US20150382116A1 - Implantable microphone device - Google Patents
Implantable microphone device Download PDFInfo
- Publication number
- US20150382116A1 US20150382116A1 US14/753,841 US201514753841A US2015382116A1 US 20150382116 A1 US20150382116 A1 US 20150382116A1 US 201514753841 A US201514753841 A US 201514753841A US 2015382116 A1 US2015382116 A1 US 2015382116A1
- Authority
- US
- United States
- Prior art keywords
- pressure
- transfer function
- implantable
- transducer
- external
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012546 transfer Methods 0.000 claims abstract description 49
- 230000006870 function Effects 0.000 claims description 50
- 239000012528 membrane Substances 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 4
- 230000000763 evoking effect Effects 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000010926 purge Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- 239000007943 implant Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000000959 ear middle Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/60—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
- H04R25/604—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
- H04R25/606—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/08—Mouthpieces; Microphones; Attachments therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/45—Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
- H04R25/453—Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/65—Housing parts, e.g. shells, tips or moulds, or their manufacture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6815—Ear
- A61B5/6817—Ear canal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36036—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
- A61N1/36038—Cochlear stimulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2225/00—Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
- H04R2225/67—Implantable hearing aids or parts thereof not covered by H04R25/606
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2410/00—Microphones
- H04R2410/03—Reduction of intrinsic noise in microphones
Definitions
- the present invention relates to an implantable microphone device, and in particular, to such a device suitable for use with an implanted hearing prosthesis.
- Hearing prostheses of various types are widely used to improve the lives of users.
- Such devices include, for example, hearing aids, cochlear implants, middle ear implants and electro-acoustic devices.
- a current trend is to develop totally implantable forms of these devices.
- Totally implantable devices have the advantage of allowing the user to have a superior aesthetic result, as the user is visually indistinguishable in day to day activities. They have a further advantage in generally being inherently waterproof, allowing the user to shower, swim, and so forth without needing to take any special measures.
- a microphone The purpose of a microphone is to measure pressure variations in an audible frequency range.
- a conventional microphone includes a sound capturing membrane. To measure such pressure variations, the differential pressure between a side of the membrane, from where the sound originates, and the opposing reference side is measured.
- a conventional microphone also includes a purge hole disposed on the reference side of the membrane which exposes the reference side to outside ambient pressure. The purge hole is used to keep the ambient pressure on the reference side equal with the outside ambient pressure. The purge hole is necessary to compensate for any slow ambient pressure variations which could affect the measurement of differential pressure and hence the quality of the microphone output.
- U.S. Pat. No. 4,868,799 discloses an example of a hydrophone arrangement which deals with the issue by way of active pressure compensation.
- a valve operated mechanism increases the internal pressure to compensate for increasing external pressure depending upon the depth the hydrophone is submerged. While this may prove to be an effective solution where size of the device is not of concern, in respect of an implantable device such a bulky mechanism is impractical.
- an implantable microphone device comprising a hermetically sealed housing having an internal cavity; the internal cavity having a microphone assembly arranged to receive sound waves originating from external the housing; the device further comprising a pressure sensor arrangement, arranged to detect and determine the differential pressure between said internal cavity and the exterior of said housing; wherein the determined differential pressure is used to determine a suitable transfer function to be applied to the output of said microphone assembly to produce a signal representative of said received sound waves.
- the pressure sensor arrangement comprises a differential pressure sensor.
- the pressure sensor arrangement can comprise an internal pressure sensor, arranged to detect the pressure within the internal cavity, and an external pressure sensor arranged to detect the pressure external the housing; wherein the outputs of the internal and external pressure sensors are compared to determine the differential pressure.
- the microphone assembly comprises a microphone transducer and a cavity dividing membrane having an aperture; wherein the sound waves are received by the microphone transducer via said aperture.
- the microphone assembly further comprises a microphone membrane disposed between the dividing membrane and the microphone transducer; the microphone membrane having a purge hole formed therethrough.
- the device further comprises a sealing membrane which seals the internal cavity from the exterior of the housing and allows the sound waves to pass therethrough.
- the internal cavity comprises a first and second cavity interconnected by a purge passage; the microphone assembly being arranged in the first cavity.
- the internal pressure sensor may be arranged in the first and/or second cavity.
- the second cavity can house electronic components for the device.
- the present invention advantageously provides an implantable microphone device which compensates for the necessary absence of a purge hole between the interior and exterior of the device.
- FIG. 1 is a cross-sectional view of an implantable microphone device
- FIG. 2 shows plots demonstrating the effect of external pressure change on the output of an IMPLEX microphone
- FIG. 3 shows plots demonstrating the effect of external pressure change on the output of a TKI microphone.
- the present invention is applicable to any suitable hearing prosthesis system, for example a hybrid electrical/acoustic system, a cochlear implant system, an implantable hearing aid system, a middle ear stimulator or any other suitable hearing prosthesis. It may be applied to a system with totally implanted components, or to a system which additionally includes one or more external components. It will be appreciated that the present implementation is described for illustrative purposes, and its features are not intended to be limitative of the scope of the present invention. Many variations and additions are possible within the scope of the present invention.
- a microphone translates received real sound pressure into an electrical signal.
- the relationship between the real sound pressure and the electrical signal would mathematically be defined by a transfer function.
- the transfer function describes the microphone output (e.g. how many volts) as a function of the sound input. For example, if a microphone ‘hears’ 60 dB SPL of sound at the input, how many microvolts is generated as output. Effectively by knowing the transfer function and measuring the generated electrical signal, the real sound pressure can be calculated or estimated. Measuring and determining a transfer function for a microphone can be done in a soundbox, as will be familiar to the skilled person.
- a soundbox can be described as a closed box in which one can accurately and controllably generate sounds of certain characteristics and defined SPL. From this there are a number of known ways to calibrate the microphone. One way is by generating a sound of fixed frequency and measuring the voltage generated by the microphone. Repeating this for discrete steps over a range of frequencies allows the input/output relationship to be determined. The mathematical model of which relationship is the transfer function, which would be readily understood and derived by the skilled person.
- the real input sound level can be deduced.
- the deduction calculation would be implemented by way of a look-up table.
- the transfer function is affected by the ambient pressure and any ambient pressure differential across a microphone membrane.
- the ambient pressure on each side of the membrane is equalized. This ambient pressure compensation negates any pressure difference and removes any effect on the transfer function.
- the transfer function for a particular device can be derived during calibration of the device, as discussed above.
- FIGS. 2 and 3 show plots of how external pressure changes affect microphone outputs for the TIKI and IMPLEX microphones.
- Such microphones are used in implantable devices. Implantable microphones are enclosed devices. If the outside pressure changes, the inner pressure cannot change due to the fact that the inside is hermetically sealed. Therefore, it is proposed that a device that can take the pressure difference into account would allow a better estimation for the transfer function and, hence, a better estimation of the actual sound pressure. Examples, of such implantable microphones include the TIKI microphone and IMPLEX microphone.
- a pressure box is a closed box in which one can accurately and controllably generate different ambient pressures. Combining the soundbox calibration method inside the pressure box allows for an enhanced calibration which would derive the transfer function for the microphone and derive how the transfer function is affected by the change in ambient pressure as controlled by the pressure box.
- FIG. 1 there is shown a structure for an implantable microphone device.
- the device includes a housing 3 having a primary internal cavity 2 .
- the internal cavity 2 is hermetically sealed from the exterior of the housing 3 by a primary membrane 1 , which allows sound waves to pass through from the exterior of the housing 3 into the primary cavity 2 .
- the primary membrane 1 can be formed of biocompatible Titanium or other material suitable for implantable use.
- a microphone assembly Arranged in the primary cavity 2 is a microphone assembly, illustrated as an electret microphone.
- the microphone assembly has microphone transducer in the form of a Mylar electret membrane 5 which outputs an electrical signal representative of detected pressure variations.
- a microphone membrane 7 having a purge hole formed therethrough is arranged in the path of the sound waves to the electret membrane 5 .
- the purge hole provides internal ambient pressure compensation across the microphone membrane 7 .
- a dividing membrane 11 having an aperture 10 is arranged between the microphone assembly and the primary membrane 1 .
- the aperture 10 functions to focus received
- the housing 3 also includes a secondary cavity 4 , in which the vanous electronic components for the device, such as a printed circuit board, can be housed.
- the secondary cavity 4 is connected to the primary cavity 2 by a purge passage 6 which maintains an equalization of internal ambient pressure in the respective cavities 2 , 4 .
- the device is provided with an external pressure sensor 13 arranged to detect and measure ambient pressure 12 external to the housing 3 .
- one or more internal pressure sensors 14 are arranged within one or both of the primary and secondary cavities to detect and measure the internal ambient pressure 8 . Arranging the internal pressure sensor 14 within the secondary cavity can prove convenient for its proximity with the electronics of the device.
- MEMS microelectromechanical systems
- This arrangement of external and internal pressure sensors allows the ambient pressure differential across the primary membrane 1 to be calculated.
- This pressure differential can be used by a processor and taken into account when determining and applying a suitable transfer function to the electrical signal output from the microphone in order to generate a signal representative of the received sound.
- the generated signal can be used in the processing of suitable stimulation signals for a hearing prosthesis, such as a cochlear implant system.
- variable capacitance-type sensor is readily suitable for this purpose, whereby a first plate of the sensor 13 can be arranged with the primary membrane 1 and the second plate 14 could be arranged within the internal cavity, for example with the dividing membrane 11 or the adjacent wall.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Neurosurgery (AREA)
- Manufacturing & Machinery (AREA)
- Prostheses (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
Description
- The present application is a Continuation application of U.S. patent application Ser. No. 13/055,620 filed Apr. 11, 2011, which is a National Stage application of International Patent Application No. PCT/AU2009/000935, filed Jul. 23, 2009, and claims priority from Australian Patent Application No. 2008903794, filed Jul. 24, 2008. The contents of each of these applications is hereby incorporated by reference herein.
- 1. Field of the Invention
- The present invention relates to an implantable microphone device, and in particular, to such a device suitable for use with an implanted hearing prosthesis.
- 2. Related Art
- Hearing prostheses of various types are widely used to improve the lives of users. Such devices include, for example, hearing aids, cochlear implants, middle ear implants and electro-acoustic devices. A current trend is to develop totally implantable forms of these devices. Totally implantable devices have the advantage of allowing the user to have a superior aesthetic result, as the user is visually indistinguishable in day to day activities. They have a further advantage in generally being inherently waterproof, allowing the user to shower, swim, and so forth without needing to take any special measures.
- Conventional hearing prostheses, for example partially implanted cochlear implant systems, use externally disposed microphones. To provide a totally implantable prosthesis a suitable implantable microphone needs to be employed. Replacing the external microphone assembly with a subcutaneous microphone assembly presents various practical difficulties. Principally, an implantable microphone assembly needs to be hermetically sealed.
- The purpose of a microphone is to measure pressure variations in an audible frequency range. A conventional microphone includes a sound capturing membrane. To measure such pressure variations, the differential pressure between a side of the membrane, from where the sound originates, and the opposing reference side is measured. A conventional microphone also includes a purge hole disposed on the reference side of the membrane which exposes the reference side to outside ambient pressure. The purge hole is used to keep the ambient pressure on the reference side equal with the outside ambient pressure. The purge hole is necessary to compensate for any slow ambient pressure variations which could affect the measurement of differential pressure and hence the quality of the microphone output.
- Given that an implantable microphone assembly needs to be hermetically sealed, it is clear that the use of such a purge hole cannot be employed.
- In U.S. Pat. No. 7,322,930 there is disclosed an example of an implantable microphone device in which a microphone assembly is provided in a sealed cavity. The microphone assembly is provided with a flexible membrane which is intended to increase the sensitivity of the device. In practice, however, the quality of the microphone output has been found to be limited.
- The issue of providing a microphone without an exterior purge hole is also encountered in hydrophones. U.S. Pat. No. 4,868,799 discloses an example of a hydrophone arrangement which deals with the issue by way of active pressure compensation. A valve operated mechanism increases the internal pressure to compensate for increasing external pressure depending upon the depth the hydrophone is submerged. While this may prove to be an effective solution where size of the device is not of concern, in respect of an implantable device such a bulky mechanism is impractical.
- According to the present invention there is provided an implantable microphone device, the device comprising a hermetically sealed housing having an internal cavity; the internal cavity having a microphone assembly arranged to receive sound waves originating from external the housing; the device further comprising a pressure sensor arrangement, arranged to detect and determine the differential pressure between said internal cavity and the exterior of said housing; wherein the determined differential pressure is used to determine a suitable transfer function to be applied to the output of said microphone assembly to produce a signal representative of said received sound waves.
- In preferred embodiments, the pressure sensor arrangement comprises a differential pressure sensor. In alternative embodiments, the pressure sensor arrangement can comprise an internal pressure sensor, arranged to detect the pressure within the internal cavity, and an external pressure sensor arranged to detect the pressure external the housing; wherein the outputs of the internal and external pressure sensors are compared to determine the differential pressure.
- Preferably, the microphone assembly comprises a microphone transducer and a cavity dividing membrane having an aperture; wherein the sound waves are received by the microphone transducer via said aperture. Ideally, the microphone assembly further comprises a microphone membrane disposed between the dividing membrane and the microphone transducer; the microphone membrane having a purge hole formed therethrough.
- In preferred embodiments, the device further comprises a sealing membrane which seals the internal cavity from the exterior of the housing and allows the sound waves to pass therethrough.
- According to exemplary embodiments, the internal cavity comprises a first and second cavity interconnected by a purge passage; the microphone assembly being arranged in the first cavity. When applicable, the internal pressure sensor may be arranged in the first and/or second cavity. The second cavity can house electronic components for the device.
- The present invention advantageously provides an implantable microphone device which compensates for the necessary absence of a purge hole between the interior and exterior of the device.
- A preferred embodiment of the present invention will now be described with reference to the accompanying drawing, in which:
-
FIG. 1 is a cross-sectional view of an implantable microphone device; -
FIG. 2 shows plots demonstrating the effect of external pressure change on the output of an IMPLEX microphone; and -
FIG. 3 shows plots demonstrating the effect of external pressure change on the output of a TKI microphone. - Aspects of the present invention will be described with reference to a particular illustrative example. However, it will be appreciated that the present invention is applicable to any suitable hearing prosthesis system, for example a hybrid electrical/acoustic system, a cochlear implant system, an implantable hearing aid system, a middle ear stimulator or any other suitable hearing prosthesis. It may be applied to a system with totally implanted components, or to a system which additionally includes one or more external components. It will be appreciated that the present implementation is described for illustrative purposes, and its features are not intended to be limitative of the scope of the present invention. Many variations and additions are possible within the scope of the present invention.
- As an underlying premise for an embodiment of the present invention, it is recognized that in practice a microphone is never perfect. A microphone translates received real sound pressure into an electrical signal. The relationship between the real sound pressure and the electrical signal would mathematically be defined by a transfer function. In other words, the transfer function describes the microphone output (e.g. how many volts) as a function of the sound input. For example, if a microphone ‘hears’ 60 dB SPL of sound at the input, how many microvolts is generated as output. Effectively by knowing the transfer function and measuring the generated electrical signal, the real sound pressure can be calculated or estimated. Measuring and determining a transfer function for a microphone can be done in a soundbox, as will be familiar to the skilled person. A soundbox can be described as a closed box in which one can accurately and controllably generate sounds of certain characteristics and defined SPL. From this there are a number of known ways to calibrate the microphone. One way is by generating a sound of fixed frequency and measuring the voltage generated by the microphone. Repeating this for discrete steps over a range of frequencies allows the input/output relationship to be determined. The mathematical model of which relationship is the transfer function, which would be readily understood and derived by the skilled person.
- With a calibrated microphone, by knowing the voltage output with a certain frequency and using the derived transfer function, the real input sound level can be deduced. In practice, the deduction calculation would be implemented by way of a look-up table.
- The transfer function is affected by the ambient pressure and any ambient pressure differential across a microphone membrane. In an ordinary microphone device having a purge hole, the ambient pressure on each side of the membrane is equalized. This ambient pressure compensation negates any pressure difference and removes any effect on the transfer function. Hence, ordinarily the transfer function for a particular device can be derived during calibration of the device, as discussed above.
- However, in a microphone device which cannot have a purge hole for equalizing ambient pressure across the microphone membrane, it has been recognized by the present inventor that variations in static and dynamic pressure difference inevitably has an effect on the transfer function.
FIGS. 2 and 3 show plots of how external pressure changes affect microphone outputs for the TIKI and IMPLEX microphones. Such microphones are used in implantable devices. Implantable microphones are enclosed devices. If the outside pressure changes, the inner pressure cannot change due to the fact that the inside is hermetically sealed. Therefore, it is proposed that a device that can take the pressure difference into account would allow a better estimation for the transfer function and, hence, a better estimation of the actual sound pressure. Examples, of such implantable microphones include the TIKI microphone and IMPLEX microphone. - In view of the above, in practice, if an external pressure difference occurs, the transfer function is consequently affected. Using the derived transfer function without taking the effect of the pressure change results in a loss of accuracy in determining actual sound pressure input.
- The transfer function and the effect of pressure differential are derivable during an enhanced calibration of the device. For this purpose, a so-called pressure box is employed. A pressure box is a closed box in which one can accurately and controllably generate different ambient pressures. Combining the soundbox calibration method inside the pressure box allows for an enhanced calibration which would derive the transfer function for the microphone and derive how the transfer function is affected by the change in ambient pressure as controlled by the pressure box.
- As an example, consider a hermetically sealed microphone with an internal pressure of 1 atmosphere (1013 mbar). The transfer function is calibrated as described before with the external pressure adjusted in discrete steps, for example in steps of 20 mbar. The outside pressure is changed in a range between, for example, 713 mbar and 1313 mbar, i.e. 31 steps with a pressure difference between −300 mbar and +300 mbar. For every pressure change a full transfer function is derived. It is expected that this enhanced calibration would be readily understood and be able to be implemented by the skilled person.
- It is anticipated that an additional calibration technique could also allow for the adjustment of the internal pressure of the device and that further calibrated data could be derived based upon this additional parametric variation.
- Based on the above, it is expected that the output of a properly calibrated device would allow for the input sound pressure to be calculated by relating the transfer function and the actual external pressure. In practice this calibration data would be provided in the form of look-up tables for use by a processor.
- In
FIG. 1 , there is shown a structure for an implantable microphone device. The device includes ahousing 3 having a primaryinternal cavity 2. Theinternal cavity 2 is hermetically sealed from the exterior of thehousing 3 by aprimary membrane 1, which allows sound waves to pass through from the exterior of thehousing 3 into theprimary cavity 2. Theprimary membrane 1 can be formed of biocompatible Titanium or other material suitable for implantable use. Arranged in theprimary cavity 2 is a microphone assembly, illustrated as an electret microphone. The microphone assembly has microphone transducer in the form of aMylar electret membrane 5 which outputs an electrical signal representative of detected pressure variations. Amicrophone membrane 7 having a purge hole formed therethrough is arranged in the path of the sound waves to theelectret membrane 5. The purge hole provides internal ambient pressure compensation across themicrophone membrane 7. A dividingmembrane 11 having anaperture 10 is arranged between the microphone assembly and theprimary membrane 1. Theaperture 10 functions to focus received sound waves towards the centre of the microphone assembly. - The
housing 3 also includes asecondary cavity 4, in which the vanous electronic components for the device, such as a printed circuit board, can be housed. Thesecondary cavity 4 is connected to theprimary cavity 2 by apurge passage 6 which maintains an equalization of internal ambient pressure in the 2, 4.respective cavities - The device is provided with an
external pressure sensor 13 arranged to detect and measureambient pressure 12 external to thehousing 3. In addition, one or moreinternal pressure sensors 14 are arranged within one or both of the primary and secondary cavities to detect and measure the internalambient pressure 8. Arranging theinternal pressure sensor 14 within the secondary cavity can prove convenient for its proximity with the electronics of the device. - A variety of different types of pressure sensors could be employed, such as: fibre optic sensors, mechanical deflection sensors, strain gauge, semiconductor peizoresistive, vibrating elements (silicon resonance, for example) and variable capacitance. Given the size constraints on an implantable device, it is considered that sensors based upon microelectromechanical systems (MEMS) are ideally suited, examples of which are:
-
- Strain gauge—which measures the change in resistance experienced a material due to change in its stretch or strain due to pressure;
- Semiconductor piezoresistive—which measures the change in conductivity of semiconductors due to change in pressure;
- Vibrating elements (such as silicon resistance)—which measures the change in vibration on the molecular level of the different material elements due to change in pressure; and
- Variable capacitance—which measures the change of capacitance due to change of distance between the plates of a capacitor due to change in pressure.
- This arrangement of external and internal pressure sensors allows the ambient pressure differential across the
primary membrane 1 to be calculated. This pressure differential can be used by a processor and taken into account when determining and applying a suitable transfer function to the electrical signal output from the microphone in order to generate a signal representative of the received sound. The generated signal can be used in the processing of suitable stimulation signals for a hearing prosthesis, such as a cochlear implant system. - As an alternative to having separate internal and external pressure sensors, a more convenient arrangement is to use a single differential pressure sensor, which outputs a differential pressure signal rather than having to calculate differential pressure from the difference between two measured signals. The variable capacitance-type sensor is readily suitable for this purpose, whereby a first plate of the
sensor 13 can be arranged with theprimary membrane 1 and thesecond plate 14 could be arranged within the internal cavity, for example with the dividingmembrane 11 or the adjacent wall. - While the present invention has been described with respect to a specific embodiment, it will be appreciated that various modifications and changes could be made without departing from the scope of the invention.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/753,841 US20150382116A1 (en) | 2008-07-24 | 2015-06-29 | Implantable microphone device |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2008903794 | 2008-07-24 | ||
| AU2008903794A AU2008903794A0 (en) | 2008-07-24 | Implantable Microphone Device | |
| PCT/AU2009/000935 WO2010009504A1 (en) | 2008-07-24 | 2009-07-23 | Implantable microphone device |
| US201113055620A | 2011-04-11 | 2011-04-11 | |
| US14/753,841 US20150382116A1 (en) | 2008-07-24 | 2015-06-29 | Implantable microphone device |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2009/000935 Continuation WO2010009504A1 (en) | 2008-07-24 | 2009-07-23 | Implantable microphone device |
| US13/055,620 Continuation US9071910B2 (en) | 2008-07-24 | 2009-07-23 | Implantable microphone device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150382116A1 true US20150382116A1 (en) | 2015-12-31 |
Family
ID=41569927
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/055,620 Active 2032-08-27 US9071910B2 (en) | 2008-07-24 | 2009-07-23 | Implantable microphone device |
| US14/753,841 Abandoned US20150382116A1 (en) | 2008-07-24 | 2015-06-29 | Implantable microphone device |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/055,620 Active 2032-08-27 US9071910B2 (en) | 2008-07-24 | 2009-07-23 | Implantable microphone device |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US9071910B2 (en) |
| WO (1) | WO2010009504A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018235036A1 (en) * | 2017-06-21 | 2018-12-27 | Cochlear Limited | IMPLANTABLE MICROPHONE MANAGEMENT |
| US20190311731A1 (en) * | 2018-04-09 | 2019-10-10 | Well Checked Systems International LLC | System and Method for Machine Learning Predictive Maintenance Through Auditory Detection on Natural Gas Compressors |
| WO2021204382A1 (en) * | 2020-04-08 | 2021-10-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Implant |
| WO2023031894A1 (en) * | 2021-09-06 | 2023-03-09 | Cochlear Limited | Implantable microphone management |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010102342A1 (en) * | 2009-03-13 | 2010-09-16 | Cochlear Limited | Improved dacs actuator |
| US8873783B2 (en) | 2010-03-19 | 2014-10-28 | Advanced Bionics Ag | Waterproof acoustic element enclosures and apparatus including the same |
| US8644115B2 (en) * | 2011-01-04 | 2014-02-04 | Postech Academy-Industry Foundation | Hydrophone and pressure balancing device for using for hydrophone |
| WO2012099756A1 (en) | 2011-01-18 | 2012-07-26 | Advanced Bionics Ag | Moisture resistant headpieces and implantable cochlear stimulation systems including the same |
| US20150367130A1 (en) * | 2014-06-18 | 2015-12-24 | Cochlear Limited | Internal pressure management system |
| US10525265B2 (en) | 2014-12-09 | 2020-01-07 | Cochlear Limited | Impulse noise management |
| US10463476B2 (en) | 2017-04-28 | 2019-11-05 | Cochlear Limited | Body noise reduction in auditory prostheses |
| US11722815B2 (en) * | 2017-06-21 | 2023-08-08 | Cochlear Limited | Implantable microphone management |
| WO2019193503A1 (en) | 2018-04-04 | 2019-10-10 | Cochlear Limited | System and method for adaptive calibration of subcutaneous microphone |
| US11935350B2 (en) * | 2019-04-02 | 2024-03-19 | Rai Strategic Holdings, Inc. | Functional control and age verification of electronic devices through speaker communication |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6422991B1 (en) * | 1997-12-16 | 2002-07-23 | Symphonix Devices, Inc. | Implantable microphone having improved sensitivity and frequency response |
| US20040168519A1 (en) * | 2001-06-08 | 2004-09-02 | Edvard Kalvensten | Miniaturized pressure sensor |
| US20050015789A1 (en) * | 2003-07-17 | 2005-01-20 | Pen Guo-Chen | Front panel for an optical disc drive |
| US20100032949A1 (en) * | 2008-08-08 | 2010-02-11 | CMNA Power | System and method for altering drag and lift forces on a wind capturing structure |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3963881A (en) * | 1973-05-29 | 1976-06-15 | Thermo Electron Corporation | Unidirectional condenser microphone |
| US4596902A (en) * | 1985-07-16 | 1986-06-24 | Samuel Gilman | Processor controlled ear responsive hearing aid and method |
| US4868799A (en) | 1988-10-11 | 1989-09-19 | Frank Massa | Means for equalizing the internal pressure in an underwater transducer employing a vibratile piston to permit operation of the transducer at water depths in excess of a few hundred feet |
| AT407815B (en) * | 1990-07-13 | 2001-06-25 | Viennatone Gmbh | HEARING AID |
| US5524056A (en) * | 1993-04-13 | 1996-06-04 | Etymotic Research, Inc. | Hearing aid having plural microphones and a microphone switching system |
| DK172085B1 (en) * | 1995-06-23 | 1997-10-13 | Microtronic As | Micromechanical Microphone |
| US5703957A (en) * | 1995-06-30 | 1997-12-30 | Lucent Technologies Inc. | Directional microphone assembly |
| DE19802568C2 (en) | 1998-01-23 | 2003-05-28 | Cochlear Ltd | Hearing aid with compensation of acoustic and / or mechanical feedback |
| WO2003061335A1 (en) | 2002-01-02 | 2003-07-24 | Advanced Bionics Corporation | Wideband low-noise implantable microphone assembly |
| US6837857B2 (en) | 2002-07-29 | 2005-01-04 | Phonak Ag | Method for the recording of acoustic parameters for the customization of hearing aids |
| DE60320632T2 (en) | 2002-12-23 | 2009-06-04 | Sonion Roskilde A/S | Encapsulated earphone with an expandable means, e.g. a balloon |
| US7043037B2 (en) * | 2004-01-16 | 2006-05-09 | George Jay Lichtblau | Hearing aid having acoustical feedback protection |
| US7489793B2 (en) | 2005-07-08 | 2009-02-10 | Otologics, Llc | Implantable microphone with shaped chamber |
| US8553903B2 (en) * | 2007-06-27 | 2013-10-08 | Alcatel Lucent | Sound-direction detector having a miniature sensor |
| ATE551692T1 (en) * | 2008-02-05 | 2012-04-15 | Phonak Ag | METHOD FOR REDUCING NOISE IN AN INPUT SIGNAL OF A HEARING AID AND A HEARING AID |
-
2009
- 2009-07-23 US US13/055,620 patent/US9071910B2/en active Active
- 2009-07-23 WO PCT/AU2009/000935 patent/WO2010009504A1/en not_active Ceased
-
2015
- 2015-06-29 US US14/753,841 patent/US20150382116A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6422991B1 (en) * | 1997-12-16 | 2002-07-23 | Symphonix Devices, Inc. | Implantable microphone having improved sensitivity and frequency response |
| US20040168519A1 (en) * | 2001-06-08 | 2004-09-02 | Edvard Kalvensten | Miniaturized pressure sensor |
| US20050015789A1 (en) * | 2003-07-17 | 2005-01-20 | Pen Guo-Chen | Front panel for an optical disc drive |
| US20100032949A1 (en) * | 2008-08-08 | 2010-02-11 | CMNA Power | System and method for altering drag and lift forces on a wind capturing structure |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018235036A1 (en) * | 2017-06-21 | 2018-12-27 | Cochlear Limited | IMPLANTABLE MICROPHONE MANAGEMENT |
| US10973626B2 (en) | 2017-06-21 | 2021-04-13 | Cochlear Limited | Implantable microphone management |
| US20190311731A1 (en) * | 2018-04-09 | 2019-10-10 | Well Checked Systems International LLC | System and Method for Machine Learning Predictive Maintenance Through Auditory Detection on Natural Gas Compressors |
| WO2019199845A1 (en) * | 2018-04-09 | 2019-10-17 | Well Checked Systems International LLC | System and method for machine learning predictive maintenance through auditory detection on natural gas compressors |
| US10991381B2 (en) * | 2018-04-09 | 2021-04-27 | Well Checked Systems International LLC | System and method for machine learning predictive maintenance through auditory detection on natural gas compressors |
| WO2021204382A1 (en) * | 2020-04-08 | 2021-10-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Implant |
| CN115515528A (en) * | 2020-04-08 | 2022-12-23 | 弗劳恩霍夫应用研究促进协会 | Implant and method of manufacturing the same |
| AU2024259735B2 (en) * | 2020-04-08 | 2025-11-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Implant |
| WO2023031894A1 (en) * | 2021-09-06 | 2023-03-09 | Cochlear Limited | Implantable microphone management |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110178438A1 (en) | 2011-07-21 |
| US9071910B2 (en) | 2015-06-30 |
| WO2010009504A1 (en) | 2010-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9071910B2 (en) | Implantable microphone device | |
| US7214179B2 (en) | Low acceleration sensitivity microphone | |
| US9131323B2 (en) | Hearing prosthesis having an implantable actuator system | |
| US7245734B2 (en) | Directional microphone | |
| EP3780650A1 (en) | Vibration removal apparatus and method for dual-microphone earphones | |
| US20090141922A1 (en) | Implantable microphone with shaped chamber | |
| US7840020B1 (en) | Low acceleration sensitivity microphone | |
| CN105532020A (en) | Microphone with internal parameter calibration | |
| CN106878906A (en) | Measuring equipment for bone conduction hearing devices | |
| AU2007216666B2 (en) | Method and device for determining an effective vent | |
| US8379897B2 (en) | Hearing assistance device having reduced mechanical feedback | |
| JP6676258B2 (en) | Calibration method of measurement data in body sound measurement system | |
| US11956581B2 (en) | Microphone unit having a pressurized chamber | |
| CN217064005U (en) | Hearing device | |
| CN110907029A (en) | Calibration method of vibration sensing device | |
| US9584926B2 (en) | Implantable microphone | |
| JP6018025B2 (en) | Sample information processing device | |
| US20250097654A1 (en) | Hearing device | |
| EP1747699B1 (en) | Low acceleration sensitivity microphone | |
| CN116762360A (en) | Acoustic and vibration sensor | |
| CN119946478A (en) | Implantable Microphone | |
| US20250159402A1 (en) | Compact vibration sensor | |
| US9584931B2 (en) | Middle ear implantable microphone | |
| Han et al. | Design and fabrication of an implantable microphone relate to compensating damping effects of skin | |
| Woo et al. | Simulation of an implantable microphone in the middle ear cavity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: COCHLEAR LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAN GERWEN, PETER BART JOS;REEL/FRAME:037466/0210 Effective date: 20150609 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |