric hydrogel and fibrinogen into a tooth of the subject.
- FIG. 1 is a diagram showing steps involved in use of a hydrogel-based scaffold of this application in endodontic therapy.
- the hydrogel-based scaffold further contains an antibiotic.
- FIG. 2 provides the structure of PEG-F with a fibrinogen backbone crosslinked with polyethylene glycol-diacrylate.
- FIG. 3 is a diagram of the steps involved in synthesis of the PEG-F depicted in FIG. 2 .
- purified fibrinogen is dissolved in phosphate buffered saline containing high urea concentration to improve protein solubility and to eliminate steric hindrance by straightening its chain.
- the disulfide bonds in the fibrinogen are reduced using a Tris(2-carboxyethyl) phosphine hydrochloride.
- the fibrinogen is dissociated into the alpha, beta, and gamma fragments of the molecule, leaving reactive thiols exposed.
- the high molar excess of PEG-diacrylate (PEGDA) self-selectively reacts with free thiols on the fibrinogen molecule by Michael-type addition reaction.
- PEG-fibrinogen molecules are purified from the excess PEGDA and urea by acetone precipitation and dialysis.
- a solution of PEG-fibrinogen whose structural properties could be adjusted with addition of PEGDA is exposed to UV light and photoinitiator to initiate a free-radical polymerization between the unreacted acrylates on the PEGDA resulting in a solid hydrogel network.
- FIGS. 4A through 4D show characteristics of hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml. Images of the gel diameters at days 1, 28 and 42 are shown in FIG. 4A . Characteristics examined included gel weight ( FIG. 4B ), gel diameter ( FIG. 4C ) and swelling ratio ( FIG. 4D ), each measured at day 1, 7, 21, 28 and 42.
- FIGS. 5A through 5C show results of experiments comparing cell viability and proliferation of chondrocytes seeded on hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml.
- FIG. 5A shows cell viability visualized using Live/Dead staining.
- FIG. 5B shows results of hematoxylin and eosin y staining.
- FIG. 5C is a bargraph comparing cell numbers normalized by gel wet weight on the scaffolds at days 1, 7, 21, 28 and 42.
- FIGS. 6A through 6C show results of experiments measuring matrix deposition and more specifically collagen content as confirmed by picrosirius staining of chondrocytes seeded on hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml.
- Figure 6 A is a bargraph depicting collagen content at days 1, 7, 21, 28 and 42 as compared to wet weight of the scaffold.
- FIG. 6B is a bargraph depicting collagen content at days 1, 7, 21, 28 and 42 as compared to cell number.
- FIG. 6C shows results of the picrosirius staining.
- FIGS. 7A through 7C show results from experiments measuring matrix composition.
- FIG. 7A shows immunohistochemical staining on day 42 with cells producing both collagen type I and III in PEG-fibrinogen hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml.
- Dentin sialophosphoprotein ( FIG. 7B ) and ALP gene expression ( FIG. 7C ) of cells cultured for 7 and 28 days in PEG-fibrinogen hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml were also determined.
- FIGS. 8A and 8B show the mineralization potential of hydrogel scaffolds of this application.
- ALP activity increased overtime for cells cultured in PEG-Fibrinogen hydrogels.
- FIG. 8A is a bargraph showing ALP activity determined at days 1, 7, 21, 28 and 42 in hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml.
- FIG. 8B shows results of alzarin red staining indicative of the presence of minerals including calcium in hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml at days 1 and 42.
- ALP activity shall mean alkaline phosphatase activity.
- a “biocompatible” material is a synthetic or natural material used to replace part of a living system or to function in intimate contact with living tissue. Biocompatible materials are intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. The biocompatible material has the ability to perform with an appropriate host response in a specific application and does not have toxic or injurious effects on biological systems.
- biocompatible materials include a biocompatible ceramic, a biocompatible polymer or a biocompatible hydrogel.
- biodegradable means that the material, once implanted into a host, will begin to degrade.
- biomimetic shall mean a resemblance of a synthesized material to a substance that occurs naturally in a human body and which is not substantially rejected by (e.g., does not cause an unacceptable adverse reaction in) the human body.
- biomimetic means that the scaffold is substantially biologically inert (i.e., will not cause an unacceptable immune response/rejection) and is designed to resemble a structure (e.g., soft tissue anatomy) that occurs naturally in a mammalian, e.g., human, body and that promotes healing when implanted into the body.
- ⁇ ективное amount and/or “sufficient concentration” shall mean a level, concentration, combination or ratio of one or more components added to the scaffold which promotes differentiation of stem cells to a selected cell type and/or enhances proliferation of desired cells.
- hydrogel shall mean any colloid in which the particles are in the external or dispersion phase and water is in the internal or dispersed phase.
- polymer means a chemical compound or mixture of compounds formed by polymerization and including repeating structural units. Polymers may be constructed in multiple forms and compositions or combinations of compositions.
- stem cell means any unspecialized cell that has the potential to develop into many different cell types in the body.
- Nonlimiting examples of “stem cells” include mesenchymal stem cells, embryonic stem cells and induced pluripotent cells. In one embodiment, for purposes of this application, the stem cells develop into human dental pulp cells.
- synthetic shall mean that the material is not of a human or animal origin.
- FIG. 1 is a diagram showing steps involved in use of the hydrogel-based scaffold in endodontic therapy. As shown therein, upon identification of an infected tooth, the infected pulp is removed via pulpectomy. A hydrogel-based scaffold of this application is then inserted into the tooth resulting in pulp regeneration and repair.
- Scaffolds of this application comprise a biosynthetic hydrogel of polymer and fibrinogen.
- polymers that can be functionalized by a protein or peptide fragment and allow cell spreading within the gel.
- a nonlimiting example of a polymer useful in the scaffold of the present invention is polyethylene glycol (PEG). Additional nonlimiting examples of polymers include agarose, carrageenan, polyethylene oxide, tetraethylene glycol, triethylene glycol, trimethylolpropane ethoxylate, pentaerythritol ethoxylate, hyaluronic acid, thiosulfonate polymer derivatives, polyvinylpyrrolidone-polyethylene glycol-agar, collagen, dextran, heparin, hydroxyalkyl cellulose, chondroitin sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, dextran sulfate, pentosan polysulfate, chitosan, alginates, pectins, agars, glu
- Scaffolds of this application further comprise fibrinogen and/or another agent such as, but not limited to collagen, albumin, or synthetic biomolecules or peptides.
- fibrinogen it is meant to include intact fibrinogen or a fibrinogen fragment.
- fibrinogen is present in the scaffold at a concentration sufficient for promoting pulp cell growth and biosynthesis, regulating pulp cell infiltration into, migration and morphology, or both.
- fibrinogen concentrations of at least 7 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml can be used in the scaffolds to promote pulp cell growth and biosynthesis. Accordingly, it is expected that fibrinogen concentrations ranging from about 5 to 10 mg/ml can be used.
- the scaffold comprises a composite polymeric hydrogel referred to herein as PEG-F.
- PEG-F a composite polymeric hydrogel
- 0 to 40 mg/ml of PEG-diacrylate is added.
- Preferred is addition of about 10 to about 20 mg/ml, more preferably about 11 to about 16 mg/ml of PEG-diacrylate, to form PEG-fibrinogen monomers.
- additional PEG-diacrylate may be added to the scaffold to enhance hydrogel mechanical properties.
- additional PEG-diacrylate is added prior to crosslinking.
- the additional PEG-diacrylate content is from about 1.7% to about 3.2% w/v.
- the molecular structure of PEG-F showing the fibrinogen backbone crosslinked with polyethylene glycol-diacrylate is depicted in FIG. 2 .
- a diagram of the steps involved in synthesis of the PEG-F is depicted in FIG. 2 and described in more detail in Example 1.
- the PEG-F hydrogel has biocompatibility and its physical characteristics can be controlled by varying polymer weight percent, molecular chain length, and crosslinking density.
- An additional advantage of PEG-F hydrogels is their ability to undergo a controlled liquid-to-solid transition (gelation) in the presence of a cell suspension.
- the PEG-F gelation reaction can be carried out under nontoxic conditions in the presence of a photoinitiator or by mixing a two-part reactive solution of functionalized PEG and crosslinking the constituents.
- the fibrinogen backbone of the PEG-fibrinogen gel serves as a natural substrate for tissue remodeling, and provides the PEG-fibrinogen hydrogels an inherent degradability by way of cell-activated protease activity and cell specific adhesivity that are not available with PEG alone.
- any of the parameters in the scaffold including fibrinogen content, crosslinker content and/or PEGDA:fibrinogen ratio can be modified to direct cell response and dental pulp formation.
- Nonlimiting examples of alternative composite polymeric hydrogels useful in these scaffolds include PEG-collagen, PEG-albumin, and PEG-synthetic peptide that contains RGD sites with proteolytic degradation sites.
- the hydrogel-based scaffold of this application is injectable. In one embodiment, the hydrogel-based scaffold is injectable in situ. In a further embodiment, the hydrogel-based scaffold of this application solidifies in vivo. In yet another embodiment, the hydrogel-based scaffold solidifies in vivo with non-toxic components. In one nonlimiting embodiment, UV light at a wavelength 365 nm with photoinitiator is used.
- Scaffolds of this application may further comprise an effective amount of antibiotic useful in preventing pulp infection.
- antibiotic useful in preventing pulp infection.
- a nonlimiting example of such an antibiotic is ciprofloxacin.
- Scaffolds of this application may further comprise an effective amount of an angiogenic factors.
- an angiogenic factors include, but are not limited to, VEGF, PDGF, PRP and combinations thereof.
- PRP and/or fibroblastic growth factors may also be added to the scaffolds.
- Acellular forms of the scaffold of this application drive host cell infiltration and/or migration resulting in new pulp from these host cells.
- the hydrogel-based scaffold of this application may further comprise stem cells for tooth pulp repair and regeneration and/or dental pulp cells and/or endothelial cells.
- stem cells for tooth pulp repair and regeneration and/or dental pulp cells and/or endothelial cells may be co-cultures together on the scaffold.
- two or more of these cell types are co-cultures together on the scaffold.
- the scaffold be seeded with at least 3.2 million cells per ml.
- FIGS. 4A through 4C Characteristics of a hydrogel based scaffold of this application are depicted in FIGS. 4A through 4C .
- gel diameter changed overtime for all fibrinogen concentrations (see FIG. 4B ).
- a higher fibrinogen concentration of 9 mg/ml resulted in smaller diameter as shown from the images in FIG. 4A on day 42 and FIG. 4B .
- Gel wet weight, as shown in FIG. 4C significantly increased on day 21 and decreased on day 42 for all groups from proteolytic degradation.
- gel swelling ratio in the highest fibrinogen concentration of 9 mg/ml was significantly lower than the lowest fibrinogen concentration of 7.7 mg/ml on day 42 (see FIG. 4D).
- hydrogels after day 21 were mostly comprised of collagen produced from the pulp cells. From the collagen data, collagen per wet weight of the scaffold with the highest fibrinogen concentration was highest on day 42, resulting in lower swelling ratio and smaller diameter. Studies showed that fibroblasts contract collagen.
- FIGS. 5A through 5C Results from cell viability and cell proliferation experiments are shown in FIGS. 5A through 5C .
- Live and dead staining as shown in FIG. 5A and 5B showed that cells remain viable overtime at all fibrinogen concentrations examined. Changes in cell morphology and spreading were found over time for all groups with cells exhibiting a physiologically relevant spindle-shape over time.
- the cell network was densest in the group with the highest fibrinogen concentration of 9 mg/ml on day 42 as shown by live and dead staining in FIG. 5A and cell number data on day 42.
- FIG. 5C cell number in all PEG-fibrinogen groups decreased significantly on day 7 and stabilized overtime. By day 42, cell number in the 9 mg/ml group was the highest and it increased significantly over time.
- FIGS. 6A through 6C Matrix deposition inclusive of collagen content for hydrogel-based scaffolds of this application is depicted in FIGS. 6A through 6C .
- a significant increase in collagen content was found for all groups over time as confirmed by picrosirius red staining (see FIGS. 6A and 6B , respectively). From collagen per cell results depicted in FIG. 6C , however, it was found that earlier and higher collagen production occurred in the higher fibrinogen groups.
- FIGS. 7A through 7C Matrix composition was also examined and results are shown in FIGS. 7A through 7C .
- Immunohistochemical staining on day 42 showed that cells produced both collagen type I and III in all the PEG-fibrinogen hydrogels (See FIG. 7A ).
- the hydrogel-based scaffolds of this application are expected to modulate biosynthesis of a variety of cell types.
- dentin sialophosphoprotein and ALP gene expression of cells cultured in PEG-Fibrinogen was downregulated at the lowest fibrinogen concentration of 7.7 mg/ml as compared to monolayer on day 7.
- Dentin sialophosphoprotein is an odontoblast-related gene, high expression of which corresponds to mineralization and dentin formation.
- FIGS. 8A and 8B ALP mineralization potential was also examined and results are shown in FIGS. 8A and 8B .
- FIG. 8A ALP activity increased overtime for cells cultured in all PEG-fibrinogen hydrogels. The highest ALP activity was detected in the 9 mg/ml group on both day 28 and 42.However, alzarin red staining as shown in FIG. 8B showed no calcium staining overtime in any of the groups.
- pulp cell growth and biosynthesis is promoted by modulating fibrinogen concentration in the hydrogel-based scaffold.
- pulp cell growth and biosynthesis is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold.
- pulp cell growth and biosynthesis is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold to at least 5-10 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml.
- the disclosed subject matter of this application also relates to use of the hydrogel based scaffolds in regulating cell infiltration into, migration and morphology within a hydrogel-based scaffold.
- pulp cell infiltration into, migration and morphology is regulated by modulating fibrinogen concentration in the hydrogel-based scaffold.
- pulp cell infiltration into, migration and morphology is regulated by increasing fibrinogen concentration in the hydrogel-based scaffold.
- pulp cell growth and biosynthesis is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold to at least 5-10 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml.
- crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold can be modified.
- the cross linker content ranges from about 0.05% to about 0.2% w/v.
- PEG-diacrylate content is from about 1.7% to about 3.2% w/v.
- stem cells are cultured on hydrogel-based scaffolds with increased fibrinogen concentrations.
- differentiation and expansion of stem cells is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold to at least 5-10 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml.
- crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold can be modified.
- the cross linker content ranges from about 0.05% to about 0.2% w/v.
- PEG-diacrylate content is from about 1.7% to about 3.2% w/v.
- the disclosed subject matter of this application also relates to methods for promoting tooth vitality in a subject in need thereof by injecting, implanting and/or molding a hydrogel-based scaffold of this application into the tooth of the subject.
- These hydrogel-based scaffolds will protect against infection, promote self-repair and preserve tooth vitality in the subject.
- PEG-F synthesis was facilitated by conjugating hydrophilic polyethylene glycol (PEG) to reconstituted fibrinogen, retaining much of the functionality of fibrinogen while maintaining/improving the physical properties of PEG.
- PEG polyethylene glycol
- the PEG gelation reaction can be carried out under non-toxic conditions either with photoinitiators or by mixing a two-part reactive solution of functionalized PEG and crosslinking the constituents.
- PEG-DA PEG-diacrylate
- PEGylation of fibrinogen was achieved by adding tris(2-carboxyethylphosphine hydrochloride (TCEP, Sigma) to bovine fibrinogen (7 mg/ml, Sigma) in 100 mM PBS with 8M urea (molar ratio of 4:1 TCEP to fibrinogen cysteines).
- Linear PEG-DA (10-kDa) was attached to cysteine residues of fibrinogen via Michael-type addition, where PEG-DA reacts for 3 hours with protein at a 4:1 molar ratio of PEG to fibrinogen cysteines.
- the PEGylated protein product was then purified from excess PEG-DA and urea by acetone precipitation and dialysis.
- the PEGylated protein was re-dissolved in PBS with 8M urea at 15 mg/ml final fibrinogen concentration and then dialyzed against PBS at 4° C. for two days (Spectrum, 6-8 kDa MW cut-off).
- the final product was characterized in accordance with established methods with net fibrinogen concentration determined by BCA protein assay.
- the PEGylated fibrinogen was crosslinked via a free-radical polymerization between unreacted acrylates on PEG-DA. Briefly, PEGylated fibrinogen precursor was combined with a 0.1% (w/v) photoinitiator solution prepared by dissolving 10% w/v IIRGACURE2959 (CIBA) in 70% ethanol. The mixture was photopolymerized in a custom mold for 5 minutes with UV light (365 nm, 15 mW/cm 2 ).
- Cell proliferation was determined using the PICOGREEN total DNA assay (molecular Probes, Eugene, OR). Briefly, the samples were first rinsed with PBS and 500 ⁇ l of 0.1% Triton-X solution (Sigma-Aldrich, St. Louis, Mo.) was used to lyse the cells. An aliquot of the sample (25 ⁇ l) was then added to 175 ⁇ l of the PICOGREEN working solution. Fluorescence was measured with a microplate reader (Tecan, Research Triangle Park, N.C.), at the excitation and emission wavelengths of 485 and 535 nm, respectively. Total cell number was obtained by converting the amount of DNA per sample to cell number using the conversion factor of 8 pg DNA/cell.
- Mineralization potential was determined by measuring ALP activity using a colorimetric assay based on the hydrolysis of p-nitrophenyl phosphate (pNP-PO 4 ) to p-nitrophenol (pNP). Briefly, the samples were lysed in 0.1% Triton-X solution, then added to pNP-PO 4 solution (Sigma-Aldrich, St. Louis, Mo.) and allowed to react for 30 minutes at 37° C. The reaction was terminated with 0.1 N NaOH (Sigma-Aldrich, St. Louis, Mo.), and sample absorbance was measured at 415nm using a microplate reader (Tecan, Research Triangle Park, N.C.).
- Collagen deposition was quantified using a hydroxyproline assay based on alkaline hydrolysis of the tissue homogenate and subsequent determination of the free hydroxyproline in hydrolyzates. Briefly, the samples were first desiccated for 24 hours and then digested for 16 hours at 65° C. with papain (600 mg protein/ml, Sigma-Aldrich, St. Louis, Mo.) in 0.1M sodium acetate (Sigma-Aldrich, St. Louis, Mo.), 10 mM cysteine HCl (Sigma-Aldrich, St. Louis, Mo.), and 50 mM ethylenediaminetetraacetate (Sigma-Aldrich, St. Louis, Mo.).
- papain 600 mg protein/ml, Sigma-Aldrich, St. Louis, Mo.
- papain 600 mg protein/ml, Sigma-Aldrich, St. Louis, Mo.
- 10 mM cysteine HCl Sigma-Aldrich, St. Louis, Mo.
- Hydrogels were fixed in 4% paraformaldehyde, stored in 70% ethanol, and embedded in paraffin and sectioned for 7pm thickness. Sections were stained with hematoxylin and counterstained with eosin. Picrosirius red staining was used to stain collagen. Immunohistochemistry staining of collagen I and collagen III was done using type specific collagen antibody (Abcam) with FITC-conjugated secondary antibody solution and DAPI staining for cell nucleus. Alizarin Red S staining was used to stain calcium, indicative of mineralization. Sections were imaged under light microscope except for immunohistochemistry staining which used a confocal microscope at the excitation and emission wavelengths of 485 and 535 nm, respectively for collagen I and collagen III.
- RNA of dental pulp cells was isolated using the TRIZOL (Invitrogen, Carlsbad, Calif.) extraction method, with the isolated RNA reverse-transcribed into cDNA using the SuperScript III First-Strand Synthesis System (Invitrogen). The cDNA product was then amplified for 40 cycles with recombinant Platinum Taq DNA polymerase (Invitrogen). PCR products were size-fractionated on a 1% w/v agarose gel and visualized by ethidium-bromide staining. Expression band intensities of relevant genes were analyzed semi-quantitatively by ImageJ and normalized to the housekeeping gene human glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
- GPDH human glyceraldehyde-3-phosphate dehydrogenase
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Developmental Biology & Embryology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Botany (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Virology (AREA)
- Rheumatology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurosurgery (AREA)
- Materials Engineering (AREA)
- Microbiology (AREA)
- Composite Materials (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
Abstract
Hydrogel-based scaffolds useful for promoting pulp cell growth and biosynthesis, regulating pulp cell migration and morphology, or both as well as methods for their production and use are provided.
Description
- This patent application claims the benefit of priority from U.S. Provisional Application Ser. No. 61/811,433, filed Apr. 12, 2013, the content of which is herein incorporated by reference in its entirety.
- The disclosed subject matter relates to hydrogel-based scaffolds useful in dental pulp tissue engineering and methods for use of these scaffolds in promoting pulp cell growth and biosynthesis, regulating cell infiltration into, migration and morphology within a hydrogel-based scaffold, in vitro methods for differentiation and expansion of stem cells, and promoting tooth vitality in subjects in need thereof.
- Dental pulp is a soft non-mineralized connective tissue found at the core of the tooth, which is highly vascularized and innervated. Its extracellular matrix consists primarily of collagen type one and collagen type three. Dental pulp is an essential component of the tooth as it provides nutrients and sensitivity to dentin as well as new odontoblasts for dentin repair. Its primary function is to respond to dentinal injuries.
- A dental pulp is susceptible to infection due to caries. Teeth with inflamed pulp are often treated by root canal therapy (RCT). Approximately 15 million root canal procedures are performed annually in the United States. This procedure includes pulp extirpation, followed by filling of the root canal which causes permanent loss of tooth vitality, halts root development in immature teeth and increases risk of infection, tooth fracture, and tooth lost.
- Pulpotomy has been developed as an alternative approach to RCT. This procedure involves partial pulp removal which preserves pulp vitality. However, this procedure is uncommon as it is limited to nature of injury, young patient, and severity of pupal infection. Further, its long-term success rate is low.
- Additional endodontic treatments currently under investigation include total tooth regeneration and pulp and dentin regeneration.
- For total tooth regeneration, the goal is to regenerate replacement teeth in vivo utilizing biodegradable scaffolds with the aid of stem cells and stimuli. This approach is suitable for patients with total tooth loss
- For pulp and dentin regeneration, the goal is to utilize biodegradable scaffolds and stem cells to regenerate pulp.
- An aspect of this application relates to hydrogel-based scaffolds for dental pulp tissue engineering. Scaffolds of this application comprise a biosynthetic hydrogel of polymer and fibrinogen. In one embodiment, fibrinogen is present in the scaffold at a concentration sufficient for promoting pulp cell growth and biosynthesis, regulating pulp cell infiltration into, migration and morphology, or both. Alternatively, or in addition, crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold can be modified.
- Another aspect of this application relates to a method of promoting pulp cell growth and biosynthesis in a hydrogel-based scaffold. In this method, fibrinogen concentration, crosslinker content and/or PEG- diacrylate:fibrinogen ratio in the hydrogel-based scaffold is modulated to promote pulp cell growth and biosynthesis.
- Another aspect of this application relates to a method of regulating cell infiltration into, migration and morphology within a hydrogel-based scaffold. In this method, fibrinogen concentration, crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold is modulated to regulate cell infiltration into, migration and morphology.
- Another aspect of this application relates to an in vitro method for differentiation and expansion of stem cells into dental pulp cells. This method comprises culturing stem cells on a scaffold comprising a biosynthetic hydrogel of polymer and fibrinogen.
- Another aspect of this application relates to a method for promoting tooth vitality in a subject in need thereof. The method comprises injecting a hydrogel-based scaffold comprising a polymeric hydrogel and fibrinogen into a tooth of the subject.
-
FIG. 1 is a diagram showing steps involved in use of a hydrogel-based scaffold of this application in endodontic therapy. In the nonlimiting embodiment depicted inFIG. 1 , the hydrogel-based scaffold further contains an antibiotic. -
FIG. 2 provides the structure of PEG-F with a fibrinogen backbone crosslinked with polyethylene glycol-diacrylate. -
FIG. 3 is a diagram of the steps involved in synthesis of the PEG-F depicted inFIG. 2 . In the first step, purified fibrinogen is dissolved in phosphate buffered saline containing high urea concentration to improve protein solubility and to eliminate steric hindrance by straightening its chain. In the second step, the disulfide bonds in the fibrinogen are reduced using a Tris(2-carboxyethyl) phosphine hydrochloride. The fibrinogen is dissociated into the alpha, beta, and gamma fragments of the molecule, leaving reactive thiols exposed. In the third step, the high molar excess of PEG-diacrylate (PEGDA) self-selectively reacts with free thiols on the fibrinogen molecule by Michael-type addition reaction. In the fourth step, PEG-fibrinogen molecules are purified from the excess PEGDA and urea by acetone precipitation and dialysis. In the fifth step, a solution of PEG-fibrinogen whose structural properties could be adjusted with addition of PEGDA is exposed to UV light and photoinitiator to initiate a free-radical polymerization between the unreacted acrylates on the PEGDA resulting in a solid hydrogel network. -
FIGS. 4A through 4D show characteristics of hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml. Images of the gel diameters at 1, 28 and 42 are shown indays FIG. 4A . Characteristics examined included gel weight (FIG. 4B ), gel diameter (FIG. 4C ) and swelling ratio (FIG. 4D ), each measured at 1, 7, 21, 28 and 42.day -
FIGS. 5A through 5C show results of experiments comparing cell viability and proliferation of chondrocytes seeded on hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml.FIG. 5A shows cell viability visualized using Live/Dead staining.FIG. 5B shows results of hematoxylin and eosin y staining.FIG. 5C is a bargraph comparing cell numbers normalized by gel wet weight on the scaffolds at 1, 7, 21, 28 and 42.days -
FIGS. 6A through 6C show results of experiments measuring matrix deposition and more specifically collagen content as confirmed by picrosirius staining of chondrocytes seeded on hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml. Figure 6A is a bargraph depicting collagen content at 1, 7, 21, 28 and 42 as compared to wet weight of the scaffold.days FIG. 6B is a bargraph depicting collagen content at 1, 7, 21, 28 and 42 as compared to cell number.days FIG. 6C shows results of the picrosirius staining. -
FIGS. 7A through 7C show results from experiments measuring matrix composition.FIG. 7A shows immunohistochemical staining onday 42 with cells producing both collagen type I and III in PEG-fibrinogen hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml. Dentin sialophosphoprotein (FIG. 7B ) and ALP gene expression (FIG. 7C ) of cells cultured for 7 and 28 days in PEG-fibrinogen hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml were also determined. -
FIGS. 8A and 8B show the mineralization potential of hydrogel scaffolds of this application. ALP activity increased overtime for cells cultured in PEG-Fibrinogen hydrogels.FIG. 8A is a bargraph showing ALP activity determined at 1, 7, 21, 28 and 42 in hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml. FIG. 8B shows results of alzarin red staining indicative of the presence of minerals including calcium in hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml atdays 1 and 42.days - In order to facilitate an understanding of the material which follows, one may refer to Freshney, R. Ian. Culture of Animal Cells—A Manual of Basic Technique (New York: Wiley-Liss, 2000) for certain frequently occurring methodologies and/or terms which are described therein.
- Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. However, except as otherwise expressly provided herein, each of the following terms, as used in this application, shall have the meaning set forth below.
- As used herein, “ALP activity” shall mean alkaline phosphatase activity.
- As used herein, a “biocompatible” material is a synthetic or natural material used to replace part of a living system or to function in intimate contact with living tissue. Biocompatible materials are intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. The biocompatible material has the ability to perform with an appropriate host response in a specific application and does not have toxic or injurious effects on biological systems. Nonlimiting examples of biocompatible materials include a biocompatible ceramic, a biocompatible polymer or a biocompatible hydrogel.
- As used herein, “biodegradable” means that the material, once implanted into a host, will begin to degrade.
- As used herein, “biomimetic” shall mean a resemblance of a synthesized material to a substance that occurs naturally in a human body and which is not substantially rejected by (e.g., does not cause an unacceptable adverse reaction in) the human body. When used in connection with the tissue scaffolds, biomimetic means that the scaffold is substantially biologically inert (i.e., will not cause an unacceptable immune response/rejection) and is designed to resemble a structure (e.g., soft tissue anatomy) that occurs naturally in a mammalian, e.g., human, body and that promotes healing when implanted into the body.
- As used herein, “effective amount” and/or “sufficient concentration” shall mean a level, concentration, combination or ratio of one or more components added to the scaffold which promotes differentiation of stem cells to a selected cell type and/or enhances proliferation of desired cells.
- As used herein, “hydrogel” shall mean any colloid in which the particles are in the external or dispersion phase and water is in the internal or dispersed phase.
- As used herein, “polymer” means a chemical compound or mixture of compounds formed by polymerization and including repeating structural units. Polymers may be constructed in multiple forms and compositions or combinations of compositions.
- As used herein, “stem cell” means any unspecialized cell that has the potential to develop into many different cell types in the body. Nonlimiting examples of “stem cells” include mesenchymal stem cells, embryonic stem cells and induced pluripotent cells. In one embodiment, for purposes of this application, the stem cells develop into human dental pulp cells.
- As used herein, “synthetic” shall mean that the material is not of a human or animal origin.
- As used herein, all numerical ranges provided are intended to expressly include at least the endpoints and all numbers that fall between the endpoints of ranges.
- The following embodiments are provided to further illustrate the scaffolds and methods for production and use of the scaffolds of this application. These embodiments are illustrative only and are not intended to limit the scope of this application in any way.
- Provided in this disclosure are scaffolds for dental pulp tissue engineering as well as methods for their production and use.
FIG. 1 is a diagram showing steps involved in use of the hydrogel-based scaffold in endodontic therapy. As shown therein, upon identification of an infected tooth, the infected pulp is removed via pulpectomy. A hydrogel-based scaffold of this application is then inserted into the tooth resulting in pulp regeneration and repair. - Scaffolds of this application comprise a biosynthetic hydrogel of polymer and fibrinogen.
- Preferred are polymers that can be functionalized by a protein or peptide fragment and allow cell spreading within the gel. A nonlimiting example of a polymer useful in the scaffold of the present invention is polyethylene glycol (PEG). Additional nonlimiting examples of polymers include agarose, carrageenan, polyethylene oxide, tetraethylene glycol, triethylene glycol, trimethylolpropane ethoxylate, pentaerythritol ethoxylate, hyaluronic acid, thiosulfonate polymer derivatives, polyvinylpyrrolidone-polyethylene glycol-agar, collagen, dextran, heparin, hydroxyalkyl cellulose, chondroitin sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, dextran sulfate, pentosan polysulfate, chitosan, alginates, pectins, agars, glucomannans, galactomannans, maltodextrin, amylose, polyalditol, alginate, alginate-based gels cross-linked with calcium, gelatin, silk, proteoglycans, poly(glycolic) acid, polymeric chains of methoxypoly(ethylene glycol)monomethacrylate, chitin, poly(hydroxyalkyl methacrylate), poly(electrolyte complexes), poly(vinylacetate) cross-linked with hydrolysable bonds, water-swellable N-vinyl lactams, carbomer resins, starch graft copolymers, acrylate polymers, polyacrylamides, polyacrylic acid, ester cross-linked polyglucans, poly(lactic)acid, Puramatrix™, self-assembly peptide hydrogels, and derivatives and combinations thereof.
- Scaffolds of this application further comprise fibrinogen and/or another agent such as, but not limited to collagen, albumin, or synthetic biomolecules or peptides. By fibrinogen, it is meant to include intact fibrinogen or a fibrinogen fragment. In one embodiment, fibrinogen is present in the scaffold at a concentration sufficient for promoting pulp cell growth and biosynthesis, regulating pulp cell infiltration into, migration and morphology, or both. As demonstrated herein, fibrinogen concentrations of at least 7 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml can be used in the scaffolds to promote pulp cell growth and biosynthesis. Accordingly, it is expected that fibrinogen concentrations ranging from about 5 to 10 mg/ml can be used.
- In one embodiment, the scaffold comprises a composite polymeric hydrogel referred to herein as PEG-F. In one embodiment of this composite, 0 to 40 mg/ml of PEG-diacrylate is added. Preferred is addition of about 10 to about 20 mg/ml, more preferably about 11 to about 16 mg/ml of PEG-diacrylate, to form PEG-fibrinogen monomers.
- Further, additional PEG-diacrylate may be added to the scaffold to enhance hydrogel mechanical properties. In one embodiment, additional PEG-diacrylate is added prior to crosslinking. In this embodiment, the additional PEG-diacrylate content is from about 1.7% to about 3.2% w/v.
- The molecular structure of PEG-F showing the fibrinogen backbone crosslinked with polyethylene glycol-diacrylate is depicted in
FIG. 2 . A diagram of the steps involved in synthesis of the PEG-F is depicted inFIG. 2 and described in more detail in Example 1. The PEG-F hydrogel has biocompatibility and its physical characteristics can be controlled by varying polymer weight percent, molecular chain length, and crosslinking density. An additional advantage of PEG-F hydrogels is their ability to undergo a controlled liquid-to-solid transition (gelation) in the presence of a cell suspension. The PEG-F gelation reaction can be carried out under nontoxic conditions in the presence of a photoinitiator or by mixing a two-part reactive solution of functionalized PEG and crosslinking the constituents. The fibrinogen backbone of the PEG-fibrinogen gel serves as a natural substrate for tissue remodeling, and provides the PEG-fibrinogen hydrogels an inherent degradability by way of cell-activated protease activity and cell specific adhesivity that are not available with PEG alone. - As will be understood by the skilled artisan upon reading this disclosure, any of the parameters in the scaffold, including fibrinogen content, crosslinker content and/or PEGDA:fibrinogen ratio can be modified to direct cell response and dental pulp formation.
- Nonlimiting examples of alternative composite polymeric hydrogels useful in these scaffolds include PEG-collagen, PEG-albumin, and PEG-synthetic peptide that contains RGD sites with proteolytic degradation sites.
- In one embodiment the hydrogel-based scaffold of this application is injectable. In one embodiment, the hydrogel-based scaffold is injectable in situ. In a further embodiment, the hydrogel-based scaffold of this application solidifies in vivo. In yet another embodiment, the hydrogel-based scaffold solidifies in vivo with non-toxic components. In one nonlimiting embodiment, UV light at a wavelength 365 nm with photoinitiator is used.
- Scaffolds of this application may further comprise an effective amount of antibiotic useful in preventing pulp infection. A nonlimiting example of such an antibiotic is ciprofloxacin.
- Scaffolds of this application may further comprise an effective amount of an angiogenic factors. Non limiting examples include, but are not limited to, VEGF, PDGF, PRP and combinations thereof. PRP and/or fibroblastic growth factors may also be added to the scaffolds.
- Acellular forms of the scaffold of this application drive host cell infiltration and/or migration resulting in new pulp from these host cells.
- The hydrogel-based scaffold of this application may further comprise stem cells for tooth pulp repair and regeneration and/or dental pulp cells and/or endothelial cells. In one embodiment, two or more of these cell types are co-cultures together on the scaffold. Preferred is that the scaffold be seeded with at least 3.2 million cells per ml.
- Experiments were performed examining gel characteristics as well as cell viability, cell proliferation, alkaline phosphatase or ALP activity, collagen content, and corresponding histology including collagen type I and III as well as expression of dentin sialophosphoprotein (DSPP) and ALP in PEG-F scaffolds with fibrinogen concentrations ranging from 7.7 to 9 mg/ml seeded with human dental pulp cells. Results from these experiments are shown in
FIGS. 4A through 8B . - Characteristics of a hydrogel based scaffold of this application are depicted in
FIGS. 4A through 4C . As shown therein, gel diameter changed overtime for all fibrinogen concentrations (seeFIG. 4B ). Onday 28, a higher fibrinogen concentration of 9 mg/ml resulted in smaller diameter as shown from the images inFIG. 4A onday 42 andFIG. 4B . Gel wet weight, as shown inFIG. 4C , significantly increased onday 21 and decreased onday 42 for all groups from proteolytic degradation. In addition, gel swelling ratio in the highest fibrinogen concentration of 9 mg/ml was significantly lower than the lowest fibrinogen concentration of 7.7 mg/ml on day 42 (see FIG. 4D). In addition, the hydrogels afterday 21 were mostly comprised of collagen produced from the pulp cells. From the collagen data, collagen per wet weight of the scaffold with the highest fibrinogen concentration was highest onday 42, resulting in lower swelling ratio and smaller diameter. Studies showed that fibroblasts contract collagen. - Results from cell viability and cell proliferation experiments are shown in
FIGS. 5A through 5C . Live and dead staining as shown inFIG. 5A and 5B , respectively, showed that cells remain viable overtime at all fibrinogen concentrations examined. Changes in cell morphology and spreading were found over time for all groups with cells exhibiting a physiologically relevant spindle-shape over time. The cell network was densest in the group with the highest fibrinogen concentration of 9 mg/ml onday 42 as shown by live and dead staining inFIG. 5A and cell number data onday 42. As shown inFIG. 5C , cell number in all PEG-fibrinogen groups decreased significantly onday 7 and stabilized overtime. Byday 42, cell number in the 9 mg/ml group was the highest and it increased significantly over time. - Matrix deposition inclusive of collagen content for hydrogel-based scaffolds of this application is depicted in
FIGS. 6A through 6C . A significant increase in collagen content was found for all groups over time as confirmed by picrosirius red staining (seeFIGS. 6A and 6B , respectively). From collagen per cell results depicted inFIG. 6C , however, it was found that earlier and higher collagen production occurred in the higher fibrinogen groups. - Matrix composition was also examined and results are shown in
FIGS. 7A through 7C . Immunohistochemical staining onday 42 showed that cells produced both collagen type I and III in all the PEG-fibrinogen hydrogels (SeeFIG. 7A ). Thus, the hydrogel-based scaffolds of this application are expected to modulate biosynthesis of a variety of cell types. Further, as shown inFIG. 7B and 7C , respectively, dentin sialophosphoprotein and ALP gene expression of cells cultured in PEG-Fibrinogen was downregulated at the lowest fibrinogen concentration of 7.7 mg/ml as compared to monolayer onday 7. However, levels of dentin sialophosphoprotein and ALP gene expression of cells cultured in all PEG-fibrinogen groups were similar to monolayer byday 28. Dentin sialophosphoprotein is an odontoblast-related gene, high expression of which corresponds to mineralization and dentin formation. - ALP mineralization potential was also examined and results are shown in
FIGS. 8A and 8B . As shown inFIG. 8A , ALP activity increased overtime for cells cultured in all PEG-fibrinogen hydrogels. The highest ALP activity was detected in the 9 mg/ml group on bothday 28 and 42.However, alzarin red staining as shown inFIG. 8B showed no calcium staining overtime in any of the groups. - Accordingly, the disclosed subject matter of this application also relates to use of the hydrogel-based scaffolds of this application in promoting pulp cell growth and biosynthesis. In one embodiment, pulp cell growth and biosynthesis is promoted by modulating fibrinogen concentration in the hydrogel-based scaffold. In one embodiment, pulp cell growth and biosynthesis is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold. In one embodiment, pulp cell growth and biosynthesis is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold to at least 5-10 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml.
- The disclosed subject matter of this application also relates to use of the hydrogel based scaffolds in regulating cell infiltration into, migration and morphology within a hydrogel-based scaffold. In one embodiment, pulp cell infiltration into, migration and morphology is regulated by modulating fibrinogen concentration in the hydrogel-based scaffold. In one embodiment, pulp cell infiltration into, migration and morphology is regulated by increasing fibrinogen concentration in the hydrogel-based scaffold. In one embodiment, pulp cell growth and biosynthesis is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold to at least 5-10 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml. Alternatively, or in addition, crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold can be modified. In one embodiment, the cross linker content ranges from about 0.05% to about 0.2% w/v. In one embodiment, PEG-diacrylate content is from about 1.7% to about 3.2% w/v.
- In addition, the disclosed subject matter of this application relates to in vitro methods for differentiation and expansion of stem cells into patient-specific dental pulp cells. In one embodiment, stem cells are cultured on hydrogel-based scaffolds with increased fibrinogen concentrations. In one embodiment, differentiation and expansion of stem cells is promoted by increasing fibrinogen concentration in the hydrogel-based scaffold to at least 5-10 mg/ml, more preferably at least 8 mg/ml, more preferably at least 9 mg/ml. Alternatively, or in addition, crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold can be modified. In one embodiment, the cross linker content ranges from about 0.05% to about 0.2% w/v. In one embodiment, PEG-diacrylate content is from about 1.7% to about 3.2% w/v.
- The disclosed subject matter of this application also relates to methods for promoting tooth vitality in a subject in need thereof by injecting, implanting and/or molding a hydrogel-based scaffold of this application into the tooth of the subject. These hydrogel-based scaffolds will protect against infection, promote self-repair and preserve tooth vitality in the subject.
- The following section provides further illustration of the methods and apparatuses of the present invention. These examples are illustrative only and are not intended to limit the scope of the invention in any way. The following disclosure should not be construed as limiting the invention in any way. One of skill in the art will appreciate that numerous modifications, combinations, rearrangements, etc. are possible without exceeding the scope of the invention. While this invention has been described with an emphasis upon various embodiments, it will be understood by those of ordinary skill in the art that variations of the disclosed embodiments can be used, and that it is intended that the invention can be practiced otherwise than as specifically described herein.
- PEG-F synthesis was facilitated by conjugating hydrophilic polyethylene glycol (PEG) to reconstituted fibrinogen, retaining much of the functionality of fibrinogen while maintaining/improving the physical properties of PEG. The PEG gelation reaction can be carried out under non-toxic conditions either with photoinitiators or by mixing a two-part reactive solution of functionalized PEG and crosslinking the constituents. In these experiments, for PEG-diacrylate (PEG-DA) synthesis, the acrylation of PEG-OH (Fluka, Mw=10 kDa) was carried out under argon by reacting a dichloromethane solution of PEG-PH (Aldrich) with acryloyl chloride (Sigma) and triethylamine (Fluka) at a molar ratio of 1:5:1 relative to -OH groups. The final product was precipitated in ice-cold diethyl ether and dried under vacuum for 48 hours. Proton NMR (1HNMR) was used to validate end-group conversion and to verify purity of the final product.
- Next, as shown in
FIG. 3 , PEGylation of fibrinogen was achieved by adding tris(2-carboxyethylphosphine hydrochloride (TCEP, Sigma) to bovine fibrinogen (7 mg/ml, Sigma) in 100 mM PBS with 8M urea (molar ratio of 4:1 TCEP to fibrinogen cysteines). Linear PEG-DA (10-kDa) was attached to cysteine residues of fibrinogen via Michael-type addition, where PEG-DA reacts for 3 hours with protein at a 4:1 molar ratio of PEG to fibrinogen cysteines. The PEGylated protein product was then purified from excess PEG-DA and urea by acetone precipitation and dialysis. For dialysis, the PEGylated protein was re-dissolved in PBS with 8M urea at 15 mg/ml final fibrinogen concentration and then dialyzed against PBS at 4° C. for two days (Spectrum, 6-8 kDa MW cut-off). The final product was characterized in accordance with established methods with net fibrinogen concentration determined by BCA protein assay. - For hydrogel formation, the PEGylated fibrinogen was crosslinked via a free-radical polymerization between unreacted acrylates on PEG-DA. Briefly, PEGylated fibrinogen precursor was combined with a 0.1% (w/v) photoinitiator solution prepared by dissolving 10% w/v IIRGACURE2959 (CIBA) in 70% ethanol. The mixture was photopolymerized in a custom mold for 5 minutes with UV light (365 nm, 15 mW/cm2).
- Samples of hydrogel scaffolds of this application with fibrinogen concentrations of 7.7, 8.5 and 9 mg/ml were washed in PBS, weighed for sample wet weight and dessicated for 24 hours (CentriVap Concentrator, Labconco Co,, Kansas City, Mo.), after which scaffolds were weighed for dry weight and swelling ratio (n=6) was calculated as wet weight per dry weight.
- Human dental pulp cells from explant culture were seeded with 4.8 million cells per milliliter in PEG-fibrinogen at three fibrinogen concentrations: 7.7, 8.5 and 9 mg/ml, photo-polymerized with 0.1% photoinitiator, and maintained in fully supplemented medium with ascorbic acid. Monolayer was used as a control. Samples were analyzed at 1, 7, 21, 28, and 42 days for cell viability, cell proliferation, alkaline phosphatase or ALP activity, collagen content, and corresponding histology including collagen type I and III. The expression of dentin sialophosphoprotein (DSPP) and ALP were determined using RT-PCR.
- Cell viability (n=2) was visualized using Live/Dead staining (Molecular Probes, Eugene Oreg.), following the manufacturer's suggested protocols. After washing in PBS, samples were imaged under confocal microscope (Olympus Fluoview FV1000, Center Valley, Pa.) at 473 nm excitation/519 nm emission wavelengths for FITC and 559 nm excitation/612 nm emission for Texas Red.
- Cell proliferation (n=6) was determined using the PICOGREEN total DNA assay (molecular Probes, Eugene, OR). Briefly, the samples were first rinsed with PBS and 500 μl of 0.1% Triton-X solution (Sigma-Aldrich, St. Louis, Mo.) was used to lyse the cells. An aliquot of the sample (25 μl) was then added to 175 μl of the PICOGREEN working solution. Fluorescence was measured with a microplate reader (Tecan, Research Triangle Park, N.C.), at the excitation and emission wavelengths of 485 and 535 nm, respectively. Total cell number was obtained by converting the amount of DNA per sample to cell number using the conversion factor of 8 pg DNA/cell.
- Mineralization potential was determined by measuring ALP activity using a colorimetric assay based on the hydrolysis of p-nitrophenyl phosphate (pNP-PO4) to p-nitrophenol (pNP). Briefly, the samples were lysed in 0.1% Triton-X solution, then added to pNP-PO4 solution (Sigma-Aldrich, St. Louis, Mo.) and allowed to react for 30 minutes at 37° C. The reaction was terminated with 0.1 N NaOH (Sigma-Aldrich, St. Louis, Mo.), and sample absorbance was measured at 415nm using a microplate reader (Tecan, Research Triangle Park, N.C.).
- Collagen deposition was quantified using a hydroxyproline assay based on alkaline hydrolysis of the tissue homogenate and subsequent determination of the free hydroxyproline in hydrolyzates. Briefly, the samples were first desiccated for 24 hours and then digested for 16 hours at 65° C. with papain (600 mg protein/ml, Sigma-Aldrich, St. Louis, Mo.) in 0.1M sodium acetate (Sigma-Aldrich, St. Louis, Mo.), 10 mM cysteine HCl (Sigma-Aldrich, St. Louis, Mo.), and 50 mM ethylenediaminetetraacetate (Sigma-Aldrich, St. Louis, Mo.). Samples were then hydrolyzed with 2N sodium hydroxide for 25 minutes and chloramine-T (Sigma) was added into hydrolyzed sample to oxidize the free hydroxyproline for the production of a pyrrole at room temperature for 25 minutes. Then, Ehrlich's reagent (Sigma-Aldrich, St. Louis, Mo.) was added to the products and incubated at 65° C. for 20 minutes resulting in the formation of a chromophore. The solution was transferred to 96-well plate and sample absorbance was measured at 555 nm using a microplate reader (Tecan, Research Triangle Park, N.C.).
- Hydrogels were fixed in 4% paraformaldehyde, stored in 70% ethanol, and embedded in paraffin and sectioned for 7pm thickness. Sections were stained with hematoxylin and counterstained with eosin. Picrosirius red staining was used to stain collagen. Immunohistochemistry staining of collagen I and collagen III was done using type specific collagen antibody (Abcam) with FITC-conjugated secondary antibody solution and DAPI staining for cell nucleus. Alizarin Red S staining was used to stain calcium, indicative of mineralization. Sections were imaged under light microscope except for immunohistochemistry staining which used a confocal microscope at the excitation and emission wavelengths of 485 and 535 nm, respectively for collagen I and collagen III.
- The expression of human dental pulp cell-related markers were determined using reverse transcription followed by polymerase chain reaction (RT-PCR). Total RNA of dental pulp cells was isolated using the TRIZOL (Invitrogen, Carlsbad, Calif.) extraction method, with the isolated RNA reverse-transcribed into cDNA using the SuperScript III First-Strand Synthesis System (Invitrogen). The cDNA product was then amplified for 40 cycles with recombinant Platinum Taq DNA polymerase (Invitrogen). PCR products were size-fractionated on a 1% w/v agarose gel and visualized by ethidium-bromide staining. Expression band intensities of relevant genes were analyzed semi-quantitatively by ImageJ and normalized to the housekeeping gene human glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
- Statistical Analyses were done using ANOVA and the Turkey-kramer post-hoc test for all pair-wise comparisons.
Claims (30)
1. A hydrogel-based scaffold for dental pulp formation, said scaffold comprising a biosynthetic hydrogel of polymer and fibrinogen, wherein fibrinogen is present at a concentration sufficient for promoting pulp cell growth and biosynthesis, regulating pulp cell migration and morphology, or both.
2. The hydrogel-based scaffold of claim 1 wherein the polymer comprises polyethylene glycol.
3. The hydrogel-based scaffold of claim 1 which comprises an intact fibrinogen or a fibrinogen fragment.
4. The hydrogel-based scaffold of claim 2 further comprising 0 to 40 mg/ml PEG-diacrylate.
5. The hydrogel-based scaffold of claim 4 comprising 10 to 20 mg/ml of PEG-diacrylate to form PEG-fibrinogen monomers.
6. The hydrogel-based scaffold of claim 5 further comprising additional PEG-diacrylate from 1.7% to 3.2% w/v.
7. The hydrogel-based scaffold of claim 1 which is injectable.
8. (canceled)
9. The hydrogel-based scaffold of claim 1 which solidifies in vivo.
10. The hydrogel-based scaffold of claim 1 which solidifies in vivo with non-toxic components.
11. The hydrogel-based scaffold of claim 1 wherein the fibrinogen concentration is at least 5 to 10 mg/ml.
12. The hydrogel-based scaffold of claim 1 wherein the fibrinogen concentration is at least 8 mg/ml.
13. (canceled)
14. The hydrogel-based scaffold of claim 1 further comprising an antibiotic.
15. The hydrogel-based scaffold of claim 1 further comprising stem cells for tooth pulp repair and regeneration and/or dental pulp cells and/or endothelial cells.
16. A method of promoting pulp cell growth and biosynthesis in a hydrogel-based scaffold, said method comprising modulating fibrinogen concentration, crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold.
17. The method of claim 16 wherein the fibrinogen concentration is increased to at least 5-10 mg/ml.
18. The method of claim 16 wherein the fibrinogen concentration is increased to at least 8 mg/ml.
19. (canceled)
20. The method of claim 16 wherein additional PEG-diacrylate content is from 1.7% to 3.2% w/v.
21. A method of regulating cell infiltration into, migration and morphology within a hydrogel-based scaffold, said method comprising modulating fibrinogen concentration, crosslinker content and/or PEG-diacrylate:fibrinogen ratio in the hydrogel-based scaffold.
22. The method of claim 21 wherein the fibrinogen concentration is increased to at least 5-10 mg/ml.
23. The method of claim 21 wherein the fibrinogen concentration is increased to at least 8 mg/ml.
24. (canceled)
25. The method of claim 21 wherein additional PEG-diacrylate content is from 1.7% to 3.2% w/v.
26. An in vitro method for differentiation and expansion of stem tells into dental pulp cells, said method comprising culturing stem cells on the hydrogel-based scaffold of claim 1 .
27. A method for promoting tooth vitality in a subject in need thereof, said method comprising injecting, implanting or molding the hydrogel-based scaffold of claim 1 into a tooth of the subject.
28. (canceled)
29. (canceled)
30. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/783,778 US20160296664A1 (en) | 2013-04-12 | 2014-04-11 | Methods for host cell homing and dental pulp regeneration |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361811433P | 2013-04-12 | 2013-04-12 | |
| PCT/US2014/033866 WO2014169249A1 (en) | 2013-04-12 | 2014-04-11 | Methods for host cell homing and dental pulp regeneration |
| US14/783,778 US20160296664A1 (en) | 2013-04-12 | 2014-04-11 | Methods for host cell homing and dental pulp regeneration |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/033866 A-371-Of-International WO2014169249A1 (en) | 2013-04-12 | 2014-04-11 | Methods for host cell homing and dental pulp regeneration |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/353,834 Continuation US11110199B2 (en) | 2013-04-12 | 2019-03-14 | Methods for host cell homing and dental pulp regeneration |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160296664A1 true US20160296664A1 (en) | 2016-10-13 |
Family
ID=51690046
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/783,778 Abandoned US20160296664A1 (en) | 2013-04-12 | 2014-04-11 | Methods for host cell homing and dental pulp regeneration |
| US16/353,834 Expired - Fee Related US11110199B2 (en) | 2013-04-12 | 2019-03-14 | Methods for host cell homing and dental pulp regeneration |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/353,834 Expired - Fee Related US11110199B2 (en) | 2013-04-12 | 2019-03-14 | Methods for host cell homing and dental pulp regeneration |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20160296664A1 (en) |
| EP (1) | EP2983643A4 (en) |
| WO (1) | WO2014169249A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200405916A1 (en) * | 2018-03-20 | 2020-12-31 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Regeneration of vital tooth pulp |
| US11110199B2 (en) | 2013-04-12 | 2021-09-07 | The Trustees Of Columbia University In The City Of New York | Methods for host cell homing and dental pulp regeneration |
| US11504303B2 (en) * | 2016-12-01 | 2022-11-22 | Trustees Of Tufts College | Pulp regeneration compositions and methods of forming and using the same |
| US12440604B2 (en) | 2018-06-13 | 2025-10-14 | University of Pittsburgh—of the Commonwealth System of Higher Education | Bone regeneration in compromised wounds |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8753391B2 (en) | 2007-02-12 | 2014-06-17 | The Trustees Of Columbia University In The City Of New York | Fully synthetic implantable multi-phased scaffold |
| CN110664993B (en) * | 2019-10-22 | 2020-09-29 | 南方医科大学南方医院 | New application of fibrinogen γ chain in the field of tooth regeneration and its kit |
Family Cites Families (147)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4479271A (en) | 1981-10-26 | 1984-10-30 | Zimmer, Inc. | Prosthetic device adapted to promote bone/tissue ingrowth |
| US6005161A (en) | 1986-01-28 | 1999-12-21 | Thm Biomedical, Inc. | Method and device for reconstruction of articular cartilage |
| US5133755A (en) | 1986-01-28 | 1992-07-28 | Thm Biomedical, Inc. | Method and apparatus for diodegradable, osteogenic, bone graft substitute device |
| US5904717A (en) | 1986-01-28 | 1999-05-18 | Thm Biomedical, Inc. | Method and device for reconstruction of articular cartilage |
| FR2624724B1 (en) | 1987-12-22 | 1992-08-14 | Rhenter Jean Luc | SYNTHETIC LIGAMENT FOR KNEE |
| GB2215209B (en) | 1988-03-14 | 1992-08-26 | Osmed Inc | Method and apparatus for biodegradable, osteogenic, bone graft substitute device |
| US20020095213A1 (en) | 1988-09-02 | 2002-07-18 | Dirkjan Bakker | Prosthetic devices formed from materials having bone-bonding properties and uses therefor |
| US5024669A (en) | 1988-09-09 | 1991-06-18 | Baxter International Inc. | Artificial ligament of differential weave structure |
| US5108436A (en) | 1988-09-29 | 1992-04-28 | Collagen Corporation | Implant fixation |
| US5084350A (en) | 1990-02-16 | 1992-01-28 | The Royal Institution For The Advance Of Learning (Mcgill University) | Method for encapsulating biologically active material including cells |
| US5149543A (en) | 1990-10-05 | 1992-09-22 | Massachusetts Institute Of Technology | Ionically cross-linked polymeric microcapsules |
| US6537574B1 (en) | 1992-02-11 | 2003-03-25 | Bioform, Inc. | Soft tissue augmentation material |
| WO1993015694A1 (en) | 1992-02-14 | 1993-08-19 | Board Of Regents, The University Of Texas System | Multi-phase bioerodible implant/carrier and method of manufacturing and using same |
| JPH06154305A (en) | 1992-11-25 | 1994-06-03 | Nippon Electric Glass Co Ltd | Artificial bone |
| JPH06165817A (en) | 1992-11-30 | 1994-06-14 | Nippon Electric Glass Co Ltd | Bioactive composite implant material |
| US5359026A (en) | 1993-07-30 | 1994-10-25 | Cargill, Incorporated | Poly(lactide) copolymer and process for manufacture thereof |
| US5455041A (en) | 1993-09-13 | 1995-10-03 | Research Foundation Of State University Of New York At Buffalo | Method for inducing periodontal tissue regeneration |
| EP0642773B1 (en) | 1993-09-14 | 2003-05-28 | Lanny L. Johnson | Biological replacement ligament |
| EP0733109B9 (en) | 1993-12-07 | 2006-07-05 | Genetics Institute, LLC | Bmp-12, bmp-13 and tendon-inducing compositions thereof |
| US5626861A (en) | 1994-04-01 | 1997-05-06 | Massachusetts Institute Of Technology | Polymeric-hydroxyapatite bone composite |
| US6235061B1 (en) | 1994-04-04 | 2001-05-22 | The Penn State Research Foundation | Poly(organophosphazene) matrices for bone replacement |
| US5817327A (en) | 1994-07-27 | 1998-10-06 | The Trustees Of The University Of Pennsylvania | Incorporation of biologically active molecules into bioactive glasses |
| ATE363289T1 (en) | 1995-02-20 | 2007-06-15 | Yukio Kato | REMEDIES FOR ARTHROSIS DEFORMANS AND INFLAMMATORY JOINT DISEASES |
| US5855610A (en) | 1995-05-19 | 1999-01-05 | Children's Medical Center Corporation | Engineering of strong, pliable tissues |
| ATE245996T1 (en) | 1995-06-05 | 2003-08-15 | Inst Genetics Llc | USE OF BONE MORPHOGENESIS PROTEINS TO HEAL AND REPAIR CONNECTIVE TISSUE ATTACHMENT |
| US6214331B1 (en) | 1995-06-06 | 2001-04-10 | C. R. Bard, Inc. | Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained |
| US5716413A (en) | 1995-10-11 | 1998-02-10 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
| DE69631490T2 (en) | 1995-11-09 | 2004-10-07 | Univ Massachusetts Boston | RESTORATION OF TISSUE SURFACE WITH COMPOSITIONS FROM HYDROGEL CELLS |
| US20100203481A1 (en) | 1996-03-21 | 2010-08-12 | Nova Southeastern University | Method and kit for delivering endodontic regenerative treatment |
| WO1997045533A1 (en) | 1996-05-28 | 1997-12-04 | The Regents Of The University Of Michigan | Engineering oral tissues |
| US6126690A (en) | 1996-07-03 | 2000-10-03 | The Trustees Of Columbia University In The City Of New York | Anatomically correct prosthesis and method and apparatus for manufacturing prosthesis |
| US6086610A (en) | 1996-10-22 | 2000-07-11 | Nitinol Devices & Components | Composite self expanding stent device having a restraining element |
| US5866155A (en) | 1996-11-20 | 1999-02-02 | Allegheny Health, Education And Research Foundation | Methods for using microsphere polymers in bone replacement matrices and composition produced thereby |
| US6013591A (en) | 1997-01-16 | 2000-01-11 | Massachusetts Institute Of Technology | Nanocrystalline apatites and composites, prostheses incorporating them, and method for their production |
| US7524335B2 (en) | 1997-05-30 | 2009-04-28 | Smith & Nephew, Inc. | Fiber-reinforced, porous, biodegradable implant device |
| US6171812B1 (en) | 1997-07-15 | 2001-01-09 | The National Institute Of Biogerontology, Inc. | Combined perfusion and mechanical loading system for explanted bone |
| AU8825198A (en) | 1997-08-08 | 1999-03-01 | Us Biomaterials Corporation | Biologically active glass-based substrate |
| US6187329B1 (en) | 1997-12-23 | 2001-02-13 | Board Of Regents Of The University Of Texas System | Variable permeability bone implants, methods for their preparation and use |
| WO1999033415A1 (en) | 1997-12-31 | 1999-07-08 | Depuy Orthopaedics, Inc. | Osteopontin-based compositions for enhancing bone repair |
| US6143293A (en) | 1998-03-26 | 2000-11-07 | Carnegie Mellon | Assembled scaffolds for three dimensional cell culturing and tissue generation |
| US6378527B1 (en) | 1998-04-08 | 2002-04-30 | Chondros, Inc. | Cell-culture and polymer constructs |
| US6171610B1 (en) | 1998-04-24 | 2001-01-09 | University Of Massachusetts | Guided development and support of hydrogel-cell compositions |
| EP1121072A1 (en) | 1998-10-12 | 2001-08-08 | Therics, Inc. | Composites for tissue regeneration and methods of manufacture thereof |
| US20030114936A1 (en) | 1998-10-12 | 2003-06-19 | Therics, Inc. | Complex three-dimensional composite scaffold resistant to delimination |
| US6328765B1 (en) | 1998-12-03 | 2001-12-11 | Gore Enterprise Holdings, Inc. | Methods and articles for regenerating living tissue |
| US6409764B1 (en) | 1998-12-03 | 2002-06-25 | Charles F. White | Methods and articles for regenerating bone or peridontal tissue |
| ATE241397T1 (en) | 1999-03-19 | 2003-06-15 | Univ Michigan | MINERALIZATION AND CELLULAR STRUCTURING OF BIOMATERIAL SURFACES |
| US7371400B2 (en) | 2001-01-02 | 2008-05-13 | The General Hospital Corporation | Multilayer device for tissue engineering |
| EP1176994A1 (en) | 1999-05-07 | 2002-02-06 | Salviac Limited | Biostability of polymeric structures |
| US6333029B1 (en) | 1999-06-30 | 2001-12-25 | Ethicon, Inc. | Porous tissue scaffoldings for the repair of regeneration of tissue |
| US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
| AU7611500A (en) | 1999-09-24 | 2001-04-24 | Abt Holding Company | Pluripotent embryonic-like stem cells, compositions, methods and uses thereof |
| US6328990B1 (en) | 1999-11-12 | 2001-12-11 | The Trustees Of The University Of Pennsylvania | Bioactive, degradable composite for tissue engineering |
| US6737053B1 (en) | 1999-11-12 | 2004-05-18 | National University Of Singapore | Tissue-engineered ligament |
| DE19957388A1 (en) | 1999-11-24 | 2001-06-13 | Michael Sittinger | Chondroinductive and implantable substrates for cartilage healing and protection |
| US6579533B1 (en) | 1999-11-30 | 2003-06-17 | Bioasborbable Concepts, Ltd. | Bioabsorbable drug delivery system for local treatment and prevention of infections |
| WO2001041821A1 (en) | 1999-12-09 | 2001-06-14 | Biosyntech Canada Inc. | Mineral-polymer hybrid composition |
| US6811776B2 (en) | 2000-12-27 | 2004-11-02 | The Regents Of The University Of Michigan | Process for ex vivo formation of mammalian bone and uses thereof |
| US7108721B2 (en) | 2000-05-11 | 2006-09-19 | Massachusetts Institute Of Technology | Tissue regrafting |
| US6730252B1 (en) | 2000-09-20 | 2004-05-04 | Swee Hin Teoh | Methods for fabricating a filament for use in tissue engineering |
| CA2365376C (en) | 2000-12-21 | 2006-03-28 | Ethicon, Inc. | Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
| US6852330B2 (en) | 2000-12-21 | 2005-02-08 | Depuy Mitek, Inc. | Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
| US20020127265A1 (en) | 2000-12-21 | 2002-09-12 | Bowman Steven M. | Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
| US6995013B2 (en) | 2002-07-08 | 2006-02-07 | Biomed Solutions, Llc | Cell-scaffold composition containing five layers |
| WO2002080970A1 (en) | 2001-03-23 | 2002-10-17 | Regents Of The University Of California | Method for inhibiting articular cartilage matrix calcification |
| US6620427B2 (en) | 2001-04-24 | 2003-09-16 | Abbott Laboratories | Method for improving bone mineralization |
| US6685956B2 (en) | 2001-05-16 | 2004-02-03 | The Research Foundation At State University Of New York | Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications |
| TWI267378B (en) | 2001-06-08 | 2006-12-01 | Wyeth Corp | Calcium phosphate delivery vehicles for osteoinductive proteins |
| WO2003000480A1 (en) | 2001-06-22 | 2003-01-03 | The Regents Of The University Of Michigan | Methods of designing and fabricating molds |
| US6626950B2 (en) | 2001-06-28 | 2003-09-30 | Ethicon, Inc. | Composite scaffold with post anchor for the repair and regeneration of tissue |
| WO2003004254A1 (en) | 2001-07-03 | 2003-01-16 | The Regents Of The University Of California | Microfabricated biopolymer scaffolds and method of making same |
| US7105182B2 (en) | 2001-07-25 | 2006-09-12 | Szymaitis Dennis W | Periodontal regeneration composition and method of using same |
| US20030026770A1 (en) | 2001-07-25 | 2003-02-06 | Szymaitis Dennis W. | Periodontal regeneration composition and method of using same |
| US6752938B2 (en) | 2001-10-13 | 2004-06-22 | Invigor Biotechnology Co., Ltd. | Method of preparing microsphere composite of collagen and bioceramic powder |
| JP4033400B2 (en) | 2002-03-12 | 2008-01-16 | ティシュージーン,インク | Cartilage regeneration using chondrocytes and TGF-β |
| US7326426B2 (en) | 2002-03-29 | 2008-02-05 | Ethicon, Inc. | Compositions and medical devices utilizing bioabsorbable liquid polymers |
| US8187326B2 (en) | 2002-05-22 | 2012-05-29 | Advanced Technologies And Regenerative Medicine, Llc. | Attachment of absorbable tissue scaffolds to fixation devices |
| US6989034B2 (en) | 2002-05-31 | 2006-01-24 | Ethicon, Inc. | Attachment of absorbable tissue scaffolds to fixation devices |
| JP3916516B2 (en) | 2002-06-10 | 2007-05-16 | 独立行政法人科学技術振興機構 | Scaffolding material for hard tissue-soft tissue interface regeneration |
| US7166133B2 (en) | 2002-06-13 | 2007-01-23 | Kensey Nash Corporation | Devices and methods for treating defects in the tissue of a living being |
| US7351250B2 (en) | 2002-08-21 | 2008-04-01 | Kci Licensing, Inc. | Circumferential medical closure device and method |
| EP1578776A4 (en) | 2002-09-30 | 2007-11-07 | Shriners Hospitals Children | PRODUCTS FOR REGULATING COLLAGEN DEGRADATION AND ASSOCIATED IDENTIFICATION METHODS |
| WO2004034890A2 (en) | 2002-10-17 | 2004-04-29 | Vacanti, Joseph, P. | Biological scaffolding material |
| US20040078090A1 (en) | 2002-10-18 | 2004-04-22 | Francois Binette | Biocompatible scaffolds with tissue fragments |
| US7824701B2 (en) | 2002-10-18 | 2010-11-02 | Ethicon, Inc. | Biocompatible scaffold for ligament or tendon repair |
| US20050118236A1 (en) | 2002-12-03 | 2005-06-02 | Gentis Inc. | Bioactive, resorbable scaffolds for tissue engineering |
| US7842780B2 (en) | 2003-01-07 | 2010-11-30 | Trustees Of Tufts College | Silk fibroin materials and use thereof |
| US7390526B2 (en) | 2003-02-11 | 2008-06-24 | Northwestern University | Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon |
| US7291450B2 (en) | 2003-03-28 | 2007-11-06 | Smith & Nephew, Inc. | Preparation of a cell concentrate from a physiological solution |
| US20040197375A1 (en) | 2003-04-02 | 2004-10-07 | Alireza Rezania | Composite scaffolds seeded with mammalian cells |
| US20050038498A1 (en) | 2003-04-17 | 2005-02-17 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
| US7972616B2 (en) | 2003-04-17 | 2011-07-05 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
| US7803574B2 (en) | 2003-05-05 | 2010-09-28 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
| JP2004331557A (en) | 2003-05-07 | 2004-11-25 | Hitachi Medical Corp | Method for regenerating tooth germ |
| US7252685B2 (en) | 2003-06-05 | 2007-08-07 | Sdgi Holdings, Inc. | Fusion implant and method of making same |
| ES2306826T3 (en) | 2003-06-24 | 2008-11-16 | Dr. H. C. Robert Mathys Foundation | ORTHOPEDIC DEVICE FOR THE REPAIR OF CARTILAGOS. |
| US8226715B2 (en) | 2003-06-30 | 2012-07-24 | Depuy Mitek, Inc. | Scaffold for connective tissue repair |
| US7217294B2 (en) | 2003-08-20 | 2007-05-15 | Histogenics Corp. | Acellular matrix implants for treatment of articular cartilage, bone or osteochondral defects and injuries and method for use thereof |
| US7309232B2 (en) | 2003-10-10 | 2007-12-18 | Dentigenix Inc. | Methods for treating dental conditions using tissue scaffolds |
| EP2514445B1 (en) | 2003-10-22 | 2018-07-18 | Encelle, Inc. | Bioactive hydrogel compositions for the regeneration of connective tissue |
| US7704740B2 (en) | 2003-11-05 | 2010-04-27 | Michigan State University | Nanofibrillar structure and applications including cell and tissue culture |
| US7901461B2 (en) | 2003-12-05 | 2011-03-08 | Ethicon, Inc. | Viable tissue repair implants and methods of use |
| DK1722834T3 (en) * | 2003-12-22 | 2012-10-22 | Regentis Biomaterials Ltd | Matrix, which includes naturally occurring cross-linked protein skeleton |
| DE602005023714D1 (en) | 2004-02-20 | 2010-11-04 | Biosurface Eng Tech Inc | BONE MORPHOGENETIC PROTEIN-2 POSITIVE MODULATOR (BMP-2) |
| CA2557231C (en) | 2004-03-05 | 2013-12-31 | The Trustees Of Columbia University In The City Of New York | Multi-phased, biodegradable and osteointegrative composite scaffold for biological fixation of musculoskeletal soft tissue to bone |
| US7482154B2 (en) | 2004-05-15 | 2009-01-27 | Rensselaer Polytechnic Institute | Diamagnetic force field bioreactor |
| BRPI0512831A (en) * | 2004-06-30 | 2008-04-08 | Univ Illinois | smooth fabric construction, method for preparing a smooth fabric construction, use of smooth fabric construction, and composition |
| WO2006027780A2 (en) | 2004-09-08 | 2006-03-16 | Ramot At Tel Aviv University Ltd. | Peptide nanostructures containing end-capping modified peptides and methods of generating and using the same |
| EP1814713A4 (en) | 2004-11-09 | 2017-07-26 | Board of Regents, The University of Texas System | The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns |
| US7419681B2 (en) | 2004-12-02 | 2008-09-02 | Bioretec, Ltd. | Method to enhance drug release from a drug-releasing material |
| US20070071728A1 (en) | 2004-12-16 | 2007-03-29 | Ching-Chang Ko | Biomimetic nanocomposite |
| WO2006094212A2 (en) | 2005-03-02 | 2006-09-08 | Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Bioreactor chamber apparatus, and method for fabricating natural and engineered tissues |
| US7531503B2 (en) | 2005-03-11 | 2009-05-12 | Wake Forest University Health Sciences | Cell scaffold matrices with incorporated therapeutic agents |
| WO2006116530A2 (en) | 2005-04-28 | 2006-11-02 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for treating pulp inflammations caused by infection or trauma |
| US20090148486A1 (en) * | 2005-04-28 | 2009-06-11 | Helen Lu | Compositions and methods for treating pulp inflammations caused by infection or trauma |
| US20070083236A1 (en) | 2005-06-24 | 2007-04-12 | Smith & Nephew, Inc. | Methods and devices for tissue repair |
| CN1903144A (en) | 2005-07-29 | 2007-01-31 | 广东冠昊生物科技有限公司 | Biological artificial ligamentum and method for preparing same |
| US8691542B2 (en) | 2005-09-09 | 2014-04-08 | Cytex Therapeutics, Inc. | Tissue engineering methods and compositions |
| US8067237B2 (en) | 2005-12-13 | 2011-11-29 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
| MX2008009665A (en) | 2006-01-27 | 2008-10-06 | Univ California | Biomimetic scaffolds. |
| WO2007089259A1 (en) | 2006-02-02 | 2007-08-09 | The Johns Hopkins University | Therapeutic electrospun fiber compositions |
| US7842737B2 (en) | 2006-09-29 | 2010-11-30 | Abbott Cardiovascular Systems Inc. | Polymer blend-bioceramic composite implantable medical devices |
| US8609366B2 (en) | 2006-07-28 | 2013-12-17 | Legacy Emanuel Hospital & Health Center | Method and systems for tissue culture |
| US7545011B2 (en) | 2006-08-24 | 2009-06-09 | Solfocus, Inc. | Semiconductor mount |
| WO2008028194A2 (en) | 2006-09-01 | 2008-03-06 | Cornell Research Foundation, Inc. | Calcium phosphate nanofibers |
| US20100179659A1 (en) | 2006-09-27 | 2010-07-15 | Wan-Ju Li | Cell-nanofiber composite and cell-nanofiber-hydrogel composite amalgam based engineered intervertebral disc |
| US8911996B2 (en) | 2007-01-31 | 2014-12-16 | Technion Research & Development Foundation Limited | Electrospun scaffolds and methods of generating and using same |
| US8753391B2 (en) * | 2007-02-12 | 2014-06-17 | The Trustees Of Columbia University In The City Of New York | Fully synthetic implantable multi-phased scaffold |
| CA2678422A1 (en) | 2007-02-14 | 2008-08-21 | Mount Sinai Hospital | Fibrous scaffold for use in soft tissue engineering |
| WO2008130529A1 (en) | 2007-04-16 | 2008-10-30 | University Of Toledo | Hybrid biomimetic particles, methods of making same and uses therefor |
| US20080273206A1 (en) | 2007-04-23 | 2008-11-06 | University Of South Carolina | Biomimetic Mineralization Method and System |
| CN101795718B (en) | 2007-04-24 | 2013-06-12 | 西澳大利亚大学 | Bioscaffold containing tenocytes and therapeutic method using the bioscaffold |
| CA2691541A1 (en) | 2007-06-22 | 2008-12-31 | Innovative Surface Technologies, Inc. | Nanofibers containing latent reactive groups |
| WO2009055609A1 (en) | 2007-10-25 | 2009-04-30 | The Trustees Of Columbia University In The City Of New York | Biopulp |
| WO2009102967A2 (en) | 2008-02-13 | 2009-08-20 | The Cleveland Clinic Foundation | Molecular enhancement of extracellular matrix and methods of use |
| US20110046734A1 (en) | 2008-03-13 | 2011-02-24 | Tavor (I.T.N) Ltd. | Ligament And Tendon Prosthesis |
| US8142501B2 (en) | 2008-04-21 | 2012-03-27 | The Board Of Regents Of The University Of Texas System | Artificial ligaments and tendons comprising multifilaments and nanofibers and methods for making |
| US20110293685A1 (en) | 2008-10-03 | 2011-12-01 | Trustees Of Tufts College | Scaffolds for tissue engineering and regenerative medicine |
| US8545806B2 (en) * | 2008-10-31 | 2013-10-01 | The Invention Science Fund I, Llc | Compositions and methods for biological remodeling with frozen particle compositions |
| EP2367595A4 (en) | 2008-11-24 | 2014-11-19 | Georgia Tech Res Inst | Systems and methods to affect anatomical structures |
| WO2010064251A1 (en) * | 2008-12-04 | 2010-06-10 | Technion Research & Development Foundation Ltd | Hydrogel sponges, methods of producing them and uses thereof |
| CA2802554A1 (en) | 2009-06-16 | 2010-12-23 | Marc Beauchamp | Method and apparatus for arthroscopic rotator cuff repair using transosseous tunnels |
| US10016278B2 (en) | 2009-06-30 | 2018-07-10 | Dsm Ip Assets B.V. | Biphasic implant device providing joint fluid therapy |
| US20110038921A1 (en) | 2009-08-13 | 2011-02-17 | Clemson University Research Foundation | Methods and compositions for temporal release of agents from a biodegradable scaffold |
| US20110097406A1 (en) | 2009-10-25 | 2011-04-28 | The Regents Of The University Of Colorado, A Body Corporate | Methods and compositions for retaining ecm materials in hydrogels |
| WO2012021885A1 (en) | 2010-08-13 | 2012-02-16 | The Trustees Of Columbia University In The City Of New York | Three-dimensional tissue engineering devices and uses thereof |
| EP2983643A4 (en) | 2013-04-12 | 2016-12-28 | Univ Columbia | METHODS FOR HOST CELL ECOTROPISM AND DENTAL PULP REGENERATION |
-
2014
- 2014-04-11 EP EP14782570.7A patent/EP2983643A4/en not_active Withdrawn
- 2014-04-11 WO PCT/US2014/033866 patent/WO2014169249A1/en not_active Ceased
- 2014-04-11 US US14/783,778 patent/US20160296664A1/en not_active Abandoned
-
2019
- 2019-03-14 US US16/353,834 patent/US11110199B2/en not_active Expired - Fee Related
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11110199B2 (en) | 2013-04-12 | 2021-09-07 | The Trustees Of Columbia University In The City Of New York | Methods for host cell homing and dental pulp regeneration |
| US11504303B2 (en) * | 2016-12-01 | 2022-11-22 | Trustees Of Tufts College | Pulp regeneration compositions and methods of forming and using the same |
| US12016938B2 (en) | 2016-12-01 | 2024-06-25 | Trustees Of Tufts College | Pulp regeneration compositions and methods of forming and using the same |
| US20200405916A1 (en) * | 2018-03-20 | 2020-12-31 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Regeneration of vital tooth pulp |
| US12285545B2 (en) * | 2018-03-20 | 2025-04-29 | University of Pittsburgh—of the Commonwealth System of Higher Education | Regeneration of vital tooth pulp |
| US12440604B2 (en) | 2018-06-13 | 2025-10-14 | University of Pittsburgh—of the Commonwealth System of Higher Education | Bone regeneration in compromised wounds |
Also Published As
| Publication number | Publication date |
|---|---|
| US20190209734A1 (en) | 2019-07-11 |
| WO2014169249A1 (en) | 2014-10-16 |
| US11110199B2 (en) | 2021-09-07 |
| EP2983643A4 (en) | 2016-12-28 |
| EP2983643A1 (en) | 2016-02-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11110199B2 (en) | Methods for host cell homing and dental pulp regeneration | |
| İlhan et al. | Microwave assisted methacrylation of Kappa carrageenan: A bioink for cartilage tissue engineering | |
| Browne et al. | Modulation of inflammation and angiogenesis and changes in ECM GAG-activity via dual delivery of nucleic acids | |
| Lee et al. | Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial | |
| JP2023090746A (en) | Biogum and botanical gum hydrogel bioinks for physiological 3d bioprinting of tissue constructs for in vitro culture and transplantation | |
| Pankajakshan et al. | Injectable highly tunable oligomeric collagen matrices for dental tissue regeneration | |
| US20090148486A1 (en) | Compositions and methods for treating pulp inflammations caused by infection or trauma | |
| EP3283510B1 (en) | Collagen mimetic peptide | |
| Cao et al. | Synthesis of stiffness‐tunable and cell‐responsive Gelatin–poly (ethylene glycol) hydrogel for three‐dimensional cell encapsulation | |
| US9205103B2 (en) | Dextrin hydrogel for biomedical applications | |
| CN111032090A (en) | Patch implant composition for cell implantation | |
| CA2912664A1 (en) | Anti-thrombogenic grafts | |
| Gonen-Wadmany et al. | Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials | |
| WO2010074958A1 (en) | Hydrolytically degradable polysaccharide hydrogels | |
| US20250136927A1 (en) | Composition for 3d tissue culture | |
| Noohi et al. | The development of a dental light curable PRFe‐loaded hydrogel as a potential scaffold for pulp‐dentine complex regeneration: An in vitro study | |
| Peng et al. | ‐stimulated crosslinking of catechol‐conjugated hydroxyethyl chitosan as a tissue adhesive | |
| Silva et al. | Inflammatory response to dextrin-based hydrogel associated with human mesenchymal stem cells, urinary bladder matrix and Bonelike® granules in rat subcutaneous implants | |
| CN114870067B (en) | Elastin hydrogel material for wound repair and preparation method thereof | |
| Park et al. | Chondrogenesis of human mesenchymal stem cells encapsulated in a hydrogel construct: neocartilage formation in animal models as both mice and rabbits | |
| Park et al. | Transplantation of poly (N-isopropylacrylamide-co-vinylimidazole) hydrogel constructs composed of rabbit chondrocytes and growth factor-loaded nanoparticles for neocartilage formation | |
| Khadivar et al. | Synergic effect of bone marrow derived mesenchymal stem cells and differentiated keratinocytes-like cells with a novel cellulose and collagen nanoscaffold on wound healing in rats | |
| Kasper et al. | Development of a bioactive tunable hyaluronic-protein bioconjugate hydrogel for tissue regenerative applications | |
| CN119212742A (en) | GELMA polymer compositions containing cells | |
| Lim | Fabrication and Characterisation of Degradable Biosynthetic Hydrogels for Cell Encapsulation: Development of a New Method for Protein Incorporation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LU, HELEN H;HASSELGREN, GUNNAR;REEL/FRAME:048602/0632 Effective date: 20190313 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |