US20160213610A1 - Modified release formulations for oprozomib - Google Patents
Modified release formulations for oprozomib Download PDFInfo
- Publication number
- US20160213610A1 US20160213610A1 US15/008,634 US201615008634A US2016213610A1 US 20160213610 A1 US20160213610 A1 US 20160213610A1 US 201615008634 A US201615008634 A US 201615008634A US 2016213610 A1 US2016213610 A1 US 2016213610A1
- Authority
- US
- United States
- Prior art keywords
- formulation
- oprozomib
- pharmaceutically acceptable
- milligrams
- acceptable salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 287
- 238000009472 formulation Methods 0.000 title claims abstract description 235
- 108010064641 ONX 0912 Proteins 0.000 title claims abstract description 223
- SWZXEVABPLUDIO-WSZYKNRRSA-N n-[(2s)-3-methoxy-1-[[(2s)-3-methoxy-1-[[(2s)-1-[(2r)-2-methyloxiran-2-yl]-1-oxo-3-phenylpropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]-2-methyl-1,3-thiazole-5-carboxamide Chemical compound N([C@@H](COC)C(=O)N[C@@H](COC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)[C@]1(C)OC1)C(=O)C1=CN=C(C)S1 SWZXEVABPLUDIO-WSZYKNRRSA-N 0.000 title claims abstract description 223
- 229950005750 oprozomib Drugs 0.000 title claims abstract description 223
- 150000003839 salts Chemical class 0.000 claims abstract description 109
- 239000007909 solid dosage form Substances 0.000 claims abstract description 10
- 229920000642 polymer Polymers 0.000 claims description 56
- 238000004090 dissolution Methods 0.000 claims description 47
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 30
- 239000000945 filler Substances 0.000 claims description 29
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 22
- 239000000314 lubricant Substances 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 17
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 14
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 14
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 14
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 14
- 239000004094 surface-active agent Substances 0.000 claims description 14
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 13
- 235000019359 magnesium stearate Nutrition 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000036470 plasma concentration Effects 0.000 claims description 10
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 claims description 9
- 229960001021 lactose monohydrate Drugs 0.000 claims description 9
- 239000012738 dissolution medium Substances 0.000 claims description 8
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 7
- 239000008351 acetate buffer Substances 0.000 claims description 7
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 7
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 229930195725 Mannitol Natural products 0.000 claims description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 235000019700 dicalcium phosphate Nutrition 0.000 claims description 3
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 239000000594 mannitol Substances 0.000 claims description 3
- 235000010355 mannitol Nutrition 0.000 claims description 3
- 239000000600 sorbitol Substances 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 55
- -1 e.g. Substances 0.000 abstract description 25
- 238000013265 extended release Methods 0.000 abstract description 19
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 18
- 241001465754 Metazoa Species 0.000 abstract description 6
- 239000003826 tablet Substances 0.000 description 92
- 150000001875 compounds Chemical class 0.000 description 57
- 239000000243 solution Substances 0.000 description 35
- 229940125904 compound 1 Drugs 0.000 description 33
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 30
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 28
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 28
- 229940079156 Proteasome inhibitor Drugs 0.000 description 28
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 28
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 28
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 28
- 239000003207 proteasome inhibitor Substances 0.000 description 28
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical group [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 24
- 230000002829 reductive effect Effects 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- 201000010099 disease Diseases 0.000 description 21
- 230000000694 effects Effects 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 20
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 19
- 239000003814 drug Substances 0.000 description 19
- 206010028980 Neoplasm Diseases 0.000 description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- 229940079593 drug Drugs 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 17
- 210000002784 stomach Anatomy 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 238000005469 granulation Methods 0.000 description 14
- 230000003179 granulation Effects 0.000 description 14
- 239000000546 pharmaceutical excipient Substances 0.000 description 14
- 238000000634 powder X-ray diffraction Methods 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 14
- 241000282472 Canis lupus familiaris Species 0.000 description 13
- 229920003091 Methocel™ Polymers 0.000 description 13
- 230000005764 inhibitory process Effects 0.000 description 13
- 208000015181 infectious disease Diseases 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 208000023275 Autoimmune disease Diseases 0.000 description 11
- 201000011510 cancer Diseases 0.000 description 11
- 238000006731 degradation reaction Methods 0.000 description 11
- 230000003285 pharmacodynamic effect Effects 0.000 description 11
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 235000017557 sodium bicarbonate Nutrition 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 206010035226 Plasma cell myeloma Diseases 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 208000035475 disorder Diseases 0.000 description 9
- 230000003176 fibrotic effect Effects 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 239000012044 organic layer Substances 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- 238000005550 wet granulation Methods 0.000 description 9
- 239000000080 wetting agent Substances 0.000 description 9
- 206010047700 Vomiting Diseases 0.000 description 8
- 239000002775 capsule Substances 0.000 description 8
- 239000002552 dosage form Substances 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000000302 ischemic effect Effects 0.000 description 8
- 239000007916 tablet composition Substances 0.000 description 8
- 206010065687 Bone loss Diseases 0.000 description 7
- 206010016654 Fibrosis Diseases 0.000 description 7
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 7
- 208000034578 Multiple myelomas Diseases 0.000 description 7
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 7
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 7
- 239000008186 active pharmaceutical agent Substances 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 229960001375 lactose Drugs 0.000 description 7
- 239000008101 lactose Substances 0.000 description 7
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 7
- 230000003211 malignant effect Effects 0.000 description 7
- 230000004770 neurodegeneration Effects 0.000 description 7
- 208000015122 neurodegenerative disease Diseases 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 6
- 108010057466 NF-kappa B Proteins 0.000 description 6
- 102000003945 NF-kappa B Human genes 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000000113 differential scanning calorimetry Methods 0.000 description 6
- 230000004761 fibrosis Effects 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 6
- 229940011051 isopropyl acetate Drugs 0.000 description 6
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 6
- 208000032839 leukemia Diseases 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 5
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 5
- 241000725303 Human immunodeficiency virus Species 0.000 description 5
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000001185 bone marrow Anatomy 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000002158 endotoxin Substances 0.000 description 5
- 238000007667 floating Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 210000002216 heart Anatomy 0.000 description 5
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 5
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 5
- 229920006008 lipopolysaccharide Polymers 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 208000008585 mastocytosis Diseases 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000013563 matrix tablet Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000006186 oral dosage form Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 210000000813 small intestine Anatomy 0.000 description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 description 5
- 235000011152 sodium sulphate Nutrition 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 206010012289 Dementia Diseases 0.000 description 4
- 201000004624 Dermatitis Diseases 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 208000030852 Parasitic disease Diseases 0.000 description 4
- 201000008736 Systemic mastocytosis Diseases 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 210000001198 duodenum Anatomy 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000029142 excretion Effects 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 210000001630 jejunum Anatomy 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 102000014303 Amyloid beta-Protein Precursor Human genes 0.000 description 3
- 108010079054 Amyloid beta-Protein Precursor Proteins 0.000 description 3
- 229920003084 Avicel® PH-102 Polymers 0.000 description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000700721 Hepatitis B virus Species 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241000711466 Murine hepatitis virus Species 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 3
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 3
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 239000007891 compressed tablet Substances 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000013400 design of experiment Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 208000017055 digestive system neuroendocrine neoplasm Diseases 0.000 description 3
- 238000007907 direct compression Methods 0.000 description 3
- 239000008298 dragée Substances 0.000 description 3
- 210000003238 esophagus Anatomy 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000003818 flash chromatography Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 230000003394 haemopoietic effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 238000009478 high shear granulation Methods 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 208000017898 histiocytic and dendritic cell neoplasm Diseases 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 208000026278 immune system disease Diseases 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 201000006417 multiple sclerosis Diseases 0.000 description 3
- 208000017869 myelodysplastic/myeloproliferative disease Diseases 0.000 description 3
- ULWOJODHECIZAU-UHFFFAOYSA-N n,n-diethylpropan-2-amine Chemical compound CCN(CC)C(C)C ULWOJODHECIZAU-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000011164 ossification Effects 0.000 description 3
- 244000045947 parasite Species 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000017854 proteolysis Effects 0.000 description 3
- 244000000040 protozoan parasite Species 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 3
- 201000008827 tuberculosis Diseases 0.000 description 3
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 201000008217 Aggressive systemic mastocytosis Diseases 0.000 description 2
- 206010001935 American trypanosomiasis Diseases 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 208000000659 Autoimmune lymphoproliferative syndrome Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 206010004146 Basal cell carcinoma Diseases 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- 201000003874 Common Variable Immunodeficiency Diseases 0.000 description 2
- 241000711573 Coronaviridae Species 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 208000008334 Dermatofibrosarcoma Diseases 0.000 description 2
- 206010057070 Dermatofibrosarcoma protuberans Diseases 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 201000008808 Fibrosarcoma Diseases 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 208000028622 Immune thrombocytopenia Diseases 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- 201000009004 Indolent systemic mastocytosis Diseases 0.000 description 2
- 102100026720 Interferon beta Human genes 0.000 description 2
- 108090000467 Interferon-beta Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 2
- 244000147568 Laurus nobilis Species 0.000 description 2
- 235000017858 Laurus nobilis Nutrition 0.000 description 2
- 208000018142 Leiomyosarcoma Diseases 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 201000003791 MALT lymphoma Diseases 0.000 description 2
- 201000009906 Meningitis Diseases 0.000 description 2
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- 208000009525 Myocarditis Diseases 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 208000004485 Nijmegen breakage syndrome Diseases 0.000 description 2
- 206010029461 Nodal marginal zone B-cell lymphomas Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241000224016 Plasmodium Species 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 206010063837 Reperfusion injury Diseases 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- 201000008213 SM-AHNMD Diseases 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 201000009594 Systemic Scleroderma Diseases 0.000 description 2
- 206010042953 Systemic sclerosis Diseases 0.000 description 2
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 201000004810 Vascular dementia Diseases 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 206010047505 Visceral leishmaniasis Diseases 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 206010002022 amyloidosis Diseases 0.000 description 2
- 239000003098 androgen Substances 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007908 dry granulation Methods 0.000 description 2
- 206010014599 encephalitis Diseases 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009477 fluid bed granulation Methods 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229940049654 glyceryl behenate Drugs 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 230000000642 iatrogenic effect Effects 0.000 description 2
- 230000007813 immunodeficiency Effects 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 201000009020 malignant peripheral nerve sheath tumor Diseases 0.000 description 2
- 208000000516 mast-cell leukemia Diseases 0.000 description 2
- 201000008749 mast-cell sarcoma Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 208000031223 plasma cell leukemia Diseases 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000036303 septic shock Effects 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000005563 spheronization Methods 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 208000026901 systemic mastocytosis with an associated clonal hematologic non-mast cell lineage disease Diseases 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 238000001757 thermogravimetry curve Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical class CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QCXCIYPOMMIBHO-UHFFFAOYSA-N 2-methyl-1,3-thiazole-5-carboxylic acid Chemical compound CC1=NC=C(C(O)=O)S1 QCXCIYPOMMIBHO-UHFFFAOYSA-N 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 206010065040 AIDS dementia complex Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102220487426 Actin-related protein 2/3 complex subunit 3_K15M_mutation Human genes 0.000 description 1
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 1
- 208000000230 African Trypanosomiasis Diseases 0.000 description 1
- 206010027654 Allergic conditions Diseases 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 1
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 1
- 229920001685 Amylomaize Polymers 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 208000031104 Arterial Occlusive disease Diseases 0.000 description 1
- 206010003211 Arteriosclerosis coronary artery Diseases 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 1
- 206010050245 Autoimmune thrombocytopenia Diseases 0.000 description 1
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000012526 B-cell neoplasm Diseases 0.000 description 1
- 208000032568 B-cell prolymphocytic leukaemia Diseases 0.000 description 1
- 108091012583 BCL2 Proteins 0.000 description 1
- 208000037398 BCR-ABL1 negative atypical chronic myeloid leukemia Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 208000023328 Basedow disease Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 206010073106 Bone giant cell tumour malignant Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000023611 Burkitt leukaemia Diseases 0.000 description 1
- 208000006448 Buruli Ulcer Diseases 0.000 description 1
- 208000023081 Buruli ulcer disease Diseases 0.000 description 1
- LSUJPFRTXIOKGX-PANPFJLPSA-N C.C.C1CCOC1.COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1.COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)O.COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)OCC1=CC=CC=C1.C[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1.F.[HH] Chemical compound C.C.C1CCOC1.COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1.COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)O.COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)OCC1=CC=CC=C1.C[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1.F.[HH] LSUJPFRTXIOKGX-PANPFJLPSA-N 0.000 description 1
- 208000016778 CD4+/CD56+ hematodermic neoplasm Diseases 0.000 description 1
- SMOCOYLKAWOSBD-XNCCSTQDSA-N COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1 Chemical compound COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1 SMOCOYLKAWOSBD-XNCCSTQDSA-N 0.000 description 1
- VNQHQMJCHCHAEM-ZSARDNNLSA-N COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@](C)(O)CO.COC[C@H](NC(=O)C1=CN=C(C)S1)C(=O)C[C@H](COC)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1 Chemical compound COC[C@H](CC(=O)[C@H](COC)NC(=O)C1=CN=C(C)S1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@](C)(O)CO.COC[C@H](NC(=O)C1=CN=C(C)S1)C(=O)C[C@H](COC)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)[C@@]1(C)CO1 VNQHQMJCHCHAEM-ZSARDNNLSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 206010007572 Cardiac hypertrophy Diseases 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 208000024699 Chagas disease Diseases 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 241000709675 Coxsackievirus B3 Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 241000223935 Cryptosporidium Species 0.000 description 1
- 208000006343 Cutaneous Mastocytosis Diseases 0.000 description 1
- 108050006400 Cyclin Proteins 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- 201000003808 Cystic echinococcosis Diseases 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 208000006313 Delayed Hypersensitivity Diseases 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 206010051392 Diapedesis Diseases 0.000 description 1
- 206010012713 Diaphragmatic hernia Diseases 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 241000244170 Echinococcus granulosus Species 0.000 description 1
- 241000223932 Eimeria tenella Species 0.000 description 1
- 208000001976 Endocrine Gland Neoplasms Diseases 0.000 description 1
- 241000224431 Entamoeba Species 0.000 description 1
- 241000224432 Entamoeba histolytica Species 0.000 description 1
- 241001464851 Entamoeba invadens Species 0.000 description 1
- 208000002460 Enteropathy-Associated T-Cell Lymphoma Diseases 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920003155 Eudragit® RL 100 Polymers 0.000 description 1
- 229920003156 Eudragit® RL PO Polymers 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 206010061850 Extranodal marginal zone B-cell lymphoma (MALT type) Diseases 0.000 description 1
- 208000016937 Extranodal nasal NK/T cell lymphoma Diseases 0.000 description 1
- 206010015848 Extraskeletal osteosarcomas Diseases 0.000 description 1
- 208000004057 Focal Nodular Hyperplasia Diseases 0.000 description 1
- 201000011240 Frontotemporal dementia Diseases 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 208000000527 Germinoma Diseases 0.000 description 1
- 208000007465 Giant cell arteritis Diseases 0.000 description 1
- 241000224467 Giardia intestinalis Species 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 206010068601 Glioneuronal tumour Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 208000024869 Goodpasture syndrome Diseases 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 108700025685 HIV Enhancer Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 208000002927 Hamartoma Diseases 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 241000700739 Hepadnaviridae Species 0.000 description 1
- 206010019629 Hepatic adenoma Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 208000002291 Histiocytic Sarcoma Diseases 0.000 description 1
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 1
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000017605 Hodgkin disease nodular sclerosis Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 241000341655 Human papillomavirus type 16 Species 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 208000003352 Hyper-IgM Immunodeficiency Syndrome Diseases 0.000 description 1
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 1
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 1
- 206010021263 IgA nephropathy Diseases 0.000 description 1
- 208000014919 IgG4-related retroperitoneal fibrosis Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 208000005045 Interdigitating dendritic cell sarcoma Diseases 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 102000001702 Intracellular Signaling Peptides and Proteins Human genes 0.000 description 1
- 108010068964 Intracellular Signaling Peptides and Proteins Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 description 1
- 201000005099 Langerhans cell histiocytosis Diseases 0.000 description 1
- 201000007687 Langerhans cell sarcoma Diseases 0.000 description 1
- 206010023791 Large granular lymphocytosis Diseases 0.000 description 1
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 1
- 241000222722 Leishmania <genus> Species 0.000 description 1
- 241000222727 Leishmania donovani Species 0.000 description 1
- 241000222697 Leishmania infantum Species 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 201000001779 Leukocyte adhesion deficiency Diseases 0.000 description 1
- 208000009829 Lewy Body Disease Diseases 0.000 description 1
- 201000002832 Lewy body dementia Diseases 0.000 description 1
- 102000052508 Lipopolysaccharide-binding protein Human genes 0.000 description 1
- 108010053632 Lipopolysaccharide-binding protein Proteins 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 206010027236 Meningitis fungal Diseases 0.000 description 1
- 206010027260 Meningitis viral Diseases 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920003093 Methocel™ K100 LV Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 208000005314 Multi-Infarct Dementia Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 206010028424 Myasthenic syndrome Diseases 0.000 description 1
- 206010066289 Mycobacterium ulcerans infection Diseases 0.000 description 1
- 208000033495 Myelodysplastic syndrome associated with isolated del(5q) chromosome abnormality Diseases 0.000 description 1
- 208000037379 Myeloid Chronic Atypical BCR-ABL Negative Leukemia Diseases 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 108010052419 NF-KappaB Inhibitor alpha Proteins 0.000 description 1
- 102100039337 NF-kappa-B inhibitor alpha Human genes 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028817 Nausea and vomiting symptoms Diseases 0.000 description 1
- 208000003510 Nephrogenic Fibrosing Dermopathy Diseases 0.000 description 1
- 206010067467 Nephrogenic systemic fibrosis Diseases 0.000 description 1
- 206010029240 Neuritis Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 1
- 206010052399 Neuroendocrine tumour Diseases 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 206010051081 Nodular regenerative hyperplasia Diseases 0.000 description 1
- 244000020186 Nymphaea lutea Species 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium on carbon Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 206010034277 Pemphigoid Diseases 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 208000031839 Peripheral nerve sheath tumour malignant Diseases 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 240000009188 Phyllostachys vivax Species 0.000 description 1
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 1
- 201000007286 Pilocytic astrocytoma Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 241000223821 Plasmodium malariae Species 0.000 description 1
- 206010035501 Plasmodium malariae infection Diseases 0.000 description 1
- 241001505293 Plasmodium ovale Species 0.000 description 1
- 206010035502 Plasmodium ovale infection Diseases 0.000 description 1
- 206010035603 Pleural mesothelioma Diseases 0.000 description 1
- 241000233872 Pneumocystis carinii Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 206010036700 Primary immunodeficiency syndromes Diseases 0.000 description 1
- 206010036711 Primary mediastinal large B-cell lymphomas Diseases 0.000 description 1
- 206010036805 Progressive massive fibrosis Diseases 0.000 description 1
- 208000035416 Prolymphocytic B-Cell Leukemia Diseases 0.000 description 1
- 208000033759 Prolymphocytic T-Cell Leukemia Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 1
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 206010038272 Refractory anaemia with ringed sideroblasts Diseases 0.000 description 1
- 208000009527 Refractory anemia Diseases 0.000 description 1
- 208000033501 Refractory anemia with excess blasts Diseases 0.000 description 1
- 206010072684 Refractory cytopenia with unilineage dysplasia Diseases 0.000 description 1
- 208000033464 Reiter syndrome Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 206010038748 Restrictive cardiomyopathy Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 206010038979 Retroperitoneal fibrosis Diseases 0.000 description 1
- 241000146987 Sarcocystis neurona Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 206010039580 Scar Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- 208000003252 Signet Ring Cell Carcinoma Diseases 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 208000004346 Smoldering Multiple Myeloma Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 206010072148 Stiff-Person syndrome Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 208000025317 T-cell and NK-cell neoplasm Diseases 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 208000026651 T-cell prolymphocytic leukemia Diseases 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 208000033781 Thyroid carcinoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 241000223997 Toxoplasma gondii Species 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 241000223104 Trypanosoma Species 0.000 description 1
- 241000223105 Trypanosoma brucei Species 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010053648 Vascular occlusion Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 1
- 208000013685 acquired idiopathic sideroblastic anemia Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 208000027137 acute motor axonal neuropathy Diseases 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 201000006966 adult T-cell leukemia Diseases 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 208000015230 aggressive NK-cell leukemia Diseases 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 210000001691 amnion Anatomy 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 206010002449 angioimmunoblastic T-cell lymphoma Diseases 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 201000007201 aphasia Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 201000004892 atypical chronic myeloid leukemia Diseases 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical compound ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 229960002438 carfilzomib Drugs 0.000 description 1
- 108010021331 carfilzomib Proteins 0.000 description 1
- BLMPQMFVWMYDKT-NZTKNTHTSA-N carfilzomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)[C@]1(C)OC1)NC(=O)CN1CCOCC1)CC1=CC=CC=C1 BLMPQMFVWMYDKT-NZTKNTHTSA-N 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 229940082483 carnauba wax Drugs 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 208000003053 chromosome 5q deletion syndrome Diseases 0.000 description 1
- 208000021668 chronic eosinophilic leukemia Diseases 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 201000009950 chronic meningitis Diseases 0.000 description 1
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 229920001688 coating polymer Polymers 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000112 colonic effect Effects 0.000 description 1
- 201000010989 colorectal carcinoma Diseases 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 201000005890 congenital diaphragmatic hernia Diseases 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 206010061811 demyelinating polyneuropathy Diseases 0.000 description 1
- 201000002293 dendritic cell sarcoma Diseases 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 1
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 1
- JMGZBMRVDHKMKB-UHFFFAOYSA-L disodium;2-sulfobutanedioate Chemical class [Na+].[Na+].OS(=O)(=O)C(C([O-])=O)CC([O-])=O JMGZBMRVDHKMKB-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 201000004428 dysembryoplastic neuroepithelial tumor Diseases 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 201000011523 endocrine gland cancer Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 201000010048 endomyocardial fibrosis Diseases 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940007078 entamoeba histolytica Drugs 0.000 description 1
- ORCQTMZHDQSNOJ-UHFFFAOYSA-N ethyl 2-methyl-1,3-thiazole-5-carboxylate Chemical compound CCOC(=O)C1=CN=C(C)S1 ORCQTMZHDQSNOJ-UHFFFAOYSA-N 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- GDCRSXZBSIRSFR-UHFFFAOYSA-N ethyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCOC(=O)C=C GDCRSXZBSIRSFR-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 201000008915 extracutaneous mastocytoma Diseases 0.000 description 1
- 201000008815 extraosseous osteosarcoma Diseases 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009484 foam granulation Methods 0.000 description 1
- 208000009553 follicular dendritic cell sarcoma Diseases 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 210000001652 frontal lobe Anatomy 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 201000010056 fungal meningitis Diseases 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 201000003115 germ cell cancer Diseases 0.000 description 1
- 208000003884 gestational trophoblastic disease Diseases 0.000 description 1
- 229940085435 giardia lamblia Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000025750 heavy chain disease Diseases 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 201000010284 hepatitis E Diseases 0.000 description 1
- 208000006359 hepatoblastoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 206010066957 hepatosplenic T-cell lymphoma Diseases 0.000 description 1
- UBHWBODXJBSFLH-UHFFFAOYSA-N hexadecan-1-ol;octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO.CCCCCCCCCCCCCCCCCCO UBHWBODXJBSFLH-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- UKJFVOWPUXSBOM-UHFFFAOYSA-N hexane;oxolane Chemical class C1CCOC1.CCCCCC UKJFVOWPUXSBOM-UHFFFAOYSA-N 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 238000009474 hot melt extrusion Methods 0.000 description 1
- 208000029080 human African trypanosomiasis Diseases 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 206010066130 hyper-IgM syndrome Diseases 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000015266 indolent plasma cell myeloma Diseases 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 208000026876 intravascular large B-cell lymphoma Diseases 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000003750 lower gastrointestinal tract Anatomy 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 201000009546 lung large cell carcinoma Diseases 0.000 description 1
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 208000007282 lymphomatoid papulosis Diseases 0.000 description 1
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 201000004593 malignant giant cell tumor Diseases 0.000 description 1
- 208000006178 malignant mesothelioma Diseases 0.000 description 1
- 208000024407 malignant pericardial mesothelioma Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 208000006971 mastocytoma Diseases 0.000 description 1
- 201000000638 mature B-cell neoplasm Diseases 0.000 description 1
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 201000004058 mixed glioma Diseases 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 201000010879 mucinous adenocarcinoma Diseases 0.000 description 1
- 230000003232 mucoadhesive effect Effects 0.000 description 1
- 201000000626 mucocutaneous leishmaniasis Diseases 0.000 description 1
- 208000037890 multiple organ injury Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 208000016586 myelodysplastic syndrome with excess blasts Diseases 0.000 description 1
- 206010028537 myelofibrosis Diseases 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N n-hexadecyl alcohol Natural products CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 208000010915 neoplasm of mature B-cells Diseases 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 208000016065 neuroendocrine neoplasm Diseases 0.000 description 1
- 201000011519 neuroendocrine tumor Diseases 0.000 description 1
- 208000029974 neurofibrosarcoma Diseases 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 230000003448 neutrophilic effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 206010073131 oligoastrocytoma Diseases 0.000 description 1
- 230000006548 oncogenic transformation Effects 0.000 description 1
- 108091008819 oncoproteins Proteins 0.000 description 1
- 102000027450 oncoproteins Human genes 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 230000004072 osteoblast differentiation Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000009996 pancreatic endocrine effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 201000004266 pericardial mesothelioma Diseases 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 201000002513 peritoneal mesothelioma Diseases 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000001824 photoionisation detection Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 208000000814 primary cutaneous anaplastic large cell lymphoma Diseases 0.000 description 1
- 208000028529 primary immunodeficiency disease Diseases 0.000 description 1
- 208000003476 primary myelofibrosis Diseases 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000007319 proteasomal degradation pathway Effects 0.000 description 1
- 230000006358 proteasome control Effects 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 206010067959 refractory cytopenia with multilineage dysplasia Diseases 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 238000009490 roller compaction Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 201000008123 signet ring cell adenocarcinoma Diseases 0.000 description 1
- 201000002612 sleeping sickness Diseases 0.000 description 1
- 238000009491 slugging Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 201000009295 smoldering myeloma Diseases 0.000 description 1
- 208000010721 smoldering plasma cell myeloma Diseases 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 206010043207 temporal arteritis Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000013077 thyroid gland carcinoma Diseases 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- 230000006663 ubiquitin-proteasome pathway Effects 0.000 description 1
- 208000034954 unclassifiable myeloproliferative neoplasm Diseases 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000021331 vascular occlusion disease Diseases 0.000 description 1
- 238000007879 vasectomy Methods 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 201000010044 viral meningitis Diseases 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/06—Tripeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/05—Dipeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
- A61K9/2018—Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2027—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2054—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/08—Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
Definitions
- modified release pharmaceutical formulations e.g., extended release pharmaceutical formulations; e.g., solid dosage forms, e.g., tablets
- extended release pharmaceutical formulations e.g., solid dosage forms, e.g., tablets
- proteasome has been validated as a therapeutic target, as demonstrated by the FDA approval of bortezomib, a boronic acid proteasome inhibitor, for the treatment of various cancer indications, including multiple myeloma; and more recently, carfilzomib, a tetra-peptide epoxy ketone-containing proteasome inhibitor, for the treatment of refractory multiple myeloma.
- Oprozomib (chemical structure shown below; also known as ONX 912) is an orally bioavailable (epoxy ketone-containing) tri-peptide irreversible proteasome inhibitor, which has demonstrated preclinical anti-tumor activity and a broad therapeutic window in preclinical models and is currently being studied in Phase I clinical trials.
- modified release pharmaceutical formulations e.g., extended release pharmaceutical formulations; e.g., solid dosage forms, e.g., tablets
- extended release pharmaceutical formulations e.g., solid dosage forms, e.g., tablets
- NV Nausea and vomiting
- GI gastrointestinal
- the stomach, duodenum and/or jejunum regions once oprozomib enters the enteric flora and fauna of the lower GI tract, it tends to be susceptible to degradation and therefore not well absorbed in these regions.
- the extended release pharmaceutical formulations of oprozomib described herein provide an extended release profile of oprozomib under the following dissolution conditions, e.g., equal or less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 2 hours, e.g., after 4 hours, after 6 hours, after 8 hours, or after 10 hours.
- the extended release pharmaceutical formulations of oprozomib described herein can provide one or more of the following advantages.
- the extended release pharmaceutical formulations of oprozomib described herein can minimize or effectively eliminate the so-called “dose dumping” of oprozomib into, e.g., the stomach, duodenum and jejunum regions of the GI tract.
- the formulations described herein can provide a reduced incidence or severity of one or more side effects (e.g., NV).
- the extended release pharmaceutical formulations of oprozomib described herein can provide therapeutically effective plasma exposure of oprozomib resulting in potent proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss).
- the formulations described herein can deliver oprozomib with time to peak plasma concentrations of from 55 to 124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs.
- the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be absorbed by these tissues prior to excretion and/or degradation of oprozomib.
- PK pharmacokinetic
- PD pharmacodynamic
- the extended release pharmaceutical formulations of oprozomib described herein can be prepared in a form that is suitable for oral administration, which is among the preferred routes for administration of pharmaceuticals since this route is generally convenient and acceptable to patients.
- the formulations described herein can be orally administered as a solid dosage form (e.g., tablet, e.g., a matrix tablet; e.g., matrix pellets; e.g., particulates filled into capsule).
- this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which equal or less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 4 hours (e.g., after from 4 to 8 hours; e.g. after 8 hours; e.g., after from 4 to 10 hours; e.g., after 10 hours) as determined by HPLC under the following dissolution conditions:
- the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV).
- NV one or more side effects
- the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which the formulations provide a therapeutically effective plasma exposure of oprozomib resulting in near complete proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss).
- the disorders described herein e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss).
- the formulations described herein can deliver oprozomib with time to peak plasma concentrations of 55-124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs.
- the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be absorbed by these tissues prior to excretion and/or degradation of oprozomib.
- PK pharmacokinetic
- PD pharmacodynamic
- this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which:
- the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV).
- side effects e.g., NV
- the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which:
- the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV);
- the formulations provide a therapeutically effective plasma exposure of oprozomib resulting in near complete proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss); in some embodiments, the formulations described herein can deliver oprozomib with time to peak plasma concentrations of 55-124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs; as such, the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be
- the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- an “effective amount” of oprozomib, or a pharmaceutically acceptable salt thereof will vary from subject to subject, depending on species, age, and general condition of a subject, severity of the side effects or disorder, identity of the particular compound(s), mode of administration, and the like.
- an effective amount refers to an amount of oprozomib, or a pharmaceutically acceptable salt thereof, that confers a therapeutic effect (e.g., controls, relieves, ameliorates, alleviates, or slows the progression of); or prevents (e.g., delays the onset of or reduces the risk of developing) a disease, disorder, or condition or symptoms thereof on the treated subject.
- the therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect).
- methods for treating cancer e.g., multiple myeloma, e.g., multiple myeloma that is relapsed and/or refractory; e.g., Waldenström's macroglobulinemia; e.g., myelodysplastic syndromes; e.g., chronic lymphocytic leukemia; e.g., plasma cell leukemia; e.g., hepatocellular cancer; e.g., mantlecell leukemia) in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- cancer e.g., multiple myeloma, e.g., multiple myeloma that is relapsed and/or refractory; e.g., Waldenström's macroglobulinemia; e.g., myelodysplastic syndromes; e.g., chronic lymphocytic leukemia; e.g., plasma
- methods for treating autoimmune disease in a patient include administering to the patient a formulation as described anywhere herein.
- methods for treating graft or transplant-related condition in a patient include administering to the patient a formulation as described anywhere herein.
- methods for treating neurodegenerative disease in a patient include administering to the patient a formulation as described anywhere herein.
- methods for treating fibrotic-associated condition in a patient include administering to the patient a formulation as described anywhere herein.
- methods for treating ischemic-related condition in a patient include administering to the patient a formulation as described anywhere herein.
- methods for treating an infection in a patient include administering to the patient a formulation as described anywhere herein.
- methods for treating disease associated with bone loss in a patient include administering to the patient a formulation as described anywhere herein.
- methods of preparing the formulations described herein include granulating (i) oprozomib, or a pharmaceutically acceptable salt thereof; (ii) a polymer; and optionally (iii) one or more pharmaceutically acceptable excipients selected from one or more binders and one or more surfactants in the presence of liquid comprising water.
- formulations prepared by the methods described herein are featured e.g., by granulation, e.g., wet granulation (eg., foam granulation, spray drying, lyophilization), direct compression, dry granulation (e.g., slugging, roller compaction), fluid bed granulation, extrusion spheronization, hot melt extrusion, pelletization, drug layering, coating.
- granulation e.g., wet granulation (eg., foam granulation, spray drying, lyophilization), direct compression, dry granulation (e.g., slugging, roller compaction), fluid bed granulation, extrusion spheronization, hot melt extrusion, pelletization, drug layering, coating.
- Embodiments can include one or more of the following features.
- the formulation can provide a reduced incidence or severity of one or more side effects (e.g., nausea/vomiting).
- side effects e.g., nausea/vomiting
- the formulation can provide oprozomib with time to peak plasma concentrations of from 55 to 124 minutes (e.g., 30 minutes to 180 minutes) as determined in dogs.
- the formulation can be in a form that is suitable for oral administration.
- the formulation can further include one or more pharmaceutically acceptable polymers.
- At least one of the one or more pharmaceutically acceptable polymers is a matrix-forming polymer (e.g., a hydrophilic matrix-forming polymer, such as hydroxy propyl methylcellulose).
- a hydrophilic matrix-forming polymer such as hydroxy propyl methylcellulose
- the hydroxy propyl methylcellulose can have an apparent viscosity that is greater than 120 cP (2% water at 20° C.).
- the hydroxy propyl methylcellulose can have an apparent viscosity of from 2500 cP (2% water at 20° C.) to 6000 cP (2% water at 20° C.).
- the formulation can include from 3.00 weight percent to 60.00 weight percent of the polymer (e.g., from 3.00 weight percent to 11.00 weight percent of the polymer; or from 13.00 weight percent to 22.00 weight percent of the polymer).
- the formulation can include from 15.00 weight percent to 70.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof (e.g., from 15.00 weight percent to 60.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, from 20.00 weight percent to 30.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, such as 25.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof; e.g., from 35.00 weight percent to 45.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, such as 40.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof).
- a pharmaceutically acceptable salt thereof e.g., from 15.00 weight percent to 60.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, from 20.00 weight percent to 30.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, such as 25.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof; e
- the formulation can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulation can include from 20.00 weight percent to 30.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof; and 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof or 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulation can include from 35.00 weight percent to 45.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof; and 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the oprozomib, or pharmaceutically acceptable salt thereof can be a crystalline solid.
- the oprozomib, or pharmaceutically acceptable salt thereof can be an amorphous solid.
- the formulation can further include one or more fillers.
- the one or more fillers can be selected from microcrystalline cellulose, lactose monohydrate, dibasic calcium phosphate (“DCP”), sucrose, glucose, mannitol, and sorbitol (e.g., microcrystalline cellulose and lactose monohydrate).
- DCP dibasic calcium phosphate
- sucrose sucrose
- glucose mannitol
- sorbitol e.g., microcrystalline cellulose and lactose monohydrate
- the formulation can further include one or more wetting agents (e.g., sodium laurel sulfate).
- Wetting agents can include surfactants or other surface active agents.
- the formulation can further include one or more lubricants (e.g., magnesium stearate).
- lubricants e.g., magnesium stearate.
- the formulation can include:
- composition can include:
- Component Weight percent Oprozomib or a pharmaceutically 15.00 to 60.00 acceptable salt thereof
- the formulation can be a solid dosage form (e.g., a tablet).
- the tablet can have a thickness of from 4.80 millimeters to 5.10 millimeters.
- the tablet can have a hardness of from 10.00 to 35.00 Kp, e.g., 10.00 to 20.00 Kp.
- a single dose of the formulation to a dog can produce dose-normalized peak plasma concentration (C max /D) of oprozomib of 15.2 ⁇ 3.3 (ng/mL)/(mg/kg) (mean standard error of the mean) for a formulation containing 100 mg of oprozomib.
- C max /D dose-normalized peak plasma concentration
- Daily administration of the formulation to a dog can produce a dose-normalized area under the concentration time curve to the last time point (AUC/D) of oprozomib of 0.670 ⁇ 0.110 (min* ⁇ g/mL)/(mg/kg).
- the formulation can be stable upon actual or simulated storage at 40° C./75% relative humidity for at least 3 months.
- the formulation can be stable upon actual or simulated storage at 40° C./75% relative humidity for at least 6 months.
- the formulation can be prepared by wet granulation or dry granulation.
- FIG. 1 is a graph showing the release profile of formulations (see Table 1) that release more than 80% of oprozomib within less than 60 minutes. These formulations exhibit a conventional immediate release profile.
- FIG. 2 shows an XRPD (X-ray powder diffraction) pattern of a crystalline form of oprozomib that is described in, e.g., US-2012-0077855.
- FIG. 3 shows a DSC (differential scanning calorimetry) thermogram of a crystalline form of oprozomib that is described in, e.g., US-2012-0077855.
- FIG. 4 shows a thermogravimetric (TG) thermogram of a crystalline form of oprozomib that is described in, e.g., US-2012-0077855.
- FIG. 5 is a graph showing the dissolution profiles of oprozomib extended release (“ER”) tablet formulations (100 mg strength) prepared with Methocel® K100 LV Premium-CR grade of HPMC.
- ER oprozomib extended release
- FIG. 6 is a graph showing the dissolution profiles of oprozomib ER tablet formulations (100 mg strength) prepared with Methocel® K4M Premium-CR grade of HPMC.
- FIG. 7 is a graph showing the dissolution profiles of oprozomib ER tablet formulations with 200 mg strength.
- FIG. 8 is a table showing properties of Methocel®.
- FIG. 9 is a dissolution profile graph showing dissolution comparison for 6004-22-ER5 tablets prepared at 50 mg and 100 mg strengths.
- FIG. 10 is a dissolution profile graph showing dissolution comparison for tablets prepared with 6008-15-ER8-100 mg and 6004-34-HDER2-200 mg strengths.
- FIG. 11 is a dissolution profile graph showing effect of API lot on dissolution profile of HDER tablet formulations.
- FIG. 12 is a dissolution profile graph showing batch to batch variability of ER8 formulations prepared using different API lots.
- FIG. 13 is a dissolution profile graph showing the effect of compression force on the dissolution of oprozomib from ER2 formulations.
- FIG. 14 is a dissolution profile graph showing the effect of paddle rpm on the dissolution of oprozomib from ER5 tablet formulations.
- FIG. 15 shows pharmacokinetic data obtained for both product in capsule and ER oprozomib formulations when administered to dogs.
- FIG. 16 shows pharmacodynamic data obtained for ER oprozomib formulations when administered to dogs.
- FIG. 17A-B shows emesis events following oral administration of different oprozomib formulations.
- FIG. 18 includes Tables 5-8, which provide representative formulations.
- FIG. 19 includes Tables 12-15, which provide stability data for the formulations.
- FIG. 20 includes Tables 16-27, which provide stability data for the formulations.
- FIG. 21 illustrates the dissolution profile of two GRS-EFS formulations.
- FIG. 22 includes Tables 29 and 30, which provide representative formulations.
- FIG. 23 includes Table 32, which provides the composition of various evaluated formulations.
- FIG. 24 illustrates the mean dissolution profile of 270 mg ER9 tablets.
- modified release pharmaceutical formulations e.g., extended release pharmaceutical formulations; e.g., solid dosage forms, e.g., tablets
- extended release pharmaceutical formulations e.g., solid dosage forms, e.g., tablets
- the formulations described herein include one or more components that modify the rate at which oprozomib is released from the formulation into the body.
- the one or more components can be present in the core of the formulation and/or in a coating(s) that surrounds the formulations.
- the one or more components that modify the rate at which oprozomib is released from the formulation into the body can be one or more pharmaceutically acceptable polymers.
- the one or more pharmaceutically acceptable polymers can be any hydrophilic or lipophilic based controlled release polymers and excipients derived from natural, synthetic and/or semi-synthetic sources.
- the one or more pharmaceutically acceptable polymers can be one or more matrix-forming polymers, e.g., one or more hydrophilic matrix-forming polymers.
- Drug release from a hydrophilic matrix based extended release formulations is a dynamic controlled-release system that is believed to involve polymer wetting, polymer hydration, gel formation, swelling, and polymer dissolution. At the same time, other soluble excipients will also wet, dissolve, and diffuse out of the matrix while insoluble materials will be held in place until the surrounding polymer/excipient/drug complex erodes or dissolves away. While not wishing to be bound by theory, it is believed that the water-soluble polymer, present throughout the dosage form (e.g., tablet), hydrates on the outer tablet surface to form a gel layer. Since oprozomib is soluble in aqueous solvents, the rate of drug release is determined by diffusion through the gel and by the rate of dosage form (e.g., tablet) erosion.
- the one or more hydrophilic matrix-forming polymers is hydroxy propyl methylcellulose (“HPMC”).
- the HPMC is selected on the basis of its apparent viscosity.
- the HPMC apparent viscosity is equal to or greater than 100 centipoise (“cP”) (2% water at 20° C.), e.g., equal to or greater than 120 cP (2% water at 20° C.).
- cP centipoise
- 120 cP 2% water at 20° C.
- HPMC Methocel K100TM. (Colorcon Inc., USA).
- the HPMC apparent viscosity is from 2500 cP (2% water at 20° C.) to 6000 cP (2% water at 20° C.).
- a non-limiting example of such an HPMC is Methocel K4MTM. (Colorcon Inc., USA).
- the viscosity of HPMC is proportional to molecular weight or chain length, and to concentration. Commercial designation of these products may optionally be determined by viscosity values for 2% aqueous solutions at 20°, using a viscometer according to A.S.T.M Standards 1347-72 and D 2363-72 (American Society for Testing and Materials, Philadelphia). This method involves the use of Ubbelhode tubes, which require only a small test sample, one type for low viscosity and one for high viscosity. The viscometer is placed in a water bath at 20° C.+0.1° C. and the length of time required to deliver a given volume between index marks through a tube of specified capillary size is measured. ° The time in seconds is then converted to centipoise.
- the one or more pharmaceutically acceptable polymers can be a mixture of one or more matrix-forming polymers, e.g., one or more hydrophilic matrix-forming polymers, and one or more insoluble polymers, e.g., one or more ammoniomethacrylate copolymers.
- GRS gastro-retentive drug delivery systems
- GRS formulations may be suitable for drugs which have a narrow absorption window and are primarily absorbed in the upper gastro-intestinal tract such as the stomach, duodenum and upper jejunum and also suitable for drugs which are degraded or actively metabolized in the colonic area.
- GRS formulations can be formulated as a floating system (effervescent and non-effervescent systems), high density sinking system, expandable system, mucoadhesive system, or a combination of these systems.
- the drug can be formulated as an effervescent floating system (EFS).
- EFS effervescent floating system
- Various effervescent components can be included such as sodium bicarbonate, citric acid, stearic acid, and combinations thereof.
- the effervescent component is sodium bicarbonate.
- the tablet matrices are formulated such that carbon dioxide is liberated by the acidity of the gastric contents of the stomach and is entrapped in the hydro-colloidal matrix producing an upward motion of the dosage form. The liberated gas then functions to maintain the buoyancy of the dosage form and keep the tablet floating.
- a formulation can be developed that will float to the top of the stomach fluid and be retained in the stomach for a sufficient period of time to release the drug in a controlled manner.
- the formulation can float within 1 to 60 seconds of entrance into the stomach and will remain floating for about 8 to 16 hours (e.g., about 12 hours) before moving out of the stomach.
- Drug release from a hydrophilic matrix based GRS-EFS formulation is a dynamic controlled-release system involving effervescence (carbon dioxide release), polymer wetting, polymer hydration, gel formation, floating, swelling, and polymer dissolution.
- effervescence carbon dioxide release
- other soluble excipients or drugs will also wet, dissolve, and diffuse out of the matrix while insoluble materials will be held in place until the surrounding polymer/excipient/drug complex erodes or dissolves away.
- the mechanisms by which drug release is controlled in matrix tablets are dependent on many variables. Without being bound by theory, it is believed that the water-soluble polymer, present throughout the tablet, hydrates on the outer tablet surface to form a gel layer. Since oprozomib is soluble in aqueous solvents, the rate of drug release is determined by diffusion through the gel and by the rate of tablet erosion.
- the one or more hydrophilic matrix-forming polymers is hydroxy propyl methylcellulose (“HPMC”).
- HPMC hydroxy propyl methylcellulose
- the one or more ammoniomethacrylate copolymer is Eudragit.
- formulations described herein can include one or more of the following:
- the formulations can include from 3.00 weight percent to 60.00 weight percent (e.g., from 3.00 weight percent to 50.00 weight percent, from 3.00 weight percent to 45.00 weight percent, from 3.00 weight percent to 40.00 weight percent, from 3.00 weight percent to 30.00 weight percent, from 3.00 weight percent to 20.00 weight percent, from 4.00 weight percent to 12.00 weight percent, from 6.00 weight percent to 10.00 weight percent) of the one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- one or more polymers e.g., hydrophilic matrix-forming polymers, e.g., HPMC
- the formulations can include from 3.00 weight percent to 11.00 weight percent (e.g., from 7.00 weight percent or from 8.55 weight percent) of the one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- one or more components that modify the rate at which oprozomib is released from the formulation into the body e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC.
- the formulations can include from 13.00 weight percent to 22.00 weight percent (e.g., from 17.50 weight percent) of the one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- one or more components that modify the rate at which oprozomib is released from the formulation into the body e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC.
- any one or more of the features described throughout section [V][A][1] can be combined with any one or more of the features described throughout section [V][A][2].
- Oprozomib can be prepared, e.g., according to the synthetic route and procedures delineated in Example 1.
- “oprozomib” without a modifier such as “in the form of a pharmaceutically acceptable salt” is intended to refer to the free-base form of oprozomib.
- the formulations include oprozomib.
- the formulations include oprozomib in the form of a pharmaceutically acceptable salt.
- pharmaceutically acceptable salt refers to the relatively non-toxic, inorganic and organic acid addition salts of the inhibitor(s). These salts can be prepared in situ during the final isolation and purification of the inhibitor(s), or by separately reacting a purified inhibitor(s) in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed.
- Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, laurylsulphonate salts, and amino acid salts, and the like.
- sulfate bisulfate
- phosphate nitrate
- acetate valerate
- oleate palmitate
- stearate laurate
- benzoate lactate
- phosphate tosylate
- citrate maleate
- fumarate succinate
- tartrate naphthylate
- mesylate glucoheptonate
- lactobionate lactobionate
- laurylsulphonate salts
- the formulations include both oprozomib and oprozomib in the form of a pharmaceutically acceptable salt.
- the formulations include oprozomib.
- the formulations include amorphous oprozomib.
- the formulations include one or more crystalline forms of oprozomib.
- An example of such a crystalline form of oprozomib is described in, e.g., US-2012-0077855, which is incorporated herein by reference in its entirety.
- Said crystalline form can include any one or more of the following features.
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes one of the following characteristic peaks expressed in degrees 2 ⁇ : 9.4 (or about 9.4); 24.3 (or about 24.3); 11.1 (or about 11.1); or 15.3 (or about 15.3).
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes any two, three or four of the following characteristic peaks: 9.4 (or about 9.4), 11.1 (or about 11.1), 15.3 (or about 15.3), and 24.3 (or about 24.3) (each expressed in degrees 2 ⁇ ).
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes the characteristic peak expressed in degrees 2 ⁇ at 9.4 (or about 9.4) and one of the following characteristic peaks: (i) the characteristic peak expressed in degrees 2 ⁇ at 24.3 (or about 24.3); or (ii) the characteristic peak expressed in degrees 2 ⁇ at 11.1 (or about 11.1); or (iii) the characteristic peak expressed in degrees 2 ⁇ at 15.3 (or about 15.3).
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes the characteristic peaks expressed in degrees 2 ⁇ at 9.4 (or about 9.4), 11.1 (or about 11.1), and 24.3 (or about 24.3).
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes the characteristic peaks expressed in degrees 2 ⁇ at 9.4 (or about 9.4), 11.1 (or about 11.1), 15.3 (or about 15.3), and 24.3 (or about 24.3).
- the X-ray powder diffraction pattern of the crystalline form of oprozomib can also include one (or more) lower intensity characteristic peaks.
- the relative intensities of these additional peak(s) are, in general, lower than the relative intensities associated with the four characteristic peaks described above.
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2 ⁇ at 9.4 (or about 9.4), 11.1 (or about 11.1), 15.3 (or about 15.3), 22.3 (or about 22.3), and 24.3 (or about 24.3).
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2 ⁇ at 9.4 (or about 9.4), 11.1 (or about 11.1), 12.7 (or about 12.7), 15.3 (or about 15.3), 22.3 (or about 22.3), 24.3 (or about 24.3), and 28.3 (or about 28.3).
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2 ⁇ at 9.4 (or about 9.4), 11.1 (or about 11.1), 12.7 (or about 12.7), 15.3 (or about 15.3), 20.9 (or about 20.9), 21.8 (or about 21.8), 22.3 (or about 22.3), 24.3 (or about 24.3), 28.3 (or about 28.3), 29.0 (or about 29.0), 29.7 (or about 29.7), and 30.5 (or about 30.5).
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2 ⁇ at 8.9 (or about 8.9); 9.4 (or about 9.4); 9.8 (or about 9.8); 10.6 (or about 10.6); 11.1 (or about 11.1); 12.7 (or about 12.7); 15.3 (or about 15.3); 17.7 (or about 17.7); 19.0 (or about 19.0); 20.6 (or about 20.6); 20.9 (or about 20.9); 21.6 (or about 21.6); 21.8 (or about 21.8); 22.3 (or about 22.3); 22.8 (or about 22.8); 24.3 (or about 24.3); 24.7 (or about 24.7); 26.0 (or about 26.0); 26.4 (or about 26.4); 28.3 (or about 28.3); 29.0 (or about 29.0); 29.7 (or about 29.7); 30.2 (or about 30.2); 30.5 (or about 30.5); 30.8 (or about 30.8); 32.1 (or about 32.1); 33.7 (or about 3
- the crystalline form of oprozomib can have an X-ray powder diffraction pattern that is substantially the same as that shown (substantially as shown) in FIG. 2 .
- the location(s) of characteristic peak(s) can be expressed to the nearest tenth (0.1) of a degree 2 ⁇ .
- the crystalline form of oprozomib can also have one or more of the following characteristic features.
- the crystalline form of oprozomib can have a differential scanning calorimetry pattern that includes a melting onset of about 140° C.
- the crystalline form of oprozomib can have a differential scanning calorimetry pattern that includes a sharp endothermic maximum at about 147° C.
- the crystalline form of oprozomib can have a differential scanning calorimetry pattern that includes a melting onset of about 140° C. and a sharp endothermic maximum at about 147° C.
- the crystalline form of oprozomib can have a differential scanning calorimetry pattern that is substantially the same as that shown (substantially as shown) in FIG. 3 .
- the crystalline form of oprozomib can have a melting point from about 140 to about 155° C. (e.g., from about 145 to about 150° C.).
- the crystalline compound having Formula (II) can exhibit from 0.0 to 0.3% weight loss in the temperature range of 25 to 125° C.
- the crystalline form of oprozomib can have a thermogravimetric analysis pattern that is substantially the same as that shown (substantially as shown) in FIG. 4 .
- the formulations include both amorphous oprozomib and one or more crystalline forms of oprozomib as described anywhere herein.
- the formulations include oprozomib in the form of a pharmaceutically acceptable salt.
- the formulations include amorphous oprozomib in the form of a pharmaceutically acceptable salt.
- the formulations include one or more crystalline forms of oprozomib in the form of a pharmaceutically acceptable salt.
- the formulations include both oprozomib and oprozomib in the form of a pharmaceutically acceptable salt.
- These embodiments can include any combination of amorphous oprozomib, one or more crystalline forms of oprozomib, amorphous oprozomib in the form of a pharmaceutically acceptable salt, and one or more crystalline forms of oprozomib in the form of a pharmaceutically acceptable salt, each as described anywhere herein.
- the formulations include from 15.00 weight percent to 60.00 weight percent (e.g., from 15.00 weight percent to 40.00 weight percent, from 20.00 weight percent to 50.00 weight percent, from 20.00 weight percent to 40.00 weight percent, from 20.00 weight percent to 30.00 weight percent, from 35.00 weight percent to 45.00 weight percent) of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 20.00 weight percent to 30.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations can include 25.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 35.00 weight percent to 45.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations can include 40.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 5.0 milligrams to 500.0 milligrams (e.g., from 5.0 milligrams to 300.0 milligrams, from 5.0 milligrams to 250.0 milligrams, from 25.0 milligrams to 150.0 milligrams, from 25.0 milligrams to 130.0 milligrams, from 25.0 milligrams to 125.0 milligrams, from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 130.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams, from 175.0 milligrams to 225.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations can include from 5.0 milligrams to 250.0 milligrams (e.g., from 25.0 milligrams to 150.0 milligrams, from 25.0 milligrams to 130.0 milligrams, from 25.0 milligrams to 125.0 milligrams, from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 130.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams, from 175.0 milligrams to 225.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- 5.0 milligrams to 250.0 milligrams e.g., from 25.0 milligrams to 150.0 milli
- the formulations can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 25.0 milligrams to 125.0 milligrams (e.g., from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- 25.0 milligrams to 125.0 milligrams e.g., from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligram
- the formulations can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 55.0 milligrams to 125.0 milligrams (e.g., from 55.0 milligrams to 65.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations can include 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 30.0 milligrams to 70.0 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 80.0 milligrams to 130.0 milligrams (e.g., 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations can include 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 175.0 milligrams to 225.0 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations can include 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- the formulations include from 20.00 weight percent to 30.00 weight percent (e.g., 25.00 weight percent) of oprozomib, or a pharmaceutically acceptable salt thereof; and from 25.0 milligrams to 150.0 milligrams (e.g., from 25.0 milligrams to 130.0 milligrams, from 25.0 milligrams to 125.0 milligrams, from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 130.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams, from 175.0 milligrams to 225.0 milligrams), e.g., 50.00 milligrams, 60.00 milligrams, 90.00 milligrams,
- the formulations include from 35.00 weight percent to 45.00 weight percent (e.g., 40.00 weight percent) of oprozomib, or a pharmaceutically acceptable salt thereof; and from 175.0 milligrams to 225.0 milligrams (e.g., 200.00 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- any one or more of the features described throughout section [V][B][2] can be combined with any one or more of the features described throughout section [V][B][3].
- the formulations further include one or more pharmaceutically acceptable excipients.
- Pharmaceutically acceptable excipients include any and all fillers, binders, surfactants (wetting agents), disintegrants, sugars, antioxidants, solubilizing or suspending agents, chelating agents, preservatives, buffering agents and/or lubricating agents, or combinations thereof, as suited to the particular dosage form desired and according to the judgment of the formulator.
- Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various pharmaceutically acceptable excipients used in preparing pharmaceutically acceptable formulations and known techniques for the preparation thereof.
- the weight percent of the one or more pharmaceutically acceptable excipients varies with the weight percent and/or strength or purity of the oprozomib, or a pharmaceutically acceptable salt thereof; and, in some instances, the amount of the amount of oprozomib, or a pharmaceutically acceptable salt thereof, and the amount(s) of one or more other formulation components, e.g., a polymer component, e.g., HPMC.
- the formulations include one or more fillers.
- the term “filler” refers to a pharmaceutically acceptable substance that forms the bulk of a tablet when the amount of the oprozomib, or a pharmaceutically acceptable salt thereof (and, in some instances, the amount of the amount of oprozomib, or a pharmaceutically acceptable salt thereof, and the amount(s) of one or more other formulation components, e.g., a polymer component, e.g., HPMC) cannot provide this bulk (see The Theory and Practice of Industrial Pharmacy , Third Edition. Leon Lachman, Herbert Lieberman, and Joseph Kanig, editors. Lea & Febiger, Philadelphia. 1986, page 325).
- Non-limiting examples of fillers include microcrystalline cellulose, lactose monohydrate, dibasic calcium phosphate (“DCP”), sucrose, glucose, mannitol, and sorbitol (e.g., microcrystalline cellulose and lactose monohydrate).
- DCP dibasic calcium phosphate
- sucrose sucrose
- glucose mannitol
- sorbitol e.g., microcrystalline cellulose and lactose monohydrate
- the formulations can include two or more fillers.
- the fillers can include microcrystalline cellulose (e.g., Avicel PH101 or Avicel PH102) and lactose monohydrate (e.g., Lactose 312 or Lactose 316).
- the formulations can include from 35.00 weight percent to 75.00 weight percent (e.g., from 40.00 weight percent to 70.00 weight percent, from 40.00 weight percent to 60.00 weight percent, from 40.00 weight percent to 50.00 weight percent, from 60.00 weight percent to 70.00 weight percent) of the one or more fillers.
- the formulations can include about 48.5 weight percent of the one or more fillers or 66.50 weight percent of the one or more fillers or 64.95 weight percent of the one or more fillers.
- the weight percent ratio of the one or more fillers to the oprozomib, or a pharmaceutically acceptable salt thereof can be from 0.9 to 3.0.
- the weight percent ratio of the one or more fillers to the oprozomib, or a pharmaceutically acceptable salt thereof can be 1.2, 1.9, or 2.7.
- the formulations include one or more wetting agents.
- wetting agent refers to a pharmaceutically acceptable surface active agent (or surfactant) having a hydrophilic and a hydrophobic segment, which when added to water or solvents, lowers the surface tension of the medium in which it is dissolved.
- Non-limiting examples of wetting agents include alkyl sulfate salts (e.g., sodium lauryl sulfate, sometimes referred to as sodium dodecyl sulfate); alkyl ether sulfate salts (e.g., sodium lauryl ether sulfate); sodium sulphosuccinates (e.g., docusate sodium, sometimes referred to as sodium dioctyl sulphosuccinate); alkylbenzene sulphonic acid salts (e.g., linear alkylbenzene sulphonic acid salts); alpha olefin sulphonates; or phosphate esters.
- An exemplary wetting agent is sodium laurel sulfate salts (e.g., sodium lauryl sulfate, sometimes referred to as sodium dodecyl sulfate); alkyl ether sulfate salts (e.g., sodium lauryl ether
- the formulations include from about 0.50 weight percent to about 5.00 weight percent (e.g., from about 0.50 weight percent to about 3.00 weight percent, from about 0.50 weight percent to about 1.50 weight percent, e.g., 1.00 weight percent) of the one or more wetting agents.
- the formulations include one or more lubricants.
- lubricant refers to a pharmaceutically acceptable substance that reduces the friction associated with tablet ejection between the walls of the tablet and the walls of a cavity used to form the tablet (see The Theory and Practice of Industrial Pharmacy , Third Edition. Leon Lachman, Herbert Lieberman, and Joseph Kanig, editors. Lea & Febiger, Philadelphia. 1986, page 328).
- Suitable lubricants include magnesium stearate; metal stearates, glyceryl behenate, sodium stearyl fumarate, hydrogenated vegetable oils, or fatty acids.
- An exemplary lubricant is magnesium stearate.
- the formulations can include from about 0.10 weight percent to about 3.00 weight percent (e.g., from 0.10 weight percent to about 2.00 weight percent, from 0.10 weight percent to about 1.00 weight percent, e.g., 0.5 weight percent) of a lubricant.
- the formulations include materials, which are both lubricated (can function as a lubricant) and can function as a filler (e.g., siliconized MCC). These materials can be present in amounts as described above and/or in section [V][C][2].
- any one or more of the features described throughout section [V][C][1] can be combined with any one or more of the features described throughout sections [V][C][2], or [V][C][3], or [V][C][4].
- any one or more of the features described throughout section [V][C][1] can be combined with any one or more of the features described throughout sections [V][C][2] and [V][C][3] or [V][C][4].
- any one or more of the features described throughout section [V][C][1] can be combined with any one or more of the features described throughout sections [V][C][2], [V][C][3] and [V][C][4].
- the formulations include:
- one or more components that modify the rate at which oprozomib is released from the formulation into the body e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- the formulations described above can include any one or more of the features described throughout sections [V][A][1] and/or [V][A][2] and/or [V][A][3].
- formulations described above can include any one or more of the features described throughout sections [V][B][2] and/or [V][B][3] and/or [V][B][4].
- formulations described above can include:
- formulations described above include:
- one or more components that modify the rate at which oprozomib is released from the formulation into the body e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC, ammoniomethacrylate copolymers, and mixtures thereof; and
- one or more pharmaceutically acceptable excipients e.g., one or more fillers and/or one or more wetting agents and/or one or more lubricants.
- formulations described above can include:
- the formulations described above can include any one or more of the features described throughout sections [V][A][1] and/or [V][A][2] and/or [V][A][3].
- formulations described above can include any one or more of the features described throughout sections [V][B][2] and/or [V][B][3] and/or [V][B][4].
- the formulations described above can include any one or more of the features described throughout sections [V][C][1] and/or [V][C][2] and/or [V][C][3] and/or [V][C][4] and/or [V][C][5].
- formulations described above can include:
- any one or more of the features described throughout section [V] above can be combined with any one or more of the features described throughout sections [III] and/or [IV] above.
- oral administration of the formulations is preferred, and the formulations can be in any form that is suitable for oral administration (e.g., any conventional oral dosage forms including, but not limited to, solid dosage forms such as a tablet, a pill, a hard or soft capsule, a dragee, a lozenge, a cachet, a sachet, a powder (e.g., dispensable powder), granules; and liquid preparations such as syrups, slurries, gels, pellets, particulates, elixirs, emulsions and aqueous suspensions, dispersions, solutions, and concentrated drops, or any other form reasonably adapted for oral administration).
- any conventional oral dosage forms including, but not limited to, solid dosage forms such as a tablet, a pill, a hard or soft capsule, a dragee, a lozenge, a cachet, a sachet, a powder (e.g., dispensable powder), granules; and liquid preparations
- the formulations can be in the form of a discrete, solid oral dosage unit (e.g. a capsule, a tablet, or a dragee) containing a predetermined amount of any one or more of the components described herein, e.g., as described throughout section [V].
- a discrete, solid oral dosage unit e.g. a capsule, a tablet, or a dragee
- a predetermined amount of any one or more of the components described herein e.g., as described throughout section [V].
- the formulations can be in the form of a tablet. Such forms can be shaped and dimensioned as desired. In certain embodiments, the formulations can be in the form of a tablet that is capsule-shaped. In some embodiments, the tablet can be a modified capsule shaped core tablet. In certain embodiments, the formulations can be in the form of a tablet having a thickness of from 2.0 to 12.0 millimeters (mm) (e.g., from 2.0 to 6.0 millimeters, from 4.0 to 6.0 millimeters, from 4.80 millimeters to 5.10 millimeters).
- mm millimeters
- the formulations can be in the form of a “compressed tablet,” which as used herein refers to a plain, uncoated tablet for oral ingestion.
- Compressed tablet are typically prepared by a single compression or by pre-compaction tapping followed by a final compression (e.g., using a Carver press, rotary press, single station tablet press).
- the tablets can be scored, printed, and/or debossed or embossed with desired identifier markings.
- the tablets can have a hardness of from 10.0 kp to 35.0 kp (e.g., from 10.0 kp to 25.0 kp, from 11.0 kp to 18.0 kp, from 12.0 kp to 15.0 kp).
- the tablet can be a coated tablet.
- tablets can also be coated with a conventional coating material such as OpadryTM White 85F18422 (or another color).
- the coating is present from 1.00 to 5.00 weight percent of the core tablet.
- the coating can be present at 3.00 weight percent.
- the weight of the tablet can be from 5 milligrams to 1,500 milligrams (e.g., 5 milligrams to 1,000 milligrams; from 5 milligrams to 600 milligrams; e.g., 50 milligrams, 100 milligrams, 200 milligrams, 400 milligrams, or 500 milligrams).
- the formulations can be prepared by any suitable and conventional method of pharmacy known in the art, which includes the step of bringing into association any one or more of the components described herein, e.g., as described throughout section [V].
- Methods of preparation can include one or a combination of methods including: (1) dry mixing, (2) direct compression, (3) milling, (4) dry or non-aqueous granulation, (5) wet granulation, or (6) fusion. See, e.g., Lachman et al., The Theory and Practice of Industrial Pharmacy (1986).
- the formulations can be obtained, for example, by performing one or more of the following steps: (i) combining (e.g., uniformly and intimately admixing so as to disperse the active ingredient evenly throughout the composition, e.g., to facilitate subdivision of the formulation into unit dosage forms) the active ingredient, surfactant(s), and any other component(s) described herein to provide a mixture; (ii) screening, sieving, grinding, and/or milling the resulting mixture; (iii) processing the mixture of granules, after adding suitable auxiliaries, if desired; (iv) shaping and optionally coating the product to obtain tablets or dragee cores; or (v) adding the processed formulation to a vessel suitable for oral administration, such as a capsule.
- combining e.g., uniformly and intimately admixing so as to disperse the active ingredient evenly throughout the composition, e.g., to facilitate subdivision of the formulation into unit dosage forms
- the active ingredient e.g., to facilitate subdivision of the formulation
- the formulations can be prepared using wet granulation techniques known in the art, which can include the steps of milling and sieving of the ingredients, dry powder mixing, wet massing, granulation and final grinding.
- wet granulation techniques such as high shear granulation, fluid bed granulation, extrusion spheronization etc. can better accommodate the micronized active ingredients and can result in formulations having enhanced powder flow (for encapsulation) and dissolution properties.
- compressed tablets can be prepared by compressing, in a suitable machine, the formulation in a free-flowing form, such as a powder or granules. Molded tablets can be made by molding, in a suitable machine, the powdered formulation moistened with an inert liquid diluent.
- formulations described herein can have any one or more of the following properties.
- less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 2 hours, e.g., after 4 hours, after 6 hours, after 8 hours, or after 10 hours.
- less than 20% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 1 hour.
- less than 30% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 1 hour.
- the formulations can exhibit any one, two, three, four, five, and/or six of the release profile properties delineated in Table 9 below.
- the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV).
- side effects e.g., NV
- the formulations provide a therapeutically effective plasma exposure of oprozomib resulting in near complete proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss).
- the formulations described herein can deliver oprozomib with time to peak plasma concentrations of from 55-124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs.
- the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be absorbed by these tissues prior to excretion and/or degradation of oprozomib.
- PK pharmacokinetic
- PD pharmacodynamic
- a single dose of the formulation to a dog produces dose-normalized peak plasma concentration (C max /D) of oprozomib of 15.2 ⁇ 3.3 (ng/mL)/(mg/kg) (mean ⁇ standard error of the mean) for a formulation containing 100 mg of oprozomib; and/or daily administration of the formulation to a dog produces a dose-normalized area under the concentration time curve to the last time point (AUC/D) of oprozomib of 0.670 ⁇ 0.110 (min* ⁇ g/mL)/(mg/kg) (mean ⁇ standard error of the mean).
- the formulations are stable upon actual or simulated storage at 40° C./75% relative humidity for at least 1 month (e.g., at least 2 months, at least 3 months, at least 6 months, at least 9 months).
- impurities PR-059176 (PR-176) and PR-487 were detected and measured.
- proteasome Orderly protein degradation is crucial to the maintenance of normal cell functions, and the proteasome is integral to the protein degradation process.
- the proteasome controls the levels of proteins that are important for cell-cycle progression and apoptosis in normal and malignant cells; for example, cyclins, caspases, BCL2 and NF- ⁇ B (Kumatori et al., Proc. Natl. Acad. Sci. USA (1990) 87:7071-7075; Almond et al., Leukemia (2002) 16: 433-443).
- inhibiting proteasome activity can translate into therapies to treat various disease states, such as malignant, non-malignant and autoimmune diseases, depending on the cells involved.
- proteasome inhibition has already been validated as a therapeutic strategy for the treatment of multiple myeloma. This could be due, in part, to the highly proliferative malignant cell's dependency on the proteasome system to rapidly remove proteins (Rolfe et al., J. Mol. Med. (1997) 75:5-17; Adams, Nature (2004) 4: 349-360). Therefore, certain embodiments of the invention relate to a method of treating a cancer, comprising administering to a subject in need of such treatment an effective amount of a proteasome inhibitor compound disclosed herein.
- cancer includes, but is not limited to, blood borne and solid tumors.
- Cancer refers to disease of blood, bone, organs, skin tissue and the vascular system, including, but not limited to, cancers of the bladder, blood, bone, brain, breast, cervix, chest, colon, endometrium, esophagus, eye, head, kidney, liver, lung, lymph nodes, mouth, neck, ovaries, pancreas, prostate, rectum, renal, skin, stomach, testis, throat, and uterus.
- Specific cancers include, but are not limited to, leukemia (acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), hairy cell leukemia), mature B cell neoplasms (small lymphocytic lymphoma, B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma (such as Waldenström's macroglobulinemia or indolent lymphoma), splenic marginal zone lymphoma, plasma cell myeloma, plasma cell leukemia, plasmacytoma, monoclonal immunoglobulin deposition diseases, heavy chain diseases, extranodal marginal zone B cell lymphoma (MALT lymphoma), nodal marginal zone B cell lymphoma (NMZL), a gastrointestinal tumor (e.g., a gastrointestinal stromal tumor (GIST)), follicular lymphom
- CMPDs chronic myeloproliferative diseases
- CMPDs are clonal haematopoietic stem cell disorders characterized by proliferation in the bone marrow of one or more of the myeloid lineages, resulting in increased numbers of granulocytes, red blood cells and/or platelets in the peripheral blood.
- proteasome inhibitors for the treatment of such diseases is attractive and being examined (Cilloni et al., Haematologica (2007) 92: 1124-1229).
- CMPD can include chronic myelogenous leukaemia, chronic neutrophilic leukaemia, chronic eosinophilic leukaemia, polycythaemia vera, chronic idiopathic myelofibrosis, essential thrombocythaemia and unclassifiable chronic myeloproliferative disease.
- An aspect of the invention is the method of treating CMPD comprising administering to a subject in need of such treatment an effective amount of a proteasome inhibitor compound disclosed herein.
- Myelodysplastic/myeloproliferative diseases such as chronic myelomonocytic leukaemia, atypical chronic myeloid leukemia, juvenile myelomonocytic leukaemia and unclassifiable myelodysplastic/myeloproliferative disease, are characterized by hypercellularity of the bone marrow due to proliferation in one or more of the myeloid lineages. Inhibiting the proteasome with a compound or composition as described herein can serve to treat these myelodysplatic/myeloproliferative diseases by providing a subject in need of such treatment an effective amount of the compound or composition.
- Myelodysplastic syndromes refer to a group of hematopoietic stem cell disorders characterized by dysplasia and ineffective haematopoiesis in one or more of the major myeloid cell lines. Targeting NF- ⁇ B with a proteasome inhibitor in these hematologic malignancies induces apoptosis, thereby killing the malignant cell (Braun et al. Cell Death and Differentiation (2006) 13:748-758).
- a further embodiment of the invention is a method to treat MDS comprising administering to a subject in need of such treatment an effective amount of a compound disclosed herein.
- MDS includes refractory anemia, refractory anemia with ringed sideroblasts, refractory cytopenia with multilineage dysplasia, refractory anemia with excess blasts, unclassifiable myelodysplastic syndrome and myelodysplastic syndrome associated with isolated del(5q) chromosome abnormality.
- Mastocytosis is a proliferation of mast cells and their subsequent accumulation in one or more organ systems.
- Mastocytosis includes, but is not limited to, cutaneous mastocytosis, indolent systemic mastocytosis (ISM), systemic mastocytosis with associated clonal haematological non-mast-cell-lineage disease (SM-AHNMD), aggressive systemic mastocytosis (ASM), mast cell leukemia (MCL), mast cell sarcoma (MCS) and extracutaneous mastocytoma.
- Another embodiment of the invention is a method to treat mastocytosis, comprising administering an effective amount of a compound or composition disclosed herein to a subject diagnosed with mastocytosis.
- NF- ⁇ B The proteasome regulates NF- ⁇ B, which in turn regulates genes involved in the immune and inflammatory response.
- NF- ⁇ B is required for the expression of the immunoglobulin light chain ⁇ gene, the IL-2 receptor ⁇ -chain gene, the class I major histocompatibility complex gene, and a number of cytokine genes encoding, for example, IL-2, IL-6, granulocyte colony-stimulating factor, and IFN- ⁇ (Palombella et al., Cell (1994) 78:773-785).
- the invention relates to methods of affecting the level of expression of IL-2, MHC-I, IL-6, TNF ⁇ , IFN- ⁇ or any of the other previously-mentioned proteins, each method comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein.
- the invention includes a method of treating an autoimmune disease in a mammal comprising administering a therapeutically effective amount of a compound or composition described herein.
- An “autoimmune disease” herein is a disease or disorder arising from and directed against an individual's own tissues.
- autoimmune diseases or disorders include, but are not limited to, inflammatory responses such as inflammatory skin diseases including psoriasis and dermatitis (e.g., atopic dermatitis); systemic scleroderma and sclerosis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); respiratory distress syndrome (including adult respiratory distress syndrome; ARDS); dermatitis; meningitis; encephalitis; uveitis; colitis; glomerulonephritis; allergic conditions such as eczema and asthma and other conditions involving infiltration of T cells and chronic inflammatory responses; atherosclerosis; leukocyte adhesion deficiency; rheumatoid arthritis; systemic lupus erythematosus (SLE); diabetes mellitus (e.g., Type I diabetes mellitus or insulin dependent diabetes mellitus); multiple sclerosis; Reynaud's syndrome; autoimmune thyroiditis; allergic encephal
- the invention relates to a method of using the compound as an immunomodulatory agent for inhibiting or altering antigen presentation in a cell, comprising exposing the cell (or administering to a subject) to a compound described herein.
- a method of treating graft or transplant-related diseases such as graft-versus-host disease or host versus-graft disease in a mammal, comprising administering a therapeutically effective amount of a compound described herein.
- graft refers to biological material derived from a donor for transplantation into a recipient. Grafts include such diverse material as, for example, isolated cells such as islet cells; tissue such as the amniotic membrane of a newborn, bone marrow, hematopoietic precursor cells, and ocular tissue, such as corneal tissue; and organs such as skin, heart, liver, spleen, pancreas, thyroid lobe, lung, kidney, tubular organs (e.g., intestine, blood vessels, or esophagus). The tubular organs can be used to replace damaged portions of esophagus, blood vessels, or bile duct.
- isolated cells such as islet cells
- tissue such as the amniotic membrane of a newborn, bone marrow, hematopoietic precursor cells, and ocular tissue, such as corneal tissue
- organs such as skin, heart, liver, spleen, pancreas, thyroid lobe, lung, kidney, tubular organs
- the skin grafts can be used not only for burns, but also as a dressing to damaged intestine or to close certain defects such as diaphragmatic hernia.
- the graft is derived from any mammalian source, including human, whether from cadavers or living donors. In some cases, the donor and recipient is the same mammal.
- the graft is bone marrow or an organ such as heart and the donor of the graft and the host are matched for HLA class II antigens.
- Histiocytic and dendritic cell neoplasms are derived from phagocytes and accessory cells, which have major roles in the processing and presentation of antigens to lymphocytes. Depleting the proteasome content in dendritic cells has been shown to alter their antigen-induced responses (Chapatte et al. Cancer Res. (2006) 66:5461-5468).
- another embodiment of the invention comprises administering an effective amount of a compound or composition disclosed herein to a subject with histiocytic or dendritic cell neoplasm.
- Histiocytic and dendritic cell neoplasms include histiocytic sarcoma, Langerhans cell histiocytosis, Langerhans cell sarcoma, interdigitating dendritic cell sarcoma/tumor, follicular dendritic cell sarcoma/tumor and non-specified dendritic cell sarcoma.
- an embodiment of the invention includes the treatment of lymphoproliferative diseases (LPD) associated with primary immune disorders (PID) comprising administering an effective amount of the disclosed compound to a subject in need thereof.
- LPD lymphoproliferative diseases
- PID primary immune disorders
- lymphoproliferative disorders including B-cell and T-cell neoplasms and lymphomas
- primary immunodeficiency syndromes and other primary immune disorders infection with the human immunodeficiency virus (HIV), iatrogenic immunosuppression in patients who have received solid organ or bone marrow allografts, and iatrogenic immunosuppression associated with methotrexate treatment.
- HIV human immunodeficiency virus
- PIDs commonly associated with LPDs are ataxia telangiectasia (AT), Wiskott-Aldrich syndrome (WAS), common variable immunodeficiency (CVID), severe combined immunodeficiency (SCID), X-linked lymphoproliferative disorder (XLP), Nijmegen breakage syndrome (NBS), hyper-IgM syndrome, and autoimmune lymphoproliferative syndrome (ALPS).
- AT ataxia telangiectasia
- WAS Wiskott-Aldrich syndrome
- CVID common variable immunodeficiency
- SCID severe combined immunodeficiency
- XLP X-linked lymphoproliferative disorder
- NBS Nijmegen breakage syndrome
- hyper-IgM syndrome and autoimmune lymphoproliferative syndrome
- Additional embodiments of the invention relate to methods for affecting the proteasome-dependent regulation of oncoproteins and methods of treating or inhibiting cancer growth, each method comprising exposing a cell (in vivo, e.g., in a subject, or in vitro) to the proteasome inhibitor composition disclosed herein.
- HPV-16 and HPV-18-derived E6 proteins stimulate ATP- and ubiquitin-dependent conjugation and degradation of p53 in crude reticulocyte lysates.
- the recessive oncogene p53 has been shown to accumulate at the nonpermissive temperature in a cell line with a mutated thermolabile E1. Elevated levels of p53 may lead to apoptosis.
- the invention relates to a method for treating p53-related apoptosis, comprising administering to a subject an effective amount of a proteasome inhibitor composition disclosed herein.
- Another aspect of the invention relates to the use of proteasome inhibitor compositions disclosed herein for the treatment of neurodegenerative diseases and conditions, including, but not limited to, stroke, ischemic damage to the nervous system, neural trauma (e.g., percussive brain damage, spinal cord injury, and traumatic damage to the nervous system), multiple sclerosis and other immune-mediated neuropathies (e.g., Guillain-Barre syndrome and its variants, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, and Fisher Syndrome), HIV/AIDS dementia complex, axonomy, diabetic neuropathy, Parkinson's disease, Huntington's disease, multiple sclerosis, bacterial, parasitic, fungal, and viral meningitis, encephalitis, vascular dementia, multi-infarct dementia, Lewy body dementia, frontal lobe dementia such as Pick's disease, subcortical dementias (such as Huntington or progressive supranuclear palsy), focal cortical atrophy syndromes (such as
- Alzheimer's disease is characterized by extracellular deposits of ⁇ -amyloid protein ( ⁇ -AP) in senile plaques and cerebral vessels.
- ⁇ -AP is a peptide fragment of 39 to 42 amino acids derived from an amyloid protein precursor (APP). At least three isoforms of APP are known (695, 751, and 770 amino acids). Alternative splicing of mRNA generates the isoforms; normal processing affects a portion of the ⁇ -AP sequence, thereby preventing the generation of ⁇ -AP. It is believed that abnormal protein processing by the proteasome contributes to the abundance of ⁇ -AP in the Alzheimer brain.
- the APP-processing enzyme in rats contains about ten different subunits (22 kDa-32 kDa).
- the 25 kDa subunit has an N-terminal sequence of X-Gln-Asn-Pro-Met-X-Thr-Gly-Thr-Ser, which is identical to the ⁇ -subunit of human macropain (Kojima, S. et al., Fed. Eur. Biochem. Soc., (1992) 304:57-60).
- the APP-processing enzyme cleaves at the Gln 15 -Lys 16 bond; in the presence of calcium ion, the enzyme also cleaves at the Met ⁇ 1 -Asp 1 bond and the Asp 1 -Ala 2 bond to release the extracellular domain of ⁇ -AP.
- One aspect of the invention therefore, relates to a method of treating Alzheimer's disease, comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein.
- Such treatment includes reducing the rate of ⁇ -AP processing, reducing the rate of ⁇ -AP plaque formation, reducing the rate of ⁇ -AP generation, and reducing the clinical signs of Alzheimer's disease.
- a proteasome inhibitor compound or composition disclosed herein can be useful for treating amyloidosis. Accordingly, provided herein is a method for treating amyloidosis is a subject, comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein.
- Fibrosis is the excessive and persistent formation of fibrous connective tissue resulting from the hyperproliferative growth of fibroblasts and is associated with activation of the TGF- ⁇ signaling pathway. Fibrosis involves extensive deposition of extracellular matrix and can occur within virtually any tissue or across several different tissues. Normally, the level of intracellular signaling protein (Smad) that activates transcription of target genes upon TGF- ⁇ stimulation is regulated by proteasome activity (Xu et al., 2000).
- Smad intracellular signaling protein
- fibrotic conditions such as cystic fibrosis, injection fibrosis, endomyocardial fibrosis, idiopathic pulmonary fibrosis, myelofibrosis, retroperitoneal fibrosis, progressive massive fibrosis, nephrogenic systemic fibrosis.
- Other conditions that are often associated with fibrosis include cirrhosis, diffuse parenchymal lung disease, post-vasectomy pain syndrome, tuberculosis, sickle-cell anemia and rheumatoid arthritis.
- An embodiment of the invention is the method of treating a fibrotic or fibrotic-associated condition comprising administering an effective amount of the composition described herein to a subject in need of such treatment.
- the invention relates to the topical or systemic administration of a subject inhibitor to treat burns. Wound closure following surgery is often associated with disfiguring scars, which may be prevented by inhibition of fibrosis. Thus, in certain embodiments, the invention relates to a method for the prevention or reduction of scarring.
- LPS lipopolysaccharide
- TNF ⁇ lipopolysaccharide
- the first step in the activation of cells by LPS is the binding of LPS to specific membrane receptors.
- the ⁇ - and ⁇ -subunits of the 20S proteasome complex have been identified as LPS-binding proteins, suggesting that the LPS-induced signal transduction may be an important therapeutic target in the treatment or prevention of sepsis (Qureshi, N. et al., J. Immun . (2003) 171: 1515-1525). Therefore, in certain embodiments, the proteasome inhibitor composition may be used for the inhibition of TNF ⁇ to prevent and/or treat septic shock.
- Ischemia and reperfusion injury results in hypoxia, a condition in which there is a deficiency of oxygen reaching the tissues of the body. This condition causes increased degradation of I ⁇ -B ⁇ , thereby resulting in the activation of NF- ⁇ B (Koong et al., 1994). It has been demonstrated that the severity of injury resulting in hypoxia can be reduced with the administration of a proteasome inhibitor (Gao et al., 2000; Bao et al., 2001; Pye et al., 2003). Therefore, certain embodiments of the invention relate to a method of treating an ischemic condition or reperfusion injury comprising administering to a subject in need of such treatment an effective amount of the proteasome inhibitor compound disclosed herein.
- Such conditions or injuries include, but are not limited to, acute coronary syndrome (vulnerable plaques), arterial occlusive disease (cardiac, cerebral, peripheral arterial and vascular occlusions), atherosclerosis (coronary sclerosis, coronary artery disease), infarctions, heart failure, pancreatitis, myocardial hypertrophy, stenosis, and restenosis.
- acute coronary syndrome vulnerable plaques
- arterial occlusive disease cardiac, cerebral, peripheral arterial and vascular occlusions
- atherosclerosis coronary sclerosis, coronary artery disease
- infarctions heart failure
- pancreatitis myocardial hypertrophy
- stenosis stenosis
- restenosis examples of such conditions or injuries
- NF- ⁇ B also binds specifically to the HIV-enhancer/promoter.
- the HIV regulatory protein Nef of pbj14 differs by two amino acids in the region which controls protein kinase binding. It is believed that the protein kinase signals the phosphorylation of I ⁇ , triggering I ⁇ B degradation through the ubiquitin-proteasome pathway. After degradation, NF- ⁇ B is released into the nucleus, thus enhancing the transcription of HIV (Cohen, J., Science , (1995) 267:960).
- the invention relates to a method for inhibiting or reducing HIV infection in a subject, or a method for decreasing the level of viral gene expression, each method comprising administering to the subject an effective amount of a proteasome inhibitor compound or composition disclosed herein.
- Viral infections contribute to the pathology of many diseases.
- Heart conditions such as ongoing myocarditis and dilated cardiomyopathy have been linked to the coxsackievirus B3.
- specific proteasome subunits were uniformly up-regulated in hearts of mice which developed chronic myocarditis (Szalay et al, Am J Pathol 168:1542-52, 2006).
- Some viruses utilize the ubiquitin-proteasome system in the viral entry step where the virus is released from the endosome into the cytosol.
- the mouse hepatitis virus (MHV) belongs to the Coronaviridae family, which also includes the severe acute respiratory syndrome (SARS) coronavirus.
- the invention relates to a method for treating viral infection, such as SARS or hepatitis A, B, C, D and E, comprising contacting a cell with (or administering to a subject) an effective amount of a compound or composition disclosed herein.
- the disclosed compositions may be useful for the treatment of a parasitic infection, such as infections caused by protozoan parasites.
- a parasitic infection such as infections caused by protozoan parasites.
- the proteasome of these parasites is considered to be involved primarily in cell differentiation and replication activities (Paugam et al., Trends Parasitol. 2003, 19(2): 55-59).
- entamoeba species have been shown to lose encystation capacity when exposed to proteasome inhibitors (Gonzales, et al., Arch. Med. Res. 1997, 28, Spec No: 139-140).
- the administrative protocols for the proteasome inhibitor compositions are useful for the treatment of parasitic infections in humans caused by a protozoan parasite selected from Plasmodium sps.
- Trypanosoma sps. including T. cruzi , which causes Chagas' disease, and T. brucei which causes African sleeping sickness
- Leishmania sps. including L. amazonesis, L. donovani, L. infantum, L. mexicana , etc.
- Pneumocystis carinii a protozoan known to cause pneumonia in AIDS and other immunosuppressed patients
- Toxoplasma gondii Entamoeba histolytica, Entamoeba invadens , and Giardia lamblia .
- the disclosed proteasome inhibitor compositions are useful for the treatment of parasitic infections in animals and livestock caused by a protozoan parasite selected from Plasmodium hermani, Cryptosporidium sps., Echinococcus granulosus, Eimeria tenella, Sarcocystis neurona , and Neurospora crassa .
- a protozoan parasite selected from Plasmodium hermani, Cryptosporidium sps., Echinococcus granulosus, Eimeria tenella, Sarcocystis neurona , and Neurospora crassa .
- Other compounds that act as proteasome inhibitors in the treatment of parasitic diseases are described in WO 98/10779, which is incorporated herein in its entirety.
- the proteasome inhibitor compositions inhibit proteasome activity in a parasite without recovery in red blood cells and white blood cells.
- the long half-life of blood cells may provide prolonged protection with regard to therapy against recurring exposures to parasites.
- the proteasome inhibitor compositions may provide prolonged protection with regard to chemoprophylaxis against future infection.
- Prokaryotes have an equivalent to the eukaryote 20S proteasome particle. Although the subunit composition of the prokaryote 20S particle is simpler than that of eukaryotes, it has the ability to hydrolyze peptide bonds in a similar manner. For example, the nucleophilic attack on the peptide bond occurs through the threonine residue on the N-terminus of the ⁇ -subunits.
- an embodiment of this invention relates to a method of treating prokaryotic infections, comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein.
- Prokaryotic infections may include diseases caused by either mycobacteria (such as tuberculosis, leprosy or Buruli ulcer) or archaebacteria.
- proteasome inhibitors that bind to the 20S proteasome stimulate bone formation in bone organ cultures. Furthermore, when such inhibitors have been administered systemically to mice, certain proteasome inhibitors increased bone volume and bone formation rates over 70% (Garrett, I. R. et al., J. Clin. Invest . (2003) 111: 1771-1782), therefore suggesting that the ubiquitin-proteasome machinery regulates osteoblast differentiation and bone formation. Therefore, a disclosed proteasome inhibitor compound or composition may be useful in the treatment and/or prevention of diseases associated with bone loss, such as osteoporosis.
- the invention relates to a method for treating a disease or condition selected from cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss, comprising administering a compound or composition as disclosed herein.
- N-Boc phenylalanine-ketoepoxide 140 mg, 0.46 mmol was diluted with DCM (2 mL) and cooled to 0° C. To this solution was added trifluoroacetic acid (6 mL). The cooling bath was removed and the reaction stirred for 1 hour at which time TLC showed complete consumption of starting material. The resulting solution was concentrated under reduced pressure and placed under high vacuum to yield TFA salt of Compound (H).
- Amorphous Compound 1 (50 mg) was dissolved in acetonitrile (1 mL), then deionized water (2 mL) was added, and the solution brought to supersaturation by slowly evaporating off 1 mL over about 1-2 weeks. The resulting crystals were filtered, washed with 1 mL 1:2 acetonitrile-water, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (25 mg) with a melting point of 148° C.
- the characteristic DSC curve of the sample is shown in FIG. 3 as recorded on a TA Instruments Differential Scanning calorimeter 2920 at a heating rate of 10° C./minute.
- Amorphous Compound 1 (611 mg) was dissolved in tetrahydrofuran (5 mL), followed by addition of hexanes (5 mL) and the solution was seeded with crystalline polymorph Compound 1 as prepared in Example 2, and the solution brought to supersaturation by slowly evaporating off 5 mL over about 17 hours. The resulting crystals were filtered, washed with 1 mL 1:1 tetrahydrofuran-hexanes, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (150 mg) with a melting point of 147° C.
- Amorphous Compound 1 (176 mg) was dissolved in tetrahydrofuran (5 mL), then toluene (25 mL) was added. The solution was seeded with crystalline polymorph Compound 1 as prepared in Example 2, and the solution was brought to supersaturation by slowly evaporating off 20 mL over about 2 days. The resulting crystals were filtered, washed with 15 mL toluene, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (88 mg) with a melting point of 149° C.
- Amorphous Compound 1 (312 mg) was dissolved in toluene (50 mL), heated to about 100° C. to complete dissolution, then hexanes (50 mL) were added and the solution was seeded with crystalline polymorph Compound 1 as prepared in Example 2, and the solution brought to supersaturation by slowly evaporating off 60 mL over about 2 days. The resulting crystals were filtered, washed with 10 mL toluene, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (156 mg) with a melting point of 149° C.
- Amorphous Compound 1 (1.4 g) was dissolved in toluene (25 mL), heated to about 50° C. to complete dissolution, then brought to supersaturation by cooling to 22° C. and allowing the compound to crystallize for 12 hours. The resulting crystals were filtered, washed with 5 mL hexanes, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (0.94 g) with a melting point of 149° C.
- N-Boc phenylalanine-ketoepoxide (1.0 equivalent) was dissolved in DCM (3 L/kg of N-Boc phenylalanine-ketoepoxide) in a 3-neck round bottom flask under inert atmosphere and the solution was cooled in ice bath. Then, TFA (5.0 equivalents) was added at a rate to maintain the internal temperature below 10° C. The reaction mixture was then warmed to approximately 20° C. and stirred for 1 to 3 hours. MTBE (3.6 L/kg of N-Boc phenylalanine-ketoepoxide) was then added to the reaction mixture while maintaining mixture temperature below 25° C.
- Crude Compound 1 was precipitated by pouring the reaction mixture onto 8% sodium bicarbonate (40 L/kg of Compound (G)) and the suspension of crude Compound 1 was stirred for 12 hours at 20 to 25° C., followed by stirring at 0 to 5° C. for 1 hour.
- the white solid was filtered and rinsed with water (5 L/kg of Compound (G)).
- the white solid was then reslurried in water (15 L/kg) for 3 hours at 20 to 25° C., filtered and rinsed with water (5 L/kg of Compound (G)) and isopropyl acetate (2 ⁇ 2 L/kg of Compound (G)).
- the white solid was dried under vacuum at 45° C. to constant weight. Yield of crude Compound 1 was 65%, with HPLC purity of 97.2%.
- Crude Compound 1 was completely dissolved in isopropyl acetate (20 L/kg of crude Compound 1) by stirring and heating at 85° C. The solution was then hot filtered to remove any particulate matter and the solution was re-heated to 85° C. to provide clear solution. The clear solution was allowed to cool at 10° C. per hour to 65° C. before adding seed crystals. The solution was allowed to cool at 10° C. per hour to 20° C., when substantial crystallization of Compound 1 occurred. The suspension was stirred at 20° C. for 6 hours, followed by stirring at 0 to 5° C. for a minimum of 2 hours and filtration and rinsing with isopropyl acetate (1 L/kg of crude Compound 1). The purified Compound 1 was dried under vacuum at 45° C. for a minimum of 24 hours to constant weight. Yield of Compound 1 was 87%, with HPLC purity 97.2%.
- the reaction mixture was quenched by addition of pre-chilled saturated sodium bicarbonate (94 L/kg of Compound (G)), while maintaining internal temperature of less 10° C. The content was then transferred to a separatory funnel. The mixture was extracted with ethyl acetate (24 L/kg of Compound (G)), and the organic layer was washed with saturated sodium bicarbonate (12 L/kg of Compound (G)) and with saturated sodium chloride (12 L/kg of Compound (G).
- the organic layer was concentrated under reduced pressure with a bath temperature of less than 30° C. to 15 L/kg of Compound (G), followed by co-distillation with isopropyl acetate (2 ⁇ 24 L/kg of PR-022). Final volume was adjusted to 82 L/kg of Compound (G) with isopropyl acetate before heating to 60° C. to obtain a clear solution.
- the clear solution mixture was allowed to cool to 50° C. before adding seed crystals.
- the solution was allowed to cool to 20° C., when substantial crystallization of Compound 1 had occurred.
- the suspension was stirred at 0° C. for 12 hours before filtration and rinsing with isopropyl acetate (2 L/kg of Compound 1).
- Compound 1 was dried under vacuum at 20° C. for 12 hours to constant weight. Yield of Compound 1 was 48%, with HPLC purity of 97.4%.
- Tables 5-8 delineate the various extended release tablet formulations with 50 mg, 100 mg and 200 mg strengths. Since all the tablet formulations were manufactured manually by hand using the Carver press, the uniformity of the tablets prepared were monitored by measuring the thickness and weights of all the tablets and hardness on a few of them (Table 10). The desired tablet thickness was defined to be in the range of 4.80 to 5.10 mm as measured by the digital calipers. Tablets outside the desired thickness range were rejected. The tablet hardness is inversely proportional to the thickness (for the current working range) and the thickness and hardness of the tablets were well correlated. The desired average tablet hardness strength was between 12.00-15.00 Kp.
- ER5 formulations were prepared at 50 mg and 100 mg strengths and the release rate ( FIG. 9 ) was similar and the difference was statistically non-significant as determined by the student t-test and similarity factor.
- the release profiles of formulations ER8 and HDER2 ( FIG. 10 ) were also compared since both of them have the same polymer grade and percentage except for the drug to polymer ratios, but the release profile were found to be very similar with no significant difference.
- the effect of the API lot ( FIG. 11 ) and batch to batch variability ( FIG. 12 ) were also studied and no significant differences were observed.
- the release rates of the drug studied from the tablets compressed at three different compression forces were found to be similar ( FIG. 13 ).
- the paddle rotation speed during the dissolution at 75 rpm and 100 rpm didn't influence the release rate significantly ( FIG. 14 ).
- the C ma for ER3 was 63% lower, but it was not statistically significant (p>0.05).
- the ER formulations had a time to peak plasma concentrations of 55-124 minutes. Rapid potent inhibition of proteasome activity (20% of pre-dose) was observed for the ER formulations ( FIG. 16 ).
- ER formulations had statistically significant reduction in emesis events relative to PIC (p ⁇ 0.05) following a single 10 mg/kg dose ( FIG. 17 ).
- ER formulations caused less emesis events than the immediate formulations ( FIG. 17 ).
- the immediate formulations F1 and F2 and extended release formulations ER5 and ER8 caused similar number of emesis events. But following a 20 mg/kg dose, ER5 and ER8 had less emesis events than both F1 and F2.
- Patients are administered oprozomib formulated in a tablet form according to either a QD ⁇ 5 treatment schedule or QD ⁇ 2 weekly treatment schedule.
- QD ⁇ 5 means that patients receive oprozomib tablets once daily on days 1-5 of a 14-day treatment schedule.
- QD ⁇ 2 means that patients receive oprozomib tablets once daily on days 1, 2, 8, and 9 of a 14-day treatment schedule.
- Patients may be administered oprozomib formulated in a tablet where the patient receives oprozomib on days one through five of a seven day treatment schedule.
- Oprozomib Tablets packaged in high-density polyethylene (HDPE) bottles, were placed on long-term and accelerated stability under International Conference on Harmonisation (ICH) conditions.
- ICH International Conference on Harmonisation
- Table 33 A summary of the batches on stability and available stability data are provided in Table 33.
- Detailed stability data is provided in Tables 16-21 (see FIG. 20 ). The acceptance criteria shown in the tables are applicable to the results at the time the data was generated.
- Oprozomib GRS-EFS tablet formulations shown below in Table 28 were prepared using direct compression technique and their dissolution profiles are shown in FIG. 21 .
- High Shear Wet Granulation Tablet compression
- tablet film coating were primarily employed to develop the ER9 tablets.
- the process involves premixing the excipient blend with the API in the high shear granulator, followed by wet granulation at a predetermined spray rate, and wet massing of the formulation to obtain granulated material.
- the wet granulated material was then milled through a comil, dried in a fluid bed dryer to less than 2% moisture content, and milled again to obtain the desired particle size distribution of the final granules.
- the granules were further blended, lubricated, and compressed into modified capsule shaped core tablets.
- the cores were film coated to obtain the final product.
- the mean dissolution profile of the 90 mg ER5 CTM tablets was selected as the target dissolution profile for the ER9 optimization.
- a design of experiments (DOE) approach for optimization of excipients levels was conducted to identify the formulation with the desired dissolution profile.
- the optimization DOE was executed at 1 kg scale keeping the levels of OPZ, sodium lauryl sulfate (SLS), and magnesium stearate constant while varying the levels of hydroxypropyl methylcellulose (HPMC), microcrystalline cellulose (MCC), lactose, and water for granulation.
- HPMC hydroxypropyl methylcellulose
- MCC microcrystalline cellulose
- lactose lactose
- water for granulation To minimize the number of experiments, a ratio of MCC to lactose was used as a single factor in the study instead of having MCC and lactose as two separate factors.
- HPMC HPMC was evaluated between 5%-15% w/w, the MCC:lactose ratio was varied between 0.33 and 3.00, while the amount of water required to achieve granulation was evaluated between 30%-40%.
- 270 mg OPZ tablets (1080 mg total weight) from all formulations were coated with same coating (Opadry®II 85F18422) using the same coating process. All tablets were tested using a 2 stage dissolution method. Details of each formulation evaluated in the study are presented in FIG. 23 . The dissolution profile of 270 mg ER9 tablets is presented FIG. 24 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Hospice & Palliative Care (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Hematology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Otolaryngology (AREA)
- Physical Education & Sports Medicine (AREA)
- Psychiatry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Diabetes (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
This disclosure features modified release pharmaceutical formulations (e.g., extended release pharmaceutical formulations; e.g., solid dosage forms, e.g., tablets) that are useful for the oral administration of oprozomib, or a pharmaceutically acceptable salt thereof, to a human or animal subject as well as methods of making and using the formulations.
Description
- This disclosure features modified release pharmaceutical formulations (e.g., extended release pharmaceutical formulations; e.g., solid dosage forms, e.g., tablets) that are useful for the oral administration of oprozomib, or a pharmaceutically acceptable salt thereof, to a human or animal subject as well as methods of making and using the formulations.
- The proteasome has been validated as a therapeutic target, as demonstrated by the FDA approval of bortezomib, a boronic acid proteasome inhibitor, for the treatment of various cancer indications, including multiple myeloma; and more recently, carfilzomib, a tetra-peptide epoxy ketone-containing proteasome inhibitor, for the treatment of refractory multiple myeloma.
- Oprozomib (chemical structure shown below; also known as ONX 912) is an orally bioavailable (epoxy ketone-containing) tri-peptide irreversible proteasome inhibitor, which has demonstrated preclinical anti-tumor activity and a broad therapeutic window in preclinical models and is currently being studied in Phase I clinical trials.
- This disclosure features modified release pharmaceutical formulations (e.g., extended release pharmaceutical formulations; e.g., solid dosage forms, e.g., tablets) that are useful for the oral administration of oprozomib, or a pharmaceutically acceptable salt thereof, to a human or animal subject as well as methods of making and using the formulations.
- [I]
- Nausea and vomiting (“NV”) is a side effect that has been observed with oral administration of oprozomib, e.g., when oprozomib is formulated as a solution, a suspension, and in capsule and immediate release tablet forms. In-vivo animal studies have suggested that the NV effect of oprozomib was the result of local proteasome inhibition, and that this local proteasome inhibition was not site (stomach or small intestine) specific. Rather, the NV effect of oprozomib appeared to depend on the ambient concentration of oprozomib that was available for absorption by the gastrointestinal (GI) tract (e.g., the stomach, duodenum and/or jejunum regions—once oprozomib enters the enteric flora and fauna of the lower GI tract, it tends to be susceptible to degradation and therefore not well absorbed in these regions). This implied that the occurrence of high local oprozomib concentrations in the stomach, duodenum and/or jejunum regions of the GI tract would likely trigger some degree of NV in patients and potentially impact dose escalation.
-
TABLE 1 Process Wet Granulation Dry Blending Wet Granulation with SLS Dry Blending with SLS Lot # F1 F2 F3 F4 Function Ingredient % w/ w API ONX 0912 25.00 25.00 25.00 25.00 Filler Lactose Monohydrate ( Grade 31640.00 39.00 41.00 40.00 FastFlo ®) Filler Microcrystalling Cellulose 28.50 28.50 30.00 30.00 (Avicel ® PH102) Surfactant Sodium Lauryl Sulfate 0.00 1.00 0.00 1.00 Binder Hydroxypropyl Cellulose (Klucel ® 3.00 3.00 0.00 0.00 LF) Disintegrant Croscarmellose Sodium (Ac-di- 3.00 3.00 3.00 3.00 sol ®) Glidant Colloidal Silicon Dioxide (Cab-O- 0.00 0.00 0.50 0.50 Sil ® MSP) Lubricant Magnesium Stearate 0.50 0.50 0.50 0.50 Total 100.00 100.00 100.00 100.00 - The formulations described in Table 1 exhibited conventional immediate release profiles, releasing more than 80% of oprozomib within less than 60 minutes (see
FIG. 1 ) under the dissolution conditions shown in Table 2: -
TABLE 2 Dissolution medium 0.1N Hydrochloric acid (HCl) Media volume 900 milliliters (“mL”) Temperature 37 ± C. 0.5° C. Apparatus USP No. 2 (Paddles) Speed 75 rpm through 60 minutes and 250 rpm for next 30 minutes Sampling Time 90 minutes Sampling Volume 10 mL - The extent of dissolution was followed and determined by HPLC using the assay conditions delineated in Table 3.
-
TABLE 3 Mobile Phase A: 0.05M Sodium Perchlorate Buffer Mobile Phase B Acetonitrile Flow Rate 1.0 mL/min Column Waters Symmetry C18, 4.6 × 150 mm, 3.5 μm Column Temperature 30° C. Autosampler 5° C. Temperature Injector volume 50 μL Detector Wavelength 254 nm Run time 7.5 minutes - [II]
- The extended release pharmaceutical formulations of oprozomib described herein provide an extended release profile of oprozomib under the following dissolution conditions, e.g., equal or less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 2 hours, e.g., after 4 hours, after 6 hours, after 8 hours, or after 10 hours.
-
Dissolution medium pH 5.5 Acetate buffer Media volume 900 mL Temperature 37 ± 0.5° C. Apparatus USP No. 2 (Paddles) Speed 75 rpm Sampling Time 6-24 hours Infinity Point 30 min after last sample Sampling Volume 1 mL - The extended release pharmaceutical formulations of oprozomib described herein can provide one or more of the following advantages.
- The extended release pharmaceutical formulations of oprozomib described herein can minimize or effectively eliminate the so-called “dose dumping” of oprozomib into, e.g., the stomach, duodenum and jejunum regions of the GI tract. As such, the formulations described herein can provide a reduced incidence or severity of one or more side effects (e.g., NV).
- The extended release pharmaceutical formulations of oprozomib described herein can provide therapeutically effective plasma exposure of oprozomib resulting in potent proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss). In some embodiments, the formulations described herein can deliver oprozomib with time to peak plasma concentrations of from 55 to 124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs. As such, the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be absorbed by these tissues prior to excretion and/or degradation of oprozomib. The foregoing, in turn, can decrease the frequency of administration of oprozomib, which can increase the likelihood of patient compliance with the dosage regimen.
- The extended release pharmaceutical formulations of oprozomib described herein can be prepared in a form that is suitable for oral administration, which is among the preferred routes for administration of pharmaceuticals since this route is generally convenient and acceptable to patients. In certain embodiments, the formulations described herein can be orally administered as a solid dosage form (e.g., tablet, e.g., a matrix tablet; e.g., matrix pellets; e.g., particulates filled into capsule).
- [III]
- [A] Accordingly, in one aspect, this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which equal or less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 4 hours (e.g., after from 4 to 8 hours; e.g. after 8 hours; e.g., after from 4 to 10 hours; e.g., after 10 hours) as determined by HPLC under the following dissolution conditions:
-
Dissolution medium pH 5.5 acetate buffer Media volume 900 mL Temperature 37 ± 0.5° C. Apparatus USP No. 2 (Paddles) Speed 75 rpm Sampling Time 0-24 hours Infinity Point 30 min after last sample Sampling Volume 1 mL - In certain embodiments, the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- [B] In another aspect, this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV).
- In certain embodiments, the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- [C] In a further aspect, this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which the formulations provide a therapeutically effective plasma exposure of oprozomib resulting in near complete proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss). In some embodiments, the formulations described herein can deliver oprozomib with time to peak plasma concentrations of 55-124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs. As such, the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be absorbed by these tissues prior to excretion and/or degradation of oprozomib. The foregoing, in turn, can decrease the frequency of administration of oprozomib, which can increase the likelihood of patient compliance with the dosage regimen.
- [D] In one aspect, this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which:
- (i) equal or less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 4 hours (e.g., after from 4 to 8 hours; e.g. after 8 hours; e.g., after from 4 to 10 hours; e.g., after 10 hours) as determined by HPLC under the following dissolution conditions:
-
Dissolution medium pH 5.5 acetate buffer Media volume 900 mL Temperature 37 ± 0.5° C. Apparatus USP No. 2 (Paddles) Speed 75 rpm Sampling Time 6-24 hours Infinity Point 30 min after last sample Sampling Volume 1 mL - and
- (ii) the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV).
- In certain embodiments, the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- [E] In one aspect, this disclosure features extended release pharmaceutical formulations, which include an effective amount of oprozomib, or a pharmaceutically acceptable salt thereof; in which:
- (i) equal or less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 4 hours (e.g., after 4-8 hours; e.g. after 8 hours; e.g., after 4-10 hours; e.g., after 10 hours) hours as determined by HPLC under the following dissolution conditions:
-
Dissolution medium pH 5.5 acetate buffer Media volume 900 mL Temperature 37 ± 0.5° C. Apparatus USP No. 2 (Paddles) Speed 75 rpm Sampling Time 6-24 hours Infinity Point 30 min after last sample Sampling Volume 1 mL - (ii) the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV); and
- (iii) the formulations provide a therapeutically effective plasma exposure of oprozomib resulting in near complete proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss); in some embodiments, the formulations described herein can deliver oprozomib with time to peak plasma concentrations of 55-124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs; as such, the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be absorbed by these tissues prior to excretion and/or degradation of oprozomib; the foregoing, in turn, can decrease the frequency of administration of oprozomib, which can increase the likelihood of patient compliance with the dosage regimen.
- In certain embodiments, the formulations are in a form suitable for oral administration, e.g., a solid oral dosage form, e.g., a tablet, e.g., a matrix tablet.
- An “effective amount” of oprozomib, or a pharmaceutically acceptable salt thereof, will vary from subject to subject, depending on species, age, and general condition of a subject, severity of the side effects or disorder, identity of the particular compound(s), mode of administration, and the like. As used herein, “an effective amount” refers to an amount of oprozomib, or a pharmaceutically acceptable salt thereof, that confers a therapeutic effect (e.g., controls, relieves, ameliorates, alleviates, or slows the progression of); or prevents (e.g., delays the onset of or reduces the risk of developing) a disease, disorder, or condition or symptoms thereof on the treated subject. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect).
- [F]
- In one aspect, methods for treating cancer (e.g., multiple myeloma, e.g., multiple myeloma that is relapsed and/or refractory; e.g., Waldenström's macroglobulinemia; e.g., myelodysplastic syndromes; e.g., chronic lymphocytic leukemia; e.g., plasma cell leukemia; e.g., hepatocellular cancer; e.g., mantlecell leukemia) in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- In another aspect, methods for treating autoimmune disease in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- In another aspect, methods for treating graft or transplant-related condition in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- In another aspect, methods for treating neurodegenerative disease in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- In another aspect, methods for treating fibrotic-associated condition in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- In another aspect, methods for treating ischemic-related condition in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- In another aspect, methods for treating an infection in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- In another aspect, methods for treating disease associated with bone loss in a patient are featured, which include administering to the patient a formulation as described anywhere herein.
- [G]
- In one aspect, methods of preparing the formulations described herein are featured, which include granulating (i) oprozomib, or a pharmaceutically acceptable salt thereof; (ii) a polymer; and optionally (iii) one or more pharmaceutically acceptable excipients selected from one or more binders and one or more surfactants in the presence of liquid comprising water.
- In another aspect, formulations prepared by the methods described herein are featured e.g., by granulation, e.g., wet granulation (eg., foam granulation, spray drying, lyophilization), direct compression, dry granulation (e.g., slugging, roller compaction), fluid bed granulation, extrusion spheronization, hot melt extrusion, pelletization, drug layering, coating.
- [IV] Embodiments can include one or more of the following features.
- The formulation can provide a reduced incidence or severity of one or more side effects (e.g., nausea/vomiting).
- The formulation can provide oprozomib with time to peak plasma concentrations of from 55 to 124 minutes (e.g., 30 minutes to 180 minutes) as determined in dogs.
- The formulation can be in a form that is suitable for oral administration.
- The formulation can further include one or more pharmaceutically acceptable polymers.
- In some embodiments, at least one of the one or more pharmaceutically acceptable polymers is a matrix-forming polymer (e.g., a hydrophilic matrix-forming polymer, such as hydroxy propyl methylcellulose). In certain embodiments, the hydroxy propyl methylcellulose can have an apparent viscosity that is greater than 120 cP (2% water at 20° C.). For example, the hydroxy propyl methylcellulose can have an apparent viscosity of from 2500 cP (2% water at 20° C.) to 6000 cP (2% water at 20° C.). The formulation can include from 3.00 weight percent to 60.00 weight percent of the polymer (e.g., from 3.00 weight percent to 11.00 weight percent of the polymer; or from 13.00 weight percent to 22.00 weight percent of the polymer).
- The formulation can include from 15.00 weight percent to 70.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof (e.g., from 15.00 weight percent to 60.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, from 20.00 weight percent to 30.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, such as 25.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof; e.g., from 35.00 weight percent to 45.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof, such as 40.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof).
- The formulation can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- The formulation can include from 20.00 weight percent to 30.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof; and 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof or 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- The formulation can include from 35.00 weight percent to 45.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof; and 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- The oprozomib, or pharmaceutically acceptable salt thereof, can be a crystalline solid.
- The oprozomib, or pharmaceutically acceptable salt thereof, can be an amorphous solid.
- The formulation can further include one or more fillers. The one or more fillers can be selected from microcrystalline cellulose, lactose monohydrate, dibasic calcium phosphate (“DCP”), sucrose, glucose, mannitol, and sorbitol (e.g., microcrystalline cellulose and lactose monohydrate).
- The formulation can further include one or more wetting agents (e.g., sodium laurel sulfate). Wetting agents can include surfactants or other surface active agents.
- The formulation can further include one or more lubricants (e.g., magnesium stearate).
- The formulation can include:
-
Component Weight percent Oprozomib, or a pharmaceutically 15.00 to 70.00 acceptable salt thereof One or more fillers 30.00 to 70.00 One or more surfactants 0.50 to 4.00 One or more lubricants 0.10 to 2.00 Matrix-forming polymer 3.0 to 60.00
For example, the formulation can include: -
Component Weight percent Oprozomib, or a pharmaceutically 15.00 to 60.00 acceptable salt thereof One or more fillers 40.00 to 70.00 One or more surfactants 0.50 to 1.50 One or more lubricants 0.10 to 1.00 Matrix-forming polymer 3.0 to 40.00 - The formulation can be a solid dosage form (e.g., a tablet).
- The tablet can have a thickness of from 4.80 millimeters to 5.10 millimeters.
- The tablet can have a hardness of from 10.00 to 35.00 Kp, e.g., 10.00 to 20.00 Kp.
- Less than 80% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 8 hours.
- Less than 80% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 10 hours.
- Less than 20% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 1 hour.
- Less than 30% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 1 hour.
- A single dose of the formulation to a dog can produce dose-normalized peak plasma concentration (Cmax/D) of oprozomib of 15.2±3.3 (ng/mL)/(mg/kg) (mean standard error of the mean) for a formulation containing 100 mg of oprozomib.
- Daily administration of the formulation to a dog can produce a dose-normalized area under the concentration time curve to the last time point (AUC/D) of oprozomib of 0.670±0.110 (min*μg/mL)/(mg/kg).
- When the formulation can be stable upon actual or simulated storage at 40° C./75% relative humidity for at least 3 months. For example, the formulation can be stable upon actual or simulated storage at 40° C./75% relative humidity for at least 6 months.
- The formulation can be prepared by wet granulation or dry granulation.
- The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features and advantages of the formulations and methods of making and using the same will be apparent from the description and drawings, and from the claims.
-
FIG. 1 is a graph showing the release profile of formulations (see Table 1) that release more than 80% of oprozomib within less than 60 minutes. These formulations exhibit a conventional immediate release profile. -
FIG. 2 shows an XRPD (X-ray powder diffraction) pattern of a crystalline form of oprozomib that is described in, e.g., US-2012-0077855. -
FIG. 3 shows a DSC (differential scanning calorimetry) thermogram of a crystalline form of oprozomib that is described in, e.g., US-2012-0077855. -
FIG. 4 shows a thermogravimetric (TG) thermogram of a crystalline form of oprozomib that is described in, e.g., US-2012-0077855. -
FIG. 5 is a graph showing the dissolution profiles of oprozomib extended release (“ER”) tablet formulations (100 mg strength) prepared with Methocel® K100 LV Premium-CR grade of HPMC. -
FIG. 6 is a graph showing the dissolution profiles of oprozomib ER tablet formulations (100 mg strength) prepared with Methocel® K4M Premium-CR grade of HPMC. -
FIG. 7 is a graph showing the dissolution profiles of oprozomib ER tablet formulations with 200 mg strength. -
FIG. 8 is a table showing properties of Methocel®. -
FIG. 9 is a dissolution profile graph showing dissolution comparison for 6004-22-ER5 tablets prepared at 50 mg and 100 mg strengths. -
FIG. 10 is a dissolution profile graph showing dissolution comparison for tablets prepared with 6008-15-ER8-100 mg and 6004-34-HDER2-200 mg strengths. -
FIG. 11 is a dissolution profile graph showing effect of API lot on dissolution profile of HDER tablet formulations. -
FIG. 12 is a dissolution profile graph showing batch to batch variability of ER8 formulations prepared using different API lots. -
FIG. 13 is a dissolution profile graph showing the effect of compression force on the dissolution of oprozomib from ER2 formulations. -
FIG. 14 is a dissolution profile graph showing the effect of paddle rpm on the dissolution of oprozomib from ER5 tablet formulations. -
FIG. 15 shows pharmacokinetic data obtained for both product in capsule and ER oprozomib formulations when administered to dogs. -
FIG. 16 shows pharmacodynamic data obtained for ER oprozomib formulations when administered to dogs. -
FIG. 17A-B shows emesis events following oral administration of different oprozomib formulations. -
FIG. 18 includes Tables 5-8, which provide representative formulations. -
FIG. 19 includes Tables 12-15, which provide stability data for the formulations. -
FIG. 20 includes Tables 16-27, which provide stability data for the formulations. -
FIG. 21 illustrates the dissolution profile of two GRS-EFS formulations. -
FIG. 22 includes Tables 29 and 30, which provide representative formulations. -
FIG. 23 includes Table 32, which provides the composition of various evaluated formulations. -
FIG. 24 illustrates the mean dissolution profile of 270 mg ER9 tablets. - This disclosure features modified release pharmaceutical formulations (e.g., extended release pharmaceutical formulations; e.g., solid dosage forms, e.g., tablets) that are useful for the oral administration of oprozomib, or a pharmaceutically acceptable salt thereof, to a human or animal subject as well as methods of making and using the formulations.
- [V] Formulation Components
- [A] Typically, the formulations described herein include one or more components that modify the rate at which oprozomib is released from the formulation into the body. The one or more components can be present in the core of the formulation and/or in a coating(s) that surrounds the formulations.
- [1]
- In some embodiments, the one or more components that modify the rate at which oprozomib is released from the formulation into the body can be one or more pharmaceutically acceptable polymers.
- In some embodiments, the one or more pharmaceutically acceptable polymers can be any hydrophilic or lipophilic based controlled release polymers and excipients derived from natural, synthetic and/or semi-synthetic sources.
- In certain embodiments, the one or more pharmaceutically acceptable polymers can be one or more matrix-forming polymers, e.g., one or more hydrophilic matrix-forming polymers.
- Drug release from a hydrophilic matrix based extended release formulations (e.g., solid dosage forms, e.g., tablets) is a dynamic controlled-release system that is believed to involve polymer wetting, polymer hydration, gel formation, swelling, and polymer dissolution. At the same time, other soluble excipients will also wet, dissolve, and diffuse out of the matrix while insoluble materials will be held in place until the surrounding polymer/excipient/drug complex erodes or dissolves away. While not wishing to be bound by theory, it is believed that the water-soluble polymer, present throughout the dosage form (e.g., tablet), hydrates on the outer tablet surface to form a gel layer. Since oprozomib is soluble in aqueous solvents, the rate of drug release is determined by diffusion through the gel and by the rate of dosage form (e.g., tablet) erosion.
- In certain embodiments, the one or more hydrophilic matrix-forming polymers is hydroxy propyl methylcellulose (“HPMC”).
- In certain embodiments, the HPMC is selected on the basis of its apparent viscosity.
- In certain embodiments, the HPMC apparent viscosity is equal to or greater than 100 centipoise (“cP”) (2% water at 20° C.), e.g., equal to or greater than 120 cP (2% water at 20° C.). A non-limiting example of such an HPMC is Methocel K100™. (Colorcon Inc., USA).
- In other embodiments, the HPMC apparent viscosity is from 2500 cP (2% water at 20° C.) to 6000 cP (2% water at 20° C.). A non-limiting example of such an HPMC is Methocel K4M™. (Colorcon Inc., USA).
- The viscosity of HPMC is proportional to molecular weight or chain length, and to concentration. Commercial designation of these products may optionally be determined by viscosity values for 2% aqueous solutions at 20°, using a viscometer according to A.S.T.M Standards 1347-72 and D 2363-72 (American Society for Testing and Materials, Philadelphia). This method involves the use of Ubbelhode tubes, which require only a small test sample, one type for low viscosity and one for high viscosity. The viscometer is placed in a water bath at 20° C.+0.1° C. and the length of time required to deliver a given volume between index marks through a tube of specified capillary size is measured. ° The time in seconds is then converted to centipoise.
- In certain embodiments, the one or more pharmaceutically acceptable polymers can be a mixture of one or more matrix-forming polymers, e.g., one or more hydrophilic matrix-forming polymers, and one or more insoluble polymers, e.g., one or more ammoniomethacrylate copolymers.
- Drug release can also be modified based on the residence time of the formulation in the stomach. Such formulations can be referred to as gastro-retentive drug delivery systems (GRS). These formulations may be suitable for drugs which have a narrow absorption window and are primarily absorbed in the upper gastro-intestinal tract such as the stomach, duodenum and upper jejunum and also suitable for drugs which are degraded or actively metabolized in the colonic area. GRS formulations can be formulated as a floating system (effervescent and non-effervescent systems), high density sinking system, expandable system, mucoadhesive system, or a combination of these systems.
- In some embodiments, the drug can be formulated as an effervescent floating system (EFS). Various effervescent components can be included such as sodium bicarbonate, citric acid, stearic acid, and combinations thereof. In some embodiments, the effervescent component is sodium bicarbonate. Without being bound by theory, it is thought that the tablet matrices are formulated such that carbon dioxide is liberated by the acidity of the gastric contents of the stomach and is entrapped in the hydro-colloidal matrix producing an upward motion of the dosage form. The liberated gas then functions to maintain the buoyancy of the dosage form and keep the tablet floating. In some embodiments, a formulation can be developed that will float to the top of the stomach fluid and be retained in the stomach for a sufficient period of time to release the drug in a controlled manner. For example, the formulation can float within 1 to 60 seconds of entrance into the stomach and will remain floating for about 8 to 16 hours (e.g., about 12 hours) before moving out of the stomach.
- Drug release from a hydrophilic matrix based GRS-EFS formulation (e.g., tablet, capsules or as multi-particulate dosage forms) is a dynamic controlled-release system involving effervescence (carbon dioxide release), polymer wetting, polymer hydration, gel formation, floating, swelling, and polymer dissolution. At the same time, other soluble excipients or drugs will also wet, dissolve, and diffuse out of the matrix while insoluble materials will be held in place until the surrounding polymer/excipient/drug complex erodes or dissolves away. The mechanisms by which drug release is controlled in matrix tablets are dependent on many variables. Without being bound by theory, it is believed that the water-soluble polymer, present throughout the tablet, hydrates on the outer tablet surface to form a gel layer. Since oprozomib is soluble in aqueous solvents, the rate of drug release is determined by diffusion through the gel and by the rate of tablet erosion.
- In certain embodiments, the one or more hydrophilic matrix-forming polymers is hydroxy propyl methylcellulose (“HPMC”). In some embodiments, the one or more ammoniomethacrylate copolymer is Eudragit.
- In some embodiments, the formulations described herein can include one or more of the following:
-
- Non-ionic soluble cellulose ethers, such as hydroxypropyl methylcellulose (HPMC, e.g., Methocel® K100LV, K4M, K15M, K100M; Benecel® MP843, MP 814, MP844;
100, 4000, 15000 AND 100000 SR), hydroxypropyl cellulose (HPC, e.g., Klucel® GXF, MXF, HXF), hydroxyethyl cellulose (HEC, e.g.,Metolose® Natrosol® 250 HHX, HX, M, G) with various degrees of substitutions and viscosity grades - Nonionic homo-polymers of ethylene oxide such as polyethylene oxide (e.g. Polyox WSR N-12K, WSR N-60K, WSR-301, WSR-coagulant, WSR-303, WSR-308)
- Water-soluble natural gums of polysaccharides of natural origin, such as xanthan gum, alginate, and locust bean gum
- Water swellable, but insoluble, high molecular weight homo-polymers and copolymers of acrylic acid chemically cross-linked with polyalkenyl alcohols with varying degree of cross-linking or particle size (Carbopol® 71G NF, 971P, 974P, 934P)
- Polyvinyl acetate and povidone mixtures (Kollidon SR)
- Cross-linked high amylose starch
- Ionic methacrylate copolymers (Eudragit L30D, FS30D)
- Fatty acids, fatty acid esters, mono-, di- and tri-glycerides of fatty acids, fatty alcohols, waxes of natural and synthetic origins with differing melting points e.g., stearic acid, lauryl, cetyl or cetostearyl alcohol, glyceryl behenate, carnauba wax, beeswax, candelila wax, microcrystalline wax and low molecular weight polyethylene.
- Insoluble polymers include ammoniomethacrylate copolymers (Eudragit® RL100, PO, RS100, PO, NE-30D, RL-30D, RS-30D, RL PO), ethyl cellulose (Ethocel®, Surelease®, Aquacoat® ECD), cellulose acetate (CA-398-10), cellulose acetate butyrate (CAB-381-20), cellulose acetate propionate (CAP-482-20), cellulose acetate phthalate (Aquacoat® CPD), polyvinylacetate (Kollicoat®).
- Effervescent components include sodium bicarbonate, citric acid, stearic acid, and combinations thereof.
- Non-ionic soluble cellulose ethers, such as hydroxypropyl methylcellulose (HPMC, e.g., Methocel® K100LV, K4M, K15M, K100M; Benecel® MP843, MP 814, MP844;
- [2]
- In some embodiments, the formulations can include from 3.00 weight percent to 60.00 weight percent (e.g., from 3.00 weight percent to 50.00 weight percent, from 3.00 weight percent to 45.00 weight percent, from 3.00 weight percent to 40.00 weight percent, from 3.00 weight percent to 30.00 weight percent, from 3.00 weight percent to 20.00 weight percent, from 4.00 weight percent to 12.00 weight percent, from 6.00 weight percent to 10.00 weight percent) of the one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- In certain embodiments, the formulations can include from 3.00 weight percent to 11.00 weight percent (e.g., from 7.00 weight percent or from 8.55 weight percent) of the one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- In certain embodiments, the formulations can include from 13.00 weight percent to 22.00 weight percent (e.g., from 17.50 weight percent) of the one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- [3] In some embodiments, any one or more of the features described throughout section [V][A][1] can be combined with any one or more of the features described throughout section [V][A][2].
- [B] Oprozomib
- [1]
- Oprozomib can be prepared, e.g., according to the synthetic route and procedures delineated in Example 1. As used herein, “oprozomib” without a modifier such as “in the form of a pharmaceutically acceptable salt” is intended to refer to the free-base form of oprozomib.
- [2]
- In some embodiments, the formulations include oprozomib.
- In some embodiments, the formulations include oprozomib in the form of a pharmaceutically acceptable salt.
- The term “pharmaceutically acceptable salt” refers to the relatively non-toxic, inorganic and organic acid addition salts of the inhibitor(s). These salts can be prepared in situ during the final isolation and purification of the inhibitor(s), or by separately reacting a purified inhibitor(s) in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, laurylsulphonate salts, and amino acid salts, and the like. (See, for example, Berge et al. (1977) “Pharmaceutical Salts”, J. Pharm. Sci. 66: 1-19.)
- In some embodiments, the formulations include both oprozomib and oprozomib in the form of a pharmaceutically acceptable salt.
- In some embodiments, the formulations include oprozomib.
- In certain embodiments, the formulations include amorphous oprozomib.
- In certain embodiments, the formulations include one or more crystalline forms of oprozomib. An example of such a crystalline form of oprozomib is described in, e.g., US-2012-0077855, which is incorporated herein by reference in its entirety. Said crystalline form can include any one or more of the following features.
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes one of the following characteristic peaks expressed in degrees 2θ: 9.4 (or about 9.4); 24.3 (or about 24.3); 11.1 (or about 11.1); or 15.3 (or about 15.3).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes any two, three or four of the following characteristic peaks: 9.4 (or about 9.4), 11.1 (or about 11.1), 15.3 (or about 15.3), and 24.3 (or about 24.3) (each expressed in degrees 2θ).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes the characteristic peak expressed in degrees 2θ at 9.4 (or about 9.4) and one of the following characteristic peaks: (i) the characteristic peak expressed in degrees 2θ at 24.3 (or about 24.3); or (ii) the characteristic peak expressed in degrees 2θ at 11.1 (or about 11.1); or (iii) the characteristic peak expressed in degrees 2θ at 15.3 (or about 15.3).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes the characteristic peaks expressed in degrees 2θ at 9.4 (or about 9.4), 11.1 (or about 11.1), and 24.3 (or about 24.3).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes the characteristic peaks expressed in degrees 2θ at 9.4 (or about 9.4), 11.1 (or about 11.1), 15.3 (or about 15.3), and 24.3 (or about 24.3).
- The X-ray powder diffraction pattern of the crystalline form of oprozomib can also include one (or more) lower intensity characteristic peaks. The relative intensities of these additional peak(s) are, in general, lower than the relative intensities associated with the four characteristic peaks described above.
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2θ at 9.4 (or about 9.4), 11.1 (or about 11.1), 15.3 (or about 15.3), 22.3 (or about 22.3), and 24.3 (or about 24.3).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2θ at 9.4 (or about 9.4), 11.1 (or about 11.1), 12.7 (or about 12.7), 15.3 (or about 15.3), 22.3 (or about 22.3), 24.3 (or about 24.3), and 28.3 (or about 28.3).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2θ at 9.4 (or about 9.4), 11.1 (or about 11.1), 12.7 (or about 12.7), 15.3 (or about 15.3), 20.9 (or about 20.9), 21.8 (or about 21.8), 22.3 (or about 22.3), 24.3 (or about 24.3), 28.3 (or about 28.3), 29.0 (or about 29.0), 29.7 (or about 29.7), and 30.5 (or about 30.5).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that includes characteristic peaks expressed in degrees 2θ at 8.9 (or about 8.9); 9.4 (or about 9.4); 9.8 (or about 9.8); 10.6 (or about 10.6); 11.1 (or about 11.1); 12.7 (or about 12.7); 15.3 (or about 15.3); 17.7 (or about 17.7); 19.0 (or about 19.0); 20.6 (or about 20.6); 20.9 (or about 20.9); 21.6 (or about 21.6); 21.8 (or about 21.8); 22.3 (or about 22.3); 22.8 (or about 22.8); 24.3 (or about 24.3); 24.7 (or about 24.7); 26.0 (or about 26.0); 26.4 (or about 26.4); 28.3 (or about 28.3); 29.0 (or about 29.0); 29.7 (or about 29.7); 30.2 (or about 30.2); 30.5 (or about 30.5); 30.8 (or about 30.8); 32.1 (or about 32.1); 33.7 (or about 33.7); 34.5 (or about 34.5); 35.1 (or about 35.1); 35.3 (or about 35.3); 37.9 (or about 37.9); and 38.5 (or about 38.5).
- The crystalline form of oprozomib can have an X-ray powder diffraction pattern that is substantially the same as that shown (substantially as shown) in
FIG. 2 . - The term “about” when used in conjunction with defining a position of a characteristic peak in an X-ray powder diffraction pattern is intended to mean the stated degree 2θ value±0.2 degrees 2θ.
- In some embodiments, the location(s) of characteristic peak(s) can be expressed to the nearest tenth (0.1) of a degree 2θ.
- The crystalline form of oprozomib can also have one or more of the following characteristic features.
- The crystalline form of oprozomib can have a differential scanning calorimetry pattern that includes a melting onset of about 140° C.
- The crystalline form of oprozomib can have a differential scanning calorimetry pattern that includes a sharp endothermic maximum at about 147° C.
- The crystalline form of oprozomib can have a differential scanning calorimetry pattern that includes a melting onset of about 140° C. and a sharp endothermic maximum at about 147° C.
- The crystalline form of oprozomib can have a differential scanning calorimetry pattern that is substantially the same as that shown (substantially as shown) in
FIG. 3 . - The crystalline form of oprozomib can have a melting point from about 140 to about 155° C. (e.g., from about 145 to about 150° C.).
- The crystalline compound having Formula (II) can exhibit from 0.0 to 0.3% weight loss in the temperature range of 25 to 125° C.
- The crystalline form of oprozomib can have a thermogravimetric analysis pattern that is substantially the same as that shown (substantially as shown) in
FIG. 4 . - In certain embodiments, the formulations include both amorphous oprozomib and one or more crystalline forms of oprozomib as described anywhere herein.
- In some embodiments, the formulations include oprozomib in the form of a pharmaceutically acceptable salt.
- In certain embodiments, the formulations include amorphous oprozomib in the form of a pharmaceutically acceptable salt.
- In certain embodiments, the formulations include one or more crystalline forms of oprozomib in the form of a pharmaceutically acceptable salt.
- In some embodiments, the formulations include both oprozomib and oprozomib in the form of a pharmaceutically acceptable salt. These embodiments can include any combination of amorphous oprozomib, one or more crystalline forms of oprozomib, amorphous oprozomib in the form of a pharmaceutically acceptable salt, and one or more crystalline forms of oprozomib in the form of a pharmaceutically acceptable salt, each as described anywhere herein.
- [3]
- In some embodiments, the formulations include from 15.00 weight percent to 60.00 weight percent (e.g., from 15.00 weight percent to 40.00 weight percent, from 20.00 weight percent to 50.00 weight percent, from 20.00 weight percent to 40.00 weight percent, from 20.00 weight percent to 30.00 weight percent, from 35.00 weight percent to 45.00 weight percent) of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations include from 20.00 weight percent to 30.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 25.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations include from 35.00 weight percent to 45.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 40.00 weight percent of oprozomib, or a pharmaceutically acceptable salt thereof.
- In some embodiments, the formulations include from 5.0 milligrams to 500.0 milligrams (e.g., from 5.0 milligrams to 300.0 milligrams, from 5.0 milligrams to 250.0 milligrams, from 25.0 milligrams to 150.0 milligrams, from 25.0 milligrams to 130.0 milligrams, from 25.0 milligrams to 125.0 milligrams, from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 130.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams, from 175.0 milligrams to 225.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations can include from 5.0 milligrams to 250.0 milligrams (e.g., from 25.0 milligrams to 150.0 milligrams, from 25.0 milligrams to 130.0 milligrams, from 25.0 milligrams to 125.0 milligrams, from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 130.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams, from 175.0 milligrams to 225.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations include from 25.0 milligrams to 125.0 milligrams (e.g., from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations include from 55.0 milligrams to 125.0 milligrams (e.g., from 55.0 milligrams to 65.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations include from 30.0 milligrams to 70.0 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 50.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 60.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations include from 80.0 milligrams to 130.0 milligrams (e.g., 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 90.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; 100.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof; or 120.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- In certain embodiments, the formulations include from 175.0 milligrams to 225.0 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof. For example, the formulations can include 200.00 milligrams of oprozomib, or a pharmaceutically acceptable salt thereof.
- In some embodiments, the formulations include from 20.00 weight percent to 30.00 weight percent (e.g., 25.00 weight percent) of oprozomib, or a pharmaceutically acceptable salt thereof; and from 25.0 milligrams to 150.0 milligrams (e.g., from 25.0 milligrams to 130.0 milligrams, from 25.0 milligrams to 125.0 milligrams, from 30.0 milligrams to 70.0 milligrams, from 55.0 milligrams to 125.0 milligrams, from 55.0 milligrams to 65.0 milligrams, from 80.0 milligrams to 130.0 milligrams, from 80.0 milligrams to 120.0 milligrams, from 85.0 milligrams to 125.0 milligrams, from 85.0 milligrams to 95.0 milligrams, from 115.0 milligrams to 125.0 milligrams, from 175.0 milligrams to 225.0 milligrams), e.g., 50.00 milligrams, 60.00 milligrams, 90.00 milligrams, 100.00 milligrams, or 120.00 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- In some embodiments, the formulations include from 35.00 weight percent to 45.00 weight percent (e.g., 40.00 weight percent) of oprozomib, or a pharmaceutically acceptable salt thereof; and from 175.0 milligrams to 225.0 milligrams (e.g., 200.00 milligrams) of oprozomib, or a pharmaceutically acceptable salt thereof.
- [4] In some embodiments, any one or more of the features described throughout section [V][B][2] can be combined with any one or more of the features described throughout section [V][B][3].
- [C]
- [1] In some embodiments, the formulations further include one or more pharmaceutically acceptable excipients. Pharmaceutically acceptable excipients include any and all fillers, binders, surfactants (wetting agents), disintegrants, sugars, antioxidants, solubilizing or suspending agents, chelating agents, preservatives, buffering agents and/or lubricating agents, or combinations thereof, as suited to the particular dosage form desired and according to the judgment of the formulator. Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various pharmaceutically acceptable excipients used in preparing pharmaceutically acceptable formulations and known techniques for the preparation thereof. In general, the weight percent of the one or more pharmaceutically acceptable excipients (e.g., one or more fillers) varies with the weight percent and/or strength or purity of the oprozomib, or a pharmaceutically acceptable salt thereof; and, in some instances, the amount of the amount of oprozomib, or a pharmaceutically acceptable salt thereof, and the amount(s) of one or more other formulation components, e.g., a polymer component, e.g., HPMC.
- [2] In some embodiments, the formulations include one or more fillers. As used herein, the term “filler” refers to a pharmaceutically acceptable substance that forms the bulk of a tablet when the amount of the oprozomib, or a pharmaceutically acceptable salt thereof (and, in some instances, the amount of the amount of oprozomib, or a pharmaceutically acceptable salt thereof, and the amount(s) of one or more other formulation components, e.g., a polymer component, e.g., HPMC) cannot provide this bulk (see The Theory and Practice of Industrial Pharmacy, Third Edition. Leon Lachman, Herbert Lieberman, and Joseph Kanig, editors. Lea & Febiger, Philadelphia. 1986, page 325).
- Non-limiting examples of fillers include microcrystalline cellulose, lactose monohydrate, dibasic calcium phosphate (“DCP”), sucrose, glucose, mannitol, and sorbitol (e.g., microcrystalline cellulose and lactose monohydrate).
- In some embodiments, the formulations can include two or more fillers. For example, the fillers can include microcrystalline cellulose (e.g., Avicel PH101 or Avicel PH102) and lactose monohydrate (e.g.,
Lactose 312 or Lactose 316). - In some embodiments, the formulations can include from 35.00 weight percent to 75.00 weight percent (e.g., from 40.00 weight percent to 70.00 weight percent, from 40.00 weight percent to 60.00 weight percent, from 40.00 weight percent to 50.00 weight percent, from 60.00 weight percent to 70.00 weight percent) of the one or more fillers. For example, the formulations can include about 48.5 weight percent of the one or more fillers or 66.50 weight percent of the one or more fillers or 64.95 weight percent of the one or more fillers.
- In some embodiments, the weight percent ratio of the one or more fillers to the oprozomib, or a pharmaceutically acceptable salt thereof can be from 0.9 to 3.0. For example, the weight percent ratio of the one or more fillers to the oprozomib, or a pharmaceutically acceptable salt thereof can be 1.2, 1.9, or 2.7.
- [3] In some embodiments, the formulations include one or more wetting agents. As used herein, the term “wetting agent” refers to a pharmaceutically acceptable surface active agent (or surfactant) having a hydrophilic and a hydrophobic segment, which when added to water or solvents, lowers the surface tension of the medium in which it is dissolved.
- Non-limiting examples of wetting agents include alkyl sulfate salts (e.g., sodium lauryl sulfate, sometimes referred to as sodium dodecyl sulfate); alkyl ether sulfate salts (e.g., sodium lauryl ether sulfate); sodium sulphosuccinates (e.g., docusate sodium, sometimes referred to as sodium dioctyl sulphosuccinate); alkylbenzene sulphonic acid salts (e.g., linear alkylbenzene sulphonic acid salts); alpha olefin sulphonates; or phosphate esters. An exemplary wetting agent is sodium laurel sulfate
- In some embodiments, the formulations include from about 0.50 weight percent to about 5.00 weight percent (e.g., from about 0.50 weight percent to about 3.00 weight percent, from about 0.50 weight percent to about 1.50 weight percent, e.g., 1.00 weight percent) of the one or more wetting agents.
- [4] In some embodiments, the formulations include one or more lubricants. As used herein, the term “lubricant” refers to a pharmaceutically acceptable substance that reduces the friction associated with tablet ejection between the walls of the tablet and the walls of a cavity used to form the tablet (see The Theory and Practice of Industrial Pharmacy, Third Edition. Leon Lachman, Herbert Lieberman, and Joseph Kanig, editors. Lea & Febiger, Philadelphia. 1986, page 328).
- Suitable lubricants include magnesium stearate; metal stearates, glyceryl behenate, sodium stearyl fumarate, hydrogenated vegetable oils, or fatty acids. An exemplary lubricant is magnesium stearate.
- In some embodiments, the formulations can include from about 0.10 weight percent to about 3.00 weight percent (e.g., from 0.10 weight percent to about 2.00 weight percent, from 0.10 weight percent to about 1.00 weight percent, e.g., 0.5 weight percent) of a lubricant.
- In some embodiments, the formulations include materials, which are both lubricated (can function as a lubricant) and can function as a filler (e.g., siliconized MCC). These materials can be present in amounts as described above and/or in section [V][C][2].
- [5] In some embodiments, any one or more of the features described throughout section [V][C][1] can be combined with any one or more of the features described throughout sections [V][C][2], or [V][C][3], or [V][C][4].
- In some embodiments, any one or more of the features described throughout section [V][C][1] can be combined with any one or more of the features described throughout sections [V][C][2] and [V][C][3] or [V][C][4].
- In some embodiments, any one or more of the features described throughout section [V][C][1] can be combined with any one or more of the features described throughout sections [V][C][2], [V][C][3] and [V][C][4].
- [D] Non-Limiting Combinations of Formulation Components
- [1]
- In some embodiments, the formulations include:
- (i) oprozomib, or a pharmaceutically acceptable salt thereof; and
- (ii) one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC).
- In certain embodiments, the formulations described above can include any one or more of the features described throughout sections [V][A][1] and/or [V][A][2] and/or [V][A][3].
- In certain embodiments, the formulations described above can include any one or more of the features described throughout sections [V][B][2] and/or [V][B][3] and/or [V][B][4].
- In certain embodiments, the formulations described above can include:
- (i) any one or more of the features described throughout sections [V][A][1] and/or [V][A][2] and/or [V][A][3]; and
- (ii) any one or more of the features described throughout sections [V][B][2] and/or [V][B][3] and/or [V][B][4].
- [2]
- In some embodiments, the formulations described above include:
- (i) oprozomib, or a pharmaceutically acceptable salt thereof;
- (ii) one or more components that modify the rate at which oprozomib is released from the formulation into the body (e.g., one or more polymers, e.g., hydrophilic matrix-forming polymers, e.g., HPMC, ammoniomethacrylate copolymers, and mixtures thereof); and
- (iii) one or more pharmaceutically acceptable excipients (e.g., one or more fillers and/or one or more wetting agents and/or one or more lubricants).
- For example, the formulations described above can include:
-
TABLE 4 Component Weight percent Oprozomib, or a pharmaceutically 15.00 to 70.00 (e.g., 15.00-60.00, acceptable salt thereof e.g., 20.00-30.00, e.g., 25.00; e.g., 35.00 to 45.00, e.g., 40.00) One or more fillers 30.00 to 70.00 (e.g., 40.00 to 70.00, e.g., 66.5 or 64.95) One or more surfactants 0.5 to 4.00 (e.g., 0.50 to 1.50) One or more lubricants 0.10 to 2.00 (e.g., 0.10 to 1.00) One or more matrix-forming 3.0 to 60.00 (e.g., 3.0 to 40.00, e.g., polymers 3.00-11.00, e.g., 7.00 or 8.55; e.g., 13.00 to 22.00, e.g., 17.50) - In certain embodiments, the formulations described above can include any one or more of the features described throughout sections [V][A][1] and/or [V][A][2] and/or [V][A][3].
- In certain embodiments, the formulations described above can include any one or more of the features described throughout sections [V][B][2] and/or [V][B][3] and/or [V][B][4].
- In certain embodiments, the formulations described above can include any one or more of the features described throughout sections [V][C][1] and/or [V][C][2] and/or [V][C][3] and/or [V][C][4] and/or [V][C][5].
- In certain embodiments, the formulations described above can include:
- (i) any one or more of the features described throughout sections [V][A][1] and/or [V][A][2] and/or [V][A][3];
- (ii) any one or more of the features described throughout sections [V][B][2] and/or [V][B][3] and/or [V][B][4]; and
- (iii) any one or more of the features described throughout sections [V][C][1] and/or [V][C][2] and/or [V][C][3] and/or [V][C][4] and/or [V][C][5].
- Representative formulations are provided in Tables 5-8, 29 and 30 (see
FIGS. 18 and 22 ). - In some embodiments, any one or more of the features described throughout section [V] above can be combined with any one or more of the features described throughout sections [III] and/or [IV] above.
- [VI] Dosage Forms
- In general, oral administration of the formulations is preferred, and the formulations can be in any form that is suitable for oral administration (e.g., any conventional oral dosage forms including, but not limited to, solid dosage forms such as a tablet, a pill, a hard or soft capsule, a dragee, a lozenge, a cachet, a sachet, a powder (e.g., dispensable powder), granules; and liquid preparations such as syrups, slurries, gels, pellets, particulates, elixirs, emulsions and aqueous suspensions, dispersions, solutions, and concentrated drops, or any other form reasonably adapted for oral administration).
- In some embodiments, the formulations can be in the form of a discrete, solid oral dosage unit (e.g. a capsule, a tablet, or a dragee) containing a predetermined amount of any one or more of the components described herein, e.g., as described throughout section [V].
- In some embodiments, the formulations can be in the form of a tablet. Such forms can be shaped and dimensioned as desired. In certain embodiments, the formulations can be in the form of a tablet that is capsule-shaped. In some embodiments, the tablet can be a modified capsule shaped core tablet. In certain embodiments, the formulations can be in the form of a tablet having a thickness of from 2.0 to 12.0 millimeters (mm) (e.g., from 2.0 to 6.0 millimeters, from 4.0 to 6.0 millimeters, from 4.80 millimeters to 5.10 millimeters).
- In certain embodiments, the formulations can be in the form of a “compressed tablet,” which as used herein refers to a plain, uncoated tablet for oral ingestion. Compressed tablet are typically prepared by a single compression or by pre-compaction tapping followed by a final compression (e.g., using a Carver press, rotary press, single station tablet press). The tablets can be scored, printed, and/or debossed or embossed with desired identifier markings. In some embodiments, the tablets can have a hardness of from 10.0 kp to 35.0 kp (e.g., from 10.0 kp to 25.0 kp, from 11.0 kp to 18.0 kp, from 12.0 kp to 15.0 kp).
- In certain embodiments, the tablet can be a coated tablet. As a further example, tablets can also be coated with a conventional coating material such as Opadry™ White 85F18422 (or another color). In some embodiments, the coating is present from 1.00 to 5.00 weight percent of the core tablet. For example, the coating can be present at 3.00 weight percent.
- In certain embodiments, the weight of the tablet can be from 5 milligrams to 1,500 milligrams (e.g., 5 milligrams to 1,000 milligrams; from 5 milligrams to 600 milligrams; e.g., 50 milligrams, 100 milligrams, 200 milligrams, 400 milligrams, or 500 milligrams).
- In general, the formulations can be prepared by any suitable and conventional method of pharmacy known in the art, which includes the step of bringing into association any one or more of the components described herein, e.g., as described throughout section [V]. Methods of preparation can include one or a combination of methods including: (1) dry mixing, (2) direct compression, (3) milling, (4) dry or non-aqueous granulation, (5) wet granulation, or (6) fusion. See, e.g., Lachman et al., The Theory and Practice of Industrial Pharmacy (1986).
- In some embodiments, the formulations can be obtained, for example, by performing one or more of the following steps: (i) combining (e.g., uniformly and intimately admixing so as to disperse the active ingredient evenly throughout the composition, e.g., to facilitate subdivision of the formulation into unit dosage forms) the active ingredient, surfactant(s), and any other component(s) described herein to provide a mixture; (ii) screening, sieving, grinding, and/or milling the resulting mixture; (iii) processing the mixture of granules, after adding suitable auxiliaries, if desired; (iv) shaping and optionally coating the product to obtain tablets or dragee cores; or (v) adding the processed formulation to a vessel suitable for oral administration, such as a capsule.
- In certain embodiments, the formulations can be prepared using wet granulation techniques known in the art, which can include the steps of milling and sieving of the ingredients, dry powder mixing, wet massing, granulation and final grinding. In some embodiments, the wet granulation techniques such as high shear granulation, fluid bed granulation, extrusion spheronization etc. can better accommodate the micronized active ingredients and can result in formulations having enhanced powder flow (for encapsulation) and dissolution properties.
- In certain embodiments, compressed tablets can be prepared by compressing, in a suitable machine, the formulation in a free-flowing form, such as a powder or granules. Molded tablets can be made by molding, in a suitable machine, the powdered formulation moistened with an inert liquid diluent.
- The Examples section provides more specific methods for preparing the formulations described herein.
- [VII] Non-Limiting Properties of Formulations
- The formulations described herein can have any one or more of the following properties.
- [A]
- In some embodiments, less than 80% of oprozomib, or a pharmaceutically acceptable salt thereof, is released after 2 hours, e.g., after 4 hours, after 6 hours, after 8 hours, or after 10 hours.
- In some embodiments, less than 20% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 1 hour.
- In some embodiments, less than 30% of the oprozomib, or a pharmaceutically acceptable salt thereof, is released after 1 hour.
- In some embodiments, the formulations can exhibit any one, two, three, four, five, and/or six of the release profile properties delineated in Table 9 below.
-
TABLE 9 Time (hours) Average % oprozomib released 0.5 5.0-11.0, e.g., 8.0 1.0 12.0-21.0, e.g., 17.0 1.5 22.0-30.0, e.g., 26.0 2.0 31.0-40.0, e.g., 34.0 4.0 50.0-70.0; e.g., 60.0-70.0, e.g., 66.0 6.0 85.0-95.0, e.g., 89.0 - [B] In some embodiments, the formulations provide a reduced incidence or severity of one or more side effects (e.g., NV).
- [C] In some embodiments, the formulations provide a therapeutically effective plasma exposure of oprozomib resulting in near complete proteasome inhibition of target tissues e.g., effective to treat one or more of the disorders described herein (e.g., cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss). In some embodiments, the formulations described herein can deliver oprozomib with time to peak plasma concentrations of from 55-124 minutes (e.g., from 30 minutes to 180 minutes) as determined in dogs. As such, the formulations described herein can efficiently deliver oprozomib, e.g., to the stomach and proximal part of the small intestine, and do so over an extended period of time and, in some instances, with improved bioavailability, pharmacokinetic (PK) and/or pharmacodynamic (PD) parameters, thereby increasing the likelihood that oprozomib will be absorbed by these tissues prior to excretion and/or degradation of oprozomib. The foregoing, in turn, can decrease the frequency of administration of oprozomib, which can increase the likelihood of patient compliance with the dosage regimen.
- In certain embodiments, a single dose of the formulation to a dog produces dose-normalized peak plasma concentration (Cmax/D) of oprozomib of 15.2±3.3 (ng/mL)/(mg/kg) (mean±standard error of the mean) for a formulation containing 100 mg of oprozomib; and/or daily administration of the formulation to a dog produces a dose-normalized area under the concentration time curve to the last time point (AUC/D) of oprozomib of 0.670±0.110 (min*μg/mL)/(mg/kg) (mean±standard error of the mean).
- [D] In some embodiments, the formulations are stable upon actual or simulated storage at 40° C./75% relative humidity for at least 1 month (e.g., at least 2 months, at least 3 months, at least 6 months, at least 9 months).
- Stability studies were carried out using one of the following procedures:
-
- (A) Tablets were packaged in 25 cc Glass scintillation vials with the caps hand tightened screw caps (polypropylene cap, foamed polyethylene [PE] liner) and stored at 25° C.±2° C./60% relative humidity (RH)±5% RH and 40° C.±2° C./75% RH±5% RH. Tablets were tested for appearance, hardness, assay and impurities and dissolution at pre-determined time points.
- (B) Tablets were packaged in 75 cc wide mouth round white HDPE bottles with closures and desiccant canisters and pharmaceutical coil and stored at 25° C.±2° C./60% relative humidity (RH)±5% RH and 40° C.±2° C./75% RH±5% RH. Tablets were tested for appearance, hardness, assay and impurities and dissolution at pre-determined time points.
- In particular, impurities PR-059176 (PR-176) and PR-487 were detected and measured.
- [VIII] Uses of Formulations
- Orderly protein degradation is crucial to the maintenance of normal cell functions, and the proteasome is integral to the protein degradation process. The proteasome controls the levels of proteins that are important for cell-cycle progression and apoptosis in normal and malignant cells; for example, cyclins, caspases, BCL2 and NF-κB (Kumatori et al., Proc. Natl. Acad. Sci. USA (1990) 87:7071-7075; Almond et al., Leukemia (2002) 16: 433-443). Thus, it is not surprising that inhibiting proteasome activity can translate into therapies to treat various disease states, such as malignant, non-malignant and autoimmune diseases, depending on the cells involved.
- Both in vitro and in vivo models have shown that malignant cells, in general, are susceptible to proteasome inhibition. In fact, proteasome inhibition has already been validated as a therapeutic strategy for the treatment of multiple myeloma. This could be due, in part, to the highly proliferative malignant cell's dependency on the proteasome system to rapidly remove proteins (Rolfe et al., J. Mol. Med. (1997) 75:5-17; Adams, Nature (2004) 4: 349-360). Therefore, certain embodiments of the invention relate to a method of treating a cancer, comprising administering to a subject in need of such treatment an effective amount of a proteasome inhibitor compound disclosed herein. As used herein, the term “cancer” includes, but is not limited to, blood borne and solid tumors. Cancer refers to disease of blood, bone, organs, skin tissue and the vascular system, including, but not limited to, cancers of the bladder, blood, bone, brain, breast, cervix, chest, colon, endometrium, esophagus, eye, head, kidney, liver, lung, lymph nodes, mouth, neck, ovaries, pancreas, prostate, rectum, renal, skin, stomach, testis, throat, and uterus. Specific cancers include, but are not limited to, leukemia (acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), hairy cell leukemia), mature B cell neoplasms (small lymphocytic lymphoma, B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma (such as Waldenström's macroglobulinemia or indolent lymphoma), splenic marginal zone lymphoma, plasma cell myeloma, plasma cell leukemia, plasmacytoma, monoclonal immunoglobulin deposition diseases, heavy chain diseases, extranodal marginal zone B cell lymphoma (MALT lymphoma), nodal marginal zone B cell lymphoma (NMZL), a gastrointestinal tumor (e.g., a gastrointestinal stromal tumor (GIST)), follicular lymphoma, mantle cell lymphoma/leukemia, diffuse B cell lymphoma, mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma and Burkitt lymphoma/leukemia), mature T cell and natural killer (NK) cell neoplasms (T cell prolymphocytic leukemia, T cell large granular lymphocytic leukemia, aggressive NK cell leukemia, adult T cell leukemia/lymphoma, extranodal NK/T cell lymphoma, enteropathy-type T cell lymphoma, hepatosplenic T cell lymphoma, blastic NK cell lymphoma, mycosis fungoides (Sezary syndrome), primary cutaneous anaplastic large cell lymphoma, lymphomatoid papulosis, angioimmunoblastic T cell lymphoma, unspecified peripheral T cell lymphoma and anaplastic large cell lymphoma), Hodgkin's lymphoma (nodular sclerosis, mixed celluarity, lymphocyte-rich, lymphocyte depleted or not depleted, nodular lymphocyte-predominant), myeloma (multiple myeloma, indolent myeloma, smoldering myeloma), chronic myeloproliferative disease, myelodysplastic/myeloproliferative disease, myelodysplastic syndromes, immunodeficiency-associated lymphoproliferative disorders, histiocytic and dendritic cell neoplasms, mastocytosis, chondrosarcoma, Ewing sarcoma, fibrosarcoma, malignant giant cell tumor, myeloma bone disease, osteosarcoma, breast cancer (hormone dependent, hormone independent), gynecological cancers (cervical, endometrial, fallopian tube, gestational trophoblastic disease, ovarian, peritoneal, uterine, vaginal and vulvar), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), malignant melanoma, dermatofibrosarcoma protuberans, Merkel cell carcinoma, Kaposi's sarcoma, astrocytoma, pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor, oligodendrogliomas, ependymoma, glioblastoma multiforme, mixed gliomas, oligoastrocytomas, medulloblastoma, retinoblastoma, neuroblastoma, germinoma, teratoma, malignant mesothelioma (peritoneal mesothelioma, pericardial mesothelioma, pleural mesothelioma), gastro-entero-pancreatic or gastroenteropancreatic neuroendocrine tumor (GEP-NET), carcinoid, pancreatic endocrine tumor (PET), colorectal adenocarcinoma, colorectal carcinoma, aggressive neuroendocrine tumor, leiomyosarcoma, mucinous adenocarcinoma, Signet Ring cell adenocarcinoma, hepatocellular carcinoma, cholangiocarcinoma, hepatoblastoma, hemangioma, hepatic adenoma, focal nodular hyperplasia (nodular regenerative hyperplasia, hamartoma), non-small cell lung carcinoma (NSCLC) (squamous cell lung carcinoma, adenocarcinoma, large cell lung carcinoma), small cell lung carcinoma, thyroid carcinoma, prostate cancer (hormone refractory, androgen independent, androgen dependent, hormone-insensitive), renal cell carcinoma, and soft tissue sarcomas (fibrosarcoma, malignant fibrous hystiocytoma, dermatofibrosarcoma, liposarcoma, rhabdomyosarcoma leiomyosarcoma, hemangiosarcoma, synovial sarcoma, malignant peripheral nerve sheath tumor/neurofibrosarcoma, extraskeletal osteosarcoma).
- Many tumors of the haematopoietic and lymphoid tissues are characterized by an increase in cell proliferation, or a particular type of cell. The chronic myeloproliferative diseases (CMPDs) are clonal haematopoietic stem cell disorders characterized by proliferation in the bone marrow of one or more of the myeloid lineages, resulting in increased numbers of granulocytes, red blood cells and/or platelets in the peripheral blood. As such, the use of proteasome inhibitors for the treatment of such diseases is attractive and being examined (Cilloni et al., Haematologica (2007) 92: 1124-1229). CMPD can include chronic myelogenous leukaemia, chronic neutrophilic leukaemia, chronic eosinophilic leukaemia, polycythaemia vera, chronic idiopathic myelofibrosis, essential thrombocythaemia and unclassifiable chronic myeloproliferative disease. An aspect of the invention is the method of treating CMPD comprising administering to a subject in need of such treatment an effective amount of a proteasome inhibitor compound disclosed herein.
- Myelodysplastic/myeloproliferative diseases, such as chronic myelomonocytic leukaemia, atypical chronic myeloid leukemia, juvenile myelomonocytic leukaemia and unclassifiable myelodysplastic/myeloproliferative disease, are characterized by hypercellularity of the bone marrow due to proliferation in one or more of the myeloid lineages. Inhibiting the proteasome with a compound or composition as described herein can serve to treat these myelodysplatic/myeloproliferative diseases by providing a subject in need of such treatment an effective amount of the compound or composition.
- Myelodysplastic syndromes (MDS) refer to a group of hematopoietic stem cell disorders characterized by dysplasia and ineffective haematopoiesis in one or more of the major myeloid cell lines. Targeting NF-κB with a proteasome inhibitor in these hematologic malignancies induces apoptosis, thereby killing the malignant cell (Braun et al. Cell Death and Differentiation (2006) 13:748-758). A further embodiment of the invention is a method to treat MDS comprising administering to a subject in need of such treatment an effective amount of a compound disclosed herein. MDS includes refractory anemia, refractory anemia with ringed sideroblasts, refractory cytopenia with multilineage dysplasia, refractory anemia with excess blasts, unclassifiable myelodysplastic syndrome and myelodysplastic syndrome associated with isolated del(5q) chromosome abnormality.
- Mastocytosis is a proliferation of mast cells and their subsequent accumulation in one or more organ systems. Mastocytosis includes, but is not limited to, cutaneous mastocytosis, indolent systemic mastocytosis (ISM), systemic mastocytosis with associated clonal haematological non-mast-cell-lineage disease (SM-AHNMD), aggressive systemic mastocytosis (ASM), mast cell leukemia (MCL), mast cell sarcoma (MCS) and extracutaneous mastocytoma. Another embodiment of the invention is a method to treat mastocytosis, comprising administering an effective amount of a compound or composition disclosed herein to a subject diagnosed with mastocytosis.
- The proteasome regulates NF-κB, which in turn regulates genes involved in the immune and inflammatory response. For example, NF-κB is required for the expression of the immunoglobulin light chain κ gene, the IL-2 receptor α-chain gene, the class I major histocompatibility complex gene, and a number of cytokine genes encoding, for example, IL-2, IL-6, granulocyte colony-stimulating factor, and IFN-β (Palombella et al., Cell (1994) 78:773-785). Thus, in certain embodiments, the invention relates to methods of affecting the level of expression of IL-2, MHC-I, IL-6, TNFα, IFN-β or any of the other previously-mentioned proteins, each method comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein. In certain embodiments, the invention includes a method of treating an autoimmune disease in a mammal comprising administering a therapeutically effective amount of a compound or composition described herein. An “autoimmune disease” herein is a disease or disorder arising from and directed against an individual's own tissues. Examples of autoimmune diseases or disorders include, but are not limited to, inflammatory responses such as inflammatory skin diseases including psoriasis and dermatitis (e.g., atopic dermatitis); systemic scleroderma and sclerosis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); respiratory distress syndrome (including adult respiratory distress syndrome; ARDS); dermatitis; meningitis; encephalitis; uveitis; colitis; glomerulonephritis; allergic conditions such as eczema and asthma and other conditions involving infiltration of T cells and chronic inflammatory responses; atherosclerosis; leukocyte adhesion deficiency; rheumatoid arthritis; systemic lupus erythematosus (SLE); diabetes mellitus (e.g., Type I diabetes mellitus or insulin dependent diabetes mellitus); multiple sclerosis; Reynaud's syndrome; autoimmune thyroiditis; allergic encephalomyelitis; Sjogren's syndrome; juvenile onset diabetes; and immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes typically found in tuberculosis, sarcoidosis, polymyositis, granulomatosis and vasculitis; pernicious anemia (Addison's disease); diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder; multiple organ injury syndrome; hemolytic anemia (including, but not limited to cryoglobinemia or Coombs positive anemia); myasthenia gravis; antigen-antibody complex mediated diseases; anti-glomerular basement membrane disease; antiphospholipid syndrome; allergic neuritis; Graves' disease; Lambert-Eaton myasthenic syndrome; pemphigoid bullous; pemphigus; autoimmune polyendocrinopathies; Reiter's disease; stiff-man syndrome; Beheet disease; giant cell arteritis; immune complex nephritis; IgA nephropathy; IgM polyneuropathies; immune thrombocytopenic purpura (ITP) or autoimmune thrombocytopenia.
- The immune system screens for autologous cells that are virally infected, have undergone oncogenic transformation, or present unfamiliar peptides on their surface. Intracellular proteolysis generates small peptides for presentation to T-lymphocytes to induce MHC class I-mediated immune responses. Thus, in certain embodiments, the invention relates to a method of using the compound as an immunomodulatory agent for inhibiting or altering antigen presentation in a cell, comprising exposing the cell (or administering to a subject) to a compound described herein. Specific embodiments include a method of treating graft or transplant-related diseases, such as graft-versus-host disease or host versus-graft disease in a mammal, comprising administering a therapeutically effective amount of a compound described herein. The term “graft” as used herein refers to biological material derived from a donor for transplantation into a recipient. Grafts include such diverse material as, for example, isolated cells such as islet cells; tissue such as the amniotic membrane of a newborn, bone marrow, hematopoietic precursor cells, and ocular tissue, such as corneal tissue; and organs such as skin, heart, liver, spleen, pancreas, thyroid lobe, lung, kidney, tubular organs (e.g., intestine, blood vessels, or esophagus). The tubular organs can be used to replace damaged portions of esophagus, blood vessels, or bile duct. The skin grafts can be used not only for burns, but also as a dressing to damaged intestine or to close certain defects such as diaphragmatic hernia. The graft is derived from any mammalian source, including human, whether from cadavers or living donors. In some cases, the donor and recipient is the same mammal. Preferably the graft is bone marrow or an organ such as heart and the donor of the graft and the host are matched for HLA class II antigens.
- Histiocytic and dendritic cell neoplasms are derived from phagocytes and accessory cells, which have major roles in the processing and presentation of antigens to lymphocytes. Depleting the proteasome content in dendritic cells has been shown to alter their antigen-induced responses (Chapatte et al. Cancer Res. (2006) 66:5461-5468). Thus, another embodiment of the invention comprises administering an effective amount of a compound or composition disclosed herein to a subject with histiocytic or dendritic cell neoplasm. Histiocytic and dendritic cell neoplasms include histiocytic sarcoma, Langerhans cell histiocytosis, Langerhans cell sarcoma, interdigitating dendritic cell sarcoma/tumor, follicular dendritic cell sarcoma/tumor and non-specified dendritic cell sarcoma.
- Inhibition of the proteasome has been shown to be beneficial to treat diseases whereby a cell type is proliferating and immune disorders; thus, an embodiment of the invention includes the treatment of lymphoproliferative diseases (LPD) associated with primary immune disorders (PID) comprising administering an effective amount of the disclosed compound to a subject in need thereof. The most common clinical settings of immunodeficiency associated with an increased incidence of lymphoproliferative disorders, including B-cell and T-cell neoplasms and lymphomas, are primary immunodeficiency syndromes and other primary immune disorders, infection with the human immunodeficiency virus (HIV), iatrogenic immunosuppression in patients who have received solid organ or bone marrow allografts, and iatrogenic immunosuppression associated with methotrexate treatment. Other PIDs commonly associated with LPDs, but not limited to, are ataxia telangiectasia (AT), Wiskott-Aldrich syndrome (WAS), common variable immunodeficiency (CVID), severe combined immunodeficiency (SCID), X-linked lymphoproliferative disorder (XLP), Nijmegen breakage syndrome (NBS), hyper-IgM syndrome, and autoimmune lymphoproliferative syndrome (ALPS).
- Additional embodiments of the invention relate to methods for affecting the proteasome-dependent regulation of oncoproteins and methods of treating or inhibiting cancer growth, each method comprising exposing a cell (in vivo, e.g., in a subject, or in vitro) to the proteasome inhibitor composition disclosed herein. HPV-16 and HPV-18-derived E6 proteins stimulate ATP- and ubiquitin-dependent conjugation and degradation of p53 in crude reticulocyte lysates. The recessive oncogene p53 has been shown to accumulate at the nonpermissive temperature in a cell line with a mutated thermolabile E1. Elevated levels of p53 may lead to apoptosis. Examples of proto-oncoproteins degraded by the ubiquitin system include c-Mos, c-Fos, and c-Jun. In certain embodiments, the invention relates to a method for treating p53-related apoptosis, comprising administering to a subject an effective amount of a proteasome inhibitor composition disclosed herein.
- Another aspect of the invention relates to the use of proteasome inhibitor compositions disclosed herein for the treatment of neurodegenerative diseases and conditions, including, but not limited to, stroke, ischemic damage to the nervous system, neural trauma (e.g., percussive brain damage, spinal cord injury, and traumatic damage to the nervous system), multiple sclerosis and other immune-mediated neuropathies (e.g., Guillain-Barre syndrome and its variants, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, and Fisher Syndrome), HIV/AIDS dementia complex, axonomy, diabetic neuropathy, Parkinson's disease, Huntington's disease, multiple sclerosis, bacterial, parasitic, fungal, and viral meningitis, encephalitis, vascular dementia, multi-infarct dementia, Lewy body dementia, frontal lobe dementia such as Pick's disease, subcortical dementias (such as Huntington or progressive supranuclear palsy), focal cortical atrophy syndromes (such as primary aphasia), metabolic-toxic dementias (such as chronic hypothyroidism or B12 deficiency), and dementias caused by infections (such as syphilis or chronic meningitis).
- Alzheimer's disease is characterized by extracellular deposits of β-amyloid protein (β-AP) in senile plaques and cerebral vessels. β-AP is a peptide fragment of 39 to 42 amino acids derived from an amyloid protein precursor (APP). At least three isoforms of APP are known (695, 751, and 770 amino acids). Alternative splicing of mRNA generates the isoforms; normal processing affects a portion of the β-AP sequence, thereby preventing the generation of β-AP. It is believed that abnormal protein processing by the proteasome contributes to the abundance of β-AP in the Alzheimer brain. The APP-processing enzyme in rats contains about ten different subunits (22 kDa-32 kDa). The 25 kDa subunit has an N-terminal sequence of X-Gln-Asn-Pro-Met-X-Thr-Gly-Thr-Ser, which is identical to the β-subunit of human macropain (Kojima, S. et al., Fed. Eur. Biochem. Soc., (1992) 304:57-60). The APP-processing enzyme cleaves at the Gln15-Lys16 bond; in the presence of calcium ion, the enzyme also cleaves at the Met−1-Asp1 bond and the Asp1-Ala2 bond to release the extracellular domain of β-AP.
- One aspect of the invention, therefore, relates to a method of treating Alzheimer's disease, comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein. Such treatment includes reducing the rate of β-AP processing, reducing the rate of β-AP plaque formation, reducing the rate of β-AP generation, and reducing the clinical signs of Alzheimer's disease.
- In some embodiments, a proteasome inhibitor compound or composition disclosed herein can be useful for treating amyloidosis. Accordingly, provided herein is a method for treating amyloidosis is a subject, comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein.
- Fibrosis is the excessive and persistent formation of fibrous connective tissue resulting from the hyperproliferative growth of fibroblasts and is associated with activation of the TGF-β signaling pathway. Fibrosis involves extensive deposition of extracellular matrix and can occur within virtually any tissue or across several different tissues. Normally, the level of intracellular signaling protein (Smad) that activates transcription of target genes upon TGF-β stimulation is regulated by proteasome activity (Xu et al., 2000). However, accelerated degradation of the TGF-β signaling components has been observed in fibrotic conditions, such as cystic fibrosis, injection fibrosis, endomyocardial fibrosis, idiopathic pulmonary fibrosis, myelofibrosis, retroperitoneal fibrosis, progressive massive fibrosis, nephrogenic systemic fibrosis. Other conditions that are often associated with fibrosis include cirrhosis, diffuse parenchymal lung disease, post-vasectomy pain syndrome, tuberculosis, sickle-cell anemia and rheumatoid arthritis. An embodiment of the invention is the method of treating a fibrotic or fibrotic-associated condition comprising administering an effective amount of the composition described herein to a subject in need of such treatment.
- The treatment of burn victims is often hampered by fibrosis. Thus, in certain embodiments, the invention relates to the topical or systemic administration of a subject inhibitor to treat burns. Wound closure following surgery is often associated with disfiguring scars, which may be prevented by inhibition of fibrosis. Thus, in certain embodiments, the invention relates to a method for the prevention or reduction of scarring.
- Overproduction of lipopolysaccharide (LPS)-induced cytokines such as TNFα is considered to be central to the processes associated with septic shock. Furthermore, it is generally accepted that the first step in the activation of cells by LPS is the binding of LPS to specific membrane receptors. The α- and β-subunits of the 20S proteasome complex have been identified as LPS-binding proteins, suggesting that the LPS-induced signal transduction may be an important therapeutic target in the treatment or prevention of sepsis (Qureshi, N. et al., J. Immun. (2003) 171: 1515-1525). Therefore, in certain embodiments, the proteasome inhibitor composition may be used for the inhibition of TNFα to prevent and/or treat septic shock.
- Ischemia and reperfusion injury results in hypoxia, a condition in which there is a deficiency of oxygen reaching the tissues of the body. This condition causes increased degradation of Iκ-Bα, thereby resulting in the activation of NF-κB (Koong et al., 1994). It has been demonstrated that the severity of injury resulting in hypoxia can be reduced with the administration of a proteasome inhibitor (Gao et al., 2000; Bao et al., 2001; Pye et al., 2003). Therefore, certain embodiments of the invention relate to a method of treating an ischemic condition or reperfusion injury comprising administering to a subject in need of such treatment an effective amount of the proteasome inhibitor compound disclosed herein. Examples of such conditions or injuries include, but are not limited to, acute coronary syndrome (vulnerable plaques), arterial occlusive disease (cardiac, cerebral, peripheral arterial and vascular occlusions), atherosclerosis (coronary sclerosis, coronary artery disease), infarctions, heart failure, pancreatitis, myocardial hypertrophy, stenosis, and restenosis.
- NF-κB also binds specifically to the HIV-enhancer/promoter. When compared to the Nef of mac239, the HIV regulatory protein Nef of pbj14 differs by two amino acids in the region which controls protein kinase binding. It is believed that the protein kinase signals the phosphorylation of Iβ, triggering IκB degradation through the ubiquitin-proteasome pathway. After degradation, NF-κB is released into the nucleus, thus enhancing the transcription of HIV (Cohen, J., Science, (1995) 267:960). In certain embodiments, the invention relates to a method for inhibiting or reducing HIV infection in a subject, or a method for decreasing the level of viral gene expression, each method comprising administering to the subject an effective amount of a proteasome inhibitor compound or composition disclosed herein.
- Viral infections contribute to the pathology of many diseases. Heart conditions such as ongoing myocarditis and dilated cardiomyopathy have been linked to the coxsackievirus B3. In a comparative whole-genome microarray analyses of infected mouse hearts, specific proteasome subunits were uniformly up-regulated in hearts of mice which developed chronic myocarditis (Szalay et al, Am J Pathol 168:1542-52, 2006). Some viruses utilize the ubiquitin-proteasome system in the viral entry step where the virus is released from the endosome into the cytosol. The mouse hepatitis virus (MHV) belongs to the Coronaviridae family, which also includes the severe acute respiratory syndrome (SARS) coronavirus. Yu and Lai (J Virol 79:644-648, 2005) demonstrated that treatment of cells infected with MHV with a proteasome inhibitor resulted in a decrease in viral replication, correlating with reduced viral titer as compared to that of untreated cells. The human hepatitis B virus (HBV), a member of the Hepadnaviridae virus family, likewise requires virally encoded envelop proteins to propagate. Inhibiting the proteasome degradation pathway causes a significant reduction in the amount of secreted envelope proteins (Simsek et al, J Virol 79:12914-12920, 2005). In addition to HBV, other hepatitis viruses (A, C, D and E) may also utilize the ubiquitin-proteasome degradation pathway for secretion, morphogenesis and pathogenesis. Accordingly, in certain embodiments, the invention relates to a method for treating viral infection, such as SARS or hepatitis A, B, C, D and E, comprising contacting a cell with (or administering to a subject) an effective amount of a compound or composition disclosed herein.
- In certain embodiments, the disclosed compositions may be useful for the treatment of a parasitic infection, such as infections caused by protozoan parasites. The proteasome of these parasites is considered to be involved primarily in cell differentiation and replication activities (Paugam et al., Trends Parasitol. 2003, 19(2): 55-59). Furthermore, entamoeba species have been shown to lose encystation capacity when exposed to proteasome inhibitors (Gonzales, et al., Arch. Med. Res. 1997, 28, Spec No: 139-140). In certain such embodiments, the administrative protocols for the proteasome inhibitor compositions are useful for the treatment of parasitic infections in humans caused by a protozoan parasite selected from Plasmodium sps. (including P. falciparum, P. vivax, P. malariae, and P. ovale, which cause malaria), Trypanosoma sps. (including T. cruzi, which causes Chagas' disease, and T. brucei which causes African sleeping sickness), Leishmania sps. (including L. amazonesis, L. donovani, L. infantum, L. mexicana, etc.), Pneumocystis carinii (a protozoan known to cause pneumonia in AIDS and other immunosuppressed patients), Toxoplasma gondii, Entamoeba histolytica, Entamoeba invadens, and Giardia lamblia. In certain embodiments, the disclosed proteasome inhibitor compositions are useful for the treatment of parasitic infections in animals and livestock caused by a protozoan parasite selected from Plasmodium hermani, Cryptosporidium sps., Echinococcus granulosus, Eimeria tenella, Sarcocystis neurona, and Neurospora crassa. Other compounds that act as proteasome inhibitors in the treatment of parasitic diseases are described in WO 98/10779, which is incorporated herein in its entirety.
- In certain embodiments, the proteasome inhibitor compositions inhibit proteasome activity in a parasite without recovery in red blood cells and white blood cells. In certain such embodiments, the long half-life of blood cells may provide prolonged protection with regard to therapy against recurring exposures to parasites. In certain embodiments, the proteasome inhibitor compositions may provide prolonged protection with regard to chemoprophylaxis against future infection.
- Prokaryotes have an equivalent to the eukaryote 20S proteasome particle. Although the subunit composition of the prokaryote 20S particle is simpler than that of eukaryotes, it has the ability to hydrolyze peptide bonds in a similar manner. For example, the nucleophilic attack on the peptide bond occurs through the threonine residue on the N-terminus of the β-subunits. Thus, an embodiment of this invention relates to a method of treating prokaryotic infections, comprising administering to a subject an effective amount of a proteasome inhibitor compound or composition disclosed herein. Prokaryotic infections may include diseases caused by either mycobacteria (such as tuberculosis, leprosy or Buruli ulcer) or archaebacteria.
- It has also been demonstrated that inhibitors that bind to the 20S proteasome stimulate bone formation in bone organ cultures. Furthermore, when such inhibitors have been administered systemically to mice, certain proteasome inhibitors increased bone volume and bone formation rates over 70% (Garrett, I. R. et al., J. Clin. Invest. (2003) 111: 1771-1782), therefore suggesting that the ubiquitin-proteasome machinery regulates osteoblast differentiation and bone formation. Therefore, a disclosed proteasome inhibitor compound or composition may be useful in the treatment and/or prevention of diseases associated with bone loss, such as osteoporosis.
- Thus, in certain embodiments, the invention relates to a method for treating a disease or condition selected from cancer, autoimmune disease, graft or transplant-related condition, neurodegenerative disease, fibrotic-associated condition, ischemic-related conditions, infection (viral, parasitic or prokaryotic) and diseases associated with bone loss, comprising administering a compound or composition as disclosed herein.
- The invention will be further described in the following examples. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
-
- Synthesis of (A)
- To a 0° C. solution of N-Boc serine(methyl ether) (43.8 g, 200 mmol), triethylamine (26.5 g, 260 mmol) and 4-(dimethylamino)pyridine in dichloromethane (1.2 L) was added a solution of benzyl chloroformate (41 g, 240 mmol) in dichloromethane (250 mL) over 30 minutes. The resulting mixture was stirred at the same temperature for another 3 hours. Saturated aqueous sodium bicarbonate (200 mL) was added and organic layer was separated, the residual mixture was extracted with dichloromethane (2×400 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate (200 mL) and brine (200 mL), dried over sodium sulfate and filtered through Celite-545. The solvents were removed under reduced pressure and residue was purified by flash chromatography (silica gel, hexane and ethyl acetate). Compound (A) (54 g) was isolated and characterized by LC/MS (LRMS(MH) m/z: 310.16).
- Synthesis of (B)
- To a 0° C. solution of Compound (A) (54 g) in dichloromethane (200 mL) was added trifluoroacetic acid (200 mL) over 10 minutes, and the resulting mixture was stirred at the same temperature for another 3 hours. The solvents were removed under reduced pressure and the residue was placed under high vacuum overnight giving the TFA salt of Compound (B), which was characterized by LC/MS (LRMS (MH) m/z: 210.11).
- Synthesis of (C)
- To a 0° C. solution of Compound (B) (43.8 g, 200 mmol), N-Boc serine(methyl ether) (36.7 g, 167 mmol), HOBT (27 g, 200 mmol) and HBTU (71.4 g, 200 mmol) in tetrahydrofuran (1.2 L) was added a solution of N,N-diethylisopropylamine (75 g, 600 mmol) in tetrahydrofuran (250 mL) over 10 minutes, and the pH of the resulting mixture was ˜8. The mixture was stirred at room temperature for another 5 hours. Most of the solvent were removed under reduced pressure at room temperature and diluted with saturated aqueous sodium bicarbonate (400 mL). Then it was extracted with ethyl acetate (3×400 mL), washed with sodium bicarbonate (100 mL) and brine (100 mL). The combined organic layers were dried over sodium sulfate and filtered through Celite-545. The solvents were removed under reduced pressure and residue was purified by flash chromatography (silica gel, hexane and ethyl acetate). Compound (C) (65 g) was isolated and characterized by LC/MS (LRMS (MH) m/z: 411.21).
- Synthesis of (D)
- To a 0° C. solution of Compound (C) (18 g) in dichloromethane (100 mL) was added trifluoroacetic acid (80 mL) over 5 minutes, and the resulting mixture was stirred at the same temperature for another 3 hours. The solvents were removed under reduced pressure and the residue was placed under high vacuum overnight giving the TFA salt of intermediate (D), which was characterized by LC/MS (LRMS (MH) m/z: 311.15).
- Synthesis of (E)
- To a 0° C. solution of ethyl 2-methyl-thiazole-5-carboxylate (15 g, 88 mmol) in tetrahydrofuran (50 mL) was added aqueous sodium hydroxide solution (5 N, 50 mL) over 10 minutes, and the resulting solution was stirred at room temperature for another 2 hours. It was then acidified with hydrochloric acid (2 N) to pH=1 and extracted with tetrahydrofuran (3×100 mL). The combined organic layers were washed with brine (30 mL) and dried over sodium sulfate. Most of the solvents were removed under reduced pressure and the residue was lyophilized to afford Compound (E) (14 g).
- Synthesis of (F)
- To a 0° C. solution of Compound (D) (41 mmol) and 2-methyl-thiazole-5-carboxylic acid (E) (6.0 g, 42 mmol), HOBT (7.9 g, 50 mmol) and HBTU (18.0 g, 50 mmol) in tetrahydrofuran (800 mL) was added a solution of N,N-diethylisopropylamine (˜50 g) in tetrahydrofuran (200 mL) over 5 minutes until its pH reached approximately 8.5. The resulting mixture was stirred at same temperature overnight. It was then quenched with saturated aqueous sodium bicarbonate solution (200 mL), and most of the solvents were removed under reduced pressure. The residual mixture was extracted with ethyl acetate (3×400 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate (200 mL) and brine (100 mL), dried over sodium sulfate and filtered through Celite-545. The solvents were removed under reduced pressure and residue was purified by flash chromatography (silica gel, ethyl acetate with 2% methanol). Compound (F) (17.1 g) was isolated and characterized by LC/MS (LRMS (MH) m/z: 436.15).
- Synthesis of (G)
- To a solution of Compound (F) (17.1 g, 95 mmol) in methanol (300 mL) was added 10% Pd/C (3 g). The resulting mixture was allowed to stir under 1 atmosphere of hydrogen for 48 hours. The mixture was filtered through Celite 545 and the filter cake was washed with methanol (˜200 mL). The organic layers were concentrated under reduced pressure and placed under high vacuum to yield Compound (G), which was characterized by LC/MS (LRMS (MH) m/z: 346.1).
- Synthesis of (H)
- N-Boc phenylalanine-ketoepoxide (140 mg, 0.46 mmol) was diluted with DCM (2 mL) and cooled to 0° C. To this solution was added trifluoroacetic acid (6 mL). The cooling bath was removed and the reaction stirred for 1 hour at which time TLC showed complete consumption of starting material. The resulting solution was concentrated under reduced pressure and placed under high vacuum to yield TFA salt of Compound (H).
- Synthesis of
Compound 1 - To a 0° C. solution of aforementioned Compounds (H) (131 mg, 0.38 mmol) and (J) (0.46 mmol), HOBT (75 mg, 0.48 mmol) and HBTU (171 mg, 0.48 mmol) in tetrahydrofuran (20 mL) and N,N-dimethylformamide (10 mL) was added N,N-diethylisopropylamine (1 mL) dropwise. The mixture was stirred at the same temperature for another 5 hours. It was then quenched with saturated aqueous sodium bicarbonate solution (20 mL), and most of the solvents were removed under reduced pressure. The residual mixture was then extracted with ethyl acetate (3×40 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate (20 mL) and brine (10 mL), dried over sodium sulfate and filtered through Celite-545. The solvents were removed under reduced pressure and residue was purified by HPLC (0.02 M aqueous ammonium acetate and acetonitrile (66/34) to afford Compound 1 (92 mg), which was lyophilized and characterized by LC/MS (LRMS (MH) m/z: 533.2).
- Amorphous Compound 1 (50 mg) was dissolved in acetonitrile (1 mL), then deionized water (2 mL) was added, and the solution brought to supersaturation by slowly evaporating off 1 mL over about 1-2 weeks. The resulting crystals were filtered, washed with 1 mL 1:2 acetonitrile-water, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (25 mg) with a melting point of 148° C. The characteristic DSC curve of the sample is shown in
FIG. 3 as recorded on a TA Instruments Differential Scanning calorimeter 2920 at a heating rate of 10° C./minute. - Amorphous Compound 1 (611 mg) was dissolved in tetrahydrofuran (5 mL), followed by addition of hexanes (5 mL) and the solution was seeded with
crystalline polymorph Compound 1 as prepared in Example 2, and the solution brought to supersaturation by slowly evaporating off 5 mL over about 17 hours. The resulting crystals were filtered, washed with 1 mL 1:1 tetrahydrofuran-hexanes, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (150 mg) with a melting point of 147° C. - Amorphous Compound 1 (176 mg) was dissolved in tetrahydrofuran (5 mL), then toluene (25 mL) was added. The solution was seeded with
crystalline polymorph Compound 1 as prepared in Example 2, and the solution was brought to supersaturation by slowly evaporating off 20 mL over about 2 days. The resulting crystals were filtered, washed with 15 mL toluene, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (88 mg) with a melting point of 149° C. - Amorphous Compound 1 (312 mg) was dissolved in toluene (50 mL), heated to about 100° C. to complete dissolution, then hexanes (50 mL) were added and the solution was seeded with
crystalline polymorph Compound 1 as prepared in Example 2, and the solution brought to supersaturation by slowly evaporating off 60 mL over about 2 days. The resulting crystals were filtered, washed with 10 mL toluene, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (156 mg) with a melting point of 149° C. - Amorphous Compound 1 (1.4 g) was dissolved in toluene (25 mL), heated to about 50° C. to complete dissolution, then brought to supersaturation by cooling to 22° C. and allowing the compound to crystallize for 12 hours. The resulting crystals were filtered, washed with 5 mL hexanes, and dried under vacuum for 12 hours to provide a crystalline polymorph of Compound 1 (0.94 g) with a melting point of 149° C.
- Synthesis of (H)
- N-Boc phenylalanine-ketoepoxide (1.0 equivalent) was dissolved in DCM (3 L/kg of N-Boc phenylalanine-ketoepoxide) in a 3-neck round bottom flask under inert atmosphere and the solution was cooled in ice bath. Then, TFA (5.0 equivalents) was added at a rate to maintain the internal temperature below 10° C. The reaction mixture was then warmed to approximately 20° C. and stirred for 1 to 3 hours. MTBE (3.6 L/kg of N-Boc phenylalanine-ketoepoxide) was then added to the reaction mixture while maintaining mixture temperature below 25° C. Heptane (26.4 L/kg of N-Boc phenylalanine-ketoepoxide) was then added the reaction was cooled to between −5 and 0° C. for 2 to 3 hours to allow crystallization of Compound (H). The white solid was filtered and rinsed with heptane (3 L/kg of N-Boc phenylalanine-ketoepoxide). The white solid was then under vacuum for 12 hours at 22° C. Yield obtained was 86%, with HPLC purity 99.4%.
- Synthesis of
Compound 1 - Compound (H) (1.2 equivalents), Compound (G) (1.0 equivalent), HBTU (1.2 equivalents), HOBT (1.2 equivalents) and N-methyl pyrrolidinone (8 L/kg of Compound (G)) were added to a dry flask under inert atmosphere, and the mixture was stirred at 23° C. to complete dissolution. The reaction was then cooled to between −5 and 0° C., and diisopropylethylamine (2.1 equivalents) was added over 15 minutes, while maintaining an internal reaction temperature of less than 0° C. The reaction mixture was stirred at 0° C. for 12 hours.
-
Crude Compound 1 was precipitated by pouring the reaction mixture onto 8% sodium bicarbonate (40 L/kg of Compound (G)) and the suspension ofcrude Compound 1 was stirred for 12 hours at 20 to 25° C., followed by stirring at 0 to 5° C. for 1 hour. The white solid was filtered and rinsed with water (5 L/kg of Compound (G)). The white solid was then reslurried in water (15 L/kg) for 3 hours at 20 to 25° C., filtered and rinsed with water (5 L/kg of Compound (G)) and isopropyl acetate (2×2 L/kg of Compound (G)). The white solid was dried under vacuum at 45° C. to constant weight. Yield ofcrude Compound 1 was 65%, with HPLC purity of 97.2%. -
Crude Compound 1 was completely dissolved in isopropyl acetate (20 L/kg of crude Compound 1) by stirring and heating at 85° C. The solution was then hot filtered to remove any particulate matter and the solution was re-heated to 85° C. to provide clear solution. The clear solution was allowed to cool at 10° C. per hour to 65° C. before adding seed crystals. The solution was allowed to cool at 10° C. per hour to 20° C., when substantial crystallization ofCompound 1 occurred. The suspension was stirred at 20° C. for 6 hours, followed by stirring at 0 to 5° C. for a minimum of 2 hours and filtration and rinsing with isopropyl acetate (1 L/kg of crude Compound 1). The purifiedCompound 1 was dried under vacuum at 45° C. for a minimum of 24 hours to constant weight. Yield ofCompound 1 was 87%, with HPLC purity 97.2%. - Compound (H) (1.1 equivalents), Compound (G) (1.0 equivalent), HBTU (1.5 equivalents), HOBT (1.5 equivalents) and DMF (8 L/kg of Compound (G)) were added to a dry flask under inert atmosphere, and the mixture was stirred at 23° C. to complete dissolution. The reaction was then cooled to between −5 and 0° C., and diisopropylethylamine (2.1 equivalents) was added over 15 minutes, while maintaining an internal reaction temperature of less than 0° C. The reaction mixture was then stirred at 0° C. for 3 hours.
- The reaction mixture was quenched by addition of pre-chilled saturated sodium bicarbonate (94 L/kg of Compound (G)), while maintaining internal temperature of less 10° C. The content was then transferred to a separatory funnel. The mixture was extracted with ethyl acetate (24 L/kg of Compound (G)), and the organic layer was washed with saturated sodium bicarbonate (12 L/kg of Compound (G)) and with saturated sodium chloride (12 L/kg of Compound (G).
- The organic layer was concentrated under reduced pressure with a bath temperature of less than 30° C. to 15 L/kg of Compound (G), followed by co-distillation with isopropyl acetate (2×24 L/kg of PR-022). Final volume was adjusted to 82 L/kg of Compound (G) with isopropyl acetate before heating to 60° C. to obtain a clear solution. The clear solution mixture was allowed to cool to 50° C. before adding seed crystals. The solution was allowed to cool to 20° C., when substantial crystallization of
Compound 1 had occurred. The suspension was stirred at 0° C. for 12 hours before filtration and rinsing with isopropyl acetate (2 L/kg of Compound 1).Compound 1 was dried under vacuum at 20° C. for 12 hours to constant weight. Yield ofCompound 1 was 48%, with HPLC purity of 97.4%. - Following is a general procedure followed to prepare tablet granulation and compress tablets.
- Wet Granulation
-
- API and all the excipients except for Magnesium Stearate are weighed and added to in predetermined order to a high shear granulation bowl and pre-mixed until a uniform blend is obtained.
- The granulation liquid (sterile water for injection or purified water) is sprayed while mixing the granulation using both the chopper and the impeller in the granulation bowl.
- After complete addition of the granulation liquid, continue to wet mass for at least 30 seconds or more.
- The wet granules obtained are dried using a tray dryer by drying overnight at a set temperature at 65° C. or dried using a fluid bed dryer.
- The dried granules are passed through a co-mil or appropriate milling equipment.
- The total yield of the sieved granulated formulation is calculated and proportionate amount of Magnesium stearate is calculated and weighed.
- The final dried and milled granulation is blended in a v-blender or a suitable blender for five min. The lubricant (magnesium stearate) is added to the blended granulation and the blending is continued for another 2 minutes.
- The final blended granulation is transferred to the tablet press for compression.
- Tablet Compression and Coating
-
- Tablets weighing 200 mg, 240 mg, 360 mg, 400 mg, 480 mg or 500 mg with 50 mg, 100 mg and 200 mg drug loading were compressed with round standard concave 9/32″, 13/32″ or 15/32″ tooling respectively using a Carver Press or single station press or a rotary tablet press.
- Tablets were compressed at predetermined pressure and evaluated for thickness and hardness
- Tablet characteristics and process parameters are documented
- Tablets prepared are stored at RT until further processed or used
- Tablets were film coated using a perforated pan coater with Opadry II 85F18422 which is an immediate release coating polymer formulation marketed by Colorcon®.
- Tablet Characterization
-
- Tablets prepared were characterized for thickness, hardness, friability and dissolution characteristics. The tablet granulation was characterized for compressibility index and particle size distribution.
- Thickness was measured using a VWR Electronic Digital Caliper
- Hardness was measured using a Caleva THT-15 hardness tester.
- Dissolution was performed with USP Type II Paddle apparatus at 75 rpm in pH 5.5 buffer using an Agilent VK 700 dissolution apparatus and VK8000 Dissolution Sampling Station.
- Dissolution samples were analyzed using an Agilent 1260 Infinity HPLC system with Agilent 1200 auto sampler and DAD detector.
- Either student t-tests or ANOVA was performed for the statistical analysis of the data using GraphPad® Prism software when required. Similarity factor (f2) was also calculated to compare the dissolution profiles.
- [1] Tables 5-8 delineate the various extended release tablet formulations with 50 mg, 100 mg and 200 mg strengths. Since all the tablet formulations were manufactured manually by hand using the Carver press, the uniformity of the tablets prepared were monitored by measuring the thickness and weights of all the tablets and hardness on a few of them (Table 10). The desired tablet thickness was defined to be in the range of 4.80 to 5.10 mm as measured by the digital calipers. Tablets outside the desired thickness range were rejected. The tablet hardness is inversely proportional to the thickness (for the current working range) and the thickness and hardness of the tablets were well correlated. The desired average tablet hardness strength was between 12.00-15.00 Kp.
-
TABLE 10 Lot # Tablet Wt. (mg) Thickness (mm) Hardness (Kp) 6004-11-ER1 396.12 ND 10.50 6004-11-ER2 401.47 ND 11.00 6004-15-ER3 400.24 4.99 14.15 6004-15-ER4 399.74 4.92 14.65 6004-22-ER5 400.94 4.89 15.08 6008-14-ER5 401.69 4.89 14.40 6004-23-ER6 398.32 4.84 15.20 6004-24-ER7 400.34 4.93 13.50 6004-29-ER8 400.00 5.00 13.10 6008-14-ER8 399.40 5.02 14.97 6004-34-HDER1 501.00 5.08 12.50 6004-42-HDER1 502.31 4.96 15.50 6004-35-HDER2 499.24 5.08 14.42 6004-39-HDER3 498.75 4.98 12.75 6004-40-HDER4 499.01 4.90 13.65 - [2] ER tablets prepared using Methocel® K 100LV had a faster release rate in comparison with formulations prepared with Methocel® K4M at the same drug to polymer ratio (
FIGS. 5 and 6 ). This result is consistent with the manufacturer's (Colorcon's) guidance, since Methocel® K4M has greater apparent viscosity (2% in water at 20° C.) compared to Methocel® K100LV. Similarly, for the HDER formulations, Methocel® grades with higher viscosity had slower release rate (FIG. 7 ).FIG. 8 lists the various Methocel® grades and its corresponding viscosities. - ER5 formulations were prepared at 50 mg and 100 mg strengths and the release rate (
FIG. 9 ) was similar and the difference was statistically non-significant as determined by the student t-test and similarity factor.(2) Similarly the release profiles of formulations ER8 and HDER2 (FIG. 10 ) were also compared since both of them have the same polymer grade and percentage except for the drug to polymer ratios, but the release profile were found to be very similar with no significant difference. The effect of the API lot (FIG. 11 ) and batch to batch variability (FIG. 12 ) were also studied and no significant differences were observed. The release rates of the drug studied from the tablets compressed at three different compression forces were found to be similar (FIG. 13 ). The paddle rotation speed during the dissolution at 75 rpm and 100 rpm didn't influence the release rate significantly (FIG. 14 ). These studies indicate the robustness of the formulations prepared and the reproducibility of the release profiles. - To further analyze the release data, various kinetic models such as zero order, first order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell models were used to describe the release kinetics. Table 11 lists the release parameters for all the ER formulations developed. Formulations ER5 (100 mg) and ER8 (100 mg) were found to have the desired release profiles and first order release kinetics. Both ER5 and ER8 formulations also had good correlation with Higuchi's, Korsmeyer-Peppas and Hixson-Crowell's models indicating diffusion as the mechanism of release along with change in the surface area and diameter of the tablets with the progressive dissolution of the matrix as a function of time. These results are in accordance with the API solubility properties (˜0.5 mg/mL in water) and the hydrophilic matrix properties of the Methocel® polymer.(3-6)
-
TABLE 11 Zero First Hixson Formulation/ Order Order Higuchi Korsmeyer-Peppas Crowell Release Kinetics R2 R2 R2 R2 n value R2 6004-11-ER1 0.9977 0.9666 0.9632 0.9866 0.7525 0.9883 6004-11-ER2 0.9844 0.9604 0.9915 0.9984 1.0579 0.9925 6004-15-ER3 0.8978 0.9976 0.9899 0.9935 0.4434 0.9921 6004-15-ER4 0.982 0.8041 0.9838 0.9977 0.9773 0.9536 6004-22-ER5 0.9088 0.9681 0.9558 0.9999 0.9991 0.9736 6004-23-ER6 0.9593 0.9174 0.9635 0.9973 1.0666 0.9677 6004-24-ER7 0.6781 0.8464 0.7868 0.8575 0.7566 0.7877 6008-15-ER8 0.9526 0.9848 0.9919 0.9974 0.9879 0.9945 6004-34-HDER1 0.9342 0.989 0.9935 0.995 0.745 0.9992 6004-35-HDER2 0.9608 0.968 0.9884 0.9977 1.0613 0.9937 6004-39-HDER3 0.9714 0.9666 0.9851 0.9902 0.8299 0.9956 6004-40-HDER4 0.9863 0.9884 0.9778 0.9808 0.7023 0.9987 - The stability of oprozomib ER5 tablets prepared and stored at room temperature for more than 2 months were evaluated for assay and impurities and were found to be acceptable without any anomalous peaks implying stability at RT. Stability data is provided in Tables 12-15 (see
FIG. 19 ). - In vivo dog data show that oprozomib administration using ER formulations reduced nausea and vomiting relative to PIC formulation while maintaining the PK/PD activity (
FIGS. 15 and 16 ). Female dogs were administered a single dose of 10 or 20 mg/kg oprozomib in PIC, immediate release, or ER formulations. Blood samples were collected from pre-dose to 24 hours post-dose for plasma PK parameter determination and blood PD analyses of proteasome inhibition. Emesis events were recorded up to 48 hours post-dose. The area under the plasma concentration curve to the last time point (AUClast) and maximum concentration (Cmax) exposures were similar relative to PIC, with the exception of ER3 (FIG. 15 ). The Cma for ER3 was 63% lower, but it was not statistically significant (p>0.05). The ER formulations had a time to peak plasma concentrations of 55-124 minutes. Rapid potent inhibition of proteasome activity (20% of pre-dose) was observed for the ER formulations (FIG. 16 ). ER formulations had statistically significant reduction in emesis events relative to PIC (p<0.05) following a single 10 mg/kg dose (FIG. 17 ). ER formulations caused less emesis events than the immediate formulations (FIG. 17 ). Following a 10 mg/kg dose, the immediate formulations F1 and F2 and extended release formulations ER5 and ER8 caused similar number of emesis events. But following a 20 mg/kg dose, ER5 and ER8 had less emesis events than both F1 and F2. - Patients are administered oprozomib formulated in a tablet form according to either a QD×5 treatment schedule or QD×2 weekly treatment schedule. As used herein, “QD×5” means that patients receive oprozomib tablets once daily on days 1-5 of a 14-day treatment schedule. As used herein, “QD×2” means that patients receive oprozomib tablets once daily on
1, 2, 8, and 9 of a 14-day treatment schedule. Patients may be administered oprozomib formulated in a tablet where the patient receives oprozomib on days one through five of a seven day treatment schedule.days - Oprozomib Tablets, packaged in high-density polyethylene (HDPE) bottles, were placed on long-term and accelerated stability under International Conference on Harmonisation (ICH) conditions. A summary of the batches on stability and available stability data are provided in Table 33. Detailed stability data is provided in Tables 16-21 (see
FIG. 20 ). The acceptance criteria shown in the tables are applicable to the results at the time the data was generated. -
TABLE 33 Available Stability Data for Batches Placed on Stability Finished Table Product Dosage Available Reference to Lot No. Strength Conditions Studied Data Stability Data 1 90 mg 25 ± 2° C./60 ± 5% 6 months Table 16 RH 40 ± 2° C./75 ± 5% 6 months Table 17 RH 2 120 mg 25 ± 2° C./60 ± 5% 6 months Table 18 RH 40 ± 2° C./75 ± 5% 6 months Table 19 RH 3 60 mg 25 ± 2° C./60 ± 5% 3 months Table 20 RH 40 ± 2° C./75 ± 5% 3 months Table 21 RH 4 60 mg 25 ± 2° C./60 ± 5% Initial Table 22 RH 40 ± 2° C./75 ± 5% Initial Table 23 RH 5 90 mg 25 ± 2° C./60 ± 5% Initial Table 24 RH 40 ± 2° C./75 ± 5% Initial Table 25 RH 6 120 mg 25 ± 2° C./60 ± 5% Initial Table 26 RH 40 ± 2° C./75 ± 5% Initial Table 27 RH - Oprozomib GRS-EFS tablet formulations shown below in Table 28 were prepared using direct compression technique and their dissolution profiles are shown in
FIG. 21 . -
TABLE 28 Formulation Lot A Lot B Ingredients % weight mg/tablet % weight mg/tablet Oprozomib 30.0 150.0 30.0 150.0 Avicel PH 10217.5 87.5 27.5 137.5 HPMC K100 LV 25.0 125.0 25.0 125.0 Eudragit RL PO 10.0 50.0 0.0 0.0 NaHCO3 15.0 75.0 15.0 75.0 Talc 2.0 10.0 2.0 10.0 Magnesium Stearate 0.5 2.5 0.5 2.5 Total 100.0 500.0 100.0 500.0 -
-
TABLE 31 ER9 Ingredient % w/w OPZ 25.00 Sodium Lauryl Sulfate 1.00 Magnesium Stearate 0.50 Avicel PH101 16.12 Lactose 31248.83 Methocel K100LV CR 8.55 Core Total 100.00 Coating Opadry II 85F18422 3.00 Total 103.00 - High Shear Wet Granulation (HSWG), tablet compression, and tablet film coating were primarily employed to develop the ER9 tablets. The process involves premixing the excipient blend with the API in the high shear granulator, followed by wet granulation at a predetermined spray rate, and wet massing of the formulation to obtain granulated material. The wet granulated material was then milled through a comil, dried in a fluid bed dryer to less than 2% moisture content, and milled again to obtain the desired particle size distribution of the final granules. The granules were further blended, lubricated, and compressed into modified capsule shaped core tablets. The cores were film coated to obtain the final product.
- The mean dissolution profile of the 90 mg ER5 CTM tablets was selected as the target dissolution profile for the ER9 optimization. A design of experiments (DOE) approach for optimization of excipients levels was conducted to identify the formulation with the desired dissolution profile. The optimization DOE was executed at 1 kg scale keeping the levels of OPZ, sodium lauryl sulfate (SLS), and magnesium stearate constant while varying the levels of hydroxypropyl methylcellulose (HPMC), microcrystalline cellulose (MCC), lactose, and water for granulation. To minimize the number of experiments, a ratio of MCC to lactose was used as a single factor in the study instead of having MCC and lactose as two separate factors. Based on prior knowledge, HPMC was evaluated between 5%-15% w/w, the MCC:lactose ratio was varied between 0.33 and 3.00, while the amount of water required to achieve granulation was evaluated between 30%-40%. 270 mg OPZ tablets (1080 mg total weight) from all formulations were coated with same coating (Opadry®II 85F18422) using the same coating process. All tablets were tested using a 2 stage dissolution method. Details of each formulation evaluated in the study are presented in
FIG. 23 . The dissolution profile of 270 mg ER9 tablets is presentedFIG. 24 . - Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the compounds and methods of use thereof described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims. Accordingly, other embodiments are within the scope of the following claims.
- All of the above-cited references and publications are hereby incorporated by reference.
Claims (22)
1-46. (canceled)
47. An oral formulation comprising oprozomib or pharmaceutically acceptable salt thereof present in an amount of 15 wt % to 60 wt %; one or more fillers present in an amount of 40 wt % to 70 wt %; one or more surfactants present in an amount of 0.5 wt % to 1.5 wt %; one or more lubricants present in an amount of 0.1 wt % to 1 wt %; and a matrix-forming polymer present in an amount of 3 wt % to 40 wt %.
48. The formulation of claim 47 , wherein the oral formulation is a solid dosage form.
49. The formulation of claim 48 , wherein the solid dosage form is a tablet.
50. The formulation of claim 47 , in which less than 30% of the oprozomib, or pharmaceutically acceptable salt thereof, is released after one hour, as determined by HPLC under the following dissolution conditions.
51. The formulation of claim 47 , in which no more than 80% of the oprozomib, or pharmaceutically acceptable salt thereof, is released after four hours, as determined by HPLC under the following dissolution conditions.
52. The formulation of claim 51 , wherein the oprozomib or pharmaceutically acceptable salt thereof comprises 20 wt % to 30 wt % of the formulation.
53. The formulation of claim 52 , wherein the oprozomib or pharmaceutically acceptable salt thereof is a crystalline solid.
54. The formulation of claim 51 , wherein the matrix-forming polymer comprises 3 wt % to 11 wt % of the formulation.
55. The formulation of claim 51 , wherein the matrix-forming polymer comprises hydroxyl propyl methylcellulose.
56. The formulation of claim 51 , wherein the one or more fillers is selected from microcrystalline cellulose, lactose monohydrate, dibasic calcium phosphate (“DCP”), sucrose, glucose, mannitol, and sorbitol.
57. The formulation of claim 51 , wherein the one or more fillers comprise microcrystalline cellulose and lactose monohydrate.
58. The formulation of claim 51 , wherein the one or more fillers comprise 60 wt % to 70 wt % of the formulation.
59. The formulation of claim 51 , wherein the one or more surfactants comprises sodium lauryl sulfate.
60. The formulation of claim 51 , wherein the one or more lubricants comprises magnesium stearate.
61. The formulation of claim 47 , wherein a single dose of the formulation to a dog produces dose-normalized peak plasma concentration (Cmax/D) of oprozomib of 15.2±3.3 ng*kg/mg/mL (mean standard error of the mean) for a formulation containing 100 mg of oprozomib.
62. An oral formulation comprising (a) oprozomib or a pharmaceutically acceptable salt thereof, (b) a matrix-forming polymer, (c) one or more fillers, (d) one or more surfactants, and (e) one or more lubricants, in which less than 30% of the oprozomib, or pharmaceutically acceptable salt thereof, is released after one hour, as determined by HPLC under the following dissolution conditions.
63. The formulation of claim 62 , wherein the oprozomib or pharmaceutically acceptable salt thereof comprises 20 wt % to 30 wt % of the formulation.
64. The formulation of claim 62 , wherein the matrix-forming polymer is 3 wt % to 11 wt % of the formulation.
65. The formulation of claim 64 , wherein the matrix forming polymer comprises hydroxyl propyl methylcellulose.
66. The formulation of claim 62 , wherein the one or more fillers comprise 60 wt % to 70 wt % of the formulation.
67. The formulation of claim 66 , wherein the one or more fillers comprise microcrystalline cellulose and lactose monohydrate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/008,634 US20160213610A1 (en) | 2012-10-24 | 2016-01-28 | Modified release formulations for oprozomib |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261717975P | 2012-10-24 | 2012-10-24 | |
| US201261721244P | 2012-11-01 | 2012-11-01 | |
| US201361793087P | 2013-03-15 | 2013-03-15 | |
| US14/062,759 US9295708B2 (en) | 2012-10-24 | 2013-10-24 | Modified release formulations for oprozomib |
| US15/008,634 US20160213610A1 (en) | 2012-10-24 | 2016-01-28 | Modified release formulations for oprozomib |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/062,759 Continuation US9295708B2 (en) | 2012-10-24 | 2013-10-24 | Modified release formulations for oprozomib |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160213610A1 true US20160213610A1 (en) | 2016-07-28 |
Family
ID=50485877
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/062,759 Expired - Fee Related US9295708B2 (en) | 2012-10-24 | 2013-10-24 | Modified release formulations for oprozomib |
| US15/008,634 Abandoned US20160213610A1 (en) | 2012-10-24 | 2016-01-28 | Modified release formulations for oprozomib |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/062,759 Expired - Fee Related US9295708B2 (en) | 2012-10-24 | 2013-10-24 | Modified release formulations for oprozomib |
Country Status (24)
| Country | Link |
|---|---|
| US (2) | US9295708B2 (en) |
| EP (1) | EP2912025A4 (en) |
| JP (1) | JP6505604B2 (en) |
| KR (1) | KR20150070406A (en) |
| CN (1) | CN104968650A (en) |
| AP (1) | AP3681A (en) |
| AR (1) | AR093126A1 (en) |
| AU (1) | AU2013334258A1 (en) |
| BR (1) | BR112015008572A2 (en) |
| CA (1) | CA2888039A1 (en) |
| CL (1) | CL2015001085A1 (en) |
| CR (1) | CR20150266A (en) |
| EA (1) | EA201590797A1 (en) |
| HK (2) | HK1208222A1 (en) |
| IL (1) | IL238244A0 (en) |
| IN (1) | IN2015DN03921A (en) |
| MX (1) | MX2015005069A (en) |
| PE (1) | PE20151051A1 (en) |
| PH (1) | PH12015500823A1 (en) |
| SG (1) | SG11201502849XA (en) |
| TN (1) | TN2015000135A1 (en) |
| TW (1) | TW201422255A (en) |
| UY (1) | UY35091A (en) |
| WO (1) | WO2014066681A1 (en) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI568722B (en) | 2012-06-15 | 2017-02-01 | 葛蘭馬克製藥公司 | Triazolone compounds as mpges-1 inhibitors |
| HK1252549A1 (en) | 2015-06-19 | 2019-05-31 | Biotie Therapies, Inc. | Controlled-release tozadenant formulations |
| CN105949279A (en) * | 2016-04-27 | 2016-09-21 | 浙江大学 | Method for preparing proteasome inhibitor Oprozomib and analogs thereof |
| WO2018005781A1 (en) * | 2016-06-29 | 2018-01-04 | Kezar Life Sciences | Process of preparing a peptide epoxyketone immunoproteasome inhibitor, and precursors thereof |
| WO2018057453A1 (en) | 2016-09-21 | 2018-03-29 | Amgen Inc. | Immediate release formulations for oprozomib |
| WO2018112078A1 (en) | 2016-12-14 | 2018-06-21 | Amgen Inc. | Gastro-retentive modified release dosage forms for oprozomib and process to make thereof |
| US11401334B2 (en) | 2017-09-14 | 2022-08-02 | Glaxosmithkline Intellectual Property Development Limited | Combination treatment for cancer with anti-BCMA binding protein and proteosome inhibitor |
| CN110357940A (en) * | 2019-08-02 | 2019-10-22 | 苏州艾和医药科技有限公司 | Ao Puzuo meter synthesising process research |
| JP2025516629A (en) | 2022-05-11 | 2025-05-30 | セルジーン コーポレーション | Methods and uses relating to T cell therapy and production thereof |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5126145A (en) * | 1989-04-13 | 1992-06-30 | Upsher Smith Laboratories Inc | Controlled release tablet containing water soluble medicament |
| JPH06199657A (en) * | 1992-12-10 | 1994-07-19 | Sumitomo Pharmaceut Co Ltd | Sustained release formulation |
| AU4499697A (en) | 1996-09-13 | 1998-04-02 | New York University | Method for treating parasitic diseases with proteasome inhibitors |
| JP4748839B2 (en) * | 1999-03-25 | 2011-08-17 | 大塚製薬株式会社 | Cilostazol preparation |
| BR0207157A (en) * | 2001-02-12 | 2004-02-17 | Wyeth Corp | O-desmethyl-venlafaxine succinate salt |
| US8119154B2 (en) * | 2004-04-30 | 2012-02-21 | Allergan, Inc. | Sustained release intraocular implants and related methods |
| LT2623113T (en) * | 2005-11-09 | 2017-07-10 | Onyx Therapeutics, Inc. | Compound for enzyme inhibition |
| US20100172988A1 (en) * | 2006-01-10 | 2010-07-08 | Kissei Pharmaceutical Co., Ltd. | Sustained release preparation and method for production thereof |
| WO2008140782A2 (en) | 2007-05-10 | 2008-11-20 | Proteolix, Inc. | Compounds for enzyme inhibition |
| ES2684340T3 (en) * | 2007-10-04 | 2018-10-02 | Onyx Therapeutics, Inc. | Crystalline peptide epoxy ketone protease inhibitors and amino acid ketoepoxide synthesis |
| TWI504598B (en) * | 2009-03-20 | 2015-10-21 | Onyx Therapeutics Inc | Crystalline tripeptide ketone ketone protease inhibitor |
-
2013
- 2013-10-22 TW TW102138163A patent/TW201422255A/en unknown
- 2013-10-22 UY UY0001035091A patent/UY35091A/en not_active Application Discontinuation
- 2013-10-24 CN CN201380067772.0A patent/CN104968650A/en active Pending
- 2013-10-24 US US14/062,759 patent/US9295708B2/en not_active Expired - Fee Related
- 2013-10-24 AU AU2013334258A patent/AU2013334258A1/en not_active Abandoned
- 2013-10-24 MX MX2015005069A patent/MX2015005069A/en unknown
- 2013-10-24 IN IN3921DEN2015 patent/IN2015DN03921A/en unknown
- 2013-10-24 HK HK15108858.7A patent/HK1208222A1/en unknown
- 2013-10-24 EA EA201590797A patent/EA201590797A1/en unknown
- 2013-10-24 CA CA2888039A patent/CA2888039A1/en not_active Abandoned
- 2013-10-24 BR BR112015008572A patent/BR112015008572A2/en not_active Application Discontinuation
- 2013-10-24 HK HK16103699.0A patent/HK1215709A1/en unknown
- 2013-10-24 AR ARP130103868A patent/AR093126A1/en unknown
- 2013-10-24 EP EP13849834.0A patent/EP2912025A4/en not_active Withdrawn
- 2013-10-24 WO PCT/US2013/066679 patent/WO2014066681A1/en not_active Ceased
- 2013-10-24 KR KR1020157013739A patent/KR20150070406A/en not_active Withdrawn
- 2013-10-24 SG SG11201502849XA patent/SG11201502849XA/en unknown
- 2013-10-24 PE PE2015000537A patent/PE20151051A1/en not_active Application Discontinuation
- 2013-10-24 JP JP2015539810A patent/JP6505604B2/en not_active Expired - Fee Related
- 2013-10-24 AP AP2015008387A patent/AP3681A/en active
-
2015
- 2015-04-08 TN TNP2015000135A patent/TN2015000135A1/en unknown
- 2015-04-12 IL IL238244A patent/IL238244A0/en unknown
- 2015-04-15 PH PH12015500823A patent/PH12015500823A1/en unknown
- 2015-04-24 CL CL2015001085A patent/CL2015001085A1/en unknown
- 2015-05-20 CR CR20150266A patent/CR20150266A/en unknown
-
2016
- 2016-01-28 US US15/008,634 patent/US20160213610A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| MX2015005069A (en) | 2015-07-17 |
| IN2015DN03921A (en) | 2015-10-02 |
| JP6505604B2 (en) | 2019-04-24 |
| PH12015500823A1 (en) | 2015-06-22 |
| KR20150070406A (en) | 2015-06-24 |
| HK1215709A1 (en) | 2016-09-09 |
| BR112015008572A2 (en) | 2017-07-04 |
| AR093126A1 (en) | 2015-05-20 |
| CR20150266A (en) | 2015-08-14 |
| TW201422255A (en) | 2014-06-16 |
| IL238244A0 (en) | 2015-06-30 |
| EP2912025A4 (en) | 2016-06-08 |
| JP2015535255A (en) | 2015-12-10 |
| AP3681A (en) | 2016-04-19 |
| CL2015001085A1 (en) | 2015-08-28 |
| UY35091A (en) | 2014-05-30 |
| EA201590797A1 (en) | 2016-02-29 |
| AP2015008387A0 (en) | 2015-04-30 |
| HK1208222A1 (en) | 2016-02-26 |
| CN104968650A (en) | 2015-10-07 |
| US20140113855A1 (en) | 2014-04-24 |
| WO2014066681A1 (en) | 2014-05-01 |
| SG11201502849XA (en) | 2015-05-28 |
| CA2888039A1 (en) | 2014-05-01 |
| AU2013334258A1 (en) | 2015-04-30 |
| TN2015000135A1 (en) | 2016-10-03 |
| US9295708B2 (en) | 2016-03-29 |
| EP2912025A1 (en) | 2015-09-02 |
| PE20151051A1 (en) | 2015-08-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9295708B2 (en) | Modified release formulations for oprozomib | |
| US9382256B2 (en) | Formulation of Syk inhibitors | |
| AU2003289320C1 (en) | Solid drug for oral use | |
| WO2008072534A1 (en) | Solid medicinal preparation containing mannitol or lactose | |
| US20230277506A1 (en) | Novel preparation containing benzimidazole derivative | |
| US20230203009A1 (en) | Pralsetinib pharmaceutical compositions | |
| TW201442712A (en) | Formulations of organic compounds | |
| JP2025506374A (en) | Peptide inhibitors of interleukin-23 receptor and pharmaceutical compositions thereof | |
| JP7382737B2 (en) | istradefylline preparation | |
| US20180078532A1 (en) | Immediate release formulations for oprozomib | |
| US20180161279A1 (en) | Gastro-retentive modified release dosage forms for oprozomib and process to make thereof | |
| WO2025195333A1 (en) | Pharmaceutical formulation of erbb2 inhibitors | |
| WO2024163643A1 (en) | Methods for preparing crystalline peptide inhibitors of interleukin-23 receptor | |
| CN120091817A (en) | Combination therapy of orbicetrapib and ezetimibe and fixed-dose pharmaceutical compositions | |
| CN119074670A (en) | EED inhibitor solid dispersion, oral preparation containing the same and preparation method thereof | |
| NZ555003A (en) | Solid drug for oral use comprising indoline compound |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ONYX THERAPEUTICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANEK, RAHUL VISHRAM;SHARMA, SANJEEV;JUMAA, MOUHANNAD;AND OTHERS;SIGNING DATES FROM 20131120 TO 20140107;REEL/FRAME:038911/0408 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |