[go: up one dir, main page]

US20160276500A1 - Solar module manufacturing method - Google Patents

Solar module manufacturing method Download PDF

Info

Publication number
US20160276500A1
US20160276500A1 US15/169,734 US201615169734A US2016276500A1 US 20160276500 A1 US20160276500 A1 US 20160276500A1 US 201615169734 A US201615169734 A US 201615169734A US 2016276500 A1 US2016276500 A1 US 2016276500A1
Authority
US
United States
Prior art keywords
solar cell
solar
wiring
main surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/169,734
Inventor
Shuji Fukumochi
Yosuke Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US15/169,734 priority Critical patent/US20160276500A1/en
Publication of US20160276500A1 publication Critical patent/US20160276500A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H01L31/02008
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/93Interconnections
    • H10F77/933Interconnections for devices having potential barriers
    • H10F77/935Interconnections for devices having potential barriers for photovoltaic devices or modules
    • H01L31/0475
    • H01L31/0512
    • H01L31/0516
    • H01L31/18
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/146Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/20Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising photovoltaic cells in arrays in or on a single semiconductor substrate, the photovoltaic cells having planar junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • H10F19/906Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells characterised by the materials of the structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • H10F19/908Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells for back-contact photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part

Definitions

  • the present invention relates to a method for manufacturing a solar module.
  • Solar modules are usually provided with a solar cell string having a plurality of solar cells connected electrically by a wiring member.
  • Patent Document 1 describes the use of damage-free solar cells in a solar cell string made possible by removing any damaged solar cell from the solar cell string and replacing the damaged solar cell with a new solar cell.
  • the solder bonding the solar cell to the wiring member is heated and melted to peel the wiring member from the solar cell.
  • Patent Document 1 Laid-Open Patent Publication No. 2011-134765
  • Patent Document 1 when the wiring member is bonded to the solar cell using a resin adhesive, it is difficult to reliably remove the resin adhesive using heat. As a result, the method described in Patent Document 1 cannot be used when wiring members and solar cells are bonded to each other using a resin adhesive.
  • a first aspect of the present invention is a method for manufacturing a solar module comprising the steps of: preparing a plurality of solar cells having a first electrode and a second electrode on the same main surface and arranged so each first electrode and second electrode extends from one end to the other end in one direction; creating a solar cell string in which a plurality of solar cells are connected electrically by using a resin adhesive to connect a wiring member to a region outside of the end portion of the first electrode of one solar cell in the one direction in order to electrically connect the wiring member to the first electrode of the one solar cell, while using a resin adhesive to connect the wiring member to a region outside of the end portion of the second electrode of another solar cell in the one direction in order to electrically connect the wiring member to the second electrode of the other solar cell; inspecting the solar cell string for the presence of any defective solar cell, and cutting the wiring members bonding a defective solar cell to the solar cells adjacent to the defective solar cell and removing the defective solar cell from the solar cell string when a defective solar cell has been discovered; and electrically
  • a second aspect of the present invention is a method for manufacturing a solar module comprising the steps of: preparing a plurality of solar cells having a first electrode and a second electrode on the same main surface and arranged so each first electrode and second electrode extends from one end to the other end in one direction; creating a solar cell string in which a plurality of solar cells are connected electrically by using a resin adhesive to connect a wiring member to a region outside of the end portion of the first electrode of one solar cell in the one direction in order to electrically connect the wiring member to the first electrode of the one solar cell, while using a resin adhesive to connect the wiring member to a region outside of the end portion of the second electrode of another solar cell in the one direction in order to electrically connect the wiring member to the second electrode of the other solar cell; inspecting the solar cell string for the presence of any defective solar cell, and cutting the wiring members bonding a defective solar cell to the solar cells adjacent to the defective solar cell and removing the defective solar cell from the solar cell string when a defective solar cell has been discovered; and electrically
  • a third aspect of the present invention is a method for manufacturing a solar module comprising the steps of: preparing a plurality of solar cells having a first electrode and a second electrode on the same main surface and arranged so each first electrode and second electrode extends from one end to the other end in one direction; creating a solar cell string in which a plurality of solar cells are connected electrically by using a resin adhesive to connect a wiring member to a region outside of the end portion of the first electrode of one solar cell in the one direction in order to electrically connect the wiring member to the first electrode of the one solar cell, while using a resin adhesive to connect the wiring member to a region outside of the end portion of the second electrode of another solar cell in the one direction in order to electrically connect the wiring member to the second electrode of the other solar cell; inspecting the solar cell string for the presence of any defective solar cell, and cutting the wiring members bonding a defective solar cell to the solar cells adjacent to the defective solar cell and removing the defective solar cell from the solar cell string when a defective solar cell has been discovered; and electrically
  • the present invention is able to provide a manufacturing method suitable for solar modules.
  • FIG. 1 is a simplified back view of a solar cell in the first embodiment.
  • FIG. 2 is a simplified side view of a solar cell string in the first embodiment.
  • FIG. 3 is a simplified plan view of section III in FIG. 2 .
  • the region in which a resin adhesive layer is provided is cross-hatched.
  • the cross-hatched region is not shown in cross-section.
  • FIG. 4 is a simplified cross-sectional view from line IV-IV in FIG. 3 .
  • FIG. 5 is a simplified back view of a wiring member in the first embodiment.
  • FIG. 6 is a simplified side view used to explain the solar module manufacturing process in the first embodiment.
  • FIG. 7 is a simplified cross-sectional view used to explain the solar module manufacturing process in the first embodiment.
  • FIG. 8 is a simplified cross-sectional view of the solar module in the first embodiment.
  • FIG. 9 is a simplified back view of a solar cell in the second embodiment.
  • FIG. 10 is a simplified partial side view of a solar cell string in the second embodiment.
  • the region in which a resin adhesive layer is provided is cross-hatched.
  • the cross-hatched region is not shown in cross-section.
  • FIG. 11 is a simplified cross-sectional view from line XI-XI in FIG. 10 .
  • FIG. 12 is a simplified cross-sectional view used to explain the solar module manufacturing process in the second embodiment.
  • FIG. 13 is a simplified side view used to explain the solar module manufacturing process in the third embodiment.
  • FIG. 14 is a simplified cross-sectional view used to explain the solar module manufacturing process in the third embodiment.
  • FIG. 15 is a simplified cross-sectional view of the solar module in the third embodiment.
  • the solar cells 20 shown in FIG. 1 are prepared.
  • the solar cells 20 are back contact solar cells.
  • Each solar cell 20 has a photoelectric conversion unit 23 .
  • the photoelectric conversion unit 23 When exposed to light, the photoelectric conversion unit 23 generates carriers such as electrons and holes.
  • the photoelectric conversion unit 23 has a light-receiving surface (not shown) and a back surface 23 a .
  • the back surface 23 a of the photoelectric conversion unit 23 has both a p-type surface and an n-type surface.
  • the photoelectric conversion unit 23 may include a crystalline semiconductor substrate, and a p-type semiconductor layer and an n-type semiconductor layer provided on the same main surface of the substrate.
  • the p-type surface is composed of the p-type semiconductor layer.
  • the n-type surface is composed of the n-type semiconductor layer.
  • a substantially intrinsic i-type semiconductor layer may be interposed between the substrate and both the p-type semiconductor layer and the n-type semiconductor layer at a thickness ranging from several ⁇ to 250 ⁇ which does not substantially contribute to the generation of electricity.
  • the photoelectric conversion unit 23 may be composed of a crystalline semiconductor substrate having both a p-type dopant diffusion region and an n-type dopant diffusion region provided on one main surface.
  • the crystalline semiconductor substrate can be composed of single-crystal silicon.
  • the p-type semiconductor layer can be composed of p-type amorphous silicon.
  • the n-type semiconductor layer can be composed of n-type amorphous silicon.
  • the i-type semiconductor layer can be composed of i-type amorphous silicon.
  • a first electrode 21 and a second electrode 22 are arranged on the back surface 23 a of the photoelectric conversion unit 23 .
  • Either the first electrode 21 or the second electrode 22 is a p-side electrode, and the other electrode is the n-side electrode.
  • the p-side electrode is connected electrically to the p-type surface and collects holes.
  • the n-side electrode is connected electrically to the n-type surface and collects electrons.
  • Both the first electrode 21 and the second electrode 22 extend from one end to the other end in the x-direction (one direction).
  • Both the first electrode 21 and the second electrode 22 have a comb shape. More specifically, the first electrode 21 has a plurality of finger portions 21 a and a first busbar portion 21 b.
  • the second electrode 22 has a plurality of second finger portions 22 a and a second busbar portion 22 b. Both the first finger portions 21 a and the second finger portions 22 a extend in the x-direction.
  • the first finger portions 21 a and the second finger portions 22 a are interdigitated in the y-direction, which is perpendicular to the x-direction.
  • the first finger portions 21 a are connected electrically to the first busbar portion 21 b.
  • the first busbar portion 21 b is arranged in the x1 side of the first finger portions 21 a in the x-direction.
  • the first busbar portion 21 b is arranged on the x1 end of the back surface 23 a in the x-direction.
  • the first busbar portion 21 b extends in the y-direction.
  • the second finger portions 22 a are connected electrically to the second busbar portion 22 b.
  • the second busbar portion 22 b is arranged on the x2 side of the second finger portions 22 a in the x-direction.
  • the second busbar portion 22 b is arranged on the x2 end of the back surface 23 a in the x-direction.
  • the second busbar portion 22 b extends in the y-direction.
  • the prepared solar cells 20 are connected electrically. More specifically, a solar cell string 25 with a plurality of solar cells 20 connected electrically via wiring members 30 is created by using a wiring member 30 to electrically connect the first electrode 21 of a solar cell 20 to the second electrode 22 of the adjacent solar cell 20 in the x-direction.
  • the solar cells 20 and the wiring members 30 are bonded by a resin adhesive layer 40 containing a cured resin adhesive.
  • the resin adhesive layer 40 may be composed of a cured resin adhesive or of a cured resin adhesive containing a conductive material.
  • the wiring 32 of the wiring member 30 and the first or second electrode 21 , 22 may be connected electrically via direct contact or may be connected electrically via indirect contact through the conductive material.
  • the wiring 32 and the first or second electrode 21 , 22 are preferably connected electrically via direct contact.
  • Each wiring member 30 has a slender shape extending in the y-direction. More specifically, the wiring member 30 has a rectangular shape extending longitudinally in the y-direction. As shown in FIG. 3 through FIG. 5 , the wiring member 30 has an insulating substrate 31 and wiring 32 .
  • the insulating substrate 31 can be made of a resin or a ceramic.
  • the insulating substrate 31 can be, for example, a flexible resin substrate.
  • “substrate” may refer to a flexible sheet or film.
  • the wiring 32 is arranged on the surface 31 a of the insulating substrate 31 on the solar cell 20 side.
  • the wiring 32 is arranged on the solar cell 20 side, and the insulating substrate 31 is arranged on the side opposite the solar cell 20 .
  • the wiring 32 has conductive properties and is used to electrically connect adjacent solar cells 20 in the x-direction.
  • the wiring 32 has a wiring main body 32 a and a plurality of first and second linear portions 32 b, 32 c.
  • the wiring main body 32 a has a slender shape. More specifically, the wiring main body 32 a is rectangular.
  • the central portion of the wiring main body 32 a extending in the x-direction of the insulating substrate 31 extends from one end of the insulating substrate 31 in the y-direction toward the other end, the y-direction being the direction in which the insulating substrate 31 extends.
  • Each of the first linear portions 32 b extends from the wiring main body 32 a in the x-direction towards the x1 end.
  • the first linear portions 32 b are arranged in the y-direction at a predetermined interval.
  • Each of the first linear portions 32 b is connected electrically to the wiring main body 32 a.
  • Each of the second linear portions 32 c extends from the wiring main body 32 a in the x-direction towards the x2 end.
  • the second linear portions 32 c are arranged in the y-direction at a predetermined interval.
  • Each of the second linear portions 32 c is connected electrically to the wiring main body 32 a.
  • a wiring member 30 is bonded using a resin adhesive to a region of one solar cell 20 other than the region in which the x2 end of the first electrode 21 is arranged (including at least the first busbar portion 21 b ) with at least some of the first linear portions 32 b positioned above the first finger portions 21 a of the one solar cell 20 .
  • the first linear portions 32 b of the wiring 32 of the wiring member 30 are connected electrically to the first finger portions 21 a of the one solar cell 20 .
  • the wiring member 30 is bonded to the region in which the first finger portions 21 a of the one solar cell 20 are provided.
  • the first busbar portion 21 b of the first electrode 21 is exposed from the resin adhesive layer 40 .
  • at least some of the first busbar portion 21 b of the first electrode 21 forms an unbonded region which is not bonded to the wiring member 30 by the resin adhesive layer 40 .
  • Some of the first finger portions 21 a may be excluded from the unbonded region.
  • the wiring member 30 is also bonded using a resin adhesive to a region of another solar cell 20 other than the region in which the x1 end of the second electrode 22 is arranged in the x-direction (including at least the second busbar portion 22 b ) with at least some of the second linear portions 32 c positioned above the second finger portions 22 a of the other solar cell 20 .
  • the second linear portions 32 c of the wiring 32 of the wiring member 30 are connected electrically to the second finger portions 22 a of the other solar cell 20 .
  • the wiring member 30 is bonded to the region in which the second finger portions 22 a of the other solar cell 20 are provided.
  • the second busbar portion 22 b of the second electrode 22 is exposed from the resin adhesive layer 40 .
  • at least some of the second busbar portion 22 b of the second electrode 22 forms an unbonded region which is not bonded to the wiring member 30 by the resin adhesive layer 40 .
  • Some of the second finger portions 22 a may be excluded from the unbonded region.
  • the first linear portions 32 b are not electrically connected directly to the busbar portion 21 b. However, in the present invention, the first linear portions may be electrically connected directly to the busbar portion instead of via finger portions.
  • the second linear portions 32 c are not electrically connected directly to the busbar portion 22 b. However, in the present invention, the second linear portions may be electrically connected directly to the busbar portion instead of via finger portions.
  • a defective solar cell means any solar cell that is scratched or damaged, or any solar cell whose semiconductor junctions have not been formed properly and which does not generate electricity when exposed to light.
  • defective solar cells include physically defective solar cells and electrically defective solar cells.
  • Defective solar cells can be detected by performing a visual inspection using a microscope, an inspection using the photoluminescence (PL) method in which fluorescent light is detected when light is incident on the light-receiving surface, and an inspection using the electroluminescence (EL) method in which fluorescent light is detected when voltage is applied.
  • PL photoluminescence
  • EL electroluminescence
  • solar cell 20 a because solar cell 20 a was found to be defective in the inspection process, solar cell 20 a has to be replaced. When no defective solar cells are found in the inspection process, none of the solar cells is replaced.
  • solar cell 20 a When solar cell 20 a is replaced, solar cell 20 a is first removed from the solar cell string 25 . More specifically, the solar cell 20 a found to be defective and the wiring members 30 a , 30 b bonded to the solar cells 20 b, 20 c adjacent to the solar cell 20 a are cut (disconnecting process).
  • the unbonded portion of wiring member 30 a not bonded to the solar cells 20 is cut along cut line L 1 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 b. Also, the unbonded portion of wiring member 30 b not bonded to the solar cells 20 is cut along cut line L 2 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 c. Afterwards, solar cell 20 a is removed from the solar cell string 25 .
  • wiring members 30 a and 30 b of the solar cells 20 b, 20 c are disconnected so as to expose the wiring members 30 a, 30 b from the disconnected ends 30 a 1 , 30 b 1 of the wiring members 30 a, 30 b in the unbonded portion not bonded to the wiring members 30 a, 30 b of the electrically connected electrodes. Even more specifically, the wiring members 30 a, 30 b are disconnected above the base portions of the finger portions 21 a, 22 a connected to the busbar portions 21 b, 22 b. As a result, the solar cells 20 b, 20 c remain bonded to the disconnected ends 30 a 1 , 30 b 1 of the wiring members 30 a, 30 b.
  • the disconnected ends 30 a 1 , 30 b 1 are bonded to the regions of the solar cells 20 b, 20 c in which the first or second finger portions 21 a, 22 a are provided.
  • the disconnected ends 30 a 1 , 30 b 1 are not arranged in a portion of the region in which at least the busbar portion 21 b, 22 b of the first or second electrode 21 , 22 are provided.
  • the new solar cell is a solar cell that was not included in the solar cell string inspected in the inspection process, and may be an unused solar cell or a solar cell that has been used before but is defect free.
  • the new solar cell 20 d is connected to solar cells 20 b and 20 c using new wiring members 34 a, 34 b. In this way, a new solar cell string 25 a is created.
  • wiring members 34 a and 34 b have an insulating substrate 35 and wiring 36 .
  • Wiring members 34 a and 34 b may have a configuration that is substantially the same as or different from wiring member 30 .
  • the new solar cell 20 d and new wiring member 34 a are bonded using a resin adhesive to electrically connect the second electrode 22 of the new solar cell 20 d to the wiring 36 of the wiring member 34 a.
  • the wiring member 34 a and the solar cell 20 d are bonded via a resin adhesive layer 41 .
  • the wiring member 34 a is bonded to solar cell 20 b using a resin adhesive in a region closer to the x2 end than the region in which the disconnected end 30 a 1 is bonded. More specifically, the wiring member 34 a is bonded using a resin adhesive to the region of the solar cell 20 b in which the first busbar portion 21 b is provided.
  • the wiring 36 of the wiring member 34 a is connected electrically to the first busbar portion 21 b of the solar cell 20 b.
  • the solar cell 20 b and the wiring member 34 a are bonded via a resin adhesive layer 42 . This process electrically connects the new solar cell 20 d to solar cell 20 b.
  • the new solar cell 20 d and solar cell 20 c are connected electrically using a new wiring member 34 b.
  • the first electrode 21 of the new solar cell 20 d is connected electrically to the wiring 36 of the wiring member 34 b.
  • the second busbar portion 22 b of the second electrode 22 of solar cell 20 c is also connected electrically to the wiring 36 of the new wiring member 34 b.
  • the reconnecting process is preferably performed in a way that does not bend the new wiring members 34 a, 34 b.
  • the solar cell string 25 a is sealed between first and second protecting members 12 , 11 using a bonding layer 13 . More specifically, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on the second protecting member 11 . The solar cell string 25 a is placed on top of this resin sheet, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on top of this, and the first protecting member 12 is placed on top of this. These can then be laminated in a reduced-pressure atmosphere to complete the solar module 1 .
  • the solar module 1 manufactured in this manner has a solar cell string 25 a sealed inside a bonding layer 13 between the first and second protecting members 12 , 11 .
  • the solar cell string 25 a has a plurality of solar cells 20 . These solar cells 20 are connected electrically via wiring members 30 , 34 a, 34 b.
  • the wiring members 30 , 34 a, 34 b and the solar cells 20 are bonded via resin adhesive layers 40 , 41 , 42 including a cured resin adhesive.
  • the disconnected ends 30 a 1 , 30 b 1 are bonded by the resin adhesive layer 40 to solar cells 20 b and 20 c among the solar cells 20 .
  • the disconnected ends 30 a 1 , 30 b 1 are positioned above the region in which the first and second finger portions 21 a, 22 a are provided.
  • the disconnected ends 30 a 1 , 30 b 1 are connected electrically to either the first or second finger portions 21 a, 22 a. More specifically, the disconnected ends 30 a 1 , 30 b 1 have an insulating substrate 31 and wiring 32 connected electrically to either the first or second finger portions 21 a , 22 a.
  • the disconnected ends 30 a 1 , 30 b 1 may be insulated or electrically connected to the wiring members 34 a, 34 b.
  • new wiring members 34 a, 34 b are bonded to a region closer to the end of the solar cells 20 b, 20 c than the region in which the disconnected ends 30 a 1 , 30 b 1 are bonded. Therefore, the new wiring members 34 a, 34 b do not straddle the disconnected ends 30 a 1 , 30 b 1 . This can suppress bending of the wiring members 34 a, 34 b. As a result, the wiring members 34 a, 34 b are less likely to break, and a solar module 1 with superior reliability can be manufactured.
  • the bonding material does not completely fill the portion near the bent portion of the wiring member. Because the wiring members 34 a, 34 b in the present embodiment are not bent, they are reliably filled by the bonding layer 13 . Air pockets are less likely to be formed in the bonding layer 13 , and a solar module 1 with superior weather resistance can be manufactured.
  • the reconnecting process is preferably performed so as not to bend the wiring members 34 a, 34 b.
  • FIG. 2 is referenced in the same manner as the first embodiment.
  • both the first and second electrodes 21 , 22 have busbar portions 21 b, 22 b.
  • both the first and second electrodes 21 , 22 are busbarless electrodes composed of finger portions 21 a, 22 a.
  • a wiring member 30 is bonded to one solar cell 20 of two adjacent solar cells 20 in the x direction in a region other than the region on the x2 end of the first finger portions 21 a in the x direction. In this way, the wiring member 30 is connected electrically to the first finger portions 21 a of the one solar cell 20 . Also, the wiring member 30 is bonded to the other solar cell 20 of the two adjacent solar cells 20 in the x direction in a region other than the region on the x1 end of the second finger portions 22 a in the x direction. In this way, the wiring member 30 is connected electrically to the second finger portions 22 a of the other solar cell 20 . This process creates a solar cell string 25 in which solar cells 20 have been connected electrically via a wiring member 30 .
  • the ends of the first and second finger portions 21 a, 22 a in the x-direction form an unbonded region that is not bonded to the wiring member 30 .
  • the disconnected ends 30 a 1 , 30 b 1 are bonded to a region of the solar cells 20 b, 20 c other than the region in which the ends of the finger portions 21 a, 22 a are provided in the x direction.
  • the wiring members 34 a, 34 b are connected electrically to either the first or second finger portions 21 a, 22 a of the solar cells 20 b, 20 c in a region closer to the end of the solar cells 20 b , 20 c in the x-direction than the region in which the disconnected ends 30 a 1 , 30 b 1 are bonded.
  • the wiring members 34 a, 34 b are connected to either the first or second finger portions 21 a, 22 a of the solar cells 20 b, 20 c.
  • the second embodiment can prevent the formation of bent portions in the wiring members 34 a, 34 b. Therefore, the wiring members 34 a , 34 b are less likely to break, and a solar module 1 with superior reliability can be manufactured. A solar module 1 with superior weather resistance can also be manufactured.
  • FIG. 1 through FIG. 5 are referenced in the same manner as the first embodiment.
  • the explanation of the first embodiment with reference to FIG. 1 through FIG. 5 also applies to the present embodiment.
  • a wiring member 30 is bonded using a resin adhesive to a portion outside of the end portion of the one adjacent solar cell 20 in the x direction, and the wiring member 30 is bonded using a resin adhesive to a portion outside of the end portion of the other adjacent solar cell 20 in the x direction.
  • the wiring members 30 are not bonded to the end portions of the solar cells 20 . In this way, an unbonded region that is not bonded to wiring members 30 is provided in the end portions of the solar cells 20 in the x-direction.
  • a defective solar cell means any solar cell that is scratched or damaged, or any solar cell whose semiconductor junctions have not been formed properly and which does not generate electricity when exposed to light.
  • defective solar cells include physically defective solar cells and electrically defective solar cells.
  • Defective solar cells can be detected by performing a visual inspection using a microscope, an inspection using the photoluminescence (PL) method in which fluorescent light is detected when light is incident on the light-receiving surface, and an inspection using the electroluminescence (EL) method in which fluorescent light is detected when voltage is applied.
  • PL photoluminescence
  • EL electroluminescence
  • solar cell 20 a because solar cell 20 a was found to be defective in the inspection process, solar cell 20 a has to be replaced. When no defective solar cells are found in the inspection process, none of the solar cells is replaced.
  • solar cell 20 a When solar cell 20 a is replaced, solar cell 20 a is first removed from the solar cell string 25 . More specifically, the solar cell 20 a found to be defective is severed from the wiring members 30 a, 30 b bonded to the solar cells 20 b, 20 c adjacent to the solar cell 20 a.
  • the unbonded portion of wiring member 30 a not bonded to the solar cells 20 is cut along cut line L 1 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 b. Also, the unbonded portion of wiring member 30 b not bonded to the solar cells 20 is cut along cut line L 2 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 c. Afterwards, solar cell 20 a is removed from the solar cell string 25 .
  • cut lines L 1 and L 2 There are no particular restrictions on the positions of cut lines L 1 and L 2 as long as they are positioned in a portion of the wiring members 30 a, 30 b not bonded to the solar cells 20 via the resin adhesive layer 40 .
  • the cut lines L 1 , L 2 may be above solar cells 20 b and 20 c, or between solar cell 20 a and solar cells 20 b and 20 c.
  • the new solar cell is a solar cell that was not included in the solar cell string inspected in the inspection process, and may be an unused solar cell or a solar cell that has been used before but is defect free.
  • the new solar cell 20 d is connected to solar cells 20 b and 20 c using new wiring members 34 a, 34 b. In this way, a new solar cell string 25 a is created.
  • wiring members 34 a and 34 b have an insulating substrate 35 and wiring 36 .
  • Wiring members 34 a and 34 b may have a configuration that is substantially the same as or different from the wiring member 30 .
  • the new solar cell 20 d and the new wiring members 34 a, 34 b are bonded using a resin adhesive to electrically connect the first electrode 21 or the second electrode 22 of the new solar cell 20 d to the wiring 36 of the wiring members 34 a, 34 b.
  • the wiring members 34 a, 34 b and the solar cell 20 d are bonded by a resin adhesive layer 41 .
  • the new wiring members 34 a, 34 b are bonded using a resin adhesive to a portion of the new solar cell 20 d other than the end portions in the x-direction.
  • the wiring members 34 a, 34 b are not bonded to the end portions of the solar cell 20 d.
  • a region not bonded to the wiring members 34 a, 34 b are provided in the end portions of the solar cell 20 d in the x-direction.
  • the wiring members 34 a, 34 b are not bonded to the end portions of the solar cell 20 d in the regions where the first and second electrodes 21 , 22 are provided. In this way, regions that are not bonded to the wiring members 34 a, 34 b are provided in the end portions of the solar cell 20 d where the first and second electrodes 21 , 22 are provided.
  • the new wiring members 34 a, 34 b are provided so as to straddle the disconnected ends 30 a 1 , 30 b 1 in the x-direction, are bonded using a resin adhesive to the solar cells 20 b, 20 c in a region closer to the center than the region in which a disconnected end 30 a 1 , 30 b 1 is provided.
  • the wiring members 34 a, 34 b are connected electrically to the either the first or second electrodes 21 , 22 of the solar cells 20 b, 20 c.
  • the wiring members 34 a , 34 b are bonded via a resin adhesive layer 42 to a region of the solar cells 20 b, 20 c in a region other than the end portions in the x-direction.
  • the solar cell string 25 a is sealed between first and second protecting members 12 , 11 using a bonding layer 13 . More specifically, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on the second protecting member 11 . The solar cell string 25 a is placed on top of this resin sheet, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on top of this, and the first protecting member 12 is placed on top of this. These can then be laminated in a reduced-pressure atmosphere to complete the solar module 1 .
  • the solar module 1 manufactured in this manner has a solar cell string 25 a sealed inside a bonding layer 13 between the first and second protecting members 12 , 11 .
  • the solar cell string 25 a has a plurality of solar cells 20 . These solar cells 20 are connected electrically via wiring members 30 , 34 a, 34 b.
  • the wiring members 30 , 34 a, 34 b and the solar cells 20 are bonded via resin adhesive layers 40 , 41 , 42 containing a cured resin adhesive.
  • Each of the wiring members 30 , 34 a, 34 b is not bonded to the end portions of the solar cells 20 in the x-direction.
  • the disconnected ends 30 a 1 , 30 b 1 of wiring members 30 a and 30 b are bonded via a resin adhesive layer 40 on solar cells 20 b, 20 b among the solar cells 20 .
  • the wiring members 34 a, 34 b are arranged so as to straddle the disconnected ends 30 a 1 , 30 b 1 in the x-direction.
  • the wiring members 34 a, 34 b are bonded to the solar cells 20 b, 20 c via a resin adhesive layer 42 closer to the center in the x-direction than the disconnected ends 30 a 1 , 30 b 1 .
  • the wiring members 34 a, 34 b are bonded to a portion of the solar cells 20 b, 20 c other than the end portions in the x-direction.
  • a wiring member 30 is bonded using a resin adhesive to a portion outside of the x1 end portion of the one adjacent solar cell 20 in the x direction, and the wiring member 30 is bonded using a resin adhesive to a portion outside of the x2 end portion of the other adjacent solar cell 20 in the x direction.
  • the resin adhesive is heated and cured with the resin adhesive interposed between the solar cell 20 and the wiring member 30 and with pressure applied in a direction bringing the solar cell 20 and the wiring member 30 closer to each other.
  • pressure does not have to be applied to the end portion of the solar cell 20 when the solar cell 20 and the wiring member 30 are bonded using a resin adhesive. Therefore, cracking is less likely to occur in the solar cells 20 during the solar cell string manufacturing process.
  • the new wiring members 34 a, 34 b are bonded using a resin adhesive to a region of the solar cells 20 b, 20 c closer to the center than the region in which the disconnected ends 30 a 1 , 30 b 1 are bonded. More specifically, the resin adhesive is heated and cured with the resin adhesive interposed between the solar cells 20 b, 20 c and the wiring members 34 a, 34 b and with pressure applied in a direction bringing the solar cells 20 b, 20 c and the wiring members 34 a, 34 b closer together.
  • a solar module 1 can be manufactured more efficiently and at a higher yield rate.
  • the new wiring members 34 a, 34 b are bonded using a resin adhesive to a portion of the new solar cell 20 d other than an end portion in the x-direction. More specifically, the resin adhesive is heated and cured with the resin adhesive interposed between the solar cell 20 d and the wiring members 34 a, 34 b and with pressure applied in a direction bringing the solar cell 20 d and the wiring members 34 a, 34 b closer together. As a result, pressure does not have to be applied to the end portion of the solar cell 20 d when the solar cells 20 d and the wiring members 34 a, 34 b are bonded using a resin adhesive. Therefore, cracking is less likely to occur in the solar cell 20 d during the reconnecting process. In this way, a solar module 1 can be manufactured more efficiently and at a higher yield rate.
  • both the first and second electrodes 21 , 22 have a busbar portion 21 b, 22 b.
  • the present invention is not limited to this configuration.
  • both the first electrode 21 and the second electrode 22 are busbarless electrodes composed of a plurality of finger portions 21 a, 22 a.
  • the unbonded portions of the wiring members 30 a not bonded to a solar cell 20 were cut to remove the solar cell 20 a.
  • the wiring member 30 a may be removed from the solar cell 20 b so as to leave the resin adhesive layer 40 on the solar cell 20 b.
  • the new wiring member 34 a is bonded using a resin adhesive to the new solar cell 20 d so as to straddle the resin adhesive layer 40 remaining on the solar cell 20 b.
  • the new wiring member 34 a is bonded using a resin adhesive to the solar cell 20 b in a region closer to the center than the resin adhesive layer 40 remaining on the solar cell.

Landscapes

  • Photovoltaic Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

A method is provided which is suitable for manufacturing a solar module. When a defective solar cell (20 a) is discovered in a solar cell string (25), a disconnecting step is performed to disconnect the wiring members (30a, 30 b) bonded to the defective solar cell (20 a) and to the solar cells (20b, 20 c) adjacent to the defective solar cell (20 a), and to remove the defective solar cell (20 a) from the solar cell string (25). A reconnecting step is then performed to electrically connect the solar cells (20b, 20 c) that were adjacent to the defective solar cell (20 a) to a new solar cell (20 d) by using new wiring members (34a, 34 b), bonding each new wiring member (34a, 34 b) using a resin adhesive to a region closer to the end than the region in which the disconnected end (30 a 1, 30 b 1) of the wiring member of the solar cell (20b, 20 c) adjacent to the defective solar cell (20 a) had been bonded in order to create a new solar cell string (25 a).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation of International Application PCT/JP2012/062140, with an international filing date of May 11, 2011, filed by applicant, the disclosure of which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a method for manufacturing a solar module.
  • BACKGROUND
  • Interest in solar modules has increased in recent years as an energy source with a low environmental impact. Solar modules are usually provided with a solar cell string having a plurality of solar cells connected electrically by a wiring member.
  • Solar cells constituting a solar cell string are sometimes damaged when a solar module is manufactured. Patent Document 1 describes the use of damage-free solar cells in a solar cell string made possible by removing any damaged solar cell from the solar cell string and replacing the damaged solar cell with a new solar cell. In Patent Document 1, the solder bonding the solar cell to the wiring member is heated and melted to peel the wiring member from the solar cell.
  • PRIOR ART DOCUMENTS Patent Documents
  • Patent Document 1: Laid-Open Patent Publication No. 2011-134765
  • SUMMARY Problem Solved by the Invention
  • However, when the wiring member is bonded to the solar cell using a resin adhesive, it is difficult to reliably remove the resin adhesive using heat. As a result, the method described in Patent Document 1 cannot be used when wiring members and solar cells are bonded to each other using a resin adhesive.
  • It is an object of the present invention to provide a manufacturing method suitable for solar modules.
  • Means of Solving the Problem
  • A first aspect of the present invention is a method for manufacturing a solar module comprising the steps of: preparing a plurality of solar cells having a first electrode and a second electrode on the same main surface and arranged so each first electrode and second electrode extends from one end to the other end in one direction; creating a solar cell string in which a plurality of solar cells are connected electrically by using a resin adhesive to connect a wiring member to a region outside of the end portion of the first electrode of one solar cell in the one direction in order to electrically connect the wiring member to the first electrode of the one solar cell, while using a resin adhesive to connect the wiring member to a region outside of the end portion of the second electrode of another solar cell in the one direction in order to electrically connect the wiring member to the second electrode of the other solar cell; inspecting the solar cell string for the presence of any defective solar cell, and cutting the wiring members bonding a defective solar cell to the solar cells adjacent to the defective solar cell and removing the defective solar cell from the solar cell string when a defective solar cell has been discovered; and electrically connecting the solar cells adjacent to the defective solar cell to a new solar cell using new wiring members to create a new solar cell string, each new wiring member being bonded using a resin adhesive to a region closer to the end than the region in which the disconnected end of the wiring member of the solar cell adjacent to the defective solar cell had been bonded.
  • A second aspect of the present invention is a method for manufacturing a solar module comprising the steps of: preparing a plurality of solar cells having a first electrode and a second electrode on the same main surface and arranged so each first electrode and second electrode extends from one end to the other end in one direction; creating a solar cell string in which a plurality of solar cells are connected electrically by using a resin adhesive to connect a wiring member to a region outside of the end portion of the first electrode of one solar cell in the one direction in order to electrically connect the wiring member to the first electrode of the one solar cell, while using a resin adhesive to connect the wiring member to a region outside of the end portion of the second electrode of another solar cell in the one direction in order to electrically connect the wiring member to the second electrode of the other solar cell; inspecting the solar cell string for the presence of any defective solar cell, and cutting the wiring members bonding a defective solar cell to the solar cells adjacent to the defective solar cell and removing the defective solar cell from the solar cell string when a defective solar cell has been discovered; and electrically connecting the solar cells adjacent to the defective solar cell to a new solar cell using new wiring members to create a new solar cell string, each new wiring member being bonded using a resin adhesive so as to straddle the disconnected end of the wiring member of the solar cell adjacent to the defective solar cell.
  • A third aspect of the present invention is a method for manufacturing a solar module comprising the steps of: preparing a plurality of solar cells having a first electrode and a second electrode on the same main surface and arranged so each first electrode and second electrode extends from one end to the other end in one direction; creating a solar cell string in which a plurality of solar cells are connected electrically by using a resin adhesive to connect a wiring member to a region outside of the end portion of the first electrode of one solar cell in the one direction in order to electrically connect the wiring member to the first electrode of the one solar cell, while using a resin adhesive to connect the wiring member to a region outside of the end portion of the second electrode of another solar cell in the one direction in order to electrically connect the wiring member to the second electrode of the other solar cell; inspecting the solar cell string for the presence of any defective solar cell, and cutting the wiring members bonding a defective solar cell to the solar cells adjacent to the defective solar cell and removing the defective solar cell from the solar cell string when a defective solar cell has been discovered; and electrically connecting the solar cells adjacent to the defective solar cell to a new solar cell using new wiring members to create a new solar cell string, each new wiring member being bonded using a resin adhesive so as to straddle the resin adhesive of the solar cell adjacent to the defective solar cell.
  • Effect of the Invention
  • The present invention is able to provide a manufacturing method suitable for solar modules.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified back view of a solar cell in the first embodiment.
  • FIG. 2 is a simplified side view of a solar cell string in the first embodiment.
  • FIG. 3 is a simplified plan view of section III in FIG. 2. In FIG. 3, the region in which a resin adhesive layer is provided is cross-hatched. The cross-hatched region is not shown in cross-section.
  • FIG. 4 is a simplified cross-sectional view from line IV-IV in FIG. 3.
  • FIG. 5 is a simplified back view of a wiring member in the first embodiment.
  • FIG. 6 is a simplified side view used to explain the solar module manufacturing process in the first embodiment.
  • FIG. 7 is a simplified cross-sectional view used to explain the solar module manufacturing process in the first embodiment.
  • FIG. 8 is a simplified cross-sectional view of the solar module in the first embodiment.
  • FIG. 9 is a simplified back view of a solar cell in the second embodiment.
  • FIG. 10 is a simplified partial side view of a solar cell string in the second embodiment. In FIG. 10, the region in which a resin adhesive layer is provided is cross-hatched. The cross-hatched region is not shown in cross-section.
  • FIG. 11 is a simplified cross-sectional view from line XI-XI in FIG. 10.
  • FIG. 12 is a simplified cross-sectional view used to explain the solar module manufacturing process in the second embodiment.
  • FIG. 13 is a simplified side view used to explain the solar module manufacturing process in the third embodiment.
  • FIG. 14 is a simplified cross-sectional view used to explain the solar module manufacturing process in the third embodiment.
  • FIG. 15 is a simplified cross-sectional view of the solar module in the third embodiment.
  • DETAILED DESCRIPTION
  • The following is an explanation of examples of preferred embodiments of the present invention. The following embodiments are merely examples. The present invention is not limited by the following embodiments in any way.
  • Further, in each of the drawings referenced in the embodiments, members having substantially the same function are denoted by the same symbols. The drawings referenced in the embodiments are also depicted schematically. The dimensional ratios of the objects depicted in the drawings may differ from those of the actual objects. The dimensional ratios of objects may also vary between drawings. The specific dimensional ratios of the objects should be determined with reference to the following explanation.
  • 1st Embodiment Manufacturing Method for Solar Module 1
  • The following is an explanation of an example of a manufacturing method for the solar module shown in FIG. 8 with reference to FIG. 1 through FIG. 8.
  • Process for Preparing Solar Cells 20
  • First, several of the solar cells 20 shown in FIG. 1 are prepared. In the present embodiment, the solar cells 20 are back contact solar cells.
  • Each solar cell 20 has a photoelectric conversion unit 23. When exposed to light, the photoelectric conversion unit 23 generates carriers such as electrons and holes. The photoelectric conversion unit 23 has a light-receiving surface (not shown) and a back surface 23 a. The back surface 23 a of the photoelectric conversion unit 23 has both a p-type surface and an n-type surface.
  • The photoelectric conversion unit 23 may include a crystalline semiconductor substrate, and a p-type semiconductor layer and an n-type semiconductor layer provided on the same main surface of the substrate. In this case, the p-type surface is composed of the p-type semiconductor layer. The n-type surface is composed of the n-type semiconductor layer. A substantially intrinsic i-type semiconductor layer may be interposed between the substrate and both the p-type semiconductor layer and the n-type semiconductor layer at a thickness ranging from several Å to 250 Å which does not substantially contribute to the generation of electricity.
  • The photoelectric conversion unit 23 may be composed of a crystalline semiconductor substrate having both a p-type dopant diffusion region and an n-type dopant diffusion region provided on one main surface.
  • The crystalline semiconductor substrate can be composed of single-crystal silicon. The p-type semiconductor layer can be composed of p-type amorphous silicon. The n-type semiconductor layer can be composed of n-type amorphous silicon. The i-type semiconductor layer can be composed of i-type amorphous silicon.
  • A first electrode 21 and a second electrode 22 are arranged on the back surface 23 a of the photoelectric conversion unit 23. Either the first electrode 21 or the second electrode 22 is a p-side electrode, and the other electrode is the n-side electrode. The p-side electrode is connected electrically to the p-type surface and collects holes. The n-side electrode is connected electrically to the n-type surface and collects electrons.
  • Both the first electrode 21 and the second electrode 22 extend from one end to the other end in the x-direction (one direction).
  • Both the first electrode 21 and the second electrode 22 have a comb shape. More specifically, the first electrode 21 has a plurality of finger portions 21 a and a first busbar portion 21 b. The second electrode 22 has a plurality of second finger portions 22 a and a second busbar portion 22 b. Both the first finger portions 21 a and the second finger portions 22 a extend in the x-direction. The first finger portions 21 a and the second finger portions 22 a are interdigitated in the y-direction, which is perpendicular to the x-direction.
  • The first finger portions 21 a are connected electrically to the first busbar portion 21 b. The first busbar portion 21 b is arranged in the x1 side of the first finger portions 21 a in the x-direction. The first busbar portion 21 b is arranged on the x1 end of the back surface 23 a in the x-direction. The first busbar portion 21 b extends in the y-direction.
  • The second finger portions 22 a are connected electrically to the second busbar portion 22 b. The second busbar portion 22 b is arranged on the x2 side of the second finger portions 22 a in the x-direction. The second busbar portion 22 b is arranged on the x2 end of the back surface 23 a in the x-direction. The second busbar portion 22 b extends in the y-direction.
  • Process for Creation of Solar Cell String
  • Next, the prepared solar cells 20 are connected electrically. More specifically, a solar cell string 25 with a plurality of solar cells 20 connected electrically via wiring members 30 is created by using a wiring member 30 to electrically connect the first electrode 21 of a solar cell 20 to the second electrode 22 of the adjacent solar cell 20 in the x-direction. The solar cells 20 and the wiring members 30 are bonded by a resin adhesive layer 40 containing a cured resin adhesive.
  • The resin adhesive layer 40 may be composed of a cured resin adhesive or of a cured resin adhesive containing a conductive material. In this case, the wiring 32 of the wiring member 30 and the first or second electrode 21, 22 may be connected electrically via direct contact or may be connected electrically via indirect contact through the conductive material. When the resin adhesive layer 40 does not contain a conductive material, the wiring 32 and the first or second electrode 21, 22 are preferably connected electrically via direct contact.
  • Each wiring member 30 has a slender shape extending in the y-direction. More specifically, the wiring member 30 has a rectangular shape extending longitudinally in the y-direction. As shown in FIG. 3 through FIG. 5, the wiring member 30 has an insulating substrate 31 and wiring 32. The insulating substrate 31 can be made of a resin or a ceramic. The insulating substrate 31 can be, for example, a flexible resin substrate. In the present invention, “substrate” may refer to a flexible sheet or film.
  • The wiring 32 is arranged on the surface 31 a of the insulating substrate 31 on the solar cell 20 side. The wiring 32 is arranged on the solar cell 20 side, and the insulating substrate 31 is arranged on the side opposite the solar cell 20. The wiring 32 has conductive properties and is used to electrically connect adjacent solar cells 20 in the x-direction.
  • The wiring 32 has a wiring main body 32 a and a plurality of first and second linear portions 32 b, 32 c. The wiring main body 32 a has a slender shape. More specifically, the wiring main body 32 a is rectangular. The central portion of the wiring main body 32 a extending in the x-direction of the insulating substrate 31 extends from one end of the insulating substrate 31 in the y-direction toward the other end, the y-direction being the direction in which the insulating substrate 31 extends.
  • Each of the first linear portions 32 b extends from the wiring main body 32 a in the x-direction towards the x1 end. The first linear portions 32 b are arranged in the y-direction at a predetermined interval. Each of the first linear portions 32 b is connected electrically to the wiring main body 32 a.
  • Each of the second linear portions 32 c extends from the wiring main body 32 a in the x-direction towards the x2 end. The second linear portions 32 c are arranged in the y-direction at a predetermined interval. Each of the second linear portions 32 c is connected electrically to the wiring main body 32 a.
  • In the solar cell string creating step, a wiring member 30 is bonded using a resin adhesive to a region of one solar cell 20 other than the region in which the x2 end of the first electrode 21 is arranged (including at least the first busbar portion 21 b) with at least some of the first linear portions 32 b positioned above the first finger portions 21 a of the one solar cell 20. In this way, the first linear portions 32 b of the wiring 32 of the wiring member 30 are connected electrically to the first finger portions 21 a of the one solar cell 20. More specifically, in the present embodiment, the wiring member 30 is bonded to the region in which the first finger portions 21 a of the one solar cell 20 are provided. As a result, at least some of the first busbar portion 21 b of the first electrode 21 is exposed from the resin adhesive layer 40. In other words, at least some of the first busbar portion 21 b of the first electrode 21 forms an unbonded region which is not bonded to the wiring member 30 by the resin adhesive layer 40. Some of the first finger portions 21 a may be excluded from the unbonded region.
  • In the solar cell string creating step, the wiring member 30 is also bonded using a resin adhesive to a region of another solar cell 20 other than the region in which the x1 end of the second electrode 22 is arranged in the x-direction (including at least the second busbar portion 22 b) with at least some of the second linear portions 32 c positioned above the second finger portions 22 a of the other solar cell 20. In this way, the second linear portions 32 c of the wiring 32 of the wiring member 30 are connected electrically to the second finger portions 22 a of the other solar cell 20. More specifically, in the present embodiment, the wiring member 30 is bonded to the region in which the second finger portions 22 a of the other solar cell 20 are provided. As a result, at least some of the second busbar portion 22 b of the second electrode 22 is exposed from the resin adhesive layer 40. In other words, at least some of the second busbar portion 22 b of the second electrode 22 forms an unbonded region which is not bonded to the wiring member 30 by the resin adhesive layer 40. Some of the second finger portions 22 a may be excluded from the unbonded region.
  • In the present embodiment, the first linear portions 32 b are not electrically connected directly to the busbar portion 21 b. However, in the present invention, the first linear portions may be electrically connected directly to the busbar portion instead of via finger portions. In the present embodiment, the second linear portions 32 c are not electrically connected directly to the busbar portion 22 b. However, in the present invention, the second linear portions may be electrically connected directly to the busbar portion instead of via finger portions.
  • Disconnecting Process
  • Next, the solar cell string 25 is inspected for the presence of any defective solar cell (inspection process). Here, a defective solar cell means any solar cell that is scratched or damaged, or any solar cell whose semiconductor junctions have not been formed properly and which does not generate electricity when exposed to light. In other words, defective solar cells include physically defective solar cells and electrically defective solar cells.
  • There are no particular restrictions on the inspection process. Defective solar cells can be detected by performing a visual inspection using a microscope, an inspection using the photoluminescence (PL) method in which fluorescent light is detected when light is incident on the light-receiving surface, and an inspection using the electroluminescence (EL) method in which fluorescent light is detected when voltage is applied.
  • In the explanation of the present embodiment, only solar cell 20 a in FIG. 2 is found to be defective among the solar cells 20 of the solar cell string 25.
  • In the present embodiment, because solar cell 20 a was found to be defective in the inspection process, solar cell 20 a has to be replaced. When no defective solar cells are found in the inspection process, none of the solar cells is replaced.
  • When solar cell 20 a is replaced, solar cell 20 a is first removed from the solar cell string 25. More specifically, the solar cell 20 a found to be defective and the wiring members 30 a, 30 b bonded to the solar cells 20 b, 20 c adjacent to the solar cell 20 a are cut (disconnecting process).
  • More specifically, the unbonded portion of wiring member 30 a not bonded to the solar cells 20 is cut along cut line L1 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 b. Also, the unbonded portion of wiring member 30 b not bonded to the solar cells 20 is cut along cut line L2 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 c. Afterwards, solar cell 20 a is removed from the solar cell string 25.
  • Even more specifically, wiring members 30 a and 30 b of the solar cells 20 b, 20 c are disconnected so as to expose the wiring members 30 a, 30 b from the disconnected ends 30 a 1, 30 b 1 of the wiring members 30 a, 30 b in the unbonded portion not bonded to the wiring members 30 a, 30 b of the electrically connected electrodes. Even more specifically, the wiring members 30 a, 30 b are disconnected above the base portions of the finger portions 21 a, 22 a connected to the busbar portions 21 b, 22 b. As a result, the solar cells 20 b, 20 c remain bonded to the disconnected ends 30 a 1, 30 b 1 of the wiring members 30 a, 30 b. The disconnected ends 30 a 1, 30 b 1 are bonded to the regions of the solar cells 20 b, 20 c in which the first or second finger portions 21 a, 22 a are provided. The disconnected ends 30 a 1, 30 b 1 are not arranged in a portion of the region in which at least the busbar portion 21 b, 22 b of the first or second electrode 21, 22 are provided.
  • Reconnecting Process
  • Next, a new solar cell 20 d is prepared. Here, the new solar cell is a solar cell that was not included in the solar cell string inspected in the inspection process, and may be an unused solar cell or a solar cell that has been used before but is defect free.
  • Next, the new solar cell 20 d is connected to solar cells 20 b and 20 c using new wiring members 34 a, 34 b. In this way, a new solar cell string 25 a is created.
  • As in the case of wiring member 30, wiring members 34 a and 34 b have an insulating substrate 35 and wiring 36. Wiring members 34 a and 34 b may have a configuration that is substantially the same as or different from wiring member 30.
  • More specifically, the new solar cell 20 d and new wiring member 34 a are bonded using a resin adhesive to electrically connect the second electrode 22 of the new solar cell 20 d to the wiring 36 of the wiring member 34 a. In this way, the wiring member 34 a and the solar cell 20 d are bonded via a resin adhesive layer 41. Also, the wiring member 34 a is bonded to solar cell 20 b using a resin adhesive in a region closer to the x2 end than the region in which the disconnected end 30 a 1 is bonded. More specifically, the wiring member 34 a is bonded using a resin adhesive to the region of the solar cell 20 b in which the first busbar portion 21 b is provided. In this way, the wiring 36 of the wiring member 34 a is connected electrically to the first busbar portion 21 b of the solar cell 20 b. The solar cell 20 b and the wiring member 34 a are bonded via a resin adhesive layer 42. This process electrically connects the new solar cell 20 d to solar cell 20 b.
  • Similarly, the new solar cell 20 d and solar cell 20 c are connected electrically using a new wiring member 34 b. The first electrode 21 of the new solar cell 20 d is connected electrically to the wiring 36 of the wiring member 34 b. The second busbar portion 22 b of the second electrode 22 of solar cell 20 c is also connected electrically to the wiring 36 of the new wiring member 34 b.
  • In this way, a new solar cell string 25 a including the new solar cell 20 d is created.
  • The reconnecting process is preferably performed in a way that does not bend the new wiring members 34 a, 34 b.
  • Lamination Process
  • Next, as shown in FIG. 8, the solar cell string 25 a is sealed between first and second protecting members 12, 11 using a bonding layer 13. More specifically, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on the second protecting member 11. The solar cell string 25 a is placed on top of this resin sheet, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on top of this, and the first protecting member 12 is placed on top of this. These can then be laminated in a reduced-pressure atmosphere to complete the solar module 1.
  • Configuration of Solar Module 1
  • The solar module 1 manufactured in this manner has a solar cell string 25 a sealed inside a bonding layer 13 between the first and second protecting members 12, 11. The solar cell string 25 a has a plurality of solar cells 20. These solar cells 20 are connected electrically via wiring members 30, 34 a, 34 b. The wiring members 30, 34 a, 34 b and the solar cells 20 are bonded via resin adhesive layers 40, 41, 42 including a cured resin adhesive.
  • The disconnected ends 30 a 1, 30 b 1 are bonded by the resin adhesive layer 40 to solar cells 20 b and 20 c among the solar cells 20. The disconnected ends 30 a 1, 30 b 1 are positioned above the region in which the first and second finger portions 21 a, 22 a are provided. The disconnected ends 30 a 1, 30 b 1 are connected electrically to either the first or second finger portions 21 a, 22 a. More specifically, the disconnected ends 30 a 1, 30 b 1 have an insulating substrate 31 and wiring 32 connected electrically to either the first or second finger portions 21 a, 22 a. The disconnected ends 30 a 1, 30 b 1 may be insulated or electrically connected to the wiring members 34 a, 34 b.
  • In the explanation of the present embodiment, new wiring members 34 a, 34 b are bonded to a region closer to the end of the solar cells 20 b, 20 c than the region in which the disconnected ends 30 a 1, 30 b 1 are bonded. Therefore, the new wiring members 34 a, 34 b do not straddle the disconnected ends 30 a 1, 30 b 1. This can suppress bending of the wiring members 34 a, 34 b. As a result, the wiring members 34 a, 34 b are less likely to break, and a solar module 1 with superior reliability can be manufactured. When a wiring member becomes bent, the bonding material does not completely fill the portion near the bent portion of the wiring member. Because the wiring members 34 a, 34 b in the present embodiment are not bent, they are reliably filled by the bonding layer 13. Air pockets are less likely to be formed in the bonding layer 13, and a solar module 1 with superior weather resistance can be manufactured.
  • From the standpoint of greater reliability and weather resistance, the reconnecting process is preferably performed so as not to bend the wiring members 34 a, 34 b.
  • The following is an explanation of another example of a preferred embodiment of the present invention. In the following explanation, any member having a function substantially identical to a member of the first embodiment is referenced by the same reference symbol and further explanation of the member is omitted. In the second embodiment, FIG. 2, FIG. 5 and FIG. 6 are referenced in the same manner as the first embodiment.
  • 2nd Embodiment
  • In the explanation of the example of the first embodiment, both the first and second electrodes 21, 22 have busbar portions 21 b, 22 b. However, in the example of the second embodiment, as shown in FIG. 9, both the first and second electrodes 21, 22 are busbarless electrodes composed of finger portions 21 a, 22 a.
  • In the second embodiment, during the solar cell string manufacturing process, as shown in FIG. 10 and FIG. 11, a wiring member 30 is bonded to one solar cell 20 of two adjacent solar cells 20 in the x direction in a region other than the region on the x2 end of the first finger portions 21 a in the x direction. In this way, the wiring member 30 is connected electrically to the first finger portions 21 a of the one solar cell 20. Also, the wiring member 30 is bonded to the other solar cell 20 of the two adjacent solar cells 20 in the x direction in a region other than the region on the x1 end of the second finger portions 22 a in the x direction. In this way, the wiring member 30 is connected electrically to the second finger portions 22 a of the other solar cell 20. This process creates a solar cell string 25 in which solar cells 20 have been connected electrically via a wiring member 30.
  • In other words, in the present embodiment, during the solar cell string manufacturing process, the ends of the first and second finger portions 21 a, 22 a in the x-direction form an unbonded region that is not bonded to the wiring member 30. As a result, the disconnected ends 30 a 1, 30 b 1 are bonded to a region of the solar cells 20 b, 20 c other than the region in which the ends of the finger portions 21 a, 22 a are provided in the x direction.
  • In the present embodiment, during the reconnecting process, as shown in FIG. 12, the wiring members 34 a, 34 b are connected electrically to either the first or second finger portions 21 a, 22 a of the solar cells 20 b, 20 c in a region closer to the end of the solar cells 20 b, 20 c in the x-direction than the region in which the disconnected ends 30 a 1, 30 b 1 are bonded. In this way, the wiring members 34 a, 34 b are connected to either the first or second finger portions 21 a, 22 a of the solar cells 20 b, 20 c.
  • As in the case of the first embodiment, the second embodiment can prevent the formation of bent portions in the wiring members 34 a, 34 b. Therefore, the wiring members 34 a, 34 b are less likely to break, and a solar module 1 with superior reliability can be manufactured. A solar module 1 with superior weather resistance can also be manufactured.
  • 3rd Embodiment
  • In the present embodiment, FIG. 1 through FIG. 5 are referenced in the same manner as the first embodiment. The explanation of the first embodiment with reference to FIG. 1 through FIG. 5 also applies to the present embodiment.
  • During the solar cell string manufacturing process, a wiring member 30 is bonded using a resin adhesive to a portion outside of the end portion of the one adjacent solar cell 20 in the x direction, and the wiring member 30 is bonded using a resin adhesive to a portion outside of the end portion of the other adjacent solar cell 20 in the x direction. In other words, the wiring members 30 are not bonded to the end portions of the solar cells 20. In this way, an unbonded region that is not bonded to wiring members 30 is provided in the end portions of the solar cells 20 in the x-direction.
  • Disconnecting Process
  • Next, the solar cell string 25 is inspected for the presence of any defective solar cell (inspection process). Here, a defective solar cell means any solar cell that is scratched or damaged, or any solar cell whose semiconductor junctions have not been formed properly and which does not generate electricity when exposed to light. In other words, defective solar cells include physically defective solar cells and electrically defective solar cells.
  • There are no particular restrictions on the inspection process. Defective solar cells can be detected by performing a visual inspection using a microscope, an inspection using the photoluminescence (PL) method in which fluorescent light is detected when light is incident on the light-receiving surface, and an inspection using the electroluminescence (EL) method in which fluorescent light is detected when voltage is applied.
  • In the explanation of the present embodiment, only solar cell 20 a in FIG. 2 is found to be defective among the solar cells 20 of the solar cell string 25.
  • In the present embodiment, because solar cell 20 a was found to be defective in the inspection process, solar cell 20 a has to be replaced. When no defective solar cells are found in the inspection process, none of the solar cells is replaced.
  • When solar cell 20 a is replaced, solar cell 20 a is first removed from the solar cell string 25. More specifically, the solar cell 20 a found to be defective is severed from the wiring members 30 a, 30 b bonded to the solar cells 20 b, 20 c adjacent to the solar cell 20 a.
  • More specifically, the unbonded portion of wiring member 30 a not bonded to the solar cells 20 is cut along cut line L1 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 b. Also, the unbonded portion of wiring member 30 b not bonded to the solar cells 20 is cut along cut line L2 between the portion bonded to solar cell 20 a and the portion bonded to solar cell 20 c. Afterwards, solar cell 20 a is removed from the solar cell string 25.
  • There are no particular restrictions on the positions of cut lines L1 and L2 as long as they are positioned in a portion of the wiring members 30 a, 30 b not bonded to the solar cells 20 via the resin adhesive layer 40. The cut lines L1, L2 may be above solar cells 20 b and 20 c, or between solar cell 20 a and solar cells 20 b and 20 c.
  • Reconnecting Process
  • Next, a new solar cell 20 d is prepared. Here, the new solar cell is a solar cell that was not included in the solar cell string inspected in the inspection process, and may be an unused solar cell or a solar cell that has been used before but is defect free.
  • Next, the new solar cell 20 d is connected to solar cells 20 b and 20 c using new wiring members 34 a, 34 b. In this way, a new solar cell string 25 a is created.
  • As in the case of the wiring member 30, wiring members 34 a and 34 b have an insulating substrate 35 and wiring 36. Wiring members 34 a and 34 b may have a configuration that is substantially the same as or different from the wiring member 30.
  • More specifically, the new solar cell 20 d and the new wiring members 34 a, 34 b are bonded using a resin adhesive to electrically connect the first electrode 21 or the second electrode 22 of the new solar cell 20 d to the wiring 36 of the wiring members 34 a, 34 b. As a result, the wiring members 34 a, 34 b and the solar cell 20 d are bonded by a resin adhesive layer 41.
  • Even more specifically, the new wiring members 34 a, 34 b are bonded using a resin adhesive to a portion of the new solar cell 20 d other than the end portions in the x-direction. In other words, the wiring members 34 a, 34 b are not bonded to the end portions of the solar cell 20 d. In this way, a region not bonded to the wiring members 34 a, 34 b are provided in the end portions of the solar cell 20 d in the x-direction. More specifically, the wiring members 34 a, 34 b are not bonded to the end portions of the solar cell 20 d in the regions where the first and second electrodes 21, 22 are provided. In this way, regions that are not bonded to the wiring members 34 a, 34 b are provided in the end portions of the solar cell 20 d where the first and second electrodes 21, 22 are provided.
  • Also, the new wiring members 34 a, 34 b are provided so as to straddle the disconnected ends 30 a 1, 30 b 1 in the x-direction, are bonded using a resin adhesive to the solar cells 20 b, 20 c in a region closer to the center than the region in which a disconnected end 30 a 1, 30 b 1 is provided. In this way, the wiring members 34 a, 34 b are connected electrically to the either the first or second electrodes 21, 22 of the solar cells 20 b, 20 c. The wiring members 34 a, 34 b are bonded via a resin adhesive layer 42 to a region of the solar cells 20 b, 20 c in a region other than the end portions in the x-direction.
  • Lamination Process
  • Next, as shown in FIG. 15, the solar cell string 25 a is sealed between first and second protecting members 12, 11 using a bonding layer 13. More specifically, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on the second protecting member 11. The solar cell string 25 a is placed on top of this resin sheet, a resin sheet such as an EVA sheet constituting a portion of the bonding layer 13 is placed on top of this, and the first protecting member 12 is placed on top of this. These can then be laminated in a reduced-pressure atmosphere to complete the solar module 1.
  • Configuration of Solar Module 1
  • The solar module 1 manufactured in this manner has a solar cell string 25 a sealed inside a bonding layer 13 between the first and second protecting members 12, 11. The solar cell string 25 a has a plurality of solar cells 20. These solar cells 20 are connected electrically via wiring members 30, 34 a, 34 b. The wiring members 30, 34 a, 34 b and the solar cells 20 are bonded via resin adhesive layers 40, 41, 42 containing a cured resin adhesive. Each of the wiring members 30, 34 a, 34 b is not bonded to the end portions of the solar cells 20 in the x-direction.
  • The disconnected ends 30 a 1, 30 b 1 of wiring members 30 a and 30 b are bonded via a resin adhesive layer 40 on solar cells 20 b, 20 b among the solar cells 20. The wiring members 34 a, 34 b are arranged so as to straddle the disconnected ends 30 a 1, 30 b 1 in the x-direction. The wiring members 34 a, 34 b are bonded to the solar cells 20 b, 20 c via a resin adhesive layer 42 closer to the center in the x-direction than the disconnected ends 30 a 1, 30 b 1. In other words, the wiring members 34 a, 34 b are bonded to a portion of the solar cells 20 b, 20 c other than the end portions in the x-direction.
  • As explained above, in the present invention, during the solar cell string manufacturing process, a wiring member 30 is bonded using a resin adhesive to a portion outside of the x1 end portion of the one adjacent solar cell 20 in the x direction, and the wiring member 30 is bonded using a resin adhesive to a portion outside of the x2 end portion of the other adjacent solar cell 20 in the x direction. More specifically, the resin adhesive is heated and cured with the resin adhesive interposed between the solar cell 20 and the wiring member 30 and with pressure applied in a direction bringing the solar cell 20 and the wiring member 30 closer to each other. As a result, pressure does not have to be applied to the end portion of the solar cell 20 when the solar cell 20 and the wiring member 30 are bonded using a resin adhesive. Therefore, cracking is less likely to occur in the solar cells 20 during the solar cell string manufacturing process.
  • Also, during the reconnecting process, the new wiring members 34 a, 34 b are bonded using a resin adhesive to a region of the solar cells 20 b, 20 c closer to the center than the region in which the disconnected ends 30 a 1, 30 b 1 are bonded. More specifically, the resin adhesive is heated and cured with the resin adhesive interposed between the solar cells 20 b, 20 c and the wiring members 34 a, 34 b and with pressure applied in a direction bringing the solar cells 20 b, 20 c and the wiring members 34 a, 34 b closer together. As a result, pressure does not have to be applied to the end portion of the solar cells 20 b, 20 c when the solar cells 20 b, 20 c and the wiring members 34 a, 34 b are bonded using a resin adhesive. Therefore, cracking is less likely to occur in the solar cells 20 b, 20 c during the reconnecting process.
  • In this way, a solar module 1 can be manufactured more efficiently and at a higher yield rate.
  • In the present embodiment, the new wiring members 34 a, 34 b are bonded using a resin adhesive to a portion of the new solar cell 20 d other than an end portion in the x-direction. More specifically, the resin adhesive is heated and cured with the resin adhesive interposed between the solar cell 20 d and the wiring members 34 a, 34 b and with pressure applied in a direction bringing the solar cell 20 d and the wiring members 34 a, 34 b closer together. As a result, pressure does not have to be applied to the end portion of the solar cell 20 d when the solar cells 20 d and the wiring members 34 a, 34 b are bonded using a resin adhesive. Therefore, cracking is less likely to occur in the solar cell 20 d during the reconnecting process. In this way, a solar module 1 can be manufactured more efficiently and at a higher yield rate.
  • In the explanation of an example of the present embodiment, both the first and second electrodes 21, 22 have a busbar portion 21 b, 22 b. However, the present invention is not limited to this configuration. For example, as shown in FIG. 9, both the first electrode 21 and the second electrode 22 are busbarless electrodes composed of a plurality of finger portions 21 a, 22 a.
  • Also, in the present embodiment, during the disconnecting process for disconnecting the defective solar cell 20 a, the unbonded portions of the wiring members 30 a not bonded to a solar cell 20 were cut to remove the solar cell 20 a. However, the present invention is not restricted to this method. For example, the wiring member 30 a may be removed from the solar cell 20 b so as to leave the resin adhesive layer 40 on the solar cell 20 b. In this case, the new wiring member 34 a is bonded using a resin adhesive to the new solar cell 20 d so as to straddle the resin adhesive layer 40 remaining on the solar cell 20 b. In other words, the new wiring member 34 a is bonded using a resin adhesive to the solar cell 20 b in a region closer to the center than the resin adhesive layer 40 remaining on the solar cell.
  • The present invention includes many other embodiments not described herein. Therefore, the technical scope of the present invention is defined solely by the items of the invention specified in the claims pertinent to the above explanation.
  • KEY TO THE DRAWINGS
      • 1: Solar module
      • 11: 2nd protecting member
      • 12: 1st protecting member
      • 13: Bonding layer
      • 20, 20 a-20 c: Solar cell
      • 20 d: New solar cell
      • 21: 1st electrode
      • 21 a: 1st finger portion
      • 21 b: 1st busbar portion
      • 22: 2nd electrode
      • 22 a: 2nd finger portion
      • 22 b: 2nd busbar portion
      • 23: Photoelectric conversion unit
      • 23 a: Back surface
      • 25: Solar cell string
      • 25 a: New solar cell string
      • 30, 30 a, 30 b: Wiring member
      • 30 a 1, 30 b 1: Disconnected ends
      • 31: Insulating substrate
      • 32: Wiring
      • 32 b: 1st linear portion
      • 32 c: 2nd linear portion
      • 34 a, 34 b: New wiring member
      • 40, 41, 42: Resin adhesive layer

Claims (10)

What is claimed is:
1-10. (canceled)
11. A solar module comprising:
first and second solar cells each having a first main surface, a second main surface, and a first electrode and a second electrode on the first main surface, wherein the first electrode and the second electrode extend from one end of the first main surface to the other end of the first main surface in one direction;
an disconnected end of a first wiring member, the disconnected end adhered to the first main surface of the first solar cell and not adhered to the second solar cell, wherein the disconnected end includes a first insulating substrate and a first wiring on a side of the first solar cell with respect to the first insulating substrate; and
a second wiring member including a second insulating substrate and a second wiring on a side of the first solar cell with respect to the second insulating substrate and electrically connecting the first and second solar cells such that the second wiring member is adhered to the first main surface of the first solar cell and to the first main surface of the second solar cell with the second wiring member extending over the disconnected end.
12. The solar module according to claim 11, wherein
a portion where the disconnected end is adhered to the first main surface of the first solar cell is closer to the second solar cell than a portion where the second wiring member is adhered to the first main surface of the first solar cell.
13. The solar module according to claim 12, wherein
the disconnected end is adhered to the first main surface of the first solar cell with a resin adhesive.
14. The solar module according to claim 13, wherein
the second wiring member is adhered to the first main surface of the first solar cell with a resin adhesive and to the first main surface of the second solar cell with a resin adhesive.
15. The solar module according to claim 12, wherein
each of the first and second solar cells includes the first and second electrodes on the first main surface thereof and does not include an electrode on the second main surface thereof.
16. A solar module comprising:
first and second solar cells each having a first main surface, a second main surface, and a first electrode and a second electrode on the first main surface, wherein the first electrode and the second electrode extend from one end of the first main surface to the other end of the first main surface in one direction;
a remaining resin adhesive adhered to the first main surface of the first solar cell; and
a wiring member including an insulating substrate and a wiring on a side of the first solar cell with respect to the insulating substrate and electrically connecting the first and second solar cells such that the wiring member is adhered to the first main surface of the first solar cell and to the first main surface of the second solar cell with the wiring member extending over the remaining resin adhesive
17. The solar module according to claim 16, wherein
a portion where the remaining resin adhesive is adhered to the first main surface of the first solar cell is closer to the second solar cell than a portion where the wiring member is adhered to the first main surface of the first solar cell.
18. The solar module according to claim 17, wherein
the wiring member is adhered to the first main surface of the first solar cell with a resin adhesive and to the first main surface of the second solar cell with a resin adhesive.
19. The solar module according to claim 18, wherein
each of the first and second solar cells includes the first and second electrodes on the first main surface thereof and does not include an electrode on the second main surface thereof.
US15/169,734 2011-08-31 2016-06-01 Solar module manufacturing method Abandoned US20160276500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/169,734 US20160276500A1 (en) 2011-08-31 2016-06-01 Solar module manufacturing method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011189207 2011-08-31
JP2011189208 2011-08-31
JP2011-189208 2011-08-31
JP2011-189207 2011-08-31
PCT/JP2012/062140 WO2013031297A1 (en) 2011-08-31 2012-05-11 Method for producing solar cell module
US14/182,525 US9391228B2 (en) 2011-08-31 2014-02-18 Solar module manufacturing method
US15/169,734 US20160276500A1 (en) 2011-08-31 2016-06-01 Solar module manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/182,525 Continuation US9391228B2 (en) 2011-08-31 2014-02-18 Solar module manufacturing method

Publications (1)

Publication Number Publication Date
US20160276500A1 true US20160276500A1 (en) 2016-09-22

Family

ID=47755814

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/182,525 Expired - Fee Related US9391228B2 (en) 2011-08-31 2014-02-18 Solar module manufacturing method
US15/169,734 Abandoned US20160276500A1 (en) 2011-08-31 2016-06-01 Solar module manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/182,525 Expired - Fee Related US9391228B2 (en) 2011-08-31 2014-02-18 Solar module manufacturing method

Country Status (4)

Country Link
US (2) US9391228B2 (en)
EP (1) EP2752889B1 (en)
JP (2) JP6037176B2 (en)
WO (1) WO2013031297A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820103B1 (en) 2014-10-27 2018-01-18 엘지전자 주식회사 Solar cell module and Methods and Apparatus thereof
US20160284909A1 (en) * 2015-03-27 2016-09-29 Gabriel Harley Multi-diode solar cells
EP3288086A1 (en) * 2016-08-26 2018-02-28 LG Electronics Inc. Solar cell module and method for manufacturing the same
US11437533B2 (en) * 2016-09-14 2022-09-06 The Boeing Company Solar cells for a solar cell array
KR102042270B1 (en) * 2016-09-23 2019-11-07 엘지전자 주식회사 Methods for repairing a solar cell module and solar cell module thereby
US10411499B2 (en) * 2017-05-05 2019-09-10 David R. Hall Distributed charge controller
CN114203847B (en) * 2022-02-18 2022-07-15 浙江爱旭太阳能科技有限公司 A special-shaped welding tape for back contact battery connection
KR102817314B1 (en) * 2023-07-26 2025-06-09 한화솔루션 주식회사 Apparatus and method for soldering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216887A1 (en) * 2006-12-22 2008-09-11 Advent Solar, Inc. Interconnect Technologies for Back Contact Solar Cells and Modules
US20090260672A1 (en) * 2008-04-21 2009-10-22 Sanyo Electric Co., Ltd. Solar cell module
WO2010021204A1 (en) * 2008-08-22 2010-02-25 三洋電機株式会社 Solar cell module, solar cell, and solar cell module manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927770A (en) * 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
JP3169497B2 (en) * 1993-12-24 2001-05-28 三菱電機株式会社 Solar cell manufacturing method
US7390961B2 (en) * 2004-06-04 2008-06-24 Sunpower Corporation Interconnection of solar cells in a solar cell module
US20070283997A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with integrated current collection and interconnection
US20100018565A1 (en) 2007-01-25 2010-01-28 Yasushi Funakoshi Solar cell, solar cell array and solar cell module, and method of fabricating solar cell array
US7804022B2 (en) * 2007-03-16 2010-09-28 Sunpower Corporation Solar cell contact fingers and solder pad arrangement for enhanced efficiency
TWI438916B (en) * 2007-07-13 2014-05-21 Sanyo Electric Co Solar cell module manufacturing method
JP4578510B2 (en) * 2007-08-24 2010-11-10 三洋電機株式会社 Manufacturing method of solar cell
JP5147332B2 (en) * 2007-08-27 2013-02-20 三洋電機株式会社 SOLAR CELL MODULE, SOLAR CELL, AND MANUFACTURING METHOD THEREOF
JP2010003724A (en) * 2008-06-18 2010-01-07 Hitachi Ltd Cooling duct structure of semiconductor device, and mounting body of semiconductor device having the same
JP5197337B2 (en) * 2008-12-08 2013-05-15 三洋電機株式会社 Solar cell, solar cell module and method for replacing solar cell
JP5535472B2 (en) * 2008-12-10 2014-07-02 三洋電機株式会社 Solar cell module and method for replacing solar cell
JP5203176B2 (en) * 2008-12-26 2013-06-05 シャープ株式会社 Wiring sheet, solar cell with wiring sheet and solar cell module
JP2010251667A (en) * 2009-04-20 2010-11-04 Sanyo Electric Co Ltd Solar cell
JP2011134765A (en) 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Exchange method of solar cell and manufacturing method of solar cell module
JP5377347B2 (en) * 2010-01-29 2013-12-25 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216887A1 (en) * 2006-12-22 2008-09-11 Advent Solar, Inc. Interconnect Technologies for Back Contact Solar Cells and Modules
US20090260672A1 (en) * 2008-04-21 2009-10-22 Sanyo Electric Co., Ltd. Solar cell module
WO2010021204A1 (en) * 2008-08-22 2010-02-25 三洋電機株式会社 Solar cell module, solar cell, and solar cell module manufacturing method
US20110277817A1 (en) * 2008-08-22 2011-11-17 Sanyo Electric Co., Ltd. Solar cell module, solar cell and solar cell module manufacturing method

Also Published As

Publication number Publication date
US9391228B2 (en) 2016-07-12
WO2013031297A1 (en) 2013-03-07
US20140157580A1 (en) 2014-06-12
JP6037176B2 (en) 2016-11-30
EP2752889B1 (en) 2018-11-28
EP2752889A4 (en) 2015-11-04
EP2752889A1 (en) 2014-07-09
JP2017011313A (en) 2017-01-12
JPWO2013031297A1 (en) 2015-03-23
JP6519812B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US9391228B2 (en) Solar module manufacturing method
US20140190546A1 (en) Solar module and solar module manufacturing method
US9349897B2 (en) Solar cell module and manufacturing method therefor
CN101939847B (en) Solar cell module and solar cell
TWI488315B (en) Solar battery module and manufacturing method thereof
EP2043164A2 (en) Solar cell module
US9331225B2 (en) Solar cell module
US10978601B2 (en) Partially translucent photovoltaic modules and methods for manufacturing
US20140102508A1 (en) Solar module and solar cell
WO2012082772A3 (en) Apparatus and method for hybrid photovoltaic device having multiple, stacked, heterogeneous, semiconductor junctions
US9490382B2 (en) Solar module and manufacturing method therefor
JP2018531505A (en) Formation of front metal contacts in solar cells with enhanced stress tolerance
JP2018531505A6 (en) Formation of front metal contacts in solar cells with enhanced stress tolerance
US20120031458A1 (en) Solar cell module provided with an edge space
US9166088B2 (en) Solar module
TWI619263B (en) Photovoltaic equipment and method for assembling photovoltaic equipment
US20140157594A1 (en) Method for manufacturing a solar module
US20140190549A1 (en) Solar cell and solar module
US20140166068A1 (en) Solar module and manufacturing method therefor
US9166085B2 (en) Method for manufacturing solar cell module provided with an edge space
JP2010141206A (en) Solar cell module and replacing method for solar cell
KR101130965B1 (en) Solar Cell and method of manufacturing the same
WO2017056354A1 (en) Solar cell module and method for producing solar cell module

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION