US20160006051A1 - System energy density in a redox flow battery - Google Patents
System energy density in a redox flow battery Download PDFInfo
- Publication number
- US20160006051A1 US20160006051A1 US14/793,712 US201514793712A US2016006051A1 US 20160006051 A1 US20160006051 A1 US 20160006051A1 US 201514793712 A US201514793712 A US 201514793712A US 2016006051 A1 US2016006051 A1 US 2016006051A1
- Authority
- US
- United States
- Prior art keywords
- tank
- catholyte
- anolyte
- rfb
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003792 electrolyte Substances 0.000 claims description 184
- 238000012546 transfer Methods 0.000 claims description 91
- 239000012530 fluid Substances 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 18
- 230000000116 mitigating effect Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 104
- 238000007726 management method Methods 0.000 description 70
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 27
- 239000007788 liquid Substances 0.000 description 26
- 229910052720 vanadium Inorganic materials 0.000 description 24
- 230000008859 change Effects 0.000 description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 16
- 238000004146 energy storage Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 238000003860 storage Methods 0.000 description 15
- 230000003247 decreasing effect Effects 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 239000012528 membrane Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 12
- 238000000429 assembly Methods 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 230000000712 assembly Effects 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 239000003570 air Substances 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 238000005086 pumping Methods 0.000 description 8
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 7
- 239000005715 Fructose Substances 0.000 description 7
- 229930091371 Fructose Natural products 0.000 description 7
- 239000011149 active material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000001351 cycling effect Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229910001456 vanadium ion Inorganic materials 0.000 description 7
- 239000011244 liquid electrolyte Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005562 fading Methods 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- LKDRXBCSQODPBY-VRPWFDPXSA-N D-fructopyranose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-VRPWFDPXSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- -1 vanadium cations Chemical class 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 241001672018 Cercomela melanura Species 0.000 description 1
- 229910002501 ClBr2 Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- MAYPHUUCLRDEAZ-UHFFFAOYSA-N chlorine peroxide Chemical compound ClOOCl MAYPHUUCLRDEAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04276—Arrangements for managing the electrolyte stream, e.g. heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04104—Regulation of differential pressures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/20—Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- large scale EES systems may have the potential to provide additional value to electrical grid management, for example: resource and market services at the bulk power system level, such as frequency regulation, spinning reserves, fast ramping capacity, black start capacity, and alternatives for fossil fuel peaking systems; transmission and delivery support by increasing capability of existing assets and deferring grid upgrade investments; micro-grid support; and peak shaving and power shifting.
- resource and market services at the bulk power system level such as frequency regulation, spinning reserves, fast ramping capacity, black start capacity, and alternatives for fossil fuel peaking systems
- transmission and delivery support by increasing capability of existing assets and deferring grid upgrade investments
- micro-grid support micro-grid support
- peak shaving and power shifting for example: resource and market services at the bulk power system level, such as frequency regulation, spinning reserves, fast ramping capacity, black start capacity, and alternatives for fossil fuel peaking systems.
- RFBs redox flow batteries
- MMWhs megawatt-hours
- RFBs are special electrochemical systems that can repeatedly store and convert megawatt-hours (MWhs) of electrical energy to chemical energy and chemical energy back to electrical energy when needed.
- MWhs megawatt-hours
- RFBs are well-suited for energy storage because of their ability to tolerate fluctuating power supplies, bear repetitive charge/discharge cycles at maximum rates, initiate charge/discharge cycling at any state of charge, design energy storage capacity and power for a given system independently, deliver long cycle life, and operate safely without fire hazards inherent in some other designs.
- an RFB electrochemical cell is a device capable of either deriving electrical energy from chemical reactions, or facilitating chemical reactions through the introduction of electrical energy.
- an electrochemical cell includes two half-cells, each having an electrolyte. The two half-cells may use the same electrolyte, or they may use different electrolytes. With the introduction of electrical energy, species from one half-cell lose electrons (oxidation) to their electrode while species from the other half-cell gain electrons (reduction) from their electrode.
- Multiple RFB electrochemical cells electrically connected together in series within a common housing are generally referred to as an electrochemical “stack”.
- Multiple stacks electrically connected together are generally referred to as a “string”.
- Multiple stings electrically connected together are generally referred to as a “site”.
- a common RFB electrochemical cell configuration includes two opposing electrodes separated by an ion exchange membrane or other separator, and two circulating electrolyte solutions, referred to as the “anolyte” and “catholyte”.
- the energy conversion between electrical energy and chemical potential occurs instantly at the electrodes when the liquid electrolyte begins to flow through the cells.
- a redox flow battery (RFB) controllable by a battery management system and having an energy output includes at least one anolyte tank and at least one catholyte tank; at least one stack comprising electrochemical cells; at least one anolyte circulating system; at least one catholyte circulating system; at least one crossover pipe that fluidically connects the at least one catholyte tank and the at least one anolyte tank for electrolyte exchange; and one or more contiguous containers configured to house the at least one anolyte tank, the at least one catholyte tank, the at least one stack, the at least one anolyte circulating system, and the at least one catholyte circulating system in a substantially enclosed manner, wherein the one or more containers has a volume of at least 2000 liters and wherein the RFB operated by the battery management system has an energy density of at least 10 w-h/liter.
- a redox flow battery (RFB) controllable by a battery management system and having an energy output includes at least one anolyte tank and at least one catholyte tank; at least one stack comprising electrochemical cells; at least one anolyte circulating system; at least one catholyte circulating system; at least one crossover pipe that fluidically connects the at least one catholyte tank and the at least one anolyte tank for electrolyte exchange; and one or more contiguous containers configured to house the at least one anolyte tank, the at least one catholyte tank, the at least one stack, the at least one anolyte circulating system, and the at least one catholyte circulating system in a substantially enclosed manner, wherein the one or more containers has a volume of at least 2000 liters and wherein the RFB operated by the battery management system has an energy density of at least 10 w-h/liter and
- the interior space of the container may be divided into at least a first compartment that houses the at least one anolyte tank and the at least one catholyte tank and a second compartment that houses the at least one stack.
- the interior space of the container may be divided into at least a first compartment that houses the at least one anolyte tank, a second compartment that houses the at least one catholyte tank, and a third compartment that houses the at least one stack.
- the volume contained in the at least one catholyte tank and the volume contained in the at least one anolyte tank may have a pre-determined ratio of anolyte to catholyte or catholyte to anolyte in the range of about 1:1.05 to about 1:1.50.
- the container may include a bulkhead that divides the interior space into the first compartment and the second compartment.
- the bulkhead may be structural or non-structural.
- the container may be generally rectangular in shape, defining a bottom wall, lengthwise side walls, widthwise end walls, and a top wall, and wherein the bulkhead is coupled between the lengthwise side walls and extends upwardly from the bottom wall a majority of the height of the container.
- the at least one anolyte tank and the at least one catholyte tank may be configured to extend between the bulkhead and a first end wall that define the first compartment so as to be adjacent or abut against the bulkhead and the end wall.
- the area defined by lengthwise sidewalls and widthwise side walls of the at least one anolyte tank or the at least one catholyte tank may fill at least 85% of the area defined by the first compartment or the second compartment.
- the bottom wall and the lengthwise side walls of the container may be configured to support the at least one anolyte tank and the at least one catholyte tank when filled with electrolyte.
- the first compartment may be configured to provide secondary containment of electrolyte so as to isolate the electrolyte from the second compartment.
- the container may have a length in the range of 10-53 feet and a height in the range of 7-10 feet.
- the container may comply with or be similarly configured like a 20-53 ft ISO shipping container having a height of either 8 or 9.5 feet.
- each of the at least anolyte tank and the at least one catholyte tank may include a pump tub assembly sealably mounted into the top wall and/or a side wall of at least one tank.
- each pump tub assembly may include a tub mounted into the top wall and/or a side wall and having a bottom wall positioned below an electrolyte level in the at least one tank and an interface into the at least one tank below the top wall level of the at least one tank.
- the interface may be a discharge interface configured for coupling with a discharge pipe of the respective circulating system.
- the interface may be a return interface configured for coupling with a return pipe of the respective circulating system.
- each pump tub assembly may further includes a pump connected in fluid communication with the discharge interface and with the electrolyte stored in the respective tank.
- each pump tub assembly may further includes a headspace interface coupled in fluid communication with a head space of the respective tank.
- the battery may further include one or more shunt current mitigating coiled manifolds.
- the container may be a 20 foot ISO shipping container and wherein the container includes a total electrolyte volume of at least 20 meters 3 .
- the battery may further include passive electrolyte transfer and/or gas exchange.
- the battery may further include active electrolyte transfer and/or gas exchange.
- the battery may further include automatic addition of reductant.
- the battery may further include a gas management system comprising a bi-directional pressure management assembly and conduits that provide gas communication between the anolyte and catholyte tanks.
- FIG. 1 is an isometric view of a redox flow battery (RFB) module in accordance with one embodiment of the present disclosure
- FIG. 2 is an isometric view of the RFB module of FIG. 1 with the outer container removed;
- FIGS. 3A and 3B are schematic views of various components of the RFB module of FIGS. 1 and 2 ;
- FIG. 4 is schematic view of a 1 MW site in accordance with one embodiment of the present disclosure.
- FIG. 5 is a schematic view of a 10 MW site in accordance with one embodiment of the present disclosure.
- FIG. 6 is a control diagram for a site, for example, the sites of FIG. 4 or 5 ;
- FIG. 7 is a close-up isometric view of pump tub assemblies shown in the RFB module of FIGS. 1 and 2 positioned on the top walls of the respective anolyte and catholyte tanks;
- FIG. 8 is an exploded view of one pump tub assembly of FIG. 7 ;
- FIG. 9 is a top view of one pump tub assembly of FIG. 7 ;
- FIG. 10 is a side view of one pump tub assembly of FIG. 7 ;
- FIG. 11 is a cross-sectional side view of a tank showing a pump tub assembly inserted into the tank;
- FIGS. 12 and 13 are isometric views of an electrolyte transfer conduit shown in the RFB module of FIGS. 1 and 2 ;
- FIGS. 14A , 14 B, and 14 C are schematic views of RFB modules having non-uniform anolyte and catholyte tank volumes in accordance with embodiments of the present disclosure
- FIGS. 15-21 are graphical depictions of data regarding electrolyte stability and capacity management in an exemplary vanadium RFB system
- FIGS. 22-24 are graphical depictions of data regarding capacity management in an exemplary vanadium RFB string
- FIGS. 25 and 26 A-D are schematic drawings of various components of a gas management system in accordance with embodiments of the present disclosure.
- FIGS. 27-30 are graphical depictions of data regarding gas management in an exemplary vanadium RFB module.
- FIG. 31 is a graphical depiction regarding energy density and average oxidation state in an RFB module in accordance with one embodiment of the present disclosure.
- FIGS. 32 and 33 are isometric view of pump tub assemblies in accordance with other embodiments of the present disclosure.
- FIG. 34 is an isometric view of an anti-siphon device in accordance with one embodiment of the present disclosure.
- Embodiments of the present disclosure are directed to redox flow batteries (RFBs), systems and components thereof, stacks, strings, and sites, as well as methods of operating the same.
- RFBs redox flow batteries
- FIGS. 1-3 a redox flow battery 20 in accordance with one embodiment of the present disclosure is provided. Multiple redox flow batteries may be configured in a “string” of batteries, and multiple strings may be configured into a “site” of batteries.
- FIG. 4 a non-limiting example of a site is provided, which includes two strings 10 , each having four RFBs 20 .
- FIG. 5 another non-limiting example of a site is provided, which includes twenty strings 10 , each having four RFBs 20 .
- RFBs, systems and components thereof, stacks, strings, and sites are described in greater detail below.
- major components in an RFB 20 include the anolyte and catholyte tank assemblies 22 and 24 , the stacks of electrochemical cells 30 , 32 , and 34 , a system for circulating electrolyte 40 , an optional gas management system 94 , and a container 50 to house all of the components and provide secondary liquid containment.
- flow electrochemical energy systems are generally described in the context of an exemplary vanadium redox flow battery (VRB), wherein a V 3+ /V 2+ sulfate solution serves as the negative electrolyte (“anolyte”) and a V 5+ /V 4+ sulfate solution serves as the positive electrolyte (“catholyte”).
- VRB vanadium redox flow battery
- anolyte negative electrolyte
- catholyte positive electrolyte
- other redox chemistries are contemplated and within the scope of the present disclosure, including, as non-limiting examples, V 2+ /V 3+ vs. Br ⁇ /ClBr 2 , Br 2 /Br ⁇ vs. S/S 2 ⁇ , Br ⁇ /Br 2 vs.
- the initial anolyte solution and catholyte solution each include identical concentrations of V 3+ and V 4+ .
- the vanadium ions in the anolyte solution are reduced to V 2+ /V 3+ while the vanadium ions in the catholyte solution are oxidized to V 4+ /V 5+ .
- the redox flow battery system 20 operates by circulating the anolyte and the catholyte from their respective tanks that are part of the tank assemblies 22 and 24 into the electrochemical cells, e.g., 30 and 32 .
- electrochemical cells e.g., 30 and 32 .
- additional electrochemical cells in the illustrated embodiment of FIG. 3A include electrochemical cells 31 , 33 and 35 .
- the cells 30 and 32 operate to discharge or store energy as directed by power and control elements in electrical communication with the electrochemical cells 30 and 32 .
- power and control elements connected to a power source operate to store electrical energy as chemical potential in the catholyte and anolyte.
- the power source can be any power source known to generate electrical power, including renewable power sources, such as wind, solar, and hydroelectric. Traditional power sources, such as combustion, can also be used.
- the redox flow battery system 20 is operated to transform chemical potential stored in the catholyte and anolyte into electrical energy that is then discharged on demand by power and control elements that supply an electrical load.
- Each electrochemical cell 30 in the system 20 includes a positive electrode, a negative electrode, at least one catholyte channel, at least one anolyte channel, and an ion transfer membrane separating the catholyte channel and the anolyte channel.
- the ion transfer membrane separates the electrochemical cell into a positive side and a negative side.
- Selected ions e.g., H+
- the positive and negative electrodes are configured to cause electrons to flow along an axis normal to the ion transfer membrane during electrochemical cell charge and discharge (see, e.g., line e ⁇ in FIG. 3A ).
- fluid inlets 48 and 44 and outlets 46 and 42 are configured to allow integration of the electrochemical cells 30 and 32 into the redox flow battery system 20 .
- a plurality of single electrochemical cells may be assembled together in series to form a stack of electrochemical cells (referred to herein as a “stack,” a “cell stack,” or an “electrochemical cell stack”), e.g., 30 or 32 in FIG. 3A .
- Several cell stacks may then be further assembled together to form a battery system 20 .
- a MW-level RFB system generally has a plurality of cell stacks, for example, with each cell stack having more than twenty electrochemical cells.
- the stack is also arranged with positive and negative current collectors that cause electrons to flow through the cell stack generally along an axis normal to the ion transfer membranes and current collectors during electrochemical charge and discharge (see, e.g., line 52 shown in FIG. 3A ).
- the ion exchange membrane in each electrochemical cell prevents crossover of the active materials between the positive and negative electrolytes while supporting ion transport to complete the circuit.
- Ion exchange membrane material in a non-limiting example, a perfluorinated membrane such as NAFION or GORE-SELECT, may be used in the electrochemical cells.
- Ion exchange through the membrane ideally prevents the transport of active materials between the anolyte and catholyte.
- data obtained from operating vanadium redox batteries (VRBs) shows capacity fading over time when the system is operating without any capacity fading mitigation features as described herein.
- capacity fading may, at least in part, be attributed to some transport of vanadium ions across the membrane.
- Different vanadium cations in the system have different concentration diffusion coefficients and electric-migration coefficients for crossing over through the membrane. These differences contribute to an unbalanced vanadium transfer between anolyte and catholyte after multiple cycles of operation, which may result in a loss of energy storage capacity.
- Described herein are systems and methods of operation designed for mitigating the capacity decaying effects described above to improve RFB performance on a battery, string, and site level.
- these features can be described in terms of maintaining electrolyte stability by applying active and passive charge balancing, employing specific methods for analysis and adjustment of electrolyte composition, and process gas management.
- a string 10 is a building block for a multiple MW site.
- each string 10 includes four battery containers connected in series to a power and control system (PCS) 12 container.
- the control system for each string includes a battery management system (BMS) 14 with local control provided by a human machine interface (HMI) 16 .
- BMS battery management system
- HMI human machine interface
- the BMS 14 interprets remote commands from the site controller 18 , for example, a customer requirement to charge or discharge, as it simultaneously directs the appropriate operations for each battery and sub-component in the string 10 via a communication network.
- the BMS 14 interprets string 10 operating data from the batteries 20 , PCS, and their associated sub-components to evaluate service or diagnose maintenance requirements. See also FIG. 6 for string and site control diagrams.
- an exemplary VRB may have capacity up to 125 kW for four hours (500 kW-hours) and a storage string may have capacity up to 500 kW for four hours (2 MW-hours).
- individual batteries designed and manufactured to meet economies of scale, may be assembled as building blocks to form multiple-megawatt sites, for example 5 MW, 10 MW, 20 MW, 50 MW, or more. Managing these large installations requires multi-level control systems, performance monitoring, and implementation of various communications protocols.
- an exemplary 1 MW system layout shows two 500 kW building block sub-assemblies or strings 10 that each include four battery modules 20 and one PCS module 102 .
- multi-level larger systems may be assembled, for example, the single-level 10 MW system shown in FIG. 5 .
- the unique combination of systems and components described herein provide significantly more energy density in a compact flowing electrolyte battery module 20 and string 10 design than previously designed flowing electrolyte batteries, such earlier generation VRBs.
- Other hybrid flowing electrolyte batteries, such as ZnBr2 systems may demonstrate similar characteristics.
- each RFB 20 includes a container 50 that houses the remaining components of the system in a substantially closed manner. These remaining components generally include the anolyte and catholyte tank assemblies 22 and 24 , the stacks of electrochemical cells 30 , 32 , and 34 , a system for circulating electrolyte 40 , and an optional a gas management system 94 . The configuration of each of these components will now be described in more detail.
- FIG. 1 depicts the container 50 that houses, for example, the components shown in FIG. 2 .
- the container 50 can be configured in some embodiments to be an integrated structure that facilitates or provides one or more of the following characteristics: compact design, ease of assembly, transportability, compact multiple-container arrangements and structures, accessibility for maintenance, and secondary containment.
- the representative container 50 comprises two major compartments that house components of the RFB 20 .
- the division between the first and second compartments 60 and 62 is a physical barrier in the form of a bulkhead 70 (see FIG. 3B ), which may be a structural or non-structural divider.
- the bulkhead 70 in some embodiments can be configured to provide secondary containment of the electrolyte stored in tank assemblies 22 and 24 .
- a secondary structural or non-structural division can be employed to provide a physical barrier between the anolyte tank 22 and the catholyte tank 24 .
- the tanks 22 and 24 are configured as so to be closely fitted within the compartment or compartments, thereby maximizing the storage volume of electrolyte within the container 50 , which is directly proportional to the energy storage of the battery 20 .
- the container 50 has a standard dimensioning of a 20 foot ISO shipping container.
- the container has a length A which may be 20 feet, 8 feet in width B, and 91 ⁇ 2 feet in height C, sometimes referred to as a High-Cube ISO shipping container.
- Other embodiments may employ ISO dimensioned shipping containers having either 8 feet or 81 ⁇ 2 feet in height C, and in some embodiments, up to 53 feet in length A.
- the container 50 can be additionally configured to meet ISO shipping container certification standards for registration and ease of transportation via rail, cargo ship, or other possible shipping channels.
- the container may be similarly configured like an ISO shipping container.
- the container has a length in the range of 10-53 feet and a height in the range of 7-10 feet.
- the container 50 also includes various features to allow for the RFB 20 to be easily placed in service and maintained on site. For example, pass-through fittings are provided for passage of electrical cabling that transfers the power generated from circulation of the anolyte and the catholyte through the stacks of electrochemical cells.
- the container 50 includes an access hatch 80 , as shown in FIG. 1 . Other hatches, doors, etc. (not shown) may be included for providing access to systems of the RFB 20 .
- FIGS. 1 and 2 illustrate anolyte tank 22 and catholyte tank 24 positioned side by side in the second compartment 62 .
- the representative anolyte tank 22 is generally rectangular, with a shoulder or stepped section 90 located at the front upper corner of each tank 22 and 24 .
- the stepped section 90 provides access for an optional electrolyte transfer conduit 92 to provide fluid communication between the anolyte tank 22 and the catholyte tank 24 when the tanks are aligned side-by-side, as described in greater detail below.
- the tanks 22 and 24 need not be manufactured to include a stepped section 90 or may include another configuration to optionally accommodate either an electrolyte transfer conduit or another fluid transfer device between tanks 22 and 24 .
- anolyte tank 22 and/or catholyte tank 24 are constructed from molded or fabricated plastic, fiberglass, or other materials or combinations of materials. Other materials may include various metals, glass, glass lined steel, tantalum, etc.
- tanks 22 and/or 24 have a rigid construction.
- the material comprising the walls of the tanks 22 and/or 24 are configured to flex outwardly when filled with electrolyte in order to contain the electrolyte therein. As such, the tanks in some embodiments can expand or contract to accommodate the expected range of changes in electrolyte volume or pressure during operation.
- anolyte tank 22 and/or catholyte tank 24 are constructed such that some portions of the tanks are more rigid to support equipment or other features attached to the tanks, while other portions of the tanks may retain flexibility as described above.
- the catholyte tank 24 is configured substantially similar to the anolyte tank 22 .
- the catholyte tank 24 has a smaller volume than the anolyte tank 22 , as described in greater detail below.
- An optimized tank size ratio between the anolyte and catholyte tanks 22 and 24 provides a means to maintain maximum energy storage capacity of the RFB module 20 over multiple cycles.
- the difference in volume between the anolyte and catholyte tanks 22 and 24 can be realized via a larger width dimension, for example, of the anolyte tank 22 , or the tanks can have identical outer dimensions but the catholyte tank 24 may include a cavity bottom that is higher than the floor of the tank or a filler material, such as an inert material, that takes up some of the volume of the tank.
- the anolyte tank may have substantially the same volume as the catholyte tank or may have a smaller volume than the catholyte tank.
- the anolyte tank 22 and the catholyte tank 24 are configured so as to store a combined volume of electrolyte of about 20 cubic meters or greater. In one representative embodiment, the total combined volume is about 23 cubic meters or greater.
- the tanks 22 and 24 are sized to fit closely into the container 50 .
- the length of each tank 22 and 24 is such that they abut against a front bulkhead 70 at one end (see FIG. 4 ) and against a container back wall 72 at their opposite end (see FIGS. 1 and 4 ). Therefore, the back wall 72 of the container 50 supports the back of the tanks 22 and 24 , and the front bulkhead 70 installed, for example, after tank installation supports the front of the tanks 22 and 24 .
- the height of each tank 22 and 24 is that that the tanks are supported by the side walls 74 , extending from the bottom wall 76 of the container 50 and extend upwardly to just proximal the top wall 78 (see FIG. 1 ).
- the anolyte tank and the catholyte tank are configured to extend between the bulkhead and a first end wall that define the first compartment so as to be adjacent or abut against the bulkhead and the end wall.
- the area defined by lengthwise sidewalls and widthwise side walls of the anolyte tank and the catholyte tank fills at least 85% of the area defined by the anolyte and catholyte tank compartments.
- the vertically disposed side wall walls 74 can be reinforced. Other walls may also be reinforced or constructed with increased strength.
- the back wall 72 can also be reinforced and the bottom wall 76 can be constructed with thicker steel or multiple steel plates in order to support the weight of the electrolyte.
- the bulkhead 70 also provides for increased rigidity of the container.
- the container 50 has a unibody construction. The structural support provided by the container 50 when the tanks 20 and 24 are filled with electrolyte allows for the tanks 22 and 24 to be manufactured similarly to bladders that have minimal inherent self-supporting structure
- the electrolyte transfer conduit 92 is positioned near the top of each tank 22 and 24 , and there is a well 172 to control any leak that may occur at the joints between the conduit 92 and the tanks 22 and 24 (see FIG. 13 ).
- the container 50 is manufactured to provide secondary electrolyte containment.
- the container may be manufactured from steel or another suitable metal or another suitable material, and all seams are fully welded or sealed to provide secondary leak containment.
- a low-profile pump tub assembly 120 can be employed in accordance with aspects of the present disclosure.
- the pump tub assembly 120 When installed, as will be described in more detail below, the pump tub assembly 120 provides electrolyte suction and discharge access below the tank liquid level, while keeping liquid connections physically located above the tank liquid level.
- the pump tub assembly 120 can also be equipped with leak sensors (not shown). The tub is located such that a lower portion of the cavity is located below the liquid level in the tank and an upper portion of the cavity is located at or above the liquid level in the tank.
- the pump tub assembly 120 is disposed at the forward section of the top wall 78 of each tank 22 and 24 . Referring now to FIGS. 7-11 , the pump tub assembly 120 will be described in greater detail.
- the pump tub assembly 120 includes a tub 124 that is generally cylindrical, although other shapes may be utilized.
- the tub 124 includes a contiguous, cylindrical sidewall 126 that extends from a bottom wall 128 upwardly to an upper edge, thereby delimiting an open-ended cavity 130 .
- the cavity 130 is configured to house various piping connections interfaces and optional filters, etc.
- the tub assembly also houses a pump and a filter. In other embodiments, the pump, filter, or other components may be located in another location in the system, for example, in the first compartment 60 .
- the tub 124 At the opening to the cavity 130 , the tub 124 includes a laterally outwardly extending flange 138 that extends the entire perimeter of the tub sidewall 126 .
- the tub 124 When assembled, the tub 124 is inserted into a cooperatingly configured opening 140 in the top wall 142 of each tank 22 or 24 and placed such that the flange 138 abuts the top wall 142 .
- the pump tub provides a high electrolyte fill level, low equipment profile, no tank penetrations for electrolyte circulation below the liquid level and in some embodiments moves the pumps, filters, and associated equipment out of the space in front of the tanks to make it available for balance of plant (BOP) components that comprise electrical systems, stacks, electrolyte manifold distribution systems, and air handling systems.
- BOP balance of plant
- an O-ring or other type of sealing device 136 can be disposed between the flange 138 of the tub 124 and the top wall 142 , if desired (see FIG. 11 ). Any suitable fastening technique can be employed to couple the tub to the tanks 22 and 24 in a substantially sealed and leak proof manner.
- FIGS. 32 and 33 pump tub assemblies in accordance with other embodiments of the present disclosure will be described in more detail.
- the pump tub assemblies 220 and 320 of FIGS. 32 and 33 are substantially identical in materials and operation as the previously described embodiment, except for differences regarding the location of the pump tub relative to the housing, which will be described in greater detail below.
- numeral references of like elements of the pump tub assembly 120 are similar, but are in the 200 and 300 series for the respective illustrated embodiments of FIGS. 32 and 33 .
- the pump tub assembly 220 includes a tub sidewall 226 that intersects with the top tank wall 278 and one or more tank side walls 270 .
- Such configuration allows for front access to the pump tub assembly 220 , as compared to only top access in the previously described embodiment (see FIG. 1 ).
- the tub is located such that a lower portion of the cavity is located below the liquid level in the tank and an upper portion of the cavity is located at or above the liquid level in the tank.
- the tub may be a discreet tub attached to a tank, or may include a plurality of components that are sealably attached to each other and to the tank.
- the pump tub assembly 320 includes a tub sidewall 326 that, like the pump tub assembly 320 of FIG. 32 , also intersects with the top tank wall 378 and one or more tank side walls 370 .
- the pump tub assembly 320 is semi-circular in cross-section and the front portion 326 of the pump tub assembly 320 is flush with the front wall 370 of the tank 322 .
- the front portion 326 of the pump tub assembly 320 does not extend beyond the front wall 370 of the tank 322 .
- such configuration allows for front access to the pump tub assembly 320 .
- the sides and top of the pump tub assemblies 220 and 320 can be sealed to the tank by welding, with gaskets, or other common sealing techniques.
- all or part of the pump tub assemblies 220 and 320 shown in FIGS. 32 and 33 may be molded into the tanks. In either embodiment, any portions of the molded tub that are below the tank liquid level can be provided with leak containment by installing an additional sealing body that can be sealed to the tank by welding, with gaskets, or other common sealing techniques.
- a fluid connection point includes at least one of a pipe, pipe fitting, tube, tube fitting, pump, and filter, configured to conduct fluid between the storage tank and another device or system that is external to the storage tank envelope.
- a fluid connection point includes at least one of a pipe, pipe fitting, tube, tube fitting, pump, and filter configured to conduct gas between the storage tank and another device or system that is external to the storage tank envelope.
- an electrolyte circulating system 40 is provided for circulating the anolyte and the catholyte from respective tanks 22 and 24 into the stacks of electrochemical cells 30 , 32 , and 34 (see FIG. 2 ).
- discharge and return conduits/piping for each tank 22 and 24 are suitably connected from/to the stacks of electrochemical cells 30 , 32 , and 34 , as shown in FIGS. 2 , 3 and 7 .
- a shunt current suppression system may be employed by the circulation system 40 for the anolyte circuit and/or the catholyte circuit, as set forth in co-pending U.S. patent application Ser. No.
- the shunt current suppression system includes looping or coiled tubing 88 to maximize the travel path of the electrolyte (and effectively minimize shunt currents) while keeping pumping losses to a minimum in a compact space.
- each pump tub assembly 120 includes a piping interface 144 for coupling the tanks 22 and 24 in fluid communication with the return and discharge piping of the circulating system 40 .
- the piping interface 144 includes a discharge connector 148 in the form of a flanged pipe connected to the interior of the tank via a motor driven pump 152 and a suction tube 156 that extends downward into the electrolyte (see FIG. 10 ).
- the piping interface 144 also includes a return connector 160 in the form of a flanged pipe connected to the interior of the tank (see FIG. 9 ) via an elongated down tube 164 (see FIG. 10 ).
- an optional filter 158 can be suitably interconnected between the discharge connector 148 and the pump 152 (see FIG. 10 ).
- the piping interface 144 may also include a third connector 170 in the pump tub assembly 120 for providing the gas pressure management system 96 access to the head space 178 , as will be described in greater detail below.
- Other interfaces may also be provided, including a fill connector 172 adapted to be connected to a fill tube 166 positioned in the respective tank. It will be appreciated that all penetrations through the bottom or side wall of the tub are both substantially sealed and above the tank liquid level.
- the RFB module 20 may further include an optional electrolyte transfer conduit 92 allowing fluid exchange between the catholyte and anolyte tanks 24 and 22 and an optional gas management system 94 for managing evolving gases from the catholyte and anolyte and gas pressure in the headspaces during operation (see FIG. 13 ). Both of these elements are part of systems that can be used to maintain the energy density and capacity of the RFB module 20 , and reduce periodic maintenance.
- FIGS. 15-19 illustrate the following: electrolyte volume change during cycling ( FIG. 15 ); electrolyte total vanadium change during cycling ( FIG. 16 ); electrolyte active available material change during cycling ( FIG. 17 ); electrolyte concentration change during cycling ( FIG. 18 ); and electrolyte capacity fading during cycling ( FIG. 19 ), each described in greater detail below.
- catholyte volume increased approximately 50 liters over 110 cycles, while at the same time the anolyte volume decreased approximately 50 liters over the same number of operating cycles. Volume ratio change continued to diverge at approximately the same rate during the course of testing. No stabilization was observed.
- the number of moles of vanadium in the catholyte increased from approximately 800 to 1010 over 110 cycles, while at the same time, the number of moles of vanadium in the anolyte decreased from approximately 800 to 560 over the same number of operating cycles. Although the total vanadium rate of change decreased over time, it still continued to diverge at the end of testing. No stabilization was observed.
- the number of moles of vanadium active materials (VO2+) in the catholyte increased from approximately 700 to 900 over 110 cycles, while at the same time, the number of moles of vanadium active materials (V 3+) in the anolyte decreased from approximately 700 to 220 over the same number of operating cycles.
- the active available material rate of change in the catholyte tank decreased over time, but still continued to diverge at the end of testing.
- the active available material rate of change in the anolyte tank continued to decrease at a high rate at the end of testing, and was the limiting factor in determining the energy storage capacity of the battery. No stabilization was observed.
- the molar concentration of the positive electrolyte increased from approximately 2.1 M to 2.3 M over the first 20 cycles, and then stabilized at approximately that concentration for the remaining cycles.
- the negative electrolyte decreased from approximately 2.1 M to 1.8 M over the first 20 cycles, and then stabilized at approximately that concentration for the remaining cycles.
- This demonstrated relationship illustrates an inherent VRB characteristic that provides insight into preferred volume ratios between the anolyte and catholyte tanks. In this example, the ratio is approximately 1.25:1.
- the total energy capacity of the electrolyte in Watt-hours/liter shows a decrease for an initial value of 18 to a value of 4.5 after 110 cycles, reflecting information shown in the previous plots.
- the relationship between electrolyte concentration in the anolyte and catholyte tanks generally remains constant after the initial start-up phase; however at the same time, as can be seen in FIGS. 15 and 17 , due to the inherent chemical reactions, nature of the cell structure, and other factors, the volume and active materials in the anolyte and catholyte tanks change as cycle numbers increase. As described previously, and as can be seen in FIG. 19 , without mitigation, the battery energy capacity degrades over time as the result of limited availability of active material in the anolyte tank. Therefore, a system that maintains a specific electrolyte concentration ratio between the anolyte and catholyte tanks and/or maximizes the available active materials for energy storage and dispatch is described herein.
- a method of operating a redox flow battery includes having a uniform or non-uniform predetermined volume ratio, based on maintaining a preferred electrolyte concentration, between the quantity of anolyte and the quantity of catholyte in the system.
- the quantity or volume of anolyte may be more or less than the quantity or volume of the catholyte.
- the predetermined starting volume ratio may be different from or the same as the predetermined volume ratio during operation.
- the predetermined volume ratio during operation may change subject to other conditions in the system.
- the tank volume ratio may have an anolyte volume to catholyte volume ratio of about 1:1.05 to about 1:1.50, about 1:1.15 to about 1:1.35, or about 1:1.20 to about 1:1.30.
- the tank volume ratio between the anolyte tank and the catholyte tank is about 1.25:1.
- the tank volume ratio may have a catholyte volume to anolyte volume ratio of about 1:1.05 to about 1:1.50, about 1:1.15 to about 1:1.35, or about 1:1.20 to about 1:1.30.
- a non-uniform tank volume ratio may be achieved by having two different tank dimensions.
- the tank dimensions in the illustrated embodiment of FIG. 2 see the tank dimensions in the illustrated embodiment of FIG. 2 .
- the catholyte and anolyte tanks have similar heights and length dimensions, but different width dimensions (see schematic view in FIG. 14A ).
- the tanks may have different depths.
- the tank dimensions in the alternate embodiment of FIG. 14B see the tank dimensions in the alternate embodiment of FIG. 14B .
- the catholyte and anolyte tanks 224 and 222 have similar height, width, and length dimensions, but different depths dimensions.
- the tanks may be partially filled with non-reacting materials to reduce some of the tank volume, or the tank may have a changeable volume to account for changes in the operation of the system (see alternate embodiment of FIG. 14C ).
- a non-uniform tank volume ratio based on maintaining a preferred electrolyte concentration between the anolyte and catholyte tanks can improve the energy density achieved during operation of the RFB module 20 having a given capacity for holding a certain amount of electrolyte.
- a tank volume ratio of about 1.25:1 between the anolyte tank and the catholyte tank in the illustrated embodiment of FIG. 2 achieves greater energy density for the same total amount of electrolyte as compared to a uniform tank volume ratio between the anolyte and catholyte tanks.
- a non-uniform tank volume ratio that maintains a preferred electrolyte concentration, such as a ratio of about 1.25:1 between the anolyte tank and the catholyte tank in the illustrated embodiment of FIG. 2 , maintains improved energy density over time than tanks of uniform size. Greater energy density is a result of greater availability and utilization of the active species in the electrolyte.
- a preferable tank volume ratio may vary from the preferred range for a VRB system, and for example, may have a greater volume of catholyte compared to anolyte.
- the RFB 20 has a predetermined volume ratio, based on maintaining a preferred electrolyte concentration, in accordance with the volume ratios of catholyte and anolyte, as described above. Over a period of time of normal operation of the redox flow battery, the volume ratio of the anolyte and the catholyte may become greater than or less than the predetermined volume ratio. For example, as can be seen in the exemplary data of FIG. 15 , in one mode of operation, a VRB system gains catholyte volume and loses anolyte volume over long-term cycling.
- excess catholyte generated from the system would need to flow from the catholyte tank 24 to the anolyte tank 22 to correct the volume imbalance.
- Such transfer may be affected by passive electrolyte transfer, active electrolyte transfer, or a combination of passive and active electrolyte transfer, all described in greater detail below.
- a passive mechanical arrangement allows for the transfer of electrolyte between the anolyte and catholyte tanks.
- the transfer may be from anolyte tank 22 to catholyte tank 24 or from catholyte tank 24 to anolyte tank 22 .
- the passive transfer system is a tank electrolyte transfer conduit 92 .
- the electrolyte transfer conduit 92 is located at an overflow level in either the catholyte or anolyte tank 22 or 24 .
- a stepped section 90 in each of the anolyte and catholyte tanks 22 and 24 provides access for an optional electrolyte transfer conduit 92 to provide fluid communication between the anolyte tank 22 and the catholyte tank 24 when the tanks are aligned side-by-side.
- the anolyte tank 22 is sized to have a larger volume than the catholyte tank by having a larger width dimension (see also schematic view in FIG. 14A ).
- the depth of the catholyte tank 224 or 324 may be reduced as compared to the anolyte tank 222 or 322 by increasing the thickness of the bottom wall of the catholyte tank 224 (see FIG. 14B ) or by partially filling the catholyte tank 324 with non-reacting materials to reduce some of the tank volume (see FIG. 14C ).
- catholyte volume increases over time, which affects the capacity of the system over time.
- the electrolyte transfer conduit 92 located at the overflow level in the illustrated embodiment allows for the flow of catholyte from the catholyte tank 24 as the catholyte volume increases into the anolyte tank 22 (see exemplary schematic in FIG. 14A ).
- the electrolyte transfer conduit 92 penetrates each tank 22 and 24 slightly below the liquid level to accommodate electrolyte transfer conduit 92 .
- the conduit connections 168 with each tank 22 and 24 in the illustrated embodiment of FIGS. 12 and 13 are flanged connections 168 surrounded by a well 172 molded into the tanks 22 and 24 at the stepped section 90 .
- the wells 172 may include leak sensors to detect any leaks that may occur.
- the conduit connections 168 may include other leak prevention devices, such as unions, axial O-ring fittings, etc.
- the electrolyte level in each of the tanks 22 and 24 may be set so as to allow for the transfer of only liquid electrolyte or of both liquid electrolyte and gas (from the headspaces in the catholyte and anolyte tanks, see e.g., exemplary diagram in FIG. 25 ) through the electrolyte transfer conduit 92 . If a transfer of gas from the headspaces in the catholyte and anolyte tanks is provided, the electrolyte transfer conduit 92 is also a part of the gas management system 94 for the battery, as described in greater detail below.
- the electrolyte transfer conduit delivers excess catholyte to the anolyte tank 22 during operation to account for the volumetric increase in the catholyte and return the system to a predetermined volume ratio.
- the tanks 22 and 24 need not be manufactured to include a stepped section 90 or may include another configuration to accommodate either an electrolyte transfer conduit or another fluid transfer device between tanks 22 and 24 .
- a suitable electrolyte transfer conduit may be located not at an overflow position, but instead below the liquid level in each of the tanks. In such a configuration, the electrolyte transfer conduit would provide continuous electrolyte exchange between the anolyte and catholyte. The rate of exchange may be determined in part by the length and diameter of the transfer conduit.
- test data was sampled during over 1000 continuous charge/discharge cycles, and plotted as a function of the number of cycles on a representative 31.5 kW stack.
- the test system included a passive overflow electrolyte transfer conduit in accordance with embodiments of the present disclosure.
- Test data in FIG. 20 shows the electrolyte transfer conduit achieved substantially uniform catholyte and anolyte volumes, catholyte to anolyte vanadium concentration ratio, and catholyte to anolyte total vanadium ratio for more than 1000 full charge/discharge cycles.
- Test data in FIG. 21 shows substantially uniform Coulombic efficiency, voltage efficiency, energy efficiency, and energy density for more than 1000 full charge/discharge cycles.
- the RFB module 20 may include an active transfer system configured for actively transferring electrolyte from one to the other of the catholyte and anolyte tanks Such active transfer may include pumping or otherwise controlling electrolyte tank-to-tank transfer using a valve system. The active transfer may be automatically controlled based on system conditions or manually controlled by an operator.
- the active system may use the same or a separate electrolyte transfer conduit as the passive system.
- electrolyte capacity can also be adjusted by adding reductive reagents to the positive electrolytes.
- Suitable reagents may include hydrocarbons, such as fructose. These reductive reagents can be oxidized by the catholyte, releasing carbon dioxide. Such reductive reagents may be added periodically, for example, during scheduled maintenance or automatically by the BMS system during battery operation.
- Fructose added to the catholyte is reduced according to the following formula, consuming hydrogen and generating carbon dioxide and water:
- stack variation caused by differences in manufacturing assembly and materials may produce slightly different performance characteristics between each of the four RFBs 20 in a string 10 (see exemplary string diagrams in FIGS. 2 and 6 ), in some cases leading to different membrane ion transfer capabilities or different levels of side reactions, both of which contribute to performance mismatch in a string of batteries.
- One mechanism that may be affected by manufacturing differences in stacks can be seen during battery operation in the way ions travel back and forth through the membrane separating positive and negative electrolytes as they form a closed electrical circuit, and in the way water molecules travel through the membrane together with other hydrated ions or by themselves.
- the volume of the positive and negative electrolytes and the concentrations of active ions in the electrolytes may change at different rates during battery operation.
- stack variations caused by damage (leakage, blockage, etc.) to one or more stack cells may produce slightly different performance characteristics when the stacks are assembled as batteries and strings, and may also cause an imbalance in the predetermined battery tank volume ratio described above.
- Other reasons for stack variation may include differences in the electrode, stack compression, etc.
- the worst performing battery determines the performance of the string. Further, because each battery in the string has dedicated electrolyte tanks, lower performing batteries may continue to experience declining performance caused, for example by the by stack variation described above. Declining battery capacity is generally indicative of or may lead to electrolyte stability and capacity problems for the associated string. If left unchecked, these performance variations may result in decreased capacity across a site.
- test data showing string declining performance is illustrated below in EXAMPLES 7 and 8.
- OCV open circuit voltage
- a selected OCV value can be chosen as a baseline for the other batteries in the system.
- the selected OCV value may be the lowest OCV value in the string. Therefore, in accordance with one embodiment of the present disclosure, the other RFBs in the string can then be adjusted to correspond to the selected OCV value.
- the selected OCV value may have a predetermined OCV value compared to others in the string.
- adjusting the OCV value for each battery includes transferring a volume of catholyte to the anolyte storage tank or a volume of anolyte to the catholyte storage tank. In another embodiment of the present disclosure, adjusting the OCV value for each battery includes transferring a volume of catholyte from another source outside the battery, such as from another battery, to the anolyte storage tank or a volume of anolyte from another source outside the battery, such as from another battery, to the catholyte storage tank.
- active capacity management utilizes positive electrolyte pump pressure, managed by control valves, to transfer electrolyte from the anolyte pump discharge line to the catholyte return line or from the catholyte pump discharge line to the anolyte return line.
- Such pump may be the same or different from a pump used for actively transferring electrolyte from one to the other of the catholyte and anolyte tanks, as described above.
- Active measures for capacity management may be controlled by the BMS as dictated by operating conditions. In other embodiments, active transfer can be accomplished manually or semi automatically using external pumps or other common fluid transfer devices.
- Another form of active capacity management is to automatically or manually inject reactants into the electrolyte to cause a chemical rebalancing.
- a measured amount of fructose is added to the catholyte, which is reduced according to the following formula:
- reducing agents may be added to the catholyte, including but not limited to sugars, alcohols, organic acids, oils, hydrocarbons, and any combination thereof.
- other oxidizing agents may be added to the anolyte, including but not limited to air, oxygen, hydrogen peroxide, ozone, and any combinations thereof.
- Adjusting OCV may be controlled by the battery management system (BMS) during battery operation or may be performed during maintenance of the redox flow battery.
- BMS battery management system
- RFBs have side reactions, such as hydrogen generation. Hydrogen generation increases the average oxidation state of the electrolytes, which can result in a capacity decrease. In addition, hydrogen gas generation in a closed space can create safety concerns. Further, most RFB negative electrolyte solutions include strong reductants that can be oxidized by oxygen in the air. Such oxidation also increases the average oxidation state of the electrolytes, which can result in a capacity decrease, as discussed below in EXAMPLE 10.
- Chlorine gas is a strong oxidant, and therefore, can be rapidly absorbed by the negative electrolyte solutions through surface contact if the chlorine gas is permitted to travel to the headspace of the anolyte, as discussed below with reference to a gas management system.
- the anolyte in a VRB was exposed to air with a solution-air contact surface ratio of 2.6 cm. As seen in FIG. 27 , the anolyte state of charge decreased rapidly from over 70% to 0% in less than 25 hours.
- a gas management system can be employed to manage the gasses generated in a RFB.
- the gas management system described herein is designed for a vanadium redox flow battery, the same gas management system concepts may be applied to other non-vanadium redox flow batteries.
- catholyte and anolyte tanks 22 and 24 are in a substantially sealed system with liquid electrolyte in each tank, and each tank may include a headspace above the respective anolyte and catholyte.
- the headspaces above the anolyte and catholyte have free gas exchange with the respective anolyte and catholyte.
- the gas management system 94 includes the gas headspaces 66 and 68 , a gas transfer device between the catholyte and anolyte tanks 22 and 24 , such as electrolyte transfer conduit 92 (which also allows for gas transfer), and a gas pressure management system 96 (shown as U-tube 100 , to be described in greater detail below).
- the gas transfer device may be a conduit that allows for gas in the respective anolyte and catholyte headspaces to diffuse and exchange with each other. The rate of exchange is determined by the cross-section area, length of the conduit, and gas diffusion rate.
- anolyte and catholyte tanks 22 and 24 are filled with electrolyte up to a fill line allowing for a headspace in each tank 22 and 24 , and then sealed.
- the RFB system 20 is started in operation and the gas compositions of the headspaces start to change as oxidation starts to occur and hydrogen starts to be generated, as seen in FIG. 29 .
- air is present in the respective headspaces of the anolyte and catholyte headspaces during electrolyte filling or other maintenance operations when the tanks are sealed.
- the headspaces are purged with nitrogen or another inert gas as part of the sealing process.
- the tank system may include a tank electrolyte transfer conduit 92 located at or below an overflow level in either the anolyte or catholyte tank 22 or 24 .
- the electrolyte transfer conduit 92 may allow for the transfer of liquid electrolyte and gas exchange from the headspaces in the anolyte and catholyte tanks 22 and 24 . If the transfer of gas from the headspaces in the anolyte and catholyte tanks 22 and 24 is provided in the electrolyte transfer conduit 92 , then the electrolyte transfer conduit 92 is also a part of the gas management system for the RFB 20 .
- the gas transfer device may be an independent gas transfer device different from the electrolyte transfer conduit 92 .
- the gas transfer device may be a conduit designed for gas exchange between the anolyte and catholyte headspaces 66 and 68 , but not for liquid electrolyte transfer.
- the gas transfer device may include one or more conduits which may be independent gas transfer devices or may be combined with an electrolyte transfer conduit.
- the gas transfer device (shown as electrolyte transfer conduit 92 in the illustrated embodiment of FIG. 25 ) provides a means to equalize the pressure between the anolyte and catholyte tanks, control the flow and exit location of gasses vented by the gas management system, and allows for diffusion of gas between the anolyte and catholyte tanks.
- chlorine gas generated in the catholyte tank 24 by the following equation diffuses through the gas transfer device 92 and moves to the headspace in the anolyte tank 22 .
- the chlorine gas When in the anolyte headspace over the anolyte surface, the chlorine gas is absorbed by the anolyte as it oxidizes to Cl 2 O 2 .
- the chlorine gas oxidizes quickly, before it has a chance to vent from the gas management system 94 through the gas pressure management system 96 , described below.
- the gas management system 94 may also include one or more gas pressure management systems 96 to maintain a barrier between ambient air and the gas management system 94 , control gas pressure in the headspaces 66 and 68 of the gas management system 94 , and allow any necessary bi-directional pressure equalization between ambient air and the gas management system 94 .
- the gas pressure management device 96 may allow for the release of excess hydrogen gas generated by the anolyte in the anolyte tank 22 .
- the gas pressure management device 96 may also release carbon dioxide and nitrogen, and any other gases that may build up in the gas management system 94 .
- any chlorine gas generated by a system tends to be absorbed by the anolyte if the chlorine gas is allowed to migrate from the headspace in the catholyte tank 24 to the headspace in the anolyte tank 22 through gas transfer device 92 .
- the piping interface 144 of the pump tub assembly 120 may also include a third connector 170 that connects the head space 66 of the anolyte tank 22 and the head space 68 of the catholyte tank 24 through the gas transfer device 92 (see also FIG. 14A ).
- the gas pressure control device is a U-shaped tube (U-tube) 100 in fluid communication with the headspace 66 of the anolyte tank 22 .
- U-tube 100 could also be suitable configured to be in fluid communication with the headspace 68 of the catholyte tank 24 .
- a connector point 172 provides an access position for the gas pressure management system 96 to the head space 68 in the anolyte tank 22 .
- the U-tube 100 has a U-shaped body 102 and a first open end 104 in fluid communication with the headspace of the gas management system 94 and a second open end 106 in fluid communication with an external atmosphere.
- the body 102 contains an amount of liquid 108 that remains in the plumbing trap created by the U-shaped body 102 between the first and second ends.
- the U-tube body 102 is a conduit which may have a constant cross-sectional area along the length of the U-tube from the first end 104 to the second end 106 .
- the U-tube body 102 may have a different cross-sectional area at the first end, as compared to the second end (see FIG. 26 ).
- the U-tube body may be designed to include baffles or enlarged sections to prevent the loss of liquid as a result of bubbling or a sudden discharge of gas.
- the U-tube may be filled with a liquid selected from the group consisting of water, an alkaline aqueous solution, propylene glycol, ethylene glycol, an aqueous solution of inorganic compound, an aqueous solution of organic compound, a water insoluble organic liquid, and combinations thereof, through which certain gases in the headspaces of the RFB will diffuse.
- a suitable liquid may be selected depending on the system, operating pressures, and types of gasses being emitted from the gas management system 94 .
- Other suitable liquids may be selected to provide certain operating characteristics, for example, a desired temperature range or an ability to scrub or eliminate undesired vent gases (such as chlorine) from atmospheric discharge.
- the U-tube 100 may include a combination of liquids, for example, an alkaline solution with an oil layer on top.
- the U-tube 100 of the present disclosure allows for bi-directional gas exchange between the gas management system and the atmosphere.
- the U-tube 100 is in fluid communication with the anolyte headspace in the anolyte tank 22 and the atmosphere.
- the U-tube 100 may include, for example, 15 inches of water. When the pressure inside the anolyte headspace exceeds 15 inches of water, gases such as hydrogen may start to bubble out of the tube into the atmosphere.
- the U-tube may be configured to allow entry of an external gas into the gas management system when an exterior battery pressure exceeds an interior battery pressure, for example, greater than or equal to 15 inches water.
- the U-tube will prevent the entry of an external gas into the anolyte storage tank when the exterior battery pressure exceeds the interior battery pressure by less than 15 inches water.
- the tank head space may have some flexibility to allow for expansion.
- the U-tube 100 may have a uniform cross-section at the first and second ends.
- a U-tube 200 may have a different cross-sectional area at the first end, as compared to the second end.
- the effect of a change in cross-sectional area is that the pressure set points for gas entering and leaving the gas management system may be different.
- the first and second end cross-sectional areas may be sized so that the pressure requirement for gas exiting the gas management system is 15 inches of water, but the pressure requirement for gas entering the gas management system from the atmosphere is only 6 inches of water.
- the interior battery pressure in the anolyte headspace is between ⁇ 10 kPa and 10 kPa, ⁇ 5 kPa to +5 kPa, and ⁇ 3 kPa to +3 kPa.
- a U-tube 100 may have a length of 24 inches and a uniform diameter at the first and second ends of 2 inches.
- a U-tube may have a length of 24 inches and a non-uniform diameter at the first and second ends of 1.5 and 2 inches. As described above, such variations may independently change the pressure regulation and the resulting rate of transfer of gases into or out of the gas management system.
- the gas pressure management device may include more than one U-tube device, one or more pressure regulating valves, one or more check vales, or a combination of these or other pressure management devices.
- hydrogen, oxygen, and nitrogen gas phase composition changes during battery operation.
- hydrogen is generated by side reactions, from 0% to about 60% after 60 hours of operation.
- Oxygen decreased from about 20% to less than 5% after 60 hours of operation.
- the oxygen was consumed by a vanadium oxidation reaction.
- Nitrogen decreased from about 80% to about 35%.
- reductive reagents may include hydrocarbons, such as fructose. These reductive reagents can be oxidized by the catholyte, releasing carbon dioxide. Such reductive reagents may be added periodically, for example, during scheduled maintenance or automatically by the BMS system during battery operation.
- Carbon dioxide generated during this process purges chlorine gas out of the catholyte tank through the gas transfer device to the anolyte tank. As described above, the chlorine gas can then be absorbed in the anolyte. In addition, the generation of carbon dioxide can also purge hydrogen out of the battery system through the gas pressure management device. With reference to EXAMPLE 13 above, the addition of carbon dioxide to the gas management system helps maintain the non-flammable characteristics of the gas management system.
- Fructose added to the catholyte is reduced according to the following formula, consuming hydrogen and generating carbon dioxide and water:
- the substantially closed gas head spaces of the illustrated embodiment can be managed to minimize energy capacity loss over time, and to maintain a non-flammable atmosphere to maximize operating safety.
- the gas management system 94 can also be configured to provide an anti-siphoning capability to prevent siphoning of electrolyte from one battery container compartment to another in the event of a leak in the electrolyte circulation system 40 .
- an anti-siphoning arrangement may be used to prevent electrolyte in the electrolyte tanks 22 and 24 in the second container compartment 62 shown in FIG. 3B from siphoning into the first container compartment 60 that houses the cell stacks e.g., 30 , 32 , and 34 , and other auxiliary and electrical equipment in the event of a pipe rupture in the smaller front container compartment.
- a siphon break 180 may be provided without any active measures or valves.
- T-shaped tubing 186 connects the catholyte pump discharge 182 to the catholyte pump return 184 , and this connecting tube 186 is also connected to the head space 188 of the catholyte tank 24 .
- electrolyte When electrolyte is being circulated, a certain amount of electrolyte continuously returns directly to the catholyte tank 24 through the tubing 186 .
- the tubing 186 connection to the head space 188 provides a siphon break.
- a siphon break in another embodiment, illustrated in FIG. 34 , includes an anti-siphon conduit connecting a high point in the electrolyte circulation system with the head space of one of the first and second containers or electrolyte tanks 22 and 24 .
- the high point should be higher than the liquid level in the electrolyte tanks 22 and 24 , but need not be the highest point in the system.
- the siphon break includes a first anti-siphon conduit 196 connecting the first container 24 discharge conduit 182 with the first container head space 190 and a second anti-siphon conduit 198 connecting the first container return conduit 184 with the first container head space 190 .
- the siphon break does not include a valve.
- the tubing 196 can be sized to a length and diameter to minimize pumping losses while allowing a siphon break to occur in an acceptable amount of time.
- the tubing 196 may have an inside diameter of 4 mm and a length of 3.8 meters to provide a siphon break within 1 minute while minimizing pumping losses.
- the fluidic connection may be tubing, piping, or some other suitable conduit that is sized in diameter and length to minimize pumping losses while proving passive anti-siphon action when pumping stops.
- active systems are within the scope of the present disclosure, advantages of a passive arrangement include the following: no active control is required; the tubing 186 are constantly flushed to maintain operability; the system is passive, and reliability is increased.
- Alternate anti-siphoning embodiments that may be used to prevent siphoning of electrolyte from one container compartment to another include a non-limiting arrangement of one or more passive or active devices such as check valves, float valves, degassing valves, or activated valves.
- RFB systems have relatively low system level energy density, due in part to the combination of their methods of system packaging, for example the use of traditional external tanks, or multiple containers that house the tanks separately from the balance of plant (BOP).
- BOP balance of plant
- Other limitations of traditional system energy density may be due to the inherent chemistry of the electrolyte, limited space availability for subsystems that manage shunt current losses, gasses, electrolyte utilization, or a combination of factors.
- the tanks, the container, and the remaining balance of plant system can be configured as a self-contained, substantially closed VRB unit that provides maximum energy storage capacity per unit size of the container, while maintaining safe and reliable operating criteria.
- RFB module 20 shown in FIGS. 1 and 2 constructed in accordance with embodiments of the present disclosure can be configured to have an energy density of 10 watt hours per liter of electrolyte (Wh/L) or greater for an RFB battery that has an energy capacity of at least 2 kW-hours.
- the RFB module 20 in embodiments of the present disclosure also may be designed to operate continuously while maintaining designed energy density for a minimum of 50 or a minimum of 100 continuous full charge/discharge cycles or the equivalent operating hours without interruption by service or user input.
- the RFB module 20 described herein is designed to be contained in a housing 50 having specific dimensions, for example as an ISO shipping container having a length A, width B, and height C. Space usage for the various components in the system can be optimized to maximize the amount of electrolyte that can be filled into the housing 50 . As will be described in more detail below, configuration of the battery, battery sub-systems, or components themselves as well as the synergistic combinations of these elements allow the RFB 20 to achieve the specified energy density, both initially and continuously over a period of time.
- electrolyte tanks can be manufactured to fit in the available space provided in a containerized and space-optimized RFB system.
- the side-by-side design of the anolyte and catholyte tanks 22 and 24 allows for maximization of the total electrolyte in the RFB 20 , extending from bulkhead to rear wall.
- the housing 50 is designed as structural support to facilitate the use of previously described flexible electrolyte tanks for space efficiency.
- the tanks 22 and 24 are designed to fit closely within the housing 50 , further reducing required tank wall thickness and inherent tank structural requirements, and maximizing tank volume for electrolyte containment in the RFB 20 .
- the housing is fully welded to provide compact secondary containment for the electrolyte in the event of a leak, further reducing tank thickness and maximizing tank volume.
- the pump tub assembly conserves BOP space in the front of the battery container, while maximizing electrolyte tank height, fill level, and volume available for electrolyte. In addition to space utilization, the pump tub assembly also helps to minimize leak hazards in the battery module.
- the looped fluid conduits 88 (see FIGS. 1 and 2 provide for a compact shunt current mitigation system that maximizes fluid travel path length (component of current flow resistance), minimizes pumping losses, and improves battery overall efficiency in a small amount of space. Once again, this allows for more available tank space to contain electrolyte.
- the designed anolyte and catholyte tank volume ratio can help maximum energy derived from a total electrolyte amount in both the anolyte and the catholyte.
- one or more operational passive or active management features can be employed to improve the operational efficiency of the RFB module and to also extend the continuous operational period of the RFB module without shutdown.
- the RFB system is also designed to maintain such energy density over a certain number of cycles, for example, 100 full charge/discharge cycles.
- one or more adjustments can be made to the electrolyte during operation of the battery.
- the system can be designed for a constant or periodic transfer of electrolyte from the catholyte to the anolyte (or anolyte to catholyte) to maintain predetermined tank electrolyte volumes, whether by active or passive electrolyte transfer methods.
- individual batteries can automatically be periodically adjusted to conform to a selected OCV value in a string to improve long-term performance.
- an optional gas management system can be employed to remove or minimize reactions that decrease performance over time and mitigate the effects of evolved gases from the electrolyte. Such gases, if left unchecked, could be harmful to the system, create a safety hazard, or require environmental emissions monitoring, particularly chlorine and excess hydrogen gas that may be generated in a RFB.
- vanadium concentration is selected from the group consisting of higher than 1.5M, higher than 1.8M, and higher than 2.0M.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
A redox flow battery (RFB) controllable by a battery management system and having an energy output has a volume of at least 2000 liters and an energy density of at least 10 w-h/liter. In one embodiment, the RFB maintains at an energy density of at least 10 w-h/liter for a minimum of 50 continuous full charge/discharge cycles or the equivalent number of operating hours without user input.
Description
- This application claims the benefit of U.S. Provisional Application No. 62/021,650, filed Jul. 7, 2014, the disclosure of which is expressly incorporated by reference herein in its entirety.
- Concerns over the environmental consequences of burning fossil fuels have led to an increasing use of renewable energy generated from sources such as solar and wind. The intermittent and varied nature of such renewable energy sources, however, has made it difficult to fully integrate these energy sources into existing electrical power grids and distribution networks. A solution to this problem has been to employ large-scale electrical energy storage (EES) systems. These systems are widely considered to be an effective approach to improve the reliability, power quality, and economy of renewable energy derived from solar or wind sources.
- In addition to facilitating the integration of renewable wind and solar energy, large scale EES systems also may have the potential to provide additional value to electrical grid management, for example: resource and market services at the bulk power system level, such as frequency regulation, spinning reserves, fast ramping capacity, black start capacity, and alternatives for fossil fuel peaking systems; transmission and delivery support by increasing capability of existing assets and deferring grid upgrade investments; micro-grid support; and peak shaving and power shifting.
- Among the most promising large-scale EES technologies are redox flow batteries (RFBs). RFBs are special electrochemical systems that can repeatedly store and convert megawatt-hours (MWhs) of electrical energy to chemical energy and chemical energy back to electrical energy when needed. RFBs are well-suited for energy storage because of their ability to tolerate fluctuating power supplies, bear repetitive charge/discharge cycles at maximum rates, initiate charge/discharge cycling at any state of charge, design energy storage capacity and power for a given system independently, deliver long cycle life, and operate safely without fire hazards inherent in some other designs.
- In simplified terms, an RFB electrochemical cell is a device capable of either deriving electrical energy from chemical reactions, or facilitating chemical reactions through the introduction of electrical energy. In general, an electrochemical cell includes two half-cells, each having an electrolyte. The two half-cells may use the same electrolyte, or they may use different electrolytes. With the introduction of electrical energy, species from one half-cell lose electrons (oxidation) to their electrode while species from the other half-cell gain electrons (reduction) from their electrode.
- Multiple RFB electrochemical cells electrically connected together in series within a common housing are generally referred to as an electrochemical “stack”. Multiple stacks electrically connected together are generally referred to as a “string”. Multiple stings electrically connected together are generally referred to as a “site”.
- A common RFB electrochemical cell configuration includes two opposing electrodes separated by an ion exchange membrane or other separator, and two circulating electrolyte solutions, referred to as the “anolyte” and “catholyte”. The energy conversion between electrical energy and chemical potential occurs instantly at the electrodes when the liquid electrolyte begins to flow through the cells.
- To meet industrial demands for efficient, flexible, rugged, compact, and reliable large-scale ESS systems with rapid, scalable, and low-cost deployment, there is a need for improved RFB systems.
- This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
- In accordance with one embodiment of the present disclosure, a redox flow battery (RFB) controllable by a battery management system and having an energy output is provided. The redox flow battery includes at least one anolyte tank and at least one catholyte tank; at least one stack comprising electrochemical cells; at least one anolyte circulating system; at least one catholyte circulating system; at least one crossover pipe that fluidically connects the at least one catholyte tank and the at least one anolyte tank for electrolyte exchange; and one or more contiguous containers configured to house the at least one anolyte tank, the at least one catholyte tank, the at least one stack, the at least one anolyte circulating system, and the at least one catholyte circulating system in a substantially enclosed manner, wherein the one or more containers has a volume of at least 2000 liters and wherein the RFB operated by the battery management system has an energy density of at least 10 w-h/liter.
- In accordance with one embodiment of the present disclosure, a redox flow battery (RFB) controllable by a battery management system and having an energy output is provided. The redox flow battery includes at least one anolyte tank and at least one catholyte tank; at least one stack comprising electrochemical cells; at least one anolyte circulating system; at least one catholyte circulating system; at least one crossover pipe that fluidically connects the at least one catholyte tank and the at least one anolyte tank for electrolyte exchange; and one or more contiguous containers configured to house the at least one anolyte tank, the at least one catholyte tank, the at least one stack, the at least one anolyte circulating system, and the at least one catholyte circulating system in a substantially enclosed manner, wherein the one or more containers has a volume of at least 2000 liters and wherein the RFB operated by the battery management system has an energy density of at least 10 w-h/liter and wherein the RFB maintains at an energy density of at least 10 w-h/liter for a minimum of 50 continuous full charge/discharge cycles or the equivalent number of operating hours without user input.
- In any of the embodiments described herein, the interior space of the container may be divided into at least a first compartment that houses the at least one anolyte tank and the at least one catholyte tank and a second compartment that houses the at least one stack.
- In any of the embodiments described herein, the interior space of the container may be divided into at least a first compartment that houses the at least one anolyte tank, a second compartment that houses the at least one catholyte tank, and a third compartment that houses the at least one stack.
- In any of the embodiments described herein, the volume contained in the at least one catholyte tank and the volume contained in the at least one anolyte tank may have a pre-determined ratio of anolyte to catholyte or catholyte to anolyte in the range of about 1:1.05 to about 1:1.50.
- In any of the embodiments described herein, the container may include a bulkhead that divides the interior space into the first compartment and the second compartment.
- In any of the embodiments described herein, the bulkhead may be structural or non-structural.
- In any of the embodiments described herein, the container may be generally rectangular in shape, defining a bottom wall, lengthwise side walls, widthwise end walls, and a top wall, and wherein the bulkhead is coupled between the lengthwise side walls and extends upwardly from the bottom wall a majority of the height of the container.
- In any of the embodiments described herein, the at least one anolyte tank and the at least one catholyte tank may be configured to extend between the bulkhead and a first end wall that define the first compartment so as to be adjacent or abut against the bulkhead and the end wall.
- In any of the embodiments described herein, the area defined by lengthwise sidewalls and widthwise side walls of the at least one anolyte tank or the at least one catholyte tank may fill at least 85% of the area defined by the first compartment or the second compartment.
- In any of the embodiments described herein, the bottom wall and the lengthwise side walls of the container may be configured to support the at least one anolyte tank and the at least one catholyte tank when filled with electrolyte.
- In any of the embodiments described herein, the first compartment may be configured to provide secondary containment of electrolyte so as to isolate the electrolyte from the second compartment.
- In any of the embodiments described herein, wherein the container may have a length in the range of 10-53 feet and a height in the range of 7-10 feet.
- In any of the embodiments described herein, the container may comply with or be similarly configured like a 20-53 ft ISO shipping container having a height of either 8 or 9.5 feet.
- In any of the embodiments described herein, each of the at least anolyte tank and the at least one catholyte tank may include a pump tub assembly sealably mounted into the top wall and/or a side wall of at least one tank.
- In any of the embodiments described herein, each pump tub assembly may include a tub mounted into the top wall and/or a side wall and having a bottom wall positioned below an electrolyte level in the at least one tank and an interface into the at least one tank below the top wall level of the at least one tank.
- In any of the embodiments described herein, the interface may be a discharge interface configured for coupling with a discharge pipe of the respective circulating system.
- In any of the embodiments described herein, the interface may be a return interface configured for coupling with a return pipe of the respective circulating system.
- In any of the embodiments described herein, each pump tub assembly may further includes a pump connected in fluid communication with the discharge interface and with the electrolyte stored in the respective tank.
- In any of the embodiments described herein, each pump tub assembly may further includes a headspace interface coupled in fluid communication with a head space of the respective tank.
- In any of the embodiments described herein, the battery may further include one or more shunt current mitigating coiled manifolds.
- In any of the embodiments described herein, the container may be a 20 foot ISO shipping container and wherein the container includes a total electrolyte volume of at least 20 meters3.
- In any of the embodiments described herein, the battery may further include passive electrolyte transfer and/or gas exchange.
- In any of the embodiments described herein, the battery may further include active electrolyte transfer and/or gas exchange.
- In any of the embodiments described herein, the battery may further include automatic addition of reductant.
- In any of the embodiments described herein, the battery may further include a gas management system comprising a bi-directional pressure management assembly and conduits that provide gas communication between the anolyte and catholyte tanks.
- The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is an isometric view of a redox flow battery (RFB) module in accordance with one embodiment of the present disclosure; -
FIG. 2 is an isometric view of the RFB module ofFIG. 1 with the outer container removed; -
FIGS. 3A and 3B are schematic views of various components of the RFB module ofFIGS. 1 and 2 ; -
FIG. 4 is schematic view of a 1 MW site in accordance with one embodiment of the present disclosure; -
FIG. 5 is a schematic view of a 10 MW site in accordance with one embodiment of the present disclosure; -
FIG. 6 is a control diagram for a site, for example, the sites ofFIG. 4 or 5; -
FIG. 7 is a close-up isometric view of pump tub assemblies shown in the RFB module ofFIGS. 1 and 2 positioned on the top walls of the respective anolyte and catholyte tanks; -
FIG. 8 is an exploded view of one pump tub assembly ofFIG. 7 ; -
FIG. 9 is a top view of one pump tub assembly ofFIG. 7 ; -
FIG. 10 is a side view of one pump tub assembly ofFIG. 7 ; -
FIG. 11 is a cross-sectional side view of a tank showing a pump tub assembly inserted into the tank; -
FIGS. 12 and 13 are isometric views of an electrolyte transfer conduit shown in the RFB module ofFIGS. 1 and 2 ; -
FIGS. 14A , 14B, and 14C are schematic views of RFB modules having non-uniform anolyte and catholyte tank volumes in accordance with embodiments of the present disclosure; -
FIGS. 15-21 are graphical depictions of data regarding electrolyte stability and capacity management in an exemplary vanadium RFB system; -
FIGS. 22-24 are graphical depictions of data regarding capacity management in an exemplary vanadium RFB string; - FIGS. 25 and 26A-D are schematic drawings of various components of a gas management system in accordance with embodiments of the present disclosure; and
-
FIGS. 27-30 are graphical depictions of data regarding gas management in an exemplary vanadium RFB module; and -
FIG. 31 is a graphical depiction regarding energy density and average oxidation state in an RFB module in accordance with one embodiment of the present disclosure; and -
FIGS. 32 and 33 are isometric view of pump tub assemblies in accordance with other embodiments of the present disclosure; and -
FIG. 34 is an isometric view of an anti-siphon device in accordance with one embodiment of the present disclosure. - Embodiments of the present disclosure are directed to redox flow batteries (RFBs), systems and components thereof, stacks, strings, and sites, as well as methods of operating the same. Referring to
FIGS. 1-3 , aredox flow battery 20 in accordance with one embodiment of the present disclosure is provided. Multiple redox flow batteries may be configured in a “string” of batteries, and multiple strings may be configured into a “site” of batteries. Referring toFIG. 4 , a non-limiting example of a site is provided, which includes twostrings 10, each having fourRFBs 20. Referring toFIG. 5 , another non-limiting example of a site is provided, which includes twentystrings 10, each having fourRFBs 20. RFBs, systems and components thereof, stacks, strings, and sites are described in greater detail below. - Referring to
FIGS. 1 and 2 , major components in anRFB 20 include the anolyte and 22 and 24, the stacks ofcatholyte tank assemblies 30, 32, and 34, a system for circulatingelectrochemical cells electrolyte 40, an optionalgas management system 94, and acontainer 50 to house all of the components and provide secondary liquid containment. - In the present disclosure, flow electrochemical energy systems are generally described in the context of an exemplary vanadium redox flow battery (VRB), wherein a V3+/V2+ sulfate solution serves as the negative electrolyte (“anolyte”) and a V5+/V4+ sulfate solution serves as the positive electrolyte (“catholyte”). However, other redox chemistries are contemplated and within the scope of the present disclosure, including, as non-limiting examples, V2+/V3+ vs. Br−/ClBr2, Br2/Br− vs. S/S2−, Br−/Br2 vs. Zn2+/Zn, Ce4+/Ce3+ vs. V2+/V3+, Fe3+/Fe2+ vs. Br2/Br−, Mn2+/Mn3+ vs. Br2/Br−, Fe3+/Fe2+ vs. Ti2+/Ti4+, etc.
- As a non-limiting example, in a vanadium flow redox battery (VRB) prior to charging, the initial anolyte solution and catholyte solution each include identical concentrations of V3+ and V4+. Upon charge, the vanadium ions in the anolyte solution are reduced to V2+/V3+ while the vanadium ions in the catholyte solution are oxidized to V4+/V5+.
- Referring to the schematic in
FIG. 3A , general operation of the redoxflow battery system 20 ofFIGS. 1 and 2 will be described. The redoxflow battery system 20 operates by circulating the anolyte and the catholyte from their respective tanks that are part of the 22 and 24 into the electrochemical cells, e.g., 30 and 32. (Although only two electrochemical cells are needed to form a stack of cells, additional electrochemical cells in the illustrated embodiment oftank assemblies FIG. 3A include 31, 33 and 35.) Theelectrochemical cells 30 and 32 operate to discharge or store energy as directed by power and control elements in electrical communication with thecells 30 and 32.electrochemical cells - In one mode (sometimes referred to as the “charging” mode), power and control elements connected to a power source operate to store electrical energy as chemical potential in the catholyte and anolyte. The power source can be any power source known to generate electrical power, including renewable power sources, such as wind, solar, and hydroelectric. Traditional power sources, such as combustion, can also be used.
- In a second (“discharge”) mode of operation, the redox
flow battery system 20 is operated to transform chemical potential stored in the catholyte and anolyte into electrical energy that is then discharged on demand by power and control elements that supply an electrical load. - Each
electrochemical cell 30 in thesystem 20 includes a positive electrode, a negative electrode, at least one catholyte channel, at least one anolyte channel, and an ion transfer membrane separating the catholyte channel and the anolyte channel. The ion transfer membrane separates the electrochemical cell into a positive side and a negative side. Selected ions (e.g., H+) are allowed to transport across an ion transfer membrane as part of the electrochemical charge and discharge process. The positive and negative electrodes are configured to cause electrons to flow along an axis normal to the ion transfer membrane during electrochemical cell charge and discharge (see, e.g., line e− inFIG. 3A ). As can be seen inFIG. 3A , fluid inlets 48 and 44 andoutlets 46 and 42 are configured to allow integration of the 30 and 32 into the redoxelectrochemical cells flow battery system 20. - To obtain high voltage, high power systems, a plurality of single electrochemical cells may be assembled together in series to form a stack of electrochemical cells (referred to herein as a “stack,” a “cell stack,” or an “electrochemical cell stack”), e.g., 30 or 32 in
FIG. 3A . Several cell stacks may then be further assembled together to form abattery system 20. A MW-level RFB system generally has a plurality of cell stacks, for example, with each cell stack having more than twenty electrochemical cells. As described for individual electrochemical cells, the stack is also arranged with positive and negative current collectors that cause electrons to flow through the cell stack generally along an axis normal to the ion transfer membranes and current collectors during electrochemical charge and discharge (see, e.g.,line 52 shown inFIG. 3A ). - The ion exchange membrane in each electrochemical cell prevents crossover of the active materials between the positive and negative electrolytes while supporting ion transport to complete the circuit. Ion exchange membrane material, in a non-limiting example, a perfluorinated membrane such as NAFION or GORE-SELECT, may be used in the electrochemical cells.
- Ion exchange through the membrane ideally prevents the transport of active materials between the anolyte and catholyte. However, data obtained from operating vanadium redox batteries (VRBs) shows capacity fading over time when the system is operating without any capacity fading mitigation features as described herein. Such capacity fading may, at least in part, be attributed to some transport of vanadium ions across the membrane. Different vanadium cations in the system have different concentration diffusion coefficients and electric-migration coefficients for crossing over through the membrane. These differences contribute to an unbalanced vanadium transfer between anolyte and catholyte after multiple cycles of operation, which may result in a loss of energy storage capacity.
- Other negative effects caused by the transport of vanadium ions across the membrane include precipitation, which may occur if the vanadium ion concentration in the catholyte continues to increase as a result of the net transfer of vanadium ions. Precipitate may form in the electrode stacks, which may result in degradation in the performance of the VRB system. As a non-limiting example, precipitation of V5+ as V2O5 can occur in the catholyte (thereby decreasing the amount and/or the concentration and amount of V5+ in the catholyte).
- In addition to the transport of vanadium ions across the membrane and precipitation, other electrochemical side reactions may contribute to decreased performance in VRB systems. These reactions must also be addressed to maximize the capacity and service life of the system, while minimizing cost and service requirements for the life of the battery. For example, under some operating conditions, side reactions may produce excess hydrogen and chlorine gases in the headspaces of the anolyte and/or catholyte tanks Other detrimental reactions may also occur when electrolyte is exposed to oxidizing agents such as oxygen. In one example, over time, the anolyte is susceptible to V2+ oxidation by atmospheric oxygen that is introduced into the tank during maintenance, installation, or other operations (thereby decreasing the amount and/or concentration of V2+). V2+ can also be oxidized by H+ if hydrogen is evolved at the anode (thereby decreasing the amount and/or concentration of V2+ in the anolyte).
- Described herein are systems and methods of operation designed for mitigating the capacity decaying effects described above to improve RFB performance on a battery, string, and site level. In general, these features can be described in terms of maintaining electrolyte stability by applying active and passive charge balancing, employing specific methods for analysis and adjustment of electrolyte composition, and process gas management.
- As noted above, a
string 10 is a building block for a multiple MW site. As seen in the exemplary layouts inFIGS. 4 and 5 , eachstring 10 includes four battery containers connected in series to a power and control system (PCS) 12 container. As can be seen inFIG. 6 , the control system for each string includes a battery management system (BMS) 14 with local control provided by a human machine interface (HMI) 16. TheBMS 14 interprets remote commands from thesite controller 18, for example, a customer requirement to charge or discharge, as it simultaneously directs the appropriate operations for each battery and sub-component in thestring 10 via a communication network. At the same time, according to programmed logic, theBMS 14 interpretsstring 10 operating data from thebatteries 20, PCS, and their associated sub-components to evaluate service or diagnose maintenance requirements. See alsoFIG. 6 for string and site control diagrams. - As a non-limiting example, an exemplary VRB may have capacity up to 125 kW for four hours (500 kW-hours) and a storage string may have capacity up to 500 kW for four hours (2 MW-hours). To be effective as a large scale energy storage system that can be operated to provide multiple layered value streams, individual batteries, designed and manufactured to meet economies of scale, may be assembled as building blocks to form multiple-megawatt sites, for example 5 MW, 10 MW, 20 MW, 50 MW, or more. Managing these large installations requires multi-level control systems, performance monitoring, and implementation of various communications protocols.
- Referring to
FIG. 4 , an exemplary 1 MW system layout shows two 500 kW building block sub-assemblies orstrings 10 that each include fourbattery modules 20 and onePCS module 102. Using this approach, multi-level larger systems may be assembled, for example, the single-level 10 MW system shown inFIG. 5 . As described in greater detail below, the unique combination of systems and components described herein provide significantly more energy density in a compact flowingelectrolyte battery module 20 andstring 10 design than previously designed flowing electrolyte batteries, such earlier generation VRBs. Other hybrid flowing electrolyte batteries, such as ZnBr2 systems, may demonstrate similar characteristics. - Referring now to
FIGS. 1 and 2 , eachRFB 20 includes acontainer 50 that houses the remaining components of the system in a substantially closed manner. These remaining components generally include the anolyte and 22 and 24, the stacks ofcatholyte tank assemblies 30, 32, and 34, a system for circulatingelectrochemical cells electrolyte 40, and an optional agas management system 94. The configuration of each of these components will now be described in more detail. -
FIG. 1 depicts thecontainer 50 that houses, for example, the components shown inFIG. 2 . Thecontainer 50 can be configured in some embodiments to be an integrated structure that facilitates or provides one or more of the following characteristics: compact design, ease of assembly, transportability, compact multiple-container arrangements and structures, accessibility for maintenance, and secondary containment. - In the illustrated embodiment of
FIGS. 1 and 2 , therepresentative container 50 comprises two major compartments that house components of theRFB 20. In some embodiments, the division between the first and 60 and 62 is a physical barrier in the form of a bulkhead 70 (seesecond compartments FIG. 3B ), which may be a structural or non-structural divider. Thebulkhead 70 in some embodiments can be configured to provide secondary containment of the electrolyte stored in 22 and 24. In another embodiment, a secondary structural or non-structural division can be employed to provide a physical barrier between thetank assemblies anolyte tank 22 and thecatholyte tank 24. In either case, as will be described in more detail below, the 22 and 24 are configured as so to be closely fitted within the compartment or compartments, thereby maximizing the storage volume of electrolyte within thetanks container 50, which is directly proportional to the energy storage of thebattery 20. - In some embodiments, the
container 50 has a standard dimensioning of a 20 foot ISO shipping container. In one representative embodiment shown inFIGS. 1 and 2 , the container has a length A which may be 20 feet, 8 feet in width B, and 9½ feet in height C, sometimes referred to as a High-Cube ISO shipping container. Other embodiments may employ ISO dimensioned shipping containers having either 8 feet or 8½ feet in height C, and in some embodiments, up to 53 feet in length A. In some of these embodiments, thecontainer 50 can be additionally configured to meet ISO shipping container certification standards for registration and ease of transportation via rail, cargo ship, or other possible shipping channels. In other embodiments, the container may be similarly configured like an ISO shipping container. In other embodiments, the container has a length in the range of 10-53 feet and a height in the range of 7-10 feet. - The
container 50 also includes various features to allow for theRFB 20 to be easily placed in service and maintained on site. For example, pass-through fittings are provided for passage of electrical cabling that transfers the power generated from circulation of the anolyte and the catholyte through the stacks of electrochemical cells. In some embodiments, thecontainer 50 includes anaccess hatch 80, as shown inFIG. 1 . Other hatches, doors, etc. (not shown) may be included for providing access to systems of theRFB 20. -
FIGS. 1 and 2 illustrateanolyte tank 22 andcatholyte tank 24 positioned side by side in thesecond compartment 62. In the illustrated embodiment shown inFIGS. 1 and 2 , therepresentative anolyte tank 22 is generally rectangular, with a shoulder or steppedsection 90 located at the front upper corner of each 22 and 24.tank - The stepped
section 90 provides access for an optionalelectrolyte transfer conduit 92 to provide fluid communication between theanolyte tank 22 and thecatholyte tank 24 when the tanks are aligned side-by-side, as described in greater detail below. However, in accordance with other embodiments of the present disclosure, the 22 and 24 need not be manufactured to include a steppedtanks section 90 or may include another configuration to optionally accommodate either an electrolyte transfer conduit or another fluid transfer device between 22 and 24.tanks - In some embodiments,
anolyte tank 22 and/orcatholyte tank 24 are constructed from molded or fabricated plastic, fiberglass, or other materials or combinations of materials. Other materials may include various metals, glass, glass lined steel, tantalum, etc. In some embodiments,tanks 22 and/or 24 have a rigid construction. In some embodiments, the material comprising the walls of thetanks 22 and/or 24 are configured to flex outwardly when filled with electrolyte in order to contain the electrolyte therein. As such, the tanks in some embodiments can expand or contract to accommodate the expected range of changes in electrolyte volume or pressure during operation. - In some embodiments,
anolyte tank 22 and/orcatholyte tank 24 are constructed such that some portions of the tanks are more rigid to support equipment or other features attached to the tanks, while other portions of the tanks may retain flexibility as described above. - The
catholyte tank 24 is configured substantially similar to theanolyte tank 22. In one embodiment of the present disclosure, thecatholyte tank 24 has a smaller volume than theanolyte tank 22, as described in greater detail below. An optimized tank size ratio between the anolyte and 22 and 24 provides a means to maintain maximum energy storage capacity of thecatholyte tanks RFB module 20 over multiple cycles. The difference in volume between the anolyte and 22 and 24 can be realized via a larger width dimension, for example, of thecatholyte tanks anolyte tank 22, or the tanks can have identical outer dimensions but thecatholyte tank 24 may include a cavity bottom that is higher than the floor of the tank or a filler material, such as an inert material, that takes up some of the volume of the tank. In other embodiments (not shown), the anolyte tank may have substantially the same volume as the catholyte tank or may have a smaller volume than the catholyte tank. - In some embodiments, the
anolyte tank 22 and thecatholyte tank 24 are configured so as to store a combined volume of electrolyte of about 20 cubic meters or greater. In one representative embodiment, the total combined volume is about 23 cubic meters or greater. - As shown in
FIG. 2 , the 22 and 24 are sized to fit closely into thetanks container 50. For example, the length of each 22 and 24 is such that they abut against atank front bulkhead 70 at one end (seeFIG. 4 ) and against a containerback wall 72 at their opposite end (seeFIGS. 1 and 4 ). Therefore, theback wall 72 of thecontainer 50 supports the back of the 22 and 24, and thetanks front bulkhead 70 installed, for example, after tank installation supports the front of the 22 and 24. Similarly, the height of eachtanks 22 and 24 is that that the tanks are supported by thetank side walls 74, extending from thebottom wall 76 of thecontainer 50 and extend upwardly to just proximal the top wall 78 (seeFIG. 1 ). - In one embodiment of the present disclosure, the anolyte tank and the catholyte tank are configured to extend between the bulkhead and a first end wall that define the first compartment so as to be adjacent or abut against the bulkhead and the end wall. In another embodiment, the area defined by lengthwise sidewalls and widthwise side walls of the anolyte tank and the catholyte tank fills at least 85% of the area defined by the anolyte and catholyte tank compartments.
- To increase rigidity and strength of the
container 50, and to withstand additional side loading imparted by the electrolyte in the 22 and 24, the vertically disposedtanks side wall walls 74 can be reinforced. Other walls may also be reinforced or constructed with increased strength. For example, theback wall 72 can also be reinforced and thebottom wall 76 can be constructed with thicker steel or multiple steel plates in order to support the weight of the electrolyte. It will be appreciated that thebulkhead 70 also provides for increased rigidity of the container. In one embodiment, thecontainer 50 has a unibody construction. The structural support provided by thecontainer 50 when the 20 and 24 are filled with electrolyte allows for thetanks 22 and 24 to be manufactured similarly to bladders that have minimal inherent self-supporting structuretanks - To reduce the possibility of an electrolyte leak from the
22 and 24, penetrations into thetanks 22 and 24 below the level of the liquid stored are minimized. In the illustrated embodiment, there is one penetration into eachtanks 22 and 24 slightly below the liquid level to accommodatetank electrolyte transfer conduit 92. As described in greater detail below, theelectrolyte transfer conduit 92 is positioned near the top of each 22 and 24, and there is a well 172 to control any leak that may occur at the joints between thetank conduit 92 and thetanks 22 and 24 (seeFIG. 13 ). - In the event of a leak of electrolyte in the
RFB module 20, thecontainer 50 is manufactured to provide secondary electrolyte containment. In that regard, the container may be manufactured from steel or another suitable metal or another suitable material, and all seams are fully welded or sealed to provide secondary leak containment. - To maximize the size and liquid fill level of the
22 and 24, while also avoiding leak concerns due to penetrations below the liquid level, a low-profiletanks pump tub assembly 120 can be employed in accordance with aspects of the present disclosure. When installed, as will be described in more detail below, thepump tub assembly 120 provides electrolyte suction and discharge access below the tank liquid level, while keeping liquid connections physically located above the tank liquid level. Thepump tub assembly 120 can also be equipped with leak sensors (not shown). The tub is located such that a lower portion of the cavity is located below the liquid level in the tank and an upper portion of the cavity is located at or above the liquid level in the tank. - Referring to
FIGS. 1 and 2 , thepump tub assembly 120 is disposed at the forward section of thetop wall 78 of each 22 and 24. Referring now totank FIGS. 7-11 , thepump tub assembly 120 will be described in greater detail. As can be seen in the illustrated embodiment ofFIG. 8 , thepump tub assembly 120 includes atub 124 that is generally cylindrical, although other shapes may be utilized. Thetub 124 includes a contiguous,cylindrical sidewall 126 that extends from a bottom wall 128 upwardly to an upper edge, thereby delimiting an open-endedcavity 130. Thecavity 130 is configured to house various piping connections interfaces and optional filters, etc. In the illustrated embodiment, the tub assembly also houses a pump and a filter. In other embodiments, the pump, filter, or other components may be located in another location in the system, for example, in thefirst compartment 60. - At the opening to the
cavity 130, thetub 124 includes a laterally outwardly extendingflange 138 that extends the entire perimeter of thetub sidewall 126. When assembled, thetub 124 is inserted into a cooperatingly configured opening 140 in thetop wall 142 of each 22 or 24 and placed such that thetank flange 138 abuts thetop wall 142. Once mounted as part of the tank container system described above, the pump tub provides a high electrolyte fill level, low equipment profile, no tank penetrations for electrolyte circulation below the liquid level and in some embodiments moves the pumps, filters, and associated equipment out of the space in front of the tanks to make it available for balance of plant (BOP) components that comprise electrical systems, stacks, electrolyte manifold distribution systems, and air handling systems. Compared to existing VRB systems, maximized electrolyte tank volume and BOP space provided by the tank/pump/container system result in an increase in energy density in thebattery unit 20. - It will be appreciated that an O-ring or other type of sealing device 136 can be disposed between the
flange 138 of thetub 124 and thetop wall 142, if desired (seeFIG. 11 ). Any suitable fastening technique can be employed to couple the tub to the 22 and 24 in a substantially sealed and leak proof manner.tanks - Now referring to
FIGS. 32 and 33 , pump tub assemblies in accordance with other embodiments of the present disclosure will be described in more detail. The 220 and 320 ofpump tub assemblies FIGS. 32 and 33 are substantially identical in materials and operation as the previously described embodiment, except for differences regarding the location of the pump tub relative to the housing, which will be described in greater detail below. For clarity in the ensuing descriptions, numeral references of like elements of thepump tub assembly 120 are similar, but are in the 200 and 300 series for the respective illustrated embodiments ofFIGS. 32 and 33 . - Referring to
FIG. 32 , thepump tub assembly 220 includes atub sidewall 226 that intersects with thetop tank wall 278 and one or moretank side walls 270. Such configuration allows for front access to thepump tub assembly 220, as compared to only top access in the previously described embodiment (seeFIG. 1 ). - The tub is located such that a lower portion of the cavity is located below the liquid level in the tank and an upper portion of the cavity is located at or above the liquid level in the tank. The tub may be a discreet tub attached to a tank, or may include a plurality of components that are sealably attached to each other and to the tank.
- Referring to
FIG. 33 , thepump tub assembly 320 includes atub sidewall 326 that, like thepump tub assembly 320 ofFIG. 32 , also intersects with thetop tank wall 378 and one or moretank side walls 370. However, thepump tub assembly 320 is semi-circular in cross-section and thefront portion 326 of thepump tub assembly 320 is flush with thefront wall 370 of thetank 322. In this design, thefront portion 326 of thepump tub assembly 320 does not extend beyond thefront wall 370 of thetank 322. Like thepump tub assembly 220 ofFIG. 32 , such configuration allows for front access to thepump tub assembly 320. - In both of the illustrated embodiments of
FIGS. 32 and 33 , the sides and top of the 220 and 320 can be sealed to the tank by welding, with gaskets, or other common sealing techniques. Also, in both embodiments, all or part of thepump tub assemblies 220 and 320 shown inpump tub assemblies FIGS. 32 and 33 may be molded into the tanks. In either embodiment, any portions of the molded tub that are below the tank liquid level can be provided with leak containment by installing an additional sealing body that can be sealed to the tank by welding, with gaskets, or other common sealing techniques. - In one embodiment of the present disclosure, a fluid connection point includes at least one of a pipe, pipe fitting, tube, tube fitting, pump, and filter, configured to conduct fluid between the storage tank and another device or system that is external to the storage tank envelope.
- In another embodiment, a fluid connection point includes at least one of a pipe, pipe fitting, tube, tube fitting, pump, and filter configured to conduct gas between the storage tank and another device or system that is external to the storage tank envelope.
- As described above regarding the general operation of a
RFB 20, anelectrolyte circulating system 40 is provided for circulating the anolyte and the catholyte from 22 and 24 into the stacks ofrespective tanks 30, 32, and 34 (seeelectrochemical cells FIG. 2 ). In that regard, discharge and return conduits/piping for each 22 and 24 are suitably connected from/to the stacks oftank 30, 32, and 34, as shown inelectrochemical cells FIGS. 2 , 3 and 7. In some embodiments, a shunt current suppression system may be employed by thecirculation system 40 for the anolyte circuit and/or the catholyte circuit, as set forth in co-pending U.S. patent application Ser. No. 14/217,077, filed Mar. 17, 2014, the disclosure of which is incorporated by reference herein in its entirety. In the illustrated embodiment, the shunt current suppression system includes looping orcoiled tubing 88 to maximize the travel path of the electrolyte (and effectively minimize shunt currents) while keeping pumping losses to a minimum in a compact space. - As shown in
FIGS. 2 , 9 and 10, eachpump tub assembly 120 includes apiping interface 144 for coupling the 22 and 24 in fluid communication with the return and discharge piping of the circulatingtanks system 40. For example, in the embodiment shown (seeFIG. 9 ), the pipinginterface 144 includes adischarge connector 148 in the form of a flanged pipe connected to the interior of the tank via a motor drivenpump 152 and asuction tube 156 that extends downward into the electrolyte (seeFIG. 10 ). The pipinginterface 144 also includes areturn connector 160 in the form of a flanged pipe connected to the interior of the tank (seeFIG. 9 ) via an elongated down tube 164 (seeFIG. 10 ). In the embodiment shown, anoptional filter 158 can be suitably interconnected between thedischarge connector 148 and the pump 152 (seeFIG. 10 ). - The piping
interface 144 may also include athird connector 170 in thepump tub assembly 120 for providing the gaspressure management system 96 access to the head space 178, as will be described in greater detail below. Other interfaces may also be provided, including afill connector 172 adapted to be connected to afill tube 166 positioned in the respective tank. It will be appreciated that all penetrations through the bottom or side wall of the tub are both substantially sealed and above the tank liquid level. - As described in greater detail below with reference to
FIGS. 12-14 , theRFB module 20 may further include an optionalelectrolyte transfer conduit 92 allowing fluid exchange between the catholyte and 24 and 22 and an optionalanolyte tanks gas management system 94 for managing evolving gases from the catholyte and anolyte and gas pressure in the headspaces during operation (seeFIG. 13 ). Both of these elements are part of systems that can be used to maintain the energy density and capacity of theRFB module 20, and reduce periodic maintenance. - As described previously, during normal charge/discharge operations without corrective action, a decrease in charge capacity may be experienced in VRB systems. Exemplary test data was sampled during 110 continuous charge/discharge cycles, and plotted as a function of the number of cycles on a representative 31.5 kW stack. The data in
FIGS. 15-19 illustrate the following: electrolyte volume change during cycling (FIG. 15 ); electrolyte total vanadium change during cycling (FIG. 16 ); electrolyte active available material change during cycling (FIG. 17 ); electrolyte concentration change during cycling (FIG. 18 ); and electrolyte capacity fading during cycling (FIG. 19 ), each described in greater detail below. - Referring to
FIG. 15 , catholyte volume increased approximately 50 liters over 110 cycles, while at the same time the anolyte volume decreased approximately 50 liters over the same number of operating cycles. Volume ratio change continued to diverge at approximately the same rate during the course of testing. No stabilization was observed. - Referring to
FIG. 16 , the number of moles of vanadium in the catholyte increased from approximately 800 to 1010 over 110 cycles, while at the same time, the number of moles of vanadium in the anolyte decreased from approximately 800 to 560 over the same number of operating cycles. Although the total vanadium rate of change decreased over time, it still continued to diverge at the end of testing. No stabilization was observed. - Referring to
FIG. 17 , the number of moles of vanadium active materials (VO2+) in the catholyte increased from approximately 700 to 900 over 110 cycles, while at the same time, the number of moles of vanadium active materials (V 3+) in the anolyte decreased from approximately 700 to 220 over the same number of operating cycles. The active available material rate of change in the catholyte tank decreased over time, but still continued to diverge at the end of testing. The active available material rate of change in the anolyte tank continued to decrease at a high rate at the end of testing, and was the limiting factor in determining the energy storage capacity of the battery. No stabilization was observed. - Referring to
FIG. 18 , the molar concentration of the positive electrolyte (catholyte) increased from approximately 2.1 M to 2.3 M over the first 20 cycles, and then stabilized at approximately that concentration for the remaining cycles. At the same time, the negative electrolyte (anolyte) decreased from approximately 2.1 M to 1.8 M over the first 20 cycles, and then stabilized at approximately that concentration for the remaining cycles. This demonstrated relationship illustrates an inherent VRB characteristic that provides insight into preferred volume ratios between the anolyte and catholyte tanks. In this example, the ratio is approximately 1.25:1. - Referring to
FIG. 19 , the total energy capacity of the electrolyte in Watt-hours/liter, without any mitigating designs or procedures in place, shows a decrease for an initial value of 18 to a value of 4.5 after 110 cycles, reflecting information shown in the previous plots. - As described previously, and as can be seen in
FIG. 18 , the relationship between electrolyte concentration in the anolyte and catholyte tanks generally remains constant after the initial start-up phase; however at the same time, as can be seen inFIGS. 15 and 17 , due to the inherent chemical reactions, nature of the cell structure, and other factors, the volume and active materials in the anolyte and catholyte tanks change as cycle numbers increase. As described previously, and as can be seen inFIG. 19 , without mitigation, the battery energy capacity degrades over time as the result of limited availability of active material in the anolyte tank. Therefore, a system that maintains a specific electrolyte concentration ratio between the anolyte and catholyte tanks and/or maximizes the available active materials for energy storage and dispatch is described herein. - In one embodiment of the present disclosure, a method of operating a redox flow battery includes having a uniform or non-uniform predetermined volume ratio, based on maintaining a preferred electrolyte concentration, between the quantity of anolyte and the quantity of catholyte in the system. In the case of non-uniform predetermined volume ratio, the quantity or volume of anolyte may be more or less than the quantity or volume of the catholyte. The predetermined starting volume ratio may be different from or the same as the predetermined volume ratio during operation. Moreover, the predetermined volume ratio during operation may change subject to other conditions in the system.
- As non-limiting examples, the tank volume ratio may have an anolyte volume to catholyte volume ratio of about 1:1.05 to about 1:1.50, about 1:1.15 to about 1:1.35, or about 1:1.20 to about 1:1.30. As a non-limiting example, in the illustrated embodiment of
FIG. 2 , the tank volume ratio between the anolyte tank and the catholyte tank is about 1.25:1. - As other non-limiting examples, the tank volume ratio may have a catholyte volume to anolyte volume ratio of about 1:1.05 to about 1:1.50, about 1:1.15 to about 1:1.35, or about 1:1.20 to about 1:1.30.
- A non-uniform tank volume ratio may be achieved by having two different tank dimensions. For example, see the tank dimensions in the illustrated embodiment of
FIG. 2 . In that regard, the catholyte and anolyte tanks have similar heights and length dimensions, but different width dimensions (see schematic view inFIG. 14A ). In another embodiment, the tanks may have different depths. For example, see the tank dimensions in the alternate embodiment ofFIG. 14B . In that regard, the catholyte and 224 and 222 have similar height, width, and length dimensions, but different depths dimensions. In other embodiments, the tanks may be partially filled with non-reacting materials to reduce some of the tank volume, or the tank may have a changeable volume to account for changes in the operation of the system (see alternate embodiment ofanolyte tanks FIG. 14C ). - As described above, a non-uniform tank volume ratio based on maintaining a preferred electrolyte concentration between the anolyte and catholyte tanks can improve the energy density achieved during operation of the
RFB module 20 having a given capacity for holding a certain amount of electrolyte. As a non-limiting example, a tank volume ratio of about 1.25:1 between the anolyte tank and the catholyte tank in the illustrated embodiment ofFIG. 2 achieves greater energy density for the same total amount of electrolyte as compared to a uniform tank volume ratio between the anolyte and catholyte tanks. In addition, the inventors have found an advantageous effect of a non-uniform tank volume ratio that maintains a preferred electrolyte concentration, such as a ratio of about 1.25:1 between the anolyte tank and the catholyte tank in the illustrated embodiment ofFIG. 2 , maintains improved energy density over time than tanks of uniform size. Greater energy density is a result of greater availability and utilization of the active species in the electrolyte. In other types of modules, for example, in non-vanadium RFB systems, a preferable tank volume ratio may vary from the preferred range for a VRB system, and for example, may have a greater volume of catholyte compared to anolyte. - In accordance with one embodiment of the present disclosure, the
RFB 20 has a predetermined volume ratio, based on maintaining a preferred electrolyte concentration, in accordance with the volume ratios of catholyte and anolyte, as described above. Over a period of time of normal operation of the redox flow battery, the volume ratio of the anolyte and the catholyte may become greater than or less than the predetermined volume ratio. For example, as can be seen in the exemplary data ofFIG. 15 , in one mode of operation, a VRB system gains catholyte volume and loses anolyte volume over long-term cycling. - Therefore, in accordance with embodiments of the present disclosure, a volume of catholyte from the
catholyte storage tank 24 to theanolyte storage tank 22, or a volume of anolyte from theanolyte storage tank 22 to thecatholyte storage tank 24, to restore the volume ratio to the predetermined volume ratio. In the exemplary system ofFIG. 15 , excess catholyte generated from the system would need to flow from thecatholyte tank 24 to theanolyte tank 22 to correct the volume imbalance. - Such transfer may be affected by passive electrolyte transfer, active electrolyte transfer, or a combination of passive and active electrolyte transfer, all described in greater detail below.
- In one embodiment of the present disclosure, a passive mechanical arrangement allows for the transfer of electrolyte between the anolyte and catholyte tanks. The transfer may be from
anolyte tank 22 tocatholyte tank 24 or fromcatholyte tank 24 toanolyte tank 22. - In the illustrated embodiment of
FIGS. 1 and 2 , the passive transfer system is a tankelectrolyte transfer conduit 92. Referring to a simplified schematic inFIG. 14 , and theRFB module 20 views inFIGS. 11-13 , theelectrolyte transfer conduit 92 is located at an overflow level in either the catholyte or 22 or 24. As discussed above, a steppedanolyte tank section 90 in each of the anolyte and 22 and 24 provides access for an optionalcatholyte tanks electrolyte transfer conduit 92 to provide fluid communication between theanolyte tank 22 and thecatholyte tank 24 when the tanks are aligned side-by-side. - In this configuration, flow rate of electrolyte between the
22 and 24 is determined based on the level differences. In the illustrated embodiment oftanks FIGS. 12 and 13 , theanolyte tank 22 is sized to have a larger volume than the catholyte tank by having a larger width dimension (see also schematic view inFIG. 14A ). As described above, in alternate embodiments, the depth of the 224 or 324 may be reduced as compared to thecatholyte tank 222 or 322 by increasing the thickness of the bottom wall of the catholyte tank 224 (seeanolyte tank FIG. 14B ) or by partially filling thecatholyte tank 324 with non-reacting materials to reduce some of the tank volume (seeFIG. 14C ). - As described in EXAMPLE 1 above in a VRB system, without a transfer of electrolyte between the anolyte and
22 and 24, catholyte volume increases over time, which affects the capacity of the system over time. Thecatholyte tanks electrolyte transfer conduit 92 located at the overflow level in the illustrated embodiment allows for the flow of catholyte from thecatholyte tank 24 as the catholyte volume increases into the anolyte tank 22 (see exemplary schematic inFIG. 14A ). - In the illustrated embodiment, the
electrolyte transfer conduit 92 penetrates each 22 and 24 slightly below the liquid level to accommodatetank electrolyte transfer conduit 92. To control any leak that may occur at the joints between theconduit 92 and the 22 and 24, thetanks conduit connections 168 with each 22 and 24 in the illustrated embodiment oftank FIGS. 12 and 13 areflanged connections 168 surrounded by a well 172 molded into the 22 and 24 at the steppedtanks section 90. Thewells 172 may include leak sensors to detect any leaks that may occur. In addition, theconduit connections 168 may include other leak prevention devices, such as unions, axial O-ring fittings, etc. - In the illustrated embodiment, the electrolyte level in each of the
22 and 24 may be set so as to allow for the transfer of only liquid electrolyte or of both liquid electrolyte and gas (from the headspaces in the catholyte and anolyte tanks, see e.g., exemplary diagram intanks FIG. 25 ) through theelectrolyte transfer conduit 92. If a transfer of gas from the headspaces in the catholyte and anolyte tanks is provided, theelectrolyte transfer conduit 92 is also a part of thegas management system 94 for the battery, as described in greater detail below. - In one embodiment of the present disclosure, the electrolyte transfer conduit delivers excess catholyte to the
anolyte tank 22 during operation to account for the volumetric increase in the catholyte and return the system to a predetermined volume ratio. - In accordance with other embodiments of the present disclosure, the
22 and 24 need not be manufactured to include a steppedtanks section 90 or may include another configuration to accommodate either an electrolyte transfer conduit or another fluid transfer device between 22 and 24. For example, a suitable electrolyte transfer conduit may be located not at an overflow position, but instead below the liquid level in each of the tanks. In such a configuration, the electrolyte transfer conduit would provide continuous electrolyte exchange between the anolyte and catholyte. The rate of exchange may be determined in part by the length and diameter of the transfer conduit.tanks - In addition to passive electrolyte transfer mechanisms, active electrolyte transfer mechanisms are also discussed below.
- Exemplary test data was sampled during over 1000 continuous charge/discharge cycles, and plotted as a function of the number of cycles on a representative 31.5 kW stack. The test system included a passive overflow electrolyte transfer conduit in accordance with embodiments of the present disclosure. Test data in
FIG. 20 shows the electrolyte transfer conduit achieved substantially uniform catholyte and anolyte volumes, catholyte to anolyte vanadium concentration ratio, and catholyte to anolyte total vanadium ratio for more than 1000 full charge/discharge cycles. Test data inFIG. 21 shows substantially uniform Coulombic efficiency, voltage efficiency, energy efficiency, and energy density for more than 1000 full charge/discharge cycles. - In addition to, or in lieu of the passive transfer system, the
RFB module 20 may include an active transfer system configured for actively transferring electrolyte from one to the other of the catholyte and anolyte tanks Such active transfer may include pumping or otherwise controlling electrolyte tank-to-tank transfer using a valve system. The active transfer may be automatically controlled based on system conditions or manually controlled by an operator. - If a combination of passive and active electrolyte transfer systems is employed, the active system may use the same or a separate electrolyte transfer conduit as the passive system.
- In addition to electrolyte transfer between the anolyte and catholyte tanks, electrolyte capacity can also be adjusted by adding reductive reagents to the positive electrolytes. Suitable reagents may include hydrocarbons, such as fructose. These reductive reagents can be oxidized by the catholyte, releasing carbon dioxide. Such reductive reagents may be added periodically, for example, during scheduled maintenance or automatically by the BMS system during battery operation.
- Fructose added to the catholyte is reduced according to the following formula, consuming hydrogen and generating carbon dioxide and water:
-
C6H12O6+24VO2 ++24H+=24VO2++6CO2↑+18H2O. - As described above, passive capacity management has been shown to maintain stable performance under most conditions for a single battery. However, other operating conditions may occur that require active capacity management, especially on the string and site level.
- In one example, stack variation caused by differences in manufacturing assembly and materials may produce slightly different performance characteristics between each of the four
RFBs 20 in a string 10 (see exemplary string diagrams inFIGS. 2 and 6 ), in some cases leading to different membrane ion transfer capabilities or different levels of side reactions, both of which contribute to performance mismatch in a string of batteries. One mechanism that may be affected by manufacturing differences in stacks can be seen during battery operation in the way ions travel back and forth through the membrane separating positive and negative electrolytes as they form a closed electrical circuit, and in the way water molecules travel through the membrane together with other hydrated ions or by themselves. As a result of stack differences, the volume of the positive and negative electrolytes and the concentrations of active ions in the electrolytes may change at different rates during battery operation. - In another example, stack variations caused by damage (leakage, blockage, etc.) to one or more stack cells may produce slightly different performance characteristics when the stacks are assembled as batteries and strings, and may also cause an imbalance in the predetermined battery tank volume ratio described above. Other reasons for stack variation may include differences in the electrode, stack compression, etc.
- Because there may be performance differences between batteries in a string and all batteries in a string are electrically connected for charge and discharge operations, the worst performing battery determines the performance of the string. Further, because each battery in the string has dedicated electrolyte tanks, lower performing batteries may continue to experience declining performance caused, for example by the by stack variation described above. Declining battery capacity is generally indicative of or may lead to electrolyte stability and capacity problems for the associated string. If left unchecked, these performance variations may result in decreased capacity across a site.
- Exemplary test data showing string declining performance is illustrated below in EXAMPLES 7 and 8.
- In a string of three, series-connected, kW-scale batteries without capacity management adjustments, a steady decline in energy density over 35 cycles can be seen in
FIG. 22 . - In a string of three, series-connected, kW-scale batteries without capacity management adjustments, a steady deviation in open circuit voltage (OCV) at the end of discharge over 35 cycles can be seen in
FIG. 23 . - To manage battery capacity on the string or site level, open circuit voltage (OCV) values can be measured on the cell, stack, and battery level for each RFB in a string. OCV is the difference in electrical potential between two terminals of a device when it is disconnected from the circuit. After measuring, a selected OCV value can be chosen as a baseline for the other batteries in the system. As a non-limiting example, the selected OCV value may be the lowest OCV value in the string. Therefore, in accordance with one embodiment of the present disclosure, the other RFBs in the string can then be adjusted to correspond to the selected OCV value. As another non-limiting example, the selected OCV value may have a predetermined OCV value compared to others in the string.
- In accordance with some embodiments of the present disclosure, adjusting the OCV value for each battery includes transferring a volume of catholyte to the anolyte storage tank or a volume of anolyte to the catholyte storage tank. In another embodiment of the present disclosure, adjusting the OCV value for each battery includes transferring a volume of catholyte from another source outside the battery, such as from another battery, to the anolyte storage tank or a volume of anolyte from another source outside the battery, such as from another battery, to the catholyte storage tank.
- In one embodiment of the present disclosure, active capacity management utilizes positive electrolyte pump pressure, managed by control valves, to transfer electrolyte from the anolyte pump discharge line to the catholyte return line or from the catholyte pump discharge line to the anolyte return line. Such pump may be the same or different from a pump used for actively transferring electrolyte from one to the other of the catholyte and anolyte tanks, as described above. Active measures for capacity management may be controlled by the BMS as dictated by operating conditions. In other embodiments, active transfer can be accomplished manually or semi automatically using external pumps or other common fluid transfer devices.
- Another form of active capacity management is to automatically or manually inject reactants into the electrolyte to cause a chemical rebalancing. In one example, a measured amount of fructose is added to the catholyte, which is reduced according to the following formula:
-
C6H12O6+24VO2 ++24H+=24VO2++6CO2↑+18H2O. - In other embodiments of the present disclosure, other reducing agents may be added to the catholyte, including but not limited to sugars, alcohols, organic acids, oils, hydrocarbons, and any combination thereof. In yet other embodiments of the present disclosure, other oxidizing agents may be added to the anolyte, including but not limited to air, oxygen, hydrogen peroxide, ozone, and any combinations thereof.
- Adjusting OCV may be controlled by the battery management system (BMS) during battery operation or may be performed during maintenance of the redox flow battery.
- In a string of three, series-connected, kW-scale batteries with capacity management adjustments, the energy density decline of about 7% is shown in
FIG. 24 for over 200 cycles. As compared to the energy density decline inFIG. 22 of about 7% over only 35 cycles, matching operation mitigates performance degradation of a battery string. - As discussed above, most RFBs have side reactions, such as hydrogen generation. Hydrogen generation increases the average oxidation state of the electrolytes, which can result in a capacity decrease. In addition, hydrogen gas generation in a closed space can create safety concerns. Further, most RFB negative electrolyte solutions include strong reductants that can be oxidized by oxygen in the air. Such oxidation also increases the average oxidation state of the electrolytes, which can result in a capacity decrease, as discussed below in EXAMPLE 10.
- For chloride-containing redox flow battery systems, a small amount of chlorine gas may be generated. Chlorine gas is a strong oxidant, and therefore, can be rapidly absorbed by the negative electrolyte solutions through surface contact if the chlorine gas is permitted to travel to the headspace of the anolyte, as discussed below with reference to a gas management system.
- The anolyte in a VRB was exposed to air with a solution-air contact surface ratio of 2.6 cm. As seen in
FIG. 27 , the anolyte state of charge decreased rapidly from over 70% to 0% in less than 25 hours. - A gas management system can be employed to manage the gasses generated in a RFB. Although the gas management system described herein is designed for a vanadium redox flow battery, the same gas management system concepts may be applied to other non-vanadium redox flow batteries.
- With reference to the simplified schematic in
FIG. 25 , the components of thegas management system 94 will now be described. As discussed above, catholyte and 22 and 24 are in a substantially sealed system with liquid electrolyte in each tank, and each tank may include a headspace above the respective anolyte and catholyte. In the illustrated embodiment, the headspaces above the anolyte and catholyte have free gas exchange with the respective anolyte and catholyte. In the illustrated embodiment, theanolyte tanks gas management system 94 includes the gas headspaces 66 and 68, a gas transfer device between the catholyte and 22 and 24, such as electrolyte transfer conduit 92 (which also allows for gas transfer), and a gas pressure management system 96 (shown asanolyte tanks U-tube 100, to be described in greater detail below). In one embodiment, as discussed above, the gas transfer device may be a conduit that allows for gas in the respective anolyte and catholyte headspaces to diffuse and exchange with each other. The rate of exchange is determined by the cross-section area, length of the conduit, and gas diffusion rate. - During operation, anolyte and
22 and 24 are filled with electrolyte up to a fill line allowing for a headspace in eachcatholyte tanks 22 and 24, and then sealed. Thetank RFB system 20 is started in operation and the gas compositions of the headspaces start to change as oxidation starts to occur and hydrogen starts to be generated, as seen inFIG. 29 . In one mode of operation, air is present in the respective headspaces of the anolyte and catholyte headspaces during electrolyte filling or other maintenance operations when the tanks are sealed. In another embodiment, the headspaces are purged with nitrogen or another inert gas as part of the sealing process. - As discussed above, the tank system may include a tank
electrolyte transfer conduit 92 located at or below an overflow level in either the anolyte or 22 or 24. Thecatholyte tank electrolyte transfer conduit 92 may allow for the transfer of liquid electrolyte and gas exchange from the headspaces in the anolyte and 22 and 24. If the transfer of gas from the headspaces in the anolyte andcatholyte tanks 22 and 24 is provided in thecatholyte tanks electrolyte transfer conduit 92, then theelectrolyte transfer conduit 92 is also a part of the gas management system for theRFB 20. - In another embodiment, the gas transfer device may be an independent gas transfer device different from the
electrolyte transfer conduit 92. For example, the gas transfer device may be a conduit designed for gas exchange between the anolyte and catholyte headspaces 66 and 68, but not for liquid electrolyte transfer. In another embodiment, the gas transfer device may include one or more conduits which may be independent gas transfer devices or may be combined with an electrolyte transfer conduit. - The gas transfer device (shown as
electrolyte transfer conduit 92 in the illustrated embodiment ofFIG. 25 ) provides a means to equalize the pressure between the anolyte and catholyte tanks, control the flow and exit location of gasses vented by the gas management system, and allows for diffusion of gas between the anolyte and catholyte tanks. - In one embodiment of the present disclosure, for example, a VRB, chlorine gas generated in the
catholyte tank 24 by the following equation diffuses through thegas transfer device 92 and moves to the headspace in theanolyte tank 22. -
Cl2+2V2+=2V3++2Cl− - When in the anolyte headspace over the anolyte surface, the chlorine gas is absorbed by the anolyte as it oxidizes to Cl2O2. The chlorine gas oxidizes quickly, before it has a chance to vent from the
gas management system 94 through the gaspressure management system 96, described below. - As seen in
FIG. 26 , in an anolyte at 35 degrees Celsius having a gas volume to gas-liquid surface ratio of 40 cm, chlorine concentration in the gas phase at 1400 ppm is absorbed to 0 ppm in less than 80 minutes. - In addition to the gas transfer device, the
gas management system 94 may also include one or more gaspressure management systems 96 to maintain a barrier between ambient air and thegas management system 94, control gas pressure in the 66 and 68 of theheadspaces gas management system 94, and allow any necessary bi-directional pressure equalization between ambient air and thegas management system 94. In that regard, the gaspressure management device 96 may allow for the release of excess hydrogen gas generated by the anolyte in theanolyte tank 22. The gaspressure management device 96 may also release carbon dioxide and nitrogen, and any other gases that may build up in thegas management system 94. However, as discussed above, any chlorine gas generated by a system (such as a vanadium redox flow battery containing chloride) tends to be absorbed by the anolyte if the chlorine gas is allowed to migrate from the headspace in thecatholyte tank 24 to the headspace in theanolyte tank 22 throughgas transfer device 92. - Referring to the illustrated embodiment of
FIG. 13 , the pipinginterface 144 of thepump tub assembly 120 may also include athird connector 170 that connects thehead space 66 of theanolyte tank 22 and thehead space 68 of thecatholyte tank 24 through the gas transfer device 92 (see alsoFIG. 14A ). - Referring to
FIG. 25 , in accordance with one embodiment of the present disclosure, the gas pressure control device is a U-shaped tube (U-tube) 100 in fluid communication with theheadspace 66 of theanolyte tank 22. Although shown in fluid communication with theheadspace 66 of theanolyte tank 22, theU-tube 100 could also be suitable configured to be in fluid communication with theheadspace 68 of thecatholyte tank 24. - As illustrated in
FIGS. 2 and 25 , aconnector point 172 provides an access position for the gaspressure management system 96 to thehead space 68 in theanolyte tank 22. However, other suitable connector points are within the scope of the present disclosure. In the illustrated embodiment, theU-tube 100 has aU-shaped body 102 and a firstopen end 104 in fluid communication with the headspace of thegas management system 94 and a secondopen end 106 in fluid communication with an external atmosphere. Thebody 102 contains an amount of liquid 108 that remains in the plumbing trap created by theU-shaped body 102 between the first and second ends. - In the illustrated embodiment, the
U-tube body 102 is a conduit which may have a constant cross-sectional area along the length of the U-tube from thefirst end 104 to thesecond end 106. In another embodiment, theU-tube body 102 may have a different cross-sectional area at the first end, as compared to the second end (seeFIG. 26 ). - The U-tube body may be designed to include baffles or enlarged sections to prevent the loss of liquid as a result of bubbling or a sudden discharge of gas.
- As non-limiting examples, the U-tube may be filled with a liquid selected from the group consisting of water, an alkaline aqueous solution, propylene glycol, ethylene glycol, an aqueous solution of inorganic compound, an aqueous solution of organic compound, a water insoluble organic liquid, and combinations thereof, through which certain gases in the headspaces of the RFB will diffuse. A suitable liquid may be selected depending on the system, operating pressures, and types of gasses being emitted from the
gas management system 94. Other suitable liquids may be selected to provide certain operating characteristics, for example, a desired temperature range or an ability to scrub or eliminate undesired vent gases (such as chlorine) from atmospheric discharge. In some non-limiting examples, theU-tube 100 may include a combination of liquids, for example, an alkaline solution with an oil layer on top. - The
U-tube 100 of the present disclosure allows for bi-directional gas exchange between the gas management system and the atmosphere. In the illustrated embodiment, theU-tube 100 is in fluid communication with the anolyte headspace in theanolyte tank 22 and the atmosphere. In one non-limiting example shown inFIGS. 26A and 26B , theU-tube 100 may include, for example, 15 inches of water. When the pressure inside the anolyte headspace exceeds 15 inches of water, gases such as hydrogen may start to bubble out of the tube into the atmosphere. - The U-tube may be configured to allow entry of an external gas into the gas management system when an exterior battery pressure exceeds an interior battery pressure, for example, greater than or equal to 15 inches water. In the same example, the U-tube will prevent the entry of an external gas into the anolyte storage tank when the exterior battery pressure exceeds the interior battery pressure by less than 15 inches water. In addition, the tank head space may have some flexibility to allow for expansion.
- As seen in
FIGS. 26A and 26B , theU-tube 100 may have a uniform cross-section at the first and second ends. In another embodiment of the present disclosure shown inFIGS. 26C and 26D , a U-tube 200 may have a different cross-sectional area at the first end, as compared to the second end. The effect of a change in cross-sectional area is that the pressure set points for gas entering and leaving the gas management system may be different. For example, the first and second end cross-sectional areas may be sized so that the pressure requirement for gas exiting the gas management system is 15 inches of water, but the pressure requirement for gas entering the gas management system from the atmosphere is only 6 inches of water. - In one embodiment of the present disclosure, the interior battery pressure in the anolyte headspace is between −10 kPa and 10 kPa, −5 kPa to +5 kPa, and −3 kPa to +3 kPa.
- As a non-limiting example, a U-tube 100 may have a length of 24 inches and a uniform diameter at the first and second ends of 2 inches. As another non-limiting example, a U-tube may have a length of 24 inches and a non-uniform diameter at the first and second ends of 1.5 and 2 inches. As described above, such variations may independently change the pressure regulation and the resulting rate of transfer of gases into or out of the gas management system.
- In accordance with other embodiments of the present disclosure, the gas pressure management device may include more than one U-tube device, one or more pressure regulating valves, one or more check vales, or a combination of these or other pressure management devices.
- As discussed above, hydrogen generation can be a concern in RFBs. In that regard, hydrogen in combination with other gases may reach a flammability limit and pose a risk of ignition. The closed gas management system mitigates this risk by keeping constituent gases in tank head spaces below flammability limits as described below in EXAMPLES 12 and 13.
- As seen in
FIG. 29 , hydrogen, oxygen, and nitrogen gas phase composition changes during battery operation. In that regard, hydrogen is generated by side reactions, from 0% to about 60% after 60 hours of operation. Oxygen decreased from about 20% to less than 5% after 60 hours of operation. The oxygen was consumed by a vanadium oxidation reaction. Nitrogen decreased from about 80% to about 35%. - As seen in
FIG. 30 , H. F. Coward and G. W. Jones, Limits of Flammability of Gases and Vapors, Bureau of Mines Bulletin 503 (1952), when the oxygen level in air and carbon dioxide or nitrogen is less than 5%, the gas mixture is not flammable. Because the gas management system is a closed system, no additional oxygen becomes available. - As discussed above, in addition to electrolyte transfer between the anolyte and catholyte tanks, high electrolyte average oxidation state can be recovered by adding reductive reagents to the positive electrolytes. Suitable reagents may include hydrocarbons, such as fructose. These reductive reagents can be oxidized by the catholyte, releasing carbon dioxide. Such reductive reagents may be added periodically, for example, during scheduled maintenance or automatically by the BMS system during battery operation.
- Carbon dioxide generated during this process purges chlorine gas out of the catholyte tank through the gas transfer device to the anolyte tank. As described above, the chlorine gas can then be absorbed in the anolyte. In addition, the generation of carbon dioxide can also purge hydrogen out of the battery system through the gas pressure management device. With reference to EXAMPLE 13 above, the addition of carbon dioxide to the gas management system helps maintain the non-flammable characteristics of the gas management system.
- As seen in
FIG. 31 , energy density and average oxidation state were recovered from about 19.25 Wh/L to over 20 Whr/L after the addition of fructose to the catholyte. - Fructose added to the catholyte is reduced according to the following formula, consuming hydrogen and generating carbon dioxide and water:
-
C6H12O6+24VO2 ++24H+=24VO2++6CO2↑+18H2O. - Therefore, as described above, the substantially closed gas head spaces of the illustrated embodiment can be managed to minimize energy capacity loss over time, and to maintain a non-flammable atmosphere to maximize operating safety.
- Anti-Siphoning Feature
- In addition to providing pressure management and other features previously described, the
gas management system 94 can also be configured to provide an anti-siphoning capability to prevent siphoning of electrolyte from one battery container compartment to another in the event of a leak in theelectrolyte circulation system 40. For example, an anti-siphoning arrangement may be used to prevent electrolyte in the 22 and 24 in theelectrolyte tanks second container compartment 62 shown inFIG. 3B from siphoning into thefirst container compartment 60 that houses the cell stacks e.g., 30, 32, and 34, and other auxiliary and electrical equipment in the event of a pipe rupture in the smaller front container compartment. - In one embodiment, illustrated in
FIG. 7 , and described in detail below, a siphonbreak 180 may be provided without any active measures or valves. T-shapedtubing 186 connects thecatholyte pump discharge 182 to thecatholyte pump return 184, and this connectingtube 186 is also connected to thehead space 188 of thecatholyte tank 24. When electrolyte is being circulated, a certain amount of electrolyte continuously returns directly to thecatholyte tank 24 through thetubing 186. When pumping stops, thetubing 186 connection to thehead space 188 provides a siphon break. - In another embodiment, illustrated in
FIG. 34 , a siphon break includes an anti-siphon conduit connecting a high point in the electrolyte circulation system with the head space of one of the first and second containers or 22 and 24. The high point should be higher than the liquid level in theelectrolyte tanks 22 and 24, but need not be the highest point in the system.electrolyte tanks - The siphon break includes a first
anti-siphon conduit 196 connecting thefirst container 24discharge conduit 182 with the firstcontainer head space 190 and a secondanti-siphon conduit 198 connecting the firstcontainer return conduit 184 with the firstcontainer head space 190. Likewise, the same arrangement can be installed on the anolyte tank 22 (not shown inFIG. 34 ). In the illustrated embodiment, the siphon break does not include a valve. - The
tubing 196 can be sized to a length and diameter to minimize pumping losses while allowing a siphon break to occur in an acceptable amount of time. In one non-limiting example, thetubing 196 may have an inside diameter of 4 mm and a length of 3.8 meters to provide a siphon break within 1 minute while minimizing pumping losses. - The fluidic connection may be tubing, piping, or some other suitable conduit that is sized in diameter and length to minimize pumping losses while proving passive anti-siphon action when pumping stops. Although active systems are within the scope of the present disclosure, advantages of a passive arrangement include the following: no active control is required; the
tubing 186 are constantly flushed to maintain operability; the system is passive, and reliability is increased. - Alternate anti-siphoning embodiments that may be used to prevent siphoning of electrolyte from one container compartment to another include a non-limiting arrangement of one or more passive or active devices such as check valves, float valves, degassing valves, or activated valves.
- Evolving demands and applications for large-scale energy storage systems drive the requirement for energy dense packaging that provides site flexibility and ease of installation. Many RFB systems have relatively low system level energy density, due in part to the combination of their methods of system packaging, for example the use of traditional external tanks, or multiple containers that house the tanks separately from the balance of plant (BOP). Other limitations of traditional system energy density may be due to the inherent chemistry of the electrolyte, limited space availability for subsystems that manage shunt current losses, gasses, electrolyte utilization, or a combination of factors.
- In accordance with aspects of the present disclosure, the tanks, the container, and the remaining balance of plant system, such as those described above, can be configured as a self-contained, substantially closed VRB unit that provides maximum energy storage capacity per unit size of the container, while maintaining safe and reliable operating criteria. As such,
RFB module 20 shown inFIGS. 1 and 2 constructed in accordance with embodiments of the present disclosure can be configured to have an energy density of 10 watt hours per liter of electrolyte (Wh/L) or greater for an RFB battery that has an energy capacity of at least 2 kW-hours. - The
RFB module 20 in embodiments of the present disclosure also may be designed to operate continuously while maintaining designed energy density for a minimum of 50 or a minimum of 100 continuous full charge/discharge cycles or the equivalent operating hours without interruption by service or user input. - As discussed above the
RFB module 20 described herein, as can be seen inFIGS. 1 and 2 , is designed to be contained in ahousing 50 having specific dimensions, for example as an ISO shipping container having a length A, width B, and height C. Space usage for the various components in the system can be optimized to maximize the amount of electrolyte that can be filled into thehousing 50. As will be described in more detail below, configuration of the battery, battery sub-systems, or components themselves as well as the synergistic combinations of these elements allow theRFB 20 to achieve the specified energy density, both initially and continuously over a period of time. - As described above, electrolyte tanks can be manufactured to fit in the available space provided in a containerized and space-optimized RFB system. In that regard, the side-by-side design of the anolyte and
22 and 24 allows for maximization of the total electrolyte in thecatholyte tanks RFB 20, extending from bulkhead to rear wall. - The
housing 50 is designed as structural support to facilitate the use of previously described flexible electrolyte tanks for space efficiency. In that regard, according to the present embodiment, the 22 and 24 are designed to fit closely within thetanks housing 50, further reducing required tank wall thickness and inherent tank structural requirements, and maximizing tank volume for electrolyte containment in theRFB 20. Further, the housing is fully welded to provide compact secondary containment for the electrolyte in the event of a leak, further reducing tank thickness and maximizing tank volume. - In addition to the
housing 50 design, other optional components in the RFB system are designed and arranged for enhanced use of space. Such components may be used individually in specific modules or together in concert. For example, the pump tub assembly conserves BOP space in the front of the battery container, while maximizing electrolyte tank height, fill level, and volume available for electrolyte. In addition to space utilization, the pump tub assembly also helps to minimize leak hazards in the battery module. In addition, as part of the electrolyte circulation system previously described, the looped fluid conduits 88 (seeFIGS. 1 and 2 provide for a compact shunt current mitigation system that maximizes fluid travel path length (component of current flow resistance), minimizes pumping losses, and improves battery overall efficiency in a small amount of space. Once again, this allows for more available tank space to contain electrolyte. - To further optimize space efficiency, the designed anolyte and catholyte tank volume ratio, such as a non-uniform tank volume ratio, can help maximum energy derived from a total electrolyte amount in both the anolyte and the catholyte.
- In addition to space utilization features, one or more operational passive or active management features can be employed to improve the operational efficiency of the RFB module and to also extend the continuous operational period of the RFB module without shutdown.
- As noted above, in addition to maximizing the amount of electrolyte contained in the system to maximize energy density, the RFB system is also designed to maintain such energy density over a certain number of cycles, for example, 100 full charge/discharge cycles. To help maintain system capacity, one or more adjustments can be made to the electrolyte during operation of the battery. For example, as the catholyte and anolyte volumes deviate from a predetermined volume, the system can be designed for a constant or periodic transfer of electrolyte from the catholyte to the anolyte (or anolyte to catholyte) to maintain predetermined tank electrolyte volumes, whether by active or passive electrolyte transfer methods. Moreover, individual batteries can automatically be periodically adjusted to conform to a selected OCV value in a string to improve long-term performance.
- In addition, an optional gas management system can be employed to remove or minimize reactions that decrease performance over time and mitigate the effects of evolved gases from the electrolyte. Such gases, if left unchecked, could be harmful to the system, create a safety hazard, or require environmental emissions monitoring, particularly chlorine and excess hydrogen gas that may be generated in a RFB.
- Electrolyte Composition
- In addition to space management for maximizing the amount of electrolyte contained in the system to maximize energy density, the electrolyte itself may be formulated to enhance the energy storage capacity of the RFB. In accordance with embodiments of the present disclosure, in a vanadium redox flow battery, vanadium concentration is selected from the group consisting of higher than 1.5M, higher than 1.8M, and higher than 2.0M.
- While embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the disclosure.
Claims (27)
1. A redox flow battery (RFB) controllable by a battery management system and having an energy output, comprising:
at least one anolyte tank and at least one catholyte tank;
at least one stack comprising electrochemical cells;
at least one anolyte circulating system;
at least one catholyte circulating system;
at least one crossover pipe that fluidically connects the at least one catholyte tank and the at least one anolyte tank for electrolyte exchange; and
one or more contiguous containers configured to house the at least one anolyte tank, the at least one catholyte tank, the at least one stack, the at least one anolyte circulating system, and the at least one catholyte circulating system in a substantially enclosed manner, wherein the one or more containers has a volume of at least 2000 liters and wherein the RFB operated by the battery management system has an energy density of at least 10 w-h/liter.
2. The redox flow battery (RFB) of claim 1 , wherein the interior space of the container is divided into at least a first compartment that houses the at least one anolyte tank and the at least one catholyte tank and a second compartment that houses the at least one stack.
3. The redox flow battery (RFB) of claim 1 , wherein the interior space of the container is divided into at least a first compartment that houses the at least one anolyte tank, a second compartment that houses the at least one catholyte tank, and a third compartment that houses the at least one stack.
4. The redox flow battery (RFB) of claim 1 , wherein the volume contained in the at least one catholyte tank and the volume contained in the at least one anolyte tank have a pre-determined ratio of anolyte to catholyte or catholyte to anolyte in the range of about 1:1.05 to about 1:1.50.
5. The redox flow battery (RFB) of claim 2 , wherein the container includes a bulkhead that divides the interior space into the first compartment and the second compartment.
6. The redox flow battery (RFB) of claim 5 , wherein the bulkhead is structural or non-structural.
7. The redox flow battery (RFB) of claim 5 , wherein the container is generally rectangular in shape, defining a bottom wall, lengthwise side walls, widthwise end walls, and a top wall, and wherein the bulkhead is coupled between the lengthwise side walls and extends upwardly from the bottom wall a majority of the height of the container.
8. The redox flow battery (RFB) of claim 8 , wherein the at least one anolyte tank and the at least one catholyte tank are configured to extend between the bulkhead and a first end wall that define the first compartment so as to be adjacent or abut against the bulkhead and the end wall.
9. The redox flow battery (RFB) of claim 8 , wherein the area defined by lengthwise sidewalls and widthwise side walls of the at least one anolyte tank or the at least one catholyte tank fills at least 85% of the area defined by the first compartment or the second compartment.
10. The redox flow battery (RFB) of claim 8 , wherein the bottom wall and the lengthwise side walls of the container are configured to support the at least one anolyte tank and the at least one catholyte tank when filled with electrolyte.
11. The redox flow battery (RFB) of claim 2 , wherein the first compartment is configured to provide secondary containment of electrolyte so as to isolate the electrolyte from the second compartment.
12. The redox flow battery (RFB) of claim 7 , wherein the container has a length in the range of 10-53 feet and a height in the range of 7-10 feet.
13. The redox flow battery (RFB) of claim 7 , wherein the container complies with or is similarly configured like a 20-53 ft ISO shipping container having a height of either 8 or 9.5 feet.
14. The redox flow battery (RFB) of claim 8 , wherein each of the at least anolyte tank and the at least one catholyte tank includes a pump tub assembly sealably mounted into the top wall and/or a side wall of at least one tank.
15. The redox flow battery (RFB) of claim 14 , wherein each pump tub assembly includes a tub mounted into the top wall and/or a side wall and having a bottom wall positioned below an electrolyte level in the at least one tank and an interface into the at least one tank below the top wall level of the at least one tank.
16. The redox flow battery (RFB) of claim 15 , wherein the interface is a discharge interface configured for coupling with a discharge pipe of the respective circulating system.
17. The redox flow battery (RFB) of claim 15 , wherein the interface is a return interface configured for coupling with a return pipe of the respective circulating system.
18. The redox flow battery (RFB) of claim 15 , wherein each pump tub assembly further includes a pump connected in fluid communication with the discharge interface and with the electrolyte stored in the respective tank.
19. The redox flow battery (RFB) of claim 14 , wherein each pump tub assembly further includes a headspace interface coupled in fluid communication with a head space of the respective tank.
20. The redox flow battery (RFB) of claim 1 , further comprising one or more shunt current mitigating coiled manifolds.
21. The redox flow battery (RFB) of claim 1 , wherein the anolyte tank has a volume and wherein the catholyte has a volume, the ratio of the volume of the anolyte tank to the volume of the catholyte tank being in the range of 1.05:1 to about 1.5:1.
22. The redox flow battery (RFB) of claim 1 , where the container is a 20 foot ISO shipping container and wherein the container includes a total electrolyte volume of at least 20 meters3.
23. A redox flow battery (RFB) controllable by a battery management system and having an energy output, comprising:
at least one anolyte tank and at least one catholyte tank;
at least one stack comprising electrochemical cells;
at least one anolyte circulating system;
at least one catholyte circulating system;
at least one crossover pipe that fluidically connects the at least one catholyte tank and the at least one anolyte tank for electrolyte exchange; and
one or more contiguous containers configured to house the at least one anolyte tank, the at least one catholyte tank, the at least one stack, the at least one anolyte circulating system, and the at least one catholyte circulating system in a substantially enclosed manner, wherein the one or more containers has a volume of at least 2000 liters and wherein the RFB operated by the battery management system has an energy density of at least 10 w-h/liter and wherein the RFB maintains at an energy density of at least 10 w-h/liter for a minimum of 50 continuous full charge/discharge cycles or the equivalent number of operating hours without user input.
24. The redox flow battery (RFB) of claim 23 , further comprising passive electrolyte transfer and/or gas exchange.
25. The redox flow battery (RFB) of claim 23 , further comprising active electrolyte transfer and/or gas exchange.
26. The redox flow battery (RFB) of claim 23 , further comprising automatic addition of reductant.
27. The redox flow battery (RFB) of claim 23 , further comprising a gas management system comprising a bi-directional pressure management assembly and conduits that provide gas communication between the anolyte and catholyte tanks.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/793,712 US20160006051A1 (en) | 2014-07-07 | 2015-07-07 | System energy density in a redox flow battery |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462021650P | 2014-07-07 | 2014-07-07 | |
| US14/793,712 US20160006051A1 (en) | 2014-07-07 | 2015-07-07 | System energy density in a redox flow battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160006051A1 true US20160006051A1 (en) | 2016-01-07 |
Family
ID=55017652
Family Applications (7)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/793,712 Abandoned US20160006051A1 (en) | 2014-07-07 | 2015-07-07 | System energy density in a redox flow battery |
| US14/793,711 Abandoned US20160006054A1 (en) | 2014-07-07 | 2015-07-07 | Single capacity balancing in a redox flow battery |
| US14/793,719 Abandoned US20160006058A1 (en) | 2014-07-07 | 2015-07-07 | Siphon break for redox flow battery |
| US14/793,715 Abandoned US20160006055A1 (en) | 2014-07-07 | 2015-07-07 | Pump tub assembly for redox flow battery |
| US14/793,705 Active US9722264B2 (en) | 2014-07-07 | 2015-07-07 | Gas management systems and methods in a redox flow battery |
| US14/793,697 Active 2037-04-13 US10333159B2 (en) | 2014-07-07 | 2015-07-07 | Charge capacity management in redox flow battery string |
| US15/664,912 Active US9941527B2 (en) | 2014-07-07 | 2017-07-31 | Gas management systems and methods in a redox flow battery |
Family Applications After (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/793,711 Abandoned US20160006054A1 (en) | 2014-07-07 | 2015-07-07 | Single capacity balancing in a redox flow battery |
| US14/793,719 Abandoned US20160006058A1 (en) | 2014-07-07 | 2015-07-07 | Siphon break for redox flow battery |
| US14/793,715 Abandoned US20160006055A1 (en) | 2014-07-07 | 2015-07-07 | Pump tub assembly for redox flow battery |
| US14/793,705 Active US9722264B2 (en) | 2014-07-07 | 2015-07-07 | Gas management systems and methods in a redox flow battery |
| US14/793,697 Active 2037-04-13 US10333159B2 (en) | 2014-07-07 | 2015-07-07 | Charge capacity management in redox flow battery string |
| US15/664,912 Active US9941527B2 (en) | 2014-07-07 | 2017-07-31 | Gas management systems and methods in a redox flow battery |
Country Status (2)
| Country | Link |
|---|---|
| US (7) | US20160006051A1 (en) |
| WO (1) | WO2016007555A1 (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180040852A (en) * | 2016-10-13 | 2018-04-23 | 주식회사 엘지화학 | Electrolyte reservoir for redox flow batteries and vanadium redox flow batteries comprising the same |
| US20180175438A1 (en) * | 2016-12-19 | 2018-06-21 | Vionx Energy Corporation | Large scale flow battery system |
| FR3064115A1 (en) * | 2017-03-20 | 2018-09-21 | Areva Stockage D'energie | TRANSPORTABLE CIRCULATION BATTERY SYSTEM AND METHOD OF INSTALLING SUCH A SYSTEM |
| WO2018183301A1 (en) * | 2017-03-27 | 2018-10-04 | Danzi Angelo | An advanced electrolyte mixing method for all vanadium flow batteries |
| WO2019106721A1 (en) * | 2017-11-28 | 2019-06-06 | 住友電気工業株式会社 | Redox flow battery |
| WO2019106722A1 (en) * | 2017-11-28 | 2019-06-06 | 住友電気工業株式会社 | Redox flow battery |
| CN110036517A (en) * | 2017-11-06 | 2019-07-19 | 住友电气工业株式会社 | redox flow battery |
| CN110073533A (en) * | 2017-11-22 | 2019-07-30 | 住友电气工业株式会社 | Redox flow batteries |
| US20190237780A1 (en) * | 2017-11-28 | 2019-08-01 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| CN110959210A (en) * | 2017-03-27 | 2020-04-03 | 斯托伦技术公司 | Novel leakage seal embodiments for electrochemical stacks |
| IT201900002301A1 (en) * | 2019-02-18 | 2020-08-18 | Univ Degli Studi Padova | SAFETY EQUIPMENT FOR MILLIBARIAL PRESSURE CONTROL IN INERT ATMOSPHERE FOR HIGH REACTIVITY LIQUID SOLUTIONS, AND FLOW TANK AND BATTERY INCLUDING THIS SAFETY EQUIPMENT |
| JPWO2019087366A1 (en) * | 2017-11-02 | 2020-09-24 | 住友電気工業株式会社 | Redox flow battery |
| US11189854B2 (en) | 2019-05-20 | 2021-11-30 | Creek Channel Inc. | Methods and systems for determining average oxidation state of redox flow battery systems using the open circuit voltage |
| IT202000016600A1 (en) * | 2020-07-09 | 2022-01-09 | Univ Degli Studi Padova | STATUS OF CHARGE MANAGEMENT METHOD FOR REDOX FLOW BATTERIES AND REDOX FLOW BATTERIES |
| US11522209B2 (en) * | 2016-04-21 | 2022-12-06 | Sumitomo Electric Industries, Ltd. | Container-type battery |
| US11710844B2 (en) | 2020-11-16 | 2023-07-25 | Cougar Creek Technologies, Llc | Fe-Cr redox flow battery systems and methods utilizing chromium complexes with nitrogen-containing ligands |
| WO2025126585A1 (en) * | 2023-12-15 | 2025-06-19 | 住友電気工業株式会社 | Redox flow battery system |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102069832B1 (en) * | 2016-03-10 | 2020-01-23 | 주식회사 엘지화학 | Electrolyte reservoir for vanadium redox flow batteries and vanadium redox flow batteries comprising the same |
| EP3249731A1 (en) | 2016-05-24 | 2017-11-29 | Siemens Aktiengesellschaft | Subsea uninterruptible power supply |
| CN106099152B (en) * | 2016-08-31 | 2018-08-03 | 江苏新韩通船舶重工有限公司 | A kind of vanadium cell peculiar to vessel of high sealing anti-leak |
| KR101934570B1 (en) * | 2016-09-29 | 2019-01-02 | 롯데케미칼 주식회사 | Redox flow battery |
| KR101862369B1 (en) * | 2016-10-19 | 2018-05-29 | 롯데케미칼 주식회사 | Redox flow battery |
| US10135087B2 (en) * | 2016-12-09 | 2018-11-20 | Unienergy Technologies, Llc | Matching state of charge in a string |
| EP3358646B1 (en) | 2017-02-03 | 2024-07-03 | Schneider Electric IT Corporation | Systems and methods of comissioning energy storage systems (ess) |
| US11296347B2 (en) | 2017-04-28 | 2022-04-05 | Ess Tech, Inc. | Flow battery cleansing cycle to maintain electrolyte health and system performance |
| JP7121044B2 (en) * | 2017-04-28 | 2022-08-17 | イーエスエス テック インコーポレーテッド | Integrated hydrogen recycling system using pressurized multi-chamber tanks |
| EP3593394A4 (en) | 2017-04-28 | 2021-02-17 | ESS Tech, Inc. | Methods and systems for rebalancing electrolytes for a redox flow battery system |
| EP3616249A4 (en) | 2017-04-28 | 2021-01-20 | ESS Tech, Inc. | Methods and system for a battery |
| WO2018201081A1 (en) | 2017-04-28 | 2018-11-01 | Ess Tech, Inc. | Methods and systems for redox flow battery electrolyte hydration |
| CN110574199B (en) | 2017-04-28 | 2024-04-19 | Ess技术有限公司 | System and method for operating redox flow battery |
| KR20190019703A (en) * | 2017-08-18 | 2019-02-27 | 롯데케미칼 주식회사 | Redox flow battery |
| CN109856550B (en) * | 2017-11-29 | 2021-04-16 | 上海电气集团股份有限公司 | Method and system for estimating SOC of flow battery |
| CA3084672A1 (en) | 2017-12-19 | 2019-06-27 | Unienergy Technologies, Llc | Flow battery system |
| KR102057018B1 (en) * | 2018-02-28 | 2020-01-22 | 주식회사 에이치투 | Container type enclosure for redox flow battery module |
| GB2571558B (en) | 2018-03-01 | 2023-01-04 | Invinity Energy Systems Ireland Ltd | Means for maintaining desired liquid level between inter-connected tanks |
| GB2578611A (en) * | 2018-10-31 | 2020-05-20 | Redt Ltd Dublin Ireland | Pressure regulator |
| CN118943442A (en) | 2019-12-09 | 2024-11-12 | 标能有限公司 | Sealed redox battery |
| JP7717503B2 (en) * | 2021-06-17 | 2025-08-04 | 三菱重工業株式会社 | Redox flow battery |
| KR102539928B1 (en) | 2022-06-28 | 2023-06-05 | 스탠다드에너지(주) | Battery |
| EP4401173A1 (en) | 2023-01-16 | 2024-07-17 | Liva Power Management Systems GmbH | Stack rack system |
| WO2025198534A1 (en) * | 2024-03-21 | 2025-09-25 | VFlowtech Pte Ltd. | System and method for reinstating the valance of electrolyte in vanadium redox flow batteries |
| CN119725653A (en) * | 2024-12-12 | 2025-03-28 | 大连海事大学 | A bromine-chromium liquid flow battery system |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6080500A (en) * | 1997-09-25 | 2000-06-27 | Sanyo Electric Co. Ltd. | Movable fuel cell apparatus |
| US6261714B1 (en) * | 1998-05-06 | 2001-07-17 | Zbb Technologies, Inc. | Spill and leak containment system for zinc-bromine battery |
| US6764789B1 (en) * | 1999-09-27 | 2004-07-20 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| US20080220318A1 (en) * | 2007-03-09 | 2008-09-11 | Vrb Power Systems Inc. | Inherently safe redox flow battery storage system |
| US20080292964A1 (en) * | 2005-06-20 | 2008-11-27 | George Christopher Kazacos | Perfluorinated Membranes and Improved Electrolytes for Redox Cells and Batteries |
| US20110300417A1 (en) * | 2009-10-29 | 2011-12-08 | Liufeng Mou | Redox flow battery and method for operating the battery continuously in a long period of time |
| US20120295172A1 (en) * | 2010-01-25 | 2012-11-22 | Emanuel Peled | Electrochemical systems and methods of operating same |
| US20160031533A1 (en) * | 2014-07-22 | 2016-02-04 | Alphonse Robles | FR1 Lite Sport Pedal Fishing Boat |
| US20160315339A1 (en) * | 2013-12-23 | 2016-10-27 | United Technologies Corporation | Distribution of electrolytes in a flow battery |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3664929A (en) * | 1968-08-09 | 1972-05-23 | Cominco Ltd | Electrothermally concentrating an aqueous electrolyte |
| US4027821A (en) * | 1975-07-18 | 1977-06-07 | International Telephone And Telegraph Corporation | Solar heating/cooling system |
| US4237862A (en) * | 1978-03-27 | 1980-12-09 | Helios Corporation | Closed pressurized solar heating system with automatic solar collector drain-down |
| US4339321A (en) * | 1980-12-08 | 1982-07-13 | Olin Corporation | Method and apparatus of injecting replenished electrolyte fluid into an electrolytic cell |
| US4857158A (en) * | 1988-06-17 | 1989-08-15 | Olin Corporation | Sodium hydrosulfite electrolytic cell process control system |
| JP2003303611A (en) | 2002-04-10 | 2003-10-24 | Sumitomo Electric Ind Ltd | How to operate a redox flow battery |
| WO2005028372A2 (en) * | 2003-06-10 | 2005-03-31 | The C & M Group, Llc | Apparatus and process for mediated electrochemical oxidation of materials |
| US8277964B2 (en) * | 2004-01-15 | 2012-10-02 | Jd Holding Inc. | System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system |
| US8587255B2 (en) | 2009-05-28 | 2013-11-19 | Deeya Energy, Inc. | Control system for a flow cell battery |
| US8628880B2 (en) * | 2010-09-28 | 2014-01-14 | Battelle Memorial Institute | Redox flow batteries based on supporting solutions containing chloride |
| US8709629B2 (en) * | 2010-12-22 | 2014-04-29 | Jd Holding Inc. | Systems and methods for redox flow battery scalable modular reactant storage |
| JP5007849B1 (en) * | 2011-03-25 | 2012-08-22 | 住友電気工業株式会社 | Redox flow battery and operation method thereof |
| US9853454B2 (en) | 2011-12-20 | 2017-12-26 | Jd Holding Inc. | Vanadium redox battery energy storage system |
| US20130316199A1 (en) * | 2012-05-25 | 2013-11-28 | Deeya Energy, Inc. | Electrochemical balance in a vanadium flow battery |
| EP2888774A4 (en) | 2012-08-23 | 2016-11-02 | Enervault Corp | ELECTROLYTE PRESSURE BALANCING IN REDOX FLOW BATTERIES |
-
2015
- 2015-07-07 US US14/793,712 patent/US20160006051A1/en not_active Abandoned
- 2015-07-07 US US14/793,711 patent/US20160006054A1/en not_active Abandoned
- 2015-07-07 US US14/793,719 patent/US20160006058A1/en not_active Abandoned
- 2015-07-07 US US14/793,715 patent/US20160006055A1/en not_active Abandoned
- 2015-07-07 US US14/793,705 patent/US9722264B2/en active Active
- 2015-07-07 WO PCT/US2015/039445 patent/WO2016007555A1/en not_active Ceased
- 2015-07-07 US US14/793,697 patent/US10333159B2/en active Active
-
2017
- 2017-07-31 US US15/664,912 patent/US9941527B2/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6080500A (en) * | 1997-09-25 | 2000-06-27 | Sanyo Electric Co. Ltd. | Movable fuel cell apparatus |
| US6261714B1 (en) * | 1998-05-06 | 2001-07-17 | Zbb Technologies, Inc. | Spill and leak containment system for zinc-bromine battery |
| US6764789B1 (en) * | 1999-09-27 | 2004-07-20 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| US20080292964A1 (en) * | 2005-06-20 | 2008-11-27 | George Christopher Kazacos | Perfluorinated Membranes and Improved Electrolytes for Redox Cells and Batteries |
| US20080220318A1 (en) * | 2007-03-09 | 2008-09-11 | Vrb Power Systems Inc. | Inherently safe redox flow battery storage system |
| US20110300417A1 (en) * | 2009-10-29 | 2011-12-08 | Liufeng Mou | Redox flow battery and method for operating the battery continuously in a long period of time |
| US20120295172A1 (en) * | 2010-01-25 | 2012-11-22 | Emanuel Peled | Electrochemical systems and methods of operating same |
| US20160315339A1 (en) * | 2013-12-23 | 2016-10-27 | United Technologies Corporation | Distribution of electrolytes in a flow battery |
| US20160031533A1 (en) * | 2014-07-22 | 2016-02-04 | Alphonse Robles | FR1 Lite Sport Pedal Fishing Boat |
Non-Patent Citations (1)
| Title |
|---|
| Weber et al. "Redox flow batteries: a review." J Appl Electrochem (2011) 41:1137-1164, available Sept 2011 * |
Cited By (65)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11522209B2 (en) * | 2016-04-21 | 2022-12-06 | Sumitomo Electric Industries, Ltd. | Container-type battery |
| EP3419095A4 (en) * | 2016-10-13 | 2019-06-12 | LG Chem, Ltd. | ELECTROLYTE STORAGE UNIT FOR REDOX FLOW BATTERY AND VANADIUM REDOX FLOW BATTERY COMPRISING THE SAME |
| US10763532B2 (en) | 2016-10-13 | 2020-09-01 | Lg Chem, Ltd. | Electrolyte storage unit for redox flow battery and vanadium redox flow battery comprising same |
| KR20180040852A (en) * | 2016-10-13 | 2018-04-23 | 주식회사 엘지화학 | Electrolyte reservoir for redox flow batteries and vanadium redox flow batteries comprising the same |
| KR102081768B1 (en) | 2016-10-13 | 2020-04-23 | 주식회사 엘지화학 | Electrolyte reservoir for redox flow batteries and vanadium redox flow batteries comprising the same |
| CN109075368A (en) * | 2016-10-13 | 2018-12-21 | 株式会社Lg化学 | Electrolyte storage cell for redox flow battery and vanadium redox flow battery comprising same |
| JP2019508857A (en) * | 2016-10-13 | 2019-03-28 | エルジー・ケム・リミテッド | Electrolyte reservoir for redox flow battery and vanadium redox flow battery including the same |
| CN110447137A (en) * | 2016-12-19 | 2019-11-12 | 维安思能源公司 | Modularization and expansible flow battery system |
| AU2017378873B2 (en) * | 2016-12-19 | 2024-01-11 | Largo Clean Energy Corp. | Large scale flow battery system |
| EP3555945A4 (en) * | 2016-12-19 | 2020-10-07 | VionX Energy Corporation | Modular and scalable flow battery system |
| US11637307B2 (en) | 2016-12-19 | 2023-04-25 | Largo Clean Energy Corp. | Modular and scalable flow battery system |
| JP7213191B2 (en) | 2016-12-19 | 2023-01-26 | ラーゴ クリーン エナジー コープ | Modular and scalable flow battery system |
| RU2756839C2 (en) * | 2016-12-19 | 2021-10-06 | Ларго Клин Энерджи Корп. | Modular and scalable flow battery system |
| AU2017378876B2 (en) * | 2016-12-19 | 2024-01-25 | Largo Clean Energy Corp. | Systems and methods for electrolyte storage and detecting faults in flow batteries |
| US20180175438A1 (en) * | 2016-12-19 | 2018-06-21 | Vionx Energy Corporation | Large scale flow battery system |
| CN110447119A (en) * | 2016-12-19 | 2019-11-12 | 维安思能源公司 | System and method for the failure in electrolyte storage and detection flow battery |
| US10886553B2 (en) * | 2016-12-19 | 2021-01-05 | Vionx Energy Corporation | Large scale flow battery system |
| CN110447138A (en) * | 2016-12-19 | 2019-11-12 | 维安思能源公司 | Extensive flow battery system |
| EP3555936A4 (en) * | 2016-12-19 | 2020-09-30 | VionX Energy Corporation | Systems and methods for electrolyte storage and detecting faults in flow batteries |
| JP2020502773A (en) * | 2016-12-19 | 2020-01-23 | ヴィオンエックス エナジー コーポレイション | Modular, scalable flow battery system |
| US11165086B2 (en) | 2016-12-19 | 2021-11-02 | Largo Clean Energy Corp. | Modular and scalable flow battery system |
| FR3064115A1 (en) * | 2017-03-20 | 2018-09-21 | Areva Stockage D'energie | TRANSPORTABLE CIRCULATION BATTERY SYSTEM AND METHOD OF INSTALLING SUCH A SYSTEM |
| US11362347B2 (en) * | 2017-03-27 | 2022-06-14 | Angelo D'Anzi | Advanced electrolyte mixing method for all vanadium flow batteries |
| WO2018183301A1 (en) * | 2017-03-27 | 2018-10-04 | Danzi Angelo | An advanced electrolyte mixing method for all vanadium flow batteries |
| CN110959210A (en) * | 2017-03-27 | 2020-04-03 | 斯托伦技术公司 | Novel leakage seal embodiments for electrochemical stacks |
| CN110679023A (en) * | 2017-03-27 | 2020-01-10 | 斯托伦技术公司 | Advanced electrolyte mixing method for all vanadium flow batteries |
| EP3602665A4 (en) * | 2017-03-27 | 2021-01-13 | D'Anzi, Angelo | INNOVATIVE SYSTEM FOR CONTAINING LEAKS FOR ELECTROCHEMICAL STACKS |
| JPWO2019087366A1 (en) * | 2017-11-02 | 2020-09-24 | 住友電気工業株式会社 | Redox flow battery |
| US10950879B2 (en) | 2017-11-02 | 2021-03-16 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| EP3706222A4 (en) * | 2017-11-02 | 2020-11-18 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| KR20200084957A (en) * | 2017-11-06 | 2020-07-14 | 스미토모덴키고교가부시키가이샤 | Redox flow battery |
| KR102393561B1 (en) * | 2017-11-06 | 2022-05-04 | 스미토모덴키고교가부시키가이샤 | redox flow battery |
| US20190237793A1 (en) * | 2017-11-06 | 2019-08-01 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| CN110036517A (en) * | 2017-11-06 | 2019-07-19 | 住友电气工业株式会社 | redox flow battery |
| KR102404500B1 (en) * | 2017-11-22 | 2022-06-07 | 스미토모덴키고교가부시키가이샤 | redox flow battery |
| CN110073533A (en) * | 2017-11-22 | 2019-07-30 | 住友电气工业株式会社 | Redox flow batteries |
| EP3716383A4 (en) * | 2017-11-22 | 2020-12-09 | Sumitomo Electric Industries, Ltd. | REDOX FLOW BATTERY |
| US10903510B2 (en) * | 2017-11-22 | 2021-01-26 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| US20190237782A1 (en) * | 2017-11-22 | 2019-08-01 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| KR20200086758A (en) * | 2017-11-22 | 2020-07-20 | 스미토모덴키고교가부시키가이샤 | Redox flow battery |
| CN110100342A (en) * | 2017-11-28 | 2019-08-06 | 住友电气工业株式会社 | redox flow battery |
| US20210328242A1 (en) * | 2017-11-28 | 2021-10-21 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| JPWO2019106723A1 (en) * | 2017-11-28 | 2020-10-08 | 住友電気工業株式会社 | Redox flow battery |
| JPWO2019106721A1 (en) * | 2017-11-28 | 2020-10-08 | 住友電気工業株式会社 | Redox flow battery |
| TWI788429B (en) * | 2017-11-28 | 2023-01-01 | 日商住友電氣工業股份有限公司 | redox flow battery |
| WO2019106721A1 (en) * | 2017-11-28 | 2019-06-06 | 住友電気工業株式会社 | Redox flow battery |
| JPWO2019106722A1 (en) * | 2017-11-28 | 2020-10-01 | 住友電気工業株式会社 | Redox flow battery |
| US20190237780A1 (en) * | 2017-11-28 | 2019-08-01 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| WO2019106722A1 (en) * | 2017-11-28 | 2019-06-06 | 住友電気工業株式会社 | Redox flow battery |
| US11081708B2 (en) * | 2017-11-28 | 2021-08-03 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
| IT201900002301A1 (en) * | 2019-02-18 | 2020-08-18 | Univ Degli Studi Padova | SAFETY EQUIPMENT FOR MILLIBARIAL PRESSURE CONTROL IN INERT ATMOSPHERE FOR HIGH REACTIVITY LIQUID SOLUTIONS, AND FLOW TANK AND BATTERY INCLUDING THIS SAFETY EQUIPMENT |
| WO2020170125A3 (en) * | 2019-02-18 | 2020-09-24 | Universita' Degli Studi Di Padova | Safety apparatus for millibaric pressure control in inert atmosphere for high reactivity liquid solution, and tank and flow battery comprising such safety apparatus |
| US11233263B2 (en) | 2019-05-20 | 2022-01-25 | Creek Channel Inc. | Redox flow battery systems and methods of manufacture and operation and reduction of metallic impurities |
| US11201345B2 (en) * | 2019-05-20 | 2021-12-14 | Creek Channel Inc. | Fe—Cr redox flow battery systems and methods of manufacture and operation |
| US11189854B2 (en) | 2019-05-20 | 2021-11-30 | Creek Channel Inc. | Methods and systems for determining average oxidation state of redox flow battery systems using the open circuit voltage |
| US11626607B2 (en) | 2019-05-20 | 2023-04-11 | Cougar Creek Technologies, Llc | Methods and systems for determining average oxidation state of redox flow battery systems |
| US11626608B2 (en) | 2019-05-20 | 2023-04-11 | Cougar Creek Technologies, Llc | Redox flow battery systems and methods of manufacture and operation and reduction of metallic impurities |
| WO2022009140A1 (en) * | 2020-07-09 | 2022-01-13 | Universita' Degli Studi Di Padova | Method for managing the state of charge of redox flow batteries, and redox flow battery |
| IT202000016600A1 (en) * | 2020-07-09 | 2022-01-09 | Univ Degli Studi Padova | STATUS OF CHARGE MANAGEMENT METHOD FOR REDOX FLOW BATTERIES AND REDOX FLOW BATTERIES |
| US11735756B2 (en) | 2020-11-16 | 2023-08-22 | Cougar Creek Technologies, Llc | Redox flow battery systems and methods utilizing a temporal energy profile |
| US11764385B2 (en) | 2020-11-16 | 2023-09-19 | Cougar Creek Technologies, Llc | Redox flow battery systems and methods utilizing primary and secondary redox flow battery arrangements |
| US11710844B2 (en) | 2020-11-16 | 2023-07-25 | Cougar Creek Technologies, Llc | Fe-Cr redox flow battery systems and methods utilizing chromium complexes with nitrogen-containing ligands |
| US11955677B2 (en) | 2020-11-16 | 2024-04-09 | Cougar Creek Technologies, Llc | Redox flow battery systems and methods utilizing primary and secondary redox flow battery arrangements |
| US11990659B2 (en) | 2020-11-16 | 2024-05-21 | Cougar Creek Technologies, Llc | Fe-Cr redox flow battery systems and methods for preparation of chromium-containing electrolyte therefor |
| WO2025126585A1 (en) * | 2023-12-15 | 2025-06-19 | 住友電気工業株式会社 | Redox flow battery system |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016007555A1 (en) | 2016-01-14 |
| US9722264B2 (en) | 2017-08-01 |
| US20180019486A1 (en) | 2018-01-18 |
| US10333159B2 (en) | 2019-06-25 |
| US20160006058A1 (en) | 2016-01-07 |
| US20160006054A1 (en) | 2016-01-07 |
| US20160006053A1 (en) | 2016-01-07 |
| US20160006055A1 (en) | 2016-01-07 |
| US9941527B2 (en) | 2018-04-10 |
| US20160006052A1 (en) | 2016-01-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9941527B2 (en) | Gas management systems and methods in a redox flow battery | |
| US12283726B2 (en) | Flow battery system | |
| US8709629B2 (en) | Systems and methods for redox flow battery scalable modular reactant storage | |
| BR112012026923B1 (en) | electrical energy storage and restoration device | |
| US20210292917A1 (en) | Hydrogen production and storage system using solar energy independently operated without external power | |
| US20140193724A1 (en) | Gravity feed flow battery system and method | |
| US10903510B2 (en) | Redox flow battery | |
| US9570772B2 (en) | Power production apparatus and structure block system for water storage facility | |
| KR20190117483A (en) | Matching Charge State in a String | |
| US20180166887A1 (en) | Managing islanded power systems using battery state of charge and frequency | |
| KR101447865B1 (en) | Fuel cell system for ship | |
| US20180166725A1 (en) | Using energy in electrolyte for black start | |
| CN114746580A (en) | Electrolysis system and method for operating an electrolysis system | |
| JP6544628B2 (en) | Water electrolyzer | |
| KR20140075250A (en) | Fuel Mixing tank with Preventing Honeycomb Plate of Fuel Surging for Direct Methanol Fuel Cell System And Direct Methanol Fuel Cell System Comprising The Same | |
| KR20200084957A (en) | Redox flow battery | |
| KR102798928B1 (en) | Electrolyte Antioxidant System For Redox Flow battery | |
| KR20180123549A (en) | Container type battery | |
| KR20180113377A (en) | Ship | |
| JPH08213042A (en) | Fuel cell reaction product water storage device | |
| KR20250118080A (en) | Feul supply aid apparatus with methanol feul maintenance funcition | |
| CN120967368A (en) | Regenerative fuel cell system | |
| JP2009099464A (en) | Tube fuel cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNIENERGY TECHNOLOGIES, LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WINTER, RICHARD;LI, LIYU;KELL, BRADLEY;AND OTHERS;SIGNING DATES FROM 20150727 TO 20150731;REEL/FRAME:036301/0785 |
|
| AS | Assignment |
Owner name: VENTURE LENDING & LEASING VIII, INC., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:UNIENERGY TECHNOLOGIES, LLC;REEL/FRAME:045849/0105 Effective date: 20180403 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |