US20160030934A1 - Hydroprocessing catalyst and hydroprocessing catalyst of making the same - Google Patents
Hydroprocessing catalyst and hydroprocessing catalyst of making the same Download PDFInfo
- Publication number
- US20160030934A1 US20160030934A1 US14/882,582 US201514882582A US2016030934A1 US 20160030934 A1 US20160030934 A1 US 20160030934A1 US 201514882582 A US201514882582 A US 201514882582A US 2016030934 A1 US2016030934 A1 US 2016030934A1
- Authority
- US
- United States
- Prior art keywords
- groups
- catalyst
- hydroprocessing catalyst
- group
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 O[11*]O.[1*]C([2*])([3*])C(=O)O.[4*]N([5*])[6*].[7*]N([10*])CCN([8*])[9*] Chemical compound O[11*]O.[1*]C([2*])([3*])C(=O)O.[4*]N([5*])[6*].[7*]N([10*])CCN([8*])[9*] 0.000 description 3
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/106—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0201—Oxygen-containing compounds
- B01J31/0209—Esters of carboxylic or carbonic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/12—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/084—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/12—Noble metals
- B01J29/126—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/14—Iron group metals or copper
- B01J29/146—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/16—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/166—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0201—Oxygen-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0201—Oxygen-containing compounds
- B01J31/0205—Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
- B01J31/0207—Aldehydes or acetals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0237—Amines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0237—Amines
- B01J31/0238—Amines with a primary amino group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0244—Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0249—Ureas (R2N-C(=O)-NR2)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/04—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
-
- B01J35/1019—
-
- B01J35/1023—
-
- B01J35/1038—
-
- B01J35/1042—
-
- B01J35/1047—
-
- B01J35/1066—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/638—Pore volume more than 1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/44—Hydrogenation of the aromatic hydrocarbons
- C10G45/46—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
- C10G45/54—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/06—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
- C10G47/14—Inorganic carriers the catalyst containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
- C10G47/16—Crystalline alumino-silicate carriers
- C10G47/18—Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
- C10G49/04—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
- C10G49/06—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
- C10G49/08—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/20—After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/34—Reaction with organic or organometallic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0203—Impregnation the impregnation liquid containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
Definitions
- the present invention is directed to a catalyst for hydroprocessing a carbonaceous feedstock under hydroprocessing conditions, hydroprocessing catalysts for making the catalyst, and hydroprocessing processes using the catalyst of the present invention.
- Catalytic hydroprocessing refers to petroleum refining processes in which a carbonaceous feedstock is brought into contact with hydrogen and a catalyst, at a higher temperature and pressure, for the purpose of removing undesirable impurities and/or converting the feedstock to an improved product.
- hydroprocessing processes include hydrotreating, hydrodemetalization, hydrocracking and hydroisomerization processes.
- a hydroprocessing catalyst typically consists of one or more metals deposited on a support or carrier consisting of an amorphous oxide and/or a crystalline microporous material (e.g. a zeolite).
- a support or carrier consisting of an amorphous oxide and/or a crystalline microporous material (e.g. a zeolite).
- the selection of the support and metals depend upon the particular hydroprocessing process for which the catalyst is employed.
- Petroleum refiners continue to seek out catalysts of improved activity, selectivity and/or stability.
- Increasing the activity of a catalyst increases the rate at which a chemical reaction proceeds under a given set of conditions, increasing the selectivity of the catalysts decreases unwanted by-products of the reaction, and increasing the stability of a catalyst increases its resistance to deactivation, that is, the useful life of the catalyst is extended.
- the conditions required to produce a given end product such as a hydrocarbon of a particular sulfur or nitrogen content, becomes more mild (e.g. decreased temperature). Milder conditions require less energy to achieve a desired product, and the catalyst's life is extended due to such factors as lower coke formation and the like.
- the present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, and optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
- the present invention is also directed to hydroprocessing catalysts for making the catalyst, and hydroprocessing processes using the catalyst of the present invention.
- FIG. 1 shows the polycyclic aromatics build up as a function of time-on-stream for the catalyst compositions synthesized per the teachings of Examples 1 and 3 herein.
- Periodic Table refers to the version of IUPAC Periodic Table of the Elements dated Jun. 22, 2007, and the numbering scheme for the Periodic Table Groups is as described in Chemical and Engineering News, 63(5), 27 (1985).
- hydroprocessing refers to a process in which a carbonaceous feedstock is brought into contact with hydrogen and a catalyst, at a higher temperature and pressure, for the purpose of removing undesirable impurities and/or converting the feedstock to a desired product.
- hydrotreating refers to a process that converts sulfur- and/or nitrogen-containing hydrocarbon feeds into hydrocarbon products with reduced sulfur and/or nitrogen content, typically in conjunction with a hydrocracking function, and which generates hydrogen sulfide and/or ammonia (respectively) as byproducts.
- hydrocracking refers to a process in which hydrogenation and dehydrogenation accompanies the cracking/fragmentation of hydrocarbons, e.g., converting heavier hydrocarbons into lighter hydrocarbons, or converting aromatics and/or cycloparaffins (naphthenes) into non-cyclic branched paraffins
- hydroisomerization refers to a process in which normal paraffins are isomerized to their more branched counterparts in the presence of hydrogen over a catalyst.
- hydrodemetalization refers to a process that removes undesirable metals from hydrocarbon feeds into hydrocarbon products with reduced metal content.
- gas-to-liquid refers to a process in which gas-phase hydrocarbons such as natural gas are converted to longer-chain hydrocarbons such as diesel fuel via direct conversion or via syngas as an intermediate, for example using the Fischer-Tropsch process.
- framework topology and its preceding three-letter framework code refers to the Framework Type data provided for the framework code in “Atlas of Zeolite Types” 6th Edition, 2007.
- alkenyl represents a straight or branched chain group of one to twelve carbon atoms derived from a straight or branched chain hydrocarbon containing at least one carbon-carbon double bond.
- hydroxyalkyl represents one or more hydroxyl groups attached to the parent molecular moiety through an alkyl group.
- alkoxyalkyl represents one or more alkoxy groups attached to the parent molecular moiety through an alkyl group.
- aminoalkyl represents one or more amino groups attached to the parent molecular moiety through an alkyl group.
- oxoalkyl represents one or more ether groups attached to the parent molecular moiety through an alkyl group.
- carboxyalkyl represents one or more carboxyl groups attached to the parent molecular moiety through an alkyl group.
- aminocarboxyalkyl represents one or more carboxyl groups and one or more amino groups attached to the parent molecular moiety through an alkyl group.
- hydroxycarboxyalkyl represents one or more carboxyl groups and one or more hydroxyl groups attached to the parent molecular moiety through an alkyl group.
- Constrained index (CI) indicates the total cracking conversion of a 50/50 mixture of n-hexane and 3-methyl-pentane by a sample catalyst at 900° F. (482° C.), 0.68 WHSV. Samples are prepared according to the hydroprocessing catalyst described in U.S. Pat. No. 7,063,828 to Zones and Burton, issued Jun. 20, 2006.
- SiO 2 /Al 2 O 3 Ratio (c) SiO 2 /Al 2 O 3 Ratio (SAR): determined by ICP elemental analysis.
- a SAR of infinity ( ⁇ ) represents the case where there is no aluminum in the zeolite, i.e., the mole ratio of silica to alumina is infinity. In that case the molecular sieve is comprised of essentially all of silica.
- Alpha value determined by an Alpha test adapted from the published descriptions of the Mobil Alpha test (P. B. Weisz and J. N. Miale, J. Catal., 4, 527-529, 1965; J. N. Miale, N. Y. Chen, and P. B. Weisz, J. Catal., 6, 278-87, 1966).
- the “Alpha Value” is calculated as the cracking rate of the sample in question divided by the cracking rate of a standard silica alumina sample.
- the resulting “Alpha” is a measure of acid cracking activity which generally correlates with number of acid sites.
- the present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, and optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
- the catalyst support is selected from the group consisting of alumina, silica, zirconia, titanium oxide, magnesium oxide, thorium oxide, beryllium oxide, alumina-silica, alumina-titanium oxide, alumina-magnesium oxide, silica-magnesium oxide, silica-zirconia, silica-thorium oxide, silica-beryllium oxide, silica-titanium oxide, titanium oxide-zirconia, silica-alumina-zirconia, silica-alumina-thorium oxide, silica-alumina-titanium oxide or silica-alumina-magnesium oxide, preferably alumina, silica-alumina, and combinations thereof.
- the catalyst support is an alumina selected from the group consisting of ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and mixtures thereof.
- the catalyst support is an amorphous silica-alumina material in which the mean mesopore diameter is between 70 ⁇ and 130 ⁇ .
- the catalyst support is an amorphous silica-alumina material containing SiO 2 in an amount of 10 to 70 wt. % of the bulk dry weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 and 550 m 2 /g and a total pore volume of between 0.75 and 1.05 mL/g.
- the catalyst support is an amorphous silica-alumina material containing SiO 2 in an amount of 10 to 70 wt. % of the bulk dry weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 and 550 m 2 /g, a total pore volume of between 0.75 and 1.05 mL/g, and a mean mesopore diameter is between 70 ⁇ and 130 ⁇ .
- the catalyst support is a highly homogeneous amorphous silica-alumina material having a surface to bulk silica to alumina ratio (S/B ratio) of 0.7 to 1.3, and a crystalline alumina phase present in an amount no more than about 10 wt. %.
- the Si/Al atomic ratio of the silica-alumina surface is measured using x-ray photoelectron spectroscopy (XPS).
- XPS is also known as electron spectroscopy for chemical analysis (ESCA). Since the penetration depth of XPS is less than 50 ⁇ , the Si/Al atomic ratio measured by XPS is for the surface chemical composition.
- XPS silica-alumina characterization
- the bulk Si/Al ratio of the composition is determined from ICP elemental analysis. Then, by comparing the surface Si/Al ratio to the bulk Si/Al ratio, the S/B ratio and the homogeneity of silica-alumina are determined. How the SB ratio defines the homogeneity of a particle is explained as follows.
- An S/B ratio of 1.0 means the material is completely homogeneous throughout the particles.
- An S/B ratio of less than 1.0 means the particle surface is enriched with aluminum (or depleted with silicon), and aluminum is predominantly located on the external surface of the particles.
- the S/B ratio of more than 1.0 means the particle surface is enriched with silicon (or depleted with aluminum), and aluminum is predominantly located on the internal area of the particles.
- the amount of catalyst support in the hydroprocessing catalyst is from 5 wt. % to 80 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- the hydroprocessing catalyst may optionally contain one or more molecular sieves selected from the group consisting of BEA-, ISV-, BEC-, IWR-, MTW-, *STO-, OFF-, MAZ-, MOR-, MOZ-, AFI-, *NRE-, SSY-, FAU-, EMT-, ITQ-21-, ERT-, ITQ-33-, and ITQ-37-type molecular sieves, and mixtures thereof.
- molecular sieves selected from the group consisting of BEA-, ISV-, BEC-, IWR-, MTW-, *STO-, OFF-, MAZ-, MOR-, MOZ-, AFI-, *NRE-, SSY-, FAU-, EMT-, ITQ-21-, ERT-, ITQ-33-, and ITQ-37-type molecular sieves, and mixtures thereof.
- the one or more molecular sieves selected from the group consisting of molecular sieves having a FAU framework topology, molecular sieves having a BEA framework topology, and mixtures thereof.
- the amount of molecular sieve material in the hydroprocessing catalyst is from 0 wt. % to 60 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one subembodiment, the amount of molecular sieve material in the hydroprocessing catalyst is from 0.5 wt. % to 40% wt. %.
- the molecular sieve is a Y zeolite with a unit cell size of 24.15 ⁇ -24.45 ⁇ . In another subembodiment, the molecular sieve is a Y zeolite with a unit cell size of 24.15 ⁇ -24.35 ⁇ . In another subembodiment, the molecular sieve is a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than 5 and a Br ⁇ nsted acidity of from 1 to 40. In one subembodiment, the molecular sieve is a Y zeolite having the properties described in Table 1 below.
- the molecular sieve is a Y zeolite having the properties described in Table 2 below.
- the catalyst contains from 0.1 wt. % to 40 wt. % (based on the bulk dry weight of the catalyst) of a Y zeolite having the properties described Table 2 above, and from 1 wt. % to 60 wt. % (based on the bulk dry weight of the catalyst) of a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than about 5 and Br ⁇ nsted acidity of from 1 to 40 micro-mole/g.
- the hydroprocessing catalyst of the present invention contains one or more metals.
- each metal employed is selected from the group consisting of elements from Group 6 and Groups 8 through 10 of the Periodic Table, and mixtures thereof.
- each metal is selected from the group consisting of nickel (Ni), palladium (Pd), platinum (Pt), cobalt (Co), iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), and mixtures thereof.
- the hydroprocessing catalyst contains at least one Group 6 metal and at least one metal selected from Groups 8 through 10 of the periodic table. Exemplary metal combinations include Ni/Mo/W, Ni/Mo, Ni/W, Co/Mo, Co/W, Co/W/Mo and Ni/Co/W/Mo.
- the total amount of metal oxide material in the hydroprocessing catalyst is from 0.1 wt. % to 90 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- the hydroprocessing catalyst contains from 2 wt. % to 10 wt. % of nickel oxide and from 8 wt. % to 40 wt. % of tungsten oxide based on the bulk dry weight of the hydroprocessing catalyst.
- a diluent may be employed in the formation of the hydroprocessing catalyst.
- Suitable diluents include inorganic oxides such as aluminum oxide and silicon oxide, titanium oxide, clays, ceria, and zirconia, and mixture of thereof.
- the amount of diluent in the hydroprocessing catalyst is from 0 wt. % to 35 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one subembodiment, the amount of diluent in the hydroprocessing catalyst is from 0.1 wt. % to 25 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- the hydroprocessing catalyst of the present invention may contain one or more promoters selected from the group consisting of phosphorous (P), boron (B), fluorine (F), silicon (Si), aluminum (Al), zinc (Zn), manganese (Mn), and mixtures thereof.
- the amount of promoter in the hydroprocessing catalyst is from 0 wt. % to 10 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one subembodiment, the amount of promoter in the hydroprocessing catalyst is from 0.1 wt. % to 5 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- a shaped hydroprocessing catalyst is prepared by:
- the diluent, promoter and/or molecular sieve may be combined with the carrier when forming the extrudable mass.
- the carrier and (optionally) the diluent, promoter and/or molecular sieve can be impregnated before or after being formed into the desired shapes.
- deposition of at least one of the metals is achieved in the presence of a modifying agent is selected from the group consisting of compounds represented by structures (1) through (4), including condensated forms thereof:
- R 1 , R 2 and R 3 are independently selected from the group consisting of hydrogen; hydroxyl; methyl; amine; and linear or branched, substituted or unsubstituted C 1 -C 3 alkyl groups, C 1 -C 3 alkenyl groups, C 1 -C 3 hydroxyalkyl groups, C 1 -C 3 alkoxyalkyl groups, C 1 -C 3 aminoalkyl groups, C 1 -C 3 oxoalkyl groups, C 1 -C 3 carboxyalkyl groups, C 1 -C 3 aminocarboxyalkyl groups and C 1 -C 3 hydroxycarboxyalkyl groups;
- R 4 through R 10 are independently selected from the group consisting of hydrogen; hydroxyl; and linear or branched, substituted or unsubstituted C 2 -C 3 carboxyalkyl groups; and
- R 11 is selected from the group consisting of linear or branched, saturated and unsaturated, substituted or unsubstituted C 1 -C 3 alkyl groups, C 1 -C 3 hydroxyalkyl groups, and C 1 -C 3 oxoalkyl groups.
- modifying agents useful in this embodiment include 2,3-dihydroxy-succinic acid, ethanedioic acid, 2-hydroxyacetic acid, 2-hydroxy-propanoic acid, 2-hydroxy-1,2,3-propanetricarboxylic acid, methoxyacetic acid, cis-1,2-ethylene dicarboxylic acid, hydroethane-1,2-dicarboxyic acid, ethane-1,2-diol, propane-1,2,3-triol, propanedioic acid, and ⁇ -hydro- ⁇ -hydroxypoly(oxyethylene).
- deposition of at least one of the metals is achieved in the presence of a modifying agent selected from the group consisting of N,N′-bis(2-aminoethyl)-1,2-ethane-diamine, 2-amino-3-(1H-indol-3-yl)-propanoic acid, benzaldehyde, [[(carboxymethyl)imino]bis(ethylenenitrilo)]-tetra-acetic acid, 1,2-cyclohexanediamine, 2-hydroxybenzoic acid, thiocyanate, thiosulfate, thiourea, pyridine, and quinoline.
- a modifying agent selected from the group consisting of N,N′-bis(2-aminoethyl)-1,2-ethane-diamine, 2-amino-3-(1H-indol-3-yl)-propanoic acid, benzaldehyde, [[(carboxymethyl)imino]bis
- the modifying agent impedes metal aggregation, thereby enhancing the activity and selectivity of the catalyst.
- the amount of modifying agent in the pre-calcined hydroprocessing catalyst is from 2 wt. % to 18 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- the calcination of the extruded mass will vary depending on the particular support selected. Typically, the extruded mass can be calcined at a temperature between 752° F. (400° C.) and 1200° F. (650° C.) for a period of between 1 and 3 hours.
- Non-limiting examples of suitable solvents include water and C 1 to C 3 alcohols.
- Other suitable solvents can include polar solvents such as alcohols, ethers, and amines Water is a preferred solvent.
- the metal compounds be water soluble and that a solution of each be formed, or a single solution containing both metals be formed.
- the modifying agent can be prepared in a suitable solvent, preferably water.
- the three solvent components can be mixed in any sequence. That is, all three can be blended together at the same time, or they can be sequentially mixed in any order. In an embodiment, it is preferred to first mix the one or more metal components in an aqueous media, than add the modifying agent.
- the amount of metal precursors and modifying agent in the impregnation solution should be selected to achieve preferred ratios of metal to modifying agent in the catalyst precursor after drying.
- the calcined extrudate is exposed to the impregnation solution until incipient wetness is achieved, typically for a period of between 1 and 100 hours (more typically between 1 and 5 hours) at room temperature to 212° F. (100° C.) while tumbling the extrudates, following by aging for from 0.1 to 10 hours, typically from about 0.5 to about 5 hours.
- the drying step is conducted at a temperature sufficient to remove the impregnation solution solvent, but below the decomposition temperature of the modifying agent.
- the dried impregnated extrudate is then calcined at a temperature above the decomposition temperature of the modifying agent, typically from about 500° F. (260° C.) to 1100° F. (590° C.), for an effective amount of time, to convert the metals to metal oxides.
- the present invention contemplates that when the impregnated extrudate is to be calcined, it will undergo drying during the period where the temperature is being elevated or ramped to the intended calcination temperature. This effective amount of time will range from about 0.5 to about 24 hours, typically from about 1 to about 5 hours.
- the calcination can be carried out in the presence of a flowing oxygen-containing gas such as air, a flowing inert gas such as nitrogen, or a combination of oxygen-containing and inert gases.
- the dried and calcined hydroprocessing catalysts of the present invention can be sulfided to form an active catalyst. Sulfiding of the catalyst precursor to form the catalyst can be performed prior to introduction of the catalyst into a reactor (thus ex-situ presulfiding), or can be carried out in the reactor (in-situ sulfiding).
- Suitable sulfiding agents include elemental sulfur, ammonium sulfide, ammonium polysulfide ([(NH 4 ) 2 S x ), ammonium thiosulfate ((NH 4 ) 2 S 2 O 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), thiourea CSN 2 H 4 , carbon disulfide, dimethyl disulfide (DMDS), dimethyl sulfide (DMS), dibutyl polysulfide (DBPS), mercaptanes, tertiarybutyl polysulfide (PSTB), tertiarynonyl polysulfide (PSTN), aqueous ammonium sulfide.
- DMDS dimethyl disulfide
- DMS dimethyl sulfide
- DBPS dibutyl polysulfide
- PSTB tertiarynonyl polysulfide
- PSTN aqueous am
- the sulfiding agent is present in an amount in excess of the stoichiometric amount required to form the sulfided catalyst.
- the amount of sulfiding agent represents a sulphur to metal mole ratio of at least 3 to 1 to produce a sulfided catalyst.
- the catalyst is converted into an active sulfided catalyst upon contact with the sulfiding agent at a temperature of 150° F. to 900° F. (66° C. to 482° C.), from 10 minutes to 15 days, and under a H 2 -containing gas pressure of 101 kPa to 25,000 kPa. If the sulfidation temperature is below the boiling point of the sulfiding agent, the process is generally carried out at atmospheric pressure. Above the boiling temperature of the sulfiding agent/optional components, the reaction is generally carried out at an increased pressure.
- completion of the sulfidation process means that at least 95% of stoichiometric sulfur quantity necessary to convert the metals into for example, Co 9 S 8 , MoS 2 , WS 2 , Ni 3 S 2 , etc., has been consumed.
- the sulfiding can be carried out to completion in the gaseous phase with hydrogen and a sulfur-containing compound which is decomposable into H 2 S.
- a sulfur-containing compound which is decomposable into H 2 S. Examples include mercaptanes, CS 2 , thiophenes, DMS, DMDS and suitable S-containing refinery outlet gasses.
- the gaseous mixture of H 2 and sulfur containing compound can be the same or different in the steps.
- the sulfidation in the gaseous phase can be done in any suitable manner, including a fixed bed process and a moving bed process (in which the catalyst moves relative to the reactor, e.g., ebullated process and rotary furnace).
- the contacting between the catalyst precursor with hydrogen and a sulfur-containing compound can be done in one step at a temperature of 68° F. to 700° F. (20° C. to 371° C.) at a pressure of 101 kPa to 25,000 kPa for a period of 1 to 100 hrs.
- sulfidation is carried out over a period of time with the temperature being increased or ramped in increments and held over a period of time until completion.
- the sulfidation is done in two or more steps, with the first step being at a lower temperature than the subsequent step(s).
- the sulfidation is carried out in the liquid phase.
- the catalyst precursor is brought in contact with an organic liquid in an amount in the range of 20% to 500% of the catalyst total pore volume.
- the contacting with the organic liquid can be at a temperature ranging from ambient to 248° F. (120° C.).
- the catalyst precursor is brought into contact with hydrogen and a sulfur-containing compound.
- the organic liquid has a boiling range of 200° F. to 1200° F. (93° C. to 649° C.).
- Exemplary organic liquids include petroleum fractions such as heavy oils, lubricating oil fractions like mineral lube oil, atmospheric gas oils, vacuum gas oils, straight run gas oils, white spirit, middle distillates like diesel, jet fuel and heating oil, naphthas, and gasoline.
- the organic liquid contains less than 10 wt. % sulfur, and preferably less than 5 wt. %.
- the catalyst composition according to the invention can be used in the dry or calcined form, in virtually all hydroprocessing processes to treat a plurality of feeds under wide-ranging reaction conditions, e.g., at temperatures in the range of 200° to 450° C., hydrogen pressures in the range of 5 to 300 bar, and space velocities (LHSV) in the range of 0.05 to 10 h ⁇ 1 .
- the hydroprocessing catalyst composition of the invention is particularly suitable for hydrotreating hydrocarbon feedstocks such as middle distillates, kero, naphtha, vacuum gas oils, and heavy gas oils.
- hydrocracking can be carried out using the catalyst of the present invention by contacting the feedstock with hydrogen and the catalyst at a temperature in the range of 175-485° C., hydrogen pressures in the range of 5 to 300 bar, and LHSV in the range of 0.1-30 h ⁇ 1 .
- hydrotreating catalyst and hydrotreating conditions are selected to minimize cracking reactions, which can reduce the yield of the most desulfided product (typically useful as a fuel).
- Hydrotreating conditions typically include a reaction temperature between 204-482° C., for example 315-454° C.; a pressure between 3.5-34.6 Mpa, for example 7.0-20.8 MPa; a feed rate (LHSV) of 0.5 hr ⁇ 1 to 20 hr ⁇ 1 (v/v); and overall hydrogen consumption of 300 to 2000 scf per barrel of liquid hydrocarbon feed (53.4-356 m 3 H 2 /m 3 feed).
- Hydroisomerization conditions are dependent in large measure on the feed used and upon the desired product.
- the hydrogen to feed ratio is typically between 0.089 to 5.34 SCM/liter (standard cubic meters/liter), for example between 0.178 to 3.56 SCM/liter.
- SCM/liter standard cubic meters/liter
- Typical feedstocks include light gas oil, heavy gas oils and reduced crudes boiling above about 177° C.
- Lube oil may be prepared using the catalyst.
- a C 20+ lube oil may be made by hydroisomerizing the paraffin fraction of the feed.
- the lubricating oil may be made by hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing the effluent at a temperature of at least about 200° C. and at a pressure between 0.103 and 20.7 Mpa gauge, in the presence of added hydrogen gas.
- a FT wax feed generated from a GTL process can be hydrocracked to diesel and jet fuels using by contacting the catalyst of the present invention by the process with hydrogen and the catalyst at a temperature in the range of 175-485° C., hydrogen pressures in the range of 5 to 300 bar, and LHSV in the range of 0.1-30 h ⁇ 1 .
- a comparative hydrocracking catalyst was prepared per the following procedure: 67 parts by weight silica-alumina powder (obtained from Sasol), 25 parts by weight pseudo boehmite alumina powder (obtained from Sasol), and 8 parts by weight of zeolite Y (from Tosoh) were mixed well. A diluted HNO 3 acid aqueous solution (1 wt. %) was added to the mix powder to form an extrudable paste. The paste was extruded in 1/16′′ asymmetric quadrilobe shape, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
- Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO 3 based on the bulk dry weight of the finished catalyst.
- the total volume of the solution matched the 103% water pore volume of the base extrudate sample (incipient wetness hydroprocessing catalyst).
- the metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 842° F. (450° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
- This catalyst is named Catalyst A and its physical properties are summarized in Table 3.
- Catalyst B Modified Hydrocracking Catalyst
- a modified Ni/W hydrocracking catalyst was prepared using extrudates prepared with the same formulation as that for Catalyst A. Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO 3 based on the bulk dry weight of the finished catalyst. 2-Hydroxy 1,2,3-propanetricarboxylic (used as a modifying agent), in an amount equal to 10 wt. % of the bulk dry weight of the finished catalyst, was added to the Ni/W solution. The solution was heated to above 120° F. (49° C.) to ensure a completed dissolved (clear) solution.
- the total volume of the metal solution matched the 103% water pore volume of the base extrudates (incipient wetness hydroprocessing catalyst).
- the metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400° F. (205° C.) for 2 hour with purging excess dry air, and cooled down to room temperature.
- Catalyst C was prepared by further calcination of a sampling of Catalyst B at 842° F. (450° C.) for 1 hour.
- Catalyst D Modified Hydrocracking Catalyst
- Catalyst D was prepared per following procedure: 55 parts silica-alumina powder, 25 parts pseudo boehmite alumina powder, and 20 parts of zeolite Y were mixed well. To the mix, a diluted HNO 3 acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in 1/16′′ asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
- Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO 3 based on the bulk dry weight of the finished catalyst.
- 2-Hydroxy 1,2,3-propanetricarboxylic used as a modifying agent, in an amount equal to 10 wt. % of the bulk dry weight of the finished catalyst, was added to the Ni/W solution.
- the solution was heated to above 120° F. (49° C.) to ensure a clear solution.
- the total volume of the metal solution matched the 103% water pore volume of the base extrudates (incipient wetness hydroprocessing catalyst).
- the metal solution was added to the base extrudates gradually while tumbling the extrudates.
- the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400° F. (205° C.) for 2 hour with purging excess dry air, and cooled down to room temperature.
- Catalyst E was prepared by further calcination of a sampling of Catalyst D at 842° F. (450° C.) for 1 hour.
- Catalyst F Modified Hydrocracking Catalyst
- Catalyst F was prepared per following procedure: 69 parts silica-alumina powder and 31 parts pseudo boehmite alumina powder were mixed well. To the mix, a diluted HNO 3 acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in 1/16′′ asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
- Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO 3 based on the bulk dry weight of the finished catalyst.
- 2-Hydroxy 1,2,3-propanetricarboxylic used as a modifying agent, in an amount equal to 10 wt. % of the bulk dry weight of the finished catalyst, was added to the Ni/W solution.
- the solution was heated to above 120° F. (49° C.) to ensure a clear solution.
- the total volume of the metal solution matched the 103% water pore volume of the base extrudates (incipient wetness hydroprocessing catalyst).
- the metal solution was added to the base extrudates gradually while tumbling the extrudates.
- the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400° F. (205° C.) for 2 hour with purging excess dry air, and cooled down to room temperature.
- Catalyst G Modified Hydrocracking Catalyst
- Catalyst G was prepared by further calcination of a sampling of Catalyst F at 842° F. (450° C.) for 1 hour.
- Feed 1 is a hydrotreated VGO comprising high concentrations of polycyclic aromatics.
- Feed 2 is a FT wax generated from a GTL process.
- Tables 5 and 6 compare the hydrocracking performance over catalysts prepared with and without a modifying agent.
- Catalyst C shows superior HCR performance over Catalyst A.
- Catalyst C gave a diesel yield at least 2 wt % higher than base case in expensive of low gas yield (C 4 -) and naphtha yield (C 5 -250° F./121° C.).
- Catalyst C reduced the low gas yield from 4.7 to 4.0 wt % and naphtha yield from 19.0 to 17.7 wt. % in comparison with A.
- Catalyst C made about 2.5 wt % more heavy diesel (550-700° F./288-371° C.) than Catalyst A with a very comparable jet yield (250-550° F./121-288° C.).
- the use of 2-hydroxyl-1,2,3-propanetricarboxylic does not affect the catalyst activity.
- both catalysts B and D showed higher diesel yields than Catalyst A by at least 2 wt. % at the expensive of low gas and naphtha, similar to the findings with the petroleum feeds. Also observed was a significant improvement in catalyst activity for Catalyst B and D by more than 10° F. (5.5° C.) as compared to comparative Catalyst A.
- FIG. 1 shows the polycyclic aromatics concentration (measured by polycyclic aromatics index, PCI) in a recycle liquid (e.g. >700° F. (371° C.) fraction) for Feed 1 over Catalysts A and C. Their initial concentration in the feed is also given for comparison.
- PCI polycyclic aromatics index
- the PCI value maintained at the same level with time on stream on Catalyst C. This provides direct evidence for the improved hydrogenation activity by the use of modifying agent. It is beneficial for catalyst lifetime as the polycyclic aromatics are considered as precursors of coke formation on catalyst surfaces blocking catalytically active sites inaccessible to reactant molecules.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Nanotechnology (AREA)
Abstract
The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
Description
- The present invention is directed to a catalyst for hydroprocessing a carbonaceous feedstock under hydroprocessing conditions, hydroprocessing catalysts for making the catalyst, and hydroprocessing processes using the catalyst of the present invention.
- Catalytic hydroprocessing refers to petroleum refining processes in which a carbonaceous feedstock is brought into contact with hydrogen and a catalyst, at a higher temperature and pressure, for the purpose of removing undesirable impurities and/or converting the feedstock to an improved product. Examples of hydroprocessing processes include hydrotreating, hydrodemetalization, hydrocracking and hydroisomerization processes.
- A hydroprocessing catalyst typically consists of one or more metals deposited on a support or carrier consisting of an amorphous oxide and/or a crystalline microporous material (e.g. a zeolite). The selection of the support and metals depend upon the particular hydroprocessing process for which the catalyst is employed.
- Petroleum refiners continue to seek out catalysts of improved activity, selectivity and/or stability. Increasing the activity of a catalyst increases the rate at which a chemical reaction proceeds under a given set of conditions, increasing the selectivity of the catalysts decreases unwanted by-products of the reaction, and increasing the stability of a catalyst increases its resistance to deactivation, that is, the useful life of the catalyst is extended. In general, as the activity of the catalyst is increased, the conditions required to produce a given end product, such as a hydrocarbon of a particular sulfur or nitrogen content, becomes more mild (e.g. decreased temperature). Milder conditions require less energy to achieve a desired product, and the catalyst's life is extended due to such factors as lower coke formation and the like.
- It is well known in the art that modest or slight variations in compositional characteristics or hydroprocessing catalysts of preparing hydroprocessing catalysts have been known to have highly unpredictable activity, selectivity and/or stability effects on hydroprocessing reactions (such as denitrogenation and/or desulfurization reactions). Accordingly, because of this unpredictability in the art, there continues to be new and surprising improvements in activity, selectivity and/or stability of hydroprocessing catalysts.
- The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, and optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
- The present invention is also directed to hydroprocessing catalysts for making the catalyst, and hydroprocessing processes using the catalyst of the present invention.
-
FIG. 1 shows the polycyclic aromatics build up as a function of time-on-stream for the catalyst compositions synthesized per the teachings of Examples 1 and 3 herein. - The term “Periodic Table” refers to the version of IUPAC Periodic Table of the Elements dated Jun. 22, 2007, and the numbering scheme for the Periodic Table Groups is as described in Chemical and Engineering News, 63(5), 27 (1985).
- The term “bulk dry weight” to the weight of a material after calcination at elevated temperature of over 1000° C. for 30 minutes.
- The term “hydroprocessing” refers to a process in which a carbonaceous feedstock is brought into contact with hydrogen and a catalyst, at a higher temperature and pressure, for the purpose of removing undesirable impurities and/or converting the feedstock to a desired product.
- The term “hydrotreating” refers to a process that converts sulfur- and/or nitrogen-containing hydrocarbon feeds into hydrocarbon products with reduced sulfur and/or nitrogen content, typically in conjunction with a hydrocracking function, and which generates hydrogen sulfide and/or ammonia (respectively) as byproducts.
- The term “hydrocracking” refers to a process in which hydrogenation and dehydrogenation accompanies the cracking/fragmentation of hydrocarbons, e.g., converting heavier hydrocarbons into lighter hydrocarbons, or converting aromatics and/or cycloparaffins (naphthenes) into non-cyclic branched paraffins
- The term “hydroisomerization” refers to a process in which normal paraffins are isomerized to their more branched counterparts in the presence of hydrogen over a catalyst.
- The term “hydrodemetalization” refers to a process that removes undesirable metals from hydrocarbon feeds into hydrocarbon products with reduced metal content.
- The term “gas-to-liquid” (GTL) refers to a process in which gas-phase hydrocarbons such as natural gas are converted to longer-chain hydrocarbons such as diesel fuel via direct conversion or via syngas as an intermediate, for example using the Fischer-Tropsch process.
- The term “framework topology” and its preceding three-letter framework code refers to the Framework Type data provided for the framework code in “Atlas of Zeolite Types” 6th Edition, 2007.
- The term “alkenyl,” as used herein, represents a straight or branched chain group of one to twelve carbon atoms derived from a straight or branched chain hydrocarbon containing at least one carbon-carbon double bond.
- The term “hydroxyalkyl,” as used herein, represents one or more hydroxyl groups attached to the parent molecular moiety through an alkyl group.
- The term “alkoxyalkyl,” as used herein, represents one or more alkoxy groups attached to the parent molecular moiety through an alkyl group.
- The term “aminoalkyl,” as used herein, represents one or more amino groups attached to the parent molecular moiety through an alkyl group.
- The term “oxoalkyl,” as used herein, represents one or more ether groups attached to the parent molecular moiety through an alkyl group.
- The term “carboxyalkyl,” as used herein, represents one or more carboxyl groups attached to the parent molecular moiety through an alkyl group.
- The term “aminocarboxyalkyl,” as used herein, represents one or more carboxyl groups and one or more amino groups attached to the parent molecular moiety through an alkyl group.
- The term “hydroxycarboxyalkyl,” as used herein, represents one or more carboxyl groups and one or more hydroxyl groups attached to the parent molecular moiety through an alkyl group.
- Where permitted, all publications, patents and patent applications cited in this application are herein incorporated by reference in their entirety; to the extent such disclosure is not inconsistent with the present invention.
- Unless otherwise specified, the recitation of a genus of elements, materials or other components, from which an individual component or mixture of components can be selected, is intended to include all possible sub-generic combinations of the listed components and mixtures thereof. Also, “include” and its variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that may also be useful in the materials, compositions and hydroprocessing catalysts of this invention.
- Properties for the materials described herein are determined as follows:
- (a) Constrained index (CI): indicates the total cracking conversion of a 50/50 mixture of n-hexane and 3-methyl-pentane by a sample catalyst at 900° F. (482° C.), 0.68 WHSV. Samples are prepared according to the hydroprocessing catalyst described in U.S. Pat. No. 7,063,828 to Zones and Burton, issued Jun. 20, 2006.
- (b) Brønsted acidity: determined by isopropylamine-temperature-programmed desorption (IPam TPD) adapted from the published descriptions by T. J. Gricus Kofke, R. K. Gorte, W. E. Farneth, J. Catal. 114, 34-45, 1988; T. J. Gricus Kifke, R. J. Gorte, G. T. Kokotailo, J. Catal. 115, 265-272, 1989; J. G. Tittensor, R. J. Gorte and D. M. Chapman, J. Catal. 138, 714-720, 1992.
- (c) SiO2/Al2O3 Ratio (SAR): determined by ICP elemental analysis. A SAR of infinity (∞) represents the case where there is no aluminum in the zeolite, i.e., the mole ratio of silica to alumina is infinity. In that case the molecular sieve is comprised of essentially all of silica.
- (d) Surface area: determined by N2 adsorption at its boiling temperature. BET surface area is calculated by the 5-point hydroprocessing catalyst at P/P0=0.050, 0.088, 0.125, 0.163, and 0.200. Samples are first pre-treated at 400° C. for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.
- (e) Micropore volume: determined by N2 adsorption at its boiling temperature. Micropore volume is calculated by the t-plot hydroprocessing catalyst at P/P0=0.050, 0.088, 0.125, 0.163, and 0.200. Samples are first pre-treated at 400° C. for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.
- (f) Mesopore pore diameter: determined by N2 adsorption at its boiling temperature. Mesopore pore diameter is calculated from N2 isotherms by the BJH hydroprocessing catalyst described in E. P. Barrett, L. G. Joyner and P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms.” J. Am. Chem. Soc. 73, 373-380, 1951. Samples are first pre-treated at 400° C. for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.
- (g) Total pore volume: determined by N2 adsorption at its boiling temperature at P/P0=0.990. Samples are first pre-treated at 400° C. for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.
- (h) Unit cell size: determined by X-ray powder diffraction.
- (i) Alpha value: determined by an Alpha test adapted from the published descriptions of the Mobil Alpha test (P. B. Weisz and J. N. Miale, J. Catal., 4, 527-529, 1965; J. N. Miale, N. Y. Chen, and P. B. Weisz, J. Catal., 6, 278-87, 1966). The “Alpha Value” is calculated as the cracking rate of the sample in question divided by the cracking rate of a standard silica alumina sample. The resulting “Alpha” is a measure of acid cracking activity which generally correlates with number of acid sites.
- The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, and optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
- For each embodiment described herein, the catalyst support is selected from the group consisting of alumina, silica, zirconia, titanium oxide, magnesium oxide, thorium oxide, beryllium oxide, alumina-silica, alumina-titanium oxide, alumina-magnesium oxide, silica-magnesium oxide, silica-zirconia, silica-thorium oxide, silica-beryllium oxide, silica-titanium oxide, titanium oxide-zirconia, silica-alumina-zirconia, silica-alumina-thorium oxide, silica-alumina-titanium oxide or silica-alumina-magnesium oxide, preferably alumina, silica-alumina, and combinations thereof.
- In one subembodiment, the catalyst support is an alumina selected from the group consisting of γ-alumina, η-alumina, θ-alumina, δ-alumina, χ-alumina, and mixtures thereof.
- In another subembodiment, the catalyst support is an amorphous silica-alumina material in which the mean mesopore diameter is between 70 Å and 130 Å.
- In another subembodiment, the catalyst support is an amorphous silica-alumina material containing SiO2 in an amount of 10 to 70 wt. % of the bulk dry weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 and 550 m2/g and a total pore volume of between 0.75 and 1.05 mL/g.
- In another subembodiment, the catalyst support is an amorphous silica-alumina material containing SiO2 in an amount of 10 to 70 wt. % of the bulk dry weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 and 550 m2/g, a total pore volume of between 0.75 and 1.05 mL/g, and a mean mesopore diameter is between 70 Å and 130 Å.
- In another subembodiment, the catalyst support is a highly homogeneous amorphous silica-alumina material having a surface to bulk silica to alumina ratio (S/B ratio) of 0.7 to 1.3, and a crystalline alumina phase present in an amount no more than about 10 wt. %.
-
- To determine the S/B ratio, the Si/Al atomic ratio of the silica-alumina surface is measured using x-ray photoelectron spectroscopy (XPS). XPS is also known as electron spectroscopy for chemical analysis (ESCA). Since the penetration depth of XPS is less than 50 Å, the Si/Al atomic ratio measured by XPS is for the surface chemical composition.
- Use of XPS for silica-alumina characterization was published by W. Daneiell et al. in Applied Catalysis A, 196, 247-260, 2000. The XPS technique is, therefore, effective in measuring the chemical composition of the outer layer of catalytic particle surface. Other surface measurement techniques, such as Auger electron spectroscopy (AES) and Secondary-ion mass spectroscopy (SIMS), could also be used for measurement of the surface composition.
- Separately, the bulk Si/Al ratio of the composition is determined from ICP elemental analysis. Then, by comparing the surface Si/Al ratio to the bulk Si/Al ratio, the S/B ratio and the homogeneity of silica-alumina are determined. How the SB ratio defines the homogeneity of a particle is explained as follows. An S/B ratio of 1.0 means the material is completely homogeneous throughout the particles. An S/B ratio of less than 1.0 means the particle surface is enriched with aluminum (or depleted with silicon), and aluminum is predominantly located on the external surface of the particles. The S/B ratio of more than 1.0 means the particle surface is enriched with silicon (or depleted with aluminum), and aluminum is predominantly located on the internal area of the particles.
- For each embodiment described herein, the amount of catalyst support in the hydroprocessing catalyst is from 5 wt. % to 80 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- For each embodiment described herein, the hydroprocessing catalyst may optionally contain one or more molecular sieves selected from the group consisting of BEA-, ISV-, BEC-, IWR-, MTW-, *STO-, OFF-, MAZ-, MOR-, MOZ-, AFI-, *NRE-, SSY-, FAU-, EMT-, ITQ-21-, ERT-, ITQ-33-, and ITQ-37-type molecular sieves, and mixtures thereof.
- In one subembodiment, the one or more molecular sieves selected from the group consisting of molecular sieves having a FAU framework topology, molecular sieves having a BEA framework topology, and mixtures thereof.
- The amount of molecular sieve material in the hydroprocessing catalyst is from 0 wt. % to 60 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one subembodiment, the amount of molecular sieve material in the hydroprocessing catalyst is from 0.5 wt. % to 40% wt. %.
- In one subembodiment, the molecular sieve is a Y zeolite with a unit cell size of 24.15 Å-24.45 Å. In another subembodiment, the molecular sieve is a Y zeolite with a unit cell size of 24.15 Å-24.35 Å. In another subembodiment, the molecular sieve is a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than 5 and a Brønsted acidity of from 1 to 40. In one subembodiment, the molecular sieve is a Y zeolite having the properties described in Table 1 below.
-
TABLE 1 Alpha value 0.01-5 CI 0.05-5% Brønsted acidity 1-40 μmole/g SAR 80-150 surface area 650-750 m2/g micropore volume 0.25-0.30 mL/g total pore volume 0.51-0.55 mL/g unit cell size 24.15-24.35 Å - In another subembodiment, the molecular sieve is a Y zeolite having the properties described in Table 2 below.
-
TABLE 2 SAR 10-∞ micropore volume 0.15-0.27 mL/g BET surface area 700-825 m2/g unit cell size 24.15-24.45 Å - In another subembodiment, the catalyst contains from 0.1 wt. % to 40 wt. % (based on the bulk dry weight of the catalyst) of a Y zeolite having the properties described Table 2 above, and from 1 wt. % to 60 wt. % (based on the bulk dry weight of the catalyst) of a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than about 5 and Brønsted acidity of from 1 to 40 micro-mole/g.
- As described herein above, the hydroprocessing catalyst of the present invention contains one or more metals. For each embodiment described herein, each metal employed is selected from the group consisting of elements from Group 6 and Groups 8 through 10 of the Periodic Table, and mixtures thereof. In one subembodiment, each metal is selected from the group consisting of nickel (Ni), palladium (Pd), platinum (Pt), cobalt (Co), iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), and mixtures thereof. In another subembodiment, the hydroprocessing catalyst contains at least one Group 6 metal and at least one metal selected from Groups 8 through 10 of the periodic table. Exemplary metal combinations include Ni/Mo/W, Ni/Mo, Ni/W, Co/Mo, Co/W, Co/W/Mo and Ni/Co/W/Mo.
- The total amount of metal oxide material in the hydroprocessing catalyst is from 0.1 wt. % to 90 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one subembodiment, the hydroprocessing catalyst contains from 2 wt. % to 10 wt. % of nickel oxide and from 8 wt. % to 40 wt. % of tungsten oxide based on the bulk dry weight of the hydroprocessing catalyst.
- A diluent may be employed in the formation of the hydroprocessing catalyst. Suitable diluents include inorganic oxides such as aluminum oxide and silicon oxide, titanium oxide, clays, ceria, and zirconia, and mixture of thereof. The amount of diluent in the hydroprocessing catalyst is from 0 wt. % to 35 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one subembodiment, the amount of diluent in the hydroprocessing catalyst is from 0.1 wt. % to 25 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- The hydroprocessing catalyst of the present invention may contain one or more promoters selected from the group consisting of phosphorous (P), boron (B), fluorine (F), silicon (Si), aluminum (Al), zinc (Zn), manganese (Mn), and mixtures thereof. The amount of promoter in the hydroprocessing catalyst is from 0 wt. % to 10 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one subembodiment, the amount of promoter in the hydroprocessing catalyst is from 0.1 wt. % to 5 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- In the present invention, deposition of at least one of the metals on the catalyst is achieved in the presence of a modifying agent. In one embodiment, a shaped hydroprocessing catalyst is prepared by:
- (a) forming an extrudable mass containing at least the amorphous silica-alumina catalyst support,
- (b) extruding then calcining the mass to form a calcined extrudate,
- (c) exposing the calcined extrudate to an impregnation solution containing at least one metal and a modifying agent to form an impregnated extrudate, and
- (d) drying the impregnated extrudate at a temperature below the decomposition temperature of the modifying agent and sufficient to remove the impregnation solution solvent, to form a dried impregnated extrudate.
- The diluent, promoter and/or molecular sieve (if employed) may be combined with the carrier when forming the extrudable mass. In another embodiment, the carrier and (optionally) the diluent, promoter and/or molecular sieve can be impregnated before or after being formed into the desired shapes.
- In one embodiment, deposition of at least one of the metals is achieved in the presence of a modifying agent is selected from the group consisting of compounds represented by structures (1) through (4), including condensated forms thereof:
- wherein:
- (1) R1, R2 and R3 are independently selected from the group consisting of hydrogen; hydroxyl; methyl; amine; and linear or branched, substituted or unsubstituted C1-C3 alkyl groups, C1-C3 alkenyl groups, C1-C3 hydroxyalkyl groups, C1-C3 alkoxyalkyl groups, C1-C3 aminoalkyl groups, C1-C3 oxoalkyl groups, C1-C3 carboxyalkyl groups, C1-C3 aminocarboxyalkyl groups and C1-C3 hydroxycarboxyalkyl groups;
- (2) R4 through R10 are independently selected from the group consisting of hydrogen; hydroxyl; and linear or branched, substituted or unsubstituted C2-C3 carboxyalkyl groups; and
- (3) R11 is selected from the group consisting of linear or branched, saturated and unsaturated, substituted or unsubstituted C1-C3 alkyl groups, C1-C3 hydroxyalkyl groups, and C1-C3 oxoalkyl groups.
- Representative examples of modifying agents useful in this embodiment include 2,3-dihydroxy-succinic acid, ethanedioic acid, 2-hydroxyacetic acid, 2-hydroxy-propanoic acid, 2-hydroxy-1,2,3-propanetricarboxylic acid, methoxyacetic acid, cis-1,2-ethylene dicarboxylic acid, hydroethane-1,2-dicarboxyic acid, ethane-1,2-diol, propane-1,2,3-triol, propanedioic acid, and α-hydro-ω-hydroxypoly(oxyethylene).
- In an alternate embodiment, deposition of at least one of the metals is achieved in the presence of a modifying agent selected from the group consisting of N,N′-bis(2-aminoethyl)-1,2-ethane-diamine, 2-amino-3-(1H-indol-3-yl)-propanoic acid, benzaldehyde, [[(carboxymethyl)imino]bis(ethylenenitrilo)]-tetra-acetic acid, 1,2-cyclohexanediamine, 2-hydroxybenzoic acid, thiocyanate, thiosulfate, thiourea, pyridine, and quinoline.
- The modifying agent impedes metal aggregation, thereby enhancing the activity and selectivity of the catalyst.
- For each embodiment described herein, the amount of modifying agent in the pre-calcined hydroprocessing catalyst is from 2 wt. % to 18 wt. % based on the bulk dry weight of the hydroprocessing catalyst.
- The calcination of the extruded mass will vary depending on the particular support selected. Typically, the extruded mass can be calcined at a temperature between 752° F. (400° C.) and 1200° F. (650° C.) for a period of between 1 and 3 hours.
- Non-limiting examples of suitable solvents include water and C1 to C3 alcohols. Other suitable solvents can include polar solvents such as alcohols, ethers, and amines Water is a preferred solvent. It is also preferred that the metal compounds be water soluble and that a solution of each be formed, or a single solution containing both metals be formed. The modifying agent can be prepared in a suitable solvent, preferably water. The three solvent components can be mixed in any sequence. That is, all three can be blended together at the same time, or they can be sequentially mixed in any order. In an embodiment, it is preferred to first mix the one or more metal components in an aqueous media, than add the modifying agent.
- The amount of metal precursors and modifying agent in the impregnation solution should be selected to achieve preferred ratios of metal to modifying agent in the catalyst precursor after drying.
- The calcined extrudate is exposed to the impregnation solution until incipient wetness is achieved, typically for a period of between 1 and 100 hours (more typically between 1 and 5 hours) at room temperature to 212° F. (100° C.) while tumbling the extrudates, following by aging for from 0.1 to 10 hours, typically from about 0.5 to about 5 hours.
- The drying step is conducted at a temperature sufficient to remove the impregnation solution solvent, but below the decomposition temperature of the modifying agent. In another embodiment, the dried impregnated extrudate is then calcined at a temperature above the decomposition temperature of the modifying agent, typically from about 500° F. (260° C.) to 1100° F. (590° C.), for an effective amount of time, to convert the metals to metal oxides. The present invention contemplates that when the impregnated extrudate is to be calcined, it will undergo drying during the period where the temperature is being elevated or ramped to the intended calcination temperature. This effective amount of time will range from about 0.5 to about 24 hours, typically from about 1 to about 5 hours. The calcination can be carried out in the presence of a flowing oxygen-containing gas such as air, a flowing inert gas such as nitrogen, or a combination of oxygen-containing and inert gases.
- The dried and calcined hydroprocessing catalysts of the present invention can be sulfided to form an active catalyst. Sulfiding of the catalyst precursor to form the catalyst can be performed prior to introduction of the catalyst into a reactor (thus ex-situ presulfiding), or can be carried out in the reactor (in-situ sulfiding).
- Suitable sulfiding agents include elemental sulfur, ammonium sulfide, ammonium polysulfide ([(NH4)2Sx), ammonium thiosulfate ((NH4)2S2O3), sodium thiosulfate (Na2S2O3), thiourea CSN2H4, carbon disulfide, dimethyl disulfide (DMDS), dimethyl sulfide (DMS), dibutyl polysulfide (DBPS), mercaptanes, tertiarybutyl polysulfide (PSTB), tertiarynonyl polysulfide (PSTN), aqueous ammonium sulfide.
- Generally, the sulfiding agent is present in an amount in excess of the stoichiometric amount required to form the sulfided catalyst. In another embodiment, the amount of sulfiding agent represents a sulphur to metal mole ratio of at least 3 to 1 to produce a sulfided catalyst.
- The catalyst is converted into an active sulfided catalyst upon contact with the sulfiding agent at a temperature of 150° F. to 900° F. (66° C. to 482° C.), from 10 minutes to 15 days, and under a H2-containing gas pressure of 101 kPa to 25,000 kPa. If the sulfidation temperature is below the boiling point of the sulfiding agent, the process is generally carried out at atmospheric pressure. Above the boiling temperature of the sulfiding agent/optional components, the reaction is generally carried out at an increased pressure. As used herein, completion of the sulfidation process means that at least 95% of stoichiometric sulfur quantity necessary to convert the metals into for example, Co9S8, MoS2, WS2, Ni3S2, etc., has been consumed.
- In one embodiment, the sulfiding can be carried out to completion in the gaseous phase with hydrogen and a sulfur-containing compound which is decomposable into H2S. Examples include mercaptanes, CS2, thiophenes, DMS, DMDS and suitable S-containing refinery outlet gasses. The gaseous mixture of H2 and sulfur containing compound can be the same or different in the steps. The sulfidation in the gaseous phase can be done in any suitable manner, including a fixed bed process and a moving bed process (in which the catalyst moves relative to the reactor, e.g., ebullated process and rotary furnace).
- The contacting between the catalyst precursor with hydrogen and a sulfur-containing compound can be done in one step at a temperature of 68° F. to 700° F. (20° C. to 371° C.) at a pressure of 101 kPa to 25,000 kPa for a period of 1 to 100 hrs. Typically, sulfidation is carried out over a period of time with the temperature being increased or ramped in increments and held over a period of time until completion.
- In another embodiment of sulfidation in the gaseous phase, the sulfidation is done in two or more steps, with the first step being at a lower temperature than the subsequent step(s).
- In one embodiment, the sulfidation is carried out in the liquid phase. At first, the catalyst precursor is brought in contact with an organic liquid in an amount in the range of 20% to 500% of the catalyst total pore volume. The contacting with the organic liquid can be at a temperature ranging from ambient to 248° F. (120° C.). After the incorporation of an organic liquid, the catalyst precursor is brought into contact with hydrogen and a sulfur-containing compound.
- In one embodiment, the organic liquid has a boiling range of 200° F. to 1200° F. (93° C. to 649° C.). Exemplary organic liquids include petroleum fractions such as heavy oils, lubricating oil fractions like mineral lube oil, atmospheric gas oils, vacuum gas oils, straight run gas oils, white spirit, middle distillates like diesel, jet fuel and heating oil, naphthas, and gasoline. In one embodiment, the organic liquid contains less than 10 wt. % sulfur, and preferably less than 5 wt. %.
- The catalyst composition according to the invention can be used in the dry or calcined form, in virtually all hydroprocessing processes to treat a plurality of feeds under wide-ranging reaction conditions, e.g., at temperatures in the range of 200° to 450° C., hydrogen pressures in the range of 5 to 300 bar, and space velocities (LHSV) in the range of 0.05 to 10 h−1. The hydroprocessing catalyst composition of the invention is particularly suitable for hydrotreating hydrocarbon feedstocks such as middle distillates, kero, naphtha, vacuum gas oils, and heavy gas oils.
- Using the catalyst of the present invention, heavy petroleum residual feedstocks, cyclic stocks and other hydrocrackate charge stocks can be hydrocracked using the process conditions and catalyst components disclosed in U.S. Pat. No. 4,910,006 and U.S. Pat. No. 5,316,753. Typically, hydrocracking can be carried out using the catalyst of the present invention by contacting the feedstock with hydrogen and the catalyst at a temperature in the range of 175-485° C., hydrogen pressures in the range of 5 to 300 bar, and LHSV in the range of 0.1-30 h−1.
- During hydrotreatment, oxygen, sulfur and nitrogen present in the hydrocarbonaceous feed is reduced to low levels. Aromatics and olefins, if present in the feed, may also have their double bonds saturated. In some cases, the hydrotreating catalyst and hydrotreating conditions are selected to minimize cracking reactions, which can reduce the yield of the most desulfided product (typically useful as a fuel).
- Hydrotreating conditions typically include a reaction temperature between 204-482° C., for example 315-454° C.; a pressure between 3.5-34.6 Mpa, for example 7.0-20.8 MPa; a feed rate (LHSV) of 0.5 hr−1 to 20 hr−1 (v/v); and overall hydrogen consumption of 300 to 2000 scf per barrel of liquid hydrocarbon feed (53.4-356 m3 H2/m3 feed).
- Hydroisomerization conditions are dependent in large measure on the feed used and upon the desired product. The hydrogen to feed ratio is typically between 0.089 to 5.34 SCM/liter (standard cubic meters/liter), for example between 0.178 to 3.56 SCM/liter. Generally, hydrogen will be separated from the product and recycled to the reaction zone. Typical feedstocks include light gas oil, heavy gas oils and reduced crudes boiling above about 177° C.
- Lube oil may be prepared using the catalyst. For example, a C20+ lube oil may be made by hydroisomerizing the paraffin fraction of the feed. Alternatively, the lubricating oil may be made by hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing the effluent at a temperature of at least about 200° C. and at a pressure between 0.103 and 20.7 Mpa gauge, in the presence of added hydrogen gas.
- Using the catalyst of the present invention, a FT wax feed generated from a GTL process can be hydrocracked to diesel and jet fuels using by contacting the catalyst of the present invention by the process with hydrogen and the catalyst at a temperature in the range of 175-485° C., hydrogen pressures in the range of 5 to 300 bar, and LHSV in the range of 0.1-30 h−1.
- The following examples will serve to illustrate, but not limit this invention.
- A comparative hydrocracking catalyst was prepared per the following procedure: 67 parts by weight silica-alumina powder (obtained from Sasol), 25 parts by weight pseudo boehmite alumina powder (obtained from Sasol), and 8 parts by weight of zeolite Y (from Tosoh) were mixed well. A diluted HNO3 acid aqueous solution (1 wt. %) was added to the mix powder to form an extrudable paste. The paste was extruded in 1/16″ asymmetric quadrilobe shape, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
- Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO3 based on the bulk dry weight of the finished catalyst. The total volume of the solution matched the 103% water pore volume of the base extrudate sample (incipient wetness hydroprocessing catalyst). The metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 842° F. (450° C.) for 1 hour with purging excess dry air, and cooled down to room temperature. This catalyst is named Catalyst A and its physical properties are summarized in Table 3.
- A modified Ni/W hydrocracking catalyst was prepared using extrudates prepared with the same formulation as that for Catalyst A. Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO3 based on the bulk dry weight of the finished catalyst. 2-
Hydroxy 1,2,3-propanetricarboxylic (used as a modifying agent), in an amount equal to 10 wt. % of the bulk dry weight of the finished catalyst, was added to the Ni/W solution. The solution was heated to above 120° F. (49° C.) to ensure a completed dissolved (clear) solution. The total volume of the metal solution matched the 103% water pore volume of the base extrudates (incipient wetness hydroprocessing catalyst). The metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400° F. (205° C.) for 2 hour with purging excess dry air, and cooled down to room temperature. - Catalyst C was prepared by further calcination of a sampling of Catalyst B at 842° F. (450° C.) for 1 hour.
- Catalyst D was prepared per following procedure: 55 parts silica-alumina powder, 25 parts pseudo boehmite alumina powder, and 20 parts of zeolite Y were mixed well. To the mix, a diluted HNO3 acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in 1/16″ asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
- Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO3 based on the bulk dry weight of the finished catalyst. 2-
Hydroxy 1,2,3-propanetricarboxylic (used as a modifying agent), in an amount equal to 10 wt. % of the bulk dry weight of the finished catalyst, was added to the Ni/W solution. The solution was heated to above 120° F. (49° C.) to ensure a clear solution. The total volume of the metal solution matched the 103% water pore volume of the base extrudates (incipient wetness hydroprocessing catalyst). The metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400° F. (205° C.) for 2 hour with purging excess dry air, and cooled down to room temperature. - Catalyst E was prepared by further calcination of a sampling of Catalyst D at 842° F. (450° C.) for 1 hour.
- Catalyst F was prepared per following procedure: 69 parts silica-alumina powder and 31 parts pseudo boehmite alumina powder were mixed well. To the mix, a diluted HNO3 acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in 1/16″ asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
- Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO3 based on the bulk dry weight of the finished catalyst. 2-
Hydroxy 1,2,3-propanetricarboxylic (used as a modifying agent), in an amount equal to 10 wt. % of the bulk dry weight of the finished catalyst, was added to the Ni/W solution. The solution was heated to above 120° F. (49° C.) to ensure a clear solution. The total volume of the metal solution matched the 103% water pore volume of the base extrudates (incipient wetness hydroprocessing catalyst). The metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400° F. (205° C.) for 2 hour with purging excess dry air, and cooled down to room temperature. - Catalyst G was prepared by further calcination of a sampling of Catalyst F at 842° F. (450° C.) for 1 hour.
-
TABLE 3 CATALYST A B C D E F G Base Zeolite, wt. % 8 8 8 20 20 0 0 Silica Alumina, wt. % 67 67 67 55 55 69 69 Alumina, wt. % 25 25 25 25 25 31 31 Porosity by N2 uptake Surface area, m2/g 413 413 413 451 451 398 398 Mean mesopore diameter, Å 90 90 90 80 80 94 94 Total pore volume, cc/g 0.69 0.69 0.69 0.67 0.67 0.69 0.69 CI test n-C6 conversion, wt. % 1.3 1.3 1.3 2.0 2.0 0.4 0.4 i-C6 conversion % 7.0 7.0 7.0 8.5 8.5 3.6 3.6 Finished Catalysts Metal content, wt. % NiO, wt. % 4 4 4 4 WO3, wt. % 28 28 28 28 Porosity by N2 uptake Surface area, m2/g 231 243 314 235 Mean mesopore diameter, Å 89 98 71 112 Micropore pore volume, cc/g 0.0059 0.0096 — Total pore volume, cc/g 0.40 0.42 0.41 0.44 - A variety of feeds were used to evaluate the hydrocracking performances of the catalysts. In each test, the catalyst was subjected to the following process conditions for feed 1: 2300 PSIG total pressure (2100 PSIA H2 at the reactor inlet), 5000 SCFB H2, 1.0 LHSV, 60 LV % per pass conversion. For feed 2, the testing conditions were: 1000 psig total pressure (900 psia H2 at the reactor inlet), 5000 scfb H2, 1.0 LHSV, 65 LV % per pass conversion. Table 4 summarizes the physical properties of two feeds used in the tests.
Feed 1 is a hydrotreated VGO comprising high concentrations of polycyclic aromatics. Feed 2 is a FT wax generated from a GTL process. -
TABLE 4 Feed 1Feed 2 API Gravity 33.4 40.4 Sulfur, ppm wt. 14.3 <2 Nitrogen, ppm wt. 0.5 7.9 Oxygen, wt. % 0 0.7 PCI 333 — Components Paraffins, LV % 25.5 100 Naphthenes, LV % 66.5 0 Aromatics, LV % 8.0 0 ASTM D2887 SimDis, -° F. (° C.) 0.5 wt. %/5 wt. % 771/819 437/572 (381/437) (225/300) 10 wt. %/30 wt. % 840/886 624/734 (449/474) (329/390) 50 wt. %/— 925/— 809/— (496)/— (432)/— 70 wt. %/90 wt. % 970/1045 898/1002 (521/563) (481/539) 95 wt. %/99.5 wt. % 1087/1213 1038/1094 (586/656) (559/590) - Tables 5 and 6 compare the hydrocracking performance over catalysts prepared with and without a modifying agent.
-
TABLE 5 Hydrocracking Performance with Feed 1Catalyst A Catalyst C Catalyst Activity, ° F. (° C.) Base Base No Loss Yields, wt. % C4- 4.7 4.0 C5-250° F. (121° C.) 19.0 17.7 C5-250-550° F. (121-288° C.) 54.0 53.4 C5-550-700° F. (288-371° C.) 23.7 26.1 -
TABLE 6 Hydrocracking Performance with Feed 2 Catalyst B Catalyst B* Catalyst D Base Base Base Catalyst Catalyst A +1° F. −13° F. −16° F. Activity, ° F. (° C.) Base (+0.55° C.) (−7.2° C.) (−8.9° C.) No Loss Yields, wt. % C4- 1.8 1.5 1.5 1.3 C5-290° F. 15.4 12.7 13.4 13.4 (143° C.) C5-290-700° F. 82.9 85.8 85.1 85.1 (143-371° C.) *with NH3 scrubbing - Catalyst C shows superior HCR performance over Catalyst A. Catalyst C gave a diesel yield at least 2 wt % higher than base case in expensive of low gas yield (C4-) and naphtha yield (C5-250° F./121° C.). Catalyst C reduced the low gas yield from 4.7 to 4.0 wt % and naphtha yield from 19.0 to 17.7 wt. % in comparison with A. Catalyst C made about 2.5 wt % more heavy diesel (550-700° F./288-371° C.) than Catalyst A with a very comparable jet yield (250-550° F./121-288° C.). The use of 2-hydroxyl-1,2,3-propanetricarboxylic does not affect the catalyst activity.
- For Feed 2 (Table 6), both catalysts B and D showed higher diesel yields than Catalyst A by at least 2 wt. % at the expensive of low gas and naphtha, similar to the findings with the petroleum feeds. Also observed was a significant improvement in catalyst activity for Catalyst B and D by more than 10° F. (5.5° C.) as compared to comparative Catalyst A.
- Further, the modifying agent enhanced catalytic hydrogenation activity with respect to saturate polycyclic aromatics in the feed.
FIG. 1 shows the polycyclic aromatics concentration (measured by polycyclic aromatics index, PCI) in a recycle liquid (e.g. >700° F. (371° C.) fraction) forFeed 1 over Catalysts A and C. Their initial concentration in the feed is also given for comparison. For Catalyst A,FIG. 1 clearly shows that polycyclic aromatics build up in the recycle liquid linearly with time-on-stream over Catalyst A. For Catalyst C, the PCI value in the recycle liquid was much lower than that in the feed and in the recycle liquid with Catalyst A. Also, the PCI value maintained at the same level with time on stream on Catalyst C. This provides direct evidence for the improved hydrogenation activity by the use of modifying agent. It is beneficial for catalyst lifetime as the polycyclic aromatics are considered as precursors of coke formation on catalyst surfaces blocking catalytically active sites inaccessible to reactant molecules.
Claims (16)
1. A hydroprocessing catalyst, comprising:
at least one molecular sieve which is a Y zeolite with a unit cell size of between 24.15 Å and 24.45 Å; and
at least one metal deposited on an amorphous silica-alumina catalyst support containing SiO2 in an amount of 10 wt. % to 70 wt. % of the dry bulk weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 m2/g and 550 m2/g, a total pore volume of between 0.75 mL/g and 1.05 mL/g, and a mean mesopore diameter of between 70 Å and 130 Å;
wherein deposition of the metal is achieved in the presence of a modifying agent and with the catalyst support after the deposition subjected to drying for a period of time ranging from 1 to 5 hours and at a temperature sufficient to remove impregnation solution solvent but below the decomposition temperature of the modifying agent.
2. The hydroprocessing catalyst of claim 1 , wherein the Y zeolite has a silica-to-alumina ratio of greater than 10, a micropore volume of from 0.15 mL/g to 0.27 mL/g, a BET surface area of from 700 m2/g to 825 m2/g, and a unit cell size of from 24.15 Å to 24.45 Å.
3. The hydroprocessing catalyst of claim 1 , wherein Y zeolite has a silica-to-alumina ratio of greater than 10, a micropore volume of from 0.15 mL/g to 0.27 mL/g, a BET surface area of from 700 m2/g to 825 m2/g, and a unit cell size of from 24.15 Å to 24.35 Å, and a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than about 5 and Brønsted acidity of from 1 to 40 micro-mole/g.
4. The hydroprocessing catalyst of claim 1 , wherein the modifying agent is selected from the group consisting of compounds represented by structures (1) through (4), and condensated forms thereof:
wherein:
(1) R1, R2 and R3 are independently selected from the group consisting of hydrogen; hydroxyl; methyl; amine; and linear or branched, substituted or unsubstituted C1-C3 alkyl groups, C1-C3 alkenyl groups, C1-C3 hydroxyalkyl groups, C1-C3 alkoxyalkyl groups, C1-C3 aminoalkyl groups, C1-C3 oxoalkyl groups, C1-C3 carboxyalkyl groups, C1-C3 aminocarboxyalkyl groups and C1-C3 hydroxycarboxyalkyl groups;
(2) R4 through R10 are independently selected from the group consisting of hydrogen; hydroxyl; and linear or branched, substituted or unsubstituted C2-C3 carboxyalkyl groups; and
(3) R11 is selected from the group consisting of linear or branched, saturated and unsaturated, substituted or unsubstituted C1-C3 alkyl groups, C1-C3 hydroxyalkyl groups, and C1-C3 oxoalkyl groups.
5. The hydroprocessing catalyst of claim 1 , wherein the modifying agent selected from the group consisting of N,N′-bis(2-aminoethyl)-1,2-ethane-diamine, 2-amino-3-(1H-indol-3-yl)-propanoic acid, benzaldehyde, [[(carboxymethyl)imino]bis(ethylenenitrilo)]-tetra-acetic acid, 1,2-cyclohexanediamine, 2-hydroxybenzoic acid, thiocyanate, thiosulfate, thiourea, pyridine, and quinoline.
6. The hydroprocessing catalyst of claim 1 , wherein the at least one metal is selected from the group consisting of elements from Group 6 and Groups 8 through 10 of the Periodic Table.
7. The hydroprocessing catalyst of claim 6 , wherein the at least one metal is selected from the group consisting of nickel (Ni), palladium (Pd), platinum (Pt), cobalt (Co), iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), and mixtures thereof.
8. The hydroprocessing catalyst of claim 6 , wherein the at least one metal is at least one metal selected from Group 6 of the Periodic Table and at least one metal selected from Groups 8 through 10 of the periodic table.
9. A method for making a hydroprocessing catalyst comprising at least one metal deposited on an amorphous silica-alumina catalyst support containing SiO2 in an amount of 10 wt. % to 70 wt. % of the dry bulk weight of the carrier as determined by ICP elemental analysis, the hydroprocessing catalyst made by a method comprising the steps of:
(a) forming an extrudable mass comprising the amorphous silica-alumina catalyst support,
(b) extruding then calcining the mass to form a calcined extrudate,
(c) exposing the calcined extrudate to an impregnation solution comprising the at least one metal and a modifying agent to form an impregnated extrudate, and
(d) drying the impregnated extrudate for a period of time ranging from 1 to 5 hours and at a temperature sufficient to remove impregnation solution solvent but below the decomposition temperature of the modifying agent.
10. The method of claim 10 , wherein the amorphous silica-alumina catalyst support has a BET surface area of between 450 m2/g and 550 m2/g, a total pore volume of between 0.75 mL/g and 1.05 mL/g, and a mean mesopore diameter of between 70 Å and 130 Å
11. The hydroprocessing catalyst of claim 10 , further comprising the step of calcining the dried impregnated extrudate at a temperature high enough to remove the modifying agent and impregnation solution solvent and to convert the at least one metal to a metal oxide.
12. The hydroprocessing catalyst of claim 10 , wherein the extrudable mass further comprises at least one molecular sieve.
13. The hydroprocessing catalyst of claim 12 , wherein the molecular sieve is a Y zeolite with a unit cell size of between 24.15 Å and 24.45 Å.
14. The hydroprocessing catalyst of claim 12 , wherein the at least one molecular sieve is a Y zeolite having a silica-to-alumina ratio of greater than 10, a micropore volume of from 0.15 mL/g to 0.27 mL/g, a BET surface area of from 700 m2/g to 825 m2/g, and a unit cell size of from 24.15 Å to 24.45 Å.
14. The hydroprocessing catalyst of claim 10 , wherein the extrudable mass further comprises a Y zeolite having a silica-to-alumina ratio of greater than 10, a micropore volume of from 0.15 mL/g to 0.27 mL/g, a BET surface area of from 700 m2/g to 825 m2/g, and a unit cell size of from 24.15 Å to 24.35 Å, and a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than about 5 and Brønsted acidity of from 1 to 40 micro-mole/g.
15. The hydroprocessing catalyst of claim 10 , wherein the modifying agent is selected from the group consisting of compounds represented by structures (1) through (4), an condensated forms thereof:
wherein:
(1) R1, R2 and R3 are independently selected from the group consisting of hydrogen; hydroxyl; methyl; amine; and linear or branched, substituted or unsubstituted C1-C3 alkyl groups, C1-C3 alkenyl groups, C1-C3 hydroxyalkyl groups, C1-C3 alkoxyalkyl groups, C1-C3 aminoalkyl groups, C1-C3 oxoalkyl groups, C1-C3 carboxyalkyl groups, C1-C3 aminocarboxyalkyl groups and C1-C3 hydroxycarboxyalkyl groups;
(2) R4 through R10 are independently selected from the group consisting of hydrogen; hydroxyl; and linear or branched, substituted or unsubstituted C2-C3 carboxyalkyl groups; and
(3) R11 is selected from the group consisting of linear or branched, saturated and unsaturated, substituted or unsubstituted C1-C3 alkyl groups, C1-C3 hydroxyalkyl groups, and C1-C3 oxoalkyl groups.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/882,582 US20160030934A1 (en) | 2009-07-01 | 2015-10-14 | Hydroprocessing catalyst and hydroprocessing catalyst of making the same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/496,442 US9187702B2 (en) | 2009-07-01 | 2009-07-01 | Hydroprocessing catalyst and method of making the same |
| US14/882,582 US20160030934A1 (en) | 2009-07-01 | 2015-10-14 | Hydroprocessing catalyst and hydroprocessing catalyst of making the same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/496,442 Continuation US9187702B2 (en) | 2009-07-01 | 2009-07-01 | Hydroprocessing catalyst and method of making the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160030934A1 true US20160030934A1 (en) | 2016-02-04 |
Family
ID=43411699
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/496,442 Active 2032-04-08 US9187702B2 (en) | 2009-07-01 | 2009-07-01 | Hydroprocessing catalyst and method of making the same |
| US14/882,582 Abandoned US20160030934A1 (en) | 2009-07-01 | 2015-10-14 | Hydroprocessing catalyst and hydroprocessing catalyst of making the same |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/496,442 Active 2032-04-08 US9187702B2 (en) | 2009-07-01 | 2009-07-01 | Hydroprocessing catalyst and method of making the same |
Country Status (15)
| Country | Link |
|---|---|
| US (2) | US9187702B2 (en) |
| EP (2) | EP3363878B1 (en) |
| JP (3) | JP5882205B2 (en) |
| KR (1) | KR101869759B1 (en) |
| CN (1) | CN102471700B (en) |
| BR (1) | BRPI1011677B1 (en) |
| DK (1) | DK3363878T3 (en) |
| ES (1) | ES2981539T3 (en) |
| FI (1) | FI3363878T3 (en) |
| HR (1) | HRP20240835T1 (en) |
| IN (1) | IN2012DN00580A (en) |
| PL (1) | PL3363878T3 (en) |
| PT (1) | PT3363878T (en) |
| WO (1) | WO2011002782A2 (en) |
| ZA (1) | ZA201108786B (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018221693A1 (en) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | Functional structure and production method for functional structure |
| WO2018221691A1 (en) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | Functional structure and production method for functional structure |
| WO2018221690A1 (en) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | Functional structure and production method for functional structure |
| EP3467076A4 (en) * | 2016-06-01 | 2020-01-01 | Revo International Inc. | METHOD FOR PRODUCING LIQUID HYDROCARBON FUEL |
| WO2020116469A1 (en) | 2018-12-03 | 2020-06-11 | 国立大学法人北海道大学 | Functional structure |
| WO2020116468A1 (en) | 2018-12-03 | 2020-06-11 | 国立大学法人北海道大学 | Functional structure |
| WO2020116470A1 (en) | 2018-12-03 | 2020-06-11 | 国立大学法人北海道大学 | Functional structure |
| US11161101B2 (en) | 2017-05-31 | 2021-11-02 | Furukawa Electric Co., Ltd. | Catalyst structure and method for producing the catalyst structure |
| US11547987B2 (en) | 2017-05-31 | 2023-01-10 | Furukawa Electric Co., Ltd. | Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method |
| US11648543B2 (en) | 2017-05-31 | 2023-05-16 | National University Corporation Hokkaido University | Functional structural body and method for making functional structural body |
| US11654422B2 (en) | 2017-05-31 | 2023-05-23 | Furukawa Electric Co., Ltd. | Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization |
| US11666894B2 (en) | 2017-05-31 | 2023-06-06 | Furukawa Electric Co., Ltd. | Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water |
| US11680211B2 (en) | 2017-05-31 | 2023-06-20 | Furukawa Electric Co., Ltd. | Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization |
| US11684909B2 (en) | 2017-05-31 | 2023-06-27 | Furukawa Electric Co., Ltd. | Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon |
| US11896959B2 (en) | 2018-09-28 | 2024-02-13 | Jgc Catalysts And Chemicals Ltd. | Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil |
| US12030041B2 (en) | 2017-05-31 | 2024-07-09 | Furukawa Electric Co., Ltd. | Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming |
Families Citing this family (61)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103285909B (en) * | 2012-03-01 | 2016-04-06 | 中国石油天然气股份有限公司 | A kind of hydrocracking catalyst containing meso-microporous molecular sieve and preparation method thereof |
| US9339796B2 (en) | 2012-06-05 | 2016-05-17 | Petroraza Sas | Nanocatalysts for hydrocracking and methods of their use |
| US10864503B2 (en) | 2012-09-17 | 2020-12-15 | Shell Oil Company | Process for the preparation of a hydrocracking catalyst |
| CN103801369B (en) * | 2012-11-13 | 2016-02-03 | 中国石油化工股份有限公司 | A kind of method preparing hydrogenating catalyst composition |
| MX349965B (en) | 2012-11-14 | 2017-08-04 | Univ Mexico Nac Autonoma | SUPPORTED CATALYSTS FOR THE PRODUCTION OF ULTRA-LOW SULFUR FUELS. |
| EP2938433B1 (en) * | 2012-12-27 | 2022-04-06 | Shell Internationale Research Maatschappij B.V. | Preparation of a hydrocarbon conversion catalyst |
| FR3004968B1 (en) * | 2013-04-30 | 2016-02-05 | IFP Energies Nouvelles | PROCESS FOR THE PREPARATION OF A TUNGSTEN CATALYST FOR USE IN HYDROTREATMENT OR HYDROCRACKING |
| CN104324724B (en) * | 2013-07-22 | 2016-12-28 | 中国石油化工股份有限公司 | A kind of hydrogenation protecting catalyst and preparation method and application |
| US20150158018A1 (en) * | 2013-12-09 | 2015-06-11 | Bi-Zeng Zhan | Hydrocracking catalyst and process for producing lube base stocks |
| JP6378902B2 (en) * | 2014-03-10 | 2018-08-22 | 日本ケッチェン株式会社 | Hydrotreating catalyst, method for producing the catalyst, and hydrotreating method for hydrocarbon oil using the catalyst |
| US20150306583A1 (en) | 2014-04-24 | 2015-10-29 | Chevron U.S.A. Inc. | Middle distillate hydrocracking catalyst with a base extrudate having a high nanopore volume |
| WO2015164334A1 (en) | 2014-04-24 | 2015-10-29 | Chevron U.S.A. Inc. | Middle distillate hydrocracking catalyst with a base extrudate having a high nanopore volume |
| FR3022255B1 (en) * | 2014-06-13 | 2016-07-29 | Ifp Energies Now | PROCESS FOR HYDROPROCESSING DISTILLATE CUTTINGS USING A CATALYST BASED ON AMORPHOUS AMORPHOUS ALUMINA HAVING HIGH CONNECTIVITY |
| FR3022254B1 (en) * | 2014-06-13 | 2016-07-29 | Ifp Energies Now | METHOD OF HYDROPROCESSING GAS CUTTINGS USING A CATALYST BASED ON AMORPHOUS AMORPHOUS ALUMINA HAVING HIGH CONNECTIVITY |
| US20160089664A1 (en) * | 2014-09-30 | 2016-03-31 | Chevron U.S.A. Inc. | Hydroisomerization catalyst with a base extrudate having a high total nanopore volume |
| WO2016053702A1 (en) * | 2014-09-30 | 2016-04-07 | Chevron U.S.A. Inc. | Hydroisomerization catalyst with a base extrudate having a high nanopore volume |
| WO2016053704A1 (en) * | 2014-09-30 | 2016-04-07 | Chevron U.S.A. Inc. | Hydroisomerization catalyst with a base extrudate having a low particle density |
| US9616419B2 (en) * | 2014-09-30 | 2017-04-11 | Chevron U.S.A. Inc. | Hydroisomerization catalyst manufactured using a high nanopore volume alumina supports |
| US20160121313A1 (en) * | 2014-10-31 | 2016-05-05 | Chevron U.S.A. Inc. | Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution |
| US20160121312A1 (en) * | 2014-10-31 | 2016-05-05 | Chevron U.S.A. Inc. | Middle distillate hydrocracking catalyst containing highly nanoporous stabilized y zeolite |
| US10183282B2 (en) * | 2015-01-22 | 2019-01-22 | Chevron U.S.A. Inc. | Noble metal zeolite catalyst for second-stage hydrocracking |
| US10183286B2 (en) * | 2015-08-11 | 2019-01-22 | Chevron U.S.A. Inc. | Noble metal zeolite catalyst for second-stage hydrocracking to make middle distillate |
| CN105903488A (en) * | 2016-04-27 | 2016-08-31 | 武汉凯迪工程技术研究总院有限公司 | Selective hydrogenation catalyst for producing biodiesel and preparation method and application of selective hydrogenation catalyst |
| CN105944752A (en) * | 2016-04-27 | 2016-09-21 | 武汉凯迪工程技术研究总院有限公司 | Selective hydrogenation catalyst for producing aviation kerosene and preparation method and application thereof |
| US10087375B2 (en) * | 2016-05-10 | 2018-10-02 | Petroraza Sas | Methods for enhancing heavy oil recovery |
| CN106000419B (en) * | 2016-06-01 | 2018-11-16 | 北京化工大学 | A kind of FePt bimetallic catalyst, preparation and application |
| CN107983414B (en) * | 2016-10-26 | 2021-01-08 | 中国石油化工股份有限公司 | a hydrogenation catalyst |
| CN108499555B (en) * | 2017-02-24 | 2020-10-27 | 中国石油化工股份有限公司 | Silicon-aluminum catalytic material and preparation method thereof |
| CN108499594B (en) * | 2017-02-24 | 2020-10-27 | 中国石油化工股份有限公司 | Preparation method of amorphous silica-alumina catalytic material |
| CN108499593B (en) * | 2017-02-24 | 2020-10-27 | 中国石油化工股份有限公司 | Preparation method of silicon-aluminum catalytic material |
| CN107008509B (en) * | 2017-04-21 | 2020-02-07 | 武汉凯迪工程技术研究总院有限公司 | Improved diesel hydrocracking catalyst carrier and preparation method thereof |
| CN106964397A (en) * | 2017-04-21 | 2017-07-21 | 武汉凯迪工程技术研究总院有限公司 | Optimization-type H-G hydrocracking catalyst carrier and preparation method thereof |
| CN107051575B (en) * | 2017-04-21 | 2020-02-14 | 武汉凯迪工程技术研究总院有限公司 | Optimized diesel hydrocracking catalyst and preparation method thereof |
| CN106925342B (en) * | 2017-04-21 | 2020-02-07 | 武汉凯迪工程技术研究总院有限公司 | Improved diesel hydrocracking catalyst and preparation method thereof |
| CN107008487B (en) * | 2017-05-08 | 2020-11-06 | 武汉凯迪工程技术研究总院有限公司 | Hydrocracking catalyst for diesel and jet fuel production and preparation method thereof |
| CN108927205B (en) * | 2017-05-26 | 2021-04-06 | 中国石油化工股份有限公司 | Catalytic material and preparation method thereof |
| CN108927207B (en) * | 2017-05-26 | 2021-04-06 | 中国石油化工股份有限公司 | A kind of porous catalytic material rich in surface aluminum and preparation method thereof |
| CN108927209B (en) * | 2017-05-26 | 2021-04-06 | 中国石油化工股份有限公司 | A kind of porous silicon-alumina material and preparation method thereof |
| CN108940251B (en) * | 2017-05-26 | 2021-04-06 | 中国石油化工股份有限公司 | Preparation method of active catalytic material |
| CN108940351B (en) * | 2017-05-26 | 2021-04-06 | 中国石油化工股份有限公司 | Preparation method of catalytic material |
| US20190128845A1 (en) | 2017-11-02 | 2019-05-02 | Ohio State Innovation Foundation | Imms method for petroleum feedstock evaluation |
| CN111085257A (en) * | 2018-10-24 | 2020-05-01 | 中国石油化工股份有限公司 | Regular carrier catalyst with desulfurization effect and preparation and application thereof |
| CN111099627A (en) * | 2018-10-25 | 2020-05-05 | 中国石油化工股份有限公司 | Synthesis method of ITQ-37 molecular sieve and ITQ-37 molecular sieve synthesized |
| KR102735177B1 (en) | 2019-06-28 | 2024-11-28 | 한화솔루션 주식회사 | Nickel catalyst for hydrogenation reaction and preparation method thereof |
| KR102224575B1 (en) * | 2019-07-11 | 2021-03-09 | 단국대학교 천안캠퍼스 산학협력단 | metallic naonoparticle bound to the surface of mesoporous silica support having ordered 3-D pore structure and method for preparation thereof |
| KR20230009904A (en) * | 2020-05-07 | 2023-01-17 | 셰브런 유.에스.에이.인크. | MTW-zeolite as a support for a two-stage hydrocracking catalyst with improved selectivity and low-temperature fluidity of distillation products |
| CN115702039A (en) * | 2020-05-21 | 2023-02-14 | 雪佛龙美国公司 | Use of MTW-zeolites in supports for hydrocracking catalysts with improved middle distillate selectivity and cold flow properties |
| CN112973718B (en) * | 2021-02-22 | 2022-10-25 | 安徽工业大学 | A kind of kerosene co-hydrogenation catalyst and preparation method thereof |
| US11559789B2 (en) * | 2021-03-11 | 2023-01-24 | Chevron U.S.A. Inc. | Base oil hydrotreating catalyst and process of use |
| JP2024511140A (en) | 2021-03-23 | 2024-03-12 | シェブロン ユー.エス.エー. インコーポレイテッド | Platinum-palladium bimetallic hydrogenolysis catalyst |
| CN113135839B (en) * | 2021-04-12 | 2022-06-21 | 浙江优创材料科技股份有限公司 | Method for preparing valeronitrile by hydrogenation of pentenenitrile |
| CN116020500B (en) * | 2021-10-25 | 2025-04-04 | 中国石油化工股份有限公司 | Hydrorefining catalyst and preparation method thereof |
| CN116060082B (en) * | 2021-10-31 | 2024-05-03 | 中国石油化工股份有限公司 | A polycyclic aromatic hydrocarbon hydrogenation catalyst and preparation method thereof |
| CN116920927B (en) * | 2022-04-11 | 2025-11-14 | 中国石油化工股份有限公司 | Non-precious metal hydrogenation catalysts, their preparation methods and applications, selective hydrogenation of butadiene and 1-butene isomerization methods |
| CN117181288A (en) * | 2022-05-31 | 2023-12-08 | 中国石油化工股份有限公司 | Hydrocracking catalyst and preparation method and application thereof |
| CN117181294A (en) * | 2022-05-31 | 2023-12-08 | 中国石油化工股份有限公司 | Diesel oil hydro-upgrading catalyst and preparation method and application thereof |
| CN117181292A (en) * | 2022-05-31 | 2023-12-08 | 中国石油化工股份有限公司 | A diesel deep hydrogenation dearomatization catalyst and its preparation method and application |
| CN117181284A (en) * | 2022-05-31 | 2023-12-08 | 中国石油化工股份有限公司 | Hydrocracking catalyst for bicyclic aromatic hydrocarbon as well as preparation method and application thereof |
| US12404461B2 (en) | 2023-03-02 | 2025-09-02 | Petroraza Sas | Methods for improving heavy oils |
| WO2025169081A1 (en) | 2024-02-05 | 2025-08-14 | Bp P.L.C. | Production of hydrogen using methanol |
| CN120479475B (en) * | 2025-07-18 | 2025-09-16 | 西安华大骄阳绿色科技有限公司 | Heavy aromatic hydrocarbon lightening catalyst and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6860986B2 (en) * | 2002-11-08 | 2005-03-01 | Chevron U.S.A. Inc. | Extremely low acidity ultrastable Y zeolite catalyst composition and process |
| US20050274646A1 (en) * | 2004-06-14 | 2005-12-15 | Conocophillips Company | Catalyst for hydroprocessing of Fischer-Tropsch products |
| US20080014643A1 (en) * | 2006-07-12 | 2008-01-17 | Paul Bjorkholm | Dual angle radiation scanning of objects |
Family Cites Families (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1914558A (en) | 1921-11-05 | 1933-06-20 | Barrett Co | Catalyst and process of preparing the same |
| US2889287A (en) | 1954-10-04 | 1959-06-02 | California Research Corp | Catalyst and method of catalyst preparation |
| US2927088A (en) | 1956-11-29 | 1960-03-01 | Universal Oil Prod Co | Method for manufacturing catalysts |
| US3156641A (en) | 1960-06-15 | 1964-11-10 | Standard Oil Co | Hydrocracking of hydrocarbons with the use of a catalyst comprising nickel metal and a heteropoly acid on alumina |
| US3228892A (en) | 1960-12-29 | 1966-01-11 | Texaco Inc | Method for preparing supported catalytic structures |
| US3147154A (en) | 1961-05-25 | 1964-09-01 | Texaco Inc | Method of depositing metal-containing material onto an extended surface |
| US3232887A (en) | 1962-05-07 | 1966-02-01 | Nalco Chemical Co | Stabilized aqueous solutions for use in impregnating catalyst carriers and method of making same |
| US3409681A (en) | 1964-06-25 | 1968-11-05 | Exxon Research Engineering Co | Method of making novel bimetallic heterogeneous catalysts and their use in hydrocarbon conversions |
| US3591649A (en) | 1968-10-10 | 1971-07-06 | Exxon Research Engineering Co | Conversion catalyst |
| NL6814628A (en) | 1968-10-11 | 1970-04-14 | ||
| US3553102A (en) | 1968-11-08 | 1971-01-05 | Mobil Oil Corp | Hydrocracking catalyst and method of preparation |
| US3676330A (en) | 1969-12-15 | 1972-07-11 | Mobil Oil Corp | Zeolite-containing catalyst, synthesis and use thereof |
| US3671597A (en) | 1970-07-17 | 1972-06-20 | Exxon Research Engineering Co | Isomerization process employing a novel heterogeneous catalyst |
| US3706815A (en) | 1971-05-24 | 1972-12-19 | Union Oil Co | Chelated metal-polyphosphoric acid catalysts,method of preparation and isomerization process utilizing the same |
| US3994832A (en) * | 1974-03-06 | 1976-11-30 | Uop Inc. | Method of preparing a reforming catalyst |
| US4107087A (en) | 1976-03-31 | 1978-08-15 | Nalco Chemical Company | Use of citric acid to make catalyst from catalyst fines |
| DE3206128A1 (en) | 1982-02-20 | 1983-09-01 | Hoechst Ag, 6230 Frankfurt | MOLDS, CONTAINING TRIKETOIMIDAZOLIDINE PRE-CONDENSATES, THE USE THEREOF AND METHOD FOR PRODUCING A TRIKETOIMIDAZOLIDINE PRE-CONDENSATE COMPOSITE THAT IS SUITABLE FOR THIS |
| US4568450A (en) | 1982-08-19 | 1986-02-04 | Union Oil Company Of California | Hydrocarbon conversion process |
| NL8502992A (en) | 1985-11-01 | 1987-06-01 | Dow Chemical Nederland | METHOD FOR LOADING A MOLDED CARRIER MATERIAL WITH A CATALYTICALLY ACTIVE MATERIAL OR WITH A PRECURSOR OF A CATALYTICALLY ACTIVE MATERIAL AND FORMED CATALYST OBTAINED USING THE METHOD |
| GB8613131D0 (en) * | 1986-05-30 | 1986-07-02 | Shell Int Research | Hydrocarbon conversion |
| JPH0811184B2 (en) | 1987-02-06 | 1996-02-07 | 日本石油株式会社 | Hydroprocessing catalyst for heavy oil |
| US4910006A (en) | 1988-03-23 | 1990-03-20 | Chevron Research Company | Zeolite SSZ-26 |
| JP3244692B2 (en) * | 1990-10-17 | 2002-01-07 | 住友金属鉱山株式会社 | Method for producing catalyst for hydrotreating hydrocarbon oil |
| US5316753A (en) | 1992-10-09 | 1994-05-31 | Chevron Research And Technology Company | Zeolite SSZ-35 |
| DK0666894T4 (en) | 1992-10-28 | 2001-01-08 | Shell Int Research | Process for making base lubricating oils |
| EP0701480B1 (en) * | 1994-04-01 | 1999-09-08 | Institut Français du Pétrole | Noble metal- and silica/alumina-based catalyst and method for the hydroisomerisation processing of heavy feedstocks |
| DE69534311T2 (en) * | 1994-05-13 | 2006-04-20 | Shell Oil Co., Houston | Process for improving the activity of catalysts |
| EP0958047A1 (en) | 1996-07-29 | 1999-11-24 | Shell Internationale Researchmaatschappij B.V. | Catalyst, use thereof and preparation process |
| CN1054150C (en) | 1996-09-27 | 2000-07-05 | 中国石油化工总公司 | Catalyst for hydrocracking diesel oil |
| EP1041133A1 (en) | 1999-04-02 | 2000-10-04 | Akzo Nobel N.V. | Process for effecting ultra-deep HDS of hydrocarbon feedstocks |
| US6291394B1 (en) * | 1999-11-04 | 2001-09-18 | Shell Oil Company | Process for improving catalysts |
| FR2819430B1 (en) | 2001-01-15 | 2003-02-28 | Inst Francais Du Petrole | CATALYST COMPRISING SILICA-ALUMINA AND ITS USE IN HYDROCRACKING OF HYDROCARBON CHARGES |
| JP4156859B2 (en) | 2001-06-20 | 2008-09-24 | コスモ石油株式会社 | Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method |
| US6995112B2 (en) | 2002-11-08 | 2006-02-07 | Chevron U.S.A. Inc. | Highly homogeneous amorphous silica-alumina catalyst composition |
| US6902664B2 (en) * | 2002-11-08 | 2005-06-07 | Chevron U.S.A. Inc. | Extremely low acidity USY and homogeneous, amorphous silica-alumina hydrocracking catalyst and process |
| RU2334782C2 (en) * | 2002-12-09 | 2008-09-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Method of base oil processing with viscosity index within 80 to 140 |
| CA2509847C (en) | 2002-12-18 | 2009-09-01 | Cosmo Oil Co., Ltd. | Catalyst for hydrotreating gas oil, process for producing the same, and process for hydrotreating gas oil |
| US7063828B2 (en) | 2003-12-23 | 2006-06-20 | Chevron U.S.A. Inc. | Molecular sieve SSZ-47B having high micropore volume and synthesis thereof |
| JP4444690B2 (en) * | 2004-02-26 | 2010-03-31 | 株式会社ジャパンエナジー | Hydrotreating catalyst precursor, method for producing the same, and method for producing refined hydrocarbon oil |
| WO2005084799A1 (en) | 2004-03-03 | 2005-09-15 | Shell Internationale Research Maatschappij B.V. | Catalyst carrier and catalyst composition, processes for their preparation and their use |
| BRPI0500609A (en) | 2004-03-10 | 2007-07-10 | Rohm & Haas | processes for preparing one or more modified catalysts, and for cryotriting one or more metal oxide catalysts |
| JP4482653B2 (en) * | 2004-05-19 | 2010-06-16 | 独立行政法人産業技術総合研究所 | Hydrocracking catalyst for catalytic cracking gasoline |
| US7323100B2 (en) | 2004-07-16 | 2008-01-29 | Conocophillips Company | Combination of amorphous materials for hydrocracking catalysts |
| US7544632B2 (en) * | 2004-09-22 | 2009-06-09 | Exxonmobil Research And Engineering Company | Bulk Ni-Mo-W catalysts made from precursors containing an organic agent |
| CA2579616C (en) * | 2004-09-22 | 2011-02-01 | Exxonmobil Research And Engineering Company | Bulk ni-mo-w catalysts made from precursors containing an organic agent |
| WO2007031560A2 (en) * | 2005-09-14 | 2007-03-22 | Shell Internationale Research Maatschappij B.V. | Hydrocracking catalyst and process |
| US8460540B2 (en) | 2006-03-02 | 2013-06-11 | Basf Corporation | Hydrocracking catalyst and process using insitu produced Y-fauajasite |
| CN101210195B (en) * | 2006-12-27 | 2012-05-30 | 中国石油化工股份有限公司 | Hydrocracking method for more producing chemical industry light oil from poor heavy raw material |
-
2009
- 2009-07-01 US US12/496,442 patent/US9187702B2/en active Active
-
2010
- 2010-06-29 JP JP2012517858A patent/JP5882205B2/en active Active
- 2010-06-29 ES ES17202278T patent/ES2981539T3/en active Active
- 2010-06-29 PT PT172022782T patent/PT3363878T/en unknown
- 2010-06-29 DK DK17202278.2T patent/DK3363878T3/en active
- 2010-06-29 WO PCT/US2010/040416 patent/WO2011002782A2/en not_active Ceased
- 2010-06-29 EP EP17202278.2A patent/EP3363878B1/en active Active
- 2010-06-29 EP EP10794645A patent/EP2449058A4/en not_active Ceased
- 2010-06-29 CN CN201080029183.XA patent/CN102471700B/en active Active
- 2010-06-29 KR KR1020127002005A patent/KR101869759B1/en active Active
- 2010-06-29 FI FIEP17202278.2T patent/FI3363878T3/en active
- 2010-06-29 PL PL17202278.2T patent/PL3363878T3/en unknown
- 2010-06-29 BR BRPI1011677-0A patent/BRPI1011677B1/en active IP Right Grant
- 2010-06-29 HR HRP20240835TT patent/HRP20240835T1/en unknown
- 2010-06-29 IN IN580DEN2012 patent/IN2012DN00580A/en unknown
-
2011
- 2011-11-30 ZA ZA2011/08786A patent/ZA201108786B/en unknown
-
2015
- 2015-06-30 JP JP2015131001A patent/JP2016028134A/en active Pending
- 2015-10-14 US US14/882,582 patent/US20160030934A1/en not_active Abandoned
-
2017
- 2017-08-03 JP JP2017150485A patent/JP6812316B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6860986B2 (en) * | 2002-11-08 | 2005-03-01 | Chevron U.S.A. Inc. | Extremely low acidity ultrastable Y zeolite catalyst composition and process |
| US20050274646A1 (en) * | 2004-06-14 | 2005-12-15 | Conocophillips Company | Catalyst for hydroprocessing of Fischer-Tropsch products |
| US20080014643A1 (en) * | 2006-07-12 | 2008-01-17 | Paul Bjorkholm | Dual angle radiation scanning of objects |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3467076A4 (en) * | 2016-06-01 | 2020-01-01 | Revo International Inc. | METHOD FOR PRODUCING LIQUID HYDROCARBON FUEL |
| US11904306B2 (en) | 2017-05-31 | 2024-02-20 | Furukawa Electric Co., Ltd. | Catalyst structure and method for producing the catalyst structure |
| US11161101B2 (en) | 2017-05-31 | 2021-11-02 | Furukawa Electric Co., Ltd. | Catalyst structure and method for producing the catalyst structure |
| WO2018221691A1 (en) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | Functional structure and production method for functional structure |
| US12179182B2 (en) | 2017-05-31 | 2024-12-31 | National University Corporation Hokkaido University | Method for making functional structural body |
| US12115523B2 (en) | 2017-05-31 | 2024-10-15 | National University Corporation Hokkaido University | Functional structural body and method for making functional structural body |
| US12030041B2 (en) | 2017-05-31 | 2024-07-09 | Furukawa Electric Co., Ltd. | Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming |
| US11655157B2 (en) | 2017-05-31 | 2023-05-23 | National University Corporation Hokkaido University | Functional structural body and method for making functional structural body |
| US11547987B2 (en) | 2017-05-31 | 2023-01-10 | Furukawa Electric Co., Ltd. | Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method |
| US11648538B2 (en) | 2017-05-31 | 2023-05-16 | National University Corporation Hokkaido University | Functional structural body and method for making functional structural body |
| US11648542B2 (en) | 2017-05-31 | 2023-05-16 | National University Corporation Hokkaido University | Functional structural body and method for making functional structural body |
| WO2018221690A1 (en) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | Functional structure and production method for functional structure |
| US11648543B2 (en) | 2017-05-31 | 2023-05-16 | National University Corporation Hokkaido University | Functional structural body and method for making functional structural body |
| WO2018221693A1 (en) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | Functional structure and production method for functional structure |
| US11666894B2 (en) | 2017-05-31 | 2023-06-06 | Furukawa Electric Co., Ltd. | Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water |
| US11680211B2 (en) | 2017-05-31 | 2023-06-20 | Furukawa Electric Co., Ltd. | Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization |
| US11684909B2 (en) | 2017-05-31 | 2023-06-27 | Furukawa Electric Co., Ltd. | Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon |
| US11654422B2 (en) | 2017-05-31 | 2023-05-23 | Furukawa Electric Co., Ltd. | Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization |
| US11896959B2 (en) | 2018-09-28 | 2024-02-13 | Jgc Catalysts And Chemicals Ltd. | Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil |
| WO2020116470A1 (en) | 2018-12-03 | 2020-06-11 | 国立大学法人北海道大学 | Functional structure |
| US12109556B2 (en) | 2018-12-03 | 2024-10-08 | National University Corporation Hokkaido University | Functional structure |
| WO2020116468A1 (en) | 2018-12-03 | 2020-06-11 | 国立大学法人北海道大学 | Functional structure |
| WO2020116469A1 (en) | 2018-12-03 | 2020-06-11 | 国立大学法人北海道大学 | Functional structure |
| US12179183B2 (en) | 2018-12-03 | 2024-12-31 | National University Corporation Hokkaido University | Functional structure |
| US12208375B2 (en) | 2018-12-03 | 2025-01-28 | National University Corporation Hokkaido University | Functional structure |
Also Published As
| Publication number | Publication date |
|---|---|
| US9187702B2 (en) | 2015-11-17 |
| WO2011002782A2 (en) | 2011-01-06 |
| IN2012DN00580A (en) | 2015-06-12 |
| CN102471700B (en) | 2016-08-03 |
| DK3363878T3 (en) | 2024-06-24 |
| EP3363878B1 (en) | 2024-03-20 |
| US20110000824A1 (en) | 2011-01-06 |
| BRPI1011677A2 (en) | 2016-03-22 |
| EP3363878A1 (en) | 2018-08-22 |
| EP2449058A4 (en) | 2013-02-27 |
| KR20120103544A (en) | 2012-09-19 |
| KR101869759B1 (en) | 2018-06-22 |
| FI3363878T3 (en) | 2024-06-20 |
| CN102471700A (en) | 2012-05-23 |
| PT3363878T (en) | 2024-06-24 |
| HRP20240835T1 (en) | 2024-09-27 |
| BRPI1011677B1 (en) | 2018-03-06 |
| JP2012532212A (en) | 2012-12-13 |
| PL3363878T3 (en) | 2024-07-29 |
| JP2018009175A (en) | 2018-01-18 |
| JP6812316B2 (en) | 2021-01-13 |
| JP2016028134A (en) | 2016-02-25 |
| ES2981539T3 (en) | 2024-10-09 |
| EP2449058A2 (en) | 2012-05-09 |
| ZA201108786B (en) | 2013-02-27 |
| JP5882205B2 (en) | 2016-03-09 |
| WO2011002782A3 (en) | 2011-04-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9187702B2 (en) | Hydroprocessing catalyst and method of making the same | |
| US9512372B2 (en) | Method for making a hydroprocessing catalyst | |
| RU2715713C2 (en) | Catalyst for medium distillate hydrocracking, comprising base extrudate having high volume of nanopores | |
| JP2022141714A (en) | Middle Distillate Hydrocracking Catalyst Containing High Nanopore Stabilized Y Zeolite | |
| US20230191381A1 (en) | Use of mtw-zeolite in support for hydrocracking catalysts with improved selectivity and cold flow property of middle distillate | |
| US20230174873A1 (en) | Mtw-zeolite as support for second stage hydrocracking catalysts with improved selectivity and cold flow property of distillate products | |
| US20230272291A1 (en) | High activity second stage naphtha hydrocracking catalyst | |
| US20230226533A1 (en) | Hydrocracking catalyst for heavy distillate |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |