US20160049587A1 - Deposition apparatus and method of manufacturing organic light-emitting display apparatus - Google Patents
Deposition apparatus and method of manufacturing organic light-emitting display apparatus Download PDFInfo
- Publication number
- US20160049587A1 US20160049587A1 US14/596,653 US201514596653A US2016049587A1 US 20160049587 A1 US20160049587 A1 US 20160049587A1 US 201514596653 A US201514596653 A US 201514596653A US 2016049587 A1 US2016049587 A1 US 2016049587A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- deposition
- mask
- donor
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008021 deposition Effects 0.000 title claims abstract description 527
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000000151 deposition Methods 0.000 claims abstract description 571
- 239000000758 substrate Substances 0.000 claims abstract description 429
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims description 54
- 239000003086 colorant Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 225
- 239000010408 film Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- -1 region Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 5
- 239000012636 effector Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/18—Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet
-
- H01L51/0013—
-
- H01L51/56—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H01L2227/323—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
Definitions
- One or more embodiments of the present invention relate to a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, and more particularly, to a deposition apparatus and a method of manufacturing an OLED apparatus, wherein manufacturing processes and manufacturing costs of the OLED apparatus may be reduced.
- OLED organic light-emitting display
- an organic light-emitting display (OLED) apparatus is a display apparatus that includes organic light-emitting device in a display region.
- the organic light-emitting device includes a pixel electrode, a counter electrode opposing the pixel electrode, and an intermediate layer disposed between the pixel electrode and the counter electrode and including an emission layer. While manufacturing the OLED apparatus, any method may be used to form the emission layer, such as a deposition method or an inkjet printing method.
- One or more embodiments of the present invention include a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, which are capable of reducing manufacturing time and manufacturing costs of the OLED apparatus.
- OLED organic light-emitting display
- One aspect of the invention provides a method of manufacturing an organic light-emitting display (OLED) apparatus, the method comprising: providing a substrate comprising a first surface facing generally downward and a second surface facing generally upward, wherein a pre-deposited layer is formed over the first surface; turning the substrate over such that a first surface of the substrate faces generally upward; depositing a first deposition material on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces generally downward, thereby forming a first donor layer on the deposition surface of the first donor mask; arranging the first donor mask and the substrate such that the first donor mask is disposed above the substrate while the deposition surface of the first donor mask faces generally downward and the first surface of the substrate faces generally upward; transferring, over the first surface of the substrate, at least part of the first deposition material of the first donor layer, thereby forming a first deposition layer over the first surface of the substrate; and turning the substrate back such that the first surface of the substrate faces generally downward.
- OLED organic light-emitting
- the first donor mask may maintain its orientation that the deposition surface of the first donor mask faces generally downward.
- the first donor mask is not turned over. Once turning the substrate over such that a first surface of the substrate faces generally upward, the substrate is not turned over until turning the substrate back such that the first surface of the substrate faces generally downward.
- the first deposition layer may comprise an array of organic light emitting layer portions.
- Providing the substrate may comprise transmitting a pre-deposition material from a pre-deposition material source located under the substrate toward the first surface of the substrate while the first surface faces generally downward.
- Depositing the first deposition material may comprise transmitting the first deposition material from a first deposition material source located under the first donor mask toward the deposition surface of the first donor mask.
- Transferring may comprise emitting a laser beam or a flash lamp light to a surface of the first donor mask, which is opposite to the deposition surface of the first donor mask, to transfer the at least part of the first deposit material of the first donor layer over the first surface of the substrate.
- the method may further comprise: depositing a second deposition material on a deposition surface of a second donor mask while the deposition surface of the second donor mask faces generally downward, thereby forming a second donor layer on the deposition surface of the second donor mask; arranging the second donor mask and the substrate such that the second donor mask is disposed above the substrate while the deposition surface of the second donor mask faces generally downward and the first surface of the substrate faces generally upward; prior to turning the substrate back such that the first surface of the substrate faces generally downward, transferring, over the first surface of the substrate, at least a part of the second deposition material of the second donor layer, thereby forming a second deposition layer over the first surface of the substrate.
- the second donor mask may maintain its orientation that the deposition surface of the second donor mask faces generally downward.
- the second donor mask is not turned over. Once turning the substrate over such that a first surface of the substrate faces generally upward, the substrate is not turned over until turning the substrate back such that the first surface of the substrate faces generally downward.
- the first deposition layer may comprise a first array of organic light emitting layer portions configured to emit light of a first color, wherein the second deposition layer comprises a second array of organic light emitting layer portions configured to emit light of a second color different from the first color.
- the method may further comprise: depositing a third deposition material on a deposition surface of a third donor mask while the deposition surface of the third donor mask faces generally downward, thereby forming a third donor layer on the deposition surface of the second donor mask; arranging the third donor mask and the substrate such that the third donor mask is disposed above the substrate while the deposition surface of the third donor mask faces generally downward and the first surface of the substrate faces generally upward; and prior to turning the substrate back such that the first surface of the substrate faces generally downward, transferring, over the first surface of the substrate, at least part of the third deposition material of the third donor layer, thereby forming a third deposition layer over the first surface of the substrate.
- the third donor mask maintains its orientation that the deposition surface of the second donor mask faces generally downward.
- the third donor mask is not turned over. Once turning the substrate over such that a first surface of the substrate faces generally upward, the substrate is not turned over until turning the substrate back such that the first surface of the substrate faces generally downward.
- the first deposition layer comprises a first array of organic light emitting layer portions configured to emit light of a first color
- the second deposition layer comprises a second array of organic light emitting layer portions configured to emit light of a second color different from the first color
- the third deposition layer comprises a third array of organic light emitting layer portions configured to emit light of a third color different from the first and second colors.
- a deposition apparatus comprising: a first substrate turning chamber configured to receive a substrate that comprises a first surface and a second surface facing away from the first surface, and further configured to turn the substrate over such that the first surface faces generally upward; a first deposition cluster connected to the first substrate turning chamber to receive the substrate transferred from the first substrate turning chamber, the first deposition cluster comprising: a first mask deposition chamber configured to deposit a first deposition material on a first donor mask such that a first donor layer is formed on the first donor mask, and a first substrate deposition chamber configured to transfer at least part of the first deposition material of the first donor layer over the first surface of the substrate such that a first deposition layer is formed over the first surface; a second deposition cluster connected to the first deposition cluster to receive the substrate transferred from the first deposition cluster, the second deposition cluster comprising: a second mask deposition chamber configured to deposit a second deposition material on a second donor mask such that a second donor layer is formed on the second donor mask, and a second substrate deposition
- a deposition apparatus includes: a first substrate turning chamber; a first deposition cluster that is connected to the first substrate turning chamber and includes a first transfer chamber, a first mask stack connected to the first transfer chamber, a first mask deposition chamber connected to the first transfer chamber, and a first substrate deposition chamber connected to the first transfer chamber; a second deposition cluster that is connected to the first transfer chamber and includes a second transfer chamber, a second mask stack connected to the second transfer chamber, a second mask deposition chamber connected to the second transfer chamber, and a second substrate deposition chamber connected to the second transfer chamber; a third deposition cluster that is connected to the second transfer chamber and includes a third transfer chamber, a third mask stack connected to the third transfer chamber, a third mask deposition chamber connected to the third transfer chamber, and a third substrate deposition chamber connected to the third transfer chamber; and a second substrate turning chamber connected to the third deposition cluster.
- one side may be connected to the first substrate turning chamber and another side may be connected to the first transfer chamber
- in the second substrate deposition chamber one side may be connected to the first transfer chamber and another side may be connected to the second transfer chamber
- in the third substrate deposition chamber one side may be connected to the second transfer chamber and another side may be connected to the third transfer chamber.
- one side may be connected to the first transfer chamber and another side may be connected to the second transfer chamber, in the second substrate deposition chamber, one side may be connected to the second transfer chamber and another side may be connected to the third transfer chamber, and in the third substrate deposition chamber, one side may be connected to the third transfer chamber and another side may be connected to the second substrate turning chamber.
- the first substrate turning chamber may turn a substrate such that a deposition surface of the substrate faces upward
- the second substrate turning chamber may turn the substrate such that the deposition surface of the substrate faces downward.
- the first mask stack, the second mask stack, and the third mask stack may each store a donor mask such that a deposition surface of the donor mask faces downward
- the first mask deposition chamber, the second mask deposition chamber, and the third mask deposition chamber may each deposit a deposition layer on the deposition surface of the donor mask
- the first substrate deposition chamber, the second substrate deposition chamber, and the third substrate deposition chamber may each deposit, on the deposition surface of the substrate, a part of the deposition layer on the deposition surface of the donor mask by locating the donor mask above the substrate.
- Each of the substrate deposition chambers may deposit a pre-set part of the deposition or donor layer on the deposition surface of the substrate by emitting a laser beam or a flash light to a surface of the donor mask, which faces away from the deposition layer.
- the deposition apparatus may further include a first auxiliary layer deposition chamber that is connected to the first substrate turning chamber and deposits a first auxiliary layer on the substrate while the deposition surface of the substrate faces downward, or a first auxiliary layer deposition cluster that includes the first auxiliary layer deposition chamber.
- the deposition apparatus may further include a second auxiliary layer deposition chamber that is connected to the second substrate turning chamber and deposits a second auxiliary layer on the substrate while the deposition surface of the substrate faces downward, or a second auxiliary layer deposition cluster that includes the second auxiliary layer deposition chamber.
- a method of manufacturing an organic light-emitting display (OLED) apparatus includes: turning a substrate such that a deposition surface of the substrate faces upward; depositing a first deposition layer on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward; aligning the first donor mask and the substrate such that the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the first deposition layer on the deposition surface of the first donor mask; and turning the substrate such that the deposition surface of the substrate faces downward.
- the depositing on the deposition surface of the substrate may include emitting a laser beam or a flash lamp light to a surface of the first donor mask, which faces away from the deposition surface of the first donor mask, to deposit a pre-set part of the first deposition layer on the deposition surface of the substrate.
- the method may further include: depositing a second deposition layer on a deposition surface of a second donor mask while the deposition surface of the second donor mask faces downward; aligning the second donor mask and the substrate such that the second donor mask is above the substrate while the second deposition layer faced downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the second deposition layer of the deposition surface of the second donor mask; depositing a third deposition layer on a deposition surface of a third donor mask while the deposition surface of the third donor mask faces downward; aligning the third donor mask and the substrate such that the third donor mask is above the substrate while the third deposition layer faces downward and the deposition surface of the substrate faces upward; and depositing, on the deposition surface of the substrate, a part of the third deposition layer of the deposition surface of the third donor mask, wherein the turning of the substrate such that the deposition surface of the substrate faces downward may be performed after the depositing of the part of the first deposition layer, the depositing of the part
- the method may further include: depositing a first auxiliary layer on the deposition surface of the substrate by using a deposition source located below the substrate while the deposition surface of the substrate faces downward; and depositing a second auxiliary layer on the deposition surface of the substrate by using another deposition source located below the substrate while the deposition surface of the substrate faces downward, wherein the depositing of the first auxiliary layer may be performed before the turning of the substrate such that the deposition surface of the substrate faces upward, and the depositing of the second auxiliary layer may be performed after the turning of the substrate such that the deposition surface of the substrate faces downward.
- FIG. 1 is a plan view schematically illustrating a deposition apparatus according to an embodiment of the present invention
- FIGS. 2 through 5 are cross-sectional views for describing a method of manufacturing an organic light-emitting display (OLED) apparatus, according to an embodiment of the present invention
- FIG. 6 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention.
- FIG. 7 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention.
- the x-axis, the y-axis and the z-axis are not limited to three axes of the rectangular coordinate system, and may be interpreted in a broader sense.
- the x-axis, the y-axis, and the z-axis may be perpendicular to one another, or may represent different directions that are not perpendicular to one another.
- FIG. 1 is a plan view schematically illustrating a deposition apparatus according to an embodiment of the present invention.
- the deposition apparatus according to the current embodiment includes a first deposition cluster 100 , a second deposition cluster 200 , a third deposition cluster 300 , a first substrate turning chamber 410 , and a second substrate turning chamber 420 .
- the deposition apparatus is an apparatus that deposits a layer that is patterned and formed without being integrally formed with respect to entire pixels, from among layers disposed between a pixel electrode and a counter electrode of an organic light-emitting display (OLED) apparatus.
- the deposition apparatus may deposit a red light emission layer, a green light emission layer, and a blue light emission layer.
- pre-deposited layers for example, a pixel electrode 21 , a pixel-defining film 18 , etc. may be formed on the substrate 10 , and a layer that is integrally formed with respect to entire pixels may be formed on the pixel electrode 21 and the pixel-defining film 18 .
- a thin-film transistor TFT or a capacitor Cap is formed on the substrate 10 , and other components, such as a buffer layer 11 that prevents impurities from penetrating into a semiconductor layer of the thin-film transistor TFT, a gate insulating film 13 that insulates the semiconductor layer and a gate electrode of the thin-film transistor TFT, an interlayer insulating film 15 that insulates the gate electrode and source and drain electrodes of the thin-film transistor TFT, and a planarization film 17 that covers the thin-film transistor TFT and has a roughly flat top surface, may be formed on the substrate 10 .
- a buffer layer 11 that prevents impurities from penetrating into a semiconductor layer of the thin-film transistor TFT
- a gate insulating film 13 that insulates the semiconductor layer and a gate electrode of the thin-film transistor TFT
- an interlayer insulating film 15 that insulates the gate electrode and source and drain electrodes of the thin-film transistor TFT
- a layer integrally formed with respect to entire pixels before an emission layer is formed may be referred to as a first auxiliary layer
- the first auxiliary layer may be a hole injection layer (HIL) and/or a hole transport layer (HTL).
- HIL hole injection layer
- HTL hole transport layer
- the first auxiliary layer or a pre-deposited layer may be formed via a deposition method, and the first auxiliary layer may be deposited while a deposition source discharging a material for forming the first auxiliary layer is below the substrate 10 and a deposition surface of the substrate 10 faces the deposition source.
- the pixel electrode 21 , etc. of the substrate 10 face downward while the first auxiliary layer is formed on the substrate 10 .
- the first substrate turning chamber 410 turns the substrate 10 such that the pixel electrode 21 , etc. face upward as shown in FIG. 2 .
- the first substrate turning chamber 410 turns the substrate 10 such that the deposition surface of the substrate 10 faces upward in the first deposition cluster 100 .
- an inner region of the first substrate turning chamber 410 may be in an atmospheric state or a state having a pre-set vacuum level. In any cases, the inner region of the first substrate turning chamber 410 may be blocked from an outer region of the first substrate turning chamber 410 through a gate 410 a of the first substrate turning chamber 410 .
- any device for fixing the substrate 10 may be used to turn the substrate 10 , such as a vacuum pad or an electrostatic chuck, or the substrate 10 may be fixed on a susceptor by using a clamp.
- the first deposition cluster 100 includes a first mask stack 120 , a plurality of first mask deposition chambers 131 , 132 , 133 , 134 , a first substrate deposition chamber 140 , and a first transfer chamber 110 located approximately at the center of the first deposition cluster 110 and connected to the first mask stack 120 , the plurality of first mask deposition chambers 131 , 132 , 133 , 134 , and the first substrate deposition chamber 140 .
- the first transfer chamber 110 may include a first transfer robot 112 having an end-effector.
- the first transfer robot 112 may discharge a first donor mask accommodated in the first mask stack 120 or put the first donor mask into the first mask stack 120 , put or discharge the first donor mask into or from the plurality of first mask deposition chambers 131 , 132 , 133 , 134 and the first substrate deposition chamber 140 , and discharge the substrate 10 from the first substrate deposition chamber 140 .
- the first mask stack 120 may accommodate a plurality of the first donor masks.
- the first donor mask accommodated in the first mask stack 120 may have a structure shown in FIG. 3 .
- a first donor mask 30 may include a base substrate 310 , a reflection layer 32 , and a photothermal converting layer 33 .
- the base substrate 31 forms an overall outer shape of the first donor mask 30 , and may be formed of glass so as to transmit light to the photothermal converting layer 33 .
- the base substrate 31 may be formed of polyester such as polyethylene terephthalate (PET), polyacryl, polyepoxy, polyethylene and/or polystyrene.
- the photothermal converting layer 33 is a layer that absorbs a flash lamp light or a laser beam and converts at least a part of energy of the absorbed flash lamp light or laser beam to heat.
- the photothermal converting layer 33 may be a film formed of a metal such as aluminum or silver, which is capable of absorbing a light in an infrared-visible ray region, an oxide or sulfide film of the metal, or a polymer organic film containing carbon black or graphite.
- the reflection layer 32 may be disposed between the base substrate 31 and the photothermal converting layer 33 .
- the reflection layer 32 includes a plurality of through holes h. Accordingly, the reflection layer 32 has a transmission areas TA corresponding to the through holes h, and block areas BA corresponding to areas other than the through holes h.
- the reflection layer 32 may be formed on the base substrate 31 to have the through holes h by using a mask or by forming a layer having a uniform thickness and then removing some of the layer.
- the reflection layer 32 may be formed of titanium (Ti), aluminum (Al), copper (Cu), silver (Ag), molybdenum (Mo), or an alloy thereof, or chromium nitride (CrN) or TiAlCu.
- the reflection layer 32 may be formed of titanium oxide (TiOx), silicon oxide (SiOx), or silicon carbon nitride (SiCN).
- the first donor mask 30 may be accommodated in the first mask stack 120 while the base substrate 31 is located at the top and the photothermal converting layer 33 is located at the bottom, and while a deposition surface of the first donor mask 30 faces downward.
- the first donor mask 30 accommodated in the first mask stack 120 may be discharged by the first transfer robot 112 and put into any one of the first mask deposition chambers 131 , 132 , 133 , 134 .
- a gate 120 a may exist between the first mask stack 120 and the first transfer chamber 110 .
- the first mask stack 120 may be in an atmospheric state and the gate 120 a may be opened such that the first transfer chamber 110 may also be in a similar state as the first mask stack 120 .
- the gate 120 a may be closed and an inner region of the first transfer chamber 110 may be in a state having a pre-set vacuum level.
- the first transfer robot 112 puts the first donor mask 30 discharged from the first mask stack 120 into any one of the first mask deposition chambers 131 , 132 , 133 , 134 .
- the first transfer robot 112 may put the first donor mask 30 into the first mask deposition chamber 133 .
- the first donor mask 30 is not turned over.
- the base substrate 31 is located at the top and the photothermal converting layer 33 is located at the bottom.
- the first deposition cluster does not include any device configured to turn the first donor mask over.
- the first mask deposition chambers 131 , 132 , 133 , 134 may deposit a first deposition material to form a deposition layer or a donor layer 34 of FIG. 3 on the deposition surface of the first donor mask 30 , for example, a surface of the photothermal converting layer 33 , which is opposite to a surface facing the base substrate 310 .
- the deposition layer 34 may be formed on the deposition surface of the first donor mask 30 by using a deposition source located below the first donor mask 30 while the deposition surface of the first donor mask 30 faces downward.
- the first mask deposition chambers 131 , 132 , 133 , 134 may form the deposition layer 34 on the first donor mask 30 while inner regions of the first mask deposition chambers 131 , 132 , 133 , 134 are in a state having a pre-set vacuum level. At this time, the deposition layer 34 may be a red light emission layer.
- a gate 133 a may be opened and the first donor mask 30 may be put into the first mask deposition chamber 133 .
- the inner region of the first transfer chamber 110 maintains the pre-set vacuum level before the gate 133 a is opened, the inner region of the first mask deposition chamber 133 almost maintains the pre-set vacuum level even when the gate 133 a opens.
- the first donor mask 30 is again discharged into the first transfer chamber 110 by the first transfer robot 112 .
- the gate 133 a is opened and then closed.
- Other gates 131 a , 132 a , and 134 a may have the similar or same function as the gate 133 a.
- One side of the first substrate deposition chamber 140 in a ⁇ x direction is connected to the first substrate turning chamber 410 and another side of the first substrate deposition chamber 140 in a +x direction is connected to the first transfer chamber 110 .
- the first donor mask 30 in the first transfer chamber 110 may be put into the first substrate deposition chamber 140 by the first transfer robot 112 .
- a gate 140 a may be opened and closed.
- the substrate 10 may be turned by the first substrate turning chamber 410 such that the deposition surface of the substrate 10 faces upward is put into the first substrate deposition chamber 140 .
- a gate 140 b may be opened and closed.
- the substrate 10 is not put into the first substrate deposition chamber 140 by the first transfer robot 112 , but by a transfer rail between the first substrate turning chamber 410 and the first substrate deposition chamber 140 .
- the deposition apparatus does not include any device disposed between the first and second substrate turning chambers 410 and 420 and configured to turn the substrate over.
- the substrate 10 may be put into the first substrate deposition chamber 140 after the first donor mask 30 is put into the first substrate deposition chamber 140 , or the first donor mask 30 may be put into the first substrate deposition chamber 140 after the substrate 10 is put into the first substrate deposition chamber 140 .
- the first donor mask 30 and the substrate 10 may be simultaneously put into the first substrate deposition chamber 140 .
- the first donor mask 30 is above the substrate 10 while the deposition layer 34 of the first donor mask 30 faces downward ( ⁇ z direction) and the deposition surface of the substrate 10 faces upward (+z direction), as shown in FIG. 3 .
- the first substrate deposition chamber 140 mutually aligns the first donor mask 30 and the substrate 10 .
- the substrate 10 and the first donor mask 30 are arranged such that the transmission area TA of the reflection layer 32 of the first donor mask 30 corresponds to a pre-set area of the substrate 10 .
- the substrate 10 and the first donor mask 30 are aligned such that the through hole h of the reflection layer 32 of the first donor mask 30 corresponds to the pixel electrode 21 of a red sub-pixel R.
- the first substrate deposition chamber 140 deposits, on the deposition surface of the substrate 10 , a part of the deposition or donor layer 34 of the first deposition material on the deposition surface of the first donor mask 30 .
- the part of the deposition layer 34 of the first donor mask 30 is deposited or transferred on the substrate 10 by emitting a lamp light or a laser beam to the first donor mask 30 by using a flash lamp or a laser beam generator.
- the lamp light or laser beam is emitted to a surface of the first donor mask 30 , which faces away from the deposition surface of the first donor mask 30 .
- the lamp light or laser beam is mostly blocked by the reflection layer 32 and reaches the photothermal converting layer 33 only through the transmission area TA corresponding to the through hole h of the reflection layer 32 .
- only an area of the deposition layer 34 of the first donor mask 30 which corresponds to the transmission area TA, evaporates, vaporizes, or sublimates, and thus a red light emission layer 22 R is formed only in the pixel electrode 21 of the red sub-pixel R as shown in FIG. 5 .
- the lamp light or laser beam is emitted to the first donor mask 30 while the deposition layer 34 of the first donor mask 30 and the deposition surface of the substrate 10 are very closely disposed to each other.
- the pre-set area of the deposition layer 34 on the first donor mask 30 may be easily deposited on the substrate 10 .
- the first auxiliary layer is deposited on the substrate 10 or the deposition layer 34 is formed on the first donor mask 30 , a patterned layer is not formed but an integral layer is formed with respect to the entire substrate 10 or first donor mask 30 .
- a distance between the deposition source and the deposition surface is too close, it may be difficult to form the first auxiliary layer or the deposition layer 34 in a uniform thickness.
- at least a pre-set distance may be maintained between the deposition source and the deposition surface, and in this case, the first auxiliary layer or the deposition layer 34 may be satisfactorily deposited if the deposition source is below the deposition surface of the substrate 10 .
- the first transfer robot 112 discharges the first donor mask 30 from the first substrate deposition chamber 140 and puts the first donor mask 30 into the first mask stack 120 .
- the first donor mask 30 used as such may be washed in a washing chamber 124 , tested in a test chamber 122 as occasion demands, and then put into the first mask stack 120 again to be re-used.
- the first donor mask 30 may be re-used by, as described above, forming the deposition layer 34 on the first donor mask 30 and then depositing the part of the deposition layer 34 on the substrate 10 .
- the substrate 10 on which the red light emission layer 22 R is deposited may also be discharged from the first substrate deposition chamber 140 to the first transfer chamber 110 by the first transfer robot 112 , and then put into the second deposition cluster 200 .
- the substrate 10 may be put into a second substrate deposition chamber 240 of the second deposition cluster 200 .
- the substrate 10 moves while the deposition surface of the substrate 10 faces upward (+z direction).
- the second deposition cluster 200 includes a second mask stack 220 , a plurality of second mask deposition chambers 231 , 232 , 233 , 234 , the second substrate deposition chamber 240 , and a second transfer chamber 210 that is located approximately at the center of the second deposition cluster 200 and is connected to the second mask stack 220 , the plurality of second mask deposition chambers 231 , 232 , 233 , 234 , and the second substrate deposition chamber 240 .
- the second transfer chamber 210 may include a second transfer robot 212 having an end-effector.
- the second transfer robot 212 may discharge a second donor mask accommodated in the second mask stack 220 or put the second donor mask into the second mask stack 220 , put or discharge the second donor mask into or from the second mask deposition chambers 231 , 232 , 233 , 234 and the second substrate deposition chamber 240 , and discharge the substrate 10 from the second substrate deposition chamber 240 .
- the second mask stack 220 may accommodate a plurality of the second donor masks.
- a structure of the second donor mask accommodated in the second mask stack 220 may be the same and/or similar to that of the first donor mask 30 described above.
- the second donor mask may be accommodated in the second mask stack 220 while a deposition surface of the second donor mask faces downward.
- the second donor mask accommodated in the second mask stack 220 may be discharged by the second transfer robot 212 and put into any one of the second mask deposition chambers 231 , 232 , 233 , 234 .
- a gate 220 a may exist between the second mask stack 220 and the second transfer chamber 210 .
- the second mask stack 220 may be in an atmospheric state and the gate 220 a may be opened such that the second transfer chamber 210 may also be in a similar state as the second mask stack 220 .
- the gate 220 a may be closed and an inner region of the second transfer chamber 210 may be in a state having a pre-set vacuum level.
- the second transfer robot 212 puts the second donor mask discharged from the second mask stack 220 into any one of the second mask deposition chambers 231 , 232 , 233 , 234 .
- the second transfer robot 212 may put the second donor mask into the second mask deposition chamber 233 .
- the second donor mask is not turned.
- a base substrate is located at the top and a photothermal converting layer is located at the bottom.
- the second deposition cluster does not include any device configured to turn the first donor mask over.
- the second mask deposition chambers 231 , 232 , 233 , 234 may deposit a second deposition material to form a deposition layer or a donor layer on the deposition surface of the second donor mask, for example, a surface of the photothermal converting layer, which is opposite to a surface facing the base substrate.
- the deposition layer may be formed on the deposition surface of the second donor mask by using a deposition source located below the second donor mask while the deposition surface of the second donor mask faces downward.
- the second mask deposition chambers 231 , 232 , 233 , 234 may form the deposition layer on the second donor mask while inner regions of the second mask deposition chambers 231 , 232 , 233 , 234 are in a state having a pre-set vacuum level. At this time, the deposition layer may be a green light emission layer.
- a gate 233 a may be opened and the second donor mask may be put into the second mask deposition chamber 233 .
- the inner region of the second transfer chamber 210 maintains the pre-set vacuum level before the gate 233 a is opened, the inner region of the second mask deposition chamber 233 almost maintains the pre-set vacuum level even when the gate 233 a opens.
- the second donor mask is again discharged into the second transfer chamber 210 by the second transfer robot 212 .
- the gate 233 a is opened and then closed.
- Other gates 231 a , 232 a , and 234 a may have the similar or same function as the gate 233 a.
- One side of the second substrate deposition chamber 240 in a ⁇ x direction is connected to the first transfer chamber 110 and another side of the second substrate deposition chamber 240 in a +x direction is connected to the second transfer chamber 210 .
- the second donor mask in the second transfer chamber 210 may be put into the second substrate deposition chamber 240 by the second transfer robot 212 .
- a gate 240 a may be opened and closed.
- the substrate 10 is put into the second substrate deposition chamber 240 while the deposition surface of the substrate 10 faces upward.
- a gate 240 b may be opened and closed.
- the substrate 10 may be put into the second substrate deposition chamber 240 by the first transfer robot 112 .
- the substrate 10 may be put into the second substrate deposition chamber 240 after the second donor mask is put into the second substrate deposition chamber 240 , or the second donor mask may be put into the second substrate deposition chamber 240 after the substrate 10 is put into the second substrate deposition chamber 240 .
- the second donor mask and the substrate 10 may be simultaneously put into the second substrate deposition chamber 240 .
- the second donor mask is above the substrate 10 while the deposition layer of the second donor mask faces downward ( ⁇ z direction) and the deposition surface of the substrate 10 faces upward (+z direction).
- the second substrate deposition chamber 240 mutually aligns the second donor mask and the substrate 10 .
- the substrate 10 and the second donor mask are aligned such that a transmission area of a reflection layer of the second donor mask corresponds to a pre-set area of the substrate 10 . Since the deposition layer of the second donor mask contains a green emission material, the substrate 10 and the second donor mask are aligned such that a through hole of the reflection layer of the second donor mask corresponds to the pixel electrode 21 of a green sub-pixel G.
- the second substrate deposition chamber 240 deposits, on the deposition surface of the substrate 10 , a part of the deposition or donor layer of the second deposition material on the deposition surface of the second donor mask.
- the part of the deposition layer of the second donor mask is transferred to the substrate 10 by emitting a lamp light or a laser beam to the second donor mask by using a flash lamp or a laser beam generator. Since details thereof are the same and/or similar to those described above with respect to depositing the part of the deposition layer 34 of the first donor mask 30 on the substrate 10 , the details thereof are not provided here.
- the second transfer robot 212 discharges the second donor mask from the second substrate deposition chamber 240 and puts the second donor mask into the second mask stack 220 .
- the second donor mask used as such may be washed in a washing chamber 224 , tested in a test chamber 222 as occasion demands, and then put into the second mask stack 220 again to be re-used.
- the second donor mask may be re-used by, as described above, forming the deposition layer on the second donor mask and then depositing the part of the deposition layer on the substrate 10 .
- the substrate 10 on which the green light emission layer is deposited may also be discharged from the second substrate deposition chamber 240 to the second transfer chamber 210 by the second transfer robot 212 , and then put into the third deposition cluster 300 .
- the substrate 10 may be put into a third substrate deposition chamber 340 of the third deposition cluster 300 .
- the substrate 10 moves while the deposition surface of the substrate 10 faces upward (+z direction).
- the third deposition cluster 300 includes a third mask stack 320 , a plurality of third mask deposition chambers 331 , 332 , 333 , 334 , the third substrate deposition chamber 340 , and a third transfer chamber 310 that is located approximately at the center of the third deposition cluster 300 and is connected to the third mask stack 320 , the plurality of third mask deposition chambers 331 , 332 , 333 , 334 , and the third substrate deposition chamber 340 .
- the third transfer chamber 310 may include a third transfer robot 312 having an end-effector.
- the third transfer robot 312 may discharge a third donor mask accommodated in the third mask stack 320 or put the third donor mask into the third mask stack 320 , put or discharge the third donor mask into or from the third mask deposition chambers 331 , 332 , 333 , 334 and the third substrate deposition chamber 340 , and discharge the substrate 10 from the third substrate deposition chamber 340 .
- the third mask stack 320 may accommodate a plurality of the third donor masks.
- a structure of the third donor mask accommodated in the third mask stack 320 may be the same and/or similar to that of the first donor mask 30 described above.
- the third donor mask may be accommodated in the third mask stack 320 while a deposition surface of the third donor mask faces downward.
- the third donor mask accommodated in the third mask stack 320 may be discharged by the third transfer robot 312 and put into any one of the third mask deposition chambers 331 , 332 , 333 , 334 .
- a gate 320 a may exist between the third mask stack 320 and the third transfer chamber 310 . Since descriptions about the gate 320 a are the same and/or similar to that about the gate 220 a , details thereof are not provided here.
- the third transfer robot 312 puts the third donor mask discharged from the third mask stack 320 into any one of the third mask deposition chambers 331 , 332 , 333 , 334 .
- the third transfer robot 312 may put the third donor mask into the third mask deposition chamber 333 .
- the third donor mask is not turned.
- a base substrate is located at the top and a photothermal converting layer is located at the bottom.
- the third deposition cluster does not include any device configured to turn the first donor mask over.
- the third mask deposition chambers 331 , 332 , 333 , 334 may deposit a third deposition material to form a deposition layer or a donor layer on the deposition surface of the third donor mask, for example, a surface of the photothermal converting layer, which is opposite to a surface facing the base substrate.
- the deposition layer may be formed on the deposition surface of the third donor mask by using a deposition source located below the third donor mask while the deposition surface of the third donor mask faces downward.
- the third mask deposition chambers 331 , 332 , 333 , 334 may form the deposition layer on the third donor mask while inner regions of the third mask deposition chambers 331 , 332 , 333 , 334 are in a state having a pre-set vacuum level. At this time, the deposition layer may be a blue light emission layer.
- a gate 333 a may be opened and the third donor mask may be put into the third mask deposition chamber 333 .
- the inner region of the third transfer chamber 310 maintains the pre-set vacuum level before the gate 333 a is opened, the inner region of the third mask deposition chamber 333 almost maintains the pre-set vacuum level even when the gate 333 a opens.
- the third donor mask is again discharged into the third transfer chamber 310 by the third transfer robot 312 .
- the gate 333 a is opened and then closed.
- Other gates 331 a , 332 a , and 334 a may have the similar or same function as the gate 333 a.
- One side of the third substrate deposition chamber 340 in a ⁇ x direction is connected to the second transfer chamber 210 and another side of the third substrate deposition chamber 340 in a +x direction is connected to the third transfer chamber 310 .
- the third donor mask in the second transfer chamber 310 may be put into the third substrate deposition chamber 340 by the third transfer robot 312 .
- a gate 340 a may be opened and closed.
- the substrate 10 is put into the third substrate deposition chamber 340 while the deposition surface of the substrate 10 faces upward.
- a gate 340 b may be opened and closed.
- the substrate 10 may be put into the third substrate deposition chamber 340 by the second transfer robot 212 .
- the substrate 10 may be put into the third substrate deposition chamber 340 after the third donor mask is put into the third substrate deposition chamber 340 , or the third donor mask may be put into the third substrate deposition chamber 340 after the substrate 10 is put into the third substrate deposition chamber 340 .
- the third donor mask and the substrate 10 may be simultaneously put into the third substrate deposition chamber 340 .
- the third donor mask is above the substrate 10 while the deposition layer of the third donor mask faces downward ( ⁇ z direction) and the deposition surface of the substrate 10 faces upward (+z direction).
- the third substrate deposition chamber 340 mutually aligns the third donor mask and the substrate 10 .
- the substrate 10 and the third donor mask are aligned such that a transmission area of a reflection layer of the third donor mask corresponds to a pre-set area of the substrate 10 . Since the deposition layer of the third donor mask contains a blue emission material, the substrate 10 and the third donor mask are aligned such that a through hole of the reflection layer of the third donor mask corresponds to the pixel electrode 21 of a blue sub-pixel B.
- the third substrate deposition chamber 340 deposits, on the deposition surface of the substrate 10 , a part of the deposition or donor layer of the third deposition material on the deposition surface of the third donor mask.
- the part of the deposition layer of the third donor mask is transferred to the substrate 10 by emitting a lamp light or a laser beam to the third donor mask by using a flash lamp or a laser beam generator. Since details thereof are the same and/or similar to those described above with respect to depositing the part of the deposition layer 34 of the first donor mask 30 on the substrate 10 , the details thereof are not provided here.
- the third transfer robot 312 discharges the third donor mask from the third substrate deposition chamber 340 and puts the third donor mask into the third mask stack 320 .
- the third donor mask used as such may be washed in a washing chamber 324 , tested in a test chamber 322 as occasion demands, and then put into the third mask stack 320 again to be re-used.
- the third donor mask may be re-used by, as described above, forming the deposition layer on the third donor mask and then depositing the part of the deposition layer on the substrate 10 .
- the substrate 10 on which the blue light emission layer is deposited may also be discharged from the third substrate deposition chamber 340 to the third transfer chamber 310 by the third transfer robot 312 , and then put into the second substrate turning chamber 420 .
- the substrate 10 moves while the deposition surface of the substrate 10 faces upward (+z direction).
- the second substrate turning chamber 420 turns the substrate 10 such that the deposition surface of the substrate 10 faces downward ( ⁇ z direction).
- an inner region of the second substrate turning chamber 420 may be in an atmospheric state or a state having a pre-set vacuum level. In any cases, the inner region of the second substrate turning chamber may be blocked from an outer region through the gates 420 a and 420 b of the second substrate turning chamber 420 .
- the second substrate turning chamber 420 turns the substrate 10 because a layer that is integrally formed with respect to the entire pixels needs to be formed on the emission layer or the pixel-defining film 18 after the red light emission layer, the green light emission layer, and/or the blue light emission layer are deposited on the substrate 10 .
- a layer that is integrally formed with respect to the entire pixels may be referred to as a second auxiliary layer, and the second auxiliary layer may be an electron transport layer (ETL), an electron injection layer (EIL), and/or a counter electrode.
- ETL electron transport layer
- EIL electron injection layer
- the second auxiliary layer may be formed via a deposition, and at this time, the second auxiliary layer may be deposited while a deposition source discharging a material for forming the second auxiliary layer is located at the bottom, the substrate 10 is located above the deposition source, and the deposition surface of the substrate 10 faces the deposition source.
- the second substrate turning chamber 420 may turn the substrate 10 .
- the deposition apparatus turns the substrate 10 only once before and after the emission layer is formed. Then, the emission layer is formed without having to turn the substrate 10 or the first through third donor masks. Thus, the emission layer may be quickly formed.
- the substrate 10 may not be turned and may pass through the first through third deposition clusters 100 , 200 , 300 while the deposition surface of the substrate 10 faces downward ( ⁇ z direction).
- a deposition layer may be deposited on a donor mask while a deposition surface of the donor mask faces downward ( ⁇ z direction), and then the donor mask may be turned so that the donor mask is located below the substrate 10 and a pre-set area of the deposition layer of the donor mask may be deposited on the substrate 10 .
- each of the first through third deposition clusters 100 , 200 , 300 needs to include a mask turning chamber.
- the number of turning chambers increases compared to when the substrate 10 is turned, and accordingly, a space required for the deposition apparatus increases.
- the red light emission layer, the green light emission layer, and the blue light emission layer are formed in the above description, but if a patterned layer, such as a red auxiliary layer and/or a green auxiliary layer, needs to be formed, a deposition cluster for forming the patterned layer is additionally required, and thus the number of turning chambers may be further increased.
- the deposition apparatus of the current embodiment even if the number of deposition clusters increases, only two turning chambers, in the illustrated embodiment, the first substrate turning chamber 410 and the second substrate turning chamber 420 , are required, and thus the structure of the deposition apparatus may be simplified and manufacturing costs of the deposition apparatus may be reduced. Moreover, since a donor mask is not turned, a manufacturing speed of an OLED apparatus may be increased.
- the deposition apparatus includes the first through third deposition clusters 100 , 200 , 300 , the first substrate turning chamber 410 , and the second substrate turning chamber 420 , but the deposition apparatus is not limited thereto.
- the deposition apparatus may further include a deposition cluster between the first and second substrate turning chambers 410 and 420 .
- the deposition apparatus may further include a first auxiliary layer deposition chamber for depositing the first auxiliary layer or a first auxiliary layer deposition cluster including the first auxiliary deposition chamber, which is connected to the first substrate turning chamber 410 .
- the deposition apparatus may further include a second auxiliary layer deposition chamber for depositing the second auxiliary layer or a second auxiliary layer deposition cluster including the second auxiliary deposition chamber, which is connected to the second substrate turning chamber 420 .
- the first through third deposition clusters 100 , 200 , 300 each include a plurality of mask deposition chambers, but alternatively, the first through third deposition clusters 100 , 200 , 300 may each include one mask deposition chamber.
- FIG. 6 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention.
- the first deposition cluster 100 may include a plurality of first substrate deposition chambers 141 and 142 .
- the first substrate deposition chambers 141 and 142 may be connected to the first transfer chamber 110 respectively through gates 141 a and 142 a .
- the first substrate turning chamber 410 may be connected to the first transfer chamber 110 of the first deposition cluster 100 .
- the second deposition cluster 200 may also include a plurality of second substrate deposition chambers 241 and 242 .
- the second substrate deposition chambers 241 and 242 may be connected to the second transfer chamber 210 respectively through gates 241 a and 242 a .
- the first transfer chamber 110 and the second transfer chamber 210 may be connected to each other through a first connection chamber 510 .
- the first connection chamber 510 may be connected to the first and second transfer chambers 110 and 210 respectively through gates 510 a and 510 b.
- the third deposition cluster 300 may also include a plurality of third substrate deposition chambers 341 and 342 .
- the third substrate deposition chambers 341 and 342 may be connected to the third transfer chamber 310 respectively through gates 341 a and 342 a .
- the second and third transfer chambers 210 and 310 may be connected to each other through a second connection chamber 520 .
- the second connection chamber 520 may be connected to the second and third transfer chambers 210 and 310 respectively through gates 520 a and 520 b .
- the second substrate turning chamber 420 may be connected to the third transfer chamber 310 of the third deposition cluster 300 .
- each of the first through third deposition clusters 100 , 200 , 300 may simultaneously perform deposition on two substrates.
- FIG. 1 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention.
- the first substrate turning chamber 410 may be connected to the first transfer chamber 110 of the first deposition cluster 100 .
- one side of the first substrate deposition chamber 140 in the ⁇ x direction may be connected to the first transfer chamber 110 and another side of the first substrate deposition chamber 140 in the +x direction may be connected to the second transfer chamber 210 of the second deposition cluster 200 .
- the first substrate deposition chamber 140 may include the gates 140 a and 140 b .
- One side of the second substrate deposition chamber 240 of the second deposition cluster 200 in the ⁇ x direction may be connected to the second transfer chamber 210 and the other side of the second substrate deposition chamber 240 in the +x direction may be connected to the third transfer chamber 310 of the third deposition cluster 300 .
- the second substrate deposition chamber 240 may include the gates 240 a and 240 b .
- One side of the third substrate deposition chamber 340 in the ⁇ x direction may be connected to the third transfer chamber 310 and the other side of the third substrate deposition chamber 340 in the +x direction may be connected to the second substrate turning chamber 420 .
- the third substrate deposition chamber 340 may include the gate 340 a in a direction of the third transfer chamber 310 and the gate 340 b in a direction of the second substrate turning chamber 420 .
- an embodiment of the present invention may provide a method of manufacturing an OLED apparatus by using the deposition apparatus.
- a substrate is turned such that a deposition surface of the substrate faces upward.
- a first deposition layer is deposited on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward, and the first donor mask and the substrate are mutually aligned while the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward.
- a pre-set part of the first deposition layer on the deposition surface of the first donor mask is deposited on the deposition surface of the substrate, and then the substrate is turned such that the deposition surface of the substrate faces downward.
- a second deposition layer and a third deposition layer may be formed respectively on a second donor mask and a third donor mask, a pre-set part of the second deposition layer may be deposited on the substrate while the second donor mask is disposed above the substrate, and a pre-set part of the third deposition layer may be deposited on the substrate while the third donor mask is disposed above the substrate.
- a pre-set part of a deposition layer of a donor mask may be deposited on a surface of a substrate, which faces upward, by emitting a laser beam or a flash lamp light to one of two surfaces of the donor mask, which is far from the deposition layer.
- a first auxiliary layer or pre-deposited layer may be deposited on the deposition surface of the substrate by using a deposition source disposed below the substrate while the deposition surface of the substrate faces downward, and after turning the substrate such that the deposition surface of the substrate faces downward, a second auxiliary layer may be deposited on the deposition surface of the substrate by using a deposition source disposed below the substrate while the deposition surface of the substrate faces downward.
- the OLED apparatus since the substrate is turned twice while manufacturing the OLED apparatus, the OLED apparatus may be quickly manufactured. If a donor mask is turned without turning the substrate, the donor mask needs to be turned whenever a patterned layer is formed, and thus the donor mask is turned at least three times in order to form a red light emission layer, a green light emission layer, and a blue light emission layer, and at least 5 times if a red auxiliary layer and a green auxiliary layer are further formed. However, according to the method of the current embodiment, the substrate is turned only twice to form the OLED apparatus.
- the deposition apparatus and the method of manufacturing an OLED apparatus may have reduced manufacturing time and reduced manufacturing costs of the OLED apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
- This application claims the benefit of Korean Patent Application No. 10-2014-0104530, filed on Aug. 12, 2014, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
- 1. Field
- One or more embodiments of the present invention relate to a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, and more particularly, to a deposition apparatus and a method of manufacturing an OLED apparatus, wherein manufacturing processes and manufacturing costs of the OLED apparatus may be reduced.
- 2. Description of the Related Art
- Generally, an organic light-emitting display (OLED) apparatus is a display apparatus that includes organic light-emitting device in a display region. The organic light-emitting device includes a pixel electrode, a counter electrode opposing the pixel electrode, and an intermediate layer disposed between the pixel electrode and the counter electrode and including an emission layer. While manufacturing the OLED apparatus, any method may be used to form the emission layer, such as a deposition method or an inkjet printing method.
- However, generally, in such method or apparatus for manufacturing the OLED apparatus, several operations are performed while forming the intermediate layer including the emission layer, and thus manufacturing costs and manufacturing time may increase.
- One or more embodiments of the present invention include a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, which are capable of reducing manufacturing time and manufacturing costs of the OLED apparatus.
- Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.
- One aspect of the invention provides a method of manufacturing an organic light-emitting display (OLED) apparatus, the method comprising: providing a substrate comprising a first surface facing generally downward and a second surface facing generally upward, wherein a pre-deposited layer is formed over the first surface; turning the substrate over such that a first surface of the substrate faces generally upward; depositing a first deposition material on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces generally downward, thereby forming a first donor layer on the deposition surface of the first donor mask; arranging the first donor mask and the substrate such that the first donor mask is disposed above the substrate while the deposition surface of the first donor mask faces generally downward and the first surface of the substrate faces generally upward; transferring, over the first surface of the substrate, at least part of the first deposition material of the first donor layer, thereby forming a first deposition layer over the first surface of the substrate; and turning the substrate back such that the first surface of the substrate faces generally downward.
- In the foregoing method, at any time after depositing and before transferring, the first donor mask may maintain its orientation that the deposition surface of the first donor mask faces generally downward. At any time after depositing and before transferring, the first donor mask is not turned over. Once turning the substrate over such that a first surface of the substrate faces generally upward, the substrate is not turned over until turning the substrate back such that the first surface of the substrate faces generally downward.
- Still in the foregoing method, the first deposition layer may comprise an array of organic light emitting layer portions. Providing the substrate may comprise transmitting a pre-deposition material from a pre-deposition material source located under the substrate toward the first surface of the substrate while the first surface faces generally downward. Depositing the first deposition material may comprise transmitting the first deposition material from a first deposition material source located under the first donor mask toward the deposition surface of the first donor mask. Transferring may comprise emitting a laser beam or a flash lamp light to a surface of the first donor mask, which is opposite to the deposition surface of the first donor mask, to transfer the at least part of the first deposit material of the first donor layer over the first surface of the substrate.
- Yet in the foregoing method, the method may further comprise: depositing a second deposition material on a deposition surface of a second donor mask while the deposition surface of the second donor mask faces generally downward, thereby forming a second donor layer on the deposition surface of the second donor mask; arranging the second donor mask and the substrate such that the second donor mask is disposed above the substrate while the deposition surface of the second donor mask faces generally downward and the first surface of the substrate faces generally upward; prior to turning the substrate back such that the first surface of the substrate faces generally downward, transferring, over the first surface of the substrate, at least a part of the second deposition material of the second donor layer, thereby forming a second deposition layer over the first surface of the substrate. At any time after depositing the second deposition material and before transferring the at least part of the second deposition material, the second donor mask may maintain its orientation that the deposition surface of the second donor mask faces generally downward. At any time after depositing the second deposition material and before transferring the at least part of the second deposition material, the second donor mask is not turned over. Once turning the substrate over such that a first surface of the substrate faces generally upward, the substrate is not turned over until turning the substrate back such that the first surface of the substrate faces generally downward. The first deposition layer may comprise a first array of organic light emitting layer portions configured to emit light of a first color, wherein the second deposition layer comprises a second array of organic light emitting layer portions configured to emit light of a second color different from the first color.
- Further in the foregoing method, the method may further comprise: depositing a third deposition material on a deposition surface of a third donor mask while the deposition surface of the third donor mask faces generally downward, thereby forming a third donor layer on the deposition surface of the second donor mask; arranging the third donor mask and the substrate such that the third donor mask is disposed above the substrate while the deposition surface of the third donor mask faces generally downward and the first surface of the substrate faces generally upward; and prior to turning the substrate back such that the first surface of the substrate faces generally downward, transferring, over the first surface of the substrate, at least part of the third deposition material of the third donor layer, thereby forming a third deposition layer over the first surface of the substrate. At any time after depositing the third deposition material and before transferring the at least part of the third deposition material, the third donor mask maintains its orientation that the deposition surface of the second donor mask faces generally downward. At any time after depositing the second deposition material and before transferring the at least part of the second deposition material, the third donor mask is not turned over. Once turning the substrate over such that a first surface of the substrate faces generally upward, the substrate is not turned over until turning the substrate back such that the first surface of the substrate faces generally downward. The first deposition layer comprises a first array of organic light emitting layer portions configured to emit light of a first color, wherein the second deposition layer comprises a second array of organic light emitting layer portions configured to emit light of a second color different from the first color, wherein the third deposition layer comprises a third array of organic light emitting layer portions configured to emit light of a third color different from the first and second colors.
- Another aspect of the invention provides a deposition apparatus comprising: a first substrate turning chamber configured to receive a substrate that comprises a first surface and a second surface facing away from the first surface, and further configured to turn the substrate over such that the first surface faces generally upward; a first deposition cluster connected to the first substrate turning chamber to receive the substrate transferred from the first substrate turning chamber, the first deposition cluster comprising: a first mask deposition chamber configured to deposit a first deposition material on a first donor mask such that a first donor layer is formed on the first donor mask, and a first substrate deposition chamber configured to transfer at least part of the first deposition material of the first donor layer over the first surface of the substrate such that a first deposition layer is formed over the first surface; a second deposition cluster connected to the first deposition cluster to receive the substrate transferred from the first deposition cluster, the second deposition cluster comprising: a second mask deposition chamber configured to deposit a second deposition material on a second donor mask such that a second donor layer is formed on the second donor mask, and a second substrate deposition chamber configured to transfer at least part of the second deposition material of the second donor layer over the first surface of the substrate such that a second deposition layer is formed over the first surface of the substrate; and a second substrate turning chamber connected to the second deposition cluster, configured to receive the substrate transferred from the second deposition cluster, and further configured to turn the substrate back such that the first surface faces generally downward, wherein the first deposition cluster does not comprise any device configured to turn the first donor mask over, wherein the second deposition cluster does not comprise any device configured to turn the second donor mask over. The apparatus does not comprise any device disposed between the first and second substrate turning chambers and configured to turn the substrate over.
- According to one or more embodiments of the present invention, a deposition apparatus includes: a first substrate turning chamber; a first deposition cluster that is connected to the first substrate turning chamber and includes a first transfer chamber, a first mask stack connected to the first transfer chamber, a first mask deposition chamber connected to the first transfer chamber, and a first substrate deposition chamber connected to the first transfer chamber; a second deposition cluster that is connected to the first transfer chamber and includes a second transfer chamber, a second mask stack connected to the second transfer chamber, a second mask deposition chamber connected to the second transfer chamber, and a second substrate deposition chamber connected to the second transfer chamber; a third deposition cluster that is connected to the second transfer chamber and includes a third transfer chamber, a third mask stack connected to the third transfer chamber, a third mask deposition chamber connected to the third transfer chamber, and a third substrate deposition chamber connected to the third transfer chamber; and a second substrate turning chamber connected to the third deposition cluster.
- In the first substrate deposition chamber, one side may be connected to the first substrate turning chamber and another side may be connected to the first transfer chamber, in the second substrate deposition chamber, one side may be connected to the first transfer chamber and another side may be connected to the second transfer chamber, and in the third substrate deposition chamber, one side may be connected to the second transfer chamber and another side may be connected to the third transfer chamber.
- In the first substrate deposition chamber, one side may be connected to the first transfer chamber and another side may be connected to the second transfer chamber, in the second substrate deposition chamber, one side may be connected to the second transfer chamber and another side may be connected to the third transfer chamber, and in the third substrate deposition chamber, one side may be connected to the third transfer chamber and another side may be connected to the second substrate turning chamber.
- The first substrate turning chamber may turn a substrate such that a deposition surface of the substrate faces upward, and the second substrate turning chamber may turn the substrate such that the deposition surface of the substrate faces downward.
- The first mask stack, the second mask stack, and the third mask stack may each store a donor mask such that a deposition surface of the donor mask faces downward, the first mask deposition chamber, the second mask deposition chamber, and the third mask deposition chamber may each deposit a deposition layer on the deposition surface of the donor mask, and the first substrate deposition chamber, the second substrate deposition chamber, and the third substrate deposition chamber may each deposit, on the deposition surface of the substrate, a part of the deposition layer on the deposition surface of the donor mask by locating the donor mask above the substrate.
- Each of the substrate deposition chambers may deposit a pre-set part of the deposition or donor layer on the deposition surface of the substrate by emitting a laser beam or a flash light to a surface of the donor mask, which faces away from the deposition layer.
- The deposition apparatus may further include a first auxiliary layer deposition chamber that is connected to the first substrate turning chamber and deposits a first auxiliary layer on the substrate while the deposition surface of the substrate faces downward, or a first auxiliary layer deposition cluster that includes the first auxiliary layer deposition chamber.
- Alternatively, the deposition apparatus may further include a second auxiliary layer deposition chamber that is connected to the second substrate turning chamber and deposits a second auxiliary layer on the substrate while the deposition surface of the substrate faces downward, or a second auxiliary layer deposition cluster that includes the second auxiliary layer deposition chamber.
- According to one or more embodiments of the present invention, a method of manufacturing an organic light-emitting display (OLED) apparatus, the method includes: turning a substrate such that a deposition surface of the substrate faces upward; depositing a first deposition layer on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward; aligning the first donor mask and the substrate such that the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the first deposition layer on the deposition surface of the first donor mask; and turning the substrate such that the deposition surface of the substrate faces downward.
- The depositing on the deposition surface of the substrate may include emitting a laser beam or a flash lamp light to a surface of the first donor mask, which faces away from the deposition surface of the first donor mask, to deposit a pre-set part of the first deposition layer on the deposition surface of the substrate.
- The method may further include: depositing a second deposition layer on a deposition surface of a second donor mask while the deposition surface of the second donor mask faces downward; aligning the second donor mask and the substrate such that the second donor mask is above the substrate while the second deposition layer faced downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the second deposition layer of the deposition surface of the second donor mask; depositing a third deposition layer on a deposition surface of a third donor mask while the deposition surface of the third donor mask faces downward; aligning the third donor mask and the substrate such that the third donor mask is above the substrate while the third deposition layer faces downward and the deposition surface of the substrate faces upward; and depositing, on the deposition surface of the substrate, a part of the third deposition layer of the deposition surface of the third donor mask, wherein the turning of the substrate such that the deposition surface of the substrate faces downward may be performed after the depositing of the part of the first deposition layer, the depositing of the part of the second deposition layer, and the depositing of the part of the third deposition layer.
- The method may further include: depositing a first auxiliary layer on the deposition surface of the substrate by using a deposition source located below the substrate while the deposition surface of the substrate faces downward; and depositing a second auxiliary layer on the deposition surface of the substrate by using another deposition source located below the substrate while the deposition surface of the substrate faces downward, wherein the depositing of the first auxiliary layer may be performed before the turning of the substrate such that the deposition surface of the substrate faces upward, and the depositing of the second auxiliary layer may be performed after the turning of the substrate such that the deposition surface of the substrate faces downward.
- These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:
-
FIG. 1 is a plan view schematically illustrating a deposition apparatus according to an embodiment of the present invention; -
FIGS. 2 through 5 are cross-sectional views for describing a method of manufacturing an organic light-emitting display (OLED) apparatus, according to an embodiment of the present invention; -
FIG. 6 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention; and -
FIG. 7 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention. - Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
- It will be understood that when a layer, region, or component is referred to as being “formed on,” another layer, region, or component, it can be directly or indirectly formed on the other layer, region, or component. That is, for example, intervening layers, regions, or components may be present. Sizes of elements in the drawings may be exaggerated for convenience of explanation. In other words, since sizes and thicknesses of components in the drawings are arbitrarily illustrated for convenience of explanation, the following embodiments are not limited thereto.
- In the following examples, the x-axis, the y-axis and the z-axis are not limited to three axes of the rectangular coordinate system, and may be interpreted in a broader sense. For example, the x-axis, the y-axis, and the z-axis may be perpendicular to one another, or may represent different directions that are not perpendicular to one another.
-
FIG. 1 is a plan view schematically illustrating a deposition apparatus according to an embodiment of the present invention. As shown inFIG. 1 , the deposition apparatus according to the current embodiment includes afirst deposition cluster 100, asecond deposition cluster 200, athird deposition cluster 300, a firstsubstrate turning chamber 410, and a secondsubstrate turning chamber 420. - The deposition apparatus according to the current embodiment is an apparatus that deposits a layer that is patterned and formed without being integrally formed with respect to entire pixels, from among layers disposed between a pixel electrode and a counter electrode of an organic light-emitting display (OLED) apparatus. For example, the deposition apparatus may deposit a red light emission layer, a green light emission layer, and a blue light emission layer. Thus, as shown in
FIG. 2 , before asubstrate 10 is put into the deposition apparatus, pre-deposited layers, for example, apixel electrode 21, a pixel-definingfilm 18, etc. may be formed on thesubstrate 10, and a layer that is integrally formed with respect to entire pixels may be formed on thepixel electrode 21 and the pixel-definingfilm 18. - In addition, in
FIG. 2 , a thin-film transistor TFT or a capacitor Cap is formed on thesubstrate 10, and other components, such as abuffer layer 11 that prevents impurities from penetrating into a semiconductor layer of the thin-film transistor TFT, agate insulating film 13 that insulates the semiconductor layer and a gate electrode of the thin-film transistor TFT, aninterlayer insulating film 15 that insulates the gate electrode and source and drain electrodes of the thin-film transistor TFT, and aplanarization film 17 that covers the thin-film transistor TFT and has a roughly flat top surface, may be formed on thesubstrate 10. - Meanwhile, a layer integrally formed with respect to entire pixels before an emission layer is formed may be referred to as a first auxiliary layer, and the first auxiliary layer may be a hole injection layer (HIL) and/or a hole transport layer (HTL).
- In embodiments, the first auxiliary layer or a pre-deposited layer may be formed via a deposition method, and the first auxiliary layer may be deposited while a deposition source discharging a material for forming the first auxiliary layer is below the
substrate 10 and a deposition surface of thesubstrate 10 faces the deposition source. Thus, unlike shown inFIG. 2 , thepixel electrode 21, etc. of thesubstrate 10 face downward while the first auxiliary layer is formed on thesubstrate 10. Then, when thesubstrate 10 is put into the firstsubstrate turning chamber 410 of the deposition apparatus according to the current embedment, the firstsubstrate turning chamber 410 turns thesubstrate 10 such that thepixel electrode 21, etc. face upward as shown inFIG. 2 . As such, the firstsubstrate turning chamber 410 turns thesubstrate 10 such that the deposition surface of thesubstrate 10 faces upward in thefirst deposition cluster 100. - When the first
substrate turning chamber 410 turns thesubstrate 10, an inner region of the firstsubstrate turning chamber 410 may be in an atmospheric state or a state having a pre-set vacuum level. In any cases, the inner region of the firstsubstrate turning chamber 410 may be blocked from an outer region of the firstsubstrate turning chamber 410 through agate 410 a of the firstsubstrate turning chamber 410. Here, any device for fixing thesubstrate 10 may be used to turn thesubstrate 10, such as a vacuum pad or an electrostatic chuck, or thesubstrate 10 may be fixed on a susceptor by using a clamp. - The
first deposition cluster 100 includes afirst mask stack 120, a plurality of first 131, 132, 133, 134, a firstmask deposition chambers substrate deposition chamber 140, and afirst transfer chamber 110 located approximately at the center of thefirst deposition cluster 110 and connected to thefirst mask stack 120, the plurality of first 131, 132, 133, 134, and the firstmask deposition chambers substrate deposition chamber 140. Thefirst transfer chamber 110 may include afirst transfer robot 112 having an end-effector. Thefirst transfer robot 112 may discharge a first donor mask accommodated in thefirst mask stack 120 or put the first donor mask into thefirst mask stack 120, put or discharge the first donor mask into or from the plurality of first 131, 132, 133, 134 and the firstmask deposition chambers substrate deposition chamber 140, and discharge thesubstrate 10 from the firstsubstrate deposition chamber 140. - The
first mask stack 120 may accommodate a plurality of the first donor masks. The first donor mask accommodated in thefirst mask stack 120 may have a structure shown inFIG. 3 . In embodiments, afirst donor mask 30 may include abase substrate 310, areflection layer 32, and a photothermal convertinglayer 33. - The
base substrate 31 forms an overall outer shape of thefirst donor mask 30, and may be formed of glass so as to transmit light to the photothermal convertinglayer 33. Alternatively, as occasion demands, thebase substrate 31 may be formed of polyester such as polyethylene terephthalate (PET), polyacryl, polyepoxy, polyethylene and/or polystyrene. - The photothermal converting
layer 33 is a layer that absorbs a flash lamp light or a laser beam and converts at least a part of energy of the absorbed flash lamp light or laser beam to heat. The photothermal convertinglayer 33 may be a film formed of a metal such as aluminum or silver, which is capable of absorbing a light in an infrared-visible ray region, an oxide or sulfide film of the metal, or a polymer organic film containing carbon black or graphite. - The
reflection layer 32 may be disposed between thebase substrate 31 and the photothermal convertinglayer 33. Thereflection layer 32 includes a plurality of through holes h. Accordingly, thereflection layer 32 has a transmission areas TA corresponding to the through holes h, and block areas BA corresponding to areas other than the through holes h. - The
reflection layer 32 may be formed on thebase substrate 31 to have the through holes h by using a mask or by forming a layer having a uniform thickness and then removing some of the layer. Thereflection layer 32 may be formed of titanium (Ti), aluminum (Al), copper (Cu), silver (Ag), molybdenum (Mo), or an alloy thereof, or chromium nitride (CrN) or TiAlCu. Alternatively, thereflection layer 32 may be formed of titanium oxide (TiOx), silicon oxide (SiOx), or silicon carbon nitride (SiCN). - The
first donor mask 30 may be accommodated in thefirst mask stack 120 while thebase substrate 31 is located at the top and the photothermal convertinglayer 33 is located at the bottom, and while a deposition surface of thefirst donor mask 30 faces downward. - The
first donor mask 30 accommodated in thefirst mask stack 120 may be discharged by thefirst transfer robot 112 and put into any one of the first 131, 132, 133, 134. As occasion demands, amask deposition chambers gate 120 a may exist between thefirst mask stack 120 and thefirst transfer chamber 110. For example, thefirst mask stack 120 may be in an atmospheric state and thegate 120 a may be opened such that thefirst transfer chamber 110 may also be in a similar state as thefirst mask stack 120. Then, after thefirst transfer robot 112 discharges thefirst donor mask 30 from thefirst mask stack 120 to thefirst transfer chamber 110, thegate 120 a may be closed and an inner region of thefirst transfer chamber 110 may be in a state having a pre-set vacuum level. - The
first transfer robot 112 puts thefirst donor mask 30 discharged from thefirst mask stack 120 into any one of the first 131, 132, 133, 134. For example, themask deposition chambers first transfer robot 112 may put thefirst donor mask 30 into the firstmask deposition chamber 133. - At this time, the
first donor mask 30 is not turned over. Thus, in thefirst donor mask 30 put into the firstmask deposition chamber 133, thebase substrate 31 is located at the top and the photothermal convertinglayer 33 is located at the bottom. In embodiments, it is possible that the first deposition cluster does not include any device configured to turn the first donor mask over. - The first
131, 132, 133, 134 may deposit a first deposition material to form a deposition layer or amask deposition chambers donor layer 34 ofFIG. 3 on the deposition surface of thefirst donor mask 30, for example, a surface of the photothermal convertinglayer 33, which is opposite to a surface facing thebase substrate 310. In embodiments, thedeposition layer 34 may be formed on the deposition surface of thefirst donor mask 30 by using a deposition source located below thefirst donor mask 30 while the deposition surface of thefirst donor mask 30 faces downward. The first 131, 132, 133, 134 may form themask deposition chambers deposition layer 34 on thefirst donor mask 30 while inner regions of the first 131, 132, 133, 134 are in a state having a pre-set vacuum level. At this time, themask deposition chambers deposition layer 34 may be a red light emission layer. - When the
first transfer robot 112 puts thefirst donor mask 30 into the firstmask deposition chamber 133, agate 133 a may be opened and thefirst donor mask 30 may be put into the firstmask deposition chamber 133. Here, since the inner region of thefirst transfer chamber 110 maintains the pre-set vacuum level before thegate 133 a is opened, the inner region of the firstmask deposition chamber 133 almost maintains the pre-set vacuum level even when thegate 133 a opens. - After the
deposition layer 34 is deposited on the deposition surface of thefirst donor mask 30 in the firstmask deposition chamber 133, thefirst donor mask 30 is again discharged into thefirst transfer chamber 110 by thefirst transfer robot 112. At this time as well, thegate 133 a is opened and then closed. 131 a, 132 a, and 134 a may have the similar or same function as theOther gates gate 133 a. - One side of the first
substrate deposition chamber 140 in a −x direction is connected to the firstsubstrate turning chamber 410 and another side of the firstsubstrate deposition chamber 140 in a +x direction is connected to thefirst transfer chamber 110. - The
first donor mask 30 in thefirst transfer chamber 110 may be put into the firstsubstrate deposition chamber 140 by thefirst transfer robot 112. At this time, agate 140 a may be opened and closed. Also, thesubstrate 10 may be turned by the firstsubstrate turning chamber 410 such that the deposition surface of thesubstrate 10 faces upward is put into the firstsubstrate deposition chamber 140. At this time, agate 140 b may be opened and closed. Thesubstrate 10 is not put into the firstsubstrate deposition chamber 140 by thefirst transfer robot 112, but by a transfer rail between the firstsubstrate turning chamber 410 and the firstsubstrate deposition chamber 140. In embodiments, it is possible that the deposition apparatus does not include any device disposed between the first and second 410 and 420 and configured to turn the substrate over.substrate turning chambers - Here, the
substrate 10 may be put into the firstsubstrate deposition chamber 140 after thefirst donor mask 30 is put into the firstsubstrate deposition chamber 140, or thefirst donor mask 30 may be put into the firstsubstrate deposition chamber 140 after thesubstrate 10 is put into the firstsubstrate deposition chamber 140. Alternatively, thefirst donor mask 30 and thesubstrate 10 may be simultaneously put into the firstsubstrate deposition chamber 140. - As such, when the
substrate 10 and thefirst donor mask 30 are put into the firstsubstrate deposition chamber 140, thefirst donor mask 30 is above thesubstrate 10 while thedeposition layer 34 of thefirst donor mask 30 faces downward (−z direction) and the deposition surface of thesubstrate 10 faces upward (+z direction), as shown inFIG. 3 . - Then, the first
substrate deposition chamber 140 mutually aligns thefirst donor mask 30 and thesubstrate 10. In embodiments, thesubstrate 10 and thefirst donor mask 30 are arranged such that the transmission area TA of thereflection layer 32 of thefirst donor mask 30 corresponds to a pre-set area of thesubstrate 10. InFIG. 3 , since thedeposition layer 34 of thefirst donor mask 30 contains a red emission material, thesubstrate 10 and thefirst donor mask 30 are aligned such that the through hole h of thereflection layer 32 of thefirst donor mask 30 corresponds to thepixel electrode 21 of a red sub-pixel R. - Then, the first
substrate deposition chamber 140 deposits, on the deposition surface of thesubstrate 10, a part of the deposition ordonor layer 34 of the first deposition material on the deposition surface of thefirst donor mask 30. In detail, as shown inFIG. 4 , the part of thedeposition layer 34 of thefirst donor mask 30 is deposited or transferred on thesubstrate 10 by emitting a lamp light or a laser beam to thefirst donor mask 30 by using a flash lamp or a laser beam generator. - In detail, the lamp light or laser beam is emitted to a surface of the
first donor mask 30, which faces away from the deposition surface of thefirst donor mask 30. Here, even if the lamp light or laser beam is emitted to an entire surface of thefirst donor mask 30, the lamp light or laser beam is mostly blocked by thereflection layer 32 and reaches the photothermal convertinglayer 33 only through the transmission area TA corresponding to the through hole h of thereflection layer 32. Accordingly, only an area of thedeposition layer 34 of thefirst donor mask 30, which corresponds to the transmission area TA, evaporates, vaporizes, or sublimates, and thus a redlight emission layer 22R is formed only in thepixel electrode 21 of the red sub-pixel R as shown inFIG. 5 . - Here, the lamp light or laser beam is emitted to the
first donor mask 30 while thedeposition layer 34 of thefirst donor mask 30 and the deposition surface of thesubstrate 10 are very closely disposed to each other. Thus, even if thesubstrate 10 is located at the bottom and thefirst donor mask 30 is located above thesubstrate 10, the pre-set area of thedeposition layer 34 on thefirst donor mask 30 may be easily deposited on thesubstrate 10. - For reference, when the first auxiliary layer is deposited on the
substrate 10 or thedeposition layer 34 is formed on thefirst donor mask 30, a patterned layer is not formed but an integral layer is formed with respect to theentire substrate 10 orfirst donor mask 30. In this case, if a distance between the deposition source and the deposition surface is too close, it may be difficult to form the first auxiliary layer or thedeposition layer 34 in a uniform thickness. Thus, at least a pre-set distance may be maintained between the deposition source and the deposition surface, and in this case, the first auxiliary layer or thedeposition layer 34 may be satisfactorily deposited if the deposition source is below the deposition surface of thesubstrate 10. - Then, the
first transfer robot 112 discharges thefirst donor mask 30 from the firstsubstrate deposition chamber 140 and puts thefirst donor mask 30 into thefirst mask stack 120. Thefirst donor mask 30 used as such may be washed in awashing chamber 124, tested in atest chamber 122 as occasion demands, and then put into thefirst mask stack 120 again to be re-used. Here, thefirst donor mask 30 may be re-used by, as described above, forming thedeposition layer 34 on thefirst donor mask 30 and then depositing the part of thedeposition layer 34 on thesubstrate 10. - Meanwhile, as shown in
FIG. 5 , thesubstrate 10 on which the redlight emission layer 22R is deposited may also be discharged from the firstsubstrate deposition chamber 140 to thefirst transfer chamber 110 by thefirst transfer robot 112, and then put into thesecond deposition cluster 200. In detail, thesubstrate 10 may be put into a secondsubstrate deposition chamber 240 of thesecond deposition cluster 200. At this time, thesubstrate 10 moves while the deposition surface of thesubstrate 10 faces upward (+z direction). - The
second deposition cluster 200 includes asecond mask stack 220, a plurality of second 231, 232, 233, 234, the secondmask deposition chambers substrate deposition chamber 240, and asecond transfer chamber 210 that is located approximately at the center of thesecond deposition cluster 200 and is connected to thesecond mask stack 220, the plurality of second 231, 232, 233, 234, and the secondmask deposition chambers substrate deposition chamber 240. Thesecond transfer chamber 210 may include asecond transfer robot 212 having an end-effector. Thesecond transfer robot 212 may discharge a second donor mask accommodated in thesecond mask stack 220 or put the second donor mask into thesecond mask stack 220, put or discharge the second donor mask into or from the second 231, 232, 233, 234 and the secondmask deposition chambers substrate deposition chamber 240, and discharge thesubstrate 10 from the secondsubstrate deposition chamber 240. - The
second mask stack 220 may accommodate a plurality of the second donor masks. A structure of the second donor mask accommodated in thesecond mask stack 220 may be the same and/or similar to that of thefirst donor mask 30 described above. The second donor mask may be accommodated in thesecond mask stack 220 while a deposition surface of the second donor mask faces downward. - The second donor mask accommodated in the
second mask stack 220 may be discharged by thesecond transfer robot 212 and put into any one of the second 231, 232, 233, 234. As occasion demands, amask deposition chambers gate 220 a may exist between thesecond mask stack 220 and thesecond transfer chamber 210. For example, thesecond mask stack 220 may be in an atmospheric state and thegate 220 a may be opened such that thesecond transfer chamber 210 may also be in a similar state as thesecond mask stack 220. Then, after thesecond transfer robot 212 discharges the second donor mask from thesecond mask stack 220 to thesecond transfer chamber 210, thegate 220 a may be closed and an inner region of thesecond transfer chamber 210 may be in a state having a pre-set vacuum level. - The
second transfer robot 212 puts the second donor mask discharged from thesecond mask stack 220 into any one of the second 231, 232, 233, 234. For example, themask deposition chambers second transfer robot 212 may put the second donor mask into the secondmask deposition chamber 233. - At this time, the second donor mask is not turned. Thus, in the second donor mask put into the second
mask deposition chamber 233, a base substrate is located at the top and a photothermal converting layer is located at the bottom. In embodiments, it is possible that the second deposition cluster does not include any device configured to turn the first donor mask over. - The second
231, 232, 233, 234 may deposit a second deposition material to form a deposition layer or a donor layer on the deposition surface of the second donor mask, for example, a surface of the photothermal converting layer, which is opposite to a surface facing the base substrate. In embodiments, the deposition layer may be formed on the deposition surface of the second donor mask by using a deposition source located below the second donor mask while the deposition surface of the second donor mask faces downward. The secondmask deposition chambers 231, 232, 233, 234 may form the deposition layer on the second donor mask while inner regions of the secondmask deposition chambers 231, 232, 233, 234 are in a state having a pre-set vacuum level. At this time, the deposition layer may be a green light emission layer.mask deposition chambers - When the
second transfer robot 212 puts the second donor mask into the secondmask deposition chamber 233, agate 233 a may be opened and the second donor mask may be put into the secondmask deposition chamber 233. Here, since the inner region of thesecond transfer chamber 210 maintains the pre-set vacuum level before thegate 233 a is opened, the inner region of the secondmask deposition chamber 233 almost maintains the pre-set vacuum level even when thegate 233 a opens. - After the deposition layer is deposited on the deposition surface of the second donor mask in the second
mask deposition chamber 233, the second donor mask is again discharged into thesecond transfer chamber 210 by thesecond transfer robot 212. At this time as well, thegate 233 a is opened and then closed. 231 a, 232 a, and 234 a may have the similar or same function as theOther gates gate 233 a. - One side of the second
substrate deposition chamber 240 in a −x direction is connected to thefirst transfer chamber 110 and another side of the secondsubstrate deposition chamber 240 in a +x direction is connected to thesecond transfer chamber 210. - The second donor mask in the
second transfer chamber 210 may be put into the secondsubstrate deposition chamber 240 by thesecond transfer robot 212. At this time, agate 240 a may be opened and closed. Then, thesubstrate 10 is put into the secondsubstrate deposition chamber 240 while the deposition surface of thesubstrate 10 faces upward. At this time, agate 240 b may be opened and closed. Thesubstrate 10 may be put into the secondsubstrate deposition chamber 240 by thefirst transfer robot 112. - Here, the
substrate 10 may be put into the secondsubstrate deposition chamber 240 after the second donor mask is put into the secondsubstrate deposition chamber 240, or the second donor mask may be put into the secondsubstrate deposition chamber 240 after thesubstrate 10 is put into the secondsubstrate deposition chamber 240. Alternatively, the second donor mask and thesubstrate 10 may be simultaneously put into the secondsubstrate deposition chamber 240. - As such, when the
substrate 10 and the second donor mask are put into the secondsubstrate deposition chamber 240, the second donor mask is above thesubstrate 10 while the deposition layer of the second donor mask faces downward (−z direction) and the deposition surface of thesubstrate 10 faces upward (+z direction). - Then, the second
substrate deposition chamber 240 mutually aligns the second donor mask and thesubstrate 10. In embodiments, thesubstrate 10 and the second donor mask are aligned such that a transmission area of a reflection layer of the second donor mask corresponds to a pre-set area of thesubstrate 10. Since the deposition layer of the second donor mask contains a green emission material, thesubstrate 10 and the second donor mask are aligned such that a through hole of the reflection layer of the second donor mask corresponds to thepixel electrode 21 of a green sub-pixel G. - Then, the second
substrate deposition chamber 240 deposits, on the deposition surface of thesubstrate 10, a part of the deposition or donor layer of the second deposition material on the deposition surface of the second donor mask. In detail, the part of the deposition layer of the second donor mask is transferred to thesubstrate 10 by emitting a lamp light or a laser beam to the second donor mask by using a flash lamp or a laser beam generator. Since details thereof are the same and/or similar to those described above with respect to depositing the part of thedeposition layer 34 of thefirst donor mask 30 on thesubstrate 10, the details thereof are not provided here. - Then, the
second transfer robot 212 discharges the second donor mask from the secondsubstrate deposition chamber 240 and puts the second donor mask into thesecond mask stack 220. The second donor mask used as such may be washed in awashing chamber 224, tested in atest chamber 222 as occasion demands, and then put into thesecond mask stack 220 again to be re-used. Here, the second donor mask may be re-used by, as described above, forming the deposition layer on the second donor mask and then depositing the part of the deposition layer on thesubstrate 10. - Meanwhile, the
substrate 10 on which the green light emission layer is deposited may also be discharged from the secondsubstrate deposition chamber 240 to thesecond transfer chamber 210 by thesecond transfer robot 212, and then put into thethird deposition cluster 300. In detail, thesubstrate 10 may be put into a thirdsubstrate deposition chamber 340 of thethird deposition cluster 300. At this time, thesubstrate 10 moves while the deposition surface of thesubstrate 10 faces upward (+z direction). - The
third deposition cluster 300 includes athird mask stack 320, a plurality of third 331, 332, 333, 334, the thirdmask deposition chambers substrate deposition chamber 340, and athird transfer chamber 310 that is located approximately at the center of thethird deposition cluster 300 and is connected to thethird mask stack 320, the plurality of third 331, 332, 333, 334, and the thirdmask deposition chambers substrate deposition chamber 340. Thethird transfer chamber 310 may include athird transfer robot 312 having an end-effector. Thethird transfer robot 312 may discharge a third donor mask accommodated in thethird mask stack 320 or put the third donor mask into thethird mask stack 320, put or discharge the third donor mask into or from the third 331, 332, 333, 334 and the thirdmask deposition chambers substrate deposition chamber 340, and discharge thesubstrate 10 from the thirdsubstrate deposition chamber 340. - The
third mask stack 320 may accommodate a plurality of the third donor masks. A structure of the third donor mask accommodated in thethird mask stack 320 may be the same and/or similar to that of thefirst donor mask 30 described above. The third donor mask may be accommodated in thethird mask stack 320 while a deposition surface of the third donor mask faces downward. - The third donor mask accommodated in the
third mask stack 320 may be discharged by thethird transfer robot 312 and put into any one of the third 331, 332, 333, 334. As occasion demands, amask deposition chambers gate 320 a may exist between thethird mask stack 320 and thethird transfer chamber 310. Since descriptions about thegate 320 a are the same and/or similar to that about thegate 220 a, details thereof are not provided here. - The
third transfer robot 312 puts the third donor mask discharged from thethird mask stack 320 into any one of the third 331, 332, 333, 334. For example, themask deposition chambers third transfer robot 312 may put the third donor mask into the thirdmask deposition chamber 333. - At this time, the third donor mask is not turned. Thus, in the third donor mask put into the third
mask deposition chamber 333, a base substrate is located at the top and a photothermal converting layer is located at the bottom. In embodiments, it is possible that the third deposition cluster does not include any device configured to turn the first donor mask over. - The third
331, 332, 333, 334 may deposit a third deposition material to form a deposition layer or a donor layer on the deposition surface of the third donor mask, for example, a surface of the photothermal converting layer, which is opposite to a surface facing the base substrate. In embodiments, the deposition layer may be formed on the deposition surface of the third donor mask by using a deposition source located below the third donor mask while the deposition surface of the third donor mask faces downward. The thirdmask deposition chambers 331, 332, 333, 334 may form the deposition layer on the third donor mask while inner regions of the thirdmask deposition chambers 331, 332, 333, 334 are in a state having a pre-set vacuum level. At this time, the deposition layer may be a blue light emission layer.mask deposition chambers - When the
third transfer robot 312 puts the third donor mask into the thirdmask deposition chamber 333, agate 333 a may be opened and the third donor mask may be put into the thirdmask deposition chamber 333. Here, since the inner region of thethird transfer chamber 310 maintains the pre-set vacuum level before thegate 333 a is opened, the inner region of the thirdmask deposition chamber 333 almost maintains the pre-set vacuum level even when thegate 333 a opens. - After the deposition layer is deposited on the deposition surface of the third donor mask in the third
mask deposition chamber 333, the third donor mask is again discharged into thethird transfer chamber 310 by thethird transfer robot 312. At this time as well, thegate 333 a is opened and then closed. 331 a, 332 a, and 334 a may have the similar or same function as theOther gates gate 333 a. - One side of the third
substrate deposition chamber 340 in a −x direction is connected to thesecond transfer chamber 210 and another side of the thirdsubstrate deposition chamber 340 in a +x direction is connected to thethird transfer chamber 310. - The third donor mask in the
second transfer chamber 310 may be put into the thirdsubstrate deposition chamber 340 by thethird transfer robot 312. At this time, agate 340 a may be opened and closed. Then, thesubstrate 10 is put into the thirdsubstrate deposition chamber 340 while the deposition surface of thesubstrate 10 faces upward. At this time, agate 340 b may be opened and closed. Thesubstrate 10 may be put into the thirdsubstrate deposition chamber 340 by thesecond transfer robot 212. - Here, the
substrate 10 may be put into the thirdsubstrate deposition chamber 340 after the third donor mask is put into the thirdsubstrate deposition chamber 340, or the third donor mask may be put into the thirdsubstrate deposition chamber 340 after thesubstrate 10 is put into the thirdsubstrate deposition chamber 340. Alternatively, the third donor mask and thesubstrate 10 may be simultaneously put into the thirdsubstrate deposition chamber 340. - As such, when the
substrate 10 and the third donor mask are put into the thirdsubstrate deposition chamber 340, the third donor mask is above thesubstrate 10 while the deposition layer of the third donor mask faces downward (−z direction) and the deposition surface of thesubstrate 10 faces upward (+z direction). - Then, the third
substrate deposition chamber 340 mutually aligns the third donor mask and thesubstrate 10. In embodiments, thesubstrate 10 and the third donor mask are aligned such that a transmission area of a reflection layer of the third donor mask corresponds to a pre-set area of thesubstrate 10. Since the deposition layer of the third donor mask contains a blue emission material, thesubstrate 10 and the third donor mask are aligned such that a through hole of the reflection layer of the third donor mask corresponds to thepixel electrode 21 of a blue sub-pixel B. - Then, the third
substrate deposition chamber 340 deposits, on the deposition surface of thesubstrate 10, a part of the deposition or donor layer of the third deposition material on the deposition surface of the third donor mask. In detail, the part of the deposition layer of the third donor mask is transferred to thesubstrate 10 by emitting a lamp light or a laser beam to the third donor mask by using a flash lamp or a laser beam generator. Since details thereof are the same and/or similar to those described above with respect to depositing the part of thedeposition layer 34 of thefirst donor mask 30 on thesubstrate 10, the details thereof are not provided here. - Then, the
third transfer robot 312 discharges the third donor mask from the thirdsubstrate deposition chamber 340 and puts the third donor mask into thethird mask stack 320. The third donor mask used as such may be washed in awashing chamber 324, tested in atest chamber 322 as occasion demands, and then put into thethird mask stack 320 again to be re-used. Here, the third donor mask may be re-used by, as described above, forming the deposition layer on the third donor mask and then depositing the part of the deposition layer on thesubstrate 10. - Meanwhile, the
substrate 10 on which the blue light emission layer is deposited may also be discharged from the thirdsubstrate deposition chamber 340 to thethird transfer chamber 310 by thethird transfer robot 312, and then put into the secondsubstrate turning chamber 420. Here, thesubstrate 10 moves while the deposition surface of thesubstrate 10 faces upward (+z direction). - When the
substrate 10 is put into the secondsubstrate turning chamber 420 as such, the secondsubstrate turning chamber 420 turns thesubstrate 10 such that the deposition surface of thesubstrate 10 faces downward (−z direction). When the secondsubstrate turning chamber 420 turns thesubstrate 10, an inner region of the secondsubstrate turning chamber 420 may be in an atmospheric state or a state having a pre-set vacuum level. In any cases, the inner region of the second substrate turning chamber may be blocked from an outer region through the 420 a and 420 b of the secondgates substrate turning chamber 420. - The second
substrate turning chamber 420 turns thesubstrate 10 because a layer that is integrally formed with respect to the entire pixels needs to be formed on the emission layer or the pixel-definingfilm 18 after the red light emission layer, the green light emission layer, and/or the blue light emission layer are deposited on thesubstrate 10. Such a layer that is integrally formed with respect to the entire pixels may be referred to as a second auxiliary layer, and the second auxiliary layer may be an electron transport layer (ETL), an electron injection layer (EIL), and/or a counter electrode. - The second auxiliary layer may be formed via a deposition, and at this time, the second auxiliary layer may be deposited while a deposition source discharging a material for forming the second auxiliary layer is located at the bottom, the
substrate 10 is located above the deposition source, and the deposition surface of thesubstrate 10 faces the deposition source. Thus, after the emission layer or the like are deposited, the secondsubstrate turning chamber 420 may turn thesubstrate 10. - The deposition apparatus according to the current embodiment turns the
substrate 10 only once before and after the emission layer is formed. Then, the emission layer is formed without having to turn thesubstrate 10 or the first through third donor masks. Thus, the emission layer may be quickly formed. - Of course, the
substrate 10 may not be turned and may pass through the first through 100, 200, 300 while the deposition surface of thethird deposition clusters substrate 10 faces downward (−z direction). In this case, a deposition layer may be deposited on a donor mask while a deposition surface of the donor mask faces downward (−z direction), and then the donor mask may be turned so that the donor mask is located below thesubstrate 10 and a pre-set area of the deposition layer of the donor mask may be deposited on thesubstrate 10. - However, in this case, each of the first through
100, 200, 300 needs to include a mask turning chamber. Thus, the number of turning chambers increases compared to when thethird deposition clusters substrate 10 is turned, and accordingly, a space required for the deposition apparatus increases. In detail, the red light emission layer, the green light emission layer, and the blue light emission layer are formed in the above description, but if a patterned layer, such as a red auxiliary layer and/or a green auxiliary layer, needs to be formed, a deposition cluster for forming the patterned layer is additionally required, and thus the number of turning chambers may be further increased. - However, according to the deposition apparatus of the current embodiment, even if the number of deposition clusters increases, only two turning chambers, in the illustrated embodiment, the first
substrate turning chamber 410 and the secondsubstrate turning chamber 420, are required, and thus the structure of the deposition apparatus may be simplified and manufacturing costs of the deposition apparatus may be reduced. Moreover, since a donor mask is not turned, a manufacturing speed of an OLED apparatus may be increased. - The deposition apparatus according to the current embodiment includes the first through
100, 200, 300, the firstthird deposition clusters substrate turning chamber 410, and the secondsubstrate turning chamber 420, but the deposition apparatus is not limited thereto. For example, the deposition apparatus may further include a deposition cluster between the first and second 410 and 420. Also, the deposition apparatus may further include a first auxiliary layer deposition chamber for depositing the first auxiliary layer or a first auxiliary layer deposition cluster including the first auxiliary deposition chamber, which is connected to the firstsubstrate turning chambers substrate turning chamber 410. In addition, the deposition apparatus may further include a second auxiliary layer deposition chamber for depositing the second auxiliary layer or a second auxiliary layer deposition cluster including the second auxiliary deposition chamber, which is connected to the secondsubstrate turning chamber 420. - The first through
100, 200, 300 each include a plurality of mask deposition chambers, but alternatively, the first throughthird deposition clusters 100, 200, 300 may each include one mask deposition chamber.third deposition clusters -
FIG. 6 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention. As shown inFIG. 6 , thefirst deposition cluster 100 may include a plurality of first 141 and 142. In this case, the firstsubstrate deposition chambers 141 and 142 may be connected to thesubstrate deposition chambers first transfer chamber 110 respectively through 141 a and 142 a. Also, the firstgates substrate turning chamber 410 may be connected to thefirst transfer chamber 110 of thefirst deposition cluster 100. - The
second deposition cluster 200 may also include a plurality of second 241 and 242. In this case, the secondsubstrate deposition chambers 241 and 242 may be connected to thesubstrate deposition chambers second transfer chamber 210 respectively through 241 a and 242 a. Also, thegates first transfer chamber 110 and thesecond transfer chamber 210 may be connected to each other through afirst connection chamber 510. Thefirst connection chamber 510 may be connected to the first and 110 and 210 respectively throughsecond transfer chambers 510 a and 510 b.gates - The
third deposition cluster 300 may also include a plurality of third 341 and 342. In this case, the thirdsubstrate deposition chambers 341 and 342 may be connected to thesubstrate deposition chambers third transfer chamber 310 respectively through 341 a and 342 a. Also, the second andgates 210 and 310 may be connected to each other through athird transfer chambers second connection chamber 520. Thesecond connection chamber 520 may be connected to the second and 210 and 310 respectively throughthird transfer chambers 520 a and 520 b. Also, the secondgates substrate turning chamber 420 may be connected to thethird transfer chamber 310 of thethird deposition cluster 300. - According to the deposition apparatus of the current embodiment, each of the first through
100, 200, 300 may simultaneously perform deposition on two substrates.third deposition clusters -
FIG. 1 is a plan view schematically illustrating a deposition apparatus according to another embodiment of the present invention. As shown inFIG. 7 , in the deposition apparatus according to the current embodiment, the firstsubstrate turning chamber 410 may be connected to thefirst transfer chamber 110 of thefirst deposition cluster 100. Also, one side of the firstsubstrate deposition chamber 140 in the −x direction may be connected to thefirst transfer chamber 110 and another side of the firstsubstrate deposition chamber 140 in the +x direction may be connected to thesecond transfer chamber 210 of thesecond deposition cluster 200. Accordingly, the firstsubstrate deposition chamber 140 may include the 140 a and 140 b. One side of the secondgates substrate deposition chamber 240 of thesecond deposition cluster 200 in the −x direction may be connected to thesecond transfer chamber 210 and the other side of the secondsubstrate deposition chamber 240 in the +x direction may be connected to thethird transfer chamber 310 of thethird deposition cluster 300. Accordingly, the secondsubstrate deposition chamber 240 may include the 240 a and 240 b. One side of the thirdgates substrate deposition chamber 340 in the −x direction may be connected to thethird transfer chamber 310 and the other side of the thirdsubstrate deposition chamber 340 in the +x direction may be connected to the secondsubstrate turning chamber 420. Accordingly, the thirdsubstrate deposition chamber 340 may include thegate 340 a in a direction of thethird transfer chamber 310 and thegate 340 b in a direction of the secondsubstrate turning chamber 420. - The deposition apparatus has been described above, but embodiments of the present invention are not limited thereto. For example, an embodiment of the present invention may provide a method of manufacturing an OLED apparatus by using the deposition apparatus.
- According to the method of an embodiment of the present invention, a substrate is turned such that a deposition surface of the substrate faces upward. Then, a first deposition layer is deposited on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward, and the first donor mask and the substrate are mutually aligned while the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward. Next, a pre-set part of the first deposition layer on the deposition surface of the first donor mask is deposited on the deposition surface of the substrate, and then the substrate is turned such that the deposition surface of the substrate faces downward. Here, before the substrate is turned such that the deposition surface of the substrate faces downward, a second deposition layer and a third deposition layer may be formed respectively on a second donor mask and a third donor mask, a pre-set part of the second deposition layer may be deposited on the substrate while the second donor mask is disposed above the substrate, and a pre-set part of the third deposition layer may be deposited on the substrate while the third donor mask is disposed above the substrate.
- Here, a pre-set part of a deposition layer of a donor mask may be deposited on a surface of a substrate, which faces upward, by emitting a laser beam or a flash lamp light to one of two surfaces of the donor mask, which is far from the deposition layer.
- Before turning the substrate such that the deposition surface of the substrate faces upward, a first auxiliary layer or pre-deposited layer may be deposited on the deposition surface of the substrate by using a deposition source disposed below the substrate while the deposition surface of the substrate faces downward, and after turning the substrate such that the deposition surface of the substrate faces downward, a second auxiliary layer may be deposited on the deposition surface of the substrate by using a deposition source disposed below the substrate while the deposition surface of the substrate faces downward.
- According to the method of the current embodiment, since the substrate is turned twice while manufacturing the OLED apparatus, the OLED apparatus may be quickly manufactured. If a donor mask is turned without turning the substrate, the donor mask needs to be turned whenever a patterned layer is formed, and thus the donor mask is turned at least three times in order to form a red light emission layer, a green light emission layer, and a blue light emission layer, and at least 5 times if a red auxiliary layer and a green auxiliary layer are further formed. However, according to the method of the current embodiment, the substrate is turned only twice to form the OLED apparatus.
- As described above, according to one or more embodiments of the present invention, the deposition apparatus and the method of manufacturing an OLED apparatus may have reduced manufacturing time and reduced manufacturing costs of the OLED apparatus.
- While one or more embodiments of the present invention have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Claims (18)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020140104530A KR102162798B1 (en) | 2014-08-12 | 2014-08-12 | Deposition apparatus and method for manufacturing organic light-emitting display apparatus |
| KR10-2014-0104530 | 2014-08-12 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20160049587A1 true US20160049587A1 (en) | 2016-02-18 |
| US9543519B2 US9543519B2 (en) | 2017-01-10 |
Family
ID=55302794
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/596,653 Expired - Fee Related US9543519B2 (en) | 2014-08-12 | 2015-01-14 | Deposition apparatus and method of manufacturing organic light-emitting display apparatus |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US9543519B2 (en) |
| KR (1) | KR102162798B1 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102380159B1 (en) * | 2017-03-02 | 2022-03-29 | 삼성디스플레이 주식회사 | Deposition equipment, manufacturing method of dislay device, and dislay device manufactured by the method |
| KR101972210B1 (en) * | 2017-03-03 | 2019-08-23 | 안호상 | Deposition apparatus based on 4-divided domain chamber, deposition system based on multi-divided domain chamber, and deposition method thereof |
| WO2018186634A1 (en) * | 2017-04-02 | 2018-10-11 | 주식회사 올레드온 | Mass production equipment of high resolution amoled devices using plane type evaporation source |
| KR101925064B1 (en) * | 2017-04-02 | 2018-12-04 | 주식회사 올레드온 | Manufacturing equipment using vertical type plane source evaporation for high definition AMOLED devices |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090075411A1 (en) * | 2002-05-17 | 2009-03-19 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing apparatus |
| US20090226610A1 (en) * | 2008-03-05 | 2009-09-10 | Applied Materials, Inc. | Coating apparatus with rotation module |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6485884B2 (en) * | 2001-04-27 | 2002-11-26 | 3M Innovative Properties Company | Method for patterning oriented materials for organic electronic displays and devices |
| US6890627B2 (en) * | 2002-08-02 | 2005-05-10 | Eastman Kodak Company | Laser thermal transfer from a donor element containing a hole-transporting layer |
| US8153201B2 (en) | 2007-10-23 | 2012-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing light-emitting device, and evaporation donor substrate |
| JP5354900B2 (en) | 2007-12-28 | 2013-11-27 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor substrate |
| KR101517020B1 (en) * | 2008-05-15 | 2015-05-04 | 삼성디스플레이 주식회사 | Apparatus and method for fabricating Organic Light Emitting Diode Display Device |
| JP4600569B2 (en) * | 2008-06-25 | 2010-12-15 | ソニー株式会社 | Method for manufacturing donor substrate and display device |
| KR20130074307A (en) * | 2011-12-26 | 2013-07-04 | 엘아이지에이디피 주식회사 | Evaporation device for manufacturing of oled having apparatus for chucking and dechucking |
| KR101461037B1 (en) | 2012-02-29 | 2014-11-13 | 엘지디스플레이 주식회사 | Apparatus and method of fabricating organic electroluminescence device |
| KR101931180B1 (en) | 2012-05-08 | 2018-12-21 | 세메스 주식회사 | Substrate treating apparatus and method for carrying in substrate |
| KR101990555B1 (en) * | 2012-12-24 | 2019-06-19 | 삼성디스플레이 주식회사 | Thin film encapsulation manufacturing device and manufacturing method of thin film encapsulation |
-
2014
- 2014-08-12 KR KR1020140104530A patent/KR102162798B1/en active Active
-
2015
- 2015-01-14 US US14/596,653 patent/US9543519B2/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090075411A1 (en) * | 2002-05-17 | 2009-03-19 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing apparatus |
| US20090226610A1 (en) * | 2008-03-05 | 2009-09-10 | Applied Materials, Inc. | Coating apparatus with rotation module |
Also Published As
| Publication number | Publication date |
|---|---|
| US9543519B2 (en) | 2017-01-10 |
| KR102162798B1 (en) | 2020-10-08 |
| KR20160020036A (en) | 2016-02-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8410483B2 (en) | Organic light-emitting display device and method of manufacturing the same | |
| US9252388B2 (en) | Organic light emitting diode (OLED) display | |
| US8894458B2 (en) | Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method | |
| KR101174874B1 (en) | Deposition source, apparatus for thin layer deposition and method of manufacturing organic light emitting display apparatus | |
| US20180097034A1 (en) | Display apparatus | |
| US9837639B2 (en) | Display apparatus and method of manufacturing the same | |
| US20120103253A1 (en) | Organic layer deposition apparatus | |
| US9644258B2 (en) | Apparatus and method of manufacturing display device | |
| US20150372067A1 (en) | Organic light-emitting display device and method of manufacturing the same | |
| US9379325B2 (en) | Donor mask and method of manufacturing organic light emitting display apparatus using the same | |
| US9263703B2 (en) | Display apparatus and method of manufacturing the same | |
| US9543519B2 (en) | Deposition apparatus and method of manufacturing organic light-emitting display apparatus | |
| KR20120061112A (en) | Organic light emitting display device | |
| US20180122861A1 (en) | Display Device Having Eitting Areas | |
| US9299953B2 (en) | Flat panel display device having a sealing structure and manufacturing method thereof | |
| US9019255B2 (en) | Polarizer film, and organic light emitting display apparatus providing the same | |
| US20150048318A1 (en) | Organic light-emitting diode (oled) display and method of manufacturing same | |
| US9059428B2 (en) | Organic light-emitting display apparatus and method of manufacturing the same | |
| US9163306B2 (en) | Patterning slit sheet frame assembly | |
| US9735379B2 (en) | Display apparatus, apparatus and method of manufacturing display apparatus | |
| KR20070036995A (en) | Organic light emitting display device | |
| US9362503B2 (en) | Donor mask and method of manufacturing organic light-emitting display apparatus | |
| KR102323425B1 (en) | Substrate for Transparant Flexable Display and Organic Light Emitting Display Device using the Same | |
| US9803279B2 (en) | Apparatus and method for manufacturing display apparatus | |
| US20240206307A1 (en) | Manufacturing device of display device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IM, SUNGSOON;KANG, TAEWOOK;LEE, DUCKJUNG;REEL/FRAME:034712/0577 Effective date: 20150109 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20210110 |