US20150368207A1 - Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives - Google Patents
Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives Download PDFInfo
- Publication number
- US20150368207A1 US20150368207A1 US14/803,650 US201514803650A US2015368207A1 US 20150368207 A1 US20150368207 A1 US 20150368207A1 US 201514803650 A US201514803650 A US 201514803650A US 2015368207 A1 US2015368207 A1 US 2015368207A1
- Authority
- US
- United States
- Prior art keywords
- iodo
- pyrimidine
- mif
- substituted
- phenylpyrimidine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 201000010099 disease Diseases 0.000 title claims abstract description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 16
- 102000009073 Macrophage Migration-Inhibitory Factors Human genes 0.000 title claims abstract description 6
- 108010048043 Macrophage Migration-Inhibitory Factors Proteins 0.000 title claims abstract description 6
- 150000005701 iodopyrimidines Chemical class 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 128
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 32
- 125000003118 aryl group Chemical group 0.000 claims abstract description 25
- 125000002619 bicyclic group Chemical group 0.000 claims abstract description 23
- 125000006574 non-aromatic ring group Chemical group 0.000 claims abstract description 20
- 125000003367 polycyclic group Chemical group 0.000 claims abstract description 19
- 150000001336 alkenes Chemical class 0.000 claims abstract description 18
- 150000001345 alkine derivatives Chemical class 0.000 claims abstract description 18
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 5
- -1 wherein R is H Chemical group 0.000 claims description 50
- 206010028980 Neoplasm Diseases 0.000 claims description 29
- 125000004432 carbon atom Chemical group C* 0.000 claims description 28
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 28
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 27
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 26
- 125000005843 halogen group Chemical group 0.000 claims description 24
- 230000004913 activation Effects 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 22
- 210000004881 tumor cell Anatomy 0.000 claims description 20
- 125000005842 heteroatom Chemical group 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 230000002401 inhibitory effect Effects 0.000 claims description 17
- 229910052717 sulfur Inorganic materials 0.000 claims description 17
- 230000002255 enzymatic effect Effects 0.000 claims description 14
- 230000035755 proliferation Effects 0.000 claims description 14
- 239000000651 prodrug Substances 0.000 claims description 13
- 229940002612 prodrug Drugs 0.000 claims description 13
- XIRSLUKJGFXASF-UHFFFAOYSA-N 4-(2-fluorophenyl)-6-iodopyrimidine Chemical compound FC1=CC=CC=C1C1=CC(I)=NC=N1 XIRSLUKJGFXASF-UHFFFAOYSA-N 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- 208000027866 inflammatory disease Diseases 0.000 claims description 10
- 239000002207 metabolite Substances 0.000 claims description 10
- RZRFBHSIPYOYRG-UHFFFAOYSA-N 3-(6-iodopyrimidin-4-yl)benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(I)C=2)=C1 RZRFBHSIPYOYRG-UHFFFAOYSA-N 0.000 claims description 8
- BSKJZPCEQVTMFF-UHFFFAOYSA-N 3-(6-iodopyrimidin-4-yl)quinoline Chemical compound C1=NC(I)=CC(C=2C=C3C=CC=CC3=NC=2)=N1 BSKJZPCEQVTMFF-UHFFFAOYSA-N 0.000 claims description 7
- YMSHMRYXDJEJBI-UHFFFAOYSA-N 4-(1-benzofuran-2-yl)-6-iodopyrimidine Chemical compound C1=NC(I)=CC(C=2OC3=CC=CC=C3C=2)=N1 YMSHMRYXDJEJBI-UHFFFAOYSA-N 0.000 claims description 7
- VEEIKLVRSSKQBT-UHFFFAOYSA-N 4-(1-benzothiophen-2-yl)-6-iodopyrimidine Chemical compound C1=NC(I)=CC(C=2SC3=CC=CC=C3C=2)=N1 VEEIKLVRSSKQBT-UHFFFAOYSA-N 0.000 claims description 7
- QYVQWCFGHSJRTA-UHFFFAOYSA-N 4-(6-iodopyrimidin-4-yl)quinoline Chemical compound C1=NC(I)=CC(C=2C3=CC=CC=C3N=CC=2)=N1 QYVQWCFGHSJRTA-UHFFFAOYSA-N 0.000 claims description 7
- CZFSQYUTZTVNOE-UHFFFAOYSA-N 5-(6-iodopyrimidin-4-yl)isoquinoline Chemical compound C1=NC(I)=CC(C=2C3=CC=NC=C3C=CC=2)=N1 CZFSQYUTZTVNOE-UHFFFAOYSA-N 0.000 claims description 7
- CUOXUCICJUFDMU-UHFFFAOYSA-N 8-(6-iodopyrimidin-4-yl)quinoline Chemical compound C1=NC(I)=CC(C=2C3=NC=CC=C3C=CC=2)=N1 CUOXUCICJUFDMU-UHFFFAOYSA-N 0.000 claims description 7
- 244000052769 pathogen Species 0.000 claims description 7
- BXABPEVDPLDQLX-UHFFFAOYSA-N 2-(6-iodopyrimidin-4-yl)-1-benzothiophen-4-ol Chemical compound C=1C=2C(O)=CC=CC=2SC=1C1=CC(I)=NC=N1 BXABPEVDPLDQLX-UHFFFAOYSA-N 0.000 claims description 6
- HSENTCLBWCOMHQ-UHFFFAOYSA-N 2-(6-iodopyrimidin-4-yl)-1-benzothiophene-4-carboxamide Chemical compound C=1C=2C(C(=O)N)=CC=CC=2SC=1C1=CC(I)=NC=N1 HSENTCLBWCOMHQ-UHFFFAOYSA-N 0.000 claims description 6
- ZWIYVGDIBHOZIP-UHFFFAOYSA-N 2-(6-iodopyrimidin-4-yl)phenol Chemical compound OC1=CC=CC=C1C1=CC(I)=NC=N1 ZWIYVGDIBHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- JMSVWGOSBFXRSP-UHFFFAOYSA-N 2-butylsulfanyl-4-iodo-6-phenylpyrimidine Chemical compound CCCCSC1=NC(I)=CC(C=2C=CC=CC=2)=N1 JMSVWGOSBFXRSP-UHFFFAOYSA-N 0.000 claims description 6
- ZOSGPSUKOIZHMR-UHFFFAOYSA-N 4-(4-fluoropyridin-3-yl)-6-iodopyrimidine Chemical compound FC1=CC=NC=C1C1=CC(I)=NC=N1 ZOSGPSUKOIZHMR-UHFFFAOYSA-N 0.000 claims description 6
- OSMXTAUJDSOUHO-UHFFFAOYSA-N 4-(6-iodopyrimidin-4-yl)isoquinoline Chemical compound C1=NC(I)=CC(C=2C3=CC=CC=C3C=NC=2)=N1 OSMXTAUJDSOUHO-UHFFFAOYSA-N 0.000 claims description 6
- HQRZDBLSUXMUJT-UHFFFAOYSA-N 4-iodo-2-methylsulfanyl-6-phenylpyrimidine Chemical compound CSC1=NC(I)=CC(C=2C=CC=CC=2)=N1 HQRZDBLSUXMUJT-UHFFFAOYSA-N 0.000 claims description 6
- INAPZPOHMYBZOQ-UHFFFAOYSA-N 4-iodo-6-phenyl-2-propan-2-ylsulfanylpyrimidine Chemical compound CC(C)SC1=NC(I)=CC(C=2C=CC=CC=2)=N1 INAPZPOHMYBZOQ-UHFFFAOYSA-N 0.000 claims description 6
- BCSAYXXLRJDNDK-UHFFFAOYSA-N 4-iodo-6-phenyl-n-propan-2-ylpyrimidin-2-amine Chemical compound CC(C)NC1=NC(I)=CC(C=2C=CC=CC=2)=N1 BCSAYXXLRJDNDK-UHFFFAOYSA-N 0.000 claims description 6
- UBUMONPJRBZFBZ-UHFFFAOYSA-N 4-iodo-6-phenyl-n-propylpyrimidin-2-amine Chemical compound CCCNC1=NC(I)=CC(C=2C=CC=CC=2)=N1 UBUMONPJRBZFBZ-UHFFFAOYSA-N 0.000 claims description 6
- TWLJPJMAZQFIDG-UHFFFAOYSA-N 4-iodo-6-thiophen-2-ylpyrimidine Chemical compound C1=NC(I)=CC(C=2SC=CC=2)=N1 TWLJPJMAZQFIDG-UHFFFAOYSA-N 0.000 claims description 6
- SYQGXUSOJCKFMS-UHFFFAOYSA-N 4-iodo-6-thiophen-3-ylpyrimidine Chemical compound C1=NC(I)=CC(C2=CSC=C2)=N1 SYQGXUSOJCKFMS-UHFFFAOYSA-N 0.000 claims description 6
- NXKJIQUGCXYCQC-UHFFFAOYSA-N 4-iodo-n-methyl-6-phenylpyrimidin-2-amine Chemical compound CNC1=NC(I)=CC(C=2C=CC=CC=2)=N1 NXKJIQUGCXYCQC-UHFFFAOYSA-N 0.000 claims description 6
- 208000023275 Autoimmune disease Diseases 0.000 claims description 6
- ZXQMKZJEVXYOGP-UHFFFAOYSA-N n-[2-(6-iodopyrimidin-4-yl)-1-benzothiophen-4-yl]acetamide Chemical compound C=1C=2C(NC(=O)C)=CC=CC=2SC=1C1=CC(I)=NC=N1 ZXQMKZJEVXYOGP-UHFFFAOYSA-N 0.000 claims description 6
- STTWDMCFNYXDSL-UHFFFAOYSA-N n-butyl-4-iodo-6-phenylpyrimidin-2-amine Chemical compound CCCCNC1=NC(I)=CC(C=2C=CC=CC=2)=N1 STTWDMCFNYXDSL-UHFFFAOYSA-N 0.000 claims description 6
- MWYPUYFIEKKKJM-UHFFFAOYSA-N n-ethyl-4-iodo-6-phenylpyrimidin-2-amine Chemical compound CCNC1=NC(I)=CC(C=2C=CC=CC=2)=N1 MWYPUYFIEKKKJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- CBJRNPAIXJMBHB-UHFFFAOYSA-N 2-ethylsulfanyl-4-iodo-6-phenylpyrimidine Chemical compound CCSC1=NC(I)=CC(C=2C=CC=CC=2)=N1 CBJRNPAIXJMBHB-UHFFFAOYSA-N 0.000 claims description 5
- ZXRGEUQCWDUMSA-UHFFFAOYSA-N 4-(2,3-difluoro-4-methoxyphenyl)-6-iodopyrimidine Chemical compound FC1=C(F)C(OC)=CC=C1C1=CC(I)=NC=N1 ZXRGEUQCWDUMSA-UHFFFAOYSA-N 0.000 claims description 5
- YKZYZACXXOGKPK-UHFFFAOYSA-N 4-(2,4-difluorophenyl)-6-iodopyrimidine Chemical compound FC1=CC(F)=CC=C1C1=CC(I)=NC=N1 YKZYZACXXOGKPK-UHFFFAOYSA-N 0.000 claims description 5
- CVEZHNKFVJMHFZ-UHFFFAOYSA-N 4-(2-chlorophenyl)-6-iodopyrimidine Chemical compound ClC1=CC=CC=C1C1=CC(I)=NC=N1 CVEZHNKFVJMHFZ-UHFFFAOYSA-N 0.000 claims description 5
- XNBKVAQOPXGQEF-UHFFFAOYSA-N 4-(2-fluoro-4-methoxyphenyl)-6-iodopyrimidine Chemical compound FC1=CC(OC)=CC=C1C1=CC(I)=NC=N1 XNBKVAQOPXGQEF-UHFFFAOYSA-N 0.000 claims description 5
- JBUIOBRGEMTGEM-UHFFFAOYSA-N 4-(2-fluoropyridin-3-yl)-6-iodopyrimidine Chemical compound FC1=NC=CC=C1C1=CC(I)=NC=N1 JBUIOBRGEMTGEM-UHFFFAOYSA-N 0.000 claims description 5
- SSCMJGKBBVUYAS-UHFFFAOYSA-N 4-(3,4-difluorophenyl)-6-iodopyrimidine Chemical compound C1=C(F)C(F)=CC=C1C1=CC(I)=NC=N1 SSCMJGKBBVUYAS-UHFFFAOYSA-N 0.000 claims description 5
- NMJKDAOTFVXLBD-UHFFFAOYSA-N 4-(3-fluoro-4-methoxyphenyl)-6-iodopyrimidine Chemical compound C1=C(F)C(OC)=CC=C1C1=CC(I)=NC=N1 NMJKDAOTFVXLBD-UHFFFAOYSA-N 0.000 claims description 5
- QGZVWZZRFNVBBY-UHFFFAOYSA-N 4-(3-fluorophenyl)-6-iodopyrimidine Chemical compound FC1=CC=CC(C=2N=CN=C(I)C=2)=C1 QGZVWZZRFNVBBY-UHFFFAOYSA-N 0.000 claims description 5
- IVIKRYNLPZWENE-UHFFFAOYSA-N 4-(4-fluorophenyl)-6-iodopyrimidine Chemical compound C1=CC(F)=CC=C1C1=CC(I)=NC=N1 IVIKRYNLPZWENE-UHFFFAOYSA-N 0.000 claims description 5
- NCPPQYCXNMLPNE-UHFFFAOYSA-N 4-(6-chloropyridin-3-yl)-6-iodopyrimidine Chemical compound C1=NC(Cl)=CC=C1C1=CC(I)=NC=N1 NCPPQYCXNMLPNE-UHFFFAOYSA-N 0.000 claims description 5
- PDBPZTQQYFZPKL-UHFFFAOYSA-N 4-(6-iodopyrimidin-4-yl)benzamide Chemical compound C1=CC(C(=O)N)=CC=C1C1=CC(I)=NC=N1 PDBPZTQQYFZPKL-UHFFFAOYSA-N 0.000 claims description 5
- QEGFYUDBNZMFKN-UHFFFAOYSA-N 4-(furan-2-yl)-6-iodopyrimidine Chemical compound C1=NC(I)=CC(C=2OC=CC=2)=N1 QEGFYUDBNZMFKN-UHFFFAOYSA-N 0.000 claims description 5
- OPMABRBBQXUCDK-UHFFFAOYSA-N 4-(furan-3-yl)-6-iodopyrimidine Chemical compound C1=NC(I)=CC(C2=COC=C2)=N1 OPMABRBBQXUCDK-UHFFFAOYSA-N 0.000 claims description 5
- PUHRYBJZWQFYBU-UHFFFAOYSA-N 4-iodo-6-(2,4,5-trifluorophenyl)pyrimidine Chemical compound C1=C(F)C(F)=CC(F)=C1C1=CC(I)=NC=N1 PUHRYBJZWQFYBU-UHFFFAOYSA-N 0.000 claims description 5
- MUJVXDKSZIYGPF-UHFFFAOYSA-N 4-iodo-6-(4-methoxythiophen-2-yl)pyrimidine Chemical compound COC1=CSC(C=2N=CN=C(I)C=2)=C1 MUJVXDKSZIYGPF-UHFFFAOYSA-N 0.000 claims description 5
- WHVMHUNUJCLCHD-UHFFFAOYSA-N 4-iodo-6-[4-[(2-methylpropan-2-yl)oxymethyl]phenyl]pyrimidine Chemical compound C1=CC(COC(C)(C)C)=CC=C1C1=CC(I)=NC=N1 WHVMHUNUJCLCHD-UHFFFAOYSA-N 0.000 claims description 5
- KKGZFIFRYLJNRY-UHFFFAOYSA-N 4-iodo-6-pyridin-3-ylpyrimidine Chemical compound C1=NC(I)=CC(C=2C=NC=CC=2)=N1 KKGZFIFRYLJNRY-UHFFFAOYSA-N 0.000 claims description 5
- FRDKOAIHBZYGRH-UHFFFAOYSA-N 5-(6-iodopyrimidin-4-yl)pyridine-3-carboxamide Chemical compound NC(=O)C1=CN=CC(C=2N=CN=C(I)C=2)=C1 FRDKOAIHBZYGRH-UHFFFAOYSA-N 0.000 claims description 5
- XYDHSBJIAGCSIL-UHFFFAOYSA-N 5-(6-iodopyrimidin-4-yl)thiophene-3-carboxamide Chemical compound NC(=O)C1=CSC(C=2N=CN=C(I)C=2)=C1 XYDHSBJIAGCSIL-UHFFFAOYSA-N 0.000 claims description 5
- NOHKORRMSNOSKM-UHFFFAOYSA-N [3-(6-iodopyrimidin-4-yl)phenyl]methanol Chemical compound OCC1=CC=CC(C=2N=CN=C(I)C=2)=C1 NOHKORRMSNOSKM-UHFFFAOYSA-N 0.000 claims description 5
- 230000033115 angiogenesis Effects 0.000 claims description 5
- 230000001363 autoimmune Effects 0.000 claims description 5
- 230000005012 migration Effects 0.000 claims description 5
- 238000013508 migration Methods 0.000 claims description 5
- SIUDUQWRTHLLCF-UHFFFAOYSA-N n-[3-(6-iodopyrimidin-4-yl)phenyl]acetamide Chemical compound CC(=O)NC1=CC=CC(C=2N=CN=C(I)C=2)=C1 SIUDUQWRTHLLCF-UHFFFAOYSA-N 0.000 claims description 5
- YSJHETIRCQHUDB-UHFFFAOYSA-N n-[5-(6-iodopyrimidin-4-yl)pyridin-3-yl]acetamide Chemical compound CC(=O)NC1=CN=CC(C=2N=CN=C(I)C=2)=C1 YSJHETIRCQHUDB-UHFFFAOYSA-N 0.000 claims description 5
- FCTDHJOLDHKDMZ-UHFFFAOYSA-N n-[5-(6-iodopyrimidin-4-yl)thiophen-3-yl]acetamide Chemical compound CC(=O)NC1=CSC(C=2N=CN=C(I)C=2)=C1 FCTDHJOLDHKDMZ-UHFFFAOYSA-N 0.000 claims description 5
- RSMLIDFVGDJKSU-UHFFFAOYSA-N 4-(2,4-difluoropyridin-3-yl)-6-iodopyrimidine Chemical compound FC1=CC=NC(F)=C1C1=CC(I)=NC=N1 RSMLIDFVGDJKSU-UHFFFAOYSA-N 0.000 claims description 4
- MQPJPPRSHIAQOV-UHFFFAOYSA-N 4-(2-fluoro-6-methoxyphenyl)-6-iodopyrimidine Chemical compound COC1=CC=CC(F)=C1C1=CC(I)=NC=N1 MQPJPPRSHIAQOV-UHFFFAOYSA-N 0.000 claims description 4
- NSFCRCCELKOFPY-UHFFFAOYSA-N 4-(4-ethoxyphenyl)-6-iodopyrimidine Chemical compound C1=CC(OCC)=CC=C1C1=CC(I)=NC=N1 NSFCRCCELKOFPY-UHFFFAOYSA-N 0.000 claims description 4
- YYHZYUAEKIWFBA-UHFFFAOYSA-N 4-(6-fluoro-2h-pyrimidin-1-yl)-6-iodopyrimidine Chemical compound FC1=CC=NCN1C1=CC(I)=NC=N1 YYHZYUAEKIWFBA-UHFFFAOYSA-N 0.000 claims description 4
- VMZFETNPSPNGQM-UHFFFAOYSA-N 4-iodo-6-(4-methoxypyridin-3-yl)pyrimidine Chemical compound COC1=CC=NC=C1C1=CC(I)=NC=N1 VMZFETNPSPNGQM-UHFFFAOYSA-N 0.000 claims description 4
- 206010027476 Metastases Diseases 0.000 claims description 4
- 241000224016 Plasmodium Species 0.000 claims description 4
- 241000589970 Spirochaetales Species 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 244000000013 helminth Species 0.000 claims description 4
- 230000009545 invasion Effects 0.000 claims description 4
- 230000003071 parasitic effect Effects 0.000 claims description 4
- 230000001717 pathogenic effect Effects 0.000 claims description 4
- 230000001988 toxicity Effects 0.000 claims description 4
- 231100000419 toxicity Toxicity 0.000 claims description 4
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 3
- 102000004127 Cytokines Human genes 0.000 claims description 3
- 108090000695 Cytokines Proteins 0.000 claims description 3
- 201000004624 Dermatitis Diseases 0.000 claims description 3
- 201000004681 Psoriasis Diseases 0.000 claims description 3
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 claims description 3
- 206010040047 Sepsis Diseases 0.000 claims description 3
- 206010040070 Septic Shock Diseases 0.000 claims description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 claims description 3
- 201000000028 adult respiratory distress syndrome Diseases 0.000 claims description 3
- 206010003246 arthritis Diseases 0.000 claims description 3
- 208000006673 asthma Diseases 0.000 claims description 3
- 230000012292 cell migration Effects 0.000 claims description 3
- 206010025135 lupus erythematosus Diseases 0.000 claims description 3
- 201000006417 multiple sclerosis Diseases 0.000 claims description 3
- 230000002062 proliferating effect Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 230000036303 septic shock Effects 0.000 claims description 3
- 208000019553 vascular disease Diseases 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 claims description 2
- 238000001990 intravenous administration Methods 0.000 claims description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 claims 4
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 claims 4
- 229920001184 polypeptide Polymers 0.000 claims 4
- 102000004196 processed proteins & peptides Human genes 0.000 claims 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims 4
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 claims 2
- 230000009401 metastasis Effects 0.000 claims 2
- DWGPZROJVXZLDQ-UHFFFAOYSA-N C(C)SC1=NC(=CC(=N1)I)C1=CC=CC=C1.CSC1=NC(=CC(=N1)I)C1=CC=CC=C1 Chemical compound C(C)SC1=NC(=CC(=N1)I)C1=CC=CC=C1.CSC1=NC(=CC(=N1)I)C1=CC=CC=C1 DWGPZROJVXZLDQ-UHFFFAOYSA-N 0.000 claims 1
- 238000007912 intraperitoneal administration Methods 0.000 claims 1
- 230000005764 inhibitory process Effects 0.000 abstract description 31
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 62
- 238000005160 1H NMR spectroscopy Methods 0.000 description 44
- XJPZKYIHCLDXST-UHFFFAOYSA-N 4,6-dichloropyrimidine Chemical compound ClC1=CC(Cl)=NC=N1 XJPZKYIHCLDXST-UHFFFAOYSA-N 0.000 description 38
- 210000004027 cell Anatomy 0.000 description 32
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 32
- 229940071870 hydroiodic acid Drugs 0.000 description 32
- 125000002346 iodo group Chemical group I* 0.000 description 32
- ZTCJXHNJVLUUMR-UHFFFAOYSA-N 4-iodo-6-phenylpyrimidine Chemical compound C1=NC(I)=CC(C=2C=CC=CC=2)=N1 ZTCJXHNJVLUUMR-UHFFFAOYSA-N 0.000 description 27
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 26
- 150000001408 amides Chemical class 0.000 description 26
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 22
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 22
- 238000001994 activation Methods 0.000 description 19
- 210000004698 lymphocyte Anatomy 0.000 description 17
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 239000005557 antagonist Substances 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 14
- 241000699670 Mus sp. Species 0.000 description 13
- 125000003545 alkoxy group Chemical group 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 13
- 150000002148 esters Chemical class 0.000 description 13
- 125000000449 nitro group Chemical class [O-][N+](*)=O 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 0 *C1=CC(I)=[Y]C(B)=C1 Chemical compound *C1=CC(I)=[Y]C(B)=C1 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 11
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 11
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 11
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 210000004204 blood vessel Anatomy 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- 210000004072 lung Anatomy 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- HAXBARUHJFHXTI-UHFFFAOYSA-N 4-chloro-6-(2-fluorophenyl)pyrimidine Chemical compound FC1=CC=CC=C1C1=CC(Cl)=NC=N1 HAXBARUHJFHXTI-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 210000002257 embryonic structure Anatomy 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- 230000004614 tumor growth Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 5
- 229920001917 Ficoll Polymers 0.000 description 5
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 5
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 5
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 5
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 5
- 206010027452 Metastases to bone Diseases 0.000 description 5
- 210000001853 liver microsome Anatomy 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 4
- 108010017384 Blood Proteins Proteins 0.000 description 4
- 102000004506 Blood Proteins Human genes 0.000 description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 4
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 4
- 210000001218 blood-brain barrier Anatomy 0.000 description 4
- 239000013592 cell lysate Substances 0.000 description 4
- 230000002354 daily effect Effects 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 206010061289 metastatic neoplasm Diseases 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 201000002528 pancreatic cancer Diseases 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ZWNCJCPLPUBNCZ-UHFFFAOYSA-N 1,2-dimethoxyethane;hydrate Chemical compound O.COCCOC ZWNCJCPLPUBNCZ-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229930012538 Paclitaxel Natural products 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 238000003818 flash chromatography Methods 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 108010082117 matrigel Proteins 0.000 description 3
- 210000004088 microvessel Anatomy 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000013152 negative regulation of cell migration Effects 0.000 description 3
- 229960001592 paclitaxel Drugs 0.000 description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004885 tandem mass spectrometry Methods 0.000 description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- QCSLIRFWJPOENV-UHFFFAOYSA-N (2-fluorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1F QCSLIRFWJPOENV-UHFFFAOYSA-N 0.000 description 2
- WISVYBFTUYSGNO-UHFFFAOYSA-N 4-chloro-6-thiophen-2-ylpyrimidine Chemical compound C1=NC(Cl)=CC(C=2SC=CC=2)=N1 WISVYBFTUYSGNO-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- 230000001772 anti-angiogenic effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000011717 athymic nude mouse Methods 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- XKEYHBLSCGBBGU-UHFFFAOYSA-N isoquinolin-5-ylboronic acid Chemical compound N1=CC=C2C(B(O)O)=CC=CC2=C1 XKEYHBLSCGBBGU-UHFFFAOYSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 210000004705 lumbosacral region Anatomy 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000003228 microsomal effect Effects 0.000 description 2
- 210000001589 microsome Anatomy 0.000 description 2
- 238000010232 migration assay Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229960003604 testosterone Drugs 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 2
- 229960005080 warfarin Drugs 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- HIWYFMBSFSTYGU-UHFFFAOYSA-N (2,3-difluoro-4-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C(F)=C1F HIWYFMBSFSTYGU-UHFFFAOYSA-N 0.000 description 1
- KCHHKNCSISEAAE-UHFFFAOYSA-N (2,4,5-trifluorophenyl)boronic acid Chemical compound OB(O)C1=CC(F)=C(F)C=C1F KCHHKNCSISEAAE-UHFFFAOYSA-N 0.000 description 1
- QQLRSCZSKQTFGY-UHFFFAOYSA-N (2,4-difluorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(F)C=C1F QQLRSCZSKQTFGY-UHFFFAOYSA-N 0.000 description 1
- LCCZTROJRJFXNV-UHFFFAOYSA-N (2,6-difluoropyridin-3-yl)boronic acid Chemical compound OB(O)C1=CC=C(F)N=C1F LCCZTROJRJFXNV-UHFFFAOYSA-N 0.000 description 1
- RRCMGJCFMJBHQC-UHFFFAOYSA-N (2-chlorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1Cl RRCMGJCFMJBHQC-UHFFFAOYSA-N 0.000 description 1
- ULUIXJDBPYBAHS-UHFFFAOYSA-N (2-fluoro-4-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C(F)=C1 ULUIXJDBPYBAHS-UHFFFAOYSA-N 0.000 description 1
- XOVMDVZAWWQSDC-UHFFFAOYSA-N (2-fluoro-6-methoxyphenyl)boronic acid Chemical compound COC1=CC=CC(F)=C1B(O)O XOVMDVZAWWQSDC-UHFFFAOYSA-N 0.000 description 1
- AJMBTFGSRKFCLJ-UHFFFAOYSA-N (2-fluoropyridin-3-yl)boronic acid;hydrate Chemical compound O.OB(O)C1=CC=CN=C1F AJMBTFGSRKFCLJ-UHFFFAOYSA-N 0.000 description 1
- RMGYQBHKEWWTOY-UHFFFAOYSA-N (3,4-difluorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(F)C(F)=C1 RMGYQBHKEWWTOY-UHFFFAOYSA-N 0.000 description 1
- IBTSWKLSEOGJGJ-UHFFFAOYSA-N (3-acetamidophenyl)boronic acid Chemical compound CC(=O)NC1=CC=CC(B(O)O)=C1 IBTSWKLSEOGJGJ-UHFFFAOYSA-N 0.000 description 1
- IILGLPAJXQMKGQ-UHFFFAOYSA-N (3-fluoro-4-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=C1F IILGLPAJXQMKGQ-UHFFFAOYSA-N 0.000 description 1
- KNXQDJCZSVHEIW-UHFFFAOYSA-N (3-fluorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(F)=C1 KNXQDJCZSVHEIW-UHFFFAOYSA-N 0.000 description 1
- ZONJMULNQBNBGU-UHFFFAOYSA-N (4-ethoxy-3-fluorophenyl)boronic acid Chemical compound CCOC1=CC=C(B(O)O)C=C1F ZONJMULNQBNBGU-UHFFFAOYSA-N 0.000 description 1
- WPAPNCXMYWRTTL-UHFFFAOYSA-N (6-chloropyridin-3-yl)boronic acid Chemical compound OB(O)C1=CC=C(Cl)N=C1 WPAPNCXMYWRTTL-UHFFFAOYSA-N 0.000 description 1
- OJBYZWHAPXIJID-UHFFFAOYSA-N (6-fluoropyridin-3-yl)boronic acid Chemical compound OB(O)C1=CC=C(F)N=C1 OJBYZWHAPXIJID-UHFFFAOYSA-N 0.000 description 1
- DHADXDMPEUWEAS-UHFFFAOYSA-N (6-methoxypyridin-3-yl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=N1 DHADXDMPEUWEAS-UHFFFAOYSA-N 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- LBUNNMJLXWQQBY-UHFFFAOYSA-N 4-fluorophenylboronic acid Chemical compound OB(O)C1=CC=C(F)C=C1 LBUNNMJLXWQQBY-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- OTIDGJQHZIKFKI-UHFFFAOYSA-N CCOC1=C(F)C=C(C2=CC(I)=NC=N2)C=C1 Chemical compound CCOC1=C(F)C=C(C2=CC(I)=NC=N2)C=C1 OTIDGJQHZIKFKI-UHFFFAOYSA-N 0.000 description 1
- FCXAZXVSEMOZAP-UHFFFAOYSA-N COC1=CC=C(C2=CC(I)=NC=N2)C=N1 Chemical compound COC1=CC=C(C2=CC(I)=NC=N2)C=N1 FCXAZXVSEMOZAP-UHFFFAOYSA-N 0.000 description 1
- 238000003734 CellTiter-Glo Luminescent Cell Viability Assay Methods 0.000 description 1
- CNOANHADXPTKRG-UHFFFAOYSA-N ClC1=CC(C2=CC=CS2)=NC=N1.ClC1=CC(Cl)=NC=N1.IC1=CC(C2=CC=CS2)=NC=N1.OB(O)C1=CC=CS1 Chemical compound ClC1=CC(C2=CC=CS2)=NC=N1.ClC1=CC(Cl)=NC=N1.IC1=CC(C2=CC=CS2)=NC=N1.OB(O)C1=CC=CS1 CNOANHADXPTKRG-UHFFFAOYSA-N 0.000 description 1
- JMAXBWIEJNTWFE-UHFFFAOYSA-N ClC1=CC(Cl)=NC=N1.FC1=C(C2=NC=NC(Cl)=C2)C=CC=C1.FC1=C(C2=NC=NC(I)=C2)C=CC=C1.OB(O)C1=C(F)C=CC=C1 Chemical compound ClC1=CC(Cl)=NC=N1.FC1=C(C2=NC=NC(Cl)=C2)C=CC=C1.FC1=C(C2=NC=NC(I)=C2)C=CC=C1.OB(O)C1=C(F)C=CC=C1 JMAXBWIEJNTWFE-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- IHFDSRIVBNRSSN-UHFFFAOYSA-N FC1=CC=C(C2=CC(I)=NC=N2)C(F)=N1 Chemical compound FC1=CC=C(C2=CC(I)=NC=N2)C(F)=N1 IHFDSRIVBNRSSN-UHFFFAOYSA-N 0.000 description 1
- WHDOHIPQSDARES-UHFFFAOYSA-N FC1=CC=C(C2=CC(I)=NC=N2)C=N1 Chemical compound FC1=CC=C(C2=CC(I)=NC=N2)C=N1 WHDOHIPQSDARES-UHFFFAOYSA-N 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- VJNCICVKUHKIIV-LURJTMIESA-N L-dopachrome Chemical compound O=C1C(=O)C=C2N[C@H](C(=O)O)CC2=C1 VJNCICVKUHKIIV-LURJTMIESA-N 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- LTNTXKIEFFICAY-UHFFFAOYSA-N N=COCC1=CN=CC(C2=NC=NC(I)=C2)=C1 Chemical compound N=COCC1=CN=CC(C2=NC=NC(I)=C2)=C1 LTNTXKIEFFICAY-UHFFFAOYSA-N 0.000 description 1
- JAZNJUYTJILJFY-UHFFFAOYSA-N N=COCC1=CSC(C2=NC=NC(I)=C2)=C1 Chemical compound N=COCC1=CSC(C2=NC=NC(I)=C2)=C1 JAZNJUYTJILJFY-UHFFFAOYSA-N 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- UCSJTGSJPHWTNX-UHFFFAOYSA-N O=CNC1=CN=CC(C2=NC=NC(I)=C2)=C1 Chemical compound O=CNC1=CN=CC(C2=NC=NC(I)=C2)=C1 UCSJTGSJPHWTNX-UHFFFAOYSA-N 0.000 description 1
- GBVIEGPHUXGLOW-UHFFFAOYSA-N O=CNC1=CSC(C2=NC=NC(I)=C2)=C1 Chemical compound O=CNC1=CSC(C2=NC=NC(I)=C2)=C1 GBVIEGPHUXGLOW-UHFFFAOYSA-N 0.000 description 1
- LDASFEFTZRKQHJ-UHFFFAOYSA-N OCC1=CC=CC(F)=C1C1=CC(I)=NC=N1 Chemical compound OCC1=CC=CC(F)=C1C1=CC(I)=NC=N1 LDASFEFTZRKQHJ-UHFFFAOYSA-N 0.000 description 1
- ZZQMYUNTAGUZDG-UHFFFAOYSA-N OCC1=CSC(C2=NC=NC(I)=C2)=C1 Chemical compound OCC1=CSC(C2=NC=NC(I)=C2)=C1 ZZQMYUNTAGUZDG-UHFFFAOYSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000242739 Renilla Species 0.000 description 1
- 108010052090 Renilla Luciferases Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000006069 Suzuki reaction reaction Methods 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- AIJCNTOYZPKURP-UHFFFAOYSA-N [2-(trifluoromethoxy)phenyl]boronic acid Chemical compound OB(O)C1=CC=CC=C1OC(F)(F)F AIJCNTOYZPKURP-UHFFFAOYSA-N 0.000 description 1
- NKQNSAXAGLKZBP-UHFFFAOYSA-N [3-(hydrazinecarbonyl)phenyl]boronic acid Chemical compound NNC(=O)C1=CC=CC(B(O)O)=C1 NKQNSAXAGLKZBP-UHFFFAOYSA-N 0.000 description 1
- XAAQNVFGBHTNRX-UHFFFAOYSA-N [3-[(2-methylpropan-2-yl)oxymethyl]phenyl]boronic acid Chemical compound CC(C)(C)OCC1=CC=CC(B(O)O)=C1 XAAQNVFGBHTNRX-UHFFFAOYSA-N 0.000 description 1
- TZOYLNOZUCPDCL-UHFFFAOYSA-N [4-(hydrazinecarbonyl)phenyl]boronic acid Chemical compound NNC(=O)C1=CC=C(B(O)O)C=C1 TZOYLNOZUCPDCL-UHFFFAOYSA-N 0.000 description 1
- SWBBCXVELDRAPH-UHFFFAOYSA-N [4-[(2-methylpropan-2-yl)oxymethyl]phenyl]boronic acid Chemical compound CC(C)(C)OCC1=CC=C(B(O)O)C=C1 SWBBCXVELDRAPH-UHFFFAOYSA-N 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 1
- 150000001543 aryl boronic acids Chemical class 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- KMGBZBJJOKUPIA-UHFFFAOYSA-N butyl iodide Chemical compound CCCCI KMGBZBJJOKUPIA-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- AIXMJTYHQHQJLU-UHFFFAOYSA-N chembl210858 Chemical compound O1C(CC(=O)OC)CC(C=2C=CC(O)=CC=2)=N1 AIXMJTYHQHQJLU-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- PZJSZBJLOWMDRG-UHFFFAOYSA-N furan-2-ylboronic acid Chemical compound OB(O)C1=CC=CO1 PZJSZBJLOWMDRG-UHFFFAOYSA-N 0.000 description 1
- CYEFKCRAAGLNHW-UHFFFAOYSA-N furan-3-ylboronic acid Chemical compound OB(O)C=1C=COC=1 CYEFKCRAAGLNHW-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- FMKOJHQHASLBPH-UHFFFAOYSA-N isopropyl iodide Chemical compound CC(C)I FMKOJHQHASLBPH-UHFFFAOYSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- XBBDACCLCFWBSI-ZETCQYMHSA-N melevodopa Chemical compound COC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 XBBDACCLCFWBSI-ZETCQYMHSA-N 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229940037201 oris Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- ABMYEXAYWZJVOV-UHFFFAOYSA-N pyridin-3-ylboronic acid Chemical compound OB(O)C1=CC=CN=C1 ABMYEXAYWZJVOV-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- YGDICLRMNDWZAK-UHFFFAOYSA-N quinolin-3-ylboronic acid Chemical compound C1=CC=CC2=CC(B(O)O)=CN=C21 YGDICLRMNDWZAK-UHFFFAOYSA-N 0.000 description 1
- KATIRQRAVXTBNY-UHFFFAOYSA-N quinolin-4-ylboronic acid Chemical compound C1=CC=C2C(B(O)O)=CC=NC2=C1 KATIRQRAVXTBNY-UHFFFAOYSA-N 0.000 description 1
- KXJJSKYICDAICD-UHFFFAOYSA-N quinolin-8-ylboronic acid Chemical compound C1=CN=C2C(B(O)O)=CC=CC2=C1 KXJJSKYICDAICD-UHFFFAOYSA-N 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 231100000161 signs of toxicity Toxicity 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- ARYHTUPFQTUBBG-UHFFFAOYSA-N thiophen-2-ylboronic acid Chemical compound OB(O)C1=CC=CS1 ARYHTUPFQTUBBG-UHFFFAOYSA-N 0.000 description 1
- QNMBSXGYAQZCTN-UHFFFAOYSA-N thiophen-3-ylboronic acid Chemical compound OB(O)C=1C=CSC=1 QNMBSXGYAQZCTN-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 230000004865 vascular response Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/30—Halogen atoms or nitro radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/32—One oxygen, sulfur or nitrogen atom
- C07D239/38—One sulfur atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/32—One oxygen, sulfur or nitrogen atom
- C07D239/42—One nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- MIF macrophage migration inhibitory factor
- MIF may be important in the progression of inflammatory disorders.
- MIF is produced by several different pathogens including parasitic helminths, spirochetes, and plasmodium .
- irreversible inhibitors of MIF such as 4-iodo-6-phenylpyrimidine (4-IPP) and analogs may be excellent antagonists of parasite-derived MIF.
- 4-iodo-6-phenylpyrimidine (4-IPP) and analogs may be excellent antagonists of parasite-derived MIF.
- a compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof is provided, said compound having the formula:
- A is selected from the group consisting of: i) substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof; ii) substituted or unsubstituted bicyclic ring; iii) substituted or unsubstituted polycyclic rings; and iv) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; B is H, OH, OR, SR, NH 2 , NHR, alkyl or substituted alkyl or A, but when B is A, A is H or halo; R is H, alkyl or substituted alkyl of 2 to 20 carbon atoms; and X and Y are independently N or CH, but one of X and Y must be N.
- a pharmaceutical composition comprising (a) an effective amount of a Formula I compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof, and (b) one or more pharmaceutically acceptable excipients.
- a method for treating a macrophage migration inhibitory factor (MIF)-implicated disease or condition comprising administering to a patient in need thereof an effective amount of a Formula I compound, or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof.
- MIF macrophage migration inhibitory factor
- FIG. 1 depicts MIF liver enzyme inhibition as a percent of control, comparing ACT-MIF-003, ACT-MIF-002, and 4-IPP.
- FIG. 2 depicts MIF tumor enzyme inhibition as a percent of control, comparing ACT-MIF-003, ACT-MIF-002, and 4-IPP.
- FIG. 3 depicts a comparison of IC50 values across the tumor cell lines H23, MCF7, MDA-MB-231, H-460, SKOV-3, PC3, DU145, Miapaca, LnCap, Capan 1, Capan 2, and CAOV3.
- FIG. 4 depicts a comparison of IC50 values across the tumor cell lines DU145, MDA-MB-231, Miapaca, CAOV03, and HUVEC.
- FIG. 5 depicts p53 regulation of compounds compared to control (DMSO), 4-IPP, and ISO-1 at 10 ⁇ M concentration.
- Compounds tested included ACT-MIF-030, ACT-MIF-035, ACT-MIF-038, ACT-MIF-029, ACT-MIF-033, ACT-MIF-034, ACT-MIF-003, and ACT-MIF-028. Results indicate the compounds are implicated in p53 regulation.
- FIG. 6 depicts inhibition of cell proliferation IC50 values for ACT-MIF-006, ACT-MIF-035, and ACT-MIF-038 in the LOX-IMV1 tumor cell line.
- FIGS. 7A-7D depict inhibition of cell migration in the LOX-IMV1 tumor cell line at 72 hrs, for ACT-MIF-006 (A), ACT-0035 (B and D), and ACT-MIF-038 (C). Results indicate a significant inhibition of migration, even at low concentrations (0.03 ⁇ M).
- FIG. 8 depicts tumor growth inhibition of DU145 human prostate xenografts in athymic nude mice treated with ACT-MIF-001, ACT-MIF-002, and ACT-MIF-003. Results show ACT-MIF-003 significantly inhibited tumor growth.
- FIGS. 9A-9D depict tumor slices from animals treated with control (A), ACT-MIF-002 (B), ACT-MIF-001 (C), and ACT-MIF-003 (D). Blood vessel density of the tumor tissues was measured by immunohistochemistry. Results indicated a decrease in microvessel density with respect to the tumors of the control group with a statistically meaningful difference for the ACT-MIF-003 treated group.
- FIGS. 10A and 10B depict tumor growth inhibition (A) and survival data (B) in a pancreatic tumor model treated with control, ACT-MIF-002, and ACT-MIF-003. Results indicate the tested compounds had significant impact on survival and limited metastatic tumor burden.
- FIGS. 11A and 11B depict histopathological slides comparing bone marrow from pancreatic tumor model animals treated with control (A) and ACT-MIF-002 (B). Bone marrow of the vehicle treated mice is consistent with bone metastases (1) with evidence of surrounding skeletal muscle metastases from invading marrow tumor cells (2 and 3). No evidence of bone metastases was observed with spinal column sections from ACT-MIF-002 treated mice.
- FIG. 12 depicts a comparison of MIF enzyme inhibition in the liver, brain, and lung of healthy animals administered ACT-MIF-002 either intraperitoneally (IP) or per oral (PO). Results indicate the compound is orally bioavailable, crosses the brain blood barrier, and inhibits MIF enzymatic activity in both the brain and the lungs.
- IP intraperitoneally
- PO per oral
- FIGS. 13A-13D depict 4-IPP-based MIF antagonists effects on primary T lymphocyte activation/proliferation.
- FIGS. 14A and 14B depict the data from FIG. 15 as an overlay of relative fluorescence intensity of expression of CD4 ( FIG. 14A ) or CD8 ( FIG. 14B ) in PBMCs activated with plate bound anti-CD3 for 48 hours.
- FIGS. 15A-15D depict 4-IPP-based MIF antagonists effects on primary T lymphocyte activation/proliferation.
- CD25 high affinity IL-2 receptor
- FIG. 16 depicts the data from FIG. 17 as an overlay of fluorescence intensity of expression of CD25 in PBMCs activated with plate bound anti-CD3 for 48 hours.
- FIGS. 17A-17D depict 4-IPP-based MIF antagonists effects on primary T lymphocyte activation/proliferation.
- CD69 is an early marker of lymphocyte activation and the lack of a large effect on early lymphocyte activation suggests that treatment of established T cell-dependent autoimmune diseases with 4-IPP-based anti-MIF antagonists is feasible. Shown are the relative percentages of CD69 on treated vs. untreated lymphocytes.
- FIG. 18 depicts the data from FIG. 19 as an overlay of fluorescence intensity of expression of CD69 in PBMCs activated with plate bound anti-CD3 for 48 hours.
- FIGS. 19A-19D depict 4-IPP-based MIF antagonists' effects on primary T lymphocyte activation/proliferation.
- 48 hours later labeled-BrdU was added to the cells briefly, then washed, stained with labeled-anti-CD8 antibodies and analyzed for BrdU incorporation into DNA (readout for proliferation) by flow cytometry.
- FIGS. 20A-20D depict 4-IPP-based MIF antagonists' effects on primary T lymphocyte activation/proliferation.
- 48 hours later labeled-BrdU was added to the cells briefly, then washed, stained with labeled-anti-CD4 antibodies and analyzed for BrdU incorporation into DNA (readout for proliferation) by flow cytometry.
- the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ⁇ 20%, in some embodiments ⁇ 10%, in some embodiments ⁇ 5%, in some embodiments ⁇ 1%, in some embodiments ⁇ 0.5%, and in some embodiments ⁇ 0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.
- prodrug refers to any covalently bonded carriers which release the active parent drug according to the Formula I described above in vivo when such prodrug is administered to a subject.
- Prodrugs of the compounds are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds.
- substituted is defined herein as “encompassing moieties or units which can replace one or more hydrogen atoms of a hydrocarbyl moiety.
- hydrocarbyl is defined herein as any organic unit or moiety which is comprised of carbon atoms and hydrogen atoms.
- Halo or “halogen” refers to fluoro, chloro, bromo, or iodo.
- aromatic ring refers to an aromatic hydrocarbon ring system. Suitable aromatic rings of embodiments of the present invention contain 5, 6, or 7 carbon atoms in the ring. Aromatic rings can also contain 0 or 1-4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof. Non-limiting examples of suitable aromatic rings include phenyl, pyridinyl, pyrimidinyl, pyridazinyl, furanyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, and thiadiazolyl. Aromatic rings of the present invention can be unsubstituted or substituted with from 1 to 3 substituents.
- Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- non-aromatic ring refers to a non-aromatic saturated or unsaturated hydrocarbon ring system. Suitable non-aromatic rings of embodiments of the present invention contain 5, 6, or 7 carbon atoms in the ring. Non-aromatic rings can also contain 0 or 1-4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof. Non-aromatic rings of the present invention can be unsubstituted or substituted with from 1 to 3 substituents. Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- bicyclic ring refers to two fused hydrocarbon rings that may optionally include one or more heteroatoms as ring members.
- a bicyclic ring can be substituted or unsubstituted, including single or multiple substitutions.
- the rings can independently show a different degree of saturation and may be saturated, unsaturated, or aromatic. Fusion of the rings can occur in three ways: across a bond between two atoms; across a sequence of atoms (bridgehead); or at a single atom (spirocyclic).
- Bicyclic rings of the present invention include, but are not limited to, 6-5, 6-6, 6-7, 5-5, 5-6, 5-7, 7-5, and 7-6 ring systems, wherein the integers refer to the number of carbon atoms or heteroatoms in each ring in the structure.
- Bicylic rings of the present invention can be unsubstituted or substituted with from 1 to 4 substituents.
- suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- suitable bicyclic rings of the present invention include indole, quinoline, and naphthalene.
- polycyclic ring refers to three or more fused hydrocarbon rings that may optionally include one or more heteratoms as ring members.
- a polycyclic ring can be substituted or unsubstituted, including single or multiple substitutions.
- the rings can independently show a different degree of saturation and may be saturated, unsaturated, or aromatic. Fusion of the rings can occur in three ways: across a bond between two atoms; across a sequence of atoms (bridgehead); or at a single atom (spirocyclic).
- Polycyclic rings of the present invention can be unsubstituted or substituted with from 1 to 4 substituents.
- Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- alkene refers herein to a hydrocarbon chain having from 1 to 3 carbon-carbon double bonds and having 2 to 10 carbon atoms. Alkenes of the present invention can be unsubstituted or substituted with from 1 to 3 substituents.
- suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- alkyne refers herein to a hydrocarbon chain having from 1 to 3 carbon-carbon triple bonds and having 2 to 10 carbon atoms.
- Alkynes of the present invention can be unsubstituted or substituted with from 1 to 3 substituents.
- suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- alkyl refers to a saturated hydrocarbon chain having 2 to 20 carbon atoms. Alkyls of the present invention can be substituted or unsubstituted. Non-limiting examples of suitable substituents include hydroxyl, amino, thiol, morpholino, pyrrolidino, piperidino, glycol, and polyethyleneglycol (PEG) having molecular weight of 200 to 20,000.
- PEG polyethyleneglycol
- pharmaceutically-acceptable excipient means any physiologically inert, pharmacologically inactive material known to one skilled in the art, which is compatible with the physical and chemical characteristics of the particular CEL inhibitor selected for use.
- Pharmaceutically-acceptable excipients include, but are not limited to, polymers, resins, plasticizers, fillers, lubricants, diluents, binders, disintegrants, solvents, co-solvents, buffer systems, surfactants, preservatives, sweetening agents, flavoring agents, pharmaceutical grade dyes or pigments, and viscosity agents.
- MIF-implicated disease or condition refers to a disease or condition for which MIF is a factor in the onset and/or progression of the disease or condition.
- safe and effective amount of a Formula (I) compound is an amount that is effective to inhibit the MIF enzyme in an animal, specifically a mammal, more specifically a human subject, without undue adverse side effects (such as toxicity, irritation, or allergic response), commensurate with a reasonable benefit/risk ratio when used in the manner of this invention.
- the specific “safe and effective amount” will, obviously, vary with such factors as the particular condition being treated, the physical condition of the patient, the duration of treatment, the nature of concurrent therapy (if any), the specific dosage form to be used, the excipient employed, the solubility of the Formula (I) compound therein, and the dosage regimen desired for the composition.
- inflammatory disease refers to a disease characterized by inflammation, or the complex vascular and immune response to harmful stimuli.
- Inflammatory diseases include those diseases in which inflammation and immune cells are involved in the pathology of the disease.
- the inflammatory disease is selected from the group consisting of dermatitis, arthritis, rheumatoid arthritis, insulin-dependent diabetes, proliferative vascular disease, acute respiratory distress syndrome, sepsis, septic shock, psoriasis, asthma, cytokine related toxicity, lupus, multiple sclerosis, transplant-host response, and autoimmune disorders.
- A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H; and X and Y are both N.
- A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H, OH, OR, SR, NH 2 , NHR, alkyl, or substituted alkyl; X and
- A is halo
- B is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof, and X and Y are both N.
- A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H; X is N, and Y is CH.
- A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H; X is CH; and Y is N.
- A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H, OH, OR, SR, NH 2 , NHR, alkyl or substituted alkyl; X is N and
- the compound is selected from the group set forth in Table 1.
- X and Y are both N. In another embodiment, when X and Y are both N, Bis H.
- A is halo
- B is A
- X and Y are both N.
- A is I
- B is A
- X and Y are both N.
- X is N and Y is CH. In still another embodiment, when X is N and Y is CH, B is H.
- X is CH and Y is N. In a further embodiment, when X is CH and Y is N, B is H.
- A is selected from the group consisting of indole, quinoline, and naphthalene.
- the compound is 4-Iodo-6-(2-fluorophenyl)pyrimidine or 4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine.
- composition comprising:
- the compound is selected from the group set forth in Table 1.
- X and Y are both N. In another embodiment, when X and Y are both N, Bis H.
- A is halo
- B is A
- X and Y are both N.
- A is I
- B is A
- X and Y are both N.
- X is N and Y is CH. In still another embodiment, when X is N and Y is CH, B is H.
- X is CH and Y is N. In a further embodiment, when X is CH and Y is N, B is H.
- A is selected from the group consisting of indole, quinoline, and naphthalene.
- the compound is 4-Iodo-6-(2-fluorophenyl)pyrimidine or 4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine.
- a method for treating a macrophage migration inhibitory factor (MIF)-implicated disease or condition comprising administering to a patient in need thereof a safe and effective amount of a compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof, said compound having the formula:
- the compound is selected from the group set forth in Table 1.
- X and Y are both N. In another embodiment, when X and Y are both N, B is H.
- A is halo
- B is A
- X and Y are both N.
- A is I
- B is A
- X and Y are both N.
- X is N and Y is CH. In still another embodiment, when X is N and Y is CH, B is H.
- X is CH and Y is N. In a further embodiment, when X is CH and Y is N, B is H.
- A is selected from the group consisting of indole, quinoline, and naphthalene.
- the compound is 4-Iodo-6-(2-fluorophenyl)pyrimidine or 4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine.
- the MIF-implicated disease is selected from the group consisting of inflammatory disease and cancer.
- the inflammatory disease is selected from the group consisting of dermatitis, arthritis, rheumatoid arthritis, insulin-dependent diabetes, proliferative vascular disease, acute respiratory distress syndrome, sepsis, septic shock, psoriasis, asthma, cytokine related toxicity, lupus, multiple sclerosis, transplant-host response, and autoimmune disorders.
- MIF is produced by several different pathogens, including parasitic helminths, spirochetes, and plasmodium.
- irreversible inhibitors of MIF such as the MIF inhibitors of Formula I, are useful as antagonists of parasite-derived MIF.
- the MIF-implicated condition is caused by a MIF-producing pathogen.
- the MIF-producing pathogen is selected from the group consisting of parasitic helminths, spirochetes, and plasmodium.
- 4,6-Dichloropyrimidine (1) is reacted with corresponding aryl boronic acid (2) in dioxane- and aqueous sodium carbonate in the presence of a catalyst used for Suzuki coupling at 50 to 100° C. temperature.
- the resultant 4-chloro-6-arylpyrimidine (3) is isolated by crystallization or column chromatography on silica gel and is converted to corresponding 4-iodo-6-arylpyrimidine (4) using hydroiodic acid. Further treatment of HI may be needed when the reaction is not complete.
- the compound was prepared according to EXAMPLE 1 using 2,3-difluoro-4-methoxyphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-fluoro-4-methoxyphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1. Specifically, the following method was employed:
- the compound was prepared according to EXAMPLE 1 using 4-fluorophenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using furan-3-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using pyridine-3-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 3-fluorophenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 4-tert-butyloxymethylphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-fluoropyridine-3-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using furan-2-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-fluoropyridine-5-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 3-fluoro-4-methoxyphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-chloropyridine-5-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-trifluoromethoxyphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2,4-difluorophenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-fluoro-6-methoxyphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-chlorophenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 3-acetylaminophenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using thiophene-3-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 3-tert-butyloxymethylphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using isoquinoline-4-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2,4,5-trifluorophenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2,6-difluoropyridine-3-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 2-methoxypyridine-5-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1. Specifically, the following method was employed:
- the compound was prepared according to EXAMPLE 1 using 3,4-difluorophenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 3-fluoro-4-ethoxyphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 4-aminocarbamoylphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using 3-aminocarbamoylphenylboronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using quinoline-4-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using quinolin-8-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using quinolin-3-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 1 using isoquinolin-5-boronic acid and 4,6-dichloropyrimidine.
- the resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- the compound was prepared according to EXAMPLE 35 using methyl iodide as one of the reactants.
- the compound was prepared according to EXAMPLE 35 using ethyl iodide as one of the reactants.
- the compound was prepared according to EXAMPLE 35 using isopropyl iodide as one of the reactants.
- the compound was prepared according to Scheme-2 using n-butyl iodide as one of the reactant.
- the compound was prepared according to EXAMPLE 40 using methylamine as RNH 2 .
- the compound was prepared according to EXAMPLE 40 using ethylamine as RNH 2 .
- the compound was prepared according to EXAMPLE 40 using propylamine as RNH 2 .
- the compound was prepared according to EXAMPLE 40 using isopropylamine as RNH 2 .
- the compound was prepared according to EXAMPLE 40 using n-butylamine as RNH 2 .
- Solubility of exemplary compounds in varying solvents is shown in Table 2.
- the stability of the compounds in solution was examined by HPLC concomitantly. Results indicated no degradation after 2 months stored at room temperature.
- liver microsomes Stability in human liver microsomes was tested over 24 hours at 37° C. using pooled mixed gender human liver microsomes.
- Plasma protein binding was ascertained using dialysis equilibrium methods known in the art. Results are summarized in Table 5. Warfarin was used a high protein binding control.
- mice were used in the example illustrated below, but other animals could be used as well. Groups of 3 mice were administered IP 1 mg of 4-IPP and ACT-002 resuspended in 100 ⁇ l of corn oil every day for 3 days. Mice were sacrificed 6 hours after the last injection and livers were harvested.
- liver lysates were lysed in PBS containing 1 mM NaVO 4 , 2 mM NaF and a protease inhibitor cocktail (Roche Biochemical, Indianapolis, Ind.) using dounce-homogenization on ice. 500 ⁇ g of liver lysates were added to a final volume of 700 ⁇ l PBS in plastic cuvettes. 4 mM L-3,4-dihydroxyphenylalanine methyl ester and 8 mM sodium periodate (Sigma-Aldrich) were combined in a 3:2 ratio to form L-dopachrome methyl ester.
- the ex vivo MIF enzymatic activity of tumor extracts/lysates following in vivo dosing can be estimated in a manner similar to the method of EXAMPLE 61.
- Tumor bearing mice were administered 1 mg/kg daily for 3 days. 6 hours following the last dose, animals were sacrificed and tumors were resected and processed as described in EXAMPLE 61. Inhibition was also ascertained as in EXAMPLE 61. Results, shown in FIG. 2 , demonstrate significant inhibition of MIF in tumor lysates.
- IC50s for Compounds in Selected Tumor Cell Lines IC50 (microM) Du 145 ACT-MIF-001 ⁇ 10 ACT-MIF-002 24.9 ACT-MIF-003 16.5 ACT-MIF-006 36.7 ACT-MIF-017 ⁇ 10 ACT-MIF-022 ⁇ 40 ACT-MIF-029 ⁇ 20 ACT-MIF-033 ⁇ 5 ACT-MIF-034 ⁇ 100 ACT-MIF-035 21.7 ACT-MIF-038 9.2
- the up regulation of p53 was determined using a commercially available p53 luciferase assay kit. 1 ⁇ 10 5 cells/ml were plated in a 24 well plate and allowed to adhere overnight. MIF antagonists were added to the cells at the indicated concentrations for 16 hours and transiently co-transfected with 0.125 ⁇ g/well of p53-responsive luciferase promoter plasmid (Promega, Madison, Wis.) together with 0.0125 ⁇ g/well Renilla pRL-null plasmid (Promega) using Lipofectamine (Invitrogen) transfection reagent.
- MIF antagonists were added to the cells at the indicated concentrations for 16 hours and transiently co-transfected with 0.125 ⁇ g/well of p53-responsive luciferase promoter plasmid (Promega, Madison, Wis.) together with 0.0125 ⁇ g/well Renilla pRL-null plasmid (Promega)
- Normal or transformed cell lysates can be used to determine the concentration inhibiting the enzymatic activity of MIF present in cell lysates.
- Cells are cultured in the appropriate media to the required number of cells, collected, and lysed.
- Compounds to be characterized are solubilized in DMSO and serial dilutions are performed in order to obtain a range of concentrations including complete and no quantifiable inhibition. Results, reported as IC50 (concentration leading to an inhibition of 50% of the MIF enzymatic activity), are summarized in Table 7.
- the LOX-IMV1 tumor cell line was used to determine the inhibition of cell migration using the Oris Cell Migration Assay kit (Promega, Mich.). Briefly, adherent cells were seeded into each well of the kit according to kit instructions. Concentrations of cells in the migration zone were determined to calculate IC50 values. Prior to the migration assay, cell proliferation IC50s were determined to differentiate between inhibition of proliferation and migration. Results are shown in FIGS. 6 and 7 . Results show a significant inhibition of migration even at very low concentration (0.03 ⁇ M). A slightly modified method was also used to determine the inhibition of invasion. As shown in FIG. 7 , invasion was also inhibited.
- Control embryos received 10 ⁇ L of vehicle alone. On Day 8, embryos were removed from the incubator and kept at room temperature while blood vessel density were determined under each “o” ring using an image capturing system at a magnification of 160 ⁇ . The blood vessel density was measured using an angiogenesis scoring system in that arithmetic numbers 0 to 5 (or exponential numbers 1 to 32) are used to indicate number of blood vessels present at the treatment sites on the CAM. Number 5 represents the highest density and 0 represents no angiogenesis. The percent of inhibition at each dosing site was calculated using the score recorded for that site divided by the mean score obtained from the appropriate control samples for each individual experiment. The percent of inhibition for each dose of a given compound was calculated by pooling all results obtained for that dose from 8-10 embryos. Results are summarized in Table 8 below and demonstrate that among others, compounds ACT-MIF-001, ACT-MIF-002, and ACT-MIF-003 have high anti-angiogenic properties.
- the pharmacokinetic parameters of several compounds were investigated in rodents. Both oral and iv administration were investigated in rats. Blood samples were collected over time; plasma was analyzed using an LC/MS-MS method. Pharmacokinetic parameters were calculated using Win-NonLin. Terminal plasma half-lives were 7.10 hr for ACT-MIF-001, 1.66 hr for ACT-MIF-002, and 1.50 hr for ACT-MIF-003. After i.v. administration, the clearance values were 45753 mL/hr/kg for ACT-MIF-001, 7911 mL/hr/kg for ACT-MIF-002, and 11827 mL/hr/kg for ACT-MIF-003. The volume of distribution values were 72666 mL/kg for ACT-MIF-001, 2118 mL/kg for ACT-MIF-002, and 1926 mL/kg for ACT-MIF-003.
- mice at 7-8 weeks of age were used for the study. Mice were housed in microisolator housing, with food and water provided as libitum, and quarantined for 4 days prior to the initiation of the study.
- DU145 cells were maintained in McCoy's 5A medium supplemented with 10% fetal bovine serum and 2 mM glutamine. Cells at 80% confluence were harvested using 0.25% trypsin/EDTA solution, washed once with PBS and resuspended in a mixture of serum-free medium/Matrigel (1:1 by volume) at a density of 3 ⁇ 10 6 cells/100 ⁇ l. 4 groups of 10 mice each were used in the experiment.
- the activity of the compounds of the invention was investigated in a pancreatic tumor model using an experiment similar to the one described in EXAMPLE 69.
- Compounds ACT-MIF-002 and ACT-MIF-003 were dosed daily at 40 mg/kg via IP administration. Results shown in FIG. 10 indicated that the compounds of the invention tested in this experiment had a significant impact on survival and that limited the metastatic tumor burden as shown in the survival graph and representative histopathologic slides ( FIG. 11 ) of the lumbar region of control and treated animals.
- animal weights were monitored throughout the study; there was no body weight loss and no clinical signs of toxicity indicating that these compounds are very well tolerated.
- Lumbar regions of the control and treated groups were excised and sent for histopathological evaluation. As shown in FIG. 11 , there were significant differences between control and treated groups as there was no evidence of bone metastases in the ACT-MIF-002 treated group. In the example shown in FIG. 11 , bone marrow of the vehicle treated mice is consistent with bone metastases (1) with evidence of surrounding skeletal muscle metastases from invading marrow tumor cells (2 and 3). No evidence of bone metastases was observed with spinal column sections from ACT-MIF-002 treated mice.
- the compounds were administered orally (PO) and intraperitoneally (IP) to healthy animals.
- PO orally
- IP intraperitoneally
- the inhibition of the MIF liver enzymatic activity determined ex vivo following IP and PO dosing is similar, indicating high oral bioavailability.
- brain and lung tissues were collected and processed to determine MIF enzymatic activity in these organs. Results also shown in FIG. 12 are indicative of an excellent tissue distribution and demonstrate significant MIF inhibition in both the brain and lungs.
- Results indicate compounds of the invention are orally bioavailable, cross the brain blood barrier, and inhibit MIF enzymatic activity in both the brain and the lungs.
- lymphocytes were prepared using standard Ficoll-gradient preparations. 1 ⁇ 10 6 lymphocytes/ml were resuspended in RPMI/10% FCS and plated onto anti-CD3 antibodies previously immobilized onto tissue culture plates. Control, vehicle control (0.1% DMSO), 25 ⁇ M 4-IPP or 25 ⁇ M ACT-003 were added to cells and allowed to incubate for 48 hours. Cells were lifted, washed and stained with anti-CD4 or anti-CD8 antibodies and then analyzed by flow cytometry. As shown in FIGS.
- CD25 is also known as the high affinity IL-2 receptor—a very well characterized and frequently marker of T lymphocyte activation.
- 4-IPP and ACT-003 almost completely blocked the anti-CD3-induced CD25 expression suggesting a nearly complete block of T lymphocyte activation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Compounds useful for the inhibition of macrophage migration inhibitory factor (MIF) are provided herein, having the Formula I:
wherein A is selected from the group consisting of aromatic or non-aromatic rings, bicyclic rings, polycyclic rings, alkenes or alkynes; B is H, OH, OR, SR, NH2, NHR, or alkyl; R is H or alkyl, and X and Y are independently N or CH, but one of X and Y must be N. Also provided are pharmaceutical compositions that contain a Formula I compound and methods for the treatment of MIF-implicated diseases or conditions that include administering a safe and effective amount of a Formula I compound.
Description
- This application is a divisional of U.S. patent application Ser. No. 13/498,036, filed Mar. 23, 2012, now pending; which itself is a United States National Stage application of PCT International Patent Application Serial No. PCT/US2010/050206, filed Sep. 24, 2010; which itself claims the benefit of U.S. Provisional Patent Application Ser. No. 61/245,481, filed Sep. 24, 2009. The disclosure of each of these applications is incorporated herein by reference in its entirety.
- The acquisition of migratory and invasive properties by tumor cells is a central and often fatal step in neoplastic disease progression. While normal, non-transformed cells have strict growth factor and adhesive requirements for motility, malignant cells have overcome these requirements through multiple mechanisms including gain of function oncogene mutations, growth factor receptor overexpression and/or constitutive deregulation of extracellular matrix degrading enzymes. Not coincidentally, many solid cancers also possess very low oxygen tensions.
- Hypoxia can induce macrophage migration inhibitory factor (MIF) expression. It has been demonstrated that MIF expression is increased in pre-malignant, malignant, and metastatic tumors. Breast, prostate, colon, brain, skin, and lung-derived tumors have all been shown to contain significantly higher levels of MIF message and protein than their non-cancerous cell counterparts. MIF expression closely correlates with tumor aggressiveness and metastatic potential, possibly suggesting an important contribution to disease severity by MIF. MIF has been indirectly implicated in tumor growth and progression by stimulating tumor-dependent stromal processes such as neovascularization. Further, MIF has been implicated in macrophage and lymphocyte activation and survival and may play a role in inflammatory disorder progression.
- Thus, certain aggressive tumors appear to possess an important functional requirement for MIF in maintaining optimal growth and progression. MIF therefore provides a valuable target for development of therapeutics for the treatment of cancer. Further, MIF may be important in the progression of inflammatory disorders. The need exists to develop therapeutic molecules that target MIF and modulate one or more biological activities of MIF for the treatment of cancers and other inflammatory disorders.
- Moreover, MIF is produced by several different pathogens including parasitic helminths, spirochetes, and plasmodium. As such, irreversible inhibitors of MIF such as 4-iodo-6-phenylpyrimidine (4-IPP) and analogs may be excellent antagonists of parasite-derived MIF. The need exists to develop therapeutic molecules that target MIF and ameliorate the disease-causing pathologies associated with these and other MIF-producing pathogens.
- In one embodiment of the invention, a compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof is provided, said compound having the formula:
- wherein: A is selected from the group consisting of: i) substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof; ii) substituted or unsubstituted bicyclic ring; iii) substituted or unsubstituted polycyclic rings; and iv) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; B is H, OH, OR, SR, NH2, NHR, alkyl or substituted alkyl or A, but when B is A, A is H or halo; R is H, alkyl or substituted alkyl of 2 to 20 carbon atoms; and X and Y are independently N or CH, but one of X and Y must be N.
- In another embodiment, a pharmaceutical composition is provided, comprising (a) an effective amount of a Formula I compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof, and (b) one or more pharmaceutically acceptable excipients.
- In another embodiment, a method for treating a macrophage migration inhibitory factor (MIF)-implicated disease or condition is provided, the method comprising administering to a patient in need thereof an effective amount of a Formula I compound, or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof.
- These and other objects, features, embodiments, and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims.
-
FIG. 1 depicts MIF liver enzyme inhibition as a percent of control, comparing ACT-MIF-003, ACT-MIF-002, and 4-IPP. -
FIG. 2 depicts MIF tumor enzyme inhibition as a percent of control, comparing ACT-MIF-003, ACT-MIF-002, and 4-IPP. -
FIG. 3 depicts a comparison of IC50 values across the tumor cell lines H23, MCF7, MDA-MB-231, H-460, SKOV-3, PC3, DU145, Miapaca, LnCap, Capan 1, Capan 2, and CAOV3. -
FIG. 4 depicts a comparison of IC50 values across the tumor cell lines DU145, MDA-MB-231, Miapaca, CAOV03, and HUVEC. -
FIG. 5 depicts p53 regulation of compounds compared to control (DMSO), 4-IPP, and ISO-1 at 10 μM concentration. Compounds tested included ACT-MIF-030, ACT-MIF-035, ACT-MIF-038, ACT-MIF-029, ACT-MIF-033, ACT-MIF-034, ACT-MIF-003, and ACT-MIF-028. Results indicate the compounds are implicated in p53 regulation. -
FIG. 6 depicts inhibition of cell proliferation IC50 values for ACT-MIF-006, ACT-MIF-035, and ACT-MIF-038 in the LOX-IMV1 tumor cell line. -
FIGS. 7A-7D depict inhibition of cell migration in the LOX-IMV1 tumor cell line at 72 hrs, for ACT-MIF-006 (A), ACT-0035 (B and D), and ACT-MIF-038 (C). Results indicate a significant inhibition of migration, even at low concentrations (0.03 μM). -
FIG. 8 depicts tumor growth inhibition of DU145 human prostate xenografts in athymic nude mice treated with ACT-MIF-001, ACT-MIF-002, and ACT-MIF-003. Results show ACT-MIF-003 significantly inhibited tumor growth. -
FIGS. 9A-9D depict tumor slices from animals treated with control (A), ACT-MIF-002 (B), ACT-MIF-001 (C), and ACT-MIF-003 (D). Blood vessel density of the tumor tissues was measured by immunohistochemistry. Results indicated a decrease in microvessel density with respect to the tumors of the control group with a statistically meaningful difference for the ACT-MIF-003 treated group. -
FIGS. 10A and 10B depict tumor growth inhibition (A) and survival data (B) in a pancreatic tumor model treated with control, ACT-MIF-002, and ACT-MIF-003. Results indicate the tested compounds had significant impact on survival and limited metastatic tumor burden. -
FIGS. 11A and 11B depict histopathological slides comparing bone marrow from pancreatic tumor model animals treated with control (A) and ACT-MIF-002 (B). Bone marrow of the vehicle treated mice is consistent with bone metastases (1) with evidence of surrounding skeletal muscle metastases from invading marrow tumor cells (2 and 3). No evidence of bone metastases was observed with spinal column sections from ACT-MIF-002 treated mice. -
FIG. 12 depicts a comparison of MIF enzyme inhibition in the liver, brain, and lung of healthy animals administered ACT-MIF-002 either intraperitoneally (IP) or per oral (PO). Results indicate the compound is orally bioavailable, crosses the brain blood barrier, and inhibits MIF enzymatic activity in both the brain and the lungs. -
FIGS. 13A-13D depict 4-IPP-based MIF antagonists effects on primary T lymphocyte activation/proliferation. Fresh, primary human T lymphocytes was collected by aphaeresis and separated by Ficoll gradients. 1×106 lymphocytes were added to immobilized anti-CD3 tissue culture plates in the presence of nothing (control;FIG. 13A ), vehicle control (0.1% DMSO;FIG. 13B ), 25 μM 4-IPP (FIG. 13C ), or 25 μM ACT-003 (FIG. 13D ). 48 hours later cells were collected, washed, and stained with anti-CD4 and ant-CD8 labeled antibodies followed by flow cytometric analyses. Shown are the relative percentages of CD4/CD8 lymphocytes. -
FIGS. 14A and 14B depict the data fromFIG. 15 as an overlay of relative fluorescence intensity of expression of CD4 (FIG. 14A ) or CD8 (FIG. 14B ) in PBMCs activated with plate bound anti-CD3 for 48 hours. -
FIGS. 15A-15D depict 4-IPP-based MIF antagonists effects on primary T lymphocyte activation/proliferation. Fresh, primary human T lymphocytes was collected by aphaeresis and separated by Ficoll gradients. 1×106 lymphocytes were added to immobilized anti-CD3 tissue culture plates in the presence of nothing (control;FIG. 15A ), vehicle control (0.1% DMSO;FIG. 15B ), 25 μM 4-IPP (FIG. 15C ), or 25 μM ACT-003 (FIG. 15D ). 48 hours later cells were collected, washed, and stained with an anti-CD25-labeled antibody followed by flow cytometric analyses. CD25 (high affinity IL-2 receptor) is a commonly used marker for T lymphocyte activation. Shown are the relative percentages of CD25+ (i.e., activated) treated vs. untreated lymphocytes. -
FIG. 16 depicts the data fromFIG. 17 as an overlay of fluorescence intensity of expression of CD25 in PBMCs activated with plate bound anti-CD3 for 48 hours. -
FIGS. 17A-17D depict 4-IPP-based MIF antagonists effects on primary T lymphocyte activation/proliferation. Fresh, primary human T lymphocytes was collected by aphaeresis and separated by Ficoll gradients. 1×106 lymphocytes were added to immobilized anti-CD3 tissue culture plates in the presence of nothing (control;FIG. 17A ), vehicle control (0.1% DMSO;FIG. 17B ), 25 μM 4-IPP (FIG. 17C ), or 25 μM ACT-003 (FIG. 17D ). 16 hours later cells were collected, washed, and stained with an anti-CD69-labeled antibody followed by flow cytometry analysis. CD69 is an early marker of lymphocyte activation and the lack of a large effect on early lymphocyte activation suggests that treatment of established T cell-dependent autoimmune diseases with 4-IPP-based anti-MIF antagonists is feasible. Shown are the relative percentages of CD69 on treated vs. untreated lymphocytes. -
FIG. 18 depicts the data fromFIG. 19 as an overlay of fluorescence intensity of expression of CD69 in PBMCs activated with plate bound anti-CD3 for 48 hours. -
FIGS. 19A-19D depict 4-IPP-based MIF antagonists' effects on primary T lymphocyte activation/proliferation. Fresh, primary human T lymphocytes was collected by aphaeresis and separated by Ficoll gradients. 1×106 lymphocytes were added to immobilized anti-CD3 tissue culture plates in the presence of nothing (control;FIG. 19A ), vehicle control (0.1% DMSO;FIG. 19B ), 25 μM 4-IPP (FIG. 19C ), or 25 μM ACT-003 (FIG. 19D ). 48 hours later labeled-BrdU was added to the cells briefly, then washed, stained with labeled-anti-CD8 antibodies and analyzed for BrdU incorporation into DNA (readout for proliferation) by flow cytometry. -
FIGS. 20A-20D depict 4-IPP-based MIF antagonists' effects on primary T lymphocyte activation/proliferation. Fresh, primary human T lymphocytes was collected by aphaeresis and separated by Ficoll gradients. 1×106 lymphocytes were added to immobilized anti-CD3 tissue culture plates in the presence of nothing (control;FIG. 20A ), vehicle control (0.1% DMSO;FIG. 20B ), 25 μM 4-IPP (FIG. 20C ), or 25 μM ACT-003 (FIG. 20D ). 48 hours later labeled-BrdU was added to the cells briefly, then washed, stained with labeled-anti-CD4 antibodies and analyzed for BrdU incorporation into DNA (readout for proliferation) by flow cytometry. - The details of one or more embodiments of the presently-disclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in this document.
- While the following terms are believed to be well understood by one of ordinary skill in the art, definitions are set forth to facilitate explanation of the presently-disclosed subject matter.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs.
- Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.
- As used herein, the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.
- The terms “enantiomer” and “diastereomer” have the standard art recognized meanings (see e.g., Hawley's Condensed Chemical Dictionary, 14th ed.). The illustration of specific protected forms and other derivatives of the compounds of the instant invention is not intended to be limiting. The application of other useful protecting groups, salt forms, etc. is within the ability of the skilled artisan.
- The term “prodrug” refers to any covalently bonded carriers which release the active parent drug according to the Formula I described above in vivo when such prodrug is administered to a subject. Prodrugs of the compounds are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds.
- The term “substituted” is defined herein as “encompassing moieties or units which can replace one or more hydrogen atoms of a hydrocarbyl moiety. The term “hydrocarbyl” is defined herein as any organic unit or moiety which is comprised of carbon atoms and hydrogen atoms.
- “Halo” or “halogen” refers to fluoro, chloro, bromo, or iodo.
- The term “aromatic ring” refers to an aromatic hydrocarbon ring system. Suitable aromatic rings of embodiments of the present invention contain 5, 6, or 7 carbon atoms in the ring. Aromatic rings can also contain 0 or 1-4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof. Non-limiting examples of suitable aromatic rings include phenyl, pyridinyl, pyrimidinyl, pyridazinyl, furanyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, and thiadiazolyl. Aromatic rings of the present invention can be unsubstituted or substituted with from 1 to 3 substituents. Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- The term “non-aromatic ring” refers to a non-aromatic saturated or unsaturated hydrocarbon ring system. Suitable non-aromatic rings of embodiments of the present invention contain 5, 6, or 7 carbon atoms in the ring. Non-aromatic rings can also contain 0 or 1-4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof. Non-aromatic rings of the present invention can be unsubstituted or substituted with from 1 to 3 substituents. Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- The term “bicyclic ring” refers to two fused hydrocarbon rings that may optionally include one or more heteroatoms as ring members. A bicyclic ring can be substituted or unsubstituted, including single or multiple substitutions. The rings can independently show a different degree of saturation and may be saturated, unsaturated, or aromatic. Fusion of the rings can occur in three ways: across a bond between two atoms; across a sequence of atoms (bridgehead); or at a single atom (spirocyclic). Bicyclic rings of the present invention include, but are not limited to, 6-5, 6-6, 6-7, 5-5, 5-6, 5-7, 7-5, and 7-6 ring systems, wherein the integers refer to the number of carbon atoms or heteroatoms in each ring in the structure. Bicylic rings of the present invention can be unsubstituted or substituted with from 1 to 4 substituents. Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof. Non-limiting examples of suitable bicyclic rings of the present invention include indole, quinoline, and naphthalene.
- The term “polycyclic ring” refers to three or more fused hydrocarbon rings that may optionally include one or more heteratoms as ring members. A polycyclic ring can be substituted or unsubstituted, including single or multiple substitutions. The rings can independently show a different degree of saturation and may be saturated, unsaturated, or aromatic. Fusion of the rings can occur in three ways: across a bond between two atoms; across a sequence of atoms (bridgehead); or at a single atom (spirocyclic). Polycyclic rings of the present invention can be unsubstituted or substituted with from 1 to 4 substituents. Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- The term “alkene” refers herein to a hydrocarbon chain having from 1 to 3 carbon-carbon double bonds and having 2 to 10 carbon atoms. Alkenes of the present invention can be unsubstituted or substituted with from 1 to 3 substituents. Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- The term “alkyne” refers herein to a hydrocarbon chain having from 1 to 3 carbon-carbon triple bonds and having 2 to 10 carbon atoms. Alkynes of the present invention can be unsubstituted or substituted with from 1 to 3 substituents. Non-limiting examples of suitable substituents include halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof.
- The term “alkyl” refers to a saturated hydrocarbon chain having 2 to 20 carbon atoms. Alkyls of the present invention can be substituted or unsubstituted. Non-limiting examples of suitable substituents include hydroxyl, amino, thiol, morpholino, pyrrolidino, piperidino, glycol, and polyethyleneglycol (PEG) having molecular weight of 200 to 20,000.
- The term “pharmaceutically-acceptable excipient,” as used herein, means any physiologically inert, pharmacologically inactive material known to one skilled in the art, which is compatible with the physical and chemical characteristics of the particular CEL inhibitor selected for use. Pharmaceutically-acceptable excipients include, but are not limited to, polymers, resins, plasticizers, fillers, lubricants, diluents, binders, disintegrants, solvents, co-solvents, buffer systems, surfactants, preservatives, sweetening agents, flavoring agents, pharmaceutical grade dyes or pigments, and viscosity agents.
- The term “MIF-implicated disease or condition” refers to a disease or condition for which MIF is a factor in the onset and/or progression of the disease or condition.
- The term “safe and effective amount” of a Formula (I) compound is an amount that is effective to inhibit the MIF enzyme in an animal, specifically a mammal, more specifically a human subject, without undue adverse side effects (such as toxicity, irritation, or allergic response), commensurate with a reasonable benefit/risk ratio when used in the manner of this invention. The specific “safe and effective amount” will, obviously, vary with such factors as the particular condition being treated, the physical condition of the patient, the duration of treatment, the nature of concurrent therapy (if any), the specific dosage form to be used, the excipient employed, the solubility of the Formula (I) compound therein, and the dosage regimen desired for the composition.
- The term “inflammatory disease” refers to a disease characterized by inflammation, or the complex vascular and immune response to harmful stimuli. Inflammatory diseases include those diseases in which inflammation and immune cells are involved in the pathology of the disease. In a specific embodiment, the inflammatory disease is selected from the group consisting of dermatitis, arthritis, rheumatoid arthritis, insulin-dependent diabetes, proliferative vascular disease, acute respiratory distress syndrome, sepsis, septic shock, psoriasis, asthma, cytokine related toxicity, lupus, multiple sclerosis, transplant-host response, and autoimmune disorders.
- Compounds according to the present invention have the following generic structure:
- wherein:
-
- A is selected from the group consisting of:
- i) substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof;
- ii) substituted or unsubstituted bicyclic ring;
- iii) substituted or unsubstituted polycyclic rings; and
- iv) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds;
- B is H, OH, OR, SR, NH2, NHR, alkyl or substituted alkyl or A, but when B is A, A is H or halo;
- R is H, alkyl or substituted alkyl of 2 to 20 carbon atoms; and
- X and Y are independently N or CH, but one of X and Y must be N.
- A is selected from the group consisting of:
- In one embodiment, A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H; and X and Y are both N.
- In another embodiment, A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H, OH, OR, SR, NH2, NHR, alkyl, or substituted alkyl; X and Y are both N.
- In another embodiment, A is halo, B is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof, and X and Y are both N.
- In another embodiment, A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H; X is N, and Y is CH.
- In still another embodiment, A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H; X is CH; and Y is N.
- In another embodiment, A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H, OH, OR, SR, NH2, NHR, alkyl or substituted alkyl; X is N and Y is CH.
- In still another embodiment, A is selected from the group consisting of: substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having none or 1 to 4 heteroatoms which could be a single atom or the combination of N, O and S; substituted or unsubstituted bicyclic ring, for example indole, quinoline and naphthalene; substituted or unsubstituted polycyclic rings; and substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; wherein substitutions for any of the above are selected from the group consisting of halo, hydroxyl, alkoxy, amino, substituted amino, carboxylic acid, ester, amide, substituted amide, nitro, alkyl, substituted alkyl, combinations thereof, or functional equivalents thereof; B is H, OH, OR, SR, NH2, NHR, alkyl, or substituted alkyl; X is CH; and Y is N.
- In another embodiment, the compound is selected from the group set forth in Table 1.
-
TABLE 1 EXAM- ACT-MIF PLE NO. CHEMICAL NAME 2 ACT-MIF- 4-Iodo-6-(2,3-difluoro-4-methoxyphenyl) 001 pyrimidine 3 ACT-MIF- 4-Iodo-6-(2-fluoro-4-methoxyphenyl)pyrimidine 002 4 ACT-MIF- 4-Iodo-6-(2-fluorophenyl)pyrimidine 003 5 ACT-MIF- 4-Iodo-6-(4-fluorophenyl)pyrimidine 004 6 ACT-MIF- 4-Iodo-6-(furan-3-yl)pyrimidine 005 7 ACT-MIF- 4-Iodo-6-(pyridin-3-yl)pyrimidine 006 8 ACT-MIF- 4-Iodo-6-(3-fluorophenyl)pyrimidine 008 9 ACT-MIF- 4-Iodo-6-(4-tert-butyloxymethylphenyl) 010 pyrimidine 10 ACT-MIF- 4-Iodo-6-(2-fluoropyridin-3-yl)pyrimidine 011 11 ACT-MIF- 4-Iodo-6-(furan-2-yl)pyrimidine 012 12 ACT-MIF- 4-Iodo-6-(4-fluoropyrimidin-3-yl)pyrimidine 013 13 ACT-MIF- 4-Iodo-6-(3-fluoro-4-methoxyphenyl)pyrimidine 014 14 ACT-MIF- 4-Iodo-6-(2-chloropyridin-5-yl)pyrimidine 015 15 ACT-MIF- 4-Iodo-6-(2-hydroxyphenyl)pyrimidine 016 16 ACT-MIF- 4-Iodo-6-(2,4-difluorophenyl)pyrimidine 017 17 ACT-MIF- 4-Iodo-6-(2-fluoro-6-methoxyphenyl)pyrimidine 018 18 ACT-MIF- 4-Iodo-6-(2-chlorophenyl)pyrimidine 019 19 ACT-MIF- 4-Iodo-6-(3-acetylaminophenyl)pyrimidine 021 20 ACT-MIF- 4-Iodo-6-(thiophen-3-yl)pyrimidine 022 21 ACT-MIF- 4-Iodo-6-(3-hydroxymethylphenyl)pyrimidine 023 22 ACT-MIF- 4-Iodo-6-(isoquinolin-4-yl)pyrimidine 025 23 ACT-MIF- 4-Iodo-6-(2,4,5-trifluorophenyl)pyrimidine 027 24 ACT-MIF- 4-Iodo-6-(2,4-difluoropyridin-3-yl)pyrimidine 028 25 ACT-MIF- 4-Iodo-6-(4-methoxypyridin-3-yl)pyrimidine 029 26 ACT-MIF- 4-Iodo-6-(thiophen-2-yl)pyrimidine 030 27 ACT-MIF- 4-Iodo-6-(3,4-difluorophenyl)pyrimidine 032 28 ACT-MIF- 4-Iodo-6-(4-ethoxyphenyl)pyrimidine 033 29 ACT-MIF- 4-Iodo-6-(4-aminocarbonylphenyl)pyrimidine 034 30 ACT-MIF- 4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine 035 31 ACT-MIF- 4-Iodo-6-(quinolin-4-yl)pyrimidine 036 32 4-Iodo-6-(quinolin-8-yl)pyrimidine 33 4-Iodo-6-(quinolin-3-yl)pyrimidine 34 4-Iodo-6-(isoquinolin-5-yl)pyrimidine 36 2-Methylthio-4-iodo-6-phenylpyrimidine 37 2-Ethylthio-4-iodo-6-phenylpyrimidine 38 2-Isopropylthio-4-iodo-6-phenylpyrimidine 39 2-n-Butylthio-4-iodo-6-phenylpyrimidine 41 2-Methylamino-4-iodo-6-phenylpyrimidine 42 2-Ethylamino-4-iodo-6-phenylpyrimidine 43 2-Propylamino-4-iodo-6-phenylpyrimidine 44 2-Isopropylamino-4-iodo-6-phenylpyrimidine 45 2-n-Butylamino-4-iodo-6-phenylpyrimidine 46 4-Iodo-6-(benzothiophen-2-yl)pyrimidine 47 4-Iodo-6-(benzofuran-2-yl)pyrimidine 48 4-Iodo-6-(4-hydroxybenzothiophen-2- yl)pyrimidine 49 4-Iodo-6-(4-acetylaminobenzothiophen-2- yl)pyrimidine 50 4-Iodo-6-(4-aminocarbonylbenzothiophen-2- yl)pyrimidine 51 4-Iodo-6-(5-acetylaminopyridin-3-yl)pyrimidine 52 4-Iodo-6-(5-aminocarbonylpyridin-3- yl)pyrimidine 53 4-Iodo-6-(4-fluoropyridin-3-yl)pyrimidine 54 4-Iodo-6-(4-acetylaminothiophen-2-yl)pyrimidine 55 4-Iodo-6-(4-aminocarbonylthiophen-2- yl)pyrimidine 56 4-Iodo-6-(4-methoxythiophen-2-yl)pyrimidine - In another embodiment, X and Y are both N. In another embodiment, when X and Y are both N, Bis H.
- In still another embodiment, A is halo, B is A, and X and Y are both N. In a specific embodiment, A is I, B is A, and X and Y are both N.
- In another embodiment, X is N and Y is CH. In still another embodiment, when X is N and Y is CH, B is H.
- In another embodiment, X is CH and Y is N. In a further embodiment, when X is CH and Y is N, B is H.
- In a specific embodiment, A is selected from the group consisting of indole, quinoline, and naphthalene.
- In a very specific embodiment, the compound is 4-Iodo-6-(2-fluorophenyl)pyrimidine or 4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine.
- In another embodiment, a pharmaceutical composition is provided, comprising:
-
- a) a safe and effective amount of a compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof, said compound having the formula:
-
-
- wherein:
- A is selected from the group consisting of:
- i) substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof;
- ii) substituted or unsubstituted bicyclic ring;
- iii) substituted or unsubstituted polycyclic rings; and
- iv) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds;
- B is H, OH, OR, SR, NH2, NHR, alkyl or substituted alkyl or A, but when B is A, A is H or halo;
- R is H, alkyl or substituted alkyl of 2 to 20 carbon atoms; and
- X and Y are independently N or CH, but one of X and Y must be N; and
- b) one or more pharmaceutically acceptable excipients.
-
- In one embodiment, the compound is selected from the group set forth in Table 1.
- In another embodiment, X and Y are both N. In another embodiment, when X and Y are both N, Bis H.
- In still another embodiment, A is halo, B is A, and X and Y are both N. In a specific embodiment, A is I, B is A, and X and Y are both N.
- In another embodiment, X is N and Y is CH. In still another embodiment, when X is N and Y is CH, B is H.
- In another embodiment, X is CH and Y is N. In a further embodiment, when X is CH and Y is N, B is H.
- In a specific embodiment, A is selected from the group consisting of indole, quinoline, and naphthalene.
- In a very specific embodiment, the compound is 4-Iodo-6-(2-fluorophenyl)pyrimidine or 4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine.
- In a further embodiment, a method for treating a macrophage migration inhibitory factor (MIF)-implicated disease or condition is provided, the method comprising administering to a patient in need thereof a safe and effective amount of a compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof, said compound having the formula:
- wherein:
-
- A is selected from the group consisting of:
- i) substituted or unsubstituted 5, 6 or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof;
- ii) substituted or unsubstituted bicyclic ring;
- iii) substituted or unsubstituted polycyclic rings; and
- iv) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds;
- B is H, OH, OR, SR, NH2, NHR, alkyl or substituted alkyl or A, but when B is A, A is H or halo;
- R is H, alkyl or substituted alkyl of 2 to 20 carbon atoms; and
- X and Y are independently N or CH, but one of X and Y must be N.
- A is selected from the group consisting of:
- In one embodiment, the compound is selected from the group set forth in Table 1.
- In another embodiment, X and Y are both N. In another embodiment, when X and Y are both N, B is H.
- In still another embodiment, A is halo, B is A, and X and Y are both N. In a specific embodiment, A is I, B is A, and X and Y are both N.
- In another embodiment, X is N and Y is CH. In still another embodiment, when X is N and Y is CH, B is H.
- In another embodiment, X is CH and Y is N. In a further embodiment, when X is CH and Y is N, B is H.
- In a specific embodiment, A is selected from the group consisting of indole, quinoline, and naphthalene.
- In a very specific embodiment, the compound is 4-Iodo-6-(2-fluorophenyl)pyrimidine or 4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine.
- In one embodiment, the MIF-implicated disease is selected from the group consisting of inflammatory disease and cancer.
- In a specific embodiment, the inflammatory disease is selected from the group consisting of dermatitis, arthritis, rheumatoid arthritis, insulin-dependent diabetes, proliferative vascular disease, acute respiratory distress syndrome, sepsis, septic shock, psoriasis, asthma, cytokine related toxicity, lupus, multiple sclerosis, transplant-host response, and autoimmune disorders.
- MIF is produced by several different pathogens, including parasitic helminths, spirochetes, and plasmodium. Thus, irreversible inhibitors of MIF, such as the MIF inhibitors of Formula I, are useful as antagonists of parasite-derived MIF. Accordingly, in a further embodiment, the MIF-implicated condition is caused by a MIF-producing pathogen. In a specific embodiment, the MIF-producing pathogen is selected from the group consisting of parasitic helminths, spirochetes, and plasmodium.
- These following exemplary embodiments and synthetic schemes are provided by way of illustration only and are in no way intended to limit the scope of the present invention.
- Methods for the Preparation of 4-Iodo-6-arylpyrimidine Derivatives, where Aryl is Substituted Phenyl, Heterocyclic, or Bicyclic Ring
- General Procedure:
- 4,6-Dichloropyrimidine (1) is reacted with corresponding aryl boronic acid (2) in dioxane- and aqueous sodium carbonate in the presence of a catalyst used for Suzuki coupling at 50 to 100° C. temperature. The resultant 4-chloro-6-arylpyrimidine (3) is isolated by crystallization or column chromatography on silica gel and is converted to corresponding 4-iodo-6-arylpyrimidine (4) using hydroiodic acid. Further treatment of HI may be needed when the reaction is not complete.
- The compounds of Examples 2-34 are prepared using
Scheme 1. -
- The compound was prepared according to EXAMPLE 1 using 2,3-difluoro-4-methoxyphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.98 (s, 1H), 8.30 (s, 1H), 7.92 (m, 1H), 7.21 (m, 1H), 3.98 (s, 3H).
-
- The compound was prepared according to EXAMPLE 1 using 2-fluoro-4-methoxyphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.91 (s, 1H), 8.23 (s, 1H), 8.05 (m, 1H), 7.01 (m, 2H), 3.88 (s, 3H).
-
- The compound was prepared according to EXAMPLE 1. Specifically, the following method was employed:
- 4,6-dichloropyrimidine (20.3 g, 136.3 mmol), 2-fluorophenyl boronic acid (20.0 g, 142.9 mmol, 1.05 equiv), Na2CO3 (23.4 g, 106.0 mmol, 1.8 equiv) and Pd(PPh3)2Cl2 (1.0 g, 1.4 mmol, 0.01 equiv) were refluxed in dimethoxyethane-water (817:272 mL) mixed solvent system for 6.5 h. Reaction was monitored by TLC (using ethyl acetate:n-hexane, 1:9). Reaction mixture was cooled and the subject compound was extracted using dichloromethane. Subject compound was purified by flash chromatography (2.5% ethyl acetate:n-hexane) to yield 4.5 g (Yield=15.8%).
- 1H NMR (CDCl3): 9.07 (s, 1H), 8.19 (t, J=7.8 Hz, 1H), 7.91 (s, 1H), 7.48-7.55 (m, 1H), 7.18-7.35 (m, 2H)
- 4,6-dichloropyrimidine (5.1 g, 34.1 mmol), 2-fluorophenyl boronic acid (5.0 g, 35.7 mmol, 1.05 equiv), Na2CO3 (6.9 g, 65.0 mmol, 1.8 equiv) and Pd(PPh3)2Cl2 (0.3 g, 0.4 mmol, 0.01 equiv) were refluxed in dimethoxyethane-water (204:69 mL) mixed solvent system for 4 h. Reaction was monitored by TLC (using ethyl acetate-hexane, 1:9). Reaction mixture was cooled and the subject compound was extracted using dichloromethane. Subject compound was purified by flash chromatography (2.5% ethyl acetate in n-hexane) to yield 3.7 g (Yield=52.0%).
- A solution of 4-chloro-6-(2-fluoro-phenyl)-pyrimidine (7.0 g, 33.6 mmol) in 350 mL acetone was charged with sodium iodide (25.9 g, 172.8 mmol, 5.1 equiv) and aqueous solution of HI (241.9 g, 1.9 mol, 56.4 equiv) and stirred continually for 15 h. Reaction mixture was then made slightly alkaline (pH ˜10) by using 5% NaOH solution. Subject compound was precipitated out, filtered, washed well with distilled water and dried under vacuum to yield 10.0 g of 4 (Yield=99.3%).
- 1H NMR (DMSO-d6): 9.02 (s, 1H), 8.35 (s, 1H), 8.01-8.07 (m, 1H), 7.60-7.65 (m, 1H), 7.38-7.44 (m, 2H)
- HPLC=98.55%
-
- The compound was prepared according to EXAMPLE 1 using 4-fluorophenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.90 (s, 1H), 8.61 (s, 1H), 8.30 (m, 2H), 7.38 (m, 2H).
-
- The compound was prepared according to EXAMPLE 1 using furan-3-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.79 (s, 1H), 8.60 (s, 1H), 8.39 (s, 1H), 7.85 (s, 1H), 7.15 (s, 1H).
-
- The compound was prepared according to EXAMPLE 1 using pyridine-3-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.40 (s, 1H), 8.96 (s, 1H), 8.72 (m, 2H), 8.53 (m, 1H), 7.52 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 3-fluorophenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.95 (s, 1H), 8.70 (s, 1H), 8.10 (m, 2H), 7.65 (m, 1H), 7.45 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 4-tert-butyloxymethylphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (CDCl3): δ 8.8 (s, 1H), 8.10 (s, 1H), 7.98 (m, 2H), 7.42 (m, 2H), 4.71 (s, 2H), 1.50 (s, 9H).
-
- The compound was prepared according to EXAMPLE 1 using 2-fluoropyridine-3-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.94 (s, 1H), 8.70 (m, 1H), 8.40 (s, 1H), 7.69 (s, 1H), 7.42 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using furan-2-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.80 (s, 1H), 8.22 (s, 1H), 8.01 (s, 1H), 7.50 (s, 1H), 6.79 (s, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 2-fluoropyridine-5-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (CDCl3): δ 8.71 (s, 1H), 8.39 (s, 1H), 8.25 (s, 1H), 8.15 (m, 1H), 6.50 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 3-fluoro-4-methoxyphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (CDCl3): δ 8.89 (s, 1H), 8.60 (s, 1H), 8.12 (m, 2H), 7.31 (m, 1H), 3.92 (s, 3H).
-
- The compound was prepared according to EXAMPLE 1 using 2-chloropyridine-5-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.20 (m, 1H), 9.0 (s, 1H), 8.70 (s, 1H), 8.60 (m, 1H), 7.72 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 2-trifluoromethoxyphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 12.70 (s, 1H), 8.31 (s, 1H), 7.80 (m, 1H), 7.55 (m, 3H), 6.61 (s, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 2,4-difluorophenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.01 (s, 1H), 8.39 (s, 1H), 7.80 (m, 1H), 7.41 (m, 2H).
-
- The compound was prepared according to EXAMPLE 1 using 2-fluoro-6-methoxyphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.89 (s, 1H), 8.15 (s, 1H), 7.49 (m, 1H), 7.0 (m, 2H).
-
- The compound was prepared according to EXAMPLE 1 using 2-chlorophenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure. 1H NMR (DMSO-d6): δ 9.0 (s, 1H), 8.31 (s, 1H), 7.67 (m, 2H), 7.57 (m, 2H).
-
- The compound was prepared according to EXAMPLE 1 using 3-acetylaminophenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 10.15 (s, 1H), 9.10 (s, 1H), 8.50 (s, 1H), 8.25 (s, 1H), 7.90 (m, 2H), 7.55 (m, 1H), 2.10 (s, 3H).
-
- The compound was prepared according to EXAMPLE 1 using thiophene-3-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.88 (s, 1H), 8.58 (s, 1H), 8.50 (s, 1H), 7.88 (m, 1H), 7.71 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 3-tert-butyloxymethylphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.92 (s, 1H), 8.58 (s, 1H), 8.22 (m, 1H), 8.19 (m, 1H), 7.50 (m, 2H), 4.60 (s, 2H).
-
- The compound was prepared according to EXAMPLE 1 using isoquinoline-4-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.69 (s, 1H), 9.30 (m, 1H), 9.05 (s, 1H), 8.90 (s, 1H), 8.15 (m, 2H), 7.90 (m, 1H), 7.70 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 2,4,5-trifluorophenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.0 (s, 1H), 8.32 (s, 1H), 8.12 (m, 1H), 7.81 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 2,6-difluoropyridine-3-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.05 (s, 1H), 8.75 (m, 1H), 8.36 (s, 1H), 7.40 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 2-methoxypyridine-5-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.10 (d, 1H), 8.90 (s, 1H), 8.61 (s, 1H), 8.45 (m, 1H), 7.0 (m, 1H), 3.92 (s, 3H).
-
- The compound was prepared according to EXAMPLE 1. Specifically, the following method was employed:
- 4,6-dichloropyrimidine (22.2 g, 149.1 mmol), thiophene-2-boronic acid (20.0 g, 156.3 mmol, 1.05 equiv), Na2CO3 (28.8 g, 271.4 mmol, 1.8 equiv) and Pd(PPh3)2Cl2 (2.9 g, 4.2 mmol, 0.03 equiv) were refluxed in dimethoxyethane-water (727:238 mL) mixed solvent system for 16 h. Reaction was monitored by TLC (using ethyl acetate:n-hexane, 1:9). Reaction mixture was cooled and the subject compound was extracted using dichloromethane. Subject compound was purified by flash chromatography (5% ethyl acetate:n-hexane) to yield 18.4 g of 3 (Yield=62.8%).
- 1H NMR (CDCl3): 8.90 (d, J=0.9 Hz 1H), 7.79-7.80 (dd, J=3.9, 1.2 Hz, 1H), 7.58-7.60 (m, 2H), 7.18-7.20 (m, 1H).
- Aqueous solution of HI (63.5 g, 496.5 mol, 13.9 equiv) was charged to 4-chloro-6-thiophen-2-yl-pyrimidine (3, 7.0 g, 35.6 mmol) and stirring was continued for 20 h. Reaction mixture was then made slightly alkaline (pH ˜10) by using 5% NaOH solution. Subject compound was precipitated out, filtered, washed well with distilled water and dried under vacuum to yield 9.6 g of 4 (Yield=94.1%).
- HPLC=93.1%
- To convert the unreacted chloro-, the product was again treated with HI (6.1 g, 47.7 mmol, 13.9 equiv) by following the same procedure as mentioned above to get 10.0 g of 4 (Yield=98.0%).
- 1H NMR (CDCl3): 8.76 (s, 1H), 8.02 (s, 1H), 7.76 (d, J=3.9 Hz, 1H), 7.58 (d, J=4.8 Hz, 1H), 7.16-7.19 (m, 2H).
- HPLC=99.12%
-
- The compound was prepared according to EXAMPLE 1 using 3,4-difluorophenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.94 (s, 1H), 8.69 (s, 1H), 8.31 (m, 1H), 8.13 (m, 1H), 7.68 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 3-fluoro-4-ethoxyphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.89 (s, 1H), 8.60 (s, 1H), 8.05 (m, 1H), 7.21 (m, 2H), 4.20 (m, 2H), 1.32 (m, 3H).
-
- The compound was prepared according to EXAMPLE 1 using 4-aminocarbamoylphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.99 (s, 1H), 8.7 (s, 1H), 8.30 (m, 2H), 8.12 (s, 1H), 8.0 (m, 2H), 7.51 (s, 1H).
-
- The compound was prepared according to EXAMPLE 1 using 3-aminocarbamoylphenylboronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.95 (s, 1H), 8.65 (m, 2H), 8.40 (m, 1H), 8.19 (s, 1H), 8.08 (m, 1H), 7.62 (m, 2H).
-
- The compound was prepared according to EXAMPLE 1 using quinoline-4-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.11 (s, 1H), 9.0 (s, 1H), 8.47 (s, 1H), 8.12 (m, 2H), 7.81 (m, 1H), 7.7 (s, 1H), 7.61 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using quinolin-8-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 8.80 (s, 1H), 8.49 (m, 1H), 8.30 (s, 1H), 7.98 (m, 1H), 7.88 (s, 1H), 7.62 (m, 2H), 7.52 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using quinolin-3-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.65 (s, 1H), 9.23 (s, 1H), 9.01 (s, 1H), 8.87 (s, 1H), 8.01 (m, 2H), 7.90 (m, 1H), 7.66 (m, 1H).
-
- The compound was prepared according to EXAMPLE 1 using isoquinolin-5-boronic acid and 4,6-dichloropyrimidine. The resultant chloro compound was converted to iodo with hydroiodic acid as described in the general procedure.
- 1H NMR (DMSO-d6): δ 9.41 (s, 1H), 9.09 (s, 1H), 8.51 (m, 1H), 8.42 (s, 1H), 8.30 (m, 1H), 8.10 (m, 2H), 7.80 (m, 1H).
-
- The compounds of Examples 36-39 are prepared using the method of EXAMPLE 35.
-
- The compound was prepared according to EXAMPLE 35 using methyl iodide as one of the reactants.
- 1H NMR (CDCl3): δ 8.03-8.06 (m, 2H), 7.82 (s, 1H), 7.49-7.54 (m, 3H), 2.62 (s, 3H).
-
- The compound was prepared according to EXAMPLE 35 using ethyl iodide as one of the reactants.
- 1H NMR (CDCl3): δ 7.95-7.96 (m, 2H), 7.74 (s, 1H), 7.39-7.48 (m, 3H), 3.14 (q, J=7.2 Hz, 2H), 1.38 (t, J=7.2 Hz, 3H).
-
- The compound was prepared according to EXAMPLE 35 using isopropyl iodide as one of the reactants.
- 1H NMR (DMSO-d6): δ 8.25 (s, 1H), 8.17-8.20 (m, 2H), 7.51-7.59 (m, 3H), 3.89-3.99 (h, J=6.9 Hz, 1H), 1.42 (d, J=6.9 Hz, 6H).
-
- The compound was prepared according to Scheme-2 using n-butyl iodide as one of the reactant.
- 1H NMR (DMSO-d6): δ 8.26 (s, 1H), 8.18-8.20 (m, 2H), 7.54-7.59 (m, 3H), 3.18 (t, J=7.2 Hz, 2H), 1.65-1.73 (m, J=7.2 Hz, 2H), 1.41-1.49 (m, J=7.2 Hz, 2H), 0.93 (t, J=7.2 Hz, 3H).
-
- The compounds of Examples 41-45 were prepared according to
Scheme 3 of EXAMPLE 40. -
- The compound was prepared according to EXAMPLE 40 using methylamine as RNH2.
- 1H NMR (CDCl3): δ 7.98-8.00 (br s, 2H), 7.43-7.49 (m, 3H), 7.40 (s, 1H), 5.24 (br s, 1H), 3.06 (d, J=3.0 Hz).
-
- The compound was prepared according to EXAMPLE 40 using ethylamine as RNH2.
- 1H NMR (CDCl3): δ 7.97-7.99 (m, 2H), 7.44-7.48 (m, 3H), 7.39 (s, 1H), 5.20 (br s, 1H), 3.48-3.57 (m, J=7.2 Hz, 1.2 Hz, 2H), 1.28 (t, J=7.2 Hz, 3H).
-
- The compound was prepared according to EXAMPLE 40 using propylamine as RNH2.
- 1H NMR (CDCl3): δ 7.92 (br s, 2H), 7.35-7.44 (m, J=6.6 Hz, 3H), 7.31 (s, 1H), 5.21 (br s, 1H), 3.38 (q, J=6.9 Hz, 2H), 1.53-1.65 (m, J=6.9, 7.3 Hz, 2H), 0.93 (t, J=7.3 Hz, 3H).
-
- The compound was prepared according to EXAMPLE 40 using isopropylamine as RNH2.
- 1H NMR (CDCl3): δ 8.04-8.07 (m, 2H), 7.54-7.56 (m, 3H), 7.41 (s, 1H), 6.98 (br s, 1H), 4.29-4.36 (m, J=6.9, 3.3 Hz, 1H), 1.34 (d, J=6.9, 6H).
-
- The compound was prepared according to EXAMPLE 40 using n-butylamine as RNH2.
- 1H NMR (CDCl3): δ 7.97 (br s, 2H), 7.45-7.48 (m, 3H), 7.38 (s, 1H), 5.30 (br s, 1H), 1.57-1.64 (m, J=6.0 Hz, 2H), 1.40-1.47 (h, J=6.0, 2H), 0.96 (t, J=6.0 Hz, 3H).
- The compounds of Examples 46-56 are also prepared according the
Scheme 1. -
-
-
-
-
-
-
-
-
-
-
- Solubility of exemplary compounds in varying solvents is shown in Table 2. The stability of the compounds in solution was examined by HPLC concomitantly. Results indicated no degradation after 2 months stored at room temperature.
-
TABLE 2 Solubilities of the Compounds of the Invention at 20-22° C. (mg/ml) MIF MIF MIF MIF MIF MIF 001 002 003 006 035 038 Ethanol 85.0 1.4 4.7 DMSO 216 — 150 Propane- diol 25 2.7 PEG-300 66 13.3 19.7 Corn oil 15 <6 <6 Ethanol/ Tween 20 10 10 80 Cremophor 15 14.5 - Cell permeability and transport mechanisms in Caco-2 and MDR1-MDCK monolayers experiments were performed in triplicate in the apical-to-basolateral and basolateral-to-apical direction using TRANSWELL® wells containing either Caco-2 or MDR1-MDCK monolayers. A modified Hanks buffer pH 7.4 was used in both reservoir and receiver wells with the addition of 1% BSA in the receiver side. Confluent monolayers were used and their integrity was verified using reference compounds (Atenolol as a low permeability reference compound and Propanolol as a high permeability reference compound). A sample in the basolateral and apical sides was taken after 2 hours and the concentration measured by LC/MS-MS. Results are summarized in Table 3. The results also suggest that the compounds are not P-gp substrates and may cross the blood brain barrier.
-
TABLE 3 Cell Permeability and Transport R(Caco-2) Caco-2 Permeability Papp (104 cm/s) Permeability A-B B-A Efflux Class ACT-MIF-001 <0.1 <0.1 — Low ACT-MIF-002 0.2 04 1.7 Low ACT-MIF-003 2.1 2.6 1.2 High ACT-MIF-006 5.4 7.8 1.4 High ACT-MIF-011 12.6 7.8 0.6 High ACT-MIF-025 0.4 0.6 1.5 Low ACT-MIF-029 3.1 3.1 1.0 High ACT-MIF-033 2.7 3.0 1.1 High ACT-MIF-035 3.1 3.3 1.1 High ACT-MIF-038 0.9 06 0.7 High Cell Permeability and Transport Results (MDR1-MDCK) MDR1-MDCK Permeability Papp (104 cm/s) P-gp A-B B-A Substrate Efflux Brain (1) ACT-MIF-001 2.3 1.9 No Low Low ACT-MIF-001 + 3.3 3.1 CSA ACT-MIF-002 1.0 0.7 No High Low ACT-MIF-002 + 1.9 2.0 CSA ACT-MIF-003 3.3 3.3 No High High ACT-MIF-003 + 5.2 4.7 CSA (1) Brain penetration classification (2) - Stability in human liver microsomes was tested over 24 hours at 37° C. using pooled mixed gender human liver microsomes. Liver microsomes were prepared at 1.0 mg/ml of microsomal protein in a 100 mM potassium phosphate pH 7.4 buffer with 1 mM NADPH. The media was incubated at 37° C. with the compound in solution in DMSO. The concentration of the compound was followed by LC/MS-MS as a function of time. Samples were assayed at t=0, 30, 60 and 120 minutes. Testosterone was used as a positive control. The same experiment was performed with mouse liver microsomes instead of human liver microsomes. Results are summarized in Table 4.
-
TABLE 4 Metabolic Stability Determined from Stability in Human Microsomes Metabolic Stability in Human Microsomes % Remaining 0 min 15 min 60 min ACT-MIF-001 100 <2 ACT-MIF-002 100 <2 ACT-MIF-003 100 57 ACT-MIF-006 100 82 ACT-MIF-017 100 0 ACT-MIF-021 100 73 ACT-MIF-029 100 6.4 ACT-MIF-033 100 82 ACT-MIF-035 100 92 ACT-MIF-038 100 47 Testosterone 100 56 - Plasma protein binding was ascertained using dialysis equilibrium methods known in the art. Results are summarized in Table 5. Warfarin was used a high protein binding control.
-
TABLE 5 Human Plasma Protein Binding Human Plasma Protein Binding % Bound Compound Warfarin ACT-MIF-001 98.3 99.0 ACT-MIF-002 97.9 98.9 ACT-MIF-003 96.2 98.9 - This experiment, using an ex-vivo approach and the tautomeric reaction of L-dopachrom, was designed to ascertain the level of inhibition of MIF following administration of the compounds of this invention via oral, IV, IP or any other route of administration. Mice were used in the example illustrated below, but other animals could be used as well. Groups of 3 mice were administered
IP 1 mg of 4-IPP and ACT-002 resuspended in 100 μl of corn oil every day for 3 days. Mice were sacrificed 6 hours after the last injection and livers were harvested. ˜1 gram pieces of liver were lysed in PBS containing 1 mM NaVO4, 2 mM NaF and a protease inhibitor cocktail (Roche Biochemical, Indianapolis, Ind.) using dounce-homogenization on ice. 500 μg of liver lysates were added to a final volume of 700 μl PBS in plastic cuvettes. 4 mM L-3,4-dihydroxyphenylalanine methyl ester and 8 mM sodium periodate (Sigma-Aldrich) were combined in a 3:2 ratio to form L-dopachrome methyl ester. 300 μL of L-dopachrome methyl ester was then immediately added to the cuvettes; the OD475 nm was measured 2 min and 4 min after addition of the L-dopachrome. As shown inFIG. 1 (DMSO was used as a negative control—no inhibition of MIF), there is a significant in vivo inhibition of MIF indicating that the compound interacts with the MIF binding pocket. - The ex vivo MIF enzymatic activity of tumor extracts/lysates following in vivo dosing can be estimated in a manner similar to the method of EXAMPLE 61. Tumor bearing mice were administered 1 mg/kg daily for 3 days. 6 hours following the last dose, animals were sacrificed and tumors were resected and processed as described in EXAMPLE 61. Inhibition was also ascertained as in EXAMPLE 61. Results, shown in
FIG. 2 , demonstrate significant inhibition of MIF in tumor lysates. - Inhibition of the proliferation of tumor cells was investigated in vitro in several tumor cell lines. Cells of the desired tumor cell line were plated at 2×105 cells/ml in 96 well plates. Twice the indicated concentrations of the compounds of the invention were added to cells the following day in an equal volume of media. 72 hours later, cells were lysed and subjected to ATP determination using the CellTiter Glo-Luminescent Cell Viability Assay kit (Promega, Madison, Wis.). Experiments were done in triplicate. Results for the inhibition of cells proliferation are reported as IC50 (the concentration leading to a 50% inhibition of proliferation of the cell population) and are listed in Table 6.
FIGS. 3 and 4 show bar graphs comparing the IC50s of specific embodiments of compounds of the invention across multiple tumor cell lines. -
TABLE 6 IC50s for Compounds in Selected Tumor Cell Lines IC50 (microM) Du 145ACT-MIF-001 <10 ACT-MIF-002 24.9 ACT-MIF-003 16.5 ACT-MIF-006 36.7 ACT-MIF-017 <10 ACT-MIF-022 <40 ACT-MIF-029 <20 ACT-MIF-033 <5 ACT-MIF-034 <100 ACT-MIF-035 21.7 ACT-MIF-038 9.2 - The up regulation of p53 was determined using a commercially available p53 luciferase assay kit. 1×105 cells/ml were plated in a 24 well plate and allowed to adhere overnight. MIF antagonists were added to the cells at the indicated concentrations for 16 hours and transiently co-transfected with 0.125 μg/well of p53-responsive luciferase promoter plasmid (Promega, Madison, Wis.) together with 0.0125 μg/well Renilla pRL-null plasmid (Promega) using Lipofectamine (Invitrogen) transfection reagent. After 24 hrs, Firefly and Renilla luciferase activities were measured by the Dual Luciferase in Reporter Assay System (Promega, Madison, Wis.) on a TD-20/20 luminometer (Turner Designs). Results represented in
FIG. 5 indicate the compounds of the invention are implicated in p53 regulation. - Normal or transformed cell lysates can be used to determine the concentration inhibiting the enzymatic activity of MIF present in cell lysates. Cells are cultured in the appropriate media to the required number of cells, collected, and lysed. Compounds to be characterized are solubilized in DMSO and serial dilutions are performed in order to obtain a range of concentrations including complete and no quantifiable inhibition. Results, reported as IC50 (concentration leading to an inhibition of 50% of the MIF enzymatic activity), are summarized in Table 7.
-
TABLE 7 IC50 Values for MIF Cell Lysate Enzymatic Activity Inhibition IC50 (nM) 4-IPP >2000 ACT-MIF-001 37 ACT-MIF-002 70 ACT-MIF-003 200 ACT-MIF-006 250 ACT-MIF-017 190 ACT-MIF-021 570 ACT-MIF-029 140 ACT-MIF-033 115 ACT-MIF-034 270 ACT-MIF-035 185 ACT-MIF-036 230 ACT-MIF-037 >1000 ACT-MIF-039 195 - The LOX-IMV1 tumor cell line was used to determine the inhibition of cell migration using the Oris Cell Migration Assay kit (Promega, Mich.). Briefly, adherent cells were seeded into each well of the kit according to kit instructions. Concentrations of cells in the migration zone were determined to calculate IC50 values. Prior to the migration assay, cell proliferation IC50s were determined to differentiate between inhibition of proliferation and migration. Results are shown in
FIGS. 6 and 7 . Results show a significant inhibition of migration even at very low concentration (0.03 μM). A slightly modified method was also used to determine the inhibition of invasion. As shown inFIG. 7 , invasion was also inhibited. - 8 groups with 10 embryos in each group were used in the experiment described below. Fresh fertile eggs were incubated for 3 days in a standard egg incubator at 37° C. for 3 days. On
Day 3, eggs were cracked under sterile conditions and embryos were placed into 20×100 mm plastic plates and cultivated at 37° C. in an embryo incubator with a water reservoir on the bottom shelf. Air was continuously bubbled into the water reservoir using a small pump so that the humidity in the incubator is kept constant. OnDay 6, a sterile silicon “o” ring was placed on each CAM and test compound dissolved in 0.5% methylcellulose was placed into each “o” ring in a sterile hood. Paclitaxel was used as a positive control. Embryos were returned to the incubator after addition of test material. Control embryos received 10 μL of vehicle alone. OnDay 8, embryos were removed from the incubator and kept at room temperature while blood vessel density were determined under each “o” ring using an image capturing system at a magnification of 160×. The blood vessel density was measured using an angiogenesis scoring system in thatarithmetic numbers 0 to 5 (orexponential numbers 1 to 32) are used to indicate number of blood vessels present at the treatment sites on the CAM.Number 5 represents the highest density and 0 represents no angiogenesis. The percent of inhibition at each dosing site was calculated using the score recorded for that site divided by the mean score obtained from the appropriate control samples for each individual experiment. The percent of inhibition for each dose of a given compound was calculated by pooling all results obtained for that dose from 8-10 embryos. Results are summarized in Table 8 below and demonstrate that among others, compounds ACT-MIF-001, ACT-MIF-002, and ACT-MIF-003 have high anti-angiogenic properties. -
TABLE 8 Blood Vessel Densities Blood Vessel Density Conc per CAM — 6 nM 0.3 nM 3 nM 30 nM Control 14.0 ± 3.2 Paclitaxel 2.8 ± 0.7 ACT-MIF-001 10.5 ± 3.4 4.1 ± 3.4 1.8 ± 0.3 ACT-MIF-002 9.4 ± 2.4 8.6 ± 2.6 4.4 ± 1.3 ACT-MIF-003 11.6 ± 1.2 4.2 ± 1.2 4.1 ± 0.7 - Another experiment was performed using a protocol similar to the one described above but using matrigel plugs instead of o ring to deliver the test material to the CAM. Results are summarized in Table 9 below and show a statistically significant inhibition of angiogenesis at the high concentrations of test material.
-
TABLE 9 Blood Vessel Densities Blood Vessel Counts Conc per CAM — 2 nM 0.3 nM 3 nM 30 nM Control 39.3 ± 1.3 Paclitaxel 15.5 ± 2.1 ACT-MIF-006 38.8 ± 3.5 35.8 ± 5.4 33.5 ± 1.7 ACT-MIF-030 35.6 ± 1.0 32.7 ± 3.2 28.1 ± 2.0 ACT-MIF-035 28.3 ± 1.7 27.3 ± 2.4 26.7 ± 1.9 ACT-MIF-038 31.8 ± 5.8 33.6 ± 1.7 31.0 ± 4.1 - The pharmacokinetic parameters of several compounds were investigated in rodents. Both oral and iv administration were investigated in rats. Blood samples were collected over time; plasma was analyzed using an LC/MS-MS method. Pharmacokinetic parameters were calculated using Win-NonLin. Terminal plasma half-lives were 7.10 hr for ACT-MIF-001, 1.66 hr for ACT-MIF-002, and 1.50 hr for ACT-MIF-003. After i.v. administration, the clearance values were 45753 mL/hr/kg for ACT-MIF-001, 7911 mL/hr/kg for ACT-MIF-002, and 11827 mL/hr/kg for ACT-MIF-003. The volume of distribution values were 72666 mL/kg for ACT-MIF-001, 2118 mL/kg for ACT-MIF-002, and 1926 mL/kg for ACT-MIF-003.
- Athymic nude mice at 7-8 weeks of age were used for the study. Mice were housed in microisolator housing, with food and water provided as libitum, and quarantined for 4 days prior to the initiation of the study. DU145 cells were maintained in McCoy's 5A medium supplemented with 10% fetal bovine serum and 2 mM glutamine. Cells at 80% confluence were harvested using 0.25% trypsin/EDTA solution, washed once with PBS and resuspended in a mixture of serum-free medium/Matrigel (1:1 by volume) at a density of 3×106 cells/100 μl. 4 groups of 10 mice each were used in the experiment. DU145 cells suspended in 100 μl of a mixture of medium/Matrigel (1:1) were subcutaneously implanted in the right flank region. Animals were monitored for tumor growth daily after cell implantation. When tumor volumes reached 80-100 mm3, mice were randomized into 4 groups of 10 mice each using only mice having tumor volumes closest to the mean value. Tumor volumes were measured using the formula V=L×W×H×π/6, where L and W represent the longer and shorter diameters of the tumor and H represents the height of the tumor. Treatment began the day after randomization. Act-MIF-001, ACT-MIF-002, and ACT-MIF-003 were administered daily by IP injection at a dose of 40 mg/kg for 4 weeks. Throughout the entire study, tumor volumes were measured twice weekly and body weights once weekly. Animals were observed for possible toxic effect from the drug treatment. Results illustrated below in
FIG. 8 demonstrated that ACT-MIF-003 significantly inhibited tumor growth. - At the end of the experiment described in EXAMPLE 69 above, tumors in each group were removed and sliced. Blood vessel density of the tumor tissues was measured by immunohistochemistry. Results indicated a decrease in microvessel density with respect to the tumors of the control group with a statistically meaningful difference for the ACT-MIF-003 treated group. These in vivo results confirmed that the compounds described in this application inhibit angiogenesis. Representative pictures of the stained tissues are showed in
FIG. 9 . - The activity of the compounds of the invention was investigated in a pancreatic tumor model using an experiment similar to the one described in EXAMPLE 69. Compounds ACT-MIF-002 and ACT-MIF-003 were dosed daily at 40 mg/kg via IP administration. Results shown in
FIG. 10 indicated that the compounds of the invention tested in this experiment had a significant impact on survival and that limited the metastatic tumor burden as shown in the survival graph and representative histopathologic slides (FIG. 11 ) of the lumbar region of control and treated animals. In addition, animal weights were monitored throughout the study; there was no body weight loss and no clinical signs of toxicity indicating that these compounds are very well tolerated. - Lumbar regions of the control and treated groups were excised and sent for histopathological evaluation. As shown in
FIG. 11 , there were significant differences between control and treated groups as there was no evidence of bone metastases in the ACT-MIF-002 treated group. In the example shown inFIG. 11 , bone marrow of the vehicle treated mice is consistent with bone metastases (1) with evidence of surrounding skeletal muscle metastases from invading marrow tumor cells (2 and 3). No evidence of bone metastases was observed with spinal column sections from ACT-MIF-002 treated mice. - The compounds were administered orally (PO) and intraperitoneally (IP) to healthy animals. The inhibition of the MIF liver enzymatic activity determined ex vivo following IP and PO dosing is similar, indicating high oral bioavailability. Furthermore, brain and lung tissues were collected and processed to determine MIF enzymatic activity in these organs. Results also shown in
FIG. 12 are indicative of an excellent tissue distribution and demonstrate significant MIF inhibition in both the brain and lungs. As shown inFIG. 12 , MIF-002, is orally bioavailable Inhibition of MIF enzyme was determined in vitro following dosing of MIF-002 at 40 mg/kg once a day for three days, both IP and PO (normal C57BL6 mice, n=3). Tissues were collected at sacrifice and processed. Liver, lung, and brain tissues were collected, processed, and used for the determination of MIF enzyme activity. Values are expressed as a percentage calculated using DMSO as control (no inhibition). - Two additional compounds were tested, MIF-035 and MIF-041. Results (data not shown) indicated that these compounds were also orally bioavailable, crossed the blood brain barrier, and inhibited MIF enzymatic activity very efficiently in all three organs with results varying ˜12% inhibition in liver extracts to ˜76.2% inhibition in the lungs.
- Results indicate compounds of the invention are orally bioavailable, cross the brain blood barrier, and inhibit MIF enzymatic activity in both the brain and the lungs.
- In order to assess the ability of MIF antagonists to disrupt autoimmune-associated T cell activation, primary human T lymphocytes were prepared using standard Ficoll-gradient preparations. 1×106 lymphocytes/ml were resuspended in RPMI/10% FCS and plated onto anti-CD3 antibodies previously immobilized onto tissue culture plates. Control, vehicle control (0.1% DMSO), 25 μM 4-IPP or 25 μM ACT-003 were added to cells and allowed to incubate for 48 hours. Cells were lifted, washed and stained with anti-CD4 or anti-CD8 antibodies and then analyzed by flow cytometry. As shown in
FIGS. 13 and 14 , cells treated with MIF antagonists 4-IPP and ACT-003 during anti-CD3 lymphocyte activation had significantly fewer CD4 and CD8 T lymphocytes suggesting defective anti-CD3 induced activation/proliferation in MIF inhibitor treated lymphocytes. - To validate the effects of MIF antagonists on T lymphocyte activation, experiments were set up exactly as described above and, 48 hours later, treated and untreated lymphocytes were stained with an anti-CD25 antibody. CD25 is also known as the high affinity IL-2 receptor—a very well characterized and frequently marker of T lymphocyte activation. As shown in
FIGS. 15 and 16 , 4-IPP and ACT-003 almost completely blocked the anti-CD3-induced CD25 expression suggesting a nearly complete block of T lymphocyte activation. - In order to investigate the relative kinetics of when 4-IPP and ACT-003 are acting in blocking T lymphocyte activation, we repeated the experiment described above but harvested lymphocytes only 16 hours after anti-CD3 plating. At this early time point during T lymphocyte activation, CD69 is found to be expressed and is usually considered to be an “early marker” of lymphocyte activation. As shown in
FIGS. 17 and 18 , treatment with MIF antagonists had only a marginal effect on CD69 expression suggesting that MIF inhibitors are acting at a relatively late stage in the activation process. This is important because it suggests that therapeutic use of 4-IPP-based MIF inhibitors in autoimmune diseases can be used at later stages and aren't likely to be required to be delivered in the early stages of disease onset. - Finally, to confirm that proliferation of CD4+ and CD8+ T lymphocytes is blocked by 4-IPP-based MIF antagonists, we repeated the experiment as described above, added labeled-BrdU to cells, stained with either labeled anti-CD4 or anti-CD8 antibodies and then assessed relative CD4/CD8 and BrdU labeling in each treatment group. As shown in
FIGS. 19 and 20 , 4-IPP and ACT-003 almost completely blocked BrdU labeling in both CD8+ and CD4+ T lymphocytes. - Combined, these results suggest that targeting MIF using these 4-IPP-based small molecules may have profound inhibitory effects on T lymphocyte-dependent autoimmune disorders.
- All documents cited are incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
- While particular embodiments of the present invention have been illustrated and described, it would be obvious to one skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (19)
1. A method for treating a macrophage migration inhibitory factor (MIF)-implicated disease or condition, comprising administering to a patient in need thereof a safe and effective amount of a migration inhibitory factor (MIF) inhibitory compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof, said compound having the formula:
wherein:
(i) A is selected from the group consisting of:
(a) substituted or unsubstituted 5, 6, or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof;
(b) substituted or unsubstituted bicyclic ring;
(c) substituted or unsubstituted polycyclic rings; and
(d) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; and
B is H, OH, OR, SR, NH2, NHR, or alkyl or substituted alkyl, wherein R is H, alkyl, or substituted alkyl of 2 to 20 carbon atoms; or
(ii) A is H or halo; and
B is selected from the group consisting of:
(a) substituted or unsubstituted 5, 6, or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof;
(b) substituted or unsubstituted bicyclic ring;
(c) substituted or unsubstituted polycyclic rings; and
(d) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; and
X and Y are independently N or CH, wherein at least one of X and Y is N.
2. The method of claim 1 , wherein the MIF-implicated disease is selected from the group consisting of inflammatory disease and cancer.
3. The method of claim 2 , wherein the inflammatory disease is selected from the group consisting of dermatitis, arthritis, rheumatoid arthritis, insulin-dependent diabetes, proliferative vascular disease, acute respiratory distress syndrome, sepsis, septic shock, psoriasis, asthma, cytokine related toxicity, lupus, multiple sclerosis, transplant-host response, and autoimmune disorders.
4. The method of claim 1 , wherein the MIF-implicated condition is caused by a MIF-producing pathogen.
5. The method of claim 4 , wherein the MIF-producing pathogen is selected from the group consisting of parasitic helminths, spirochetes, and plasmodium.
6. The method of claim 1 , wherein the MIF inhibitory compound is selected from the group consisting of:
4-Iodo-6-(2,3-difluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-fluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-fluorophenyl)pyrimidine;
4-Iodo-6-(4-fluorophenyl)pyrimidine;
4-Iodo-6-(furan-3-yl)pyrimidine;
4-Iodo-6-(pyridin-3-yl)pyrimidine;
4-Iodo-6-(3-fluorophenyl)pyrimidine;
4-Iodo-6-(4-tert-butyloxymethylphenyl)pyrimidine;
4-Iodo-6-(2-fluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(furan-2-yl)pyrimidine;
4-Iodo-6-(4-fluoropyrimidin-3-yl)pyrimidine;
4-Iodo-6-(3-fluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-chloropyridin-5-yl)pyrimidine;
4-Iodo-6-(2-hydroxyphenyl)pyrimidine;
4-Iodo-6-(2,4-difluorophenyl)pyrimidine;
4-Iodo-6-(2-fluoro-6-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-chlorophenyl)pyrimidine;
4-Iodo-6-(3-acetylaminophenyl)pyrimidine;
4-Iodo-6-(thiophen-3-yl)pyrimidine;
4-Iodo-6-(3-hydroxymethylphenyl)pyrimidine;
4-Iodo-6-(isoquinolin-4-yl)pyrimidine;
4-Iodo-6-(2,4,5-trifluorophenyl)pyrimidine;
4-Iodo-6-(2,4-difluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(4-methoxypyridin-3-yl)pyrimidine;
4-Iodo-6-(thiophen-2-yl)pyrimidine;
4-Iodo-6-(3,4-difluorophenyl)pyrimidine;
4-Iodo-6-(4-ethoxyphenyl)pyrimidine;
4-Iodo-6-(4-aminocarbonylphenyl)pyrimidine;
4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine;
4-Iodo-6-(quinolin-4-yl)pyrimidine;
4-Iodo-6-(quinolin-8yl)pyrimidine;
4-Iodo-6-(quinolin-3-yl)pyrimidine;
4-Iodo-6-(isoquinolin-5-yl)pyrimidine;
2-Methylthio-4-iodo-6-phenylpyrimidine;
2-Ethylthio-4-iodo-6-phenylpyrimidine;
2-Isopropylthio-4-iodo-6-phenylpyrimidine;
2-n-Butylthio-4-iodo-6-phenylpyrimidine;
2-Methylamino-4-iodo-6-phenylpyrimidine;
2-Ethylamino-4-iodo-6-phenylpyrimidine;
2-Propylamino-4-iodo-6-phenylpyrimidine;
2-Isopropylamino-4-iodo-6-phenylpyrimidine;
2-n-Butylamino-4-iodo-6-phenylpyrimidine;
4-Iodo-6-(benzothiophen-2-yl)pyrimidine;
4-Iodo-6-(benzofuran-2-yl)pyrimidine;
4-Iodo-6-(4-hydroxybenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-acetylaminobenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-aminocarbonylbenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(5-acetylaminopyridin-3-yl)pyrimidine;
4-Iodo-6-(5-aminocarbonylpyridin-3-yl)pyrimidine;
4-Iodo-6-(4-fluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(4-acetylaminothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-aminocarbonylthiophen-2-yl)pyrimidine; and
4-Iodo-6-(4-methoxythiophen-2-yl)pyrimidine.
7. The method of claim 1 , wherein:
A is a substituted or unsubstituted bicyclic ring selected from the group consisting of a quinoline, an isoquinoline, a benzofuran, and a benzothiophene;
B is H;
X and Y are both N,
and further wherein the MIF inhibitory compound interacts with a MIF polypeptide present in the patient in need thereof to inhibit an enzymatic activity of the MIF polypeptide.
8. The method of claim 7 , wherein the MIF inhibitory compound is selected from the group consisting of:
4-Iodo-6-(isoquinolin-4-yl)pyrimidine;
4-Iodo-6-(quinolin-4-yl)pyrimidine;
4-Iodo-6-(quinolin-8-yl)pyrimidine;
4-Iodo-6-(quinolin-3-yl)pyrimidine;
4-Iodo-6-(isoquinolin-5-yl)pyrimidine;
4-Iodo-6-(benzothiophen-2-yl)pyrimidine; and
4-Iodo-6-(benzofuran-2-yl)pyrimidine.
9. The method of claim 1 , wherein the administering is via oral administration, intravenous administration, intraperitoneal administration, or a combination thereof.
10. A method for inhibiting proliferation, cell migration, metastasis, and/or invasion of a tumor cell, and/or angiogenesis associated with the presence of the tumor cell, the method comprising contacting the tumor cell with an effective amount of a MIF inhibitory compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof, said compound having the formula:
wherein:
(i) A is selected from the group consisting of:
(a) substituted or unsubstituted 5, 6, or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof;
(b) substituted or unsubstituted bicyclic ring;
(c) substituted or unsubstituted polycyclic rings; and
(d) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; and
B is H, OH, OR, SR, NH2, NHR, or alkyl or substituted alkyl, wherein R is H, alkyl, or substituted alkyl of 2 to 20 carbon atoms; or
(ii) A is H or halo; and
B is selected from the group consisting of:
(a) substituted or unsubstituted 5, 6, or 7-membered aromatic or nonaromatic rings having 0 or 1 to 4 heteroatoms selected from the group consisting of N, O, S, and combinations thereof;
(b) substituted or unsubstituted bicyclic ring;
(c) substituted or unsubstituted polycyclic rings; and
(d) substituted or unsubstituted alkenes and alkynes having 2 to 10 carbon atoms with 1 to 3 double or triple bonds; and
X and Y are independently N or CH, wherein at least one of X and Y is N, whereby proliferation, cell migration, metastasis, and/or invasion of the tumor cell and/or angiogenesis associated with the presence of the tumor cell is inhibited.
11. The method of claim 10 , wherein the MIF inhibitory compound is selected from the group consisting of:
4-Iodo-6-(2,3-difluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-fluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-fluorophenyl)pyrimidine;
4-Iodo-6-(4-fluorophenyl)pyrimidine;
4-Iodo-6-(furan-3-yl)pyrimidine;
4-Iodo-6-(pyridin-3-yl)pyrimidine;
4-Iodo-6-(3-fluorophenyl)pyrimidine;
4-Iodo-6-(4-tert-butyloxymethylphenyl)pyrimidine;
4-Iodo-6-(2-fluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(furan-2-yl)pyrimidine;
4-Iodo-6-(4-fluoropyrimidin-3-yl)pyrimidine;
4-Iodo-6-(3-fluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-chloropyridin-5-yl)pyrimidine;
4-Iodo-6-(2-hydroxyphenyl)pyrimidine;
4-Iodo-6-(2,4-difluorophenyl)pyrimidine;
4-Iodo-6-(2-fluoro-6-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-chlorophenyl)pyrimidine;
4-Iodo-6-(3-acetylaminophenyl)pyrimidine;
4-Iodo-6-(thiophen-3-yl)pyrimidine;
4-Iodo-6-(3-hydroxymethylphenyl)pyrimidine;
4-Iodo-6-(isoquinolin-4-yl)pyrimidine;
4-Iodo-6-(2,4,5-trifluorophenyl)pyrimidine;
4-Iodo-6-(2,4-difluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(4-methoxypyridin-3-yl)pyrimidine;
4-Iodo-6-(thiophen-2-yl)pyrimidine;
4-Iodo-6-(3,4-difluorophenyl)pyrimidine;
4-Iodo-6-(4-ethoxyphenyl)pyrimidine;
4-Iodo-6-(4-aminocarbonylphenyl)pyrimidine;
4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine;
4-Iodo-6-(quinolin-4-yl)pyrimidine;
4-Iodo-6-(quinolin-8yl)pyrimidine;
4-Iodo-6-(quinolin-3-yl)pyrimidine;
4-Iodo-6-(isoquinolin-5-yl)pyrimidine;
2-Methylthio-4-iodo-6-phenylpyrimidine;
2-Ethylthio-4-iodo-6-phenylpyrimidine;
2-Isopropylthio-4-iodo-6-phenylpyrimidine;
2-n-Butylthio-4-iodo-6-phenylpyrimidine;
2-Methylamino-4-iodo-6-phenylpyrimidine;
2-Ethylamino-4-iodo-6-phenylpyrimidine;
2-Propylamino-4-iodo-6-phenylpyrimidine;
2-Isopropylamino-4-iodo-6-phenylpyrimidine;
2-n-Butylamino-4-iodo-6-phenylpyrimidine;
4-Iodo-6-(benzothiophen-2-yl)pyrimidine;
4-Iodo-6-(benzofuran-2-yl)pyrimidine;
4-Iodo-6-(4-hydroxybenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-acetylaminobenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-aminocarbonylbenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(5-acetylaminopyridin-3-yl)pyrimidine;
4-Iodo-6-(5-aminocarbonylpyridin-3-yl)pyrimidine;
4-Iodo-6-(4-fluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(4-acetylaminothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-aminocarbonylthiophen-2-yl)pyrimidine; and
4-Iodo-6-(4-methoxythiophen-2-yl)pyrimidine.
12. The method of claim 10 , wherein:
A is a substituted or unsubstituted bicyclic ring selected from the group consisting of a quinoline, an isoquinoline, a benzofuran, and a benzothiophene;
B is H;
X and Y are both N,
and further wherein the MIF inhibitory compound interacts with a MIF polypeptide present in the patient in need thereof to inhibit an enzymatic activity of the MIF polypeptide.
13. The method of claim 12 , wherein the MIF inhibitory compound is selected from the group consisting of:
4-Iodo-6-(isoquinolin-4-yl)pyrimidine;
4-Iodo-6-(quinolin-4-yl)pyrimidine;
4-Iodo-6-(quinolin-8-yl)pyrimidine;
4-Iodo-6-(quinolin-3-yl)pyrimidine;
4-Iodo-6-(isoquinolin-5-yl)pyrimidine;
4-Iodo-6-(benzothiophen-2-yl)pyrimidine; and
4-Iodo-6-(benzofuran-2-yl)pyrimidine.
14. The method of claim 10 , wherein the tumor cell is present within a subject and the contacting results from administering the MIF inhibitory compound or its enantiomeric or diastereomeric form, or the pharmaceutically acceptable salt, prodrug, or metabolite thereof to the subject orally, intravenously, intraperitoneally, or a combination thereof.
15. The method of claim 14 , wherein the MIF inhibitory compound or its enantiomeric or diastereomeric form, or the pharmaceutically acceptable salt, prodrug, or metabolite thereof is administered as part of a pharmaceutical composition comprising a safe and effective amount of the MIF inhibitory compound and one or more pharmaceutically acceptable excipients.
16. The method of claim 15 , wherein the pharmaceutical composition is pharmaceutically acceptable for use in a human.
17. A method for inhibiting autoimmune-associated activation of a T cell, the method comprising contacting a T cell subject to autoimmune-associated activation with an effective amount of a MIF inhibitory compound or its enantiomeric or diastereomeric form or a pharmaceutically acceptable salt, prodrug, or metabolite thereof of claim 1 , whereby autoimmune-associated activation of the T cell is inhibited.
18. The method of claim 18 , wherein the T cell subject to autoimmune-associated activation is present within a mammal.
19. A compound selected from the group consisting of:
4-Iodo-6-(2,3-difluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-fluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(4-fluorophenyl)pyrimidine;
4-Iodo-6-(furan-3-yl)pyrimidine;
4-Iodo-6-(pyridin-3-yl)pyrimidine;
4-Iodo-6-(3-fluorophenyl)pyrimidine;
4-Iodo-6-(4-tert-butyloxymethylphenyl)pyrimidine;
4-Iodo-6-(2-fluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(furan-2-yl)pyrimidine;
4-Iodo-6-(4-fluoropyrimidin-3-yl)pyrimidine;
4-Iodo-6-(3-fluoro-4-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-chloropyridin-5-yl)pyrimidine;
4-Iodo-6-(2-hydroxyphenyl)pyrimidine;
4-Iodo-6-(2,4-difluorophenyl)pyrimidine;
4-Iodo-6-(2-fluoro-6-methoxyphenyl)pyrimidine;
4-Iodo-6-(2-chlorophenyl)pyrimidine;
4-Iodo-6-(3-acetylaminophenyl)pyrimidine;
4-Iodo-6-(thiophen-3-yl)pyrimidine;
4-Iodo-6-(3-hydroxymethylphenyl)pyrimidine;
4-Iodo-6-(2,4,5-trifluorophenyl)pyrimidine;
4-Iodo-6-(2,4-difluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(4-methoxypyridin-3-yl)pyrimidine;
4-Iodo-6-(thiophen-2-yl)pyrimidine;
4-Iodo-6-(3,4-difluorophenyl)pyrimidine;
4-Iodo-6-(4-ethoxyphenyl)pyrimidine;
4-Iodo-6-(4-aminocarbonylphenyl)pyrimidine;
4-Iodo-6-(3-aminocarbonylphenyl)pyrimidine;
2-Methylthio-4-iodo-6-phenylpyrimidine
2-Ethylthio-4-iodo-6-phenylpyrimidine;
2-Isopropylthio-4-iodo-6-phenylpyrimidine;
2-n-Butylthio-4-iodo-6-phenylpyrimidine;
2-Methylamino-4-iodo-6-phenylpyrimidine;
2-Ethylamino-4-iodo-6-phenylpyrimidine;
2-Propylamino-4-iodo-6-phenylpyrimidine;
2-Isopropylamino-4-iodo-6-phenylpyrimidine;
2-n-Butylamino-4-iodo-6-phenylpyrimidine;
4-Iodo-6-(4-hydroxybenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-acetylaminobenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-aminocarbonylbenzothiophen-2-yl)pyrimidine;
4-Iodo-6-(5-acetylaminopyridin-3-yl)pyrimidine;
4-Iodo-6-(5-aminocarbonylpyridin-3-yl)pyrimidine;
4-Iodo-6-(4-fluoropyridin-3-yl)pyrimidine;
4-Iodo-6-(4-acetylaminothiophen-2-yl)pyrimidine;
4-Iodo-6-(4-aminocarbonylthiophen-2-yl)pyrimidine; and
4-Iodo-6-(4-methoxythiophen-2-yl)pyrimidine.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/803,650 US20150368207A1 (en) | 2009-09-24 | 2015-07-20 | Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives |
| US15/708,827 US20180009764A1 (en) | 2009-09-24 | 2017-09-19 | Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US24548109P | 2009-09-24 | 2009-09-24 | |
| PCT/US2010/050206 WO2011038234A2 (en) | 2009-09-24 | 2010-09-24 | Novel iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (mif)-implicated diseases and conditions |
| US201213498036A | 2012-12-12 | 2012-12-12 | |
| US14/803,650 US20150368207A1 (en) | 2009-09-24 | 2015-07-20 | Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2010/050206 Division WO2011038234A2 (en) | 2009-09-24 | 2010-09-24 | Novel iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (mif)-implicated diseases and conditions |
| US13/498,036 Division US9162987B2 (en) | 2009-09-24 | 2010-09-24 | Iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (MIF)-implicated diseases and conditions |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/708,827 Division US20180009764A1 (en) | 2009-09-24 | 2017-09-19 | Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150368207A1 true US20150368207A1 (en) | 2015-12-24 |
Family
ID=43796505
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/498,036 Active US9162987B2 (en) | 2009-09-24 | 2010-09-24 | Iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (MIF)-implicated diseases and conditions |
| US14/803,650 Abandoned US20150368207A1 (en) | 2009-09-24 | 2015-07-20 | Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives |
| US15/708,827 Abandoned US20180009764A1 (en) | 2009-09-24 | 2017-09-19 | Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/498,036 Active US9162987B2 (en) | 2009-09-24 | 2010-09-24 | Iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (MIF)-implicated diseases and conditions |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/708,827 Abandoned US20180009764A1 (en) | 2009-09-24 | 2017-09-19 | Method for treating macrophage migration inhibitory factor (mif)-implicated diseases and conditions with iodo pyrimidine derivatives |
Country Status (3)
| Country | Link |
|---|---|
| US (3) | US9162987B2 (en) |
| EP (1) | EP2480235A4 (en) |
| WO (1) | WO2011038234A2 (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9155790B2 (en) * | 2010-05-20 | 2015-10-13 | University of Lousiville Research Foundation, Inc. | Methods and compositions for modulating ocular damage |
| CN103848815B (en) * | 2014-03-13 | 2016-06-01 | 郑州大学 | 4-containing urea groups fragment replaces-6-phenyl pyrimidine derivative and its production and use |
| CN112236169A (en) | 2018-04-09 | 2021-01-15 | 耶鲁大学 | Bifunctional small molecules targeting selective degradation of circulating proteins |
| EP3773729A4 (en) | 2018-04-09 | 2022-05-04 | Yale University | BI-FUNCTIONAL MOLECULES TO DEGRADE CIRCULATING PROTEINS |
| US12485178B2 (en) | 2018-04-09 | 2025-12-02 | Yale University | Bifunctional small molecules to target the selective degradation of circulating proteins |
| US20230097887A1 (en) | 2018-04-09 | 2023-03-30 | Yale University | Bi-functional Molecules to Degrade Circulating Proteins |
| MX2021007376A (en) | 2018-12-19 | 2021-09-21 | Univ Leland Stanford Junior | Bifunctional molecules for lysosomal targeting and related compositions and methods. |
| SG11202111384PA (en) | 2019-04-25 | 2021-11-29 | Aerovironment Inc | Systems and methods for distributed control computing for a high altitude long endurance aircraft |
| AU2020268735A1 (en) | 2019-04-25 | 2021-11-11 | Aerovironment, Inc. | Method of managing a fleet of high altitude long endurance aircraft |
| WO2020223114A2 (en) | 2019-04-25 | 2020-11-05 | Aero Vironment, Inc. | Off-center parachute flight termination system (fts) |
| SG11202111294QA (en) | 2019-04-25 | 2021-11-29 | Aerovironment Inc | Ground support equipment for a high altitude long endurance aircraft |
| SG11202111296TA (en) | 2019-04-25 | 2021-11-29 | Aerovironment Inc | Methods of climb and glide operations of a high altitude long endurance aircraft |
| WO2023288033A1 (en) | 2021-07-14 | 2023-01-19 | Lycia Therapeutics, Inc. | Asgpr cell surface receptor binding compounds and conjugates |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007140263A2 (en) * | 2006-05-26 | 2007-12-06 | University Of Louisville Research Foundation, Inc. | Macrophage migration inhibitory factor antagonists and methods of using same |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6774227B1 (en) | 1993-05-17 | 2004-08-10 | Cytokine Pharmasciences, Inc. | Therapeutic uses of factors which inhibit or neutralize MIF activity |
| US6080407A (en) * | 1993-05-17 | 2000-06-27 | The Picower Institute For Medical Research | Diagnostic assays for MIF |
| CA2190973C (en) | 1995-04-13 | 2001-06-19 | Yasuo Konno | Novel 4,6-diarylpyrimidine derivatives and salts thereof |
| HUP0203375A3 (en) | 1999-07-28 | 2005-03-29 | Aventis Pharm Prod Inc | Substituted oxoazaheterocyclyl compounds |
| CA2441733A1 (en) | 2001-03-29 | 2002-10-10 | Vertex Pharmaceuticals Incorporated | Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases |
| AU2002310187A1 (en) | 2001-05-30 | 2002-12-09 | Lg Biomedical Institute | Inhibitors of protein kinase for the treatment of disease |
| JP4847314B2 (en) * | 2003-04-07 | 2011-12-28 | コーティカル・ピーティーワイ・リミテッド | Novel methods for treating inflammatory diseases |
| JP2007502298A (en) | 2003-08-14 | 2007-02-08 | スミスクライン ビーチャム コーポレーション | Compound |
| BRPI0416852A (en) * | 2003-11-21 | 2007-02-27 | Array Biopharma Inc | akt kinase inhibitors |
| AU2005216236A1 (en) | 2004-02-25 | 2005-09-09 | The United States Of America As Represented By The Department Of Veterans Affairs | Methods for diagnosing and treating bladder cancer |
| TW200614993A (en) | 2004-06-11 | 2006-05-16 | Akzo Nobel Nv | 4-phenyl-pyrimidine-2-carbonitrile derivatives |
| GB0415365D0 (en) | 2004-07-09 | 2004-08-11 | Astrazeneca Ab | Pyrimidine derivatives |
| US20070281924A1 (en) * | 2006-05-31 | 2007-12-06 | Gaeta Federico C | MIF inhibitors for treating neuropathic pain and associated syndromes |
| US7732540B2 (en) * | 2006-12-08 | 2010-06-08 | Sumitomo Chemical Company, Limited | Process for producing olefin copolymerization catalyst and process for producing olefin copolymer |
| DE102007007751A1 (en) | 2007-02-16 | 2008-08-21 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel substituted arylsulfonylglycines, their preparation and their use as pharmaceuticals |
| DE102007008419A1 (en) | 2007-02-21 | 2008-08-28 | Merck Patent Gmbh | 4- (pyrrolopyridinyl) -pyrimidinyl-2-amine derivatives |
| US9155790B2 (en) | 2010-05-20 | 2015-10-13 | University of Lousiville Research Foundation, Inc. | Methods and compositions for modulating ocular damage |
-
2010
- 2010-09-24 US US13/498,036 patent/US9162987B2/en active Active
- 2010-09-24 EP EP10819534.8A patent/EP2480235A4/en not_active Withdrawn
- 2010-09-24 WO PCT/US2010/050206 patent/WO2011038234A2/en not_active Ceased
-
2015
- 2015-07-20 US US14/803,650 patent/US20150368207A1/en not_active Abandoned
-
2017
- 2017-09-19 US US15/708,827 patent/US20180009764A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007140263A2 (en) * | 2006-05-26 | 2007-12-06 | University Of Louisville Research Foundation, Inc. | Macrophage migration inhibitory factor antagonists and methods of using same |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011038234A3 (en) | 2012-05-24 |
| EP2480235A2 (en) | 2012-08-01 |
| US20130079361A1 (en) | 2013-03-28 |
| WO2011038234A2 (en) | 2011-03-31 |
| US9162987B2 (en) | 2015-10-20 |
| EP2480235A4 (en) | 2013-05-08 |
| US20180009764A1 (en) | 2018-01-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9162987B2 (en) | Iodo pyrimidine derivatives useful for the treatment of macrophage migration inhibitory factor (MIF)-implicated diseases and conditions | |
| US12364690B2 (en) | Therapeutic agent for bile duct cancer | |
| AU2022206702B2 (en) | Phenyl-2-hydroxy-acetylamino-2-methyl-phenyl compounds | |
| US11873304B2 (en) | Fused pyrimidine derivatives as A2A/A2B inhibitors | |
| US20190144427A1 (en) | Heterocyclic compounds used as fgfr inhibitors | |
| TW200406210A (en) | Processes for preparing substituted pyrimidines | |
| US20110275603A1 (en) | Novel immunomodulator and anti-inflammatory compounds | |
| US10781214B2 (en) | Kinase inhibitor against wild-type and mutant EGFR | |
| US20200354331A1 (en) | Icariin derivatives | |
| US20250034153A1 (en) | Triazolopyrimidines as a2a / a2b inhibitors | |
| US10011571B2 (en) | Preparation method for aromatic heterocyclic compound used as selective JAK3 and/or JAK1 kinase inhibitor and application of aromatic heterocyclic compound | |
| CN102448951A (en) | Therapeutic compositions and related methods of use | |
| US11912663B2 (en) | Multi-targeted tyrosine kinase inhibitors and their pharmaceutical uses | |
| US20230257359A1 (en) | 4-arylquinazoline derivatives as methionine adenosyltransferase 2a inhibitors | |
| CN107935944B (en) | Diaryl urea quinoxaline derivative with anti-tumor activity and synthetic method thereof | |
| Yuan et al. | Pioneering 4, 11-Dioxo-4, 11-dihydro-1 H-anthra [2, 3-d] imidazol-3-ium Compounds as Promising Survivin Inhibitors by Targeting ILF3/NF110 for Cancer Therapy | |
| US11529321B2 (en) | Use of aminomethylenecyclohexane-1,3-dione compound | |
| US20250009750A1 (en) | Methods of treating disorders associated with eya overexpression and mutations | |
| EP3750892A1 (en) | Novel 5-cyclopropyl-furo[3,4-c]pyridine-3,4(1h,5h)-dione 1,1' substituted derivatives and their uses | |
| Khalil et al. | Challenging breast cancer through novel sulfonamide–pyridine hybrids: design, synthesis, carbonic anhydrase IX inhibition and induction of apoptosis. | |
| HK40079392B (en) | Phenyl-2-hydroxy-acetylamino-2-methyl-phenyl compounds | |
| WO2023182897A1 (en) | Inhibitors of interactions between trf1-tin2 or trf2-tin2 telomeric proteins for use in anticancer therapy | |
| KR20250041906A (en) | Novel compounds having HPK1 and MLK3 inhibitory activities and anti-cancer compositions containing the same | |
| CN117430586A (en) | An FGFR kinase inhibitor and its pharmaceutical use | |
| WO2016052081A1 (en) | Cancer cell growth inhibitor, anticancer agent, and method for screening same, as well as novel compound |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |