US20160025386A1 - High Entropy NiMn-based Magnetic Refrigerant Materials - Google Patents
High Entropy NiMn-based Magnetic Refrigerant Materials Download PDFInfo
- Publication number
- US20160025386A1 US20160025386A1 US14/807,203 US201514807203A US2016025386A1 US 20160025386 A1 US20160025386 A1 US 20160025386A1 US 201514807203 A US201514807203 A US 201514807203A US 2016025386 A1 US2016025386 A1 US 2016025386A1
- Authority
- US
- United States
- Prior art keywords
- weight
- magnetocaloric
- sample
- graph showing
- curves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims description 17
- 239000003507 refrigerant Substances 0.000 title description 3
- 229910003289 NiMn Inorganic materials 0.000 title description 2
- 239000000203 mixture Substances 0.000 claims abstract description 29
- 239000000956 alloy Substances 0.000 claims abstract description 28
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 28
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 9
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 9
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 9
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 9
- 229910052718 tin Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052738 indium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 238000001595 flow curve Methods 0.000 description 27
- 230000008859 change Effects 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 19
- 238000001816 cooling Methods 0.000 description 18
- 238000000113 differential scanning calorimetry Methods 0.000 description 11
- 230000007704 transition Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000000137 annealing Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000007707 calorimetry Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/005—Alloys based on nickel or cobalt with Manganese as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- HVAC Heating, ventilation, air conditioning and refrigeration
- MCE magnetocaloric effect
- HVACR high efficiency heating, ventilation, air conditioning and refrigeration
- a magnetocaloric alloy composition consisting essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.3-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance, Ni.
- Other elements may be present as impurities in quantities too small to have a significant effect on the beneficial properties of the composition.
- a magnetocaloric device includes at least one magnetocaloric material, at least one magnet, apparatus for moving the magnetocaloric material into and out of proximity with the magnet, and apparatus for transferring heat to and from the magnetocaloric material, the magnetocaloric material consisting essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.3-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance Ni. Other elements may be present as impurities in quantities too small to have a significant effect on the beneficial properties of the composition.
- FIG. 1 is a graph showing raw heat flow curves for sample 1 measured by differential scanning calorimetry (DSC) directly during heating and cooling.
- DSC differential scanning calorimetry
- FIG. 2 is a graph showing specific heat capacity curves for sample 1 derived from the respective raw heat flow curves.
- FIG. 3 is a graph showing raw heat flow curves for sample 2 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 4 is a graph showing specific heat capacity curves for sample 2 derived from the respective raw heat flow curves.
- FIG. 5 is a graph showing raw heat flow curves for sample 3 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 6 is a graph showing specific heat capacity curves for sample 3 derived from the respective raw heat flow curves.
- FIG. 7 is a graph showing raw heat flow curves for sample 4 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 8 is a graph showing specific heat capacity curves for sample 4 derived from the respective raw heat flow curves.
- FIG. 9 is a graph showing raw heat flow curves for sample 5 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 10 is a graph showing specific heat capacity curves for sample 5 derived from the respective raw heat flow curves.
- FIG. 11 is a graph showing raw heat flow curves for sample 6 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 12 is a graph showing specific heat capacity curves for sample 6 derived from the respective raw heat flow curves.
- FIG. 13 is a graph showing raw heat flow curves for sample 7 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 14 is a graph showing specific heat capacity curves for sample 7 derived from the respective raw heat flow curves.
- FIG. 15 is a graph showing variations in heat capacity curves for sample 7 measured under magnetic fields, H, of indicated strengths.
- FIG. 16 is a graph showing the change in entropy AS(T) for sample 7 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIG. 17 is a graph showing raw heat flow curves for sample 8 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 18 is a graph showing specific heat capacity curves for sample 8 derived from the respective raw heat flow curves.
- FIG. 19 is a graph showing variations in heat capacity curves for sample 8 measured under magnetic fields of indicated strengths.
- FIG. 20 is a graph showing an enlarged section of FIG. 19 .
- FIG. 21 is a graph showing the change in entropy AS(T) for sample 8 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIG. 22 is a graph showing magnetization, M, as a function of magnetic field, H, at the temperatures near the critical temperature for sample 8.
- FIG. 23 is a graph showing raw heat flow curves for sample 9 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 24 is a graph showing specific heat capacity curves for sample 9 derived from the respective raw heat flow curves.
- FIG. 25 is a graph showing magnetization, M, as a function of magnetic field, H, at the temperatures near the critical temperature for sample 9.
- FIG. 26 is a graph showing raw heat flow curves for sample 10 measured by differential scanning calorimetry (DSC) during heating and cooling.
- FIG. 27 is a graph showing specific heat capacity curves for sample 10 derived from the respective raw heat flow curves.
- FIG. 28 is a graph showing variations in heat capacity curves for respective sample 10 measured under magnetic fields of indicated strengths.
- FIG. 29 is a graph showing the change in entropy AS(T) for sample 10 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIG. 30 is a graph showing variations in heat capacity curves for sample 12 measured under magnetic fields of indicated strengths.
- FIG. 31 is a graph showing the change in entropy AS(T) for sample 12 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIG. 32 is a graph showing variations in heat capacity curves for sample 13 measured under magnetic fields of indicated strengths.
- FIG. 33 is a graph showing an enlarged section of FIG. 32 .
- FIG. 34 is a graph showing the change in entropy AS(T) for sample 13 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIG. 35 is a graph showing variations in heat capacity curves for sample 14 measured under magnetic fields of indicated strengths.
- FIG. 36 is a graph showing the change in entropy AS(T) for sample 14 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIG. 37 is a graph showing the adiabatic temperature change derived from magnetization measurements for sample 14.
- FIG. 38 is a graph showing variations in heat capacity curves for sample 15 measured under magnetic fields of indicated strengths.
- FIG. 39 is a graph showing the change in entropy AS(T) for sample 15 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIG. 40 is a graph showing specific heat capacity curves for sample 11 derived from the respective raw heat flow curves.
- FIG. 41 is a graph showing specific heat capacity curves for sample 12 derived from the respective raw heat flow curves.
- FIG. 42 is a graph showing specific heat capacity curves for sample 13 derived from the respective raw heat flow curves.
- FIG. 43 is a graph showing specific heat capacity curves for sample 14 derived from the respective raw heat flow curves.
- FIG. 44 is a graph showing specific heat capacity curves for sample 15 derived from the respective raw heat flow curves.
- FIG. 45 is a 3-dimensional graph showing an array of X-ray diffraction (XRD) data for samples 1-15.
- the invention relates to high-performance, multicomponent NiMn-based alloys with an enhanced near room temperature magnetocaloric effect.
- Quinary, senary, septenary, etc. magnetocaloric alloy compositions consist essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.5-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance, Ni.
- Other elements may be present as impurities in quantities too small to have a significant effect on the beneficial properties of the composition.
- examples of the new magnetocaloric alloy compositions described herein can contain at least one of the following: 2-3 weight % V, 4-5 weight % Co, 7-9 weight % Pd, 3-8 weight % Gd, 6-9 weight % Sm, 10-12 weight % Sn, 6-9 weight % Ga, 0.2-1% Ge, and 3-10 weight % Ag.
- a method of preparing a multicomponent, magnetocaloric alloy can begin by preparing a heat (mixture) comprising an appropriate amount of each component.
- the mixture is heated slowly (generally over several hours, within a range of 8 to 18 hours, for example) in an inert atmosphere to a melting temperature and cooled to form a solid mixture.
- the protracted heating period is effective in achieving diffusion bonding between the elements and minimizing vaporization and loss of low-temperature melting elements.
- a re-melting step can be carried out in order to obtain a homogenous polycrystalline microstructure in the alloy.
- a two-step annealing process can be used to homogenize the alloy.
- a first annealing step can be carried out at a temperature in a range of about 950 to about 1050° C., preferably about 980 to about 1020° C. for a period of time in a range of about 55 to about 90 hours, preferably about 62 to about 82 hours in an inert atmosphere of Ar.
- a second annealing step can be carried out at a temperature in a range of about 750 to about 850° C., preferably about 790 to about 810° C. for a period of time in a range of about 22 to 26 hours in an inert atmosphere of Ar.
- a one-step annealing process at can be carried out at a temperature in a range of about 950 to about 1050° C., preferably about 980 to about 1020° C. for a period of time in a range of about 62 to about 82 hours in an inert atmosphere of Ar followed by a very slow cooling (about 10° C. per hour) to room temperature.
- Heat/mixture homogeneity may not be as complete as in the two-step annealing process.
- Cylindrical, homogeneous polycrystalline specimens of various new, multi-component, magnetocaloric alloy compositions were made as described hereinabove.
- a 100 g heat comprising an appropriate amount of each component was heated for 12 hours in an inert atmosphere and cooled.
- the alloy was re-melted in order to obtain a homogenous polycrystalline microstructure in the alloy specimen.
- the alloy specimen was subsequently annealed by a two-step process, first at 1000° C. for 72 hours and second at 800° C. for 24 hours, both steps being carried out in an inert atmosphere of Ar.
- Table 1 shows compositions of the specimens in terms of weight percent, not accounting for minor impurities that have no significant effect.
- Specimen 1 is a known composition; specimens 2-15 are new compositions. It is contemplated that constituent elements in the new magnetocaloric alloy compositions can be varied by about ⁇ 5%, as indicated by the values provided in Table 2.
- FIGS. 1 , 3 , 5 , 7 , 9 , 11 , 13 , 17 , 23 and 26 show raw heat flow curves for samples 1-10, respectively, measured by differential scanning calorimetry (DSC) during heating and cooling. Dashed lines indicate change of heat flow during heating and the solid lines indicate change of heat flow during cooling. Positive heat flow is exothermic and negative heat flow is endothermic.
- DSC differential scanning calorimetry
- FIGS. 2 , 4 , 6 , 8 , 10 , 12 , 14 , 18 , 24 , 27 , 40 , 41 , 42 , 43 , and 44 show specific heat capacity curves for samples 1-15, respectively, derived from the respective raw heat flow curves.
- the Y-axis represents specific heat; square data points indicate specific heat capacity during cooling; circular data points indicate specific heat capacity during heating.
- FIGS. 15 , 19 , 28 , 30 , 32 , 35 and 38 show variations in heat capacity curves measured by heat pulse calorimetry (also known as relaxation calorimetry) for respective samples 7, 8, 10, 12, 13, 14, and 15, measured under magnetic fields of indicated strengths.
- FIGS. 20 and 33 are enlarged section of respective FIGS. 19 , and 32 , showing shifts in the curves. Square data points indicate change of heat flow during cooling; circular data points indicate change of heat flow during heating.
- Structural transition with cooling is generally the change from cubic phase to orthorhombic (sometimes it can be tetragonal or monoclinic) phase.
- the structure of the alloy at room temperature was additionally checked by X-ray analysis.
- the samples with transition temperatures lower than room temperature generally have cubic symmetry, which was also confirmed by X-ray analysis.
- transition temperatures bracketing room temperature This temperature interval is of interest for possible applications of the magnetocaloric materials. Magnetocaloric effect is maximal within the temperature range of magnetic and structural transitions.
- delta S adiabatic change of entropy
- delta T adiabatic change of temperature
- FIGS. 16 , 21 , 29 , 31 , 34 , 36 , and 39 show the change in entropy ⁇ S(T) for respective samples 7, 8, 10, 12, 13, 14, and 15 with a 5-Tesla magnetic field minus that without a magnetic field.
- FIGS. 22 and 25 show magnetization M as a function of magnetic field H at the temperatures near the critical temperature for samples 8 and 9, respectively. Measurements of magnetic susceptibility were performed to determine the temperature of phase transition during heating and cooling more precisely and choose an appropriate temperature ranges for heat pulse calorimetry measurements.
- FIG. 37 shows adiabatic temperature change near the critical temperature for sample 14. As sample 14 showed the hignest value of the adiabatic entropy change ⁇ S(T), the measurements of AT was performed for this sample.
- FIG. 45 shows an array of XRD data for samples 1-15 for comparison. The sample numbers are identified to the left of each plot.
- the suggested alloy does not contain any hazard elements. Moreover it does not contain any light elements such as hydrogen. Therefore the properties of the suggested alloy are stable and will not change during exploitation as magnetic refrigerants. The properties are very sensitive to the composition variations.
- a magnetocaloric device generally comprises a magnetocaloric material, at least one magnet, apparatus for moving the magnetocaloric material into and out of proximity with the magnet, and apparatus for transferring heat to and from the magnetocaloric material.
- magnetocaloric cooling devices include refrigerators, freezers, air conditioners, cryogenic apparatus, and cooling systems associated with mechanical devices, electrical devices, electronic devices, and the like. The same and other types of magnetocaloric devices can be used to provide magnetocaloric heating.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Hard Magnetic Materials (AREA)
Abstract
A magnetocaloric alloy composition consists essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.3-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance Ni.
Description
- This application claims priority to U.S. Provisional Patent Application No. 62/029,602 filed on Jul. 28, 2014, which is incorporated herein in its entirety by reference.
- The United States Government has rights in this invention pursuant to contract no. DE-ACO5-000R22725 between the United States Department of Energy and UT-Battelle, LLC.
- Heating, ventilation, air conditioning and refrigeration, (HVACR) consume approximately 32% of all energy used in commercial buildings. Modern refrigerators/coolers still use greenhouse gases that affect global warming. Therefore, efficient technologies and systems for HVACR are of great importance for the Department of Energy (DOE).
- The need for materials with enhanced magnetocaloric effect (MCE) is one of the challenges of modern high efficiency heating, ventilation, air conditioning and refrigeration (HVACR). Magnetic refrigeration (MR) technology presently is considered as the most promising alternative to conventional gas compression HVACR systems. MR is environmentally friendly. It does not use hazardous chemicals or greenhouse gases. It eliminates high consumption of electricity and high capital cost typical for conventional gas compression technology. In MR, the interest in increased MCE, and its sensitivity to magnetic fields, is combining to demand further development of alloys working in a larger temperature interval with higher efficiency. These objectives cannot be met without new high performance magnetic refrigerant materials.
- In accordance with one aspect of the present invention, the foregoing and other objects are achieved by a magnetocaloric alloy composition consisting essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.3-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance, Ni. Other elements may be present as impurities in quantities too small to have a significant effect on the beneficial properties of the composition.
- In accordance with one aspect of the present invention, a magnetocaloric device includes at least one magnetocaloric material, at least one magnet, apparatus for moving the magnetocaloric material into and out of proximity with the magnet, and apparatus for transferring heat to and from the magnetocaloric material, the magnetocaloric material consisting essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.3-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance Ni. Other elements may be present as impurities in quantities too small to have a significant effect on the beneficial properties of the composition.
-
FIG. 1 is a graph showing raw heat flow curves forsample 1 measured by differential scanning calorimetry (DSC) directly during heating and cooling. -
FIG. 2 is a graph showing specific heat capacity curves forsample 1 derived from the respective raw heat flow curves. -
FIG. 3 is a graph showing raw heat flow curves forsample 2 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 4 is a graph showing specific heat capacity curves forsample 2 derived from the respective raw heat flow curves. -
FIG. 5 is a graph showing raw heat flow curves forsample 3 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 6 is a graph showing specific heat capacity curves forsample 3 derived from the respective raw heat flow curves. -
FIG. 7 is a graph showing raw heat flow curves forsample 4 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 8 is a graph showing specific heat capacity curves forsample 4 derived from the respective raw heat flow curves. -
FIG. 9 is a graph showing raw heat flow curves forsample 5 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 10 is a graph showing specific heat capacity curves forsample 5 derived from the respective raw heat flow curves. -
FIG. 11 is a graph showing raw heat flow curves forsample 6 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 12 is a graph showing specific heat capacity curves forsample 6 derived from the respective raw heat flow curves. -
FIG. 13 is a graph showing raw heat flow curves forsample 7 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 14 is a graph showing specific heat capacity curves forsample 7 derived from the respective raw heat flow curves. -
FIG. 15 is a graph showing variations in heat capacity curves forsample 7 measured under magnetic fields, H, of indicated strengths. -
FIG. 16 is a graph showing the change in entropy AS(T) forsample 7 with a 5-Tesla magnetic field minus that without a magnetic field. -
FIG. 17 is a graph showing raw heat flow curves forsample 8 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 18 is a graph showing specific heat capacity curves forsample 8 derived from the respective raw heat flow curves. -
FIG. 19 is a graph showing variations in heat capacity curves forsample 8 measured under magnetic fields of indicated strengths. -
FIG. 20 is a graph showing an enlarged section ofFIG. 19 . -
FIG. 21 is a graph showing the change in entropy AS(T) forsample 8 with a 5-Tesla magnetic field minus that without a magnetic field. -
FIG. 22 is a graph showing magnetization, M, as a function of magnetic field, H, at the temperatures near the critical temperature forsample 8. -
FIG. 23 is a graph showing raw heat flow curves forsample 9 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 24 is a graph showing specific heat capacity curves forsample 9 derived from the respective raw heat flow curves. -
FIG. 25 is a graph showing magnetization, M, as a function of magnetic field, H, at the temperatures near the critical temperature forsample 9. -
FIG. 26 is a graph showing raw heat flow curves forsample 10 measured by differential scanning calorimetry (DSC) during heating and cooling. -
FIG. 27 is a graph showing specific heat capacity curves forsample 10 derived from the respective raw heat flow curves. -
FIG. 28 is a graph showing variations in heat capacity curves forrespective sample 10 measured under magnetic fields of indicated strengths. -
FIG. 29 is a graph showing the change in entropy AS(T) forsample 10 with a 5-Tesla magnetic field minus that without a magnetic field. -
FIG. 30 is a graph showing variations in heat capacity curves forsample 12 measured under magnetic fields of indicated strengths. -
FIG. 31 is a graph showing the change in entropy AS(T) forsample 12 with a 5-Tesla magnetic field minus that without a magnetic field. -
FIG. 32 is a graph showing variations in heat capacity curves forsample 13 measured under magnetic fields of indicated strengths. -
FIG. 33 is a graph showing an enlarged section ofFIG. 32 . -
FIG. 34 is a graph showing the change in entropy AS(T) forsample 13 with a 5-Tesla magnetic field minus that without a magnetic field. -
FIG. 35 is a graph showing variations in heat capacity curves forsample 14 measured under magnetic fields of indicated strengths. -
FIG. 36 is a graph showing the change in entropy AS(T) forsample 14 with a 5-Tesla magnetic field minus that without a magnetic field. -
FIG. 37 is a graph showing the adiabatic temperature change derived from magnetization measurements forsample 14. -
FIG. 38 is a graph showing variations in heat capacity curves forsample 15 measured under magnetic fields of indicated strengths. -
FIG. 39 is a graph showing the change in entropy AS(T) forsample 15 with a 5-Tesla magnetic field minus that without a magnetic field. -
FIG. 40 is a graph showing specific heat capacity curves forsample 11 derived from the respective raw heat flow curves. -
FIG. 41 is a graph showing specific heat capacity curves forsample 12 derived from the respective raw heat flow curves. -
FIG. 42 is a graph showing specific heat capacity curves forsample 13 derived from the respective raw heat flow curves. -
FIG. 43 is a graph showing specific heat capacity curves forsample 14 derived from the respective raw heat flow curves. -
FIG. 44 is a graph showing specific heat capacity curves forsample 15 derived from the respective raw heat flow curves. -
FIG. 45 is a 3-dimensional graph showing an array of X-ray diffraction (XRD) data for samples 1-15. - For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims in connection with the above-described drawings.
- The invention relates to high-performance, multicomponent NiMn-based alloys with an enhanced near room temperature magnetocaloric effect. Quinary, senary, septenary, etc. magnetocaloric alloy compositions consist essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.5-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance, Ni. Other elements may be present as impurities in quantities too small to have a significant effect on the beneficial properties of the composition.
- More particularly, examples of the new magnetocaloric alloy compositions described herein can contain at least one of the following: 2-3 weight % V, 4-5 weight % Co, 7-9 weight % Pd, 3-8 weight % Gd, 6-9 weight % Sm, 10-12 weight % Sn, 6-9 weight % Ga, 0.2-1% Ge, and 3-10 weight % Ag.
- A method of preparing a multicomponent, magnetocaloric alloy can begin by preparing a heat (mixture) comprising an appropriate amount of each component. The mixture is heated slowly (generally over several hours, within a range of 8 to 18 hours, for example) in an inert atmosphere to a melting temperature and cooled to form a solid mixture. The protracted heating period is effective in achieving diffusion bonding between the elements and minimizing vaporization and loss of low-temperature melting elements. A re-melting step can be carried out in order to obtain a homogenous polycrystalline microstructure in the alloy.
- A two-step annealing process can be used to homogenize the alloy. A first annealing step can be carried out at a temperature in a range of about 950 to about 1050° C., preferably about 980 to about 1020° C. for a period of time in a range of about 55 to about 90 hours, preferably about 62 to about 82 hours in an inert atmosphere of Ar. A second annealing step can be carried out at a temperature in a range of about 750 to about 850° C., preferably about 790 to about 810° C. for a period of time in a range of about 22 to 26 hours in an inert atmosphere of Ar.
- A one-step annealing process at can be carried out at a temperature in a range of about 950 to about 1050° C., preferably about 980 to about 1020° C. for a period of time in a range of about 62 to about 82 hours in an inert atmosphere of Ar followed by a very slow cooling (about 10° C. per hour) to room temperature. Heat/mixture homogeneity may not be as complete as in the two-step annealing process.
- Cylindrical, homogeneous polycrystalline specimens of various new, multi-component, magnetocaloric alloy compositions were made as described hereinabove. For each specimen, a 100 g heat comprising an appropriate amount of each component was heated for 12 hours in an inert atmosphere and cooled. The alloy was re-melted in order to obtain a homogenous polycrystalline microstructure in the alloy specimen. The alloy specimen was subsequently annealed by a two-step process, first at 1000° C. for 72 hours and second at 800° C. for 24 hours, both steps being carried out in an inert atmosphere of Ar.
- Table 1 shows compositions of the specimens in terms of weight percent, not accounting for minor impurities that have no significant effect.
Specimen 1 is a known composition; specimens 2-15 are new compositions. It is contemplated that constituent elements in the new magnetocaloric alloy compositions can be varied by about ±5%, as indicated by the values provided in Table 2. - Various magnetocaloric properties of samples described herein were tested and compared.
FIGS. 1 , 3, 5, 7, 9, 11, 13, 17, 23 and 26 show raw heat flow curves for samples 1-10, respectively, measured by differential scanning calorimetry (DSC) during heating and cooling. Dashed lines indicate change of heat flow during heating and the solid lines indicate change of heat flow during cooling. Positive heat flow is exothermic and negative heat flow is endothermic. -
FIGS. 2 , 4, 6, 8, 10, 12, 14, 18, 24, 27, 40, 41, 42, 43, and 44 show specific heat capacity curves for samples 1-15, respectively, derived from the respective raw heat flow curves. The Y-axis represents specific heat; square data points indicate specific heat capacity during cooling; circular data points indicate specific heat capacity during heating. -
FIGS. 15 , 19, 28, 30, 32, 35 and 38 show variations in heat capacity curves measured by heat pulse calorimetry (also known as relaxation calorimetry) for 7, 8, 10, 12, 13, 14, and 15, measured under magnetic fields of indicated strengths.respective samples FIGS. 20 and 33 are enlarged section of respectiveFIGS. 19 , and 32, showing shifts in the curves. Square data points indicate change of heat flow during cooling; circular data points indicate change of heat flow during heating. - The data sets discussed above are helpful in determining the temperature of structural and magnetic transitions. Structural transition with cooling is generally the change from cubic phase to orthorhombic (sometimes it can be tetragonal or monoclinic) phase. The structure of the alloy at room temperature was additionally checked by X-ray analysis. The samples with transition temperatures lower than room temperature generally have cubic symmetry, which was also confirmed by X-ray analysis.
- Many of the new compositions have transition temperatures bracketing room temperature. This temperature interval is of interest for possible applications of the magnetocaloric materials. Magnetocaloric effect is maximal within the temperature range of magnetic and structural transitions.
- Other important parameters are the adiabatic change of entropy (delta S) and adiabatic change of temperature (delta T) during phase transition under magnetic field.
-
FIGS. 16 , 21, 29, 31, 34, 36, and 39 show the change in entropy ΔS(T) for 7, 8, 10, 12, 13, 14, and 15 with a 5-Tesla magnetic field minus that without a magnetic field.respective samples -
FIGS. 22 and 25 show magnetization M as a function of magnetic field H at the temperatures near the critical temperature for 8 and 9, respectively. Measurements of magnetic susceptibility were performed to determine the temperature of phase transition during heating and cooling more precisely and choose an appropriate temperature ranges for heat pulse calorimetry measurements.samples -
FIG. 37 shows adiabatic temperature change near the critical temperature forsample 14. Assample 14 showed the hignest value of the adiabatic entropy change ΔS(T), the measurements of AT was performed for this sample. -
FIG. 45 shows an array of XRD data for samples 1-15 for comparison. The sample numbers are identified to the left of each plot. - Among all the suggested new compositions of the alloys with the transition temperature at or slightly above the room temperature,
sample 14 showed the best magnetocaloric properties with ΔS=11 Jkg−1K−1 and ΔT=3K, and the transition temperatures in the range 300-310K. These properties are comparable with the best As-containing magnetocaloric materials, which are hazardous. In contrast, the suggested alloy does not contain any hazard elements. Moreover it does not contain any light elements such as hydrogen. Therefore the properties of the suggested alloy are stable and will not change during exploitation as magnetic refrigerants. The properties are very sensitive to the composition variations. - The skilled artisan will recognize that the magnetocaloric compositions described hereinabove are useful materials for use in devices where magnetocaloric heat transfer is employed. A magnetocaloric device generally comprises a magnetocaloric material, at least one magnet, apparatus for moving the magnetocaloric material into and out of proximity with the magnet, and apparatus for transferring heat to and from the magnetocaloric material. Examples of magnetocaloric cooling devices include refrigerators, freezers, air conditioners, cryogenic apparatus, and cooling systems associated with mechanical devices, electrical devices, electronic devices, and the like. The same and other types of magnetocaloric devices can be used to provide magnetocaloric heating.
- While there has been shown and described what are at present considered to be examples of the invention, it will be obvious to those skilled in the art that various changes and modifications can be prepared therein without departing from the scope of the inventions defined by the appended claims.
- Tables 1 and 2 follow:
-
TABLE 1 Specimen Ni Mn In Si Ga Ge Ag Gd Co Pd Sm V Sn 1 46.43 30.43 21.80 1.33 0 0 0 0 0 0 0 0 0 2 46.53 27.87 21.87 1.33 0 0 0 0 0 0 0 2.40 0 3 44.37 29.07 20.83 1.27 0 0 0 0 4.47 0 0 0 0 4 42.83 28.07 20.10 1.23 0 0 0 0 0 7.77 0 0 0 5 44.30 26.53 20.80 1.27 0 0 0 7.10 0 0 0 0 0 6 44.43 26.60 20.87 1.27 0 0 0 0 0 0 6.83 0 0 7 46.27 30.30 10.87 1.33 0 0 0 0 0 0 0 0 11.23 8 48.50 31.80 11.40 1.40 6.90 0 0 0 0 0 0 0 0 9 40.23 29.30 21.00 1.27 0 0 8.30 0 0 0 0 0 0 10 46.27 30.33 21.73 1.10 0 0.57 0 0 0 0 0 0 0 11 47.07 30.83 12.90 1.37 7.83 0 0 0 0 0 0 0 0 12 43.80 36.43 11.43 1.40 6.93 0 0 0 0 0 0 0 0 13 48.60 31.83 10.93 1.40 6.63 0.60 0 0 0 0 0 0 0 14 47.30 29.67 11.10 1.37 6.73 0 0 3.80 0 0 0 0 0 15 41.97 30.53 10.93 1.33 6.63 0 8.57 0 0 0 0 0 0 -
TABLE 2 Specimen Ni Mn In Si Ga Ge Ag Gd Co Pd Sm V Sn 2 Balance 26.5-29.3 20.3-23.3 1.28-1.38 0 0 0 0 0 0 0 2.3-2.5 0 3 Balance 26.5-31.5 19.8-21.8 1.21-1.33 0 0 0 0 4.2-4.6 0 0 0 0 4 Balance 26.6-29.4 19.1-21.1 1.17-1.29 0 0 0 0 0 7.3-8.1 0 0 0 5 Balance 24.2-28.8 19.8-21.8 1.21-1.33 0 0 0 6.8-7.4 0 0 0 0 0 6 Balance 25.3-27.9 19.8-21.8 1.21-1.33 0 0 0 0 0 0 6.5-7.2 0 0 7 Balance 28.8-31.8 10.2-11.4 1.26-1.40 0 0 0 0 0 0 0 0 10.4-11.8 8 Balance 30.6-33.4 10.8-13.0 1.33-1.47 6.6-7.2 0 0 0 0 0 0 0 0 9 Balance 27.8-30.8 19.5-22.5 1.21-1.33 0 0 7.9-8.7 0 0 0 0 0 0 10 Balance 28.8-31.8 20.2-23.2 1.05-1.15 0 0.54-0.60 0 0 0 0 0 0 0 11 Balance 29.3-32.3 12.3-13.5 1.31-1.43 7.4-8.2 0 0 0 0 0 0 0 0 12 Balance 34.6-38.2 10.8-11.3 1.33-1.47 6.5-7.3 0 0 0 0 0 0 0 0 13 Balance 30.2-33.4 10.3-11.5 1.33-1.47 6.3-6.9 0.57-0.63 0 0 0 0 0 0 0 14 Balance 28.1-31.1 10.6-11.6 1.31-1.43 6.3-7.1 0 0 3.6-4.0 0 0 0 0 0 15 Balance 29.0-32.0 10.3-11.5 1.26-1.40 6.3-6.9 0 8.2-9.0 0 0 0 0 0 0
Claims (20)
1. A magnetocaloric alloy composition consisting essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.3-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance Ni.
2. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 6 to 9 weight % Ga.
3. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 0.2 to 1 weight % Ge.
4. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 7 to 9 weight % Ag.
5. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 3 to 8 weight % Gd.
6. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 4 to 5 weight % Co.
7. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 7 to 9 weight % Pd.
8. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 6 to 9 weight % Sm.
9. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 2 to 3 weight % V.
10. A magnetocaloric alloy composition in accordance with claim 1 wherein said at least one other element comprises 10 to 12 weight % Sn.
11. A magnetocaloric device comprising at least one magnetocaloric material, at least one magnet, apparatus for moving said magnetocaloric material into and out of proximity with said magnet, and apparatus for transferring heat to and from said magnetocaloric material, said magnetocaloric material consisting essentially of 20-40 weight % Mn, 6-26 weight % In, 1-5 weight % Si, and 0.3-12 wt. % of at least one other element selected from the group consisting of: Ga, Ge, Ag, Gd, Co, Pd, Sm, V, and Sn, balance Ni.
12. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 6 to 9 weight % Ga.
13. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 0.2 to 1 weight % Ge.
14. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 7 to 9 weight % Ag.
15. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 3 to 8 weight % Gd.
16. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 4 to 5 weight % Co.
17. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 7 to 9 weight % Pd.
18. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 6 to 9 weight % Sm.
19. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 2 to 3 weight % V.
20. A magnetocaloric device in accordance with claim 11 wherein said at least one other element comprises 10 to 12 weight % Sn.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/807,203 US20160025386A1 (en) | 2014-07-28 | 2015-07-23 | High Entropy NiMn-based Magnetic Refrigerant Materials |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462029602P | 2014-07-28 | 2014-07-28 | |
| US14/807,203 US20160025386A1 (en) | 2014-07-28 | 2015-07-23 | High Entropy NiMn-based Magnetic Refrigerant Materials |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160025386A1 true US20160025386A1 (en) | 2016-01-28 |
Family
ID=55166471
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/807,203 Abandoned US20160025386A1 (en) | 2014-07-28 | 2015-07-23 | High Entropy NiMn-based Magnetic Refrigerant Materials |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20160025386A1 (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017164602A1 (en) * | 2016-03-21 | 2017-09-28 | 포항공과대학교 산학협력단 | Cr-fe-mn-ni-v-based high-entropy alloy |
| WO2017164601A1 (en) * | 2016-03-21 | 2017-09-28 | 포항공과대학교 산학협력단 | High-entropy alloy for ultra-low temperature |
| CN110484802A (en) * | 2019-08-30 | 2019-11-22 | 广州大学 | A kind of ferromagnetic shape memory alloy with nanometer Eutectic structure |
| CN110846551A (en) * | 2019-11-26 | 2020-02-28 | 贵州师范大学 | Preparation method of NiMnGaCoCu memory alloy thin strip |
| US10640854B2 (en) | 2016-08-04 | 2020-05-05 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
| CN111235458A (en) * | 2020-02-28 | 2020-06-05 | 江苏大学 | A kind of high-entropy alloy containing boron and rare earth and magnetic field treatment method thereof |
| CN112501476A (en) * | 2021-01-29 | 2021-03-16 | 北京科技大学 | Ultrahigh-strength-toughness high-density alloy and preparation method and application thereof |
| US10988834B2 (en) | 2016-03-21 | 2021-04-27 | Postech Academy-Industry Foundation | Cr—Fe—Mn—Ni—V-based high-entropy alloy |
| US11168386B2 (en) | 2016-03-21 | 2021-11-09 | Postech Academy-Industry Foundation | High-entropy alloy for ultra-low temperature |
| US11318566B2 (en) | 2016-08-04 | 2022-05-03 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
| US11339817B2 (en) | 2016-08-04 | 2022-05-24 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
| US11511375B2 (en) | 2020-02-24 | 2022-11-29 | Honda Motor Co., Ltd. | Multi component solid solution high-entropy alloys |
| US12296383B2 (en) | 2022-09-08 | 2025-05-13 | University-Industry Cooperation Group Of Kyung Hee University | Thermoelectric composite with high-entropy alloy dispersed and method for preparing the same |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002356748A (en) * | 2001-03-27 | 2002-12-13 | Toshiba Corp | Magnetic material |
| US20100156579A1 (en) * | 2005-06-27 | 2010-06-24 | Japan Science And Technology Agency | Ferromagnetic shape memory alloy and its use |
-
2015
- 2015-07-23 US US14/807,203 patent/US20160025386A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002356748A (en) * | 2001-03-27 | 2002-12-13 | Toshiba Corp | Magnetic material |
| US20100156579A1 (en) * | 2005-06-27 | 2010-06-24 | Japan Science And Technology Agency | Ferromagnetic shape memory alloy and its use |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017164601A1 (en) * | 2016-03-21 | 2017-09-28 | 포항공과대학교 산학협력단 | High-entropy alloy for ultra-low temperature |
| WO2017164602A1 (en) * | 2016-03-21 | 2017-09-28 | 포항공과대학교 산학협력단 | Cr-fe-mn-ni-v-based high-entropy alloy |
| US10988834B2 (en) | 2016-03-21 | 2021-04-27 | Postech Academy-Industry Foundation | Cr—Fe—Mn—Ni—V-based high-entropy alloy |
| US11168386B2 (en) | 2016-03-21 | 2021-11-09 | Postech Academy-Industry Foundation | High-entropy alloy for ultra-low temperature |
| US11318566B2 (en) | 2016-08-04 | 2022-05-03 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
| US10640854B2 (en) | 2016-08-04 | 2020-05-05 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
| US11535913B2 (en) | 2016-08-04 | 2022-12-27 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
| US11339817B2 (en) | 2016-08-04 | 2022-05-24 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
| CN110484802A (en) * | 2019-08-30 | 2019-11-22 | 广州大学 | A kind of ferromagnetic shape memory alloy with nanometer Eutectic structure |
| CN110846551A (en) * | 2019-11-26 | 2020-02-28 | 贵州师范大学 | Preparation method of NiMnGaCoCu memory alloy thin strip |
| US11511375B2 (en) | 2020-02-24 | 2022-11-29 | Honda Motor Co., Ltd. | Multi component solid solution high-entropy alloys |
| CN111235458A (en) * | 2020-02-28 | 2020-06-05 | 江苏大学 | A kind of high-entropy alloy containing boron and rare earth and magnetic field treatment method thereof |
| CN112501476A (en) * | 2021-01-29 | 2021-03-16 | 北京科技大学 | Ultrahigh-strength-toughness high-density alloy and preparation method and application thereof |
| US12296383B2 (en) | 2022-09-08 | 2025-05-13 | University-Industry Cooperation Group Of Kyung Hee University | Thermoelectric composite with high-entropy alloy dispersed and method for preparing the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20160025386A1 (en) | High Entropy NiMn-based Magnetic Refrigerant Materials | |
| Yibole et al. | Direct measurement of the magnetocaloric effect in MnFe (P, X)(X= As, Ge, Si) materials | |
| Qin et al. | Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction | |
| Gupta et al. | Review on magnetic and related properties of RTX compounds | |
| Nandi et al. | Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba (Fe 1-x Co x) 2 As 2 single crystals | |
| Zhou et al. | The elastocaloric effect of Ni50. 8Ti49. 2 shape memory alloys | |
| Zhang et al. | Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique | |
| Pakhira et al. | Low-field induced large magnetocaloric effect in Tm2Ni0. 93Si2. 93: influence of short-range magnetic correlation | |
| Pakhira et al. | Chemical disorder driven reentrant spin cluster glass state formation and associated magnetocaloric properties of Nd 2 Ni 0.94 Si 2.94 | |
| Pakhira et al. | Observation of short range order driven large refrigerant capacity in chemically disordered single phase compound Dy 2 Ni 0.87 Si 2.95 | |
| Provino et al. | Gd 3 Ni 2 and Gd 3 Co x Ni 2− x: magnetism and unexpected Co/Ni crystallographic ordering | |
| Balli et al. | Observation of large refrigerant capacity in the HoVO3 vanadate single crystal | |
| CN102089835A (en) | magnetocaloric refrigerator | |
| Torrens-Serra et al. | The effect of annealing on the transformation and the microstructure of Mn1− xCrxCoGe alloys | |
| Llamazares et al. | Investigating the magnetic entropy change in single-phase Y2Fe17 melt-spun ribbons | |
| Lei et al. | Amorphous forming ranges of Al-Fe-Nd-Zr system predicted by Miedema and geometrical models | |
| Sharma et al. | Enhanced magnetocaloric properties and critical behavior of (Fe0. 72Cr0. 28) 3Al alloys for near room temperature cooling | |
| Zhou et al. | Table-like magnetocaloric effect and large refrigerant capacity of composite magnetic refrigerants based on LaFe11. 6Si1. 4Hy alloys | |
| Kim et al. | Magnetocaloric refrigerant with wide operating temperature range based on Mn5− xGe3 (Co, Fe) x composite | |
| Kang et al. | Direct measurement of the magnetocaloric effect (ΔTad) of Mn5− x (Fe, Co) xGe3 | |
| Fujita et al. | Magnetocaloric properties in (La, R)(Fe, Mn, Si) 13H (R= Ce and Pr)—toward a better alloy design that results in a reduction in volume of permanent magnets and the establishment of long-term reliability in cooling systems | |
| CN107675063B (en) | A kind of Ni-Mn-In-Co-Cu magnetic refrigeration alloy material and preparation method | |
| Wang et al. | Tuning of magnetocaloric effect and optimization of scaling factor for Gd55Ni10Co35 amorphous microwires | |
| Jia et al. | Manufacture and characterization of RE2Co (RE= Gd, Ho) amorphous alloys with excellent magnetic entropy change | |
| Nong et al. | Structural, magnetic and magnetocaloric properties of Heusler alloys Ni50Mn38Sb12 with boron addition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UT-BATTELLE, LLC, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARABASH, ROZALIYA I.;VINEYARD, EDWARD A.;WATKINS, THOMAS R.;AND OTHERS;SIGNING DATES FROM 20150724 TO 20150825;REEL/FRAME:036679/0347 |
|
| AS | Assignment |
Owner name: U.S. DEPARTMENT OF ENERGY, DISTRICT OF COLUMBIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UT-BATTELLE, LLC;REEL/FRAME:037324/0468 Effective date: 20151021 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |