[go: up one dir, main page]

US20150382116A1 - Implantable microphone device - Google Patents

Implantable microphone device Download PDF

Info

Publication number
US20150382116A1
US20150382116A1 US14/753,841 US201514753841A US2015382116A1 US 20150382116 A1 US20150382116 A1 US 20150382116A1 US 201514753841 A US201514753841 A US 201514753841A US 2015382116 A1 US2015382116 A1 US 2015382116A1
Authority
US
United States
Prior art keywords
pressure
transfer function
implantable
transducer
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/753,841
Inventor
Peter Bart Jos Van Gerwen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cochlear Ltd
Original Assignee
Cochlear Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008903794A external-priority patent/AU2008903794A0/en
Application filed by Cochlear Ltd filed Critical Cochlear Ltd
Priority to US14/753,841 priority Critical patent/US20150382116A1/en
Publication of US20150382116A1 publication Critical patent/US20150382116A1/en
Assigned to COCHLEAR LIMITED reassignment COCHLEAR LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VAN GERWEN, Peter Bart Jos
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/65Housing parts, e.g. shells, tips or moulds, or their manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6817Ear canal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/67Implantable hearing aids or parts thereof not covered by H04R25/606
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/03Reduction of intrinsic noise in microphones

Definitions

  • the present invention relates to an implantable microphone device, and in particular, to such a device suitable for use with an implanted hearing prosthesis.
  • Hearing prostheses of various types are widely used to improve the lives of users.
  • Such devices include, for example, hearing aids, cochlear implants, middle ear implants and electro-acoustic devices.
  • a current trend is to develop totally implantable forms of these devices.
  • Totally implantable devices have the advantage of allowing the user to have a superior aesthetic result, as the user is visually indistinguishable in day to day activities. They have a further advantage in generally being inherently waterproof, allowing the user to shower, swim, and so forth without needing to take any special measures.
  • a microphone The purpose of a microphone is to measure pressure variations in an audible frequency range.
  • a conventional microphone includes a sound capturing membrane. To measure such pressure variations, the differential pressure between a side of the membrane, from where the sound originates, and the opposing reference side is measured.
  • a conventional microphone also includes a purge hole disposed on the reference side of the membrane which exposes the reference side to outside ambient pressure. The purge hole is used to keep the ambient pressure on the reference side equal with the outside ambient pressure. The purge hole is necessary to compensate for any slow ambient pressure variations which could affect the measurement of differential pressure and hence the quality of the microphone output.
  • U.S. Pat. No. 4,868,799 discloses an example of a hydrophone arrangement which deals with the issue by way of active pressure compensation.
  • a valve operated mechanism increases the internal pressure to compensate for increasing external pressure depending upon the depth the hydrophone is submerged. While this may prove to be an effective solution where size of the device is not of concern, in respect of an implantable device such a bulky mechanism is impractical.
  • an implantable microphone device comprising a hermetically sealed housing having an internal cavity; the internal cavity having a microphone assembly arranged to receive sound waves originating from external the housing; the device further comprising a pressure sensor arrangement, arranged to detect and determine the differential pressure between said internal cavity and the exterior of said housing; wherein the determined differential pressure is used to determine a suitable transfer function to be applied to the output of said microphone assembly to produce a signal representative of said received sound waves.
  • the pressure sensor arrangement comprises a differential pressure sensor.
  • the pressure sensor arrangement can comprise an internal pressure sensor, arranged to detect the pressure within the internal cavity, and an external pressure sensor arranged to detect the pressure external the housing; wherein the outputs of the internal and external pressure sensors are compared to determine the differential pressure.
  • the microphone assembly comprises a microphone transducer and a cavity dividing membrane having an aperture; wherein the sound waves are received by the microphone transducer via said aperture.
  • the microphone assembly further comprises a microphone membrane disposed between the dividing membrane and the microphone transducer; the microphone membrane having a purge hole formed therethrough.
  • the device further comprises a sealing membrane which seals the internal cavity from the exterior of the housing and allows the sound waves to pass therethrough.
  • the internal cavity comprises a first and second cavity interconnected by a purge passage; the microphone assembly being arranged in the first cavity.
  • the internal pressure sensor may be arranged in the first and/or second cavity.
  • the second cavity can house electronic components for the device.
  • the present invention advantageously provides an implantable microphone device which compensates for the necessary absence of a purge hole between the interior and exterior of the device.
  • FIG. 1 is a cross-sectional view of an implantable microphone device
  • FIG. 2 shows plots demonstrating the effect of external pressure change on the output of an IMPLEX microphone
  • FIG. 3 shows plots demonstrating the effect of external pressure change on the output of a TKI microphone.
  • the present invention is applicable to any suitable hearing prosthesis system, for example a hybrid electrical/acoustic system, a cochlear implant system, an implantable hearing aid system, a middle ear stimulator or any other suitable hearing prosthesis. It may be applied to a system with totally implanted components, or to a system which additionally includes one or more external components. It will be appreciated that the present implementation is described for illustrative purposes, and its features are not intended to be limitative of the scope of the present invention. Many variations and additions are possible within the scope of the present invention.
  • a microphone translates received real sound pressure into an electrical signal.
  • the relationship between the real sound pressure and the electrical signal would mathematically be defined by a transfer function.
  • the transfer function describes the microphone output (e.g. how many volts) as a function of the sound input. For example, if a microphone ‘hears’ 60 dB SPL of sound at the input, how many microvolts is generated as output. Effectively by knowing the transfer function and measuring the generated electrical signal, the real sound pressure can be calculated or estimated. Measuring and determining a transfer function for a microphone can be done in a soundbox, as will be familiar to the skilled person.
  • a soundbox can be described as a closed box in which one can accurately and controllably generate sounds of certain characteristics and defined SPL. From this there are a number of known ways to calibrate the microphone. One way is by generating a sound of fixed frequency and measuring the voltage generated by the microphone. Repeating this for discrete steps over a range of frequencies allows the input/output relationship to be determined. The mathematical model of which relationship is the transfer function, which would be readily understood and derived by the skilled person.
  • the real input sound level can be deduced.
  • the deduction calculation would be implemented by way of a look-up table.
  • the transfer function is affected by the ambient pressure and any ambient pressure differential across a microphone membrane.
  • the ambient pressure on each side of the membrane is equalized. This ambient pressure compensation negates any pressure difference and removes any effect on the transfer function.
  • the transfer function for a particular device can be derived during calibration of the device, as discussed above.
  • FIGS. 2 and 3 show plots of how external pressure changes affect microphone outputs for the TIKI and IMPLEX microphones.
  • Such microphones are used in implantable devices. Implantable microphones are enclosed devices. If the outside pressure changes, the inner pressure cannot change due to the fact that the inside is hermetically sealed. Therefore, it is proposed that a device that can take the pressure difference into account would allow a better estimation for the transfer function and, hence, a better estimation of the actual sound pressure. Examples, of such implantable microphones include the TIKI microphone and IMPLEX microphone.
  • a pressure box is a closed box in which one can accurately and controllably generate different ambient pressures. Combining the soundbox calibration method inside the pressure box allows for an enhanced calibration which would derive the transfer function for the microphone and derive how the transfer function is affected by the change in ambient pressure as controlled by the pressure box.
  • FIG. 1 there is shown a structure for an implantable microphone device.
  • the device includes a housing 3 having a primary internal cavity 2 .
  • the internal cavity 2 is hermetically sealed from the exterior of the housing 3 by a primary membrane 1 , which allows sound waves to pass through from the exterior of the housing 3 into the primary cavity 2 .
  • the primary membrane 1 can be formed of biocompatible Titanium or other material suitable for implantable use.
  • a microphone assembly Arranged in the primary cavity 2 is a microphone assembly, illustrated as an electret microphone.
  • the microphone assembly has microphone transducer in the form of a Mylar electret membrane 5 which outputs an electrical signal representative of detected pressure variations.
  • a microphone membrane 7 having a purge hole formed therethrough is arranged in the path of the sound waves to the electret membrane 5 .
  • the purge hole provides internal ambient pressure compensation across the microphone membrane 7 .
  • a dividing membrane 11 having an aperture 10 is arranged between the microphone assembly and the primary membrane 1 .
  • the aperture 10 functions to focus received
  • the housing 3 also includes a secondary cavity 4 , in which the vanous electronic components for the device, such as a printed circuit board, can be housed.
  • the secondary cavity 4 is connected to the primary cavity 2 by a purge passage 6 which maintains an equalization of internal ambient pressure in the respective cavities 2 , 4 .
  • the device is provided with an external pressure sensor 13 arranged to detect and measure ambient pressure 12 external to the housing 3 .
  • one or more internal pressure sensors 14 are arranged within one or both of the primary and secondary cavities to detect and measure the internal ambient pressure 8 . Arranging the internal pressure sensor 14 within the secondary cavity can prove convenient for its proximity with the electronics of the device.
  • MEMS microelectromechanical systems
  • This arrangement of external and internal pressure sensors allows the ambient pressure differential across the primary membrane 1 to be calculated.
  • This pressure differential can be used by a processor and taken into account when determining and applying a suitable transfer function to the electrical signal output from the microphone in order to generate a signal representative of the received sound.
  • the generated signal can be used in the processing of suitable stimulation signals for a hearing prosthesis, such as a cochlear implant system.
  • variable capacitance-type sensor is readily suitable for this purpose, whereby a first plate of the sensor 13 can be arranged with the primary membrane 1 and the second plate 14 could be arranged within the internal cavity, for example with the dividing membrane 11 or the adjacent wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Neurosurgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Prostheses (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

An implantable microphone device is provided. The device comprises a hermetically sealed housing (3) having an internal cavity (2). The internal cavity (2) has a microphone assembly arranged to receive sound waves originating from external the housing (3). The device further comprises a pressure sensor arrangement, arranged to detect and determine the differential pressure between the internal cavity (2) and the exterior of the housing (3). The determined differential pressure is used to determine a suitable transfer function to be applied to the output of the microphone assembly to produce a signal representative of the received sound waves.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a Continuation application of U.S. patent application Ser. No. 13/055,620 filed Apr. 11, 2011, which is a National Stage application of International Patent Application No. PCT/AU2009/000935, filed Jul. 23, 2009, and claims priority from Australian Patent Application No. 2008903794, filed Jul. 24, 2008. The contents of each of these applications is hereby incorporated by reference herein.
  • BACKGROUND
  • 1. Field of the Invention
  • The present invention relates to an implantable microphone device, and in particular, to such a device suitable for use with an implanted hearing prosthesis.
  • 2. Related Art
  • Hearing prostheses of various types are widely used to improve the lives of users. Such devices include, for example, hearing aids, cochlear implants, middle ear implants and electro-acoustic devices. A current trend is to develop totally implantable forms of these devices. Totally implantable devices have the advantage of allowing the user to have a superior aesthetic result, as the user is visually indistinguishable in day to day activities. They have a further advantage in generally being inherently waterproof, allowing the user to shower, swim, and so forth without needing to take any special measures.
  • Conventional hearing prostheses, for example partially implanted cochlear implant systems, use externally disposed microphones. To provide a totally implantable prosthesis a suitable implantable microphone needs to be employed. Replacing the external microphone assembly with a subcutaneous microphone assembly presents various practical difficulties. Principally, an implantable microphone assembly needs to be hermetically sealed.
  • The purpose of a microphone is to measure pressure variations in an audible frequency range. A conventional microphone includes a sound capturing membrane. To measure such pressure variations, the differential pressure between a side of the membrane, from where the sound originates, and the opposing reference side is measured. A conventional microphone also includes a purge hole disposed on the reference side of the membrane which exposes the reference side to outside ambient pressure. The purge hole is used to keep the ambient pressure on the reference side equal with the outside ambient pressure. The purge hole is necessary to compensate for any slow ambient pressure variations which could affect the measurement of differential pressure and hence the quality of the microphone output.
  • Given that an implantable microphone assembly needs to be hermetically sealed, it is clear that the use of such a purge hole cannot be employed.
  • In U.S. Pat. No. 7,322,930 there is disclosed an example of an implantable microphone device in which a microphone assembly is provided in a sealed cavity. The microphone assembly is provided with a flexible membrane which is intended to increase the sensitivity of the device. In practice, however, the quality of the microphone output has been found to be limited.
  • The issue of providing a microphone without an exterior purge hole is also encountered in hydrophones. U.S. Pat. No. 4,868,799 discloses an example of a hydrophone arrangement which deals with the issue by way of active pressure compensation. A valve operated mechanism increases the internal pressure to compensate for increasing external pressure depending upon the depth the hydrophone is submerged. While this may prove to be an effective solution where size of the device is not of concern, in respect of an implantable device such a bulky mechanism is impractical.
  • SUMMARY
  • According to the present invention there is provided an implantable microphone device, the device comprising a hermetically sealed housing having an internal cavity; the internal cavity having a microphone assembly arranged to receive sound waves originating from external the housing; the device further comprising a pressure sensor arrangement, arranged to detect and determine the differential pressure between said internal cavity and the exterior of said housing; wherein the determined differential pressure is used to determine a suitable transfer function to be applied to the output of said microphone assembly to produce a signal representative of said received sound waves.
  • In preferred embodiments, the pressure sensor arrangement comprises a differential pressure sensor. In alternative embodiments, the pressure sensor arrangement can comprise an internal pressure sensor, arranged to detect the pressure within the internal cavity, and an external pressure sensor arranged to detect the pressure external the housing; wherein the outputs of the internal and external pressure sensors are compared to determine the differential pressure.
  • Preferably, the microphone assembly comprises a microphone transducer and a cavity dividing membrane having an aperture; wherein the sound waves are received by the microphone transducer via said aperture. Ideally, the microphone assembly further comprises a microphone membrane disposed between the dividing membrane and the microphone transducer; the microphone membrane having a purge hole formed therethrough.
  • In preferred embodiments, the device further comprises a sealing membrane which seals the internal cavity from the exterior of the housing and allows the sound waves to pass therethrough.
  • According to exemplary embodiments, the internal cavity comprises a first and second cavity interconnected by a purge passage; the microphone assembly being arranged in the first cavity. When applicable, the internal pressure sensor may be arranged in the first and/or second cavity. The second cavity can house electronic components for the device.
  • The present invention advantageously provides an implantable microphone device which compensates for the necessary absence of a purge hole between the interior and exterior of the device.
  • BRIEF DESCRIPTION OF THE DRAWING
  • A preferred embodiment of the present invention will now be described with reference to the accompanying drawing, in which:
  • FIG. 1 is a cross-sectional view of an implantable microphone device;
  • FIG. 2 shows plots demonstrating the effect of external pressure change on the output of an IMPLEX microphone; and
  • FIG. 3 shows plots demonstrating the effect of external pressure change on the output of a TKI microphone.
  • DETAILED DESCRIPTION
  • Aspects of the present invention will be described with reference to a particular illustrative example. However, it will be appreciated that the present invention is applicable to any suitable hearing prosthesis system, for example a hybrid electrical/acoustic system, a cochlear implant system, an implantable hearing aid system, a middle ear stimulator or any other suitable hearing prosthesis. It may be applied to a system with totally implanted components, or to a system which additionally includes one or more external components. It will be appreciated that the present implementation is described for illustrative purposes, and its features are not intended to be limitative of the scope of the present invention. Many variations and additions are possible within the scope of the present invention.
  • As an underlying premise for an embodiment of the present invention, it is recognized that in practice a microphone is never perfect. A microphone translates received real sound pressure into an electrical signal. The relationship between the real sound pressure and the electrical signal would mathematically be defined by a transfer function. In other words, the transfer function describes the microphone output (e.g. how many volts) as a function of the sound input. For example, if a microphone ‘hears’ 60 dB SPL of sound at the input, how many microvolts is generated as output. Effectively by knowing the transfer function and measuring the generated electrical signal, the real sound pressure can be calculated or estimated. Measuring and determining a transfer function for a microphone can be done in a soundbox, as will be familiar to the skilled person. A soundbox can be described as a closed box in which one can accurately and controllably generate sounds of certain characteristics and defined SPL. From this there are a number of known ways to calibrate the microphone. One way is by generating a sound of fixed frequency and measuring the voltage generated by the microphone. Repeating this for discrete steps over a range of frequencies allows the input/output relationship to be determined. The mathematical model of which relationship is the transfer function, which would be readily understood and derived by the skilled person.
  • With a calibrated microphone, by knowing the voltage output with a certain frequency and using the derived transfer function, the real input sound level can be deduced. In practice, the deduction calculation would be implemented by way of a look-up table.
  • The transfer function is affected by the ambient pressure and any ambient pressure differential across a microphone membrane. In an ordinary microphone device having a purge hole, the ambient pressure on each side of the membrane is equalized. This ambient pressure compensation negates any pressure difference and removes any effect on the transfer function. Hence, ordinarily the transfer function for a particular device can be derived during calibration of the device, as discussed above.
  • However, in a microphone device which cannot have a purge hole for equalizing ambient pressure across the microphone membrane, it has been recognized by the present inventor that variations in static and dynamic pressure difference inevitably has an effect on the transfer function. FIGS. 2 and 3 show plots of how external pressure changes affect microphone outputs for the TIKI and IMPLEX microphones. Such microphones are used in implantable devices. Implantable microphones are enclosed devices. If the outside pressure changes, the inner pressure cannot change due to the fact that the inside is hermetically sealed. Therefore, it is proposed that a device that can take the pressure difference into account would allow a better estimation for the transfer function and, hence, a better estimation of the actual sound pressure. Examples, of such implantable microphones include the TIKI microphone and IMPLEX microphone.
  • In view of the above, in practice, if an external pressure difference occurs, the transfer function is consequently affected. Using the derived transfer function without taking the effect of the pressure change results in a loss of accuracy in determining actual sound pressure input.
  • The transfer function and the effect of pressure differential are derivable during an enhanced calibration of the device. For this purpose, a so-called pressure box is employed. A pressure box is a closed box in which one can accurately and controllably generate different ambient pressures. Combining the soundbox calibration method inside the pressure box allows for an enhanced calibration which would derive the transfer function for the microphone and derive how the transfer function is affected by the change in ambient pressure as controlled by the pressure box.
  • As an example, consider a hermetically sealed microphone with an internal pressure of 1 atmosphere (1013 mbar). The transfer function is calibrated as described before with the external pressure adjusted in discrete steps, for example in steps of 20 mbar. The outside pressure is changed in a range between, for example, 713 mbar and 1313 mbar, i.e. 31 steps with a pressure difference between −300 mbar and +300 mbar. For every pressure change a full transfer function is derived. It is expected that this enhanced calibration would be readily understood and be able to be implemented by the skilled person.
  • It is anticipated that an additional calibration technique could also allow for the adjustment of the internal pressure of the device and that further calibrated data could be derived based upon this additional parametric variation.
  • Based on the above, it is expected that the output of a properly calibrated device would allow for the input sound pressure to be calculated by relating the transfer function and the actual external pressure. In practice this calibration data would be provided in the form of look-up tables for use by a processor.
  • In FIG. 1, there is shown a structure for an implantable microphone device. The device includes a housing 3 having a primary internal cavity 2. The internal cavity 2 is hermetically sealed from the exterior of the housing 3 by a primary membrane 1, which allows sound waves to pass through from the exterior of the housing 3 into the primary cavity 2. The primary membrane 1 can be formed of biocompatible Titanium or other material suitable for implantable use. Arranged in the primary cavity 2 is a microphone assembly, illustrated as an electret microphone. The microphone assembly has microphone transducer in the form of a Mylar electret membrane 5 which outputs an electrical signal representative of detected pressure variations. A microphone membrane 7 having a purge hole formed therethrough is arranged in the path of the sound waves to the electret membrane 5. The purge hole provides internal ambient pressure compensation across the microphone membrane 7. A dividing membrane 11 having an aperture 10 is arranged between the microphone assembly and the primary membrane 1. The aperture 10 functions to focus received sound waves towards the centre of the microphone assembly.
  • The housing 3 also includes a secondary cavity 4, in which the vanous electronic components for the device, such as a printed circuit board, can be housed. The secondary cavity 4 is connected to the primary cavity 2 by a purge passage 6 which maintains an equalization of internal ambient pressure in the respective cavities 2, 4.
  • The device is provided with an external pressure sensor 13 arranged to detect and measure ambient pressure 12 external to the housing 3. In addition, one or more internal pressure sensors 14 are arranged within one or both of the primary and secondary cavities to detect and measure the internal ambient pressure 8. Arranging the internal pressure sensor 14 within the secondary cavity can prove convenient for its proximity with the electronics of the device.
  • A variety of different types of pressure sensors could be employed, such as: fibre optic sensors, mechanical deflection sensors, strain gauge, semiconductor peizoresistive, vibrating elements (silicon resonance, for example) and variable capacitance. Given the size constraints on an implantable device, it is considered that sensors based upon microelectromechanical systems (MEMS) are ideally suited, examples of which are:
      • Strain gauge—which measures the change in resistance experienced a material due to change in its stretch or strain due to pressure;
      • Semiconductor piezoresistive—which measures the change in conductivity of semiconductors due to change in pressure;
      • Vibrating elements (such as silicon resistance)—which measures the change in vibration on the molecular level of the different material elements due to change in pressure; and
      • Variable capacitance—which measures the change of capacitance due to change of distance between the plates of a capacitor due to change in pressure.
  • This arrangement of external and internal pressure sensors allows the ambient pressure differential across the primary membrane 1 to be calculated. This pressure differential can be used by a processor and taken into account when determining and applying a suitable transfer function to the electrical signal output from the microphone in order to generate a signal representative of the received sound. The generated signal can be used in the processing of suitable stimulation signals for a hearing prosthesis, such as a cochlear implant system.
  • As an alternative to having separate internal and external pressure sensors, a more convenient arrangement is to use a single differential pressure sensor, which outputs a differential pressure signal rather than having to calculate differential pressure from the difference between two measured signals. The variable capacitance-type sensor is readily suitable for this purpose, whereby a first plate of the sensor 13 can be arranged with the primary membrane 1 and the second plate 14 could be arranged within the internal cavity, for example with the dividing membrane 11 or the adjacent wall.
  • While the present invention has been described with respect to a specific embodiment, it will be appreciated that various modifications and changes could be made without departing from the scope of the invention.

Claims (20)

What is claimed is:
1. An implantable transducer assembly, comprising:
a hermetically sealed housing having an internal cavity;
a transducer assembly located in the hermetically sealed housing, wherein
the implantable transducer assembly is configured to determine a suitable transfer function to be applied to a transducer signal of the implantable transducer so as to produce a signal that takes into account a pressure of an environment exterior of the housing.
2. The implantable transducer assembly of claim 1, wherein the implantable transducer assembly is configured to determine the suitable transfer function to be applied to the transducer signal of the implantable transducer so as to produce a signal that takes into account a pressure difference between the internal cavity and the environment exterior of the housing.
3. The implantable transducer assembly of claim 1, further comprising:
a pressure sensor arrangement, arranged to obtain data based at least in part on a pressure external to the housing, wherein
the implantable transducer assembly is configured to determine the suitable transfer function based at least in part on the obtained data obtained by the pressure sensor arrangement.
4. The implantable transducer assembly according to claim 1, wherein said pressure sensor arrangement comprises:
an external pressure sensor configured to detect the pressure external said housing, wherein the implantable transducer assembly is configured to determine the suitable transfer function based at least in part on output from the external pressure sensor.
5. The implantable transducer assembly according to claim 3, wherein:
said pressure sensor arrangement comprises a differential pressure sensor configured to determine a pressure difference between the environment external to the housing and the internal cavity, wherein the implantable transducer assembly is configured to determine the suitable transfer function based at least in part on output from the differential pressure sensor.
6. The implantable transducer assembly according to claim 1, wherein:
the transducer assembly is a microphone assembly, and wherein the microphone assembly comprises a microphone transducer and a cavity dividing membrane having an aperture, and wherein said microphone transducer is configured to receive sound waves via said aperture.
7. The implantable transducer assembly according to claim 3, wherein the pressure sensor apparatus includes a strain gauge configured to measure a change in resistance experienced by a material that stretches due to a change in pressure.
8. The implantable hearing prosthesis of claim 17, wherein:
the processor is configured such that the calibration executed by the processor entails determining a transfer function to be applied to a signal of the transducer to account for the change in pressure of the external environment that influences the internal pressure.
9. The implantable hearing prosthesis of claim 17, wherein:
the implantable hearing prosthesis includes a membrane forming a portion of the hermetically sealed enclosure, which membrane enables the influence of the internal pressure by the pressure of the external environment.
10. A method, comprising:
obtaining data relating to a pressure phenomenon that influences a transfer function of a transducer implanted in a recipient;
compensating for the pressure phenomenon's influence on the transfer function; and
evoking a hearing percept using an implanted hearing prosthesis that includes the implanted transducer, the hearing percept based at least in part on the compensated influence on the transfer function.
11. The method of claim 10, wherein:
the action of obtaining data relating to the pressure phenomenon is executed using a pressure sensor exposed to an ambient environment of the implanted hearing prosthesis.
12. The method of claim 10, wherein:
the action of compensating for the influence on the transfer function is executed by a processor using a look-up table.
13. The method of claim 10, wherein:
the action of obtaining data relating to a pressure phenomenon that influences a transfer function of a transducer implanted in a recipient is executed by obtaining an actual external pressure external to the implanted hearing prosthesis; and
the action of compensating for the influence on the transfer function is executed by relating the transfer function and the obtained actual external pressure.
14. The method of claim 10, wherein:
the action of compensating for the influence on the transfer function is executed by relating the transfer function and the obtained data relating to the pressure phenomenon.
15. The method of claim 10, wherein:
prior to the action of obtaining data, a change in a pressure of an ambient environment of the implanted hearing prosthesis has occurred relative to that which was the case at a temporal location precedent, which change in pressure changed the transfer function of the transducer; and
the action of compensating for the influence on the transfer function entails obtaining a new transfer function based on the obtained data.
16. The method of claim 10, wherein:
the action of obtaining data relating to a pressure phenomenon that influences a transfer function of a transducer implanted in a recipient is executed by obtaining an actual external pressure external to the implanted hearing prosthesis; and
the action of compensating for the influence on the transfer function is executed by relating the transfer function and the obtained actual external pressure using a lookup table.
17. An implantable hearing prosthesis, comprising:
a transducer in a hermetically sealed enclosure, wherein the hermetically sealed enclosure is configured such that an internal pressure of the hermetically sealed enclosure is influenced by a pressure of the external environment of the hermetically sealed enclosure; and
a processor configured to calibrate the implantable hearing prosthesis to account for a change in pressure of the external environment of the hermetically sealed enclosure that influences the internal pressure of the hermetically sealed enclosure, wherein
the implantable hearing prosthesis is configured to evoke a hearing percept based on the calibration accounting for the change in pressure.
18. The implantable hearing prosthesis of claim 17, wherein:
the implantable hearing prosthesis is configured such that a transfer function of the transducer is influenced by the pressure of the external environment of the hermetically sealed enclosure due to the influence of the pressure of the external environment on the internal environment; and
the processor configured to calibrate the transfer function of the transducer to account for a change in pressure of the external environment of the hermetically sealed enclosure that influences the transfer function; and
the implantable hearing prosthesis is configured to evoke a hearing percept based on the calibrated transfer function.
19. The implantable hearing prosthesis of claim 18, wherein:
the implantable hearing prosthesis includes a lookup table including data relating transfer functions to the external pressure; and
the processor uses the lookup table to account for the change in pressure of the external environment.
20. The implantable hearing prosthesis of claim 18, further comprising:
a pressure sensor arrangement, arranged to obtain data based at least in part on the pressure of the external environment, wherein
the implantable hearing prosthesis is configured to determine a suitable transfer function based at least in part on the obtained data obtained by the pressure sensor arrangement.
US14/753,841 2008-07-24 2015-06-29 Implantable microphone device Abandoned US20150382116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/753,841 US20150382116A1 (en) 2008-07-24 2015-06-29 Implantable microphone device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2008903794 2008-07-24
AU2008903794A AU2008903794A0 (en) 2008-07-24 Implantable Microphone Device
PCT/AU2009/000935 WO2010009504A1 (en) 2008-07-24 2009-07-23 Implantable microphone device
US201113055620A 2011-04-11 2011-04-11
US14/753,841 US20150382116A1 (en) 2008-07-24 2015-06-29 Implantable microphone device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/AU2009/000935 Continuation WO2010009504A1 (en) 2008-07-24 2009-07-23 Implantable microphone device
US13/055,620 Continuation US9071910B2 (en) 2008-07-24 2009-07-23 Implantable microphone device

Publications (1)

Publication Number Publication Date
US20150382116A1 true US20150382116A1 (en) 2015-12-31

Family

ID=41569927

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/055,620 Active 2032-08-27 US9071910B2 (en) 2008-07-24 2009-07-23 Implantable microphone device
US14/753,841 Abandoned US20150382116A1 (en) 2008-07-24 2015-06-29 Implantable microphone device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/055,620 Active 2032-08-27 US9071910B2 (en) 2008-07-24 2009-07-23 Implantable microphone device

Country Status (2)

Country Link
US (2) US9071910B2 (en)
WO (1) WO2010009504A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235036A1 (en) * 2017-06-21 2018-12-27 Cochlear Limited IMPLANTABLE MICROPHONE MANAGEMENT
US20190311731A1 (en) * 2018-04-09 2019-10-10 Well Checked Systems International LLC System and Method for Machine Learning Predictive Maintenance Through Auditory Detection on Natural Gas Compressors
WO2021204382A1 (en) * 2020-04-08 2021-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Implant
WO2023031894A1 (en) * 2021-09-06 2023-03-09 Cochlear Limited Implantable microphone management

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010102342A1 (en) * 2009-03-13 2010-09-16 Cochlear Limited Improved dacs actuator
US8873783B2 (en) 2010-03-19 2014-10-28 Advanced Bionics Ag Waterproof acoustic element enclosures and apparatus including the same
US8644115B2 (en) * 2011-01-04 2014-02-04 Postech Academy-Industry Foundation Hydrophone and pressure balancing device for using for hydrophone
WO2012099756A1 (en) 2011-01-18 2012-07-26 Advanced Bionics Ag Moisture resistant headpieces and implantable cochlear stimulation systems including the same
US20150367130A1 (en) * 2014-06-18 2015-12-24 Cochlear Limited Internal pressure management system
US10525265B2 (en) 2014-12-09 2020-01-07 Cochlear Limited Impulse noise management
US10463476B2 (en) 2017-04-28 2019-11-05 Cochlear Limited Body noise reduction in auditory prostheses
US11722815B2 (en) * 2017-06-21 2023-08-08 Cochlear Limited Implantable microphone management
WO2019193503A1 (en) 2018-04-04 2019-10-10 Cochlear Limited System and method for adaptive calibration of subcutaneous microphone
US11935350B2 (en) * 2019-04-02 2024-03-19 Rai Strategic Holdings, Inc. Functional control and age verification of electronic devices through speaker communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422991B1 (en) * 1997-12-16 2002-07-23 Symphonix Devices, Inc. Implantable microphone having improved sensitivity and frequency response
US20040168519A1 (en) * 2001-06-08 2004-09-02 Edvard Kalvensten Miniaturized pressure sensor
US20050015789A1 (en) * 2003-07-17 2005-01-20 Pen Guo-Chen Front panel for an optical disc drive
US20100032949A1 (en) * 2008-08-08 2010-02-11 CMNA Power System and method for altering drag and lift forces on a wind capturing structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963881A (en) * 1973-05-29 1976-06-15 Thermo Electron Corporation Unidirectional condenser microphone
US4596902A (en) * 1985-07-16 1986-06-24 Samuel Gilman Processor controlled ear responsive hearing aid and method
US4868799A (en) 1988-10-11 1989-09-19 Frank Massa Means for equalizing the internal pressure in an underwater transducer employing a vibratile piston to permit operation of the transducer at water depths in excess of a few hundred feet
AT407815B (en) * 1990-07-13 2001-06-25 Viennatone Gmbh HEARING AID
US5524056A (en) * 1993-04-13 1996-06-04 Etymotic Research, Inc. Hearing aid having plural microphones and a microphone switching system
DK172085B1 (en) * 1995-06-23 1997-10-13 Microtronic As Micromechanical Microphone
US5703957A (en) * 1995-06-30 1997-12-30 Lucent Technologies Inc. Directional microphone assembly
DE19802568C2 (en) 1998-01-23 2003-05-28 Cochlear Ltd Hearing aid with compensation of acoustic and / or mechanical feedback
WO2003061335A1 (en) 2002-01-02 2003-07-24 Advanced Bionics Corporation Wideband low-noise implantable microphone assembly
US6837857B2 (en) 2002-07-29 2005-01-04 Phonak Ag Method for the recording of acoustic parameters for the customization of hearing aids
DE60320632T2 (en) 2002-12-23 2009-06-04 Sonion Roskilde A/S Encapsulated earphone with an expandable means, e.g. a balloon
US7043037B2 (en) * 2004-01-16 2006-05-09 George Jay Lichtblau Hearing aid having acoustical feedback protection
US7489793B2 (en) 2005-07-08 2009-02-10 Otologics, Llc Implantable microphone with shaped chamber
US8553903B2 (en) * 2007-06-27 2013-10-08 Alcatel Lucent Sound-direction detector having a miniature sensor
ATE551692T1 (en) * 2008-02-05 2012-04-15 Phonak Ag METHOD FOR REDUCING NOISE IN AN INPUT SIGNAL OF A HEARING AID AND A HEARING AID

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422991B1 (en) * 1997-12-16 2002-07-23 Symphonix Devices, Inc. Implantable microphone having improved sensitivity and frequency response
US20040168519A1 (en) * 2001-06-08 2004-09-02 Edvard Kalvensten Miniaturized pressure sensor
US20050015789A1 (en) * 2003-07-17 2005-01-20 Pen Guo-Chen Front panel for an optical disc drive
US20100032949A1 (en) * 2008-08-08 2010-02-11 CMNA Power System and method for altering drag and lift forces on a wind capturing structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235036A1 (en) * 2017-06-21 2018-12-27 Cochlear Limited IMPLANTABLE MICROPHONE MANAGEMENT
US10973626B2 (en) 2017-06-21 2021-04-13 Cochlear Limited Implantable microphone management
US20190311731A1 (en) * 2018-04-09 2019-10-10 Well Checked Systems International LLC System and Method for Machine Learning Predictive Maintenance Through Auditory Detection on Natural Gas Compressors
WO2019199845A1 (en) * 2018-04-09 2019-10-17 Well Checked Systems International LLC System and method for machine learning predictive maintenance through auditory detection on natural gas compressors
US10991381B2 (en) * 2018-04-09 2021-04-27 Well Checked Systems International LLC System and method for machine learning predictive maintenance through auditory detection on natural gas compressors
WO2021204382A1 (en) * 2020-04-08 2021-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Implant
CN115515528A (en) * 2020-04-08 2022-12-23 弗劳恩霍夫应用研究促进协会 Implant and method of manufacturing the same
AU2024259735B2 (en) * 2020-04-08 2025-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Implant
WO2023031894A1 (en) * 2021-09-06 2023-03-09 Cochlear Limited Implantable microphone management

Also Published As

Publication number Publication date
US20110178438A1 (en) 2011-07-21
US9071910B2 (en) 2015-06-30
WO2010009504A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US9071910B2 (en) Implantable microphone device
US7214179B2 (en) Low acceleration sensitivity microphone
US9131323B2 (en) Hearing prosthesis having an implantable actuator system
US7245734B2 (en) Directional microphone
EP3780650A1 (en) Vibration removal apparatus and method for dual-microphone earphones
US20090141922A1 (en) Implantable microphone with shaped chamber
US7840020B1 (en) Low acceleration sensitivity microphone
CN105532020A (en) Microphone with internal parameter calibration
CN106878906A (en) Measuring equipment for bone conduction hearing devices
AU2007216666B2 (en) Method and device for determining an effective vent
US8379897B2 (en) Hearing assistance device having reduced mechanical feedback
JP6676258B2 (en) Calibration method of measurement data in body sound measurement system
US11956581B2 (en) Microphone unit having a pressurized chamber
CN217064005U (en) Hearing device
CN110907029A (en) Calibration method of vibration sensing device
US9584926B2 (en) Implantable microphone
JP6018025B2 (en) Sample information processing device
US20250097654A1 (en) Hearing device
EP1747699B1 (en) Low acceleration sensitivity microphone
CN116762360A (en) Acoustic and vibration sensor
CN119946478A (en) Implantable Microphone
US20250159402A1 (en) Compact vibration sensor
US9584931B2 (en) Middle ear implantable microphone
Han et al. Design and fabrication of an implantable microphone relate to compensating damping effects of skin
Woo et al. Simulation of an implantable microphone in the middle ear cavity

Legal Events

Date Code Title Description
AS Assignment

Owner name: COCHLEAR LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAN GERWEN, PETER BART JOS;REEL/FRAME:037466/0210

Effective date: 20150609

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION