[go: up one dir, main page]

US20160024628A1 - Chromium free hardfacing materials - Google Patents

Chromium free hardfacing materials Download PDF

Info

Publication number
US20160024628A1
US20160024628A1 US14/702,569 US201514702569A US2016024628A1 US 20160024628 A1 US20160024628 A1 US 20160024628A1 US 201514702569 A US201514702569 A US 201514702569A US 2016024628 A1 US2016024628 A1 US 2016024628A1
Authority
US
United States
Prior art keywords
coating
work piece
article
manufacture
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/702,569
Other languages
English (en)
Inventor
Justin Lee Cheney
Tianho Jiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scoperta Inc
Original Assignee
Scoperta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scoperta Inc filed Critical Scoperta Inc
Priority to US14/702,569 priority Critical patent/US20160024628A1/en
Publication of US20160024628A1 publication Critical patent/US20160024628A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • C23C4/125
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying

Definitions

  • the disclosure generally relates to hardfacing materials which can be deposited as hardfacing coatings without the production of Cr, such as hexavalent Cr dust.
  • Thermal spray processing is a technique which can be utilized to deposit a hard wear resistant and/or corrosion resistant layer onto the surface of a component.
  • Thermal spray inherently creates a significant amount of dust due to the fact that about 10-40% or more of the feedstock material does not stick to the component of interest and rebounds of the surface in the form a fine metallic dust.
  • One particular class of thermal spray materials which is used to form wear resistant layers is amorphous and/or nanocrystalline materials.
  • Fe-based amorphous and nanocrystalline materials used in thermal spray contain chromium as an alloying element. Chromium is effective in stabilizing the fine-grained structure, can increase wear resistance through the formation of chromium carbides and/or borides, and is useful in providing a degree of corrosion resistance.
  • Chromium is effective in stabilizing the fine-grained structure, can increase wear resistance through the formation of chromium carbides and/or borides, and is useful in providing a degree of corrosion resistance.
  • chromium is considered undesirable for use in thermal spray
  • Fe-based chromium free thermal spray materials There are several Fe-based chromium free thermal spray materials which have been developed and are used by industry today. Currently available Fe-based Cr-free materials have hardness levels below 500 Vickers, as shown in Table 1, which can make them inapplicable for many different industrial uses.
  • Thermal spray coatings may be produced having a hardness above 500 Vickers without the use of chromium as an alloying element.
  • Some embodiments are directed to a work piece having a coating on at least a surface, the work piece comprising a metal surface onto which a coating is applied, the coating comprising an Fe-based alloy without any chromium, wherein the alloy comprises a Vickers hardness of at least 500 and an adhesion strength of at least 5,000 psi.
  • the coating can be applied via the twin wire arc spray process.
  • the coating can comprise, in weight percent, B: about 0-4, C: about 0-0.25, Si: about 0-15, Mn: about 0 to 25, Mo: about 0-29, Nb: about 0-2, Ta: about 0-4, Ti: about 0-4, V: about 0-10, W: about 0-6, Zr: about 0-10, wherein B+C+Si is about 4-15, and wherein (Mo+Mn+Nb+Ta+Ti+V+W+Zr) is about 5 to 38.
  • the coating can comprise Fe and, in weight percent, C: about 0 to 0.25, Mn: about 5 to 19, Mo: about 7 to 23, Ni: about 0 to 4, and Si: about 5 to 10.
  • the coating can be non-magnetic and therefore the coating thickness can be accurately measured with an ElcometerTM thickness gauge or similar device. In some embodiments, the coating can be non-magnetic and therefore the coating thickness can be accurately measured with an ElcometerTM thickness gauge or similar device after it has been exposed to temperatures exceeding about 1100 K for 2 hours or more and then slow cooled at a rate of 10K/s or less.
  • the coating can be amorphous. In some embodiments, the coating can be nanocrystalline, as defined by having a grain size of 100 nm or less.
  • an article of manufacture comprising a coating which is Fe-based, without chromium, and possesses a melting temperature of 1500K or below and a large atom concentration of at least 5 atom %, large atoms being of the group Mn, Mo, Nb, Ta, Ti, V, W, and Zr.
  • the coating can comprise a Vickers hardness of at least 400 and an adhesion strength of at least 5,000 psi. In some embodiments, the coating can be applied via the twin wire arc spray process.
  • the coating can comprise, in weight percent, B: about 0-4, C: about 0-0.25, Si: about 0-15, Mn: about 0 to 25, Mo: about 0-29, Nb: about 0-2, Ta: about 0-4, Ti: about 0-4, V: about 0-10, W: about 0-6, Zr: about 0-10, wherein B+C+Si is about 4-15, and wherein (Mo+Mn+Nb+Ta+Ti+V+W+Zr) is about 5 to 38.
  • the coating can comprise Fe and, in weight percent, C: about 0 to 0.25, Mn: about 5 to 19, Mo: about 7 to 23, Ni: about 0 to 4, and Si: about 5 to 10.
  • the coating can be non-magnetic and therefore the coating thickness can be accurately measured with an ElcometerTM thickness gauge or similar device. In some embodiments, the coating can be non-magnetic and therefore the coating thickness can be accurately measured with an ElcometerTM thickness gauge or similar device after it has been exposed to temperatures exceeding about 1100 K for 2 hours or more and then slow cooled at a rate of 10K/s or less.
  • the coating can be amorphous. In some embodiments, the coating can be nanocrystalline, as defined by having a grain size of 100 nm or less.
  • a work piece having at least one surface comprising a coating applied to the at least one surface, the coating comprising an Fe-based alloy having substantially no chromium, having substantially no carbides, and having substantially no borides, wherein the alloy comprises a Vickers hardness of at least 500 and an adhesion strength of at least 5,000 psi.
  • the coating can comprise Fe and, in weight percent, B: about 0-4, C: about 0-0.25, Si: about 0-15, Mn: about 0 to 25, Mo: about 0-29, Nb: about 0-2, Ta: about 0-4, Ti: about 0-4, V: about 0-10, W: about 0-6, Zr: about 0-10, wherein B+C+Si is about 4-15, and wherein (Mo+Mn+Nb+Ta+Ti+V+W+Zr) is about 5 to 38.
  • the coating can comprise Fe and in weight percent, C: about 0 to 0.25, Mn: about 5 to 19, Mo: about 7 to 23, Ni: about 0 to 4, and Si: about 5 to 10.
  • the coating can comprise one or more of the following compositions in weight percent: Fe, Mn: about 5, Mo: about 13, Si: about 10, Al: about 2; or Fe, Mn: about 5, Mo: about 7, Si: about 10, Al: about 2.
  • the coating can be non-magnetic and the coating thickness can be accurately measured with an ElcometerTM thickness gauge or similar device after it has been exposed to temperatures exceeding about 1100 K for 2 hours or more and then slow cooled at a rate of 10K/s or less.
  • the coating can be amorphous. In some embodiments, the coating can be nanocrystalline, as defined by having a grain size of 100 nm or less.
  • the coating can be applied via a thermal spray process. In some embodiments, the coating can be applied via a twin wire arc spray process. In some embodiments, the work piece can be a yankee dryer. In some embodiments, the work piece can be a roller used in a paper making machine.
  • an article of manufacture comprising an Fe-based coating having substantially no chromium, wherein the coating possesses a melting temperature of 1500K or below, wherein the coating possesses a large atom concentration of at least 5 atom %, large atoms being of the group consisting of Mn, Mo, Nb, Ta, Ti, V, W, and Zr, and wherein the coating is a primarily single phase fine-grained structure of either martensite, ferrite, or austenite.
  • the coating can comprise, in weight percent B: about 0-4, C: about 0-0.25, Si: about 0-15, Mn: about 0 to 25, Mo: about 0-29, Nb: about 0-2, Ta: about 0-4, Ti: about 0-4, V: about 0-10, W: about 0-6, Zr: about 0-10, wherein B+C+Si is about 4-15, and wherein (Mo+Mn+Nb+Ta+Ti+V+W+Zr) is about 5 to 38.
  • the coating can comprise Fe and in weight percent C: about 0 to 0.25, Mn: about 5 to 19, Mo: about 7 to 23, Ni: about 0 to 4, and Si: about 5 to 10.
  • the coating can comprise one or more of the following compositions in weight percent: Fe, Mn: about 5, Mo: about 13, Si: about 10, Al: about 2; or Fe, Mn: about 5, Mo: about 7, Si: about 10, Al: about 2.
  • the coating can be non-magnetic and the coating thickness can be accurately measured with an ElcometerTM thickness gauge or similar device after it has been exposed to temperatures exceeding about 1100 K for 2 hours or more and then slow cooled at a rate of 10K/s or less.
  • the coating can comprise a Vickers hardness of at least 500 and an adhesion strength of at least 5,000 psi.
  • the coating can be applied via the twin wire arc spray process. In some embodiments, the coating can be applied via a thermal spray process.
  • the coating can be amorphous. In some embodiments, the coating can be nanocrystalline, as defined by having a grain size of 100 nm or less.
  • the coating can be applied onto a roller used in a paper making machine. In some embodiments, the coating can be applied onto a Yankee Dryer. In some embodiments, the coating can be applied onto a boiler tube.
  • a work piece having at least one surface comprising a coating applied to the at least one surface, the coating comprising an Fe-based alloy having less than 1 wt. % chromium, less than 5 vol. % carbides, and less than 5 vol. % borides, wherein the alloy comprises a Vickers hardness of at least 500 and an adhesion strength of at least 5,000 psi.
  • the alloy can have less than 1 vol. % carbides and less than 1 vol. % borides.
  • the alloys can have high hardness and can be used as, for example, coatings.
  • computational metallurgy can be used to explore alloy compositional ranges where an alloy is likely to form an amorphous or nanocrystalline coating without the use of chromium as an alloying element.
  • Fe-based thermal spray coatings with a hardness above 500 Vickers have used chromium as an alloying element.
  • This disclosure demonstrates embodiments of alloy compositions which can produce thermal spray coatings with hardness values above 500 Vickers, in addition to describing the design techniques successfully used to identify them.
  • alloys which can achieve high hardness levels through mechanisms other than the use of chromium or the formation of carbides and/or borides. Rather, in some embodiments, a very fine-grain structure can be achieved due to melting temperature and large atom criteria disclosed herein.
  • the alloy can be described by a composition in weight percent comprising the following elemental ranges at least partially based on the ranges disclosed in Table 2 and Table 3:
  • an alloy can be designed using any of the large elements as long as the other elemental ratios are controlled properly.
  • Fe has an atomic size of 156 pm.
  • a large atom can be an atom that is larger than Fe.
  • These large atoms can be advantageous as they can increase the viscosity of an alloy in liquid form and thus slow down the crystallization rate of the alloy. As the crystallization rate decreases, the probability of forming an amorphous, nanocrystalline, or fine-grained structure can increase.
  • the coating can be amorphous. In some embodiments, the coating can be nanocrystalline, as defined by having a grain size of 100 nm or less. In some embodiments, the coating can be nanocrystalline, as defined by having a grain size of 50 nm or less. In some embodiments, the coating can be nanocrystalline, as defined by having a grain size of 20 nm or less.
  • the alloy can be described by a composition in weight percent comprising the following elemental ranges at least partially based on a range composed form the alloys selected for manufacture into experimental ingots:
  • the alloy can be described by the specific compositions, which have been produced and experimentally demonstrated amorphous formation potential, in weight percent, comprising the following elements.
  • aluminum can be further added to the above alloy ranges and chemistries to improve coating adhesion in the range of up to 5 (or about 5) wt. %.
  • the alloy may contain boron, such as between 0-4 wt. % (including 1, 2, and 3 wt. %) as indicated above. In some embodiments, the alloy may not contain any boron. In some embodiments, boron may act as an impurity and does not exceed 1 wt. %.
  • the Fe content identified in the composition above may be the balance of the composition as indicated above, or alternatively, the balance of the composition may comprise Fe and other elements. In some embodiments, the balance may consist essentially of Fe and may include incidental impurities. In some embodiments, the above alloys may not contain any chromium. In some embodiments, chromium may act as an impurity and does not exceed 1 wt. %.
  • the alloy can be described by thermodynamic and kinetic criteria.
  • the thermodynamic criteria can relate to the stability of the liquid phase, e.g., the melting temperature of the alloy.
  • the melting temperature can be calculated via thermodynamic models and is defined as the highest temperature at which liquid is less than 100% of the mole fraction in the material.
  • the kinetic criterion can be related to the viscosity of the liquid and the concentration in atom percent of large atoms. Large atoms are defined as atoms which are larger than iron atoms. Either or both criteria can be used to predict the tendency towards amorphous formation in thermal spray materials.
  • the alloys can have a microstructure of ferritic iron.
  • a primarily single phase fine-grained structure of either martensite, ferrite, or austenite can be formed.
  • ⁇ 5% (or ⁇ about 5%) borides and carbides are formed.
  • ⁇ 1% (or ⁇ about 1%) borides and carbides are formed.
  • ⁇ 0.1% (or ⁇ about 0.1%) borides and carbides are formed.
  • no borides or carbides are formed.
  • the melting temperature can be below 1500 K (or below about 1500K). In some embodiments, the melting temperature can be below 1450K (or below about 1450K). In some embodiments, the melting temperature can be below 1400K (or below about 1400K).
  • amorphous formation is encouraged with lower melting temperatures because, typically, as grain size decreases, hardness increases (known as the Hall-Petch relationship). Amorphous alloys effectively have zero grain size, and thus can be the hardest form of the alloy. As amorphous formation potential increases, the alloy, even if it doesn't always become amorphous in every process, will tend towards a smaller grain size.
  • amorphous forming alloys of the disclosure even if they form fine-grained or nanocrystalline structures and not actually an amorphous structure, will tend to be harder.
  • the alloy may end up being crystalline, specifically nanocrystalline, upon application, such as through thermal spray, while still achieving the high hardness levels disclosed herein.
  • the large atom atomic fraction can be above 5 atom % (or above about 5 atom %). In some embodiments, the large atom atomic fraction can be above 7.5 atom % (or above about 7.5 atom %). In some embodiments, the large atom atomic fraction can be above 10 atom % (or above about 10 atom %). In some embodiments, the higher large atom atomic fraction can encourage amorphous formation and increase amorphous formation potential.
  • Table 2 lists the alloy compositions, all Fe-based, in weight percent which can meet the thermodynamic criteria detailed in this disclosure.
  • the Fe-based alloys can have a composition that is predominantly iron, e.g., at least 50 wt. % iron.
  • the alloy can possess a low FCC-BCC transition temperature. This criteria can be related to the likelihood of the alloy to retain an austenitic structure when deposited and thus be ‘readable’ by certain measuring devices, as discussed further below. Readable coatings can be non-magnetic and thus the thickness can be measured with standard paint thickness gauges. This can be advantageous for many thermal spray applications.
  • the alloy can be described by performance criteria.
  • the performance criteria that can be advantageous to the field of thermal spray hardfacing is the hardness, wear resistance, coating adhesion, and corrosion resistance.
  • the Vickers hardness of the coating can be 400 or above (or about 400 or above). In some embodiments, the Vickers hardness of the coating can be 500 or above (or about 500 or above). In some embodiments, the Vickers hardness can be 550 or above (or about 550 or above). In some embodiments, the Vickers hardness can be 600 or above (or about 600 or above).
  • the specific microstructure disclosed herein can allow for embodiments of the alloys to have high hardness.
  • the adhesion strength of the coating can be 5,000 psi or above (or about 5,000 psi or above). In some embodiments, the adhesion strength of the coating can be 7,500 psi or above (or about 7,500 psi or above). In some embodiments, the adhesion strength of the coating can be 10,000 psi or above (or about 10,000 psi or above).
  • the abrasion resistance of the coating as measured via ASTM G65B testing can be 0.8 grams loss or below (or about 0.8 grams loss or below). In some embodiments, the abrasion resistance of the coating as measured via ASTM G65B testing can be 0.6 grams loss or below (or about 0.6 grams loss or below). In some embodiments, the abrasion resistance of the coating as measured via ASTM G65B testing can be 0.4 grams loss or below (or about 0.4 grams loss or below).
  • the adhesive wear resistance of the coating as measured via ASTM G77 testing can be 2 mm 3 volume loss or below (or about 2 mm 3 volume loss or below). In some embodiments, the adhesive wear resistance of the coating as measured via ASTM G77 testing can be 0.5 mm 3 volume loss or below (or about 0.5 mm 3 volume loss or below). In some embodiments, the adhesive wear resistance of the coating as measured via ASTM G77 testing can be 0.1 mm 3 volume loss or below (or about 0.1 mm 3 volume loss or below).
  • the alloy can exhibit similar performance to conventional Cr-bearing thermal spray materials used for hardfacing.
  • the most exemplary and well used thermal spray hardfacing material possesses a chemical composition of Fe: BAL, Cr: 29, Si: 1, Mn: 2, B: 4, which is generally referred to in the industry as Armacor M.
  • Armacor M possesses the following properties which are relevant to thermal spray hardfacing: adhesion of about 8,000 psi, ASTM G65B mass loss of about 0.37 grams, ASTM G77 volume loss of about 0.07 mm 3 , and position in the galvanic series in saltwater of about ⁇ 500 mV.
  • Armacor M is primarily made of Fe, Cr, and B, has a high melting temperature, and has no large atoms.
  • the alloys can exhibit similar coating adhesion and abrasive wear resistance as Armacor, where ‘similar’ equates to within 25% (or within about 25%) of the measured performance properties of Armacor M or better. In some embodiments of this disclosure, the alloys can exhibit similar coating adhesion, abrasive wear resistance, and adhesive wear resistance as Armacor, where ‘similar’ equates to within 25% (or within about 25%) of the measured performance properties of Armacor M or better.
  • the alloys can exhibit similar coating adhesion, abrasive wear resistance, adhesive wear resistance, and corrosion resistance as Armacor, where ‘similar’ equates to within 25% (or within about 25%) of the measured performance properties of Armacor M or better.
  • the alloys can exhibit similar coating adhesion and abrasive wear resistance as Armacor, where ‘similar’ equates to within 10% (or within about 10%) of the measured performance properties of Armacor M or better. In some embodiments of this disclosure, the alloys can exhibit similar coating adhesion, abrasive wear resistance, and adhesive wear resistance as Armacor, where ‘similar’ equates to within 10% (or within about 10%) of the measured performance properties of Armacor M or better.
  • the alloys can exhibit similar coating adhesion, abrasive wear resistance, adhesive wear resistance, and corrosion resistance as Armacor, where ‘similar’ equates to within 10% (or within about 10%) of the measured performance properties of Armacor M or better.
  • the alloys can exhibit similar coating adhesion and abrasive wear resistance as Armacor, where ‘similar’ equates to within 1% (or within about 1%) of the measured performance properties of Armacor M or better. In some embodiments of this disclosure, the alloys can exhibit similar coating adhesion, abrasive wear resistance, and adhesive wear resistance as Armacor, where ‘similar’ equates to within 1% (or within about 1%) of the measured performance properties of Armacor M or better.
  • the alloys can exhibit similar coating adhesion, abrasive wear resistance, adhesive wear resistance, and corrosion resistance as Armacor, where ‘similar’ equates to within 1% (or within about 1%) of the measured performance properties of Armacor M or better.
  • the alloys can exhibit similar coating adhesion and abrasive wear resistance as Armacor, where ‘similar’ equates to within 0% (or within about 0%) of the measured performance properties of Armacor M or better. In some embodiments of this disclosure, the alloys can exhibit similar coating adhesion, abrasive wear resistance, and adhesive wear resistance as Armacor, where ‘similar’ equates to within 0% (or within about 0%) of the measured performance properties of Armacor M or better.
  • the alloys can exhibit similar coating adhesion, abrasive wear resistance, adhesive wear resistance, and corrosion resistance as Armacor, where ‘similar’ equates to within 0% (or within about 0%) of the measured performance properties of Armacor M or better.
  • the thermal spray coating can be ‘readable’.
  • a readable coating produces consistent thickness measurements with an ElcometerTM thickness gauge, or similar device, when properly calibrated.
  • Armacor M is not a readable alloy, unlike embodiments of the disclosure, as it is magnetic.
  • the coating thickness measurement can be accurate to within 5 mils (or within about 5 mils) of the actual physical thickness. In some embodiments, the coating thickness measurement can be accurate to within 3.5 mils (or within about 3.5 mils) of the actual physical thickness. In some embodiments, the coating thickness measurement can be accurate to within 2 mils (or within about 2 mils) of the actual physical thickness.
  • consistent measurements according to the above criteria can be made after the coating has been exposed to heat for an extended period of time.
  • This can be advantageous because when the alloy is heated, there is a potential for a magnetic phase to precipitate out, which would make the alloy non-readable.
  • This can be especially true for amorphous alloys which may be readable in amorphous form, but may crystallize in a different environment due to heat.
  • the alloy can remain non-magnetic even after being exposed to heat for a substantial time period.
  • the coating can be ‘readable’ after exposure to 1100K (or about 1100K) for 2 hours (or about 2 hours) and cooled at a rate of less than 10K/S (or less than about 10K/S). In some embodiments, the coating can be ‘readable’ after exposure to 1300K (or about 1300K) for 2 hours (or about 2 hours) and cooled at a rate of less than 10K/S (or less than 10K/S). In some embodiments, the coating can be ‘readable’ after exposure to 1500K (or about 1500K) for 2 hours (or about 2 hours) and cooled at a rate of less than 10K/S (or less than about 10K/S). It is expected that increased exposure times above 2 hours will not continue to affect the final ‘readability’ of these materials.
  • Embodiments of alloys disclosed herein can be used in a variety of applications and industries. Some non-limiting examples of applications of use include:
  • Wear resistant sleeves and/or wear resistant hardfacing for slurry pipelines including wear resistant sleeves and/or wear resistant hardfacing for slurry pipelines, mud pump components including pump housing or impeller or hardfacing for mud pump components, ore feed chute components including chute blocks or hardfacing of chute blocks, separation screens including but not limited to rotary breaker screens, banana screens, and shaker screens, liners for autogenous grinding mills and semi-autogenous grinding mills, ground engaging tools and hardfacing for ground engaging tools, wear plate for buckets and dumptruck liners, heel blocks and hardfacing for heel blocks on mining shovels, grader blades and hardfacing for grader blades, stacker reclaimers, siazer crushers, general wear packages for mining components and other communition components.
  • Upstream oil and gas applications including but not limited to the following components and coatings for the following components: Downhole casing and downhole casing, drill pipe and coatings for drill pipe including hardbanding, mud management components, mud motors, fracking pump sleeves, fracking impellers, fracking blender pumps, stop collars, drill bits and drill bit components, directional drilling equipment and coatings for directional drilling equipment including stabilizers and centralizers, blow out preventers and coatings for blow out preventers and blow out preventer components including the shear rams, oil country tubular goods and coatings for oil country tubular goods.
  • Downstream oil and gas applications including but not limited to the following components and coatings for the following components: Process vessels and coating for process vessels including steam generation equipment, amine vessels, distillation towers, cyclones, catalytic crackers, general refinery piping, corrosion under insulation protection, sulfur recovery units, convection hoods, sour stripper lines, scrubbers, hydrocarbon drums, and other refinery equipment and vessels.
  • Process vessels and coating for process vessels including steam generation equipment, amine vessels, distillation towers, cyclones, catalytic crackers, general refinery piping, corrosion under insulation protection, sulfur recovery units, convection hoods, sour stripper lines, scrubbers, hydrocarbon drums, and other refinery equipment and vessels.
  • Pulp and paper applications including but not limited to the following components and coatings for the following components: Rolls used in paper machines including yankee dryers and other dryers, calendar rolls, machine rolls, press rolls, digesters, pulp mixers, pulpers, pumps, boilers, shredders, tissue machines, roll and bale handling machines, doctor blades, evaporators, pulp mills, head boxes, wire parts, press parts, M.G. cylinders, pope reels, winders, vacuum pumps, deflakers, and other pulp and paper equipment.
  • Power generation applications including but not limited to the following components and coatings for the following components: boiler tubes, precipitators, fireboxes, turbines, generators, cooling towers, condensers, chutes and troughs, augers, bag houses, ducts, ID fans, coal piping, and other power generation components.
  • Agriculture applications including but not limited to the following components and coatings for the following components: chutes, base cutter blades, troughs, primary fan blades, secondary fan blades, augers and other agricultural applications.
  • Construction applications including but not limited to the following components and coatings for the following components: cement chutes, cement piping, bag houses, mixing equipment and other construction applications.
  • Machine element applications including but not limited to the following components and coatings for the following components: Shaft journals, paper rolls, gear boxes, drive rollers, impellers, general reclamation and dimensional restoration applications and other machine element applications.
  • Steel applications including but not limited to the following components and coatings for the following components: cold rolling mills, hot rolling mills, wire rod mills, galvanizing lines, continue pickling lines, continuous casting rolls and other steel mill rolls, and other steel applications.
  • Embodiments of alloys disclosed herein can be produced and or deposited in a variety of techniques effectively. Some non-limiting examples of processes include:
  • Thermal spray process including but not limited to those using a wire feedstock such as twin wire arc, spray, high velocity arc spray, combustion spray and those using a powder feedstock such as high velocity oxygen fuel, high velocity air spray, plasma spray, detonation gun spray, and cold spray.
  • Wire feedstock can be in the form of a metal core wire, solid wire, or flux core wire.
  • Powder feedstock can be either a single homogenous alloy or a combination of multiple alloy powder which result in the desired chemistry when melted together.
  • Wire feedstock can be in the form of a metal core wire, solid wire, or flux core wire.
  • Powder feedstock can be either a single homogenous alloy or a combination of multiple alloy powder which result in the desired chemistry when melted together.
  • Casting processes including but not limited to processes typical to producing cast iron including but not limited to sand casting, permanent mold casting, chill casting, investment casting, lost foam casting, die casting, centrifugal casting, glass casting, slip casting and process typical to producing wrought steel products including continuous casting processes.
  • Post processing techniques including but not limited to but not limited to rolling, forging, surface treatments such as carburizing, nitriding, carbonitriding, heat treatments including but not limited to austenitizing, normalizing, annealing, stress relieving, tempering, aging, quenching, cryogenic treatments, flame hardening, induction hardening, differential hardening, case hardening, decarburization, machining, grinding, cold working, work hardening, and welding.
  • surface treatments such as carburizing, nitriding, carbonitriding, heat treatments including but not limited to austenitizing, normalizing, annealing, stress relieving, tempering, aging, quenching, cryogenic treatments, flame hardening, induction hardening, differential hardening, case hardening, decarburization, machining, grinding, cold working, work hardening, and welding.
  • One of the more applicable uses of this technology is in applications where coatings are deposited on-site, in the field, or in locations where proper ventilation, dust collection, and other safety measures cannot be easily met.
  • Some well-known non-limiting examples of these applications include power generation applications such as the coating of boiler tubes, upstream refinery applications such as the coating of refinery vessels, and pulp and paper applications such as the coating and grinding of yankee dryers.
  • the previously disclosed alloy #4, Fe: BAL, Mn: about 5, Mo: about 13, Si: about 10 was produced in the form of a 40 gram trial ingot to verify hardness and thermal spray vitrification potential.
  • the ingot hardness was measured to be 534 Vickers (converting from a Rockwell C measurement).
  • the microstructure of the ingot showed a fully eutectic structure indicating a strong possibility for amorphous or nanocrystalline structure under the rapid cooling rate of the spray process.
  • This material has been selected for manufacture into 1/16′′ cored thermal spray wire for twin wire arc spray trials after slight modification to the alloy #14, Fe: BAL, Mn: about 5, Mo: about 13, Si: about 10, Al: about 2.
  • alloy #5 Fe: BAL, Mn: about 5, Mo: about 7, Si: about 10 was produced in the form of a 40 gram trial ingot to verify hardness and thermal spray vitrification potential.
  • the ingot hardness was measured to be 534 Vickers (converting from a Rockwell C measurement).
  • the microstructure of the ingot showed a fully eutectic structure indicating a strong possibility for amorphous or nanocrystalline structure under the rapid cooling rate of the spray process.
  • This material has been selected for manufacture into 1/16′′ cored thermal spray wire for twin wire arc spray trials after slight modification to alloy #15, Fe: BAL, Mn: about 5, Mo: about 7, Si: about 10, Al: about 2.
  • the previously disclosed alloy #8, Fe: BAL, C: about 0.25, Mn: about 19, Mo: about 7, Si: about 5 was produced in the form of a 40 gram ingot to verify hardness, thermal spray vetrification potential and magnetic permeability.
  • the alloy candidate is being developed as a ‘readable’ coating which requires the alloy to be non-magnetic in the sprayed form.
  • the ingot hardness was measured to be 300 Vickers (converting from a Rockwell C measurement). While this is below the desired hardness threshold, it is well known by those skilled in the art that the rapid cooling process achieved in thermal spray will increase the hardness of the alloy in this form. Thus, it is not unreasonable to expect an increase in hardness in the sprayed form up to the desired level of 400 Vickers.
  • the relative magnetic permeability was measured via a Low-Mu Magnetic Permeability Tester and was determined to be less than 1.01, well below the threshold required to ensure ‘readability’.
  • the previously disclosed alloy #5, Fe: BAL, Mn: about 5, Mo: about 7, Si: about 10 was produced in the form of a cored thermal spray wire. This alloy was sprayed using the twin wire arc spray technique, specifically using the parameters shown in
  • Table 3 A series of tests were run to evaluate the alloys performance in reference to standard Cr-bearing thermal spray materials used for hardfacing.
  • the specific alloy of reference is known by the commercial names, Armacor M, TAFA 95MXC, PMet 273, etc. and has an alloy composition of about Fe: BAL, Cr: 29, Si: 1, Mn: 2, B: 4.
  • Table 2 highlights the result of the testing.
  • Alloy #5 has comparable adhesion and abrasion resistance as measure via ASTM G65B testing.
  • alloy #4, Fe: BAL, Mn: about 5, Mo: about 7, Si: about 10 was produced in the form of a cored thermal spray wire. This alloy was sprayed using the twin wire arc spray technique using the parameters shown in
  • Alloy #4 replicates the key performance criteria of Armacor M in all key criteria.
  • Alloy #4 represents an exemplary embodiment of this disclosure, additional testing was performed in order to compare other performance criteria specifically as it relates to the coating of yankee dryers, a specific article of manufacture used in paper machines. This testing including corrosion testing, grinding studies, spray characteristics, thorough metallographic evaluation, and evaluation of surface properties as related to surface tension. In all cases, alloy #4 was deemed to have similar or better performance than the Armacor M coating.
  • Corrosion testing was conducted by exposing the coating to saltwater and measuring the voltage against a reference bare steel plate, which could be then used to place the material on the Galvanic Series. Both the Armacor M and Alloy #4 coatings showed significant rust on the coating surface after the 2 week test exposure.
  • the position of the Armacor M coating on the galvanic series is ⁇ 450 to ⁇ 567 and the position of Alloy #4 is ⁇ 510 to ⁇ 640.
  • Increasingly negative values reflect more active potentials, which is less desirable as it indicates reduced corrosion resistance. This represents a ‘similarity’ in that the quantified performance does not vary by more than 25%.
  • the coating In the Yankee dryer application it is desirable for the coating to be hydrophilic, which enables the adsorption of water based organic compounds used in paper making into the surface.
  • the contact angle that a water droplet makes on the surface can be used to quantify the surface tension of the material.
  • the Armacor M water droplet formed a 63.9° angle
  • Alloy #4 formed a 41.5° angle.
  • a smaller angle indicates increased hydrophillicity, which is advantageous because in Yankee dryer applications, a monoammonium phosphate (MAP) water-based solution is typically sprayed onto the coating for paper release properties. It can be advantageous for this water-based solution to immerse itself into the coating structure and stick well to the coating surface, which can be enhanced by having a hydrophilic coating.
  • MAP monoammonium phosphate
  • the above recited ranges can be specific ranges, and not within a particular % of the value. For example, within less than or equal to 10 wt./vol. % of, within less than or equal to 5 wt./vol. % of, within less than or equal to 1 wt./vol. % of, within less than or equal to 0.1 wt./vol. % of, and within less than or equal to 0.01 wt./vol. % of the stated amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Continuous Casting (AREA)
  • Coating By Spraying Or Casting (AREA)
US14/702,569 2014-07-24 2015-05-01 Chromium free hardfacing materials Abandoned US20160024628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/702,569 US20160024628A1 (en) 2014-07-24 2015-05-01 Chromium free hardfacing materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462028706P 2014-07-24 2014-07-24
US14/702,569 US20160024628A1 (en) 2014-07-24 2015-05-01 Chromium free hardfacing materials

Publications (1)

Publication Number Publication Date
US20160024628A1 true US20160024628A1 (en) 2016-01-28

Family

ID=55163687

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/702,569 Abandoned US20160024628A1 (en) 2014-07-24 2015-05-01 Chromium free hardfacing materials

Country Status (2)

Country Link
US (1) US20160024628A1 (fr)
WO (1) WO2016014653A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160121285A1 (en) * 2014-11-03 2016-05-05 Schlumberger Technology Corporation Apparatus for Mixing Solid Particles and Fluids
WO2017083419A1 (fr) 2015-11-10 2017-05-18 Scoperta, Inc. Matières de projection à l'arc à deux fils à oxydation contrôlée
US9738959B2 (en) 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
WO2017165546A1 (fr) * 2016-03-22 2017-09-28 Scoperta, Inc. Revêtement issu de la projection thermique entièrement lisible
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
US10100388B2 (en) 2011-12-30 2018-10-16 Scoperta, Inc. Coating compositions
US20180299036A1 (en) * 2017-04-13 2018-10-18 Chevron U.S.A. Inc. High strength downhole tubulars and methods for forming and systems for using
CN108677123A (zh) * 2018-06-13 2018-10-19 中国地质大学(北京) 一种基体表面喷涂Fe基非晶合金涂层及其渗氮处理的方法
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
AT17293U1 (de) * 2020-10-21 2021-11-15 Valmet Oy Yankee-trocknungszylinder und maschine zur herstellung von seidenpapier
US20220243313A1 (en) * 2019-05-14 2022-08-04 Weldstone Components GmbH Coated Metal Substrates That Are Susceptible to Wear, and Method for the Manufacture Thereof
WO2022221561A1 (fr) * 2021-04-16 2022-10-20 Oerlikon Metco (Us) Inc. Rechargement dur à base de fer sans chrome résistant à l'usure
JP2023025574A (ja) * 2021-08-10 2023-02-22 川崎重工業株式会社 溶射粉末材料及び溶射皮膜形成方法
WO2023025439A1 (fr) * 2021-08-26 2023-03-02 Valmet Ab Procédé d'application d'un revêtement résistant à l'usure sur un cylindre de séchage yankee
CN115747785A (zh) * 2022-12-07 2023-03-07 长沙大科激光科技有限公司 一种激光-冷喷涂复合远程高速激光熔覆方法
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
US12076788B2 (en) 2019-05-03 2024-09-03 Oerlikon Metco (Us) Inc. Powder feedstock for wear resistant bulk welding configured to optimize manufacturability
US12227853B2 (en) 2019-03-28 2025-02-18 Oerlikon Metco (Us) Inc. Thermal spray iron-based alloys for coating engine cylinder bores
US12378647B2 (en) 2018-03-29 2025-08-05 Oerlikon Metco (Us) Inc. Reduced carbides ferrous alloys

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315638B (zh) * 2018-01-31 2020-04-24 西北有色金属研究院 一种冷喷涂用铁基合金粉末及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120224992A1 (en) * 2009-09-17 2012-09-06 Justin Lee Cheney Alloys for hardbanding weld overlays
WO2013101561A1 (fr) * 2011-12-30 2013-07-04 Scoperta, Inc. Compositions de revêtement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606977A (en) * 1983-02-07 1986-08-19 Allied Corporation Amorphous metal hardfacing coatings
US4822415A (en) * 1985-11-22 1989-04-18 Perkin-Elmer Corporation Thermal spray iron alloy powder containing molybdenum, copper and boron
US6030472A (en) * 1997-12-04 2000-02-29 Philip Morris Incorporated Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
US6689234B2 (en) * 2000-11-09 2004-02-10 Bechtel Bwxt Idaho, Llc Method of producing metallic materials
US9314880B2 (en) * 2010-10-21 2016-04-19 Stoody Company Chromium free hardfacing welding consumable
US9316341B2 (en) * 2012-02-29 2016-04-19 Chevron U.S.A. Inc. Coating compositions, applications thereof, and methods of forming
AU2013329190B2 (en) * 2012-10-11 2017-09-28 Scoperta, Inc. Non-magnetic metal alloy compositions and applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120224992A1 (en) * 2009-09-17 2012-09-06 Justin Lee Cheney Alloys for hardbanding weld overlays
WO2013101561A1 (fr) * 2011-12-30 2013-07-04 Scoperta, Inc. Compositions de revêtement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Conversion Chart of Vickers Hardness (HV) to Rockwell C (HCR) *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100388B2 (en) 2011-12-30 2018-10-16 Scoperta, Inc. Coating compositions
US11085102B2 (en) 2011-12-30 2021-08-10 Oerlikon Metco (Us) Inc. Coating compositions
US9738959B2 (en) 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US11130205B2 (en) 2014-06-09 2021-09-28 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US11111912B2 (en) 2014-06-09 2021-09-07 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US20160121285A1 (en) * 2014-11-03 2016-05-05 Schlumberger Technology Corporation Apparatus for Mixing Solid Particles and Fluids
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
WO2017083419A1 (fr) 2015-11-10 2017-05-18 Scoperta, Inc. Matières de projection à l'arc à deux fils à oxydation contrôlée
US11279996B2 (en) 2016-03-22 2022-03-22 Oerlikon Metco (Us) Inc. Fully readable thermal spray coating
WO2017165546A1 (fr) * 2016-03-22 2017-09-28 Scoperta, Inc. Revêtement issu de la projection thermique entièrement lisible
US20180299036A1 (en) * 2017-04-13 2018-10-18 Chevron U.S.A. Inc. High strength downhole tubulars and methods for forming and systems for using
US12378647B2 (en) 2018-03-29 2025-08-05 Oerlikon Metco (Us) Inc. Reduced carbides ferrous alloys
CN108677123A (zh) * 2018-06-13 2018-10-19 中国地质大学(北京) 一种基体表面喷涂Fe基非晶合金涂层及其渗氮处理的方法
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
US12227853B2 (en) 2019-03-28 2025-02-18 Oerlikon Metco (Us) Inc. Thermal spray iron-based alloys for coating engine cylinder bores
US12076788B2 (en) 2019-05-03 2024-09-03 Oerlikon Metco (Us) Inc. Powder feedstock for wear resistant bulk welding configured to optimize manufacturability
US20220243313A1 (en) * 2019-05-14 2022-08-04 Weldstone Components GmbH Coated Metal Substrates That Are Susceptible to Wear, and Method for the Manufacture Thereof
AT17293U1 (de) * 2020-10-21 2021-11-15 Valmet Oy Yankee-trocknungszylinder und maschine zur herstellung von seidenpapier
WO2022221561A1 (fr) * 2021-04-16 2022-10-20 Oerlikon Metco (Us) Inc. Rechargement dur à base de fer sans chrome résistant à l'usure
US20240247360A1 (en) * 2021-04-16 2024-07-25 Oerlikon Metco (Us) Inc. Wear-resistant chromium-free iron-based hardfacing
JP2023025574A (ja) * 2021-08-10 2023-02-22 川崎重工業株式会社 溶射粉末材料及び溶射皮膜形成方法
JP7757077B2 (ja) 2021-08-10 2025-10-21 川崎重工業株式会社 溶射粉末材料及び溶射皮膜形成方法
WO2023025439A1 (fr) * 2021-08-26 2023-03-02 Valmet Ab Procédé d'application d'un revêtement résistant à l'usure sur un cylindre de séchage yankee
CN115747785A (zh) * 2022-12-07 2023-03-07 长沙大科激光科技有限公司 一种激光-冷喷涂复合远程高速激光熔覆方法

Also Published As

Publication number Publication date
WO2016014653A1 (fr) 2016-01-28

Similar Documents

Publication Publication Date Title
US20160024628A1 (en) Chromium free hardfacing materials
US11111912B2 (en) Crack resistant hardfacing alloys
US10954588B2 (en) Oxidation controlled twin wire arc spray materials
US20160083830A1 (en) Readable thermal spray
US10851444B2 (en) Non-magnetic, strong carbide forming alloys for powder manufacture
US11253957B2 (en) Chromium free and low-chromium wear resistant alloys
US9802387B2 (en) Corrosion resistant hardfacing alloy
US20160289803A1 (en) Fine-grained high carbide cast iron alloys
US20150284829A1 (en) Fine-grained high carbide cast iron alloys
AU2005258507C1 (en) Ni base alloy material tube and method for production thereof
JPWO2006003953A1 (ja) Fe−Ni合金素管及びその製造方法
JP5988732B2 (ja) 高硬度高靭性の冷間工具鋼
WO2017013181A1 (fr) Nouvelle utilisation d'un acier inoxydable duplex
JP6654328B2 (ja) 高硬度で高靱性な冷間工具鋼
CN101634002B (zh) 易切削的合金工具钢
Cao et al. Effect of Nb on microstructure and mechanical properties in non-magnetic high manganese steel
US20160333523A1 (en) Creping blade and method for its manufacturing
JP2010215986A (ja) 時効処理用鋼

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION