US20160174755A1 - Processor control of solute extraction system - Google Patents
Processor control of solute extraction system Download PDFInfo
- Publication number
- US20160174755A1 US20160174755A1 US15/056,131 US201615056131A US2016174755A1 US 20160174755 A1 US20160174755 A1 US 20160174755A1 US 201615056131 A US201615056131 A US 201615056131A US 2016174755 A1 US2016174755 A1 US 2016174755A1
- Authority
- US
- United States
- Prior art keywords
- inlet nozzle
- beverage
- cartridge
- fluid
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000605 extraction Methods 0.000 title description 4
- 235000013361 beverage Nutrition 0.000 claims abstract description 274
- 239000002002 slurry Substances 0.000 claims description 34
- 230000033001 locomotion Effects 0.000 claims description 31
- 239000002904 solvent Substances 0.000 claims description 22
- 235000016213 coffee Nutrition 0.000 abstract description 31
- 235000013353 coffee beverage Nutrition 0.000 abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 30
- 239000000203 mixture Substances 0.000 abstract description 17
- 239000012530 fluid Substances 0.000 description 114
- 238000000034 method Methods 0.000 description 29
- 239000007921 spray Substances 0.000 description 17
- 238000003860 storage Methods 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 16
- 238000001802 infusion Methods 0.000 description 12
- 230000015654 memory Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 244000269722 Thea sinensis Species 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000000796 flavoring agent Substances 0.000 description 6
- 235000019634 flavors Nutrition 0.000 description 6
- 238000009987 spinning Methods 0.000 description 6
- 238000013019 agitation Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 235000019658 bitter taste Nutrition 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- -1 e.g. Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 235000017858 Laurus nobilis Nutrition 0.000 description 2
- 244000125380 Terminalia tomentosa Species 0.000 description 2
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 235000015067 sauces Nutrition 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000014347 soups Nutrition 0.000 description 2
- 235000019640 taste Nutrition 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- 101100188555 Arabidopsis thaliana OCT6 gene Proteins 0.000 description 1
- 235000009590 Calophyllum inophyllum Nutrition 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 206010013911 Dysgeusia Diseases 0.000 description 1
- 241000193986 Kalmia latifolia Species 0.000 description 1
- 244000147568 Laurus nobilis Species 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 244000025271 Umbellularia californica Species 0.000 description 1
- 235000008674 Umbellularia californica Nutrition 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 235000015114 espresso Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 235000020278 hot chocolate Nutrition 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 235000015122 lemonade Nutrition 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000018984 mastication Effects 0.000 description 1
- 238000010077 mastication Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 235000013547 stew Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/24—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
- A47J31/34—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
- A47J31/36—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
- A47J31/3666—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means whereby the loading of the brewing chamber with the brewing material is performed by the user
- A47J31/3676—Cartridges being employed
- A47J31/369—Impermeable cartridges being employed
- A47J31/3695—Cartridge perforating means for creating the hot water inlet
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/40—Beverage-making apparatus with dispensing means for adding a measured quantity of ingredients, e.g. coffee, water, sugar, cocoa, milk, tea
- A47J31/407—Beverage-making apparatus with dispensing means for adding a measured quantity of ingredients, e.g. coffee, water, sugar, cocoa, milk, tea with ingredient-containing cartridges; Cartridge-perforating means
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
- A23F3/18—Extraction of water soluble tea constituents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F5/00—Coffee; Coffee substitutes; Preparations thereof
- A23F5/24—Extraction of coffee; Coffee extracts; Making instant coffee
- A23F5/26—Extraction of water soluble constituents
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/24—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
- A47J31/34—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
- A47J31/36—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
- A47J31/3604—Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
- A47J31/3623—Cartridges being employed
- A47J31/3628—Perforating means therefor
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/44—Parts or details or accessories of beverage-making apparatus
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/44—Parts or details or accessories of beverage-making apparatus
- A47J31/52—Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus
- A47J31/525—Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus the electronic control being based on monitoring of specific process parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/70—Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
- B65D85/804—Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
- B65D85/8043—Packages adapted to allow liquid to pass through the contents
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/44—Parts or details or accessories of beverage-making apparatus
- A47J31/46—Dispensing spouts, pumps, drain valves or like liquid transporting devices
Definitions
- aspects of the present disclosure generally relate to apparatuses and methods for liquid or fluid infusion. More specifically, the present disclosure relates to apparatuses configured to extract soluble portions of slurries through infusion, and methods related thereto.
- infusion of leaves, herbs, and other slurries for medicinal purposes has been part of human cultures for centuries.
- the process of infusion e.g., adding a slurry to a liquid (i.e., a solvent), or a solvent to a slurry, under certain temperature and/or pressure conditions may extract one or more solutes (i.e., soluble portions of the slurry), has also entered other fields of endeavor.
- Solutes of many slurries have been extracted for flavor as well as other properties. Leaves from certain laurel trees, such as the California Laurel or Indian Laurel (sometimes known as “bay leaves”), may be steeped in sauces or stews to add fragrance and/or a subtle flavor similar to cinnamon. Infusion of other laurel leaves, such as the Mountain Laurel, could produce solutes that are poisonous to humans. Although non-toxic bay leaves are often left in the sauce or finished dish, mastication of even non-toxic bay leaves may produce a bitter taste, and the texture of the bay leaf may cause irritations to the digestion tract. Such taste, texture, toxicity, and/or other characteristics of the slurry and/or solutes may be undesirable in the solution.
- slurry material also referred to as a beverage medium, (e.g., ground coffee)
- a beverage medium e.g., ground coffee
- water e.g., the solvent
- the slurry (coffee grounds, tea leaves, etc.) may remain in the container or cartridge to reduce introduction of unwanted flavors, textures, additional solute extraction, or other deleterious properties of the slurry into the solution (solvent-solute mixture).
- These apparatuses may use a stationary inlet port that pierces the cartridge and injects a relatively constant stream of solvent (e.g., water) toward the slurry (e.g., coffee grounds) into the cartridge.
- solvent e.g., water
- This solvent stream may channel or tunnel through the slurry and not fully extract solute from some portions of the slurry, while over-extracting solute from other portions of the slurry, resulting in a solvent-solute solution comprising undesirable solute properties, e.g., bitter taste, undesirable after-taste, etc.
- undesirable solute properties e.g., bitter taste, undesirable after-taste, etc.
- other solutes may be added to mask the undesirable solutes and/or other properties that have been infused into the solution. Examples of added solutes are sugar, cream, etc., which may be used to mask the bitter and/or other undesirable solutes in the solvent-solute solution produced by apparatuses using stationary solvent inlet ports.
- a device in accordance with an aspect of the present disclosure comprises a beverage head and a processor.
- the beverage head further comprises a receptacle, an inlet nozzle, and an outlet conduit.
- the receptacle is configured to selectively receive a slurry within the receptacle of the beverage head when the beverage head is in a first position.
- the slurry comprises a quantity of beverage medium.
- the inlet nozzle is coupled to the receptacle and configured to deliver at least one solvent to the slurry when the beverage head is in a second position such that at least one solution comprising at least a portion of the at least one solvent and at least a portion of one solute of the slurry is created during operation of the device.
- the receptacle is further configured to contain the slurry and the at least one solvent for at least a first period of time to assist the at least one solvent in extracting the at least one solute.
- the outlet conduit is coupled to the receptacle and configured to direct at least a portion of the at least one solution to a receptacle external to the beverage head.
- the processor is coupled to the inlet nozzle, and controls a selective rotation of the inlet nozzle with respect to the slurry while the inlet nozzle is proximate the slurry for at least a portion of the time the at least one solvent is being delivered to the slurry.
- FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure
- FIG. 2 is a perspective view of an embodiment of a beverage brewer, illustrating a lid of a brewer head in an open position in accordance with an aspect of the present disclosure
- FIG. 3 is an enlarged front view of the brewer head taken about circle 6 in FIG. 2 , further illustrating rotation or spinning motion of an inlet nozzle;
- FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure
- FIG. 5 is a cross-sectional view of the brewer head taken about the line 7 - 7 in FIG. 2 , in accordance with an aspect of the present disclosure
- FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 7 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 8 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 9 is across-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 11 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 12 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 13 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 14 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 15 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 16 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 17 is a cross-sectional view of a brewer head in accordance with an aspect of the present disclosure.
- FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure
- FIG. 19 illustrates a flow diagram showing possible steps used in an embodiment of the present disclosure.
- FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure.
- a beverage brewer 10 may be designed for use with container-based beverage cartridges, such as single-serve coffee cartridges.
- the beverage brewer 10 may include a generally upright housing 12 having a base or platen 14 extending out at the bottom and positioned generally below an outwardly extending brewer head (also referred to as a “beverage head” herein) 16 .
- the vertical distance between the platen 14 and the brewer head 16 can adequately accommodate a coffee mug or other external receptacle for delivery of the beverage from the beverage brewer 10 .
- the receptacle may be capable of retaining at least 6 oz. of beverage, and possibly 10 oz. or more of beverage.
- the housing 12 may further comprise a rear housing 18 having a gravity-fed and/or other type of water reservoir 20 on one side and an outer shell 22 that houses or protects the internal features of the beverage brewer 10 , including, for example, the conduit system between the water reservoir 20 and the brewer head 16 .
- Such features within the housing 12 of the beverage brewer 10 may generally include a fluid conduit system, a pump, and/or a heating element, in order to deliver a fluid from the reservoir 20 (or other source) to the brewer head 16 and/or to the receptacle external to the beverage brewer 10 .
- FIG. 2 is a perspective view of a beverage brewer, illustrating a lid of a brewer head in an open position (also referred to as a first position, second position, and/or access position herein) in accordance with an aspect of the present disclosure.
- the brewer head 16 may be a clam-shell structure including a stationary lower support member 24 and a movable upper member or lid 26 that pivots relative to the lower support member 24 about a hinge 28 .
- the scope of the present disclosure includes embodiments where the lower support member 24 and the lid 26 may both be movable, or that the lower support member 24 may be movable relative to a stationary lid 26 . Additionally, the lower support member 24 and/or the lid 26 may pivot or rotate about the common hinge 28 , or separate hinges or points within the beverage brewer 10 .
- the lower support member 24 and the lid 26 are selectively opened and closed and form a brew chamber therebetween during a brew cycle (also known as a preparation cycle) for selective retention of a beverage cartridge 32 in a receptacle 30 of the brewer head 16 .
- the beverage cartridge 32 may include any liquid medium known in the art, including, but not limited to, liquid and/or beverage medium used to form various types of coffee, espresso, tea, hot chocolate, lemonade and other fruit-based drinks, carbonated drinks such as soda, soups and other liquid foods, etc.
- the user may again activate the release button 172 , and/or may push on the lid 26 to move the lid 26 closer to the lower support member 24 .
- the jaw lock 176 may selectively lock during a brew cycle and/or preparation cycle to prevent any liquid delivered by the beverage brewer 10 from being expelled by the beverage brewer 10 external to the receptacle located proximate to the platen 14 .
- the contact between the lower support member 24 and the jaw lock 176 selectively holds the brewer head 16 closed as shown in FIG. 1 .
- the beverage brewer 10 also comprises an inlet nozzle 44 that generally extends downwardly out from underneath the lid 26 , as shown within the brewer head 16 .
- the inlet nozzle 44 is coupled to, e.g., in fluid communication with, a conduit system, e.g., the pump 134 , for injecting at least a first fluid, such as turbulent or laminar hot water and steam, a liquid such as water and/or milk, or other gas and/or other liquid in a fluid or semi-fluid form, into the beverage cartridge 32 through the inlet nozzle 44 .
- a first fluid such as turbulent or laminar hot water and steam, a liquid such as water and/or milk, or other gas and/or other liquid in a fluid or semi-fluid form
- the inlet nozzle 44 may be a needle, spine, spout, spigot, jet, projection, spike, and/or other inlet means for delivering the at least first fluid to a beverage medium 78 .
- FIG. 3 is an enlarged front view of the brewer head taken about circle 6 in FIG. 2 , further illustrating rotation or spinning motion of an inlet nozzle in an aspect of the present disclosure.
- the lid 24 of the beverage brewer 10 may comprise an encapsulation cap 46 having a diameter sized for at least partial slide-fit insertion over the receptacle 30 to encapsulate and retain the beverage cartridge 32 therebetween.
- the beverage cartridge 32 may thus be held in a substantially stationary position with respect to the beverage brewer 10 device while the brewer head 16 is in the closed position, although it is understood that the beverage cartridge 32 can be held in a substantially stationary position via other means, and/or can be non-stationary.
- FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure.
- a beverage cartridge such as the beverage cartridge 32
- a beverage cartridge 32 may be employed within an aspect of the present disclosure.
- other types of containers or uncontained mediums can also be used in embodiments of the present invention, such as soft pods, sealed or unsealed packets containing a liquid medium (e.g., coffee grounds), tea bags, grounds or leaves, etc.
- Beverage cartridge 32 may allow for easier brewing or making of beverages.
- Beverage cartridge 32 may comprise an outer surface 48 and an inner chamber 50 .
- Beverage medium 78 may be contained or otherwise located within the inner chamber 50 (also referred to as an inner volume herein) of the beverage cartridge 32 .
- Other features, such as a filter, etc. may also be included in the inner chamber 50 of the beverage cartridge 32 , to filter coffee grounds, tea leaves, etc., that may be part of the beverage medium 78 not desired in a final beverage or liquid.
- FIG. 4A illustrates an open or exposed inner chamber 50 .
- beverage cartridge 32 may also comprise a cover 49 .
- Cover 49 may comprise foil or other material to seal the beverage cartridge 32 from external environments that may be deleterious to the beverage medium 78 in the inner chamber 50 .
- beverage cartridge 32 may be sealed against air, water, or other external hazards until one or more entry points are made to access the inner chamber 50 .
- Beverage cartridges 32 such as those that comprise a cover 49 and/or comprise one or more sealed inner chambers 50 , may use a needle or other instrument, such as inlet nozzle 44 , to direct a fluid into and/or out of the inner chamber(s) 50 of the beverage cartridge 32 .
- Beverage cartridge 32 also comprises a height 51 , also referred to as a vertical height herein. It is understood that while the beverage cartridge 32 is a sealed container, many different types of cartridges and/or mediums can be used.
- FIG. 4C illustrates an aspect of the present disclosure where the beverage cartridge 32 is accessed by the inlet nozzle 44 and/or the outlet conduit 400 .
- the outlet conduit 400 is coupled to the brewer head 16 , and is selectively coupled to the beverage cartridge 32 when the brewer head 16 is in a certain position.
- the outlet conduit 400 can comprise a point 402 that, when the lid 26 is pushed downward toward the lower support member 24 or the lid 26 is otherwise closed as shown by arrow 404 , the beverage cartridge 32 is pressed onto the point 402 , and the outlet conduit 400 now has access to the inner chamber 50 of the beverage cartridge 32 .
- the beverage cartridge 32 may be pressed onto the point 402 upon user placement of the beverage cartridge 32 into the brewer head receptacle 30 .
- Many different embodiments are possible as would be understood by one of skill in the art, and it is also contemplated that an outlet conduit according to the present invention can access a medium, such as a medium within a beverage cartridge, with or without a point 402
- the lid 26 can be pushed downward toward the lower support member 24 such that the inlet nozzle 44 is placed proximate the beverage medium 78 , and in some embodiments, at least below a level of the height 51 of the beverage cartridge 32 .
- the lid 26 is pushed downward toward the lower support member 24 and/or is closed, e.g., such that the lid 26 is locked and/or otherwise sealed against the lower support member 24 as shown in FIG. 1 .
- the inlet nozzle 44 may be placed proximate to the beverage medium 78 to direct the fluid from the flow port 74 toward the beverage medium 78 .
- the proximate placement of inlet nozzle 44 to the beverage medium 78 includes the inlet nozzle 44 being partially or fully immersed in the beverage medium 78 as well as being maintained at a level above and/or near a top of the beverage medium 78 , whether or not the beverage medium 78 is contained in a beverage cartridge 32 .
- the inlet nozzle 44 pierces the beverage cartridge 32 approximately on a center line 406 of the beverage cartridge 32 , e.g., through the cover 49 , although it is understood that, in other embodiments, an inlet nozzle 44 may puncture the beverage cartridge 32 in off-center locations or other locations of the outer surface 48 of the beverage cartridge 32 .
- the inlet nozzle 44 may be rotated as shown by arrow 408 while coupled to the inner chamber 50 .
- the beverage cartridge may be substantially stationary with respect to the beverage brewer 10 , as motion of both the inlet nozzle 44 and the beverage cartridge 32 may result in fluid from the beverage cartridge 32 being directed somewhere other than the outlet conduit 400 .
- it may be desirable to move both the inlet nozzle 44 and the beverage cartridge 32 e.g., simultaneously. For many applications, delivery of fluid from the beverage cartridge somewhere other than outlet conduit 400 is undesired.
- FIG. 5 is a cross-sectional view of the brewer head taken about the line 7 - 7 in FIG. 2 in an aspect of the present disclosure.
- FIG. 5 illustrates at least some of the internal fluid, e.g., water, steam, etc., flow paths in the beverage brewer 10 that pass through the brewer head 16 , the inlet nozzle 44 , and a plurality of flow ports 74 , and into the inner chamber 50 of a container-based beverage cartridge 32 .
- the inlet nozzle 44 is correspondingly moved into a position to puncture or otherwise pass through an outer surface 48 of the beverage cartridge 32 and extend down into an inner beverage medium-filled chamber 50 of the beverage cartridge 32 .
- the inlet nozzle 44 When the brewer head 16 is in the closed position, the inlet nozzle 44 may be rotated by a motor 52 or other means coupled to the inlet nozzle 44 for at least a portion of the time while fluid is being delivered to the inner volume of the sealed container or for at least a portion of the time that the beverage brewer 10 is in the closed position.
- the same or different motor or means may also selectively vertically move or position the inlet nozzle 44 with respect to the beverage cartridge 32 and/or the beverage medium 78 .
- the inlet nozzle 44 in accordance with an aspect of the present disclosure may comprise a blunt or rounded nose 54 that force pierces the surface 48 to permit entry of the inlet nozzle 44 into the interior of the beverage cartridge 32 .
- the nose of the inlet nozzle 44 may be sharpened, e.g., with jagged edges, having a point on the inlet nozzle 44 , etc., to make the piercing of the outer surface 48 easier, but such a sharp or jagged edge may be less desirable since such an embodiment carries an inherently higher risk of user injury when the inlet nozzle 44 is exposed to the user as shown in FIG. 2 .
- a fluid conduit 66 terminates at an upper end 68 of the inlet nozzle 44 and is generally aligned with an inlet channel 70 bored into the exterior diameter of the inlet nozzle 44 .
- the inlet channel is coupled to, e.g., in fluid communication with, a central shaft 72 that channels fluid water from the upper end 68 toward the nose 54 and out through one or more flow ports 74 .
- O-rings 76 , 76 ′ may be positioned on each side of the inlet channel 70 to assist in minimizing leakage from pressurized fluid leaving the fluid conduit 66 for flow into the inlet channel 70 .
- a secondary fluid comprising a mixture of the fluid delivered through the inlet nozzle 44 and a portion of the beverage medium 78 , is thus created during the preparation cycle.
- the secondary fluid may be, for example, coffee, tea, etc., where the secondary fluid does not include, or includes only limited, solids from the beverage medium 78 (e.g., coffee grounds, tea leaves, etc.). In other words, some of the beverage medium 78 may remain in the beverage cartridge 32 after mixture with the fluid delivered through the inlet nozzle 44 , whether or not the inlet nozzle 44 is rotated or otherwise moved while coupled to the inner chamber of the beverage cartridge 32 .
- This secondary fluid may be referred to as a “fluidized mixture” herein.
- an aspect of the beverage brewer of the present disclosure described herein helps minimize channeling and/or overexposure of beverage medium (e.g., coffee grounds) during the preparation cycle. At least with respect to coffee, this may substantially reduce unwanted flavors and/or tastes, such as the bitter taste often associated with single-serve coffee brewers. Further, rotation of the inlet nozzle 44 within the beverage medium 78 in an aspect of the present disclosure may also produce a noticeable layer of coffee crema after the brewed coffee dispenses from the brewer head 16 into the receptacle (e.g., mug, cup, etc.) proximate the platen 14 .
- the receptacle e.g., mug, cup, etc.
- FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure.
- the top view of the brewer head 16 illustrates a top mounted motor 52 that may be used to rotate the inlet nozzle 44 (which is located opposite the view shown in FIG. 6 ) 360 degrees at a constant speed (typically measured in revolutions per minute, or RPMs) or at variable speeds (e.g., higher RPMs when the brew cycle first initiates and relatively slower RPMs closer to the end of the brew cycle, or vice versa).
- the motor 52 may only partially rotate or pivot the inlet nozzle 44 (e.g., 300 degrees), then stop and reverse rotation (e.g., an opposite 300 degrees). This same or similar partial rotational feature may also be accomplished through use of a solenoid (not shown), as opposed to the motor 52 .
- FIG. 6 also illustrates the extension spring 45 coupled within the interior of the lid 26 , which urges the lid 26 to pivot from the closed position shown in FIG. 1 to the open position shown in FIG. 2 when the jaw clip 36 is released.
- the inlet nozzle 44 may rotate at variable speeds within a brew cycle, or may rotate at a constant speed for part of a brew cycle and for another portion of the brew cycle the inlet nozzle 44 may rotate at variable speeds or in a different direction.
- the inlet nozzle 44 may do more than rotate about its own central axis; the inlet nozzle 44 may oscillate, nutate, rotate about a non-central axis such as an axis remote from the inlet nozzle 44 itself, or otherwise move within the brewer head 16 (including combinations of the movements mentioned above), whether or not the inlet nozzle 44 is inserted into the beverage cartridge 32 , at least in part to agitate, move, or otherwise assist in the infusion of the fluids from the inlet nozzle 44 with the beverage medium 78 .
- the inlet nozzle 44 may be moved, rotated, nutated, oscillated, vibrated, or subjected to any combination of various motions based on the brew cycle duration, type of beverage cartridge 32 , water temperature, or other factors as desired to create a desired mixture of the beverage medium 78 with one or more fluids delivered through the inlet nozzle 44 .
- a “rotation” may only be a partial rotation, rotation or motion in a different direction, or movement about one or more different axes of the inlet nozzle 44 or about an axis of another device (e.g., the motor 52 ) of the beverage system 10 .
- the present disclosure also envisions various methods for moving the inlet nozzle 44 .
- the inlet nozzle 44 may be attached to a motor 52 , and thus the inlet nozzle 44 is rotated as the motor 52 is energized.
- the inlet nozzle 44 may be stationary and attached to another device that is part of the beverage system that moves.
- the inlet nozzle 44 may move with respect to the beverage medium 78 , the inner chamber 50 , and/or the beverage cartridge 32 .
- the beverage cartridge 32 is substantially stationary relative to the beverage brewer 10 .
- FIG. 7 is a cross-sectional view of an inlet nozzle in an aspect of the present disclosure.
- FIG. 7 illustrates a pressurized fluid flow 84 , e.g., hot water, steam, or other fluids as provided by a pump or other pressure source internal or external to beverage brewer 10 , flowing through the interior of the inlet nozzle 44 toward the nose 54 .
- the pressurized hot water flow 84 contacts an angled or concave interior portion of the nose 54 as shown and is ejected out therefrom as the stream or spray 80 through one or more of the flow ports 74 ′.
- the interior of the nose 54 can be shaped as desired to obtain the desired direction and intensity of directional outflow or spray 80 .
- the inlet nozzle 44 may rotate about its axis, or otherwise move, such that the stream or spray 80 fluidizes and rotates the beverage medium 78 (e.g., ground coffee) in the beverage cartridge 32 .
- FIG. 8 is another cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure.
- FIG. 8 illustrates an embodiment wherein the shaft of the inlet nozzle 44 is stationary and includes a spinning or rotating platform 86 designed to disperse the incoming flow 84 into the aforementioned stream or spray 80 .
- the platform 86 may include a shaft 88 coupled to the motor 52 and driven at a constant or variable rate (RPM) to attain substantial rotational fluidized mixture of the hot water and beverage medium 78 in the beverage cartridge 32 .
- the platform may be coupled to the nose 54 if desired.
- the platform 86 may also have serrations or other surface features to disperse the incoming flow 84 as desired.
- FIG. 9 is another cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
- a modified platform 86 ′ may include one or more straight or angled fans or blades 90 attached or otherwise extending therefrom and configured to be hydraulically driven by the pressurized fluid flow 84 travelling through the interior of the inlet nozzle 44 .
- the fluid flow 84 contacts the blades 90 and causes the modified platform 86 ′ to spin or rotate about its shaft 88 ′ in a comparable manner as if driven by the motor 52 in response to the fluid flow 84 contacting the blades 90 .
- This embodiment may be employed as a mechanism for saving energy and/or cost related to the installation, use and power requirements of the motor 52 .
- FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure.
- FIG. 10 illustrates an aspect of the present disclosure wherein four flow ports 74 are positioned generally horizontal and perpendicular to the vertical length of the inlet nozzle 44 and generally opposite one another.
- the embodiment of the present disclosure illustrated in FIG. 10 provides for a stream or spray 80 exiting the inlet nozzle 44 that is generally tangential to the inlet nozzle 44 . More than or less than four flow ports 74 can be used.
- FIG. 11 illustrates an alternative embodiment wherein four flow ports 74 ′′′ channel the fluid flow 84 out from the inlet nozzle 44 at an acute angle.
- the discharge angle from the inlet nozzle may vary between the generally tangential flow (e.g., 90 degree turn) shown in FIG. 9 and near parallel flow (e.g., on the order of 5 or 10 degrees) as shown in FIG. 11 (not to scale).
- the discharge angle of the flow ports could, of course, be the reverse of the acute angles shown in FIG. 11 , or at any desired angle with respect to the inlet nozzle 44 .
- the inlet nozzle 44 produces a downwardly projecting stream or spray of incoming fluid flow 84 into the beverage cartridge 32 . Rotation or other movement of the inlet nozzle 44 then changes location that the discharge from the inlet nozzle 44 contacts the inner chamber 50 of the beverage cartridge 32 , which may aid in the fluidization of the beverage medium 78 in the inner chamber.
- FIGS. 12 and 13 are cross-sectional views of inlet nozzles in accordance with various aspects of the present disclosure.
- FIG. 12 illustrates one embodiment of the present disclosure wherein a plurality of flow ports 74 ′′′′ are oriented to direct the stream or spray 80 in an upward manner at angles larger than 90 degrees relative to the incoming flow 84 , and upwards of 170 or 175 degrees relative to the incoming fluid flow 84 .
- Other angles of stream or spray 80 are possible within the scope of the present disclosure.
- the inlet nozzle 44 could include a mixture of the flow ports 74 - 74 ′′′′.
- FIG. 13 illustrates an inlet nozzle 44 comprising horizontal flow ports 74 that produce tangential outward flow of the stream or spray 80 , the downwardly facing or acute flow ports 74 ′′′ that direct the stream or spray 80 in a downward or acute manner relative to the incoming fluid flow 84 , and upwardly facing or obtuse flow ports 74 ′′′′ that direct the stream or spray 80 in an upward or obtuse manner relative to the incoming fluid flow 84 .
- each of the flow ports 74 - 74 ′′′′ can be mixed and matched as desired along the length of the inlet nozzle 44 or the nose 54 to attain the desired outward flow of fluid to adequately mix and fluidize the beverage medium 78 within the beverage cartridge 32 during the preparation cycle.
- the pressure delivered to the flow ports 74 - 74 ′′′′ can also be constant or variable during the course of the preparation cycle.
- the beverage brewer 10 may initiate incoming fluid flow 84 through the inlet nozzle 44 prior to rotation or movement of the inlet nozzle 44 to prevent clogging any of the flow ports 74 - 74 ′′′′ at the start of the preparation cycle.
- the flow ports 74 - 74 ′′′′ may be of a shape and size such that they may collect beverage medium 78 as the inlet nozzle 44 spins, similar to a scoop or receptacle.
- the collected beverage medium 78 may occlude the flow ports 74 - 74 ′′′′, thereby substantially occluding or otherwise preventing fluid from adequately exiting the inlet nozzle 44 .
- Initiating fluid flow 84 may allow the pressurized fluid 84 to establish an exit stream that otherwise prevents beverage medium 78 from entering the flow ports 74 - 74 ′′′′, to substantially reduce or eliminate the potential for the beverage medium 78 to block any one of the flow ports 74 - 74 ′′′′.
- the beverage brewer 10 may stop rotation of the inlet nozzle 44 before stopping the flow of fluid flow 84 water through any of the flow ports 74 - 74 ′′′′ to flush any beverage medium 78 away from the flow ports 74 - 74 ′′′′ at the end of the preparation cycle.
- the delay after fluid flow exiting the inlet nozzle 44 and the before the beginning of inlet nozzle 44 movement can be a non-zero time of less than two seconds. In another embodiment this time is 0.1 to 1.0 second, and in another embodiment this time is 0.5 second. Similarly, in some embodiments, the delay between cessation of inlet nozzle 44 movement and the cessation of fluid flow can be a non-zero time of less than two seconds; 0.1 to 1.0 second; and/or 0.5 second. Under certain circumstances, this goal can be achieved by beginning fluid flow and inlet nozzle 44 movement simultaneously.
- FIG. 14 is an alternative cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure.
- FIG. 14 illustrates an embodiment wherein the flow ports are elongated and form one or more exit channels 92 .
- the exit channels 92 may be particularly configured to attain a wider or open flow of the stream or spray 80 as shown in FIG. 14 .
- the elongated channel 92 may track the vertical height 51 (shown in FIG. 4B ) of the beverage cartridge 32 by as little as 50% of the vertical height 51 and by as much as 95% of the vertical height 51 , although embodiments of less than 50% and above 95% are contemplated.
- the elongated channels 92 may be centered within the inner chamber 50 , but the channels 92 may also be at a staggered height relative to the beverage cartridge 32 sidewalls, or staggered relative to each other if more than one channel 92 is configured in the inlet nozzle 44 .
- the elongated channel 92 may be able to better disperse fluid flow 84 , e.g., laminar or turbulent hot water, into the inner chamber 50 such as, e.g., when the inlet nozzle 44 rotates, spins, or otherwise moves within the beverage cartridge 32 .
- FIG. 15 is another cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure.
- the flow port of the inlet nozzle 44 may be in the form of a downwardly extending spiral channel 94 that generally tracks the outer periphery of the inlet nozzle 44 .
- the number and orientation of the flow ports 74 - 74 ′′′′, the elongated channels 92 and the spiral channel 94 may be mixed and matched as desired in a given beverage brewer 10 to obtain the desired stream or spray 80 exiting the inlet nozzle 44 .
- the flow ports 74 - 74 ′′′′ or the channels 92 , 94 could be staggered, positioned opposite one another, or positioned at various angles (e.g., every 30, 60 or 90 degrees) along a given inlet nozzle 44 .
- FIG. 16 illustrates an embodiment of the inlet nozzle 44 , including at least one, and in the embodiment illustrated in FIG. 16 , a plurality of serrations 178 disposed or otherwise formed along the outer periphery of the inlet nozzle 44 for agitating the beverage medium 78 in the cartridge 32 .
- the serrations 178 preferably act as paddles that stir or otherwise move the beverage medium 78 and heated water in the beverage cartridge 32 during the preparation cycle. Such agitation with the serrations 178 may enhance fluidized mixing of the beverage medium 78 with the incoming fluid flow 84 , which may provide a more homogeneous wetting and/or heating of the beverage medium 78 and more consistent flavor extraction.
- the serrations 178 may be any shape known in the art (e.g., rectangular, triangular, hemispherical, blade-shaped, etc.). Moreover, the serrations 178 may extend outwardly from the periphery of the inlet nozzle 44 or may be cut into the periphery thereof. The periphery of the inlet nozzle 44 may also be smooth, or may comprise some smooth portions and some serrations 178 as desired to produce a desired flow of incoming fluid flow 84 with the beverage medium 78 and/or a desired agitation or extraction of flavors from beverage medium 78 .
- FIG. 17 illustrates a cross-sectional view of the brewer head in an aspect of the present disclosure.
- FIG. 17 illustrates another embodiment where the inlet nozzle 44 vertically oscillates instead of, or in addition to, spinning and/or rotating.
- the beverage brewer 10 may comprise an inlet nozzle solenoid 174 that causes the inlet nozzle 44 to vertically oscillate as generally illustrated in FIG. 17 .
- the inlet nozzle 44 slidably or otherwise couples to the lid 26 and is generally spring biased in an upper position.
- the solenoid 174 may extend an oscillation shaft 176 down into contact with the inlet nozzle 44 , thereby forcing the inlet nozzle 44 downwardly against the return force of the spring and into an extended position.
- the solenoid 174 then retracts the oscillation shaft 176 , and the spring-bias returns the inlet nozzle 44 to the upper position.
- the beverage brewer 10 may pulse the solenoid 174 , thereby causing the inlet nozzle 44 to move up and down at a predetermined or desired rate.
- the inlet nozzle 44 may move up and down at a rate of 50-70 Hertz, such as a rate of 60 Hertz, as 60 Hertz is the frequency used for power delivery in the United States, thereby simplifying the coupling of the solenoid 174 to a frequency source.
- the inlet nozzle 44 may vertically oscillate at any rate within the scope of the present disclosure, and the vertical oscillation rate may change during the course of a brew cycle.
- the beverage brewer 10 may alternately use a cam or other means to vertically oscillate the inlet nozzle 44 in accordance with the embodiments described herein.
- the inlet nozzle 44 may also simultaneously vertically oscillate and rotate, as described above, at least in part to assist in the agitation or movement of beverage medium 78 . Indeed, many different combinations of inlet nozzle 44 movement as described herein are possible.
- FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure.
- Beverage brewer 10 may be coupled to a fluid source 500 .
- the fluid source 500 may be a reservoir that is included within and/or attached to a beverage brewer 10 , but such a fluid source may also be the water supply for a home or building, a filtered water supply, a carbon dioxide (CO 2 ) line, or other fluid source as desired. Further, more than one fluid source 500 may be coupled to the beverage brewer 10 .
- a pump 502 is coupled to the fluid source 500 .
- the pump may provide pressure to the fluid 504 within the beverage brewer 10 , such that the pump 500 delivers the fluid 504 , e.g., water, milk, CO 2 , etc., at a desired, known, and/or predetermined pressure to the remainder of the beverage brewer 10 .
- the pump 502 is coupled to a heater 506 , and delivers fluid 504 to heater 506 for those fluids 504 that may need to be heated prior to delivery to the beverage cartridge 32 .
- Heater 506 heats (or optionally cools) the fluid 504 as desired.
- Heater 506 when employed by the beverage brewer 10 , delivers the heated or otherwise processed fluid 504 to the inlet nozzle 44 .
- the inlet nozzle 44 When the brewer head 16 is in the proper position (i.e., the closed position shown in FIG. 1 ), at least a portion of the inlet nozzle 44 is coupled to the inner chamber 50 of the beverage cartridge 44 . Fluid 504 that is delivered to the inlet nozzle 44 may then be delivered to the inner chamber of the beverage cartridge 32 .
- motor 52 and/or other means within beverage brewer 10 may spin, rotate, nutate, vibrate, oscillate, or otherwise move inlet nozzle 44 , such as the movements previously described.
- Fluid 504 delivered through the moving inlet nozzle 44 may then move the beverage medium 78 (as shown in FIGS. 5 and 16 ) to assist in the fluidizing and/or mixture of fluid 504 with beverage medium 78 .
- the outlet conduit 400 is also coupled to the inner chamber 50 of the beverage cartridge 32 when the brewer head is in the closed position.
- a secondary fluid 508 is delivered from the inner chamber 50 of the beverage cartridge 32 to a receptacle 510 , e.g., a coffee mug, glass, cup, or other container that may be external to the beverage medium 10 .
- the beverage brewer 10 may also comprise receptacle 510 , e.g., a carafe, etc., however, in many applications the receptacle eventually is used externally to the beverage brewer 10 .
- the pump 502 , motor 52 , heater 506 , brewer head 16 , and, optionally, the fluid source 500 are coupled to a processor 512 .
- the processor 512 is further coupled, either internally or externally, to a memory 514 .
- the processor 512 provides computer-based control of the pump 502 , motor 52 , and heater 506 , and may control other components within beverage brewer 10 .
- the processor 512 may receive a signal or other input from a sensor coupled to the fluid source 500 , to indicate to the beverage brewer 10 that there is not enough fluid 504 available to brew a beverage. The processor 512 may then prevent the beverage brewer 10 from initiating a preparation cycle for a beverage cartridge 32 .
- the processor 512 may sense a particular type of beverage cartridge 32 present in the brewer head 16 . Once the type of beverage cartridge 32 is known, the processor 512 may provide different inputs to the pump 502 , motor 52 , heater 506 , or other components in the beverage brewer 10 to change one or more variables in the mixture of fluid 504 and the beverage medium in the particular beverage cartridge 32 . The processor 512 may increase or decrease the speed of rotation of motor 52 , may insert the inlet nozzle 44 further into the beverage container 32 , provide pulsed or different types of current to the pump 502 and/or heater 506 , or may change some path for the fluid 504 prior to introduction into the inner chamber 50 of the beverage cartridge 32 .
- the processor 512 may select a particular kind of inlet nozzle 44 motion or combination of motions based on the type of beverage cartridge 32 that is sensed or a specific user input. These and/or other inputs to the processor 512 may cause the processor 512 to access memory 514 to provide such instructions to various components of the beverage brewer 10 .
- FIG. 19 is a process diagram 1900 illustrating possible steps used in an embodiment of the present disclosure.
- Block 1902 illustrates configuring a beverage head comprising a receptacle to selectively receive a sealed container when the beverage head is in a first position (e.g., open).
- Block 1904 illustrates configuring an inlet nozzle to pass through an outer surface of the sealed container and coupling at least a portion of the inlet nozzle to an inner volume of the sealed container when the beverage head is in a second position (e.g., closed).
- Block 1906 illustrates maintaining the beverage container substantially stationary with respect to the single-serve beverage device while the beverage head is in the second position.
- Block 1908 illustrates delivering at least a first fluid to a beverage medium in the inner volume of the sealed container through the inlet nozzle.
- Block 1910 illustrates selectively rotating the inlet nozzle with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position.
- Block 1912 illustrates creating an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium during operation of the single-serve beverage making device.
- Block 1914 illustrates coupling an outlet conduit to the inner volume of the sealed container of beverage medium.
- Block 1916 illustrates directing at least a portion of the second fluid through the outlet conduit to a receptacle external to the beverage head.
- FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure.
- pump 502 may direct fluid 2000 , which may be one or more fluids, to one or more conduits 2002 - 2008 at specified times.
- pump 502 may deliver fluid 2000 to conduit 2002 for a first time period, then discontinue delivery of fluid 2000 to conduit 2002 and begin delivering fluid 2000 to conduit 2004 for a second time period.
- delivery of the fluid 2000 to different conduits may overlap; for example, delivery of the fluid 2000 to conduit 2002 may end after delivery of fluid to another conduit, e.g. the conduit 2004 , has begun.
- fluid 2000 may be selectively delivered through channels 2010 - 2016 in inlet nozzle 44 to flow ports 74 a - 74 b .
- Flow port 74 a is shown in phantom lines to indicate that flow port 74 a is on a surface not visible from the perspective of FIG. 20 .
- flow ports 74 b and 74 d are shown as being approximately in the plane of perspective of FIG. 20
- flow port 74 c is shown as facing the perspective plane of FIG. 20 .
- flow ports 74 a - d There may be fewer or additional flow ports 74 a - d , and the flow ports 74 a - d may be at any angle, location, or orientation with respect to each other or with respect to the inlet nozzle 44 without departing from the scope of the present disclosure.
- a sequence of fluid flows 2018 - 2024 may be created.
- a sequence of fluid flows 2018 - 2024 may be sequential, e.g., first fluid flow 2018 , then fluid flow 2020 , then fluid flow 2022 , then fluid flow 2024 (also referred to as a “chaser” sequence), any sequence of fluid flows 2018 - 2024 including but not limited to exclusive and/or overlapping fluid flows may be employed within the scope of the present disclosure.
- the sequencing of fluid flows 2018 - 2024 may be obtained by, for example, pump 502 comprising and/or being coupled to a manifold that has a rotating or movable plenum that selectively directs the fluid 2000 to one or more of the conduits 2002 - 2008 .
- pump 502 comprising and/or being coupled to a manifold that has a rotating or movable plenum that selectively directs the fluid 2000 to one or more of the conduits 2002 - 2008 .
- Other means for obtaining selective delivery of fluid 2000 to one or more of the conduits 2002 - 2008 are possible within the scope of the present disclosure.
- the fluid flows 2018 - 2024 may create a fluid flow, agitation, or other movement of beverage medium 78 with the fluid flows 2018 - 2024 .
- control of the sequencing of fluid flows 2018 - 2024 may be performed by processor 412 , and the speed, order, and pressure of fluid flows 2018 - 2024 may be varied or constant during a preparation cycle, or may be combined with rotational, vibrational, and/or other motion of inlet nozzle 44 to create a preferred time, concentration, and/or other mixture or agitation of fluid 2000 with beverage medium 78 .
- the control of the order, speed, and pressure of fluid flows 2018 - 2024 may also be based on other factors, such as the type of beverage medium 78 , the presence or absence of a beverage cartridge 32 , the presence or absence of a cover 49 on the beverage cartridge 32 , manual inputs or overrides to the beverage brewer 10 , or other factors.
- the memory 514 may be implemented in firmware and/or software implementation.
- the firmware and/or software implementation methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
- a machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
- software codes may be stored in a memory (e.g., memory 514 ) and executed by a processor unit (e.g., processor 512 ).
- Memory may be implemented within the processor unit or external to the processor unit.
- the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
- the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program.
- Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer.
- such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
- instructions and/or data may be provided as signals on transmission media included in a communication apparatus.
- a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
- Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
- a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
- such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store specified program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Apparatus For Making Beverages (AREA)
Abstract
Description
- The present application claims the benefit of PCT/US15/15971, filed 13 Feb. 2015 and entitled “Beverage Brewer and Related Methods for Brewing Beverages”, which claims the benefit of U.S. Provisional Patent Application No. 61/940,290, filed 14 Feb. 2014 and entitled “Coffee Brewer and Related Methods for Brewing Beverages”.
- The present application also claims the benefit of U.S. Provisional Application Ser. No. 62/060,282, filed on 6 Oct. 2014 and entitled “Coffee Brewing System and Method of Using the Same”; U.S. Provisional Application Ser. No. 62/069,772, filed on 28 Oct. 2014 and entitled “Coffee Brewing System and Method of Using the Same”; U.S. Provisional Application Ser. No. 62/136,258, filed on 20 Mar. 2015 and entitled “Coffee Brewing System and Method of Using the Same”; and U.S. Provisional Application Ser. No. 62/230,508, filed on 5 Jun. 2015, entitled “Beverage Brewing Systems and Methods for Using the Same,” and U.S. Provisional Application Ser. No. 62/174,443, filed on 11 Jun. 2015, entitled “Beverage Brewing Systems and Methods for Using the Same.”
- The present application also claims the benefit of PCT/US15/25013, filed Apr. 8, 2015, entitled“Beverage Brewing Systems and Methods for Using the Same”.
- The disclosures, figures, and subject matter of the above-identified patent applications are expressly incorporated by reference herein in their entirety.
- 1. Field
- Aspects of the present disclosure generally relate to apparatuses and methods for liquid or fluid infusion. More specifically, the present disclosure relates to apparatuses configured to extract soluble portions of slurries through infusion, and methods related thereto.
- 2. Background
- Infusion of leaves, herbs, and other slurries (e.g., solid, semi-solid, and/or liquid substances) for medicinal purposes has been part of human cultures for centuries. The process of infusion, e.g., adding a slurry to a liquid (i.e., a solvent), or a solvent to a slurry, under certain temperature and/or pressure conditions may extract one or more solutes (i.e., soluble portions of the slurry), has also entered other fields of endeavor.
- Solutes of many slurries have been extracted for flavor as well as other properties. Leaves from certain laurel trees, such as the California Laurel or Indian Laurel (sometimes known as “bay leaves”), may be steeped in sauces or stews to add fragrance and/or a subtle flavor similar to cinnamon. Infusion of other laurel leaves, such as the Mountain Laurel, could produce solutes that are poisonous to humans. Although non-toxic bay leaves are often left in the sauce or finished dish, mastication of even non-toxic bay leaves may produce a bitter taste, and the texture of the bay leaf may cause irritations to the digestion tract. Such taste, texture, toxicity, and/or other characteristics of the slurry and/or solutes may be undesirable in the solution.
- To avoid some unwanted by-products in the desired solution, some slurries may be substantially separated or removed from and/or by the infusion process after a desired quantity of and/or desired solute (extracted material) has been infused with the solvent (fluid). Examples of slurry separation after infusion are the removal of the slurries of coffee grounds or tea leaves from solution after the desired solute infusion has occurred. This separation may vary based on the desired end product, e.g., weak or strong tea, bitter or smooth coffee, etc. The slurries and/or other undesired material may be removed from the infusion by one or more devices and/or methods, e.g., filtration, containment of the solid, decanting, etc.
- In some apparatuses, such as coffee makers or brewers, single and/or multi-serving packages of slurry material, also referred to as a beverage medium, (e.g., ground coffee), may be provided in a container or cartridge for easy infusion to form a consumable beverage solution. In coffee brewers of this type, water (e.g., the solvent) may be heated by the apparatus to a desired temperature and introduced into the cartridge. The solvent, and perhaps other fluids, infuse with the slurry (e.g., coffee grounds) in the cartridge, and the solute and solvent mixture (e.g., the beverage formed) is removed at a desired time from the infusion for consumption. The slurry (coffee grounds, tea leaves, etc.) may remain in the container or cartridge to reduce introduction of unwanted flavors, textures, additional solute extraction, or other deleterious properties of the slurry into the solution (solvent-solute mixture).
- These apparatuses may use a stationary inlet port that pierces the cartridge and injects a relatively constant stream of solvent (e.g., water) toward the slurry (e.g., coffee grounds) into the cartridge. This solvent stream may channel or tunnel through the slurry and not fully extract solute from some portions of the slurry, while over-extracting solute from other portions of the slurry, resulting in a solvent-solute solution comprising undesirable solute properties, e.g., bitter taste, undesirable after-taste, etc. To remedy the presence of undesirable solutes and/or other slurry properties in solution, other solutes may be added to mask the undesirable solutes and/or other properties that have been infused into the solution. Examples of added solutes are sugar, cream, etc., which may be used to mask the bitter and/or other undesirable solutes in the solvent-solute solution produced by apparatuses using stationary solvent inlet ports.
- The present disclosure describes beverage and/or brewing systems, and specifically systems for rotating, spinning or vertically oscillating an inlet nozzle within the interior of a beverage cartridge (e.g., a single-serve cartridge), wherein the moving inlet nozzle delivers a stream or spray of fluid, e.g., water, that wets and fluidizes at least a portion of the beverage medium therein to create a brewed beverage (e.g., a cup of coffee).
- A device in accordance with an aspect of the present disclosure comprises a beverage head and a processor. The beverage head further comprises a receptacle, an inlet nozzle, and an outlet conduit. The receptacle is configured to selectively receive a slurry within the receptacle of the beverage head when the beverage head is in a first position. The slurry comprises a quantity of beverage medium. The inlet nozzle is coupled to the receptacle and configured to deliver at least one solvent to the slurry when the beverage head is in a second position such that at least one solution comprising at least a portion of the at least one solvent and at least a portion of one solute of the slurry is created during operation of the device. The receptacle is further configured to contain the slurry and the at least one solvent for at least a first period of time to assist the at least one solvent in extracting the at least one solute. The outlet conduit is coupled to the receptacle and configured to direct at least a portion of the at least one solution to a receptacle external to the beverage head. The processor is coupled to the inlet nozzle, and controls a selective rotation of the inlet nozzle with respect to the slurry while the inlet nozzle is proximate the slurry for at least a portion of the time the at least one solvent is being delivered to the slurry.
- The above summary has outlined, rather broadly, some features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
- For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.
-
FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure; -
FIG. 2 is a perspective view of an embodiment of a beverage brewer, illustrating a lid of a brewer head in an open position in accordance with an aspect of the present disclosure; -
FIG. 3 is an enlarged front view of the brewer head taken aboutcircle 6 inFIG. 2 , further illustrating rotation or spinning motion of an inlet nozzle; -
FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure; -
FIG. 5 is a cross-sectional view of the brewer head taken about the line 7-7 inFIG. 2 , in accordance with an aspect of the present disclosure; -
FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure. -
FIG. 7 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 8 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 9 is across-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 11 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 12 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 13 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 14 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 15 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 16 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure; -
FIG. 17 is a cross-sectional view of a brewer head in accordance with an aspect of the present disclosure; -
FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure; -
FIG. 19 illustrates a flow diagram showing possible steps used in an embodiment of the present disclosure; and -
FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure. - The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. It will be apparent to those skilled in the art, however, that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts. As described herein, the use of the term “and/or” is intended to represent an “inclusive OR”, and the use of the term “or” is intended to represent an “exclusive OR”.
-
FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure. - A
beverage brewer 10, as shown inFIGS. 1 and 2 , may be designed for use with container-based beverage cartridges, such as single-serve coffee cartridges. Thebeverage brewer 10 may include a generally upright housing 12 having a base or platen 14 extending out at the bottom and positioned generally below an outwardly extending brewer head (also referred to as a “beverage head” herein) 16. - The vertical distance between the platen 14 and the brewer head 16 (also referred to as a “
brew head 16” or a “beverage head 16” herein) can adequately accommodate a coffee mug or other external receptacle for delivery of the beverage from thebeverage brewer 10. In some aspects of the present disclosure, the receptacle may be capable of retaining at least 6 oz. of beverage, and possibly 10 oz. or more of beverage. The housing 12 may further comprise a rear housing 18 having a gravity-fed and/or other type of water reservoir 20 on one side and an outer shell 22 that houses or protects the internal features of thebeverage brewer 10, including, for example, the conduit system between the water reservoir 20 and thebrewer head 16. Such features within the housing 12 of thebeverage brewer 10 may generally include a fluid conduit system, a pump, and/or a heating element, in order to deliver a fluid from the reservoir 20 (or other source) to thebrewer head 16 and/or to the receptacle external to thebeverage brewer 10. -
FIG. 2 is a perspective view of a beverage brewer, illustrating a lid of a brewer head in an open position (also referred to as a first position, second position, and/or access position herein) in accordance with an aspect of the present disclosure. As shown inFIG. 2 , thebrewer head 16 may be a clam-shell structure including a stationary lower support member 24 and a movable upper member orlid 26 that pivots relative to the lower support member 24 about a hinge 28. The scope of the present disclosure includes embodiments where the lower support member 24 and thelid 26 may both be movable, or that the lower support member 24 may be movable relative to astationary lid 26. Additionally, the lower support member 24 and/or thelid 26 may pivot or rotate about the common hinge 28, or separate hinges or points within thebeverage brewer 10. - The lower support member 24 and the
lid 26 are selectively opened and closed and form a brew chamber therebetween during a brew cycle (also known as a preparation cycle) for selective retention of abeverage cartridge 32 in areceptacle 30 of thebrewer head 16. Thebeverage cartridge 32 may include any liquid medium known in the art, including, but not limited to, liquid and/or beverage medium used to form various types of coffee, espresso, tea, hot chocolate, lemonade and other fruit-based drinks, carbonated drinks such as soda, soups and other liquid foods, etc. - In this respect,
FIG. 1 illustrates thelid 26 engaged with the lower support member 24 such that thebrewer head 16 is in the closed or locked position (also referred to as a brewing position, first position, and/or second position herein). Ajaw lock 176 includes an externally accessible release button 172 which may be at or near thebrewer head 16 and configured for hand manipulation. To open thebrewer head 16, a user presses or otherwise activates the release button 172. Activation of the release button 172 selectively disengages thejaw lock 176 when thebrewer head 16 is in the closed position shown inFIG. 1 . Once the release button 172 is pressed, so long as thebrewer head 16 is not in a preparation cycle or other operational mode that prevents opening of thebrewer head 16, thelid 26 is able to pivot away from the lower support member 24 which allows access to thereceptacle 30. In the position shown inFIG. 2 , a user may selectively insert or remove abeverage cartridge 32. - To close the
brewer head 16, the user may again activate the release button 172, and/or may push on thelid 26 to move thelid 26 closer to the lower support member 24. If thebeverage brewer 10 senses abeverage cartridge 32 in thereceptacle 30, or upon a user initiating closure of thelid 26 and/or a preparation cycle, thejaw lock 176 may selectively lock during a brew cycle and/or preparation cycle to prevent any liquid delivered by thebeverage brewer 10 from being expelled by thebeverage brewer 10 external to the receptacle located proximate to the platen 14. In this respect, the contact between the lower support member 24 and thejaw lock 176 selectively holds thebrewer head 16 closed as shown inFIG. 1 . - The
beverage brewer 10 also comprises aninlet nozzle 44 that generally extends downwardly out from underneath thelid 26, as shown within thebrewer head 16. Theinlet nozzle 44 is coupled to, e.g., in fluid communication with, a conduit system, e.g., the pump 134, for injecting at least a first fluid, such as turbulent or laminar hot water and steam, a liquid such as water and/or milk, or other gas and/or other liquid in a fluid or semi-fluid form, into thebeverage cartridge 32 through theinlet nozzle 44. Although described as theinlet nozzle 44 herein, theinlet nozzle 44 may be a needle, spine, spout, spigot, jet, projection, spike, and/or other inlet means for delivering the at least first fluid to abeverage medium 78. -
FIG. 3 is an enlarged front view of the brewer head taken aboutcircle 6 inFIG. 2 , further illustrating rotation or spinning motion of an inlet nozzle in an aspect of the present disclosure. - As mentioned above, to prepare the
beverage brewer 10 for a brew cycle (also referred to a preparation cycle), thelid 26 is moved from a closed position (shown inFIG. 1 ) to an open position (shown inFIG. 2 ). When in an open or first position, thebeverage cartridge 32 can be inserted into and/or removed from thereceptacle 30. Thereceptacle 30 is configured to selectively receive and accept thebeverage cartridge 32 within thereceptacle 30 of thebrewer head 16 when thebrewer head 16 is in the open position shown inFIG. 2 . Thebeverage cartridge 32 generally comprises a sealed container including an outer surface and an inner volume or chamber, although thebeverage cartridge 32 can also include unsealed containers. Abeverage medium 78, such as coffee, tea, soup, chocolate, etc., is contained within the inner volume of thebeverage cartridge 32. - The lid 24 of the
beverage brewer 10 may comprise anencapsulation cap 46 having a diameter sized for at least partial slide-fit insertion over thereceptacle 30 to encapsulate and retain thebeverage cartridge 32 therebetween. Thebeverage cartridge 32 may thus be held in a substantially stationary position with respect to thebeverage brewer 10 device while thebrewer head 16 is in the closed position, although it is understood that thebeverage cartridge 32 can be held in a substantially stationary position via other means, and/or can be non-stationary. -
FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure. - It is understood that a beverage cartridge, such as the
beverage cartridge 32, is not required for operation of systems and methods according to the present disclosure. Abeverage cartridge 32 may be employed within an aspect of the present disclosure. Further, other types of containers or uncontained mediums can also be used in embodiments of the present invention, such as soft pods, sealed or unsealed packets containing a liquid medium (e.g., coffee grounds), tea bags, grounds or leaves, etc.Beverage cartridge 32 may allow for easier brewing or making of beverages.Beverage cartridge 32 may comprise anouter surface 48 and aninner chamber 50.Beverage medium 78 may be contained or otherwise located within the inner chamber 50 (also referred to as an inner volume herein) of thebeverage cartridge 32. Other features, such as a filter, etc., may also be included in theinner chamber 50 of thebeverage cartridge 32, to filter coffee grounds, tea leaves, etc., that may be part of thebeverage medium 78 not desired in a final beverage or liquid. -
FIG. 4A illustrates an open or exposedinner chamber 50. As shown inFIG. 4B ,beverage cartridge 32 may also comprise acover 49.Cover 49 may comprise foil or other material to seal thebeverage cartridge 32 from external environments that may be deleterious to thebeverage medium 78 in theinner chamber 50. As such,beverage cartridge 32 may be sealed against air, water, or other external hazards until one or more entry points are made to access theinner chamber 50.Beverage cartridges 32, such as those that comprise acover 49 and/or comprise one or more sealedinner chambers 50, may use a needle or other instrument, such asinlet nozzle 44, to direct a fluid into and/or out of the inner chamber(s) 50 of thebeverage cartridge 32.Beverage cartridge 32 also comprises aheight 51, also referred to as a vertical height herein. It is understood that while thebeverage cartridge 32 is a sealed container, many different types of cartridges and/or mediums can be used. -
FIG. 4C illustrates an aspect of the present disclosure where thebeverage cartridge 32 is accessed by theinlet nozzle 44 and/or theoutlet conduit 400. Theoutlet conduit 400 is coupled to thebrewer head 16, and is selectively coupled to thebeverage cartridge 32 when thebrewer head 16 is in a certain position. Theoutlet conduit 400 can comprise apoint 402 that, when thelid 26 is pushed downward toward the lower support member 24 or thelid 26 is otherwise closed as shown byarrow 404, thebeverage cartridge 32 is pressed onto thepoint 402, and theoutlet conduit 400 now has access to theinner chamber 50 of thebeverage cartridge 32. Alternatively, thebeverage cartridge 32 may be pressed onto thepoint 402 upon user placement of thebeverage cartridge 32 into thebrewer head receptacle 30. Many different embodiments are possible as would be understood by one of skill in the art, and it is also contemplated that an outlet conduit according to the present invention can access a medium, such as a medium within a beverage cartridge, with or without apoint 402. - The
lid 26 can be pushed downward toward the lower support member 24 such that theinlet nozzle 44 is placed proximate thebeverage medium 78, and in some embodiments, at least below a level of theheight 51 of thebeverage cartridge 32. In one such system and method according to the disclosure, thelid 26 is pushed downward toward the lower support member 24 and/or is closed, e.g., such that thelid 26 is locked and/or otherwise sealed against the lower support member 24 as shown inFIG. 1 . In embodiments where thebeverage medium 78 is contained in a soft pod, bag, filter, or other device wherebeverage cartridge 32 is not used, theinlet nozzle 44 may be placed proximate to thebeverage medium 78 to direct the fluid from theflow port 74 toward thebeverage medium 78. In embodiments where thebeverage cartridge 32 comprises acover 49, theinlet nozzle 44 may pierce thebeverage cartridge 32, either through thecover 49 or through another portion of theouter surface 48, which provides theflow port 74 with access to theinner chamber 50 of thebeverage cartridge 32. Where thebeverage cartridge 32 is open, e.g., does not comprisecover 49 or the beverage medium is otherwise accessible to theinlet nozzle 44 without breaking or puncturingbeverage cartridge 32, theinlet nozzle 44 may be placed proximate to thebeverage medium 78 in thebeverage cartridge 32. The proximate placement ofinlet nozzle 44 to thebeverage medium 78 includes theinlet nozzle 44 being partially or fully immersed in thebeverage medium 78 as well as being maintained at a level above and/or near a top of thebeverage medium 78, whether or not thebeverage medium 78 is contained in abeverage cartridge 32. In an aspect of the present disclosure, theinlet nozzle 44 pierces thebeverage cartridge 32 approximately on acenter line 406 of thebeverage cartridge 32, e.g., through thecover 49, although it is understood that, in other embodiments, aninlet nozzle 44 may puncture thebeverage cartridge 32 in off-center locations or other locations of theouter surface 48 of thebeverage cartridge 32. At a desired time, theinlet nozzle 44 may be rotated as shown byarrow 408 while coupled to theinner chamber 50. In such situations, the beverage cartridge may be substantially stationary with respect to thebeverage brewer 10, as motion of both theinlet nozzle 44 and thebeverage cartridge 32 may result in fluid from thebeverage cartridge 32 being directed somewhere other than theoutlet conduit 400. However, in other embodiments, it may be desirable to move both theinlet nozzle 44 and thebeverage cartridge 32, e.g., simultaneously. For many applications, delivery of fluid from the beverage cartridge somewhere other thanoutlet conduit 400 is undesired. -
FIG. 5 is a cross-sectional view of the brewer head taken about the line 7-7 inFIG. 2 in an aspect of the present disclosure. -
FIG. 5 illustrates at least some of the internal fluid, e.g., water, steam, etc., flow paths in thebeverage brewer 10 that pass through thebrewer head 16, theinlet nozzle 44, and a plurality offlow ports 74, and into theinner chamber 50 of a container-basedbeverage cartridge 32. As described with respect toFIG. 4C , When thelid 26 is pivoted to the closed position shown inFIG. 1 , theinlet nozzle 44 is correspondingly moved into a position to puncture or otherwise pass through anouter surface 48 of thebeverage cartridge 32 and extend down into an inner beverage medium-filledchamber 50 of thebeverage cartridge 32. - When the
brewer head 16 is in the closed position, theinlet nozzle 44 may be rotated by amotor 52 or other means coupled to theinlet nozzle 44 for at least a portion of the time while fluid is being delivered to the inner volume of the sealed container or for at least a portion of the time that thebeverage brewer 10 is in the closed position. The same or different motor or means may also selectively vertically move or position theinlet nozzle 44 with respect to thebeverage cartridge 32 and/or thebeverage medium 78. - The
inlet nozzle 44 in accordance with an aspect of the present disclosure may comprise a blunt or rounded nose 54 that force pierces thesurface 48 to permit entry of theinlet nozzle 44 into the interior of thebeverage cartridge 32. The nose of theinlet nozzle 44 may be sharpened, e.g., with jagged edges, having a point on theinlet nozzle 44, etc., to make the piercing of theouter surface 48 easier, but such a sharp or jagged edge may be less desirable since such an embodiment carries an inherently higher risk of user injury when theinlet nozzle 44 is exposed to the user as shown inFIG. 2 . - The
brewer head 16 may further include a gasket 56 having a concentric aperture with an inner diameter sized to snugly slide-fit around the exterior surface diameter of theinlet nozzle 44. The gasket 56 may be made from any sealing material, e.g., rubber, silicone, other food-safe materials, etc. In an aspect of the present disclosure,FIG. 5 shows the gasket 56 with a generally larger mushroom-shaped head 58 forming a ledge or step 60 that has a relatively smaller diameter neck 62 including an outer diameter sized for snug slide-fit reception into a corresponding aperture 64 in thebrewer head 16 permitting extension of theinlet nozzle 44 into thebeverage cartridge 32. In this respect, the gasket 56 pressure seals theinlet nozzle 44 relative to the interior of thebrewer head 16 and related hot water conduit system. Other shaped gaskets are possible within the scope of the present disclosure. - A fluid conduit 66 (also referred to as a
hot water conduit 66 herein) terminates at anupper end 68 of theinlet nozzle 44 and is generally aligned with an inlet channel 70 bored into the exterior diameter of theinlet nozzle 44. The inlet channel is coupled to, e.g., in fluid communication with, a central shaft 72 that channels fluid water from theupper end 68 toward the nose 54 and out through one ormore flow ports 74. O- 76, 76′ may be positioned on each side of the inlet channel 70 to assist in minimizing leakage from pressurized fluid leaving therings fluid conduit 66 for flow into the inlet channel 70. - The inlet channel 70 may be a reduced diameter bore that remains coupled with the
fluid conduit 66 during the preparation cycle, and may remain coupled to thefluid conduit 66 while theinlet nozzle 44 spins or rotates within thebeverage cartridge 32. As such, any fluid delivered to thebeverage cartridge 32 through theinlet nozzle 44 while theinlet nozzle 44 is spinning or rotating may cause thebeverage medium 78 to move as described herein. Accordingly, in this arrangement, amotor 52 couples to theupper end 68 and rotates or spins theinlet nozzle 44 during a brew cycle to rotate or spin the one ormore flow ports 74 within thebeverage cartridge 32 to more thoroughly mix the fluid delivered throughinlet nozzle 44 with thebeverage medium 78. A secondary fluid, comprising a mixture of the fluid delivered through theinlet nozzle 44 and a portion of thebeverage medium 78, is thus created during the preparation cycle. The secondary fluid may be, for example, coffee, tea, etc., where the secondary fluid does not include, or includes only limited, solids from the beverage medium 78 (e.g., coffee grounds, tea leaves, etc.). In other words, some of thebeverage medium 78 may remain in thebeverage cartridge 32 after mixture with the fluid delivered through theinlet nozzle 44, whether or not theinlet nozzle 44 is rotated or otherwise moved while coupled to the inner chamber of thebeverage cartridge 32. This secondary fluid may be referred to as a “fluidized mixture” herein. - The embodiment of the present disclosure shown in
FIG. 5 illustrates fourflow ports 74, but theinlet nozzle 44 may have as few as oneflow port 74 or more than fourflow ports 74 without departing from the scope of the present disclosure. Theports 74 may be structured or otherwise designed to inject fluid (e.g., hot water) into thebeverage cartridge 32 in a variety of different ways, including an upward stream or spray and/or a downward stream or spray. Rotational movement of theinlet nozzle 44 and the injection stream or spray of hot water from thenozzle 44 may create a fluidized mixture of hot water and coffee within the interior of thebeverage cartridge 32. As such, an aspect of the beverage brewer of the present disclosure described herein helps minimize channeling and/or overexposure of beverage medium (e.g., coffee grounds) during the preparation cycle. At least with respect to coffee, this may substantially reduce unwanted flavors and/or tastes, such as the bitter taste often associated with single-serve coffee brewers. Further, rotation of theinlet nozzle 44 within thebeverage medium 78 in an aspect of the present disclosure may also produce a noticeable layer of coffee crema after the brewed coffee dispenses from thebrewer head 16 into the receptacle (e.g., mug, cup, etc.) proximate the platen 14. -
FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure. - From the perspective of
FIG. 6 , the top view of thebrewer head 16 illustrates a top mountedmotor 52 that may be used to rotate the inlet nozzle 44 (which is located opposite the view shown inFIG. 6 ) 360 degrees at a constant speed (typically measured in revolutions per minute, or RPMs) or at variable speeds (e.g., higher RPMs when the brew cycle first initiates and relatively slower RPMs closer to the end of the brew cycle, or vice versa). Alternatively, themotor 52 may only partially rotate or pivot the inlet nozzle 44 (e.g., 300 degrees), then stop and reverse rotation (e.g., an opposite 300 degrees). This same or similar partial rotational feature may also be accomplished through use of a solenoid (not shown), as opposed to themotor 52. - The
motor 52 is shown next to the entry point of thehot water conduit 66. In this embodiment, hot water flow to thebrewer head 16 may be regulated by a solenoid 83.FIG. 6 also illustrates the extension spring 45 coupled within the interior of thelid 26, which urges thelid 26 to pivot from the closed position shown inFIG. 1 to the open position shown inFIG. 2 when the jaw clip 36 is released. - For example, and not by way of limitation, the
inlet nozzle 44 may rotate at variable speeds within a brew cycle, or may rotate at a constant speed for part of a brew cycle and for another portion of the brew cycle theinlet nozzle 44 may rotate at variable speeds or in a different direction. As discussed herein, the present disclosure also envisions that theinlet nozzle 44 may do more than rotate about its own central axis; theinlet nozzle 44 may oscillate, nutate, rotate about a non-central axis such as an axis remote from theinlet nozzle 44 itself, or otherwise move within the brewer head 16 (including combinations of the movements mentioned above), whether or not theinlet nozzle 44 is inserted into thebeverage cartridge 32, at least in part to agitate, move, or otherwise assist in the infusion of the fluids from theinlet nozzle 44 with thebeverage medium 78. Theinlet nozzle 44 may be moved, rotated, nutated, oscillated, vibrated, or subjected to any combination of various motions based on the brew cycle duration, type ofbeverage cartridge 32, water temperature, or other factors as desired to create a desired mixture of thebeverage medium 78 with one or more fluids delivered through theinlet nozzle 44. - Further, a “rotation” may only be a partial rotation, rotation or motion in a different direction, or movement about one or more different axes of the
inlet nozzle 44 or about an axis of another device (e.g., the motor 52) of thebeverage system 10. The present disclosure also envisions various methods for moving theinlet nozzle 44. As described with respect toFIG. 8 , theinlet nozzle 44 may be attached to amotor 52, and thus theinlet nozzle 44 is rotated as themotor 52 is energized. However, theinlet nozzle 44 may be stationary and attached to another device that is part of the beverage system that moves. In this particular embodiment, theinlet nozzle 44 may move with respect to thebeverage medium 78, theinner chamber 50, and/or thebeverage cartridge 32. In one such embodiment, thebeverage cartridge 32 is substantially stationary relative to thebeverage brewer 10. -
FIG. 7 is a cross-sectional view of an inlet nozzle in an aspect of the present disclosure. -
FIG. 7 illustrates a pressurized fluid flow 84, e.g., hot water, steam, or other fluids as provided by a pump or other pressure source internal or external tobeverage brewer 10, flowing through the interior of theinlet nozzle 44 toward the nose 54. In this embodiment, the pressurized hot water flow 84 contacts an angled or concave interior portion of the nose 54 as shown and is ejected out therefrom as the stream orspray 80 through one or more of theflow ports 74′. In this respect, a person of ordinary skill in the art will readily recognize that the interior of the nose 54 can be shaped as desired to obtain the desired direction and intensity of directional outflow orspray 80. Theinlet nozzle 44 may rotate about its axis, or otherwise move, such that the stream orspray 80 fluidizes and rotates the beverage medium 78 (e.g., ground coffee) in thebeverage cartridge 32. -
FIG. 8 is another cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure. -
FIG. 8 illustrates an embodiment wherein the shaft of theinlet nozzle 44 is stationary and includes a spinning or rotating platform 86 designed to disperse the incoming flow 84 into the aforementioned stream orspray 80. In this embodiment, the platform 86 may include a shaft 88 coupled to themotor 52 and driven at a constant or variable rate (RPM) to attain substantial rotational fluidized mixture of the hot water andbeverage medium 78 in thebeverage cartridge 32. The platform may be coupled to the nose 54 if desired. The platform 86 may also have serrations or other surface features to disperse the incoming flow 84 as desired. -
FIG. 9 is another cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure. - As shown in
FIG. 9 , a modified platform 86′ may include one or more straight or angled fans orblades 90 attached or otherwise extending therefrom and configured to be hydraulically driven by the pressurized fluid flow 84 travelling through the interior of theinlet nozzle 44. In this embodiment, the fluid flow 84 contacts theblades 90 and causes the modified platform 86′ to spin or rotate about its shaft 88′ in a comparable manner as if driven by themotor 52 in response to the fluid flow 84 contacting theblades 90. This embodiment may be employed as a mechanism for saving energy and/or cost related to the installation, use and power requirements of themotor 52. -
FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure. -
FIG. 10 illustrates an aspect of the present disclosure wherein fourflow ports 74 are positioned generally horizontal and perpendicular to the vertical length of theinlet nozzle 44 and generally opposite one another. The embodiment of the present disclosure illustrated inFIG. 10 provides for a stream orspray 80 exiting theinlet nozzle 44 that is generally tangential to theinlet nozzle 44. More than or less than fourflow ports 74 can be used. -
FIG. 11 is another cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure. -
FIG. 11 illustrates an alternative embodiment wherein fourflow ports 74′″ channel the fluid flow 84 out from theinlet nozzle 44 at an acute angle. The discharge angle from the inlet nozzle may vary between the generally tangential flow (e.g., 90 degree turn) shown inFIG. 9 and near parallel flow (e.g., on the order of 5 or 10 degrees) as shown inFIG. 11 (not to scale). The discharge angle of the flow ports could, of course, be the reverse of the acute angles shown inFIG. 11 , or at any desired angle with respect to theinlet nozzle 44. As shown inFIG. 11 , theinlet nozzle 44 produces a downwardly projecting stream or spray of incoming fluid flow 84 into thebeverage cartridge 32. Rotation or other movement of theinlet nozzle 44 then changes location that the discharge from theinlet nozzle 44 contacts theinner chamber 50 of thebeverage cartridge 32, which may aid in the fluidization of thebeverage medium 78 in the inner chamber. -
FIGS. 12 and 13 are cross-sectional views of inlet nozzles in accordance with various aspects of the present disclosure. -
FIG. 12 illustrates one embodiment of the present disclosure wherein a plurality offlow ports 74″″ are oriented to direct the stream orspray 80 in an upward manner at angles larger than 90 degrees relative to the incoming flow 84, and upwards of 170 or 175 degrees relative to the incoming fluid flow 84. Other angles of stream orspray 80 are possible within the scope of the present disclosure. - As shown in
FIG. 13 , theinlet nozzle 44 could include a mixture of the flow ports 74-74″″.FIG. 13 illustrates aninlet nozzle 44 comprisinghorizontal flow ports 74 that produce tangential outward flow of the stream orspray 80, the downwardly facing oracute flow ports 74′″ that direct the stream orspray 80 in a downward or acute manner relative to the incoming fluid flow 84, and upwardly facing orobtuse flow ports 74″″ that direct the stream orspray 80 in an upward or obtuse manner relative to the incoming fluid flow 84. Of course, each of the flow ports 74-74″″ can be mixed and matched as desired along the length of theinlet nozzle 44 or the nose 54 to attain the desired outward flow of fluid to adequately mix and fluidize thebeverage medium 78 within thebeverage cartridge 32 during the preparation cycle. The pressure delivered to the flow ports 74-74″″ can also be constant or variable during the course of the preparation cycle. - The
beverage brewer 10 may initiate incoming fluid flow 84 through theinlet nozzle 44 prior to rotation or movement of theinlet nozzle 44 to prevent clogging any of the flow ports 74-74″″ at the start of the preparation cycle. In some embodiments, the flow ports 74-74″″ may be of a shape and size such that they may collectbeverage medium 78 as theinlet nozzle 44 spins, similar to a scoop or receptacle. The collectedbeverage medium 78 may occlude the flow ports 74-74″″, thereby substantially occluding or otherwise preventing fluid from adequately exiting theinlet nozzle 44. Initiating fluid flow 84 may allow the pressurized fluid 84 to establish an exit stream that otherwise prevents beverage medium 78 from entering the flow ports 74-74″″, to substantially reduce or eliminate the potential for thebeverage medium 78 to block any one of the flow ports 74-74″″. Similarly, thebeverage brewer 10 may stop rotation of theinlet nozzle 44 before stopping the flow of fluid flow 84 water through any of the flow ports 74-74″″ to flush anybeverage medium 78 away from the flow ports 74-74″″ at the end of the preparation cycle. In some embodiments, the delay after fluid flow exiting theinlet nozzle 44 and the before the beginning ofinlet nozzle 44 movement can be a non-zero time of less than two seconds. In another embodiment this time is 0.1 to 1.0 second, and in another embodiment this time is 0.5 second. Similarly, in some embodiments, the delay between cessation ofinlet nozzle 44 movement and the cessation of fluid flow can be a non-zero time of less than two seconds; 0.1 to 1.0 second; and/or 0.5 second. Under certain circumstances, this goal can be achieved by beginning fluid flow andinlet nozzle 44 movement simultaneously. Additionally, it may be advantageous to initiate fluid flow when the flow ports 74-74″″ are at a position above the beverage medium 78 (e.g., before the flow ports 74-74″″ are in contact with the beverage medium 78), and then move theinlet nozzle 44 into contact with thebeverage medium 78 and/or move theinlet nozzle 44 to a position proximate to thebeverage medium 78 after flow has begun. -
FIG. 14 is an alternative cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure. -
FIG. 14 illustrates an embodiment wherein the flow ports are elongated and form one or more exit channels 92. The exit channels 92 may be particularly configured to attain a wider or open flow of the stream orspray 80 as shown inFIG. 14 . The elongated channel 92 may track the vertical height 51 (shown inFIG. 4B ) of thebeverage cartridge 32 by as little as 50% of thevertical height 51 and by as much as 95% of thevertical height 51, although embodiments of less than 50% and above 95% are contemplated. The elongated channels 92 may be centered within theinner chamber 50, but the channels 92 may also be at a staggered height relative to thebeverage cartridge 32 sidewalls, or staggered relative to each other if more than one channel 92 is configured in theinlet nozzle 44. In an embodiment as shown inFIG. 14 , the elongated channel 92 may be able to better disperse fluid flow 84, e.g., laminar or turbulent hot water, into theinner chamber 50 such as, e.g., when theinlet nozzle 44 rotates, spins, or otherwise moves within thebeverage cartridge 32. -
FIG. 15 is another cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure. - As shown in
FIG. 15 , the flow port of theinlet nozzle 44 may be in the form of a downwardly extending spiral channel 94 that generally tracks the outer periphery of theinlet nozzle 44. The number and orientation of the flow ports 74-74″″, the elongated channels 92 and the spiral channel 94 may be mixed and matched as desired in a givenbeverage brewer 10 to obtain the desired stream orspray 80 exiting theinlet nozzle 44. For example, and not by way of limitation, the flow ports 74-74″″ or the channels 92, 94 could be staggered, positioned opposite one another, or positioned at various angles (e.g., every 30, 60 or 90 degrees) along a giveninlet nozzle 44. -
FIG. 16 is a cross-sectional view illustrating an inlet nozzle in accordance with an aspect of the present disclosure. -
FIG. 16 illustrates an embodiment of theinlet nozzle 44, including at least one, and in the embodiment illustrated inFIG. 16 , a plurality ofserrations 178 disposed or otherwise formed along the outer periphery of theinlet nozzle 44 for agitating thebeverage medium 78 in thecartridge 32. Theserrations 178 preferably act as paddles that stir or otherwise move thebeverage medium 78 and heated water in thebeverage cartridge 32 during the preparation cycle. Such agitation with theserrations 178 may enhance fluidized mixing of thebeverage medium 78 with the incoming fluid flow 84, which may provide a more homogeneous wetting and/or heating of thebeverage medium 78 and more consistent flavor extraction. Theserrations 178 may be any shape known in the art (e.g., rectangular, triangular, hemispherical, blade-shaped, etc.). Moreover, theserrations 178 may extend outwardly from the periphery of theinlet nozzle 44 or may be cut into the periphery thereof. The periphery of theinlet nozzle 44 may also be smooth, or may comprise some smooth portions and someserrations 178 as desired to produce a desired flow of incoming fluid flow 84 with thebeverage medium 78 and/or a desired agitation or extraction of flavors frombeverage medium 78. - Any combination of the flow ports, channels, and/or serrations shown in
FIGS. 7 through 16 is possible with a movinginlet nozzle 44 within the scope of the present disclosure. - Additional and/or Alternate Nozzle Movement
-
FIG. 17 illustrates a cross-sectional view of the brewer head in an aspect of the present disclosure. -
FIG. 17 illustrates another embodiment where theinlet nozzle 44 vertically oscillates instead of, or in addition to, spinning and/or rotating. Thebeverage brewer 10 may comprise an inlet nozzle solenoid 174 that causes theinlet nozzle 44 to vertically oscillate as generally illustrated inFIG. 17 . Theinlet nozzle 44 slidably or otherwise couples to thelid 26 and is generally spring biased in an upper position. The solenoid 174 may extend anoscillation shaft 176 down into contact with theinlet nozzle 44, thereby forcing theinlet nozzle 44 downwardly against the return force of the spring and into an extended position. - The solenoid 174 then retracts the
oscillation shaft 176, and the spring-bias returns theinlet nozzle 44 to the upper position. Thebeverage brewer 10 may pulse the solenoid 174, thereby causing theinlet nozzle 44 to move up and down at a predetermined or desired rate. In one embodiment, theinlet nozzle 44 may move up and down at a rate of 50-70 Hertz, such as a rate of 60 Hertz, as 60 Hertz is the frequency used for power delivery in the United States, thereby simplifying the coupling of the solenoid 174 to a frequency source. Theinlet nozzle 44 may vertically oscillate at any rate within the scope of the present disclosure, and the vertical oscillation rate may change during the course of a brew cycle. Thebeverage brewer 10 may alternately use a cam or other means to vertically oscillate theinlet nozzle 44 in accordance with the embodiments described herein. In another alternative embodiment, theinlet nozzle 44 may also simultaneously vertically oscillate and rotate, as described above, at least in part to assist in the agitation or movement ofbeverage medium 78. Indeed, many different combinations ofinlet nozzle 44 movement as described herein are possible. - Processor Control of Beverage Brewer
-
FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure. -
Beverage brewer 10, as shown in dashed lines inFIG. 18 , may be coupled to afluid source 500. Thefluid source 500 may be a reservoir that is included within and/or attached to abeverage brewer 10, but such a fluid source may also be the water supply for a home or building, a filtered water supply, a carbon dioxide (CO2) line, or other fluid source as desired. Further, more than onefluid source 500 may be coupled to thebeverage brewer 10. - A
pump 502 is coupled to thefluid source 500. The pump may provide pressure to the fluid 504 within thebeverage brewer 10, such that thepump 500 delivers the fluid 504, e.g., water, milk, CO2, etc., at a desired, known, and/or predetermined pressure to the remainder of thebeverage brewer 10. - The
pump 502 is coupled to aheater 506, and delivers fluid 504 toheater 506 for thosefluids 504 that may need to be heated prior to delivery to thebeverage cartridge 32.Heater 506 heats (or optionally cools) the fluid 504 as desired.Heater 506, when employed by thebeverage brewer 10, delivers the heated or otherwise processedfluid 504 to theinlet nozzle 44. - When the
brewer head 16 is in the proper position (i.e., the closed position shown inFIG. 1 ), at least a portion of theinlet nozzle 44 is coupled to theinner chamber 50 of thebeverage cartridge 44.Fluid 504 that is delivered to theinlet nozzle 44 may then be delivered to the inner chamber of thebeverage cartridge 32. - During at least a portion of the time that the
brewer head 16 is in the closed position,motor 52 and/or other means withinbeverage brewer 10, may spin, rotate, nutate, vibrate, oscillate, or otherwise moveinlet nozzle 44, such as the movements previously described.Fluid 504 delivered through the movinginlet nozzle 44 may then move the beverage medium 78 (as shown inFIGS. 5 and 16 ) to assist in the fluidizing and/or mixture offluid 504 withbeverage medium 78. - The
outlet conduit 400 is also coupled to theinner chamber 50 of thebeverage cartridge 32 when the brewer head is in the closed position. As such, as the fluidization offluid 504 andbeverage medium 78 occurs, asecondary fluid 508 is delivered from theinner chamber 50 of thebeverage cartridge 32 to areceptacle 510, e.g., a coffee mug, glass, cup, or other container that may be external to thebeverage medium 10. Thebeverage brewer 10 may also comprisereceptacle 510, e.g., a carafe, etc., however, in many applications the receptacle eventually is used externally to thebeverage brewer 10. - The
pump 502,motor 52,heater 506,brewer head 16, and, optionally, thefluid source 500, are coupled to aprocessor 512. Theprocessor 512 is further coupled, either internally or externally, to amemory 514. Theprocessor 512 provides computer-based control of thepump 502,motor 52, andheater 506, and may control other components withinbeverage brewer 10. - For example, and not by way of limitation, the
processor 512 may receive a signal or other input from a sensor coupled to thefluid source 500, to indicate to thebeverage brewer 10 that there is notenough fluid 504 available to brew a beverage. Theprocessor 512 may then prevent thebeverage brewer 10 from initiating a preparation cycle for abeverage cartridge 32. - Further, the
processor 512 may sense a particular type ofbeverage cartridge 32 present in thebrewer head 16. Once the type ofbeverage cartridge 32 is known, theprocessor 512 may provide different inputs to thepump 502,motor 52,heater 506, or other components in thebeverage brewer 10 to change one or more variables in the mixture offluid 504 and the beverage medium in theparticular beverage cartridge 32. Theprocessor 512 may increase or decrease the speed of rotation ofmotor 52, may insert theinlet nozzle 44 further into thebeverage container 32, provide pulsed or different types of current to thepump 502 and/orheater 506, or may change some path for the fluid 504 prior to introduction into theinner chamber 50 of thebeverage cartridge 32. Additionally, theprocessor 512 may select a particular kind ofinlet nozzle 44 motion or combination of motions based on the type ofbeverage cartridge 32 that is sensed or a specific user input. These and/or other inputs to theprocessor 512 may cause theprocessor 512 to accessmemory 514 to provide such instructions to various components of thebeverage brewer 10. -
FIG. 19 is a process diagram 1900 illustrating possible steps used in an embodiment of the present disclosure. -
Block 1902 illustrates configuring a beverage head comprising a receptacle to selectively receive a sealed container when the beverage head is in a first position (e.g., open).Block 1904 illustrates configuring an inlet nozzle to pass through an outer surface of the sealed container and coupling at least a portion of the inlet nozzle to an inner volume of the sealed container when the beverage head is in a second position (e.g., closed).Block 1906 illustrates maintaining the beverage container substantially stationary with respect to the single-serve beverage device while the beverage head is in the second position.Block 1908 illustrates delivering at least a first fluid to a beverage medium in the inner volume of the sealed container through the inlet nozzle.Block 1910 illustrates selectively rotating the inlet nozzle with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position.Block 1912 illustrates creating an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium during operation of the single-serve beverage making device.Block 1914 illustrates coupling an outlet conduit to the inner volume of the sealed container of beverage medium.Block 1916 illustrates directing at least a portion of the second fluid through the outlet conduit to a receptacle external to the beverage head. -
FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure. - In an aspect of the present disclosure, pump 502 may direct fluid 2000, which may be one or more fluids, to one or more conduits 2002-2008 at specified times. As an example, and not by way of limitation, pump 502 may deliver fluid 2000 to
conduit 2002 for a first time period, then discontinue delivery of fluid 2000 toconduit 2002 and begin delivering fluid 2000 toconduit 2004 for a second time period. It is also understood that delivery of the fluid 2000 to different conduits may overlap; for example, delivery of the fluid 2000 toconduit 2002 may end after delivery of fluid to another conduit, e.g. theconduit 2004, has begun. By alternating or staggering the flow of fluid 2000 to different conduits 2002-2008 during different time periods, fluid 2000 may be selectively delivered through channels 2010-2016 ininlet nozzle 44 to flowports 74 a-74 b.Flow port 74 a is shown in phantom lines to indicate thatflow port 74 a is on a surface not visible from the perspective ofFIG. 20 . Further, flow 74 b and 74 d are shown as being approximately in the plane of perspective ofports FIG. 20 , and flowport 74 c is shown as facing the perspective plane ofFIG. 20 . There may be fewer oradditional flow ports 74 a-d, and theflow ports 74 a-d may be at any angle, location, or orientation with respect to each other or with respect to theinlet nozzle 44 without departing from the scope of the present disclosure. - As the
fluid 2000 is selectively delivered to one or more offlow ports 74 a-74 b, a sequence of fluid flows 2018-2024 may be created. Although a sequence of fluid flows 2018-2024 may be sequential, e.g.,first fluid flow 2018, thenfluid flow 2020, thenfluid flow 2022, then fluid flow 2024 (also referred to as a “chaser” sequence), any sequence of fluid flows 2018-2024 including but not limited to exclusive and/or overlapping fluid flows may be employed within the scope of the present disclosure. - The sequencing of fluid flows 2018-2024 may be obtained by, for example, pump 502 comprising and/or being coupled to a manifold that has a rotating or movable plenum that selectively directs the fluid 2000 to one or more of the conduits 2002-2008. Other means for obtaining selective delivery of fluid 2000 to one or more of the conduits 2002-2008 are possible within the scope of the present disclosure.
- With or without rotating or otherwise moving the
inlet nozzle 44, the fluid flows 2018-2024, through sequencing, upon introduction or proximity tobeverage cartridge 32 and/orbeverage medium 78 as shown byarrow 2026, may create a fluid flow, agitation, or other movement ofbeverage medium 78 with the fluid flows 2018-2024. Further, control of the sequencing of fluid flows 2018-2024 may be performed by processor 412, and the speed, order, and pressure of fluid flows 2018-2024 may be varied or constant during a preparation cycle, or may be combined with rotational, vibrational, and/or other motion ofinlet nozzle 44 to create a preferred time, concentration, and/or other mixture or agitation of fluid 2000 withbeverage medium 78. The control of the order, speed, and pressure of fluid flows 2018-2024 may also be based on other factors, such as the type ofbeverage medium 78, the presence or absence of abeverage cartridge 32, the presence or absence of acover 49 on thebeverage cartridge 32, manual inputs or overrides to thebeverage brewer 10, or other factors. - The
memory 514 may be implemented in firmware and/or software implementation. The firmware and/or software implementation methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. A machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory (e.g., memory 514) and executed by a processor unit (e.g., processor 512). Memory may be implemented within the processor unit or external to the processor unit. As used herein, the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored. - If implemented in firmware and/or software, the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
- In addition to storage on computer readable medium, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
- Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the technology of the disclosure as defined by the appended claims. For example, relational terms, such as “above” and “below” are used with respect to brewers. Of course, if the brewer is inverted, above becomes below, and vice versa. Additionally, if oriented sideways, above and below may refer to sides of a brewer. Moreover, the scope of the present application is not intended to be limited to the particular configurations of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding configurations described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
- Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
- The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- The steps of a method or algorithm described in connection with the disclosure may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
- In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store specified program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
- The description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
- Although several embodiments have been described in detail for purposes of illustration, various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the disclosure is not to be limited by the examples presented herein, but is envisioned as encompassing the scope described in the appended claims and the full range of equivalents of the appended claims.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/056,131 US20160174755A1 (en) | 2014-02-14 | 2016-02-29 | Processor control of solute extraction system |
Applications Claiming Priority (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461940290P | 2014-02-14 | 2014-02-14 | |
| US201461977069P | 2014-04-08 | 2014-04-08 | |
| US201462060282P | 2014-10-06 | 2014-10-06 | |
| US201462069772P | 2014-10-28 | 2014-10-28 | |
| PCT/US2015/015971 WO2015123612A1 (en) | 2014-02-14 | 2015-02-13 | Beverage brewer and related methods for brewing beverages |
| US201562136258P | 2015-03-20 | 2015-03-20 | |
| PCT/US2015/025013 WO2015157475A1 (en) | 2014-04-08 | 2015-04-08 | Beverage brewing systems and methods for using the same |
| US201562230508P | 2015-06-05 | 2015-06-05 | |
| US201562174443P | 2015-06-11 | 2015-06-11 | |
| US14/810,448 US9307860B2 (en) | 2014-02-14 | 2015-07-27 | Processor control of solute extraction system |
| US15/056,131 US20160174755A1 (en) | 2014-02-14 | 2016-02-29 | Processor control of solute extraction system |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/015971 Continuation-In-Part WO2015123612A1 (en) | 2014-02-14 | 2015-02-13 | Beverage brewer and related methods for brewing beverages |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160174755A1 true US20160174755A1 (en) | 2016-06-23 |
Family
ID=54537511
Family Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/810,448 Active US9307860B2 (en) | 2014-02-14 | 2015-07-27 | Processor control of solute extraction system |
| US14/810,445 Abandoned US20150327718A1 (en) | 2014-02-14 | 2015-07-27 | Apparatuses and methods for solute extraction |
| US14/810,429 Active 2036-03-09 US10045654B2 (en) | 2014-02-14 | 2015-07-27 | Moving inlet nozzles in beverage systems |
| US15/516,893 Abandoned US20170295989A1 (en) | 2014-02-14 | 2015-08-13 | Moving inlet nozzles in beverage systems |
| US15/056,131 Abandoned US20160174755A1 (en) | 2014-02-14 | 2016-02-29 | Processor control of solute extraction system |
| US16/024,453 Active 2035-10-10 US10881241B2 (en) | 2014-02-14 | 2018-06-29 | Moving inlet nozzles in beverage systems |
Family Applications Before (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/810,448 Active US9307860B2 (en) | 2014-02-14 | 2015-07-27 | Processor control of solute extraction system |
| US14/810,445 Abandoned US20150327718A1 (en) | 2014-02-14 | 2015-07-27 | Apparatuses and methods for solute extraction |
| US14/810,429 Active 2036-03-09 US10045654B2 (en) | 2014-02-14 | 2015-07-27 | Moving inlet nozzles in beverage systems |
| US15/516,893 Abandoned US20170295989A1 (en) | 2014-02-14 | 2015-08-13 | Moving inlet nozzles in beverage systems |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/024,453 Active 2035-10-10 US10881241B2 (en) | 2014-02-14 | 2018-06-29 | Moving inlet nozzles in beverage systems |
Country Status (1)
| Country | Link |
|---|---|
| US (6) | US9307860B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11457765B1 (en) | 2022-05-10 | 2022-10-04 | Havana Savannah, Llc | Magnetically driven beverage brewing and cleaning system |
| US11503942B1 (en) | 2018-09-25 | 2022-11-22 | Havana Savannah, Llc | Magnetically driven beverage brewing system and method |
| USD1023658S1 (en) | 2022-06-29 | 2024-04-23 | Havana Savannah, Llc | Coffee brewing system |
| USD1095143S1 (en) | 2022-06-29 | 2025-09-30 | Havana Savannah, Llc | Snorkel tube |
Families Citing this family (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11832755B2 (en) * | 2007-07-13 | 2023-12-05 | Adrian Rivera | Brewing material container for a beverage brewer |
| US10722066B2 (en) * | 2010-12-04 | 2020-07-28 | Adrian Rivera | Windowed single serving brewing material holder |
| US10071851B2 (en) | 2010-07-12 | 2018-09-11 | Robert Bao Vu | Apparatus and products for producing beverages, and methods for making and using same |
| EP3521209B1 (en) * | 2010-07-22 | 2020-01-22 | K-fee System GmbH | Portion capsule with barcode |
| JP6434042B2 (en) * | 2014-02-14 | 2018-12-05 | レミントン デザインズ リミテッド ライアビリティ カンパニー | Beverage extraction apparatus and method related to beverage extraction |
| US10342378B2 (en) * | 2014-04-16 | 2019-07-09 | Red River Tea Company | Still beverage brewing method |
| US10111554B2 (en) | 2015-03-20 | 2018-10-30 | Meltz, LLC | Systems for and methods of controlled liquid food or beverage product creation |
| WO2017031212A1 (en) * | 2015-08-18 | 2017-02-23 | Remington Designs, Llc | Beverage maker |
| US11534018B2 (en) | 2015-11-05 | 2022-12-27 | Adrian Rivera | Beverage brewer with brewing material rotation |
| US10455972B2 (en) * | 2015-11-05 | 2019-10-29 | Adrian Rivera | Beverage brewer with brewing rotation |
| US9883766B2 (en) * | 2015-11-20 | 2018-02-06 | Pepsico, Inc. | Beverage dispenser systems and methods |
| US12004679B2 (en) * | 2016-01-05 | 2024-06-11 | Adrian Rivera | Beverage brewer with moving water dispersion |
| US10123651B2 (en) * | 2016-01-05 | 2018-11-13 | Adrian Rivera | Coffee maker with moving water dispersion |
| DE102016003515A1 (en) * | 2016-03-24 | 2017-09-28 | LigaLife GmbH & Co. KG | Device for producing a liquid food, method for producing a liquid food, use of a fluid supply in a chamber of a capsule for producing a liquid food and system of device and capsule |
| CN105662151B (en) * | 2016-04-06 | 2018-08-10 | 宁波锦宇电器有限公司 | A kind of brewing structure of capsule coffee machine |
| WO2018029538A2 (en) * | 2016-08-10 | 2018-02-15 | Remington Designs, Llc | Beverage machine with strength control |
| US9795246B1 (en) | 2016-09-29 | 2017-10-24 | Levo Oil Infusion, Llc | Apparatus for infusing and dispensing oils |
| US11330931B2 (en) | 2016-09-29 | 2022-05-17 | Levo Oil Infusion | Apparatus and method for infusing and dispensing oils, and drying and heating infusing materials |
| US20190142209A1 (en) | 2017-11-16 | 2019-05-16 | LEVO Oil Infusion, Inc. | Apparatus and method for infusing oils |
| US12478074B2 (en) | 2016-09-29 | 2025-11-25 | LEVO Oil Infusion, Inc. | Apparatus and method for infusing and dispensing oils, and drying and heating infusing materials |
| JP7177049B2 (en) | 2016-11-09 | 2022-11-22 | ペプシコ・インク | Carbonated Beverage Maker, Method and System |
| GB201622102D0 (en) * | 2016-12-23 | 2017-02-08 | Mars Inc | Beverage preparation machine |
| US12114801B2 (en) | 2019-07-19 | 2024-10-15 | Adrian Rivera | Beverage brewer having moving water dispersion |
| US11229317B2 (en) * | 2017-03-11 | 2022-01-25 | Kete Long | Food cooking apparatus |
| US10172494B2 (en) * | 2017-03-11 | 2019-01-08 | Kete Long | Method for semi-automatic food cooking |
| US11484041B2 (en) | 2017-04-27 | 2022-11-01 | Cometeer, Inc. | Method for centrifugal extraction and apparatus suitable for carrying out this method |
| US11627827B2 (en) | 2017-09-12 | 2023-04-18 | Adrian Rivera | Beverage brewer |
| US11064836B2 (en) | 2017-09-12 | 2021-07-20 | Adrian Rivera | Beverage brewer |
| US10575672B2 (en) | 2017-09-12 | 2020-03-03 | Adrian Rivera | Cold coffee brewer |
| GB2585525B (en) * | 2018-03-02 | 2022-05-18 | Prakash Sahoo Samir | Beverage forming apparatus, method, and cartridge |
| US12268325B2 (en) * | 2018-11-01 | 2025-04-08 | Societe Des Produits Nestle S.A. | Capsule system with recognition means and adaptable opening and injection mechanism |
| USD929171S1 (en) * | 2019-01-04 | 2021-08-31 | Kete Long | Automated guided food preparation device |
| WO2020144216A1 (en) * | 2019-01-08 | 2020-07-16 | Arcelik Anonim Sirketi | A hot beverage preparation machine |
| US11724849B2 (en) | 2019-06-07 | 2023-08-15 | Cometeer, Inc. | Packaging and method for single serve beverage product |
| IT201900008844A1 (en) * | 2019-06-13 | 2020-12-13 | Lavazza Luigi Spa | Motorized infusion unit |
| IT201900012381A1 (en) * | 2019-07-19 | 2021-01-19 | Lavazza Luigi Spa | SYSTEM, MACHINE AND CONTAINER FOR THE PREPARATION OF FLUID FOOD PRODUCTS |
| USD965370S1 (en) * | 2019-09-03 | 2022-10-04 | Strauss Water Ltd | Water dispenser with steam sterilizer |
| USD929167S1 (en) * | 2020-07-05 | 2021-08-31 | Strauss Water Ltd | Appliance for preparing beverages |
| US12127703B2 (en) | 2020-08-31 | 2024-10-29 | Adrian Rivera | Liquid infusion device |
| US11805934B1 (en) * | 2020-10-21 | 2023-11-07 | Adrian Rivera | Brewing material lid and container for a beverage brewer |
| US12171361B2 (en) | 2020-12-30 | 2024-12-24 | Sharkninja Operating Llc | Hybrid receptacle beverage brewing system |
| USD1048792S1 (en) | 2023-04-12 | 2024-10-29 | Sharkninja Operating Llc | Coffee machine |
| USD1048793S1 (en) | 2023-05-02 | 2024-10-29 | Sharkninja Operating Llc | Coffee machine |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5472719A (en) * | 1990-10-31 | 1995-12-05 | Coffea S.A. | Apparatus for the preparation of an edible liquid |
| US20040244599A1 (en) * | 2003-06-05 | 2004-12-09 | Wei Kun-Lian | Multi-function coffee maker and use thereof |
| US20040250686A1 (en) * | 2003-06-13 | 2004-12-16 | Robert Hale | Beverage dispensing machine including cartridge ejector assembly |
| US20060225575A1 (en) * | 2003-08-25 | 2006-10-12 | Jean-Paul Denisart | Method and device for preparation of a drink from capsules containing a substance |
| US20070144355A1 (en) * | 2003-08-25 | 2007-06-28 | Jean-Paul Denisart | Methods and device for the preparation of a food product |
| US20080000358A1 (en) * | 2004-11-17 | 2008-01-03 | Bunn-O-Matic Corporation | Brewer Having a Programmable Temperature Component |
| US20110308396A1 (en) * | 2009-03-23 | 2011-12-22 | Peter Mori | Pump mount in a beverage preparation machine |
| US20120183659A1 (en) * | 2010-12-28 | 2012-07-19 | Starbucks Corporation D/B/A Starbucks Coffee Company | Apparatus for brewing a beverage and related method |
| US20130125759A1 (en) * | 2011-11-17 | 2013-05-23 | Dong Sheng International Technology Company Limited | Coffee maker enabling automated drip brewing |
| US20140272047A1 (en) * | 2013-03-14 | 2014-09-18 | Spectrum Brands, Inc. | Apparatus and method for brewing beverages |
Family Cites Families (260)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2111996A1 (en) | 1971-03-12 | 1972-09-21 | Manfred Burger | Method and device for the production of coffee drinks |
| DK162369C (en) | 1982-07-19 | 1992-03-23 | Mars G B Ltd | METHOD AND DISPENSES FOR THE PREPARATION OF AN INFUSIONAL BEVERAGE |
| US4724069A (en) * | 1986-08-15 | 1988-02-09 | Phillips Petroleum Company | Hydrofining process for hydrocarbon containing feed streams |
| DE3643879C1 (en) | 1986-12-22 | 1992-01-09 | Bentz & Sohn Melitta | Coffee or tea machine |
| US4983412A (en) | 1986-12-22 | 1991-01-08 | Melitta-Werke Bentz & Sohn | Method and device for producing aqueous extracts from coffee |
| US4962693A (en) | 1988-11-02 | 1990-10-16 | Kabushiki Kaisha Toshiba | Centrifugal brewing type coffee maker |
| US4984511A (en) | 1988-11-25 | 1991-01-15 | Sanden Corporation | Beverage brewing apparatus for vending machines |
| US5327815A (en) | 1991-07-05 | 1994-07-12 | Nestec S.A. | Device for use in beverage extraction machines |
| GB9214156D0 (en) | 1992-07-02 | 1992-08-12 | Ag Patents Ltd | Method and apparatus for producing a coffee beverage |
| US5840189A (en) | 1992-09-16 | 1998-11-24 | Keurig, Inc. | Beverage filter cartridge |
| DK0891734T3 (en) | 1997-07-14 | 2001-01-29 | Nestle Sa | Apparatus for the manufacture of a beverage |
| US8642051B2 (en) | 2000-03-21 | 2014-02-04 | Suzanne Jaffe Stillman | Method of hydration; infusion packet system(s), support member(s), delivery system(s), and method(s); with business model(s) and Method(s) |
| DE60103767T2 (en) | 2000-09-06 | 2005-07-14 | Mars, Incorporated (A Corporation Of Delaware, Usa) | METHOD AND DEVICE FOR BREWING COFFEE |
| US6644173B2 (en) | 2001-04-11 | 2003-11-11 | Keuring, Incorporated | Beverage filter cartridge holder |
| CA2443591A1 (en) | 2001-04-18 | 2002-10-31 | Keurig, Incorporated | System for monitoring and controlling the operation of a single serve beverage brewer |
| EP2241229B8 (en) * | 2001-04-27 | 2012-07-25 | Mars, Incorporated | Beverage apparatus for making foamed drinks |
| US20060283332A1 (en) | 2001-12-11 | 2006-12-21 | Garman Michael H | Hot beverage maker |
| US6811299B2 (en) | 2002-05-13 | 2004-11-02 | Linda Ann Collier | Hot coffee mixing device for a coffee maker |
| US7640843B2 (en) | 2003-01-24 | 2010-01-05 | Kraft Foods R & D, Inc. | Cartridge and method for the preparation of beverages |
| ITBO20030062A1 (en) | 2003-02-13 | 2004-08-14 | Ima Spa | CAPSULE USED FOR THE PREPARATION OF AN INFUSED BEVERAGE. |
| CA2519791C (en) | 2003-04-04 | 2011-04-26 | Omron Corporation | Flow measurement device |
| CA2526280C (en) | 2003-05-19 | 2013-12-03 | Aroma Fresh, Llc | Coffee brewer |
| EP1495702A1 (en) | 2003-07-10 | 2005-01-12 | Nestec S.A. | Device for the extraction of a cartridge |
| ES2322757T3 (en) | 2003-08-21 | 2009-06-26 | Nestec S.A. | NATURAL LICOPEN CONCENTRATE AND OBTAINING PROCEDURE. |
| US20070009574A1 (en) | 2003-08-28 | 2007-01-11 | Jacques Decombaz | Food product providing sustained blood levels of exogenous substances |
| US7165488B2 (en) | 2003-12-12 | 2007-01-23 | Keurig, Incorporated | Brew chamber for a single serve beverage brewer |
| JP4169711B2 (en) * | 2004-03-03 | 2008-10-22 | 三洋電機株式会社 | Beverage production equipment |
| MY142017A (en) | 2004-03-19 | 2010-08-16 | Nestec Sa | Composition comprising all essential nutrients of a fruit or a plant material with increased stability and bioavailability and process of forming the same |
| ITMI20040777A1 (en) * | 2004-04-21 | 2004-07-21 | De Longhi Spa | DEVICE AND PROCEDURE FOR THE PRODUCTION OF A MILK-BASED DRINK |
| NZ551598A (en) | 2004-07-09 | 2010-10-29 | Nestec Sa | System and device for preparing and delivering food products from a mixture made up of a food liquid and a diluent |
| US7621426B2 (en) * | 2004-12-15 | 2009-11-24 | Joseph Kanfer | Electronically keyed dispensing systems and related methods utilizing near field frequency response |
| WO2007027206A2 (en) | 2005-04-11 | 2007-03-08 | Coffee Equipment Company | Machine for brewing a beverage such as coffee and related method |
| US7581490B2 (en) * | 2005-04-28 | 2009-09-01 | Applica Consumer Products, Inc. | Coffeemaker with water feed velocity decreaser |
| US9795243B2 (en) | 2005-05-23 | 2017-10-24 | Adrian Rivera | Single serving brewing material holder |
| EP1738676B1 (en) * | 2005-06-30 | 2008-12-17 | RANCILIO MACCHINE PER CAFFE' S.p.A. | Machine and device for supplying beverages in containers having different sizes and method therefor |
| JP2007054607A (en) | 2005-07-25 | 2007-03-08 | Izumi Products Co | Beverage maker |
| US20140060336A1 (en) | 2006-02-23 | 2014-03-06 | Carl Campetella | Apparatus for Making Crema Coffee |
| US8075397B2 (en) | 2006-03-17 | 2011-12-13 | Wms Gaming Inc. | Service controller for servicing wagering game machines |
| ES2373400T3 (en) | 2006-03-27 | 2012-02-03 | Nestec S.A. | MILK PROTEIN MICELS. |
| ES2314974T3 (en) * | 2006-04-25 | 2009-03-16 | Imel Ag | DEVICE AND METHOD FOR THE PREAPRATION OF HOT DRINKS BY SCALDING A SUBSTANCE IN THE FORM OF EXTRAIBLE PARTICLES BY WATER. |
| JP4922655B2 (en) * | 2006-05-01 | 2012-04-25 | 三洋電機株式会社 | Milk former |
| DK1859712T4 (en) | 2006-05-24 | 2014-12-15 | Nestec Sa | Capsule perforation module |
| EP2189088B1 (en) | 2006-06-16 | 2013-05-15 | Nestec S.A. | Beverage distribution apparatus with support system and droplet recuperation for containers with different sizes |
| US8435579B2 (en) | 2006-07-07 | 2013-05-07 | Kraft Foods Group Brands Llc | Infused roasted seeds and methods of making thereof |
| US20080032030A1 (en) | 2006-08-15 | 2008-02-07 | Eilaz Babaev | Method and Apparatus for Producing Beverages from Coffee Beans Using Ultrasound Energy |
| US8403174B2 (en) | 2006-08-28 | 2013-03-26 | Kraft Foods Global Brands Llc | Snap resealing closure for a container |
| EP1917960A1 (en) | 2006-11-06 | 2008-05-07 | Nestec S.A. | Improved biological effects of rosmarinic acid |
| US20080148956A1 (en) * | 2006-12-20 | 2008-06-26 | Maurer Scott D | Coffee maker |
| EP1950150B1 (en) | 2007-01-24 | 2010-03-03 | Nestec S.A. | Identification of beverage ingredient containing capsules |
| PL1967099T3 (en) | 2007-03-06 | 2010-06-30 | Nestec Sa | Device for preparing a food liquid from a capsule |
| EP1967100B1 (en) | 2007-03-06 | 2009-05-20 | Nestec S.A. | System for preparing a beverage from a capsule and method |
| GB2462392B (en) | 2007-05-18 | 2010-08-18 | Kraft Foods R & D Inc | Beverage preparation machines and methods for operating beverage preparation machines |
| AU2008258738B2 (en) | 2007-06-05 | 2015-05-14 | Société des Produits Nestlé S.A. | Method for preparing a beverage or liquid food and system using brewing centrifugal force |
| WO2008148834A1 (en) | 2007-06-05 | 2008-12-11 | Nestec S.A. | Capsule and method for preparing a food liquid by centrifugation |
| US8431175B2 (en) | 2007-06-05 | 2013-04-30 | Nestec S.A. | Method for preparing a beverage or food liquid and system using brewing centrifugal force |
| US7980168B2 (en) | 2007-06-26 | 2011-07-19 | Maurer Scott D | Hot beverage maker with filter deforming member |
| US9572452B2 (en) | 2010-12-04 | 2017-02-21 | Adrian Rivera | Single serving brewing material adapter with readable label |
| US20140195442A1 (en) | 2007-09-14 | 2014-07-10 | Ward Kraft, Inc. | Combination Retailing System For Appraising Precious Stones And Metals And Dispensing Gift Cards, Coupons And The Like |
| US20140195377A1 (en) | 2007-09-14 | 2014-07-10 | Ward Kraft, Inc. | Combination Retailing System For Appraising Precious Stones And Metals And Dispensing Gift Cards, Coupons And The Like |
| US8429021B2 (en) | 2007-09-14 | 2013-04-23 | Ward Kraft, Inc. | Method and system for receiving an item during a precious stone and metal appraisal |
| US20130284805A1 (en) | 2007-09-14 | 2013-10-31 | Ward Kraft, Inc. | Kiosk For Providing Customized Transaction Cards To Customers |
| CL2008002963A1 (en) | 2007-10-04 | 2010-01-22 | Nestec Sa | Heating device for a machine for the preparation of liquid food or drink, comprising a thermal unit with a metallic mass, through which the liquid circulates, and accumulates heat and supplies it to the liquid, and has one or more insured electrical components rigidly to the thermal unit; and machine. |
| US8600223B2 (en) | 2007-10-04 | 2013-12-03 | Nestec S.A. | Integrated heater for a beverage preparation device |
| US20090142444A1 (en) | 2007-11-29 | 2009-06-04 | Cadbury Adams Usa Llc | Particulate coating processing |
| CA2709877C (en) | 2007-12-20 | 2017-03-28 | Nestec S.A. | Instant beverage product |
| WO2009084059A1 (en) | 2008-01-03 | 2009-07-09 | Essence-Sbt Sa | System for delivering infusion beverages and infusion capsule |
| ES2365642T3 (en) | 2008-03-12 | 2011-10-07 | Nestec S.A. | CAPSULE WITH FLOW CONTROL AND FILTER ELEMENT. |
| BRPI0911114A2 (en) | 2008-04-07 | 2015-10-06 | Nestec Sa | beverage preparation device with in-line crust removal system and crust removal method using such system |
| WO2009124823A2 (en) | 2008-04-11 | 2009-10-15 | Nestec S.A. | Particles of aerated ice confection products for frozen ice drinks |
| US8371343B2 (en) | 2008-04-24 | 2013-02-12 | Kraft Foods Group Brands Llc | Method and apparatus to facilitate determining proper placement of a liquid |
| JP5409773B2 (en) | 2008-05-08 | 2014-02-05 | ネステク ソシエテ アノニム | Setting the fill level for cups used with beverage dispensers |
| CN102046053B (en) | 2008-05-28 | 2014-11-05 | 雀巢产品技术援助有限公司 | Pumps for liquid beverage preparation equipment |
| EP2127568A1 (en) | 2008-05-29 | 2009-12-02 | Nestec S.A. | Mixing and dispensing apparatus with movable mixing chamber |
| US20120070542A1 (en) | 2010-09-16 | 2012-03-22 | Starbucks Corporation D/B/A Starbucks Coffee Company | Instant beverage cartridges and methods |
| US8431172B2 (en) | 2008-07-31 | 2013-04-30 | Kraft Foods Global Brands Llc | Production of cookies having large particulates using ultrasonic wirecutting |
| EP2381823A4 (en) | 2008-09-04 | 2012-08-08 | Razbaby Innovative Baby Products Inc | Infant formula preparation apparatus and method |
| WO2010054322A1 (en) | 2008-11-07 | 2010-05-14 | Solazyme, Inc. | Cosmetic compositions comprising microalgal components |
| ATE538667T1 (en) | 2008-11-10 | 2012-01-15 | Nestec Sa | SIAL ACID PRODUCING BACTERIA |
| AU2009326071B2 (en) | 2008-12-09 | 2016-01-14 | Société des Produits Nestlé S.A. | Liquid food preparation system for preparing a liquid food by centrifugation |
| MX2011006184A (en) | 2008-12-09 | 2011-09-06 | Nestec Sa | Capsule for preparing a beverage by centrifugation in a beverage preparation device and device adapted therefore. |
| US8166868B2 (en) | 2008-12-18 | 2012-05-01 | Whirlpool Corporation | Liquid flow control and beverage preparation apparatus |
| US8133525B2 (en) | 2008-12-18 | 2012-03-13 | Whirlpool Corporation | Liquid flow control and beverage preparation apparatuses, methods and systems |
| US8227000B2 (en) | 2008-12-18 | 2012-07-24 | Whirlpool Corporation | Liquid flow control and beverage preparation apparatuses, methods and systems |
| US8468935B2 (en) | 2008-12-18 | 2013-06-25 | Whirlpool Corporation | Liquid flow control and beverage preparation apparatuses, methods and systems |
| US8166867B2 (en) | 2008-12-18 | 2012-05-01 | Whirlpool Corporation | Liquid flow control through a beverage preparation apparatus |
| CA2748748A1 (en) | 2009-01-05 | 2010-07-08 | Nestec S.A. | Capsule with flow control and filtering member |
| US9265376B2 (en) * | 2009-02-06 | 2016-02-23 | Nestec S.A. | Device and method using centrifugation for extracting a liquid and heat loss compensating means |
| EP2583595B1 (en) | 2009-03-27 | 2018-07-11 | Koninklijke Douwe Egberts B.V. | Beverage dispensing system |
| US20100260892A1 (en) | 2009-04-08 | 2010-10-14 | Nestec S.A. | Mixing nozzle fitments |
| RU2011148139A (en) | 2009-04-28 | 2013-06-10 | Нестек С.А. | COMPOSITION OF FOOD OR DRINK CONTAINING DRY SUBSTANCES OF UNRECAINTED COFFEE |
| GB2469874B (en) | 2009-05-01 | 2012-09-19 | Kraft Foods R & D Inc | Beverage preparation machines |
| US8474368B2 (en) | 2009-05-13 | 2013-07-02 | Curwood, Inc. | Mineral composite beverage brewing cup and cartridge |
| KR20120093145A (en) | 2009-07-03 | 2012-08-22 | 네스텍 소시에테아노님 | Capsule for the preparation of a beverage comprising an identification element |
| EP2292104A1 (en) | 2009-08-13 | 2011-03-09 | Nestec S.A. | A flavour active composition |
| CA2772077C (en) | 2009-08-28 | 2017-12-05 | Green Mountain Coffee Roasters | Beverage cartridge and method for beverage formation using filter aid |
| US8293299B2 (en) | 2009-09-11 | 2012-10-23 | Kraft Foods Global Brands Llc | Containers and methods for dispensing multiple doses of a concentrated liquid, and shelf stable Concentrated liquids |
| US9108794B2 (en) | 2009-09-29 | 2015-08-18 | Lbp Manufacturing, Inc. | Disposable single use beverage package |
| US9763461B2 (en) | 2009-10-28 | 2017-09-19 | Bkon Llc | Vacuum infusion method |
| US8586117B2 (en) | 2009-10-28 | 2013-11-19 | Bkon Llc | Liquid infusion process and method of brewing a beverage |
| US9295358B2 (en) | 2009-10-28 | 2016-03-29 | Bkon Llc | Vacuum brewed beverage machine and vacuum brewing method |
| CN101824375A (en) * | 2009-11-27 | 2010-09-08 | 林波 | Rainbow cocktail preparer |
| CA2784752C (en) | 2009-12-18 | 2015-04-14 | Green Mountain Coffee Roasters | Beverage formation apparatus and method using sonic energy |
| US8999421B2 (en) | 2010-03-13 | 2015-04-07 | Bunn-O-Matic Corporation | Cartridge retaining device, brewer in combination with same, and method of using said device |
| US20150004287A1 (en) | 2010-03-31 | 2015-01-01 | Multisorb Technologies, Inc. | Oxygen, water vapor, and carbon dioxide absorption in a single use container |
| US20110244108A1 (en) | 2010-04-02 | 2011-10-06 | Rabin Michael David | Container for single-serve liquid/solid food product |
| GB2482032B (en) | 2010-07-16 | 2013-04-10 | Kraft Foods R & D Inc | Coffee products and related processes |
| EP4473875A3 (en) | 2010-07-16 | 2025-03-26 | Société des Produits Nestlé S.A. | Preparing a beverage by centrifugation |
| US8596026B2 (en) | 2010-08-05 | 2013-12-03 | Kraft Foods Group Brands Llc | Vacuum flow wrap packaging system and method of packaging |
| AU2011288644B2 (en) | 2010-08-13 | 2016-01-07 | Versuni Holding B.V. | Device, system and method for preparing a beverage suitable for consumption from a capsule |
| CN103260484B (en) | 2010-08-13 | 2016-07-06 | 皇家戴维艾格伯茨有限公司 | The device of beverage, system and method is prepared with encapsulation |
| US8807823B2 (en) | 2010-10-11 | 2014-08-19 | Hamilton Beach Brands, Inc. | Automated mix in-cup apparatus and the method of operating the same |
| US8573115B2 (en) | 2010-11-15 | 2013-11-05 | Conair Corporation | Brewed beverage appliance and method |
| AU2011335120A1 (en) | 2010-11-30 | 2013-06-06 | Nestec S.A. | Capsule and method for the preparation of a beverage by centrifugation |
| PL2462850T3 (en) | 2010-12-13 | 2014-02-28 | Nestec Sa | A beverage preparation machine |
| BR112013023240B1 (en) | 2011-03-14 | 2019-11-05 | K Fee System Gmbh | portion capsule to produce a tea drink |
| US8794439B2 (en) | 2011-03-30 | 2014-08-05 | Lawrence Charles | Product packaging |
| US8707855B2 (en) | 2011-05-09 | 2014-04-29 | Eko Brands, Llc | Beverage Brewing Device |
| PH12013502347A1 (en) * | 2011-05-27 | 2014-01-06 | Nestec Sa | Beverage dispenser with removable nozzle rotating module |
| US20130019903A1 (en) | 2011-07-19 | 2013-01-24 | Conair Corporation | Cleaning system and method for beverage appliance |
| WO2013032331A1 (en) | 2011-09-02 | 2013-03-07 | Koninklijke Douwe Egberts B.V. | Beverage filter assembly |
| WO2013032330A1 (en) | 2011-09-02 | 2013-03-07 | Koninklijke Douwe Egberts B.V. | Beverage filter cartridge |
| US8985395B2 (en) | 2011-09-09 | 2015-03-24 | Fountain Master Llc | Beverage maker |
| GB2494464B (en) | 2011-09-12 | 2014-12-03 | Kraft Foods R & D Inc | Improvements in and relating to beverage preparation machines |
| KR101145137B1 (en) * | 2011-09-14 | 2012-05-14 | 경북대학교 산학협력단 | Coffee machine |
| US8974849B2 (en) | 2011-10-13 | 2015-03-10 | Aly Gamay | Concentrated shelf stable liquid coffee |
| US10080459B2 (en) | 2011-11-09 | 2018-09-25 | La Vit Technology Llc | Capsule-based system for preparing and dispensing a beverage |
| US8479637B2 (en) | 2011-11-18 | 2013-07-09 | John A. Fedor | Beverage brewing system |
| EP2599414B1 (en) * | 2011-12-01 | 2014-05-28 | Miele & Cie. KG | Drink preparer |
| EP2604124A1 (en) | 2011-12-16 | 2013-06-19 | Nestec S.A. | Soluble non-dairy creamer tablet surface-treated with carbohydrate |
| RU2617792C2 (en) | 2011-12-22 | 2017-04-26 | Нестек С.А. | Composition for preparing homemade frozen confectionery products |
| US8911811B2 (en) | 2011-12-27 | 2014-12-16 | Whirlpool Corporation | Method of operating a coffee maker |
| US20130174743A1 (en) | 2012-01-06 | 2013-07-11 | B/E Aerospace, Inc. | Aircraft brewing apparatus |
| RU2014133147A (en) | 2012-01-13 | 2016-03-10 | Нестек С.А. | DRINKING MACHINE HAVING A REMOVABLE MODULE |
| US8739735B2 (en) | 2012-01-16 | 2014-06-03 | Nestec S.A. | Compositions useful as animal litter |
| WO2013108185A1 (en) | 2012-01-17 | 2013-07-25 | Koninklijke Philips N.V. | Adjustable dispensing nozzle |
| HUE031109T2 (en) | 2012-01-25 | 2017-06-28 | Qbo Coffee Gmbh | Brewing module |
| CA2788043A1 (en) | 2012-02-01 | 2013-08-01 | Kienna Coffee Usa, Inc. | Pod adapter for use with k-cup tm beverage brewer |
| US10849334B2 (en) | 2012-02-01 | 2020-12-01 | Koninklijke Douwe Egberts B.V. | Dairy mineral-fortified liquid dairy products and methods for making the dairy mineral-fortified liquid dairy products |
| GB2499005B (en) | 2012-02-02 | 2014-06-25 | Kraft Foods R & D Inc | Improvements in or relating to beverage preparation machines |
| GB2499201B (en) | 2012-02-07 | 2014-07-02 | Kraft Foods R & D Inc | A beverage preparation system, a coded insert and methods of use thereof |
| US9444260B2 (en) | 2012-02-07 | 2016-09-13 | Newco Enterprises, Inc. | Energy management system and method for controlling high current draws from variable current devices commonly connectable to an electrical circuit |
| US20130213240A1 (en) | 2012-02-17 | 2013-08-22 | Espressi, Inc. | Portable brewing device |
| US20130233177A1 (en) | 2012-02-22 | 2013-09-12 | David Lambert | Single Cup Coffee and Tea Brewing Mug |
| FR2987352B1 (en) | 2012-02-23 | 2015-05-15 | Francoise Moreau | DISPENSING DEVICE MIXER |
| US8986763B2 (en) | 2012-02-27 | 2015-03-24 | Rialto Coffee Company Ltd. | Optimal extraction rate coffee capsule with effective seal for diverse group heads |
| EP2633789A1 (en) | 2012-02-28 | 2013-09-04 | Nestec S.A. | Beverage preparation machine with drop management |
| US10028612B2 (en) | 2012-02-28 | 2018-07-24 | Nestec S.A. | Cover for an ingredient inlet with moisture management |
| CA2865851C (en) | 2012-02-29 | 2020-03-24 | Nestec S.A. | Container holder with filtration unit for use in a nutritional preparation machine |
| US20130233952A1 (en) | 2012-03-08 | 2013-09-12 | Hamilton Beach Brands, Inc. | Kitchen Appliance for Processing Foodstuff and Method of Operating Same |
| US9161654B2 (en) | 2012-03-09 | 2015-10-20 | Primo Products Llc | Select serving and flavored sparkling beverage maker system |
| US9795245B2 (en) | 2012-03-14 | 2017-10-24 | Hamilton Beach Brands, Inc. | Kitchen appliance for preparing a beverage and method of operating same |
| USD690150S1 (en) | 2012-03-14 | 2013-09-24 | Societe Des Produits Nestle S.A. | Coffee machine |
| SG11201405390VA (en) | 2012-03-16 | 2014-10-30 | Starbucks Corp Dba Starbucks Coffee Company | Dynamic graphical display for a beverage dispensing system |
| EP2638833A1 (en) | 2012-03-16 | 2013-09-18 | Nestec S.A. | A beverage preparation machine with cleanable brewing head |
| GB201205650D0 (en) | 2012-03-29 | 2012-05-16 | Kraft Foods Inc | Resealable package, method for producing the resealable package and apparatus for producing the resealable package |
| WO2013149842A1 (en) | 2012-04-04 | 2013-10-10 | Amcor Flexibles Denmark A/S | System for admixture of a material in powder or liquid form |
| CA2870385A1 (en) | 2012-04-24 | 2013-10-31 | Nestec S.A. | A capsule holder for a beverage preparation machine |
| US9149147B2 (en) | 2012-04-25 | 2015-10-06 | Nestec S.A. | Method for the preparation of a beverage by centrifugation using a container |
| EP2840942B1 (en) | 2012-04-25 | 2016-04-13 | Nestec S.A. | Capsule for the preparation of a beverage by centrifugation |
| US20130290210A1 (en) | 2012-04-27 | 2013-10-31 | Furstperson, Inc. | System and method for automating pre-employment assessment |
| CA2870398A1 (en) | 2012-04-27 | 2013-10-31 | Nestec S.A. | Methods for increasing swallowing efficacy |
| JP6348485B2 (en) | 2012-04-30 | 2018-06-27 | ネステク ソシエテ アノニム | Container with improved pressure resistance |
| EP2846665A4 (en) | 2012-05-06 | 2016-01-27 | Bruce D Burrows | Coffee brewer apparatuses and methods for brewing beverages |
| EP2662314A1 (en) | 2012-05-07 | 2013-11-13 | Nestec S.A. | An ingredient capsule for beverage preparation |
| EP2662316A1 (en) | 2012-05-07 | 2013-11-13 | Nestec S.A. | An ingredient capsule for beverage preparation |
| EP2662315A1 (en) | 2012-05-07 | 2013-11-13 | Nestec S.A. | An ingredient capsule for beverage preparation |
| US11013248B2 (en) | 2012-05-25 | 2021-05-25 | Kraft Foods Group Brands Llc | Shelf stable, concentrated, liquid flavorings and methods of preparing beverages with the concentrated liquid flavorings |
| CN104349700B (en) | 2012-05-25 | 2017-10-31 | 雀巢产品技术援助有限公司 | Implement the cold drink dispenser of thermoelectric-cooled |
| USD696888S1 (en) | 2012-05-29 | 2014-01-07 | Societe Des Produits Nestle S.A. | Coffee machines |
| AU2013276435A1 (en) | 2012-06-15 | 2014-12-11 | Nestec S.A. | Beverage machine with vibration inhibitor |
| KR102075814B1 (en) | 2012-06-22 | 2020-02-10 | 터치 커피 & 베버리지스, 엘엘씨. | Beverage brewing system |
| EA027168B9 (en) | 2012-07-06 | 2018-02-28 | Юнилевер Н.В. | Capsule recognition system |
| US20140013958A1 (en) | 2012-07-12 | 2014-01-16 | Select Brands, Inc. | Hybrid coffee maker with multiple brewing modes |
| CN104507828B (en) | 2012-07-24 | 2017-09-22 | 雀巢产品技术援助有限公司 | The capsule used for food draft machine |
| US20140040830A1 (en) | 2012-08-02 | 2014-02-06 | Bsh Home Appliances Corporation | User interface - status bar |
| WO2014028372A1 (en) | 2012-08-14 | 2014-02-20 | Stults James Tanner | Method and device for enhancing memory |
| AU2013305189A1 (en) | 2012-08-22 | 2015-03-05 | Nestec S.A. | Capsule assemblies with data storage and communication means |
| EP2888183B1 (en) | 2012-08-24 | 2017-04-26 | Nestec S.A. | A capsule for use with a food preparation machine |
| CA2881194C (en) | 2012-08-24 | 2020-06-23 | Nestec S.A. | A capsule for use in a food preparation machine |
| US9730546B2 (en) | 2012-08-24 | 2017-08-15 | Guangdong Xinbao Electrical Appliances Holdings Co., Ltd. | Capsule coffee machine |
| JP2015530141A (en) | 2012-09-05 | 2015-10-15 | ネステク ソシエテ アノニム | Food preparation machine with safety function |
| BR112015004752A2 (en) | 2012-09-07 | 2017-07-04 | Nestec Sa | capsule storage |
| AU2013200893B2 (en) | 2012-09-14 | 2014-05-22 | Madura Tea Estates | Woven mesh and uses |
| US20140076167A1 (en) | 2012-09-15 | 2014-03-20 | Deepak Boggavarapu | Coffee preparation system |
| WO2014043652A1 (en) | 2012-09-15 | 2014-03-20 | Deepak Boggavarapu | Systems and methods for coffee preparation |
| DE102012216747A1 (en) | 2012-09-19 | 2014-03-20 | Robert Bosch Gmbh | Method and device for determining at least one predetermined movement of at least part of a body of a living being |
| WO2014063103A1 (en) | 2012-10-18 | 2014-04-24 | Imi Cornelius, Inc. | Apparatus for carbonating beverages |
| US9289041B2 (en) | 2012-10-25 | 2016-03-22 | Francis M Brown | Portable modular cooking enabled travel bag |
| US20140120217A1 (en) | 2012-10-26 | 2014-05-01 | Printpack Illinois, Inc. | Container With Improved Puncture Design |
| US20140120218A1 (en) | 2012-10-26 | 2014-05-01 | Printpack Illinois, Inc. | Container With Improved Puncture Design |
| US9687106B2 (en) | 2012-11-01 | 2017-06-27 | The Richards Corporation | Beverage makers with interchangeable components |
| US20140127364A1 (en) | 2012-11-07 | 2014-05-08 | 2266170 Ontario Inc. | Beverage Capsule With Moldable Filter |
| CA2833096C (en) | 2012-11-12 | 2016-05-31 | 2266170 Ontario Inc. | Beverage capsule and process and system for making same |
| TWI536943B (en) * | 2012-11-27 | 2016-06-11 | Yun Cheng Huang | Sprinkler water drip filter coffee machine |
| US20140175125A1 (en) | 2012-12-19 | 2014-06-26 | Michael John Breault | Beverage dispenser and related methods |
| CL2013001516S1 (en) | 2012-12-21 | 2014-09-05 | Nestle Sa | Coffee machine. |
| WO2014095985A1 (en) | 2012-12-21 | 2014-06-26 | Nestec S.A. | Beverage production system |
| CN107364653B (en) * | 2012-12-27 | 2019-06-04 | 萨龙股份公司 | pods for beverages |
| US9058024B2 (en) | 2013-01-07 | 2015-06-16 | Bsh Home Appliances Corporation | User interface—oven timer |
| US20140201688A1 (en) | 2013-01-17 | 2014-07-17 | Bsh Home Appliances Corporation | User interface - gestural touch |
| US9961721B2 (en) | 2013-01-17 | 2018-05-01 | Bsh Home Appliances Corporation | User interface for oven: info mode |
| US9554689B2 (en) | 2013-01-17 | 2017-01-31 | Bsh Home Appliances Corporation | User interface—demo mode |
| US9332876B2 (en) | 2013-01-30 | 2016-05-10 | Hamilton Beach Brands, Inc. | Kitchen appliance for preparing a beverage and method of operating same |
| US20140208952A1 (en) | 2013-01-30 | 2014-07-31 | Hamilton Beach Brands, Inc. | Kitchen Appliance for Preparing a Beverage and Method of Operating Same |
| US20140217211A1 (en) | 2013-02-04 | 2014-08-07 | Hamilton Beach Brands, Inc. | Kitchan Appliance With Quiet Shield and Method of Operating Same |
| US9192260B2 (en) | 2013-02-23 | 2015-11-24 | Dov Z Glucksman | Apparatus and method for infusing hot beverages |
| US20140245893A1 (en) | 2013-03-02 | 2014-09-04 | Robert Bao Vu | Methods, apparatus and products for grinding brewable materials into a filter cartridge |
| US9486104B2 (en) | 2013-03-05 | 2016-11-08 | B/E Aerospace, Inc. | Multi-purpose coffee maker pod holder |
| US9113742B2 (en) | 2013-03-06 | 2015-08-25 | Sunbeam Products, Inc. | Beverage brewing platform |
| US10470604B2 (en) | 2013-03-12 | 2019-11-12 | Keurig Green Mountain, Inc. | Delayed fill of beverage machine heater tank |
| US8863987B2 (en) | 2013-03-12 | 2014-10-21 | Keurig Green Mountain, Inc. | Beverage apparatus waste bin level detection |
| US9717366B2 (en) | 2013-03-12 | 2017-08-01 | Keurig Green Mountain, Inc. | Beverage forming station door for beverage machine |
| DE102013204226A1 (en) | 2013-03-12 | 2014-10-02 | Robert Bosch Gmbh | Arrester for an electrochemical energy storage |
| US9783361B2 (en) | 2013-03-14 | 2017-10-10 | Starbucks Corporation | Stretchable beverage cartridges and methods |
| US9557222B2 (en) | 2013-03-15 | 2017-01-31 | Robert Bosch Gmbh | Portable device with temperature sensing |
| US20140370181A1 (en) | 2013-03-15 | 2014-12-18 | The Folger Coffee Company | Coffee composition for use with a beverage unit and methods of using the same |
| US8906436B2 (en) | 2013-03-15 | 2014-12-09 | Ptc-Innovations, Llc | Single serve beverage additive cartridge |
| US20140260999A1 (en) | 2013-03-15 | 2014-09-18 | Advanced Services | Beverage vending system |
| AU2014238140B2 (en) | 2013-03-15 | 2017-07-20 | Starbucks Corporation D/B/A Starbucks Coffee Company | Enhanced extracts of food and beverage components |
| US20140287116A1 (en) | 2013-03-25 | 2014-09-25 | James E. Mack | Single-serve container brewer and coffeemaker |
| WO2014155249A1 (en) | 2013-03-26 | 2014-10-02 | Nestec S.A. | Methods for enhancing muscle protein synthesis following concurrent training |
| TWI586302B (en) | 2013-04-01 | 2017-06-11 | 賈碩頎 | Beverage filtering cartridge |
| WO2014161089A1 (en) | 2013-04-03 | 2014-10-09 | 2266170 Ontario Inc. | Capsule machine and components |
| GB2526735A (en) | 2013-04-04 | 2015-12-02 | Cornelius Inc | Seal and anti foam device |
| US9657155B2 (en) | 2013-04-12 | 2017-05-23 | Printpack Illinois, Inc. | Containers and materials with improved punctureability |
| US20140318378A1 (en) | 2013-04-26 | 2014-10-30 | Sunbeam Products, Inc. | Content cartridge |
| AU350576S (en) | 2013-05-02 | 2013-09-03 | Nestle Sa | A coffee machine |
| JP2014239871A (en) | 2013-05-07 | 2014-12-25 | 安東 秀夫 | Biological activity detection method, biological activity measuring apparatus, biological activity detection signal transfer method, and providing method of service using biological activity information |
| US8960489B2 (en) | 2013-05-08 | 2015-02-24 | GCup Technology Corp. | Biodegradable and compostable single-serve beverage ingredient package |
| US20140342058A1 (en) | 2013-05-14 | 2014-11-20 | Adel Wahhas | Paper based single cup brewing |
| US20140345473A1 (en) | 2013-05-22 | 2014-11-27 | Kenneth Buck Albritton | Self fill disposable coffee pod |
| US9375114B2 (en) | 2013-05-22 | 2016-06-28 | Sunbeam Products, Inc. | Hot beverage maker with cleaning apparatus and related method |
| CA2912723C (en) | 2013-05-23 | 2017-02-07 | 2266170 Ontario Inc. | Capsule housing |
| WO2014197480A2 (en) | 2013-06-03 | 2014-12-11 | Starbucks Corporation D/B/A Starbucks Coffee Company | Apparatus and method for brewing a beverage |
| US9210948B2 (en) | 2013-07-19 | 2015-12-15 | Brandeis University | Par-baked and milled coffee beans for use in foods, beverages and dietary supplements |
| USD718565S1 (en) | 2013-08-06 | 2014-12-02 | Conair Corporation | Coffee machine |
| US20150047509A1 (en) | 2013-08-15 | 2015-02-19 | 2266170 Ontario Inc. | Capsule Identification System |
| DE102013109212B4 (en) | 2013-08-26 | 2019-07-25 | Infineon Technologies Ag | RFID device, RFID reader, portion hot drink machine and system |
| CN203749211U (en) | 2013-08-30 | 2014-08-06 | 漳州灿坤实业有限公司 | Automatic bag dropping mechanism for capsule coffee machine |
| CN203609280U (en) | 2013-08-30 | 2014-05-28 | 漳州灿坤实业有限公司 | Automatic puncture mechanism of capsule coffee machine |
| US20150079237A1 (en) | 2013-09-14 | 2015-03-19 | Aly Gamay | System for preparing instant food and methods of making thereof |
| US9320387B2 (en) | 2013-09-30 | 2016-04-26 | Lam Research Corporation | Sulfur doped carbon hard masks |
| US20150099042A1 (en) | 2013-10-04 | 2015-04-09 | Yisroel Koenig | Coffee Capsule with Diffuser for Single Serve Brewer |
| CN203468345U (en) | 2013-10-14 | 2014-03-12 | 漳州灿坤实业有限公司 | Structure of bag exiting device of capsule coffee machine |
| CN203468348U (en) | 2013-10-14 | 2014-03-12 | 漳州灿坤实业有限公司 | Switch device and capsule coffee machine using same |
| EP3062664A4 (en) | 2013-10-31 | 2016-12-14 | Courtesy Products L L C | Brew basket and filter pack for electric coffee brewing machine |
| US20150129039A1 (en) | 2013-11-12 | 2015-05-14 | Hamilton Beach Brands, Inc. | Beverage Maker with Capacitance Fluid Level Sensor |
| US20150135967A1 (en) | 2013-11-21 | 2015-05-21 | Plitek, L.L.C. | Single-Serve Cartridge with Pressure Relief Valve |
| US9533783B2 (en) | 2013-12-06 | 2017-01-03 | David J. Talarico | Custom-content beverage cartridge manufacturing and vending machine |
| US9278801B2 (en) | 2013-12-18 | 2016-03-08 | Robert Gruder | Beverage mixing cartridge and method of using same |
| US9596956B2 (en) * | 2013-12-18 | 2017-03-21 | Invergo, Inc. | Apparatus for and method of making coffee |
| US9743796B2 (en) | 2013-12-31 | 2017-08-29 | Brett C. Richardson | Portable coffee brewing device |
| US10136754B2 (en) | 2014-01-17 | 2018-11-27 | Keurig Green Mountain, Inc. | Beverage machine cartridge holder |
| US9474406B2 (en) | 2014-01-17 | 2016-10-25 | Keurig Green Mountain, Inc. | Apparatus with beverage cartridge holder having movable outlet |
| US9295357B2 (en) | 2014-01-17 | 2016-03-29 | Keurig Green Mountain, Inc. | Apparatus for cup and carafe beverage production |
| US9173519B2 (en) | 2014-01-17 | 2015-11-03 | Keurig Green Mountain, Inc. | Method and apparatus for beverage carafe detection |
| EP2898801B1 (en) | 2014-01-24 | 2017-01-11 | Spectrum Brands, Inc. | Apparatus and method for brewing beverages |
| US20150223635A1 (en) | 2014-02-11 | 2015-08-13 | Hamilton Beach Brands, Inc. | Computer Controlled Coffeemaker |
| KR101468906B1 (en) * | 2014-04-15 | 2014-12-05 | 최선호 | Auto Coffee Drip Apparatus |
| US10274072B2 (en) | 2014-08-05 | 2019-04-30 | RB Distribution, Inc. | Integrated wheel end coupler |
-
2015
- 2015-07-27 US US14/810,448 patent/US9307860B2/en active Active
- 2015-07-27 US US14/810,445 patent/US20150327718A1/en not_active Abandoned
- 2015-07-27 US US14/810,429 patent/US10045654B2/en active Active
- 2015-08-13 US US15/516,893 patent/US20170295989A1/en not_active Abandoned
-
2016
- 2016-02-29 US US15/056,131 patent/US20160174755A1/en not_active Abandoned
-
2018
- 2018-06-29 US US16/024,453 patent/US10881241B2/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5472719A (en) * | 1990-10-31 | 1995-12-05 | Coffea S.A. | Apparatus for the preparation of an edible liquid |
| US20040244599A1 (en) * | 2003-06-05 | 2004-12-09 | Wei Kun-Lian | Multi-function coffee maker and use thereof |
| US20040250686A1 (en) * | 2003-06-13 | 2004-12-16 | Robert Hale | Beverage dispensing machine including cartridge ejector assembly |
| US20060225575A1 (en) * | 2003-08-25 | 2006-10-12 | Jean-Paul Denisart | Method and device for preparation of a drink from capsules containing a substance |
| US20070144355A1 (en) * | 2003-08-25 | 2007-06-28 | Jean-Paul Denisart | Methods and device for the preparation of a food product |
| US7650831B2 (en) * | 2003-08-25 | 2010-01-26 | Nestec S.A. | Method and device for preparation of a drink from capsules containing a substance |
| US20080000358A1 (en) * | 2004-11-17 | 2008-01-03 | Bunn-O-Matic Corporation | Brewer Having a Programmable Temperature Component |
| US20110308396A1 (en) * | 2009-03-23 | 2011-12-22 | Peter Mori | Pump mount in a beverage preparation machine |
| US20120183659A1 (en) * | 2010-12-28 | 2012-07-19 | Starbucks Corporation D/B/A Starbucks Coffee Company | Apparatus for brewing a beverage and related method |
| US20130125759A1 (en) * | 2011-11-17 | 2013-05-23 | Dong Sheng International Technology Company Limited | Coffee maker enabling automated drip brewing |
| US20140272047A1 (en) * | 2013-03-14 | 2014-09-18 | Spectrum Brands, Inc. | Apparatus and method for brewing beverages |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11503942B1 (en) | 2018-09-25 | 2022-11-22 | Havana Savannah, Llc | Magnetically driven beverage brewing system and method |
| US11793347B2 (en) | 2018-09-25 | 2023-10-24 | Havana Savannah, Llc | Magnetically driven beverage brewing system and method |
| US11457765B1 (en) | 2022-05-10 | 2022-10-04 | Havana Savannah, Llc | Magnetically driven beverage brewing and cleaning system |
| US11812888B1 (en) | 2022-05-10 | 2023-11-14 | Havana Savannah, Llc | Magnetically driven beverage brewing and cleaning system |
| US12290204B2 (en) | 2022-05-10 | 2025-05-06 | Havana Savannah, Llc | Magnetically driven beverage brewing and cleaning system |
| USD1023658S1 (en) | 2022-06-29 | 2024-04-23 | Havana Savannah, Llc | Coffee brewing system |
| USD1095143S1 (en) | 2022-06-29 | 2025-09-30 | Havana Savannah, Llc | Snorkel tube |
Also Published As
| Publication number | Publication date |
|---|---|
| US20180303276A1 (en) | 2018-10-25 |
| US10045654B2 (en) | 2018-08-14 |
| US20170295989A1 (en) | 2017-10-19 |
| US20150327719A1 (en) | 2015-11-19 |
| US9307860B2 (en) | 2016-04-12 |
| US20150327718A1 (en) | 2015-11-19 |
| US10881241B2 (en) | 2021-01-05 |
| US20150327717A1 (en) | 2015-11-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9307860B2 (en) | Processor control of solute extraction system | |
| CA2839293C (en) | Beverage formation apparatus and method using vibratory energy | |
| CN101677706B (en) | Method and system for preparing beverage or liquid food using centrifugal force of brewing | |
| WO2018029538A2 (en) | Beverage machine with strength control | |
| CN108430889B (en) | Bag for preparing food or beverage products | |
| CN102740745A (en) | System, set of capsules and method for preparing a beverage by centrifugation | |
| WO2018156361A1 (en) | Beverage maker | |
| JP7617921B2 (en) | Beverage Preparation Machine | |
| CN108602616B (en) | Bag for preparing food or beverage products | |
| US12156609B2 (en) | Method and apparatus for adjusting brew parameters during dispensing | |
| KR20220108121A (en) | Fluid handling device for beverage making machine | |
| EP3185730B1 (en) | Improvements in machines for the preparation of beverage and liquid food products | |
| US10646065B2 (en) | Funnel assembly for making powdered beverage | |
| AU2015328659A1 (en) | Moving inlet nozzles in beverage systems | |
| WO2017214062A1 (en) | Beverage maker | |
| CN113226946B (en) | Semi-rigid pouches for beverage preparation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: REMINGTON DESIGNS, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURROWS, BRUCE D;REEL/FRAME:039497/0321 Effective date: 20150925 |
|
| AS | Assignment |
Owner name: MALETIS, CHRIS, OREGON Free format text: SECURITY INTEREST;ASSIGNOR:REMINGTON DESIGNS, LLC;REEL/FRAME:039724/0539 Effective date: 20160721 Owner name: MALETIS, ED, OREGON Free format text: SECURITY INTEREST;ASSIGNOR:REMINGTON DESIGNS, LLC;REEL/FRAME:039724/0539 Effective date: 20160721 |
|
| AS | Assignment |
Owner name: MALETIS, CHRIS, OREGON Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER D734972 PREVIOUSLY RECORDED ON REEL 039724 FRAME 0539. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:REMINGTON DESIGNS, LLC;REEL/FRAME:043790/0178 Effective date: 20160721 Owner name: MALETIS, ED, OREGON Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBER D734972 PREVIOUSLY RECORDED ON REEL 039724 FRAME 0539. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:REMINGTON DESIGNS, LLC;REEL/FRAME:043790/0178 Effective date: 20160721 |
|
| AS | Assignment |
Owner name: HAGEN, DAVID, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REMINGTON DESIGNS, LLC;REEL/FRAME:044256/0059 Effective date: 20170831 |
|
| AS | Assignment |
Owner name: COFFEE SOLUTIONS, LLC, OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAGEN, DAVID;REEL/FRAME:044207/0600 Effective date: 20170901 |
|
| AS | Assignment |
Owner name: MALETIS, ED, OREGON Free format text: NOTICE OF AMENDED AND RESTATED IP SECURITY AGREEMENT;ASSIGNOR:COFFEE SOLUTIONS, LLC;REEL/FRAME:044996/0938 Effective date: 20171018 Owner name: MALETIS, CHRIS, OREGON Free format text: NOTICE OF AMENDED AND RESTATED IP SECURITY AGREEMENT;ASSIGNOR:COFFEE SOLUTIONS, LLC;REEL/FRAME:044996/0938 Effective date: 20171018 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |