US20160022426A1 - Implant System for Knee Prosthesis - Google Patents
Implant System for Knee Prosthesis Download PDFInfo
- Publication number
- US20160022426A1 US20160022426A1 US14/713,913 US201514713913A US2016022426A1 US 20160022426 A1 US20160022426 A1 US 20160022426A1 US 201514713913 A US201514713913 A US 201514713913A US 2016022426 A1 US2016022426 A1 US 2016022426A1
- Authority
- US
- United States
- Prior art keywords
- implant system
- stem
- bearing block
- geometry
- strengthening rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007943 implant Substances 0.000 title claims abstract description 54
- 210000003127 knee Anatomy 0.000 title claims abstract description 12
- 238000005728 strengthening Methods 0.000 claims abstract description 33
- 210000002303 tibia Anatomy 0.000 claims description 25
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 11
- 210000000988 bone and bone Anatomy 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 210000000629 knee joint Anatomy 0.000 description 2
- 238000013150 knee replacement Methods 0.000 description 2
- 208000037408 Device failure Diseases 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 238000011883 total knee arthroplasty Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/389—Tibial components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3868—Joints for elbows or knees with sliding tibial bearing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3886—Joints for elbows or knees for stabilising knees against anterior or lateral dislocations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
- A61F2002/30014—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/30364—Rotation about the common longitudinal axis
- A61F2002/30365—Rotation about the common longitudinal axis with additional means for limiting said rotation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30433—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels, rivets or washers e.g. connecting screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30494—Cooperating protrusions and recesses, e.g. radial serrations, located on abutting end surfaces of a longitudinal connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30593—Special structural features of bone or joint prostheses not otherwise provided for hollow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
- A61F2002/30616—Sets comprising a plurality of prosthetic parts of different sizes or orientations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30772—Apertures or holes, e.g. of circular cross section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30897—Stepped protrusions, i.e. having discrete diameter changes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30899—Protrusions pierced with apertures
- A61F2002/30901—Protrusions pierced with apertures longitudinally
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
Definitions
- the disclosure relates generally to orthopedic implants, and more particularly, but not necessarily entirely, to an implant system for knee prosthesis and more particularly a cemented system for tibial implant.
- the knee joint is replaced with an artificial knee implant.
- the knee implant traditionally includes a femoral component and a tibial component. It is common practice to ream a portion of the bone (the distal end of the femur and the proximal portion of the tibia) to provide a channel to receive a stem of the respective the femoral component and the tibial component.
- a first knee replacement is referred to as a primary surgery. Fixation of the implant to the bone (femur or tibia) in a primary surgery may be achieved through cementing the implant to the bone or biologic fixation (non-cemented techniques) or otherwise.
- implants may fail for one reason or another. For example, wear, infection, improper loading of the bone followed by loosening of the implant in the bone are reasons for implant failure. In such cases, a revision surgery may be required to properly fix the implant to the bone.
- the disclosure relates to an implant system for knee prosthesis for cemented tibial implant that may be used in primary or revision surgery.
- the disclosure minimizes, and in some aspects eliminates, the failures encountered in modern tibial components by utilizing the methods and structural features described herein.
- an implant system for knee prosthesis comprising a superiorly located femoral bearing block having a femoral component bearing surface; an inferiorly located stem selectively attachable to the bearing block; and a strengthening rod within at least a portion of the femoral bearing block and the stem.
- At least one of the stem and the bearing block may define a superior-inferior orientated shaft adapted for the removable receipt of the strengthening rod therein.
- the shaft may extend through a superior surface of the bearing block so as to allow for the superior access to the strengthening rod.
- the width of the shaft may be selected for the substantial frictional engagement of the strengthening rod for substantially reducing the movement of the strengthening rod in relation to the shaft in use.
- the strengthening rod may comprise a friction enhancing surface.
- the femoral bearing block and the stem may be shaped to form a mechanical interlock.
- the mechanical interlock may be adapted to substantially inhibit the rotation of the stem with respect to the bearing block in use.
- the femoral bearing block may define an inferiorly located terraced geometry adapted for engaging a proximal end of the tibia in use.
- the terraced geometry may comprise a plurality of terraces, each of the plurality of terraces defining a lateral surface substantially perpendicular to an axis of insertion of the stem adapted to substantially reduce hoop stress exerted by the terraced geometry on the proximal end of the tibia by the in use.
- the terraced geometry may comprise a non-rotational cross section.
- the implant system may further comprise a further stem wherein the stem and the further stem comprise at least one differing geometry.
- the at least one differing geometry may comprise at least one of width and length.
- At least one of the femoral bearing block and the stem may be manufactured from a polymer.
- the polymer may comprise polyethylene.
- the strengthening rod may be manufactured from metal.
- the strengthening rod may be a chrome plated cobalt rod.
- FIG. 1 shows an implant system for a knee prosthesis in accordance with a preferred embodiment of the present disclosure
- FIG. 2 shows the implant system of FIG. 1 in a disassembled configuration in accordance with a preferred embodiment of the present disclosure
- FIGS. 3A and 3B show a front elevation and side cross-sectional view of the implant system of FIG. 1 in accordance with a preferred embodiment of the present disclosure.
- FIGS. 4A and 4B show top and bottom views the implant system of FIG. 1 in accordance with a preferred embodiment of the present disclosure.
- FIG. 1 there is shown an implant system 100 for knee prosthesis.
- the implant system 100 is adapted for use as a tibial component for artificial knees, including for primary and revision surgery.
- the implant system 100 is adapted for insertion into the proximal end of a resected tibia to provide a bearing surface for a complimentary femoral component (not shown) inserted into a distal end of a resected femur.
- anterior side 103 For orientation purposes, there is shown the anterior side 103 , posterior side 104 , median side 105 , lateral side 106 , superior side 101 and inferior side 102 .
- proximal end of the tibia refers to the end of the tibia at the knee joint and the distal end of the tibia refers to the end of the tibia towards the foot.
- the implant system 100 comprises a superiorly located bearing block 114 adapted to provide a femoral component bearing surface.
- the bearing block 114 comprises a plurality of condylar regions 115 adapted for bearing against complimentary shaped femoral component condyles (not shown) in use.
- the bearing block 140 may comprise a femoral component engagement ridge 109 including to provide lateral stability at the interface between the bearing block 114 and the femoral component.
- the implant system 100 further comprises a stem 110 adapted for insertion into a proximal end of a resected tibia.
- the stem 110 is preferably adapted for cemented implantation and may therefore, as will be described in further detail below, be manufactured from a less resilient material compared to metal implant components, such as the stem 110 being manufactured from a polymer, such as polyethylene.
- the stem 110 may be adapted for cementless implant also.
- the stem 110 is inferiorly located beneath the bearing block 114 .
- the stem 110 is selectively attachable to the bearing block 114 to allow for the selection of an appropriate stem 110 by an orthopaedic surgeon for use in an operation.
- differing conditions may warrant differing stem 110 geometry, such as whether the operation is a primary or revision surgery, the geometry and condition of the tibia and the like.
- the implant system 100 is provided with a plurality of stems 110 each having differing geometries, such as differences in width, length and the like. During an operation, the surgeon is able to select the most appropriate stem 110 for attachment to the bearing block 114 .
- the implant system 100 further comprises a strengthening rod 112 adapted for strengthening the implant system 100 .
- a strengthening rod 112 adapted for strengthening the implant system 100 .
- FIG. 3B there is shown a cross-sectional view of the implant system 100 wherein the strengthening rod 112 is shown within the femoral bearing block 114 and the stem 110 .
- the strengthening rod 110 provides strength and rigidity to the implant system 100 , especially where the bearing block 114 and the stem 110 are manufactured from less resilient but more cost effective polymers, such as polyethylene. In this manner, the system 110 may be manufactured from lower cost material.
- the strengthening rod 110 comprises metal such as cobalt.
- the cobalt may be plated such as by being chrome plated.
- the shaft 116 of the stem 110 is adapted for the removable receipt of the strengthening rod 112 therein.
- FIG. 2 there is shown the implant system 100 in a disassembled configuration wherein the strengthening rod 112 is shown as having been removed from the stem 110 .
- the stem 110 and the bearing block 140 each define a superior-inferior orientated shaft 116 adapted for containing the strengthening rod 112 therein.
- the shaft 116 of the bearing block 114 may extend through the superior surface of the bearing block 114 so as to provide an access opening 117 for the access of the strengthening rod 112 in use.
- the stem 110 may be inserted into the proximal end of the tibia and the bearing block 114 subsequently located to adjacent the implanted stem 110 . Thereafter, the orthopaedic surgeon is able to drive the strengthening rod 112 through the access opening 117 through the bearing block 114 and into the stem 110 . The surgeon may drive the rod 112 beyond the access opening 117 utilising an appropriately elongate hammer utensil or the like.
- the width of the shaft 116 is sized in accordance with the width of the strengthening rod 112 to provide for these substantial frictional engagement of the rod 112 by the shaft 116 to substantially reduce the movement of the strengthening rod 112 with respect to the shaft 116 .
- the strengthening rod 112 may comprise a rough frictional enhancing surface or the like to enhance the frictional engagement of the rod 112 by the shaft 116 .
- the strengthening rod 112 may be fixed within the bearing block 114 for insertion into the stem 110 in use. In another embodiment, the strengthening rod 112 may be fixed within the stem 110 for insertion into the bearing block 114 .
- the bearing block 114 and the stem 110 are adapted to form a mechanical interlock 113 .
- each of the bearing block 114 and the stem 110 shaped to define complimentary mechanical interlock portions adapted to cooperate to form the mechanical interlock 113 .
- the mechanical interlock 113 is adapted to restrict the substantial rotation of the bearing block 114 with respect to the stem 110 .
- the mechanical interlock portions comprise complimentary battlements 118 , each battlement 118 comprising a substantially vertical portion adapted to abut against an adjacent the battlement 118 to restrict the rotation of the bearing block 114 with respect to the stem 110 .
- the battlements 118 of the stem 110 have a width slightly narrower than that of the battlements of the bearing block 114 .
- the mechanical interlock 113 allows for the slight rotation of the bearing block 114 with respect to the stem 110 so as to, for example, allow the surgeon to select the most appropriate rotation of the bearing block 114 with respect to the stem 110 in use prior to driving the strengthening rod 112 through the shaft 116 .
- the inferior side of the bearing block 114 comprising terraced geometry 107 comprising a plurality of terraces 108 .
- the terraced geometry 107 is adapted for engaging the proximal end of the tibia in use in a manner that reduces hoop stress exerted by the terraced geometry 107 on the tibia. Specifically, hoop stress would unduly stress the tibia resulting in stress fractures, loosening of the implant system 100 and the like.
- each terrace 108 is substantially perpendicular to the axis of insertion 119 for eliminating or reducing lateral forces on the tibia.
- the terraced geometry 107 as substantially devoid of surfaces having an acute angle with respect to the axis of insertion 119 which would exert lateral forces of the proximal end of the tibia when the terraced geometry 107 is loaded.
- the proximal end of the tibia may be reamed to form a cavity to complement the profile of the terraced geometry 107 .
- the terraced geometry 107 may be shaped using appropriate cutting and rasping tools in use to achieve a desired geometry for accommodation by the proximal end of the tibia.
- the bearing block 114 comprises the terraced geometry 107 .
- the stem 110 may define the terraced geometry 107 .
- the terraced geometry 107 of the stem 110 is adapted for engaging the bearing block 114 using a suitable mechanical attachment.
- the implant system 100 may comprise three components comprising: the bearing block 114 ; a separate terraced geometry component (not shown), and the stem 110 , wherein the bearing block 114 is adapted for attachment to the separate terraced geometry component 107 and the separate terraced geometry component is adapted for attachment to the stem 110 .
- differing stems 110 , terraced geometry components and bearing blocks 114 may be selected by a surgeon for implanting.
- the terraced geometry 117 comprises a non-rotational cross-section so as to substantially prevent the rotation of the bearing block 114 with respect to the tibia.
- the terraced geometry 107 comprises an ellipse-shaped cross section, the ellipse cross section substantially preventing the rotation of the terraced geometry 107 within the proximal portion of the tibia.
- the terraced geometry 107 may comprise other cross-section is adapted for preventing the rotation of the terraced geometry 107 with respect to the tibia.
- Such cross sections may comprise other non-rotational cross-sections, such as squares, triangles, rectangles and the like.
- the terrace to geometry 107 cross-section may comprise outward protrusions to enhance the engagement of the tibia by the stepped geometry portion 107 .
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
- This application claims priority to Australian Application No. 2014902890 which was filed on Jul. 25, 2014, the contents of which are incorporated by reference.
- 1. Field of the Disclosure
- The disclosure relates generally to orthopedic implants, and more particularly, but not necessarily entirely, to an implant system for knee prosthesis and more particularly a cemented system for tibial implant.
- The disclosure has been developed primarily for use in tibial implants and will be described hereinafter with reference to this application. However, it will be appreciated that the disclosure is not limited to this particular field of use.
- 2. Background of the Disclosure
- In total knee arthroplasty, the knee joint is replaced with an artificial knee implant.
- The knee implant traditionally includes a femoral component and a tibial component. It is common practice to ream a portion of the bone (the distal end of the femur and the proximal portion of the tibia) to provide a channel to receive a stem of the respective the femoral component and the tibial component. A first knee replacement is referred to as a primary surgery. Fixation of the implant to the bone (femur or tibia) in a primary surgery may be achieved through cementing the implant to the bone or biologic fixation (non-cemented techniques) or otherwise.
- In some cases, over time, implants may fail for one reason or another. For example, wear, infection, improper loading of the bone followed by loosening of the implant in the bone are reasons for implant failure. In such cases, a revision surgery may be required to properly fix the implant to the bone.
- Despite the advantages of modern knee replacement systems, improvements are still being sought. The disclosure relates to an implant system for knee prosthesis for cemented tibial implant that may be used in primary or revision surgery.
- The disclosure minimizes, and in some aspects eliminates, the failures encountered in modern tibial components by utilizing the methods and structural features described herein.
- The features and advantages of the disclosure will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by the practice of the disclosure without undue experimentation. The features and advantages of the disclosure may be realized and obtained by means of the instruments and combinations particularly pointed out herein.
- It is to be understood that, if any prior art information is referred to herein, such reference does not constitute an admission that the information forms part of the common general knowledge in the art.
- According to a first exemplary embodiment, there is provided an implant system for knee prosthesis, the system comprising a superiorly located femoral bearing block having a femoral component bearing surface; an inferiorly located stem selectively attachable to the bearing block; and a strengthening rod within at least a portion of the femoral bearing block and the stem.
- At least one of the stem and the bearing block may define a superior-inferior orientated shaft adapted for the removable receipt of the strengthening rod therein.
- The shaft may extend through a superior surface of the bearing block so as to allow for the superior access to the strengthening rod.
- The width of the shaft may be selected for the substantial frictional engagement of the strengthening rod for substantially reducing the movement of the strengthening rod in relation to the shaft in use.
- The strengthening rod may comprise a friction enhancing surface.
- The femoral bearing block and the stem may be shaped to form a mechanical interlock.
- The mechanical interlock may be adapted to substantially inhibit the rotation of the stem with respect to the bearing block in use.
- The femoral bearing block may define an inferiorly located terraced geometry adapted for engaging a proximal end of the tibia in use.
- The terraced geometry may comprise a plurality of terraces, each of the plurality of terraces defining a lateral surface substantially perpendicular to an axis of insertion of the stem adapted to substantially reduce hoop stress exerted by the terraced geometry on the proximal end of the tibia by the in use.
- The terraced geometry may comprise a non-rotational cross section.
- The implant system may further comprise a further stem wherein the stem and the further stem comprise at least one differing geometry.
- The at least one differing geometry may comprise at least one of width and length.
- At least one of the femoral bearing block and the stem may be manufactured from a polymer.
- The polymer may comprise polyethylene.
- The strengthening rod may be manufactured from metal.
- The strengthening rod may be a chrome plated cobalt rod.
- Other aspects are also disclosed.
- Notwithstanding any other forms which may fall within the scope of the present disclosure, preferred embodiments of the disclosure will now be described, by way of example only, with reference to the accompanying drawings in which:
-
FIG. 1 shows an implant system for a knee prosthesis in accordance with a preferred embodiment of the present disclosure; -
FIG. 2 shows the implant system ofFIG. 1 in a disassembled configuration in accordance with a preferred embodiment of the present disclosure; -
FIGS. 3A and 3B show a front elevation and side cross-sectional view of the implant system ofFIG. 1 in accordance with a preferred embodiment of the present disclosure; and -
FIGS. 4A and 4B show top and bottom views the implant system ofFIG. 1 in accordance with a preferred embodiment of the present disclosure. - For the purposes of promoting an understanding of the principles in accordance with the disclosure, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications of the inventive features illustrated herein, and any additional applications of the principles of the disclosure as illustrated herein, which would normally occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the disclosure.
- Before the structures, systems and associated methods relating to the implant system for knee prosthesis are disclosed and described, it is to be understood that this disclosure is not limited to the particular configurations, process steps, and materials disclosed herein as such configurations, process steps, and materials may vary somewhat. It is also to be understood that the terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of the disclosure will be limited only by the claims and equivalents thereof.
- In describing and claiming the subject matter of the disclosure, the following terminology will be used in accordance with the definitions set out below.
- It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
- As used herein, the terms “comprising,” “including,” “containing,” “characterised by,” and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps.
- It should be noted in the following description that like or the same reference numerals in different embodiments denote the same or similar features.
- Turning now to
FIG. 1 , there is shown animplant system 100 for knee prosthesis. Specifically, theimplant system 100 is adapted for use as a tibial component for artificial knees, including for primary and revision surgery. Theimplant system 100 is adapted for insertion into the proximal end of a resected tibia to provide a bearing surface for a complimentary femoral component (not shown) inserted into a distal end of a resected femur. - For orientation purposes, there is shown the
anterior side 103,posterior side 104,median side 105,lateral side 106,superior side 101 andinferior side 102. Furthermore, reference to the proximal end of the tibia refers to the end of the tibia at the knee joint and the distal end of the tibia refers to the end of the tibia towards the foot. - The
implant system 100 comprises a superiorly located bearing block 114 adapted to provide a femoral component bearing surface. In this manner, thebearing block 114 comprises a plurality ofcondylar regions 115 adapted for bearing against complimentary shaped femoral component condyles (not shown) in use. In an embodiment, the bearing block 140 may comprise a femoralcomponent engagement ridge 109 including to provide lateral stability at the interface between thebearing block 114 and the femoral component. - The
implant system 100 further comprises astem 110 adapted for insertion into a proximal end of a resected tibia. In the embodiments described herein, thestem 110 is preferably adapted for cemented implantation and may therefore, as will be described in further detail below, be manufactured from a less resilient material compared to metal implant components, such as thestem 110 being manufactured from a polymer, such as polyethylene. However, it should be noted that in alternative embodiments, thestem 110 may be adapted for cementless implant also. - As is apparent, the
stem 110 is inferiorly located beneath thebearing block 114. - In preferred embodiments, the
stem 110 is selectively attachable to the bearing block 114 to allow for the selection of anappropriate stem 110 by an orthopaedic surgeon for use in an operation. For example, differing conditions may warrant differingstem 110 geometry, such as whether the operation is a primary or revision surgery, the geometry and condition of the tibia and the like. In this manner, in this preferred embodiment, theimplant system 100 is provided with a plurality of stems 110 each having differing geometries, such as differences in width, length and the like. During an operation, the surgeon is able to select the mostappropriate stem 110 for attachment to thebearing block 114. - The
implant system 100 further comprises a strengtheningrod 112 adapted for strengthening theimplant system 100. Specifically, referring toFIG. 3B , there is shown a cross-sectional view of theimplant system 100 wherein the strengtheningrod 112 is shown within thefemoral bearing block 114 and thestem 110. - The strengthening
rod 110 provides strength and rigidity to theimplant system 100, especially where thebearing block 114 and thestem 110 are manufactured from less resilient but more cost effective polymers, such as polyethylene. In this manner, thesystem 110 may be manufactured from lower cost material. - In one embodiment, the strengthening
rod 110 comprises metal such as cobalt. Furthermore, the cobalt may be plated such as by being chrome plated. - In a preferred embodiment, the
shaft 116 of thestem 110 is adapted for the removable receipt of the strengtheningrod 112 therein. Specifically, referring toFIG. 2 , there is shown theimplant system 100 in a disassembled configuration wherein the strengtheningrod 112 is shown as having been removed from thestem 110. - As is apparent from the embodiment presented in
FIG. 3 , thestem 110 and the bearing block 140 each define a superior-inferior orientatedshaft 116 adapted for containing the strengtheningrod 112 therein. - In this embodiment, the
shaft 116 of the bearing block 114 may extend through the superior surface of the bearing block 114 so as to provide an access opening 117 for the access of the strengtheningrod 112 in use. In this embodiment, in use, thestem 110 may be inserted into the proximal end of the tibia and the bearing block 114 subsequently located to adjacent the implantedstem 110. Thereafter, the orthopaedic surgeon is able to drive the strengtheningrod 112 through the access opening 117 through thebearing block 114 and into thestem 110. The surgeon may drive therod 112 beyond the access opening 117 utilising an appropriately elongate hammer utensil or the like. - The preferred embodiment, the width of the
shaft 116 is sized in accordance with the width of the strengtheningrod 112 to provide for these substantial frictional engagement of therod 112 by theshaft 116 to substantially reduce the movement of the strengtheningrod 112 with respect to theshaft 116. In embodiments, the strengtheningrod 112 may comprise a rough frictional enhancing surface or the like to enhance the frictional engagement of therod 112 by theshaft 116. - It should be noted that in other embodiments, the strengthening
rod 112 may be fixed within the bearing block 114 for insertion into thestem 110 in use. In another embodiment, the strengtheningrod 112 may be fixed within thestem 110 for insertion into thebearing block 114. - Referring again to
FIG. 1 , thebearing block 114 and thestem 110 are adapted to form amechanical interlock 113. In this manner, each of thebearing block 114 and thestem 110 shaped to define complimentary mechanical interlock portions adapted to cooperate to form themechanical interlock 113. In a preferred embodiment, themechanical interlock 113 is adapted to restrict the substantial rotation of the bearing block 114 with respect to thestem 110. In this manner, in one embodiment, the mechanical interlock portions comprisecomplimentary battlements 118, eachbattlement 118 comprising a substantially vertical portion adapted to abut against an adjacent thebattlement 118 to restrict the rotation of the bearing block 114 with respect to thestem 110. - In one embodiment, the
battlements 118 of thestem 110 have a width slightly narrower than that of the battlements of thebearing block 114. As such, themechanical interlock 113 allows for the slight rotation of the bearing block 114 with respect to thestem 110 so as to, for example, allow the surgeon to select the most appropriate rotation of the bearing block 114 with respect to thestem 110 in use prior to driving the strengtheningrod 112 through theshaft 116. - It should be noted that in other embodiments other mechanical interlock's 113 may be employed also.
- Referring again to
FIG. 1 , there is shown the inferior side of the bearing block 114 comprisingterraced geometry 107 comprising a plurality ofterraces 108. - The
terraced geometry 107 is adapted for engaging the proximal end of the tibia in use in a manner that reduces hoop stress exerted by theterraced geometry 107 on the tibia. Specifically, hoop stress would unduly stress the tibia resulting in stress fractures, loosening of theimplant system 100 and the like. - As is apparent from the embodiment provided in
FIG. 3A , the lateral surfaces of eachterrace 108 is substantially perpendicular to the axis ofinsertion 119 for eliminating or reducing lateral forces on the tibia. In other words, theterraced geometry 107 as substantially devoid of surfaces having an acute angle with respect to the axis ofinsertion 119 which would exert lateral forces of the proximal end of the tibia when theterraced geometry 107 is loaded. - During insertion, the proximal end of the tibia may be reamed to form a cavity to complement the profile of the
terraced geometry 107. Alternatively, and as alluded to above in a preferred embodiment where thebearing block 114 comprises a polymer, theterraced geometry 107 may be shaped using appropriate cutting and rasping tools in use to achieve a desired geometry for accommodation by the proximal end of the tibia. - In the preferred embodiment shown in the accompanying drawings, the
bearing block 114 comprises theterraced geometry 107. However, in other embodiments, thestem 110 may define theterraced geometry 107. In these other embodiments, theterraced geometry 107 of thestem 110 is adapted for engaging the bearing block 114 using a suitable mechanical attachment. - In a yet further embodiment, the
implant system 100 may comprise three components comprising: the bearingblock 114; a separate terraced geometry component (not shown), and thestem 110, wherein thebearing block 114 is adapted for attachment to the separateterraced geometry component 107 and the separate terraced geometry component is adapted for attachment to thestem 110. In this embodiment, differing stems 110, terraced geometry components and bearingblocks 114 may be selected by a surgeon for implanting. - Referring now to
FIG. 4A there is shown the inferior view of theimplant system 100 and especially theterraced geometry 107 in further detail. In a preferred embodiment, theterraced geometry 117 comprises a non-rotational cross-section so as to substantially prevent the rotation of the bearing block 114 with respect to the tibia. In the embodiment provided, theterraced geometry 107 comprises an ellipse-shaped cross section, the ellipse cross section substantially preventing the rotation of theterraced geometry 107 within the proximal portion of the tibia. - It should be noted that another embodiment, the
terraced geometry 107 may comprise other cross-section is adapted for preventing the rotation of theterraced geometry 107 with respect to the tibia. Such cross sections may comprise other non-rotational cross-sections, such as squares, triangles, rectangles and the like. Furthermore, the terrace togeometry 107 cross-section may comprise outward protrusions to enhance the engagement of the tibia by the steppedgeometry portion 107. - Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.
- Similarly it should be appreciated that in the above description of example embodiments of the disclosure, various features of the disclosure are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description of Specific Embodiments are hereby expressly incorporated into this Detailed Description of Specific Embodiments, with each claim standing on its own as a separate embodiment of this disclosure.
- Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the disclosure, and form different embodiments, as would be understood by those in the art. For example, in the following claims, any of the claimed embodiments can be used in any combination.
- Different Instances of Objects
- As used herein, unless otherwise specified the use of the ordinal adjectives “first”, “second”, “third”, etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.
- Specific Details
- In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the disclosure may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
- Terminology
- In describing the preferred embodiment of the disclosure illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar technical purpose. Terms such as “forward”, “rearward”, “radially”, “peripherally”, “upwardly”, “downwardly”, and the like are used as words of convenience to provide reference points and are not to be construed as limiting terms.
- Comprising and Including
- In the claims which follow and in the preceding description of the disclosure, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” are used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the disclosure.
- Any one of the terms: including or which includes or that includes as used herein is also an open term that also means including at least the elements/features that follow the term, but not excluding others. Thus, including is synonymous with and means comprising.
- Scope of Disclosure
- Thus, while there has been described what are believed to be the preferred embodiments of the disclosure, those skilled in the art will recognize that other and further modifications may be made thereto without departing from the spirit of the disclosure, and it is intended to claim all such changes and modifications as fall within the scope of the disclosure. For example, any formulas given above are merely representative of procedures that may be used. Functionality may be added or deleted from the block diagrams and operations may be interchanged among functional blocks. Steps may be added or deleted to methods described within the scope of the present disclosure.
- Although the disclosure has been described with reference to specific examples, it will be appreciated by those skilled in the art that the disclosure may be embodied in many other forms.
Claims (16)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2014902890A AU2014902890A0 (en) | 2014-07-25 | An implant system for knee prosthesis | |
| AU2014902890 | 2014-07-25 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20160022426A1 true US20160022426A1 (en) | 2016-01-28 |
| US9498343B2 US9498343B2 (en) | 2016-11-22 |
Family
ID=55165772
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/713,913 Expired - Fee Related US9498343B2 (en) | 2014-07-25 | 2015-05-15 | Implant system for knee prosthesis |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US9498343B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020093100A1 (en) * | 2018-11-09 | 2020-05-14 | Signature Orthopaedics Europe Ltd | A revision knee system |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2797520A1 (en) | 2011-12-30 | 2014-11-05 | Howmedica Osteonics Corp. | Systems for preparing bone voids to receive a prosthesis |
| US9526513B2 (en) | 2013-03-13 | 2016-12-27 | Howmedica Osteonics Corp. | Void filling joint prosthesis and associated instruments |
| US20230040129A1 (en) * | 2021-08-03 | 2023-02-09 | Howmedica Osteonics Corp. | Dynamic Bone Loading TKA |
| US20240358379A1 (en) * | 2023-04-28 | 2024-10-31 | Howmedica Osteonics Corp. | Total Knee Revision Arthroplasty Implant Kit |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5007933A (en) * | 1989-01-31 | 1991-04-16 | Osteonics Corp. | Modular knee prosthesis system |
| US5609641A (en) * | 1995-01-31 | 1997-03-11 | Smith & Nephew Richards Inc. | Tibial prosthesis |
| US20040049286A1 (en) * | 2002-09-09 | 2004-03-11 | German Beborah S. | Prosthetic tibial component with modular sleeve |
| US20080188943A1 (en) * | 2001-06-30 | 2008-08-07 | Gundlapalli Rama Rao V | Prosthetic bearing with encapsulated reinforcement |
| US20130304220A1 (en) * | 2012-05-14 | 2013-11-14 | Depuy Products, Inc. | Prosthesis kit with finned sleeve |
-
2015
- 2015-05-15 US US14/713,913 patent/US9498343B2/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5007933A (en) * | 1989-01-31 | 1991-04-16 | Osteonics Corp. | Modular knee prosthesis system |
| US5609641A (en) * | 1995-01-31 | 1997-03-11 | Smith & Nephew Richards Inc. | Tibial prosthesis |
| US20080188943A1 (en) * | 2001-06-30 | 2008-08-07 | Gundlapalli Rama Rao V | Prosthetic bearing with encapsulated reinforcement |
| US20040049286A1 (en) * | 2002-09-09 | 2004-03-11 | German Beborah S. | Prosthetic tibial component with modular sleeve |
| US20130304220A1 (en) * | 2012-05-14 | 2013-11-14 | Depuy Products, Inc. | Prosthesis kit with finned sleeve |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020093100A1 (en) * | 2018-11-09 | 2020-05-14 | Signature Orthopaedics Europe Ltd | A revision knee system |
| US11903838B2 (en) | 2018-11-09 | 2024-02-20 | Signature Orthopaedics Europe Ltd | Revision knee system |
Also Published As
| Publication number | Publication date |
|---|---|
| US9498343B2 (en) | 2016-11-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2006202817B2 (en) | Tibial insert and associated surgical method | |
| AU2009221773B2 (en) | Edge-matched articular implant | |
| CA2896943C (en) | Talar dome prosthesis | |
| US9498343B2 (en) | Implant system for knee prosthesis | |
| EP2664301B1 (en) | Prosthesis kit with finned sleeve | |
| EP3137018B1 (en) | Convertible pre-partial knee replacement | |
| US20100100191A1 (en) | Tibial Tray Having a Reinforcing Member | |
| US8690955B2 (en) | Device for unicompartmental knee arthroplasty | |
| US20100100190A1 (en) | Tibial tray having a reinforcing member | |
| US9999428B2 (en) | Orthopaedic surgical instrument system and method for surgically preparing a patients bone | |
| AU2003204796A1 (en) | Porous unicondylar knee | |
| US10893948B2 (en) | Rotary arc patella articulating geometry | |
| US20160045320A1 (en) | Variable hip resurfacing femoral implant | |
| US20250057658A1 (en) | Systems and methods of targeted/focal knee joint resurfacing | |
| US20250107898A1 (en) | Offset Resurfacing Head for Ball and Socket Joint | |
| US20210177615A1 (en) | Subtalar joint replacement device and arthroplasty method | |
| WO2017120645A1 (en) | A joint stabilisation method and apparatus | |
| Massè et al. | Reconstruction with rib graft for acetabular revision in pelvic discontinuity: an extreme solution? | |
| WO2019166793A1 (en) | An implant for resurfacing bone | |
| HK1147188B (en) | Method of making an edge-matched articular implant |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
| ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: MICROPORT ORTHOPEDICS INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEVINS, RUSSELL;REEL/FRAME:045299/0759 Effective date: 20170410 |
|
| AS | Assignment |
Owner name: MICROPORT ORTHOPEDICS INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEVINS, RUSSELL;REEL/FRAME:045562/0035 Effective date: 20170410 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20241122 |