US20150368671A1 - Vault and Vault like Carrier Molecules - Google Patents
Vault and Vault like Carrier Molecules Download PDFInfo
- Publication number
- US20150368671A1 US20150368671A1 US14/800,156 US201514800156A US2015368671A1 US 20150368671 A1 US20150368671 A1 US 20150368671A1 US 201514800156 A US201514800156 A US 201514800156A US 2015368671 A1 US2015368671 A1 US 2015368671A1
- Authority
- US
- United States
- Prior art keywords
- seq
- mvp
- vault
- modified
- vparp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 claims abstract description 183
- 239000000126 substance Substances 0.000 claims abstract description 96
- 238000000034 method Methods 0.000 claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 101710204725 Protein mono-ADP-ribosyltransferase PARP4 Proteins 0.000 claims description 104
- 102100034931 Protein mono-ADP-ribosyltransferase PARP4 Human genes 0.000 claims description 104
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 46
- 101000626112 Homo sapiens Telomerase protein component 1 Proteins 0.000 claims description 42
- 101001087045 Homo sapiens Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN Proteins 0.000 claims description 41
- 102100024553 Telomerase protein component 1 Human genes 0.000 claims description 41
- 108091033319 polynucleotide Proteins 0.000 claims description 23
- 102000040430 polynucleotide Human genes 0.000 claims description 23
- 239000002157 polynucleotide Substances 0.000 claims description 23
- 229920001184 polypeptide Polymers 0.000 claims description 14
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 14
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 8
- 241000701447 unidentified baculovirus Species 0.000 claims description 8
- 239000008177 pharmaceutical agent Substances 0.000 claims description 7
- 239000013612 plasmid Substances 0.000 claims description 7
- 241000238631 Hexapoda Species 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 230000014616 translation Effects 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 abstract description 41
- 230000014759 maintenance of location Effects 0.000 abstract description 6
- 230000006378 damage Effects 0.000 abstract description 5
- 101710094960 Major vault protein Proteins 0.000 description 125
- 102100038884 Major vault protein Human genes 0.000 description 125
- 101710159910 Movement protein Proteins 0.000 description 124
- 239000002299 complementary DNA Substances 0.000 description 77
- 230000027455 binding Effects 0.000 description 63
- 210000004899 c-terminal region Anatomy 0.000 description 47
- 210000004027 cell Anatomy 0.000 description 45
- 210000001519 tissue Anatomy 0.000 description 43
- 101001030069 Homo sapiens Major vault protein Proteins 0.000 description 35
- 101000585793 Rattus norvegicus Major vault protein Proteins 0.000 description 35
- 230000004048 modification Effects 0.000 description 34
- 238000012986 modification Methods 0.000 description 34
- 102000005962 receptors Human genes 0.000 description 30
- 108020003175 receptors Proteins 0.000 description 30
- 125000003275 alpha amino acid group Chemical group 0.000 description 23
- -1 for example Proteins 0.000 description 22
- 108091034135 Vault RNA Proteins 0.000 description 20
- 102000004169 proteins and genes Human genes 0.000 description 15
- 108090000623 proteins and genes Proteins 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 13
- 102100039556 Galectin-4 Human genes 0.000 description 12
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 12
- 108010039918 Polylysine Proteins 0.000 description 10
- 229910001385 heavy metal Inorganic materials 0.000 description 10
- 229920000656 polylysine Polymers 0.000 description 10
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 9
- 102400001368 Epidermal growth factor Human genes 0.000 description 8
- 101800003838 Epidermal growth factor Proteins 0.000 description 8
- 241000282414 Homo sapiens Species 0.000 description 8
- 229940116977 epidermal growth factor Drugs 0.000 description 8
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical group C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 8
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 7
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 7
- 239000005090 green fluorescent protein Substances 0.000 description 7
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 6
- 101000844746 Drosophila melanogaster Drosomycin Proteins 0.000 description 6
- 101000735463 Homo sapiens Protein mono-ADP-ribosyltransferase PARP4 Proteins 0.000 description 6
- 229940000489 arsenate Drugs 0.000 description 6
- 241000700157 Rattus norvegicus Species 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachlorophenol Chemical compound OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 102000055025 Adenosine deaminases Human genes 0.000 description 3
- 108090000444 Arsenate reductases Proteins 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 2
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000004570 RNA-binding Effects 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229940095074 cyclic amp Drugs 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 231100000317 environmental toxin Toxicity 0.000 description 2
- 108091006047 fluorescent proteins Proteins 0.000 description 2
- 102000034287 fluorescent proteins Human genes 0.000 description 2
- 238000005558 fluorometry Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000005731 poly ADP ribosylation Effects 0.000 description 2
- 150000003071 polychlorinated biphenyls Chemical group 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- PWJFNRJRHXWEPT-UHFFFAOYSA-N ADP ribose Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OCC(O)C(O)C(O)C=O)C(O)C1O PWJFNRJRHXWEPT-UHFFFAOYSA-N 0.000 description 1
- SRNWOUGRCWSEMX-KEOHHSTQSA-N ADP-beta-D-ribose Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)OC[C@H]1O[C@@H](O)[C@H](O)[C@@H]1O SRNWOUGRCWSEMX-KEOHHSTQSA-N 0.000 description 1
- 101710159080 Aconitate hydratase A Proteins 0.000 description 1
- 101710159078 Aconitate hydratase B Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 102000012406 Carcinoembryonic Antigen Human genes 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 241000168726 Dictyostelium discoideum Species 0.000 description 1
- 241000709744 Enterobacterio phage MS2 Species 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 101000622060 Photinus pyralis Luciferin 4-monooxygenase Proteins 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 102000044126 RNA-Binding Proteins Human genes 0.000 description 1
- 101710105008 RNA-binding protein Proteins 0.000 description 1
- 101100206293 Rattus norvegicus Tep1 gene Proteins 0.000 description 1
- 108010081734 Ribonucleoproteins Proteins 0.000 description 1
- 102000004389 Ribonucleoproteins Human genes 0.000 description 1
- 101001086866 Sus scrofa Pulmonary surfactant-associated protein B Proteins 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 241000223105 Trypanosoma brucei Species 0.000 description 1
- 102000039634 Untranslated RNA Human genes 0.000 description 1
- 108020004417 Untranslated RNA Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000002494 anti-cea effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001085 differential centrifugation Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000010218 electron microscopic analysis Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 102000057540 human TEP1 Human genes 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000010039 intracellular degradation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000028617 response to DNA damage stimulus Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000011191 terminal modification Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/45—Transferases (2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6901—Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0002—General or multifunctional contrast agents, e.g. chelated agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/005—Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
- A61K49/0056—Peptides, proteins, polyamino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1077—Pentosyltransferases (2.4.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/14011—Baculoviridae
- C12N2710/14041—Use of virus, viral particle or viral elements as a vector
- C12N2710/14042—Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/02—Pentosyltransferases (2.4.2)
- C12Y204/02003—Uridine phosphorylase (2.4.2.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03067—Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (3.1.3.67)
Definitions
- Vaults are ubiquitous, highly conserved cellular components found in phylogeny as diverse as mammals, avians, amphibians, the slime mold Dictyostelium discoideum, and the protozoan Trypanosoma brucei. Scanning transmission electron microscopic analysis has shown that the molecular mass of vaults is about 12.9 ⁇ 1 MDa, and cryo-electronmicrograph single particle reconstruction has determined that vaults have an overall dimension of about 420 ⁇ 420 ⁇ 750 ⁇ . Thus, vaults have a greater mass and size than many icosahedral viruses. The function of vaults is currently unknown.
- Vaults are ribonucleoprotein particles comprising three different proteins, designated MVP, VPARP and TEP1, and between one and three different untranslated RNA molecules, designated vRNAs.
- the rat Rattus norvegicus has only one form of vRNA per vault, while humans have three forms of vRNA per vault.
- the two other proteins are each present in between about 2 and 16 copies per vault.
- VPARP is a poly ADP-ribosyl polymerase apparently unique to vaults. It includes a region of about 350 amino acids that shares 28% identity with the catalytic domain of poly ADP-ribosyl polymerase, PARP, a nuclear protein that catalyzes the formation of ADP-ribose polymers in response to DNA damage. VPARP catalyzes an NAD-dependent poly ADP-ribosylation reaction, and purified vaults have poly ADP-ribosylation activity that targets MVP, as well as VPARP itself.
- the vaults are hollow, barrel-like structures with two protruding end caps and an invaginated waist. Regular small openings surround the vault cap. These openings are large enough to allow small molecules and ions to enter the interior of the vault.
- the volume of the internal cavity of the vault is about 5 ⁇ 10 7 ⁇ 3 , large enough to enclose two ribosomes.
- a method of using vaults as carrier molecules to deliver one or more than one substance to an organism, or to a specific tissue or to specific cells, or to an environmental medium comprises providing vaults, incorporating the one or more than one substance into the vaults, and administering the vaults comprising the one or more than one substance to the organism, to the specific tissue, to the specific cells, or to the environmental medium.
- the vaults provided are purified from natural sources.
- the vaults provided are generated using recombinant technology.
- incorporation is accomplished by incubating the vaults with the one or more than one substance.
- the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding.
- a vault-like particle comprising MVP.
- the vault-like particle further comprises VPARP or modified VPARP, or a portion of VPARP or a modified portion of VPARP.
- the vault-like further comprises TEP1 or modified TEP1, or a portion of TEP1 or a modified portion of TEP1.
- a vault-like particle comprising modified MVP.
- the modified MVP comprises an amino acid sequence added to the N-terminal of the MVP which results in one or more than one substance-binding domain within the vault-like particle.
- the one or more than one substance-binding domain is between 1 and 95 substance-binding domains.
- the one or more than one substance-binding domain is 96 substance-binding domains.
- the one or more than one substance-binding domain is greater than 96 substance-binding domains.
- the one or more than one substance-binding domain within the vault-like particle is one or more than one heavy metal binding domain.
- the one or more than one heavy metal binding domain binds a heavy metal selected from the group consisting of cadmium, copper, gold and mercury.
- the peptide added to the N-terminal is a cysteine-rich peptide.
- the one or more than one substance-binding domain within the vault-like particle is one or more than one polynucleotide-binding domain.
- the one or more than one polynucleotide-binding domain is a non-specific polynucleotide-binding peptide.
- the one or more than one polynucleotide-binding domain is a specific polynucleotide-binding peptide.
- the modified MVP of the vault-like particle comprising modified MVP comprises an amino acid sequence added to the N-terminal of the MVP creates a sensor in the vault-like particle.
- the sensor is selected from the group consisting of a chemical sensor, an ionic sensor, a microorganism sensor, an optical sensor and a pH sensor.
- the sensor is a green fluorescent protein.
- the modified MVP of the vault-like particle comprising modified MVP comprises an amino acid sequence added to the C-terminal of the MVP which results in one or more than one receptor-binding domain.
- the one or more than one receptor-binding domain is between 1 and 95 receptor-binding domains.
- the one or more than one receptor-binding domain is 96 receptor-binding domains.
- the one or more than one receptor-binding domain is greater than 96 receptor-binding domains.
- the one or more than one receptor-binding domain is non-specific. In another embodiment, the one or more than one receptor-binding domain is specific.
- the modified MVP further comprises an amino acid sequence added to the C-terminal of the MVP which results in one or more than one receptor-binding domain.
- the one or more than one receptor-binding domain is between 1 and 95 receptor-binding domains.
- the one or more than one receptor-binding domain is 96 receptor-binding domains.
- the one or more than one receptor-binding domain is greater than 96 receptor-binding domains.
- the one or more than one receptor-binding domain is non-specific. In another embodiment, the one or more than one receptor-binding domain is specific.
- the modified MVP comprises both an amino acid sequence added to the C-terminal of the MVP and an amino acid sequence added to the N-terminal of the MVP.
- a vault-like particle comprising MVP or modified MVP, and further comprises VPARP or a portion of VPARP comprising at least about 150 consecutive residues of VPARP.
- the portion of VPARP comprises residues from about residue 1562 to 1724 of human VPARP, SEQ ID NO:3.
- the portion of VPARP comprises residues from about residue 1473 to 1724 of human VPARP, SEQ ID NO:3.
- the VPARP or portion of VPARP is modified.
- the modification comprises adding an amino acid sequence added to the C-terminal of the VPARP or portion of VPARP.
- the modification comprises adding an amino acid sequence added to the N-terminal of the VPARP or portion of VPARP. In another embodiment, the modification comprises adding an amino acid sequence added to both the C-terminal and the N-terminal of the VPARP or portion of VPARP. In one embodiment, the modified MVP comprises an amino acid sequence added to the C-terminal of the MVP. In another embodiment, the modified MVP comprises an amino acid sequence added to the N-terminal of the MVP. In another embodiment, the modified MVP comprises both a peptide added to the C-terminal and a peptide added to the N-terminal.
- a method of preventing damage by one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle comprises providing vault-like particles, administering the vault-like particles to the organism, tissue, cells or environmental medium, and allowing the vault-like particles to sequester the one or more than one substance within the vault-like particles.
- the one or more than one substance is a heavy metal selected from the group consisting of cadmium, copper, gold and mercury.
- the one or more than one substance is a toxin selected from the group consisting of arsenate, dioxin, an organochlorine, a pentachlorophenol and a polychlorinated biphenyl.
- providing the vault-like particles comprises expressing the vault-like particles in a eukaryotic organism.
- a method of delivering one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium comprises providing vault-like particles comprising the one or more than one substance, and administering the vault-like particles comprising the one or more than one substance to the organism, tissue, cells or environmental medium.
- the vault-like particles comprise, consist essentially of or consist of a modified MVP in addition to the one or more than one substance.
- the vault-like particles comprise a modified VPARP or modified portion of VPARP.
- the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or modified portion of VPARP.
- the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding.
- the one or more than one substance is adenosine deaminase.
- a method of delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium comprises providing a vault-like particle comprising the one or more than one sensor and administering the vault-like particle to the organism, specific tissue, specific cells, or environmental medium.
- the vault-like particles comprise, consist essentially of or consist of a modified MVP, in addition to the one or more than one sensor.
- the vault-like particles comprise a modified VPARP or modified portion of VPARP.
- the vault-like particles comprise both a modified MVP, and a modified VPARP or modified portion of VPARP.
- the sensor is selected from the group consisting of a chemical sensor, a fluorescent sensor, an ionic sensor, a microorganism sensor, an optical sensor, and a pH sensor.
- a method of detecting a signal from a sensor within an organism, or a specific tissue or specific cells comprises delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium according to the present invention, and detecting the presence of the sensor.
- detection is accomplished by fluorometry or by spectrophotometry.
- a method of making vault-like particles comprises creating polynucleotide sequences encoding one or more than one polypeptide selected from the group consisting of MVP, modified MVP, VPARP, a portion of VPARP, modified VPARP, a modified portion of VPARP, TEP1, a portion of TEP1, modified TEP1 and a modified portion of TEP1, using the polynucleotide sequences created to generate a bacmid DNA, using the bacmid DNA to generate a baculovirus comprising the sequence, and using the baculovirus to infect insect cells for protein production using an in situ assembly system.
- a method of making vault-like particles comprising one or more than one substance.
- the method comprises making vault-like particles according to claim 63 , and co-incubated the vault-like particles with the one or more than one substance.
- the one or more than one substance is selected from the group consisting of enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding.
- the method further comprises purifying the vault-like particles after making the vault-like particles.
- a method of using vaults as carrier molecules to deliver one or more than one substance to an organism, or to a specific tissue or specific cells comprises administering vaults comprising the substance to the organism, tissue or cells.
- a vault-like particle useful as a carrier molecule for delivering one or more than one substance to a living system, such as an organism, specific tissue or specific cell, or to an environmental medium there is provided a method of delivering one or more than one substance to an organism, or to a specific tissue or specific cells, or to an environmental medium. The method comprises providing vault-like particles comprising the substance, and administering the vault-like particles comprising the substance to the organism, tissue or cells, or to the environmental medium.
- a method of delivering vault-like particles to a specific tissue or specific cells, or to an environmental medium comprises providing vault-like particles having a receptor-binding domain on the surface of the vault-like particles, and administering the vault-like particles to the tissue or cells, or to the environmental medium.
- a vault-like particle useful for sequestering the one or more than one substance within the vault-like particle.
- a method of preventing damage by one or more than one substance to an organism, or to a specific tissue or specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle comprises providing vault-like particles comprising one or more than one substance-binding domain within the vault-like particle, administering the vault-like particles to the organism, tissue or cells, or to the environmental medium, and allowing the vault-like particles to sequester the one or more than one substance within the vault-like particles.
- both vaults and vault-like particles are resistant to degradation, such as intracellular degradation or environmental degradation, and therefore, can be used to deliver substances to or to remove substances from both living and non-living systems.
- degradation such as intracellular degradation or environmental degradation
- MVP means the full naturally occurring polypeptide sequence.
- vRNA means the full naturally occurring polynucleotide sequence.
- the actual sequence of any of MVP, VPARP, TEP1 and vRNAs can be from any species suitable for the purposes disclosed in this disclosure, even though reference or examples are made to sequences from specific species.
- references to MVP, VPARP, TEP1 and vRNAs are intended to include such intraspecies variants.
- vault or “vault particle,” as compared to the term “vault-like particle” defined below, refers to a naturally occurring macro-molecular structure having MVP, VPARP, TEP1 and one or more than one vRNA, whether purified from natural sources or generated through recombinant technology.
- fault-like particle refers to a macro-molecular structure comprising any of the following:
- modified and variations of the term, such as “modification,” means one or more than one change to the naturally occurring sequence of MVP, VPARP or TEP1 selected from the group consisting of addition of a polypeptide sequence to the C-terminal, addition of a polypeptide sequence to the N-terminal, deletion of between about 1 and 100 amino acid residues from the C-terminal, deletion of between about 1 and 100 amino acid residues from the N-terminal, substitution of one or more than one amino acid residue that does not change the function of the polypeptide, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, such as for example, an alanine to glycine substitution, and a combination of the preceding.
- human means “ Homo sapiens.”
- organ As used in this disclosure, the terms “organism,” “tissue” and “cell” include naturally occurring organisms, tissues and cells, genetically modified organisms, tissues and cells, and pathological tissues and cells, such as tumor cell lines in vitro and tumors in vivo.
- the term “environmental medium” means a non-living composition, composite, material, or mixture.
- administering includes any suitable route of administration, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, including direct injection into a solid organ, direct injection into a cell mass such as a tumor, inhalation, intraperitoneal injection, intravenous injection, topical application on a mucous membrane, or application to or dispersion within an environmental medium, and a combination of the preceding.
- the dosage of vaults or vault-like particles, with or without one or more than one substance enclosed within the vaults or vault-like particles is between about 0.1 and 10,000 micrograms per kilogram of body weight or environmental medium.
- the dosage of vaults or vault-like particles, with or without one or more than one substance enclosed within the vaults or vault-like particles is between about 1 and 1,000 micrograms per kilogram of body weight or environmental medium. In another embodiment, the dosage of vaults or vault-like particles, with or without one or more than one substance enclosed within the vaults or vault-like particles, is between about 10 and 1,000 micrograms per kilogram of body weight or environmental medium.
- the dosage is preferably administered in a final volume of between about 0.1 and 10 ml.
- the dosage is preferably administered in a final volume of between about 0.01 and 1 ml.
- the dose can be repeated a one or more than one of times as needed using the same parameters to effect the purposes disclosed in this disclosure.
- MS2 means the Enterobacteriophage MS2 coat protein, which is an RNA-binding protein that specifically binds a 21-nt RNA stem-loop with high affinity.
- the present invention is a method of using naturally occurring vaults as carrier molecules to deliver one or more than one substance to an organism, or to a specific tissue or specific cells, or to an environmental medium.
- the method comprises, first, providing vaults.
- the vaults are purified from natural sources, such as mammalian liver or spleen tissue, using methods known to those with skill in the art, such as for example tissue homogenization, differential centrifugation, discontinuous sucrose gradient fractionation and cesium chloride gradient fractionation.
- the vaults are made using recombinant technology.
- the one or more than one substance is incorporated into the provided vaults.
- incorporation is accomplished by incubating the vaults with the one or more than one substance at an appropriate temperature and for an appropriate time, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- the vaults containing the one or more than one substance are then purified, such as for example sucrose gradient fractionation, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding.
- the vaults comprising the one or more than one substance are administered to an organism, to a specific tissue, to specific cells, or to an environmental medium. Administration is accomplished using any suitable route, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- a vault-like particle useful as a carrier molecule for delivering one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, or useful for preventing damage by one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle.
- the vault-like particle comprises MVP or modified MVP, and can further comprise VPARP or modified VPARP, a portion of VPARP or a modified portion of VPARP, and TEP1 or modified TEP1, a portion of TEP1 or a modified portion of TEP1 with or without the one or more than one vRNA.
- the modifications are designed to attract a specific substance within the vault-like particle, to attract the vault-like particle to a specific tissue or cell type, or both to attract a specific substance within the vault-like particle and to attract the vault particle to a specific tissue or cell type.
- the MVP is human MVP, SEQ ID NO:1, GenBank accession number CAA56256, encoded by the cDNA, SEQ ID NO:2, GenBank accession number X79882.
- the VPARP is human VPARP, SEQ ID NO:3, GenBank accession number AAD47250, encoded by the cDNA, SEQ ID NO:4, GeWank accession number AF158255.
- the TEP1 is human TEP1, SEQ ID NO:5, GenBank accession number AAC51107, encoded by the cDNA, SEQ ID NO:6, GenBank accession number U86136.
- the vRNA is human vRNA, SEQ ID NO:7, GenBank accession number AF045143, SEQ ID NO:8, GenBank accession number AF045144, or SEQ ID NO:9, GenBank accession number AF045145, or a combination of the preceding.
- the MVP is Rattus norvegicus MVP, SEQ ID NO:10, GenBank accession number AAC52161, encoded by the cDNA, SEQ ID NO:11, GenBank accession number U09870.
- the TEP1 is Rattus norvegicus TEP1, SEQ ID NO:12, GenBank accession number AAB51690, encoded by the cDNA, SEQ ID NO:13, GenBank accession number U89282.
- the vRNA is Rattus norvegicus vRNA, SEQ ID NO:14, GenBank accession number Z1171. As can be seen, Rattus norvegicus MVP and human MVP share over 90% homology.
- vault protein modifications references specific examples using specific human and Rattus norvegicus sequences of MVP, VPARP and TEP1 sequences, however, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, corresponding modifications can be made using other sequences of these species and can be made using sequences from other species as appropriate for the disclosed purposes.
- a vault-like particle comprising, consisting essentially of, or consisting of modified MVP.
- the modification comprises adding an amino acid sequence to the N-terminal of the MVP which results in one or more than one substance-binding domain within the vault-like particle.
- vault-like particles can also be assembled from a mixture of MVP with the N-terminal modified and MVP without the N-terminal modified, to create vault-like particle with less than 96 substance-binding domains in the vault-like particle, and the added amino acid terminal sequences can be polymerized as will be appreciated by one of ordinary skill in the art with reference to this disclosure to create more than 96 substance-binding domains in the vault-like particle.
- a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the N-terminal to create a one or more than one of heavy metal binding domains.
- the heavy metal binding domains bind a heavy metal selected from the group consisting of cadmium, copper, gold and mercury.
- the peptide added to the N-terminal is a cysteine-rich peptide (CP), such as for example, SEQ ID NO:15
- the MVP is human MVP, SEQ ID NO:1, and the modification results in CP-MVP, SEQ ID NO:16, encoded by the cDNA, SEQ ID NO:17.
- the cysteine-rich peptide is SEQ ID NO:15
- the MVP is Rattus norvegicus MVP, SEQ ID NO:10
- a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the N-terminal to create one or more than one polynucleotide-binding domain.
- the peptide is a non-specific polynucleotide-binding peptide, such as for example, HisT7, SEQ ID NO:20, encoded by the cDNA, SEQ ID NO:21, or a polylysine such as SEQ ID NO:22, encoded by the cDNA, SEQ ID NO:23
- the MVP is human MVP, SEQ ID NO:1, and the modification results in HisT7-MVP, SEQ ID NO:24, encoded by the cDNA, SEQ ID NO:25, or in polylysine-MVP, SEQ ID NO:26, encoded by the cDNA, SEQ ID NO:27, respectfully.
- the peptide is a non-specific polynucleotide-binding peptide, such as for example, HisT7, SEQ ID NO:20, encoded by the cDNA, SEQ ID NO:21, or a polylysine such as SEQ ID NO:22, encoded by the cDNA, SEQ ID NO:23
- the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in HisT7-MVP, SEQ ID NO:28, encoded by the cDNA, SEQ ID NO:29, or in polylysine-MVP, SEQ ID NO:30, encoded by the cDNA, SEQ ID NO:31, respectfully.
- HisT7-MVP, SEQ ID NO:24 and SEQ ID NO:28 are examples of modified MVP that can also be used to bind specific antibodies within the vault-like particle, in these cases, the T7 monoclonal antibody, but corresponding modifications can be made to bind other specific antibodies, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- the peptide is a specific DNA binding peptide, such as for example, GAL4, SEQ ID NO:32, encoded by the cDNA, SEQ ID NO:33, the MVP is human MVP, SEQ ID NO:1, and the modification results in GAL4-MVP, SEQ ID NO:34, encoded by the cDNA, SEQ ID NO:35.
- the peptide is a specific DNA binding peptide, such as for example, GAL4, SEQ ID NO:32, encoded by the cDNA, SEQ ID NO:33, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in GAL4-MVP, SEQ ID NO:36, encoded by the cDNA, SEQ ID NO:37.
- the peptide is a specific RNA binding peptide, such as for example, MS2, SEQ ID NO:38, encoded by the cDNA, SEQ ID NO:39, the MVP is human MVP, SEQ ID NO:1, and the modification results in MS2-MVP, SEQ ID NO:40, encoded by the cDNA, SEQ ID NO:41.
- the peptide is an RNA binding peptide, such as for example, MS2, SEQ ID NO:38, encoded by the cDNA, SEQ ID NO:39, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MS2-MVP, SEQ ID NO:42, encoded by the cDNA, SEQ ID NO:43.
- a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the N-terminal to create a sensor in the vault-like particle.
- the sensor can be any suitable sensor, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, such as for example, a chemical sensor such as a cyclic-AMP binding protein, an ionic sensor such as a calcium or potassium sensor, a microorganism sensor such an antibody specific for E. coli, an optical sensor such as a quantum dot, and a pH sensor such as green fluorescence protein.
- the senor is a fluorescent protein, such as green fluorescent protein (GL), SEQ ID NO:44, encoded by the cDNA, SEQ ID NO:45, the MVP is human MVP, SEQ ID NO:1, and the modification results in GL-MVP, SEQ ID NO:46, encoded by the cDNA, SEQ ID NO:47.
- the sensor is a fluorescent protein, such as green fluorescent protein (GL), SEQ ID NO:44, encoded by the cDNA, SEQ ID NO:45, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in GL-MVP, SEQ ID NO:48, encoded by the cDNA, SEQ ID NO:49.
- a vault-like particle comprising MVP or modified MVP, and further comprising VPARP or a portion of VPARP comprising at least about 150 consecutive residues of VPARP, and modified by adding a peptide to either the C-terminal or the N-terminal to create a one or more than one of substance-binding domains or a one or more than one of sensors within the vault-like particles having the same purposes as disclosed with reference to modified MVP in this disclosure.
- the residues are from about residue 1562 to residue 1724 of human VPARP, SEQ ID NO:3.
- the residues are from about residue 1473 to residue 1724 of human VPARP, SEQ ID NO:3.
- the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding CP, SEQ ID NO:15, to the N-terminal, to create (1473-1724)CP-VPARP, SEQ ID NO:50, encoded by the cDNA, SEQ ID NO:51.
- the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding CP, SEQ ID NO:15, to the N-terminal, to create CP-VPARP, SEQ ID NO:52, encoded by the cDNA, SEQ ID NO:53.
- the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding GAL4, SEQ ID NO:32, to the N-terminal, to create GAL4-(1473-1724)VPARP, SEQ ID NO:54, encoded by the cDNA, SEQ ID NO:55.
- the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding GAL4, SEQ ID NO:32, to the N-terminal, to create GAL4-VPARP, SEQ ID NO:56, encoded by the cDNA, SEQ ID NO:57.
- the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding GL, SEQ ID NO:44, to the N-terminal, to create GL-(1473-1724)VPARP, SEQ ID NO:58, encoded by the cDNA, SEQ ID NO:59.
- the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding GL, SEQ ID NO:44, to the N-terminal, to create GL-VPARP, SEQ ID NO:60, encoded by the cDNA, SEQ ID NO:61.
- the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding MS2, SEQ ID NO:38, to the N-terminal, to create MS2-(1473-1724)VPARP, SEQ ID NO:62, encoded by the cDNA, SEQ ID NO:63.
- the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding MS2, SEQ ID NO:38, to the N-terminal, to create MS2-VPARP, SEQ ID NO:64, encoded by the cDNA, SEQ ID NO:65.
- the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding a Photinus pyralis luciferase (LUC), SEQ ID NO:66 GenBank accession number P08659, encoded by the pGL3-Basic vector SEQ ID NO:67, GenBank accession number U47295 to the N-terminal, to create LUC-(1473-1724)VPARP, SEQ ID NO:68, encoded by the cDNA, SEQ ID NO:69.
- LOC Photinus pyralis luciferase
- the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding LUC, SEQ ID NO:66, to the N-terminal, to create LUC-VPARP, SEQ ID NO:71, encoded by the cDNA, SEQ ID NO:72.
- the present invention also includes corresponding modifications to the C-terminal of VPARP or a portion of VPARP, and serve the same function.
- the substance binding domain binds the enzyme adenosine deaminase.
- a vault-like particle comprising, consisting essentially of, or consisting of MVP modified by adding an amino acid sequence to the C-terminal of the MVP which results in one or more than one receptor-binding domain, such as a protein targeting domain, on the surface of the vault-like particle.
- one or more than one of the receptor-binding domains such as 96 receptor-binding domains
- vault-like particles can also be assembled from a mixture of MVP with the C-terminal modified and MVP without the C-terminal modified, to create vault-like particle with less than 96 receptor-binding domains on the vault-like particle.
- a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the C-terminal to create a one or more than one of eukaryotic cell receptor-binding domains on the exterior of the vault-like particles.
- the eukaryotic cell receptor-binding domain is generally non-specific.
- the peptide is Antennapedia (ANT), SEQ ID NO:72, encoded by the cDNA, SEQ ID NO:73
- the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP-ANT, SEQ ID NO:74, encoded by the cDNA, SEQ ID NO:75.
- the peptide is ANT, SEQ ID NO:72, encoded by the cDNA, SEQ ID NO:73, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP-ANT, SEQ ID NO:76, encoded by the cDNA, SEQ ID NO:77.
- the peptide is HIV-Tat (TAT), SEQ ID NO:78, encoded by the cDNA, SEQ ID NO:79, the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP-TAT, SEQ ID NO:80, encoded by the cDNA, SEQ ID NO:81.
- the peptide is TAT, SEQ ID NO:78, encoded by the cDNA, SEQ ID NO:79, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP-TAT, SEQ ID NO:82, encoded by the cDNA, SEQ ID NO:83.
- the eukaryotic cell receptor-binding domain is specific to a certain type of eukaryotic cell receptor, such as for example a carcinoembryonic antigen receptor, a protein found on the surface of about 50% of all human tumors, or an epidermal growth factor (EGF) receptor.
- EGF epidermal growth factor
- the peptide is anti-CEA scFv diabody ( ⁇ CEA), SEQ ID NO:84, encoded by the cDNA, SEQ ID NO:85, the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP- ⁇ CEA, SEQ ID NO:86, encoded by the cDNA, SEQ ID NO:87.
- the peptide is ⁇ CEA, SEQ ID NO:84, encoded by the cDNA, SEQ ID NO:85, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP- ⁇ CEA, SEQ ID NO:88, encoded by the cDNA, SEQ ID NO:89.
- the peptide is EGF, SEQ ID NO:90, encoded by the cDNA, SEQ ID NO:91, the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP-EGF, SEQ ID NO:92, encoded by the cDNA, SEQ ID NO:93.
- the peptide is EGF, SEQ ID NO:90, encoded by the cDNA, SEQ ID NO:91, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP-EGF, SEQ ID NO:94, encoded by the cDNA, SEQ ID NO:95.
- a vault-like particle comprising, consisting essentially of, or consisting of MVP modified by adding an amino acid sequence to the N-terminal and also modified by adding an amino acid sequence to the C-terminal.
- the modification of the N-terminal and the modification of the C-terminal can be any modification as disclosed in this disclosure, for the same purposes as disclosed in this disclosure.
- the modification of the N-terminal can result in a substance-binding domain, such as for example a heavy metal binding domain or a polynucleotide binding domain, or can result in a sensor within the vault-like particle.
- the modification of the C-terminal can result in one or more than one receptor-binding domain on the surface of the vault-like particle.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and ANT, SEQ ID NO:72 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP-ANT, SEQ ID NO:96, encoded by the cDNA, SEQ ID NO:97.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ANT, SEQ ID NO:72 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP-ANT, SEQ ID N0:98, encoded by the cDNA, SEQ ID NO:99.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and ⁇ CEA, SEQ ID NO:84 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP- ⁇ CEA, SEQ ID NO:100, encoded by the cDNA, SEQ ID NO:101.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ⁇ CEA, SEQ ID NO:84 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP- ⁇ CEA, SEQ ID NO: 102, encoded by the cDNA, SEQ ID NO: 103.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and EGF, SEQ ID NO:90 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP-EGF, SEQ ID NO:104, encoded by the cDNA, SEQ ID NO:105.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and EGF, SEQ ID NO:90 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP-EGF, SEQ ID NO:106, encoded by the cDNA, SEQ ID NO:107.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP-TAT, SEQ ID NO:108, encoded by the cDNA, SEQ ID NO:109.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP-TAT, SEQ ID NO:110, encoded by the cDNA, SEQ ID NO:111.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and ANT, SEQ ID NO:72 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP-ANT, SEQ ID NO:112, encoded by the cDNA, SEQ ID NO:113.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ANT, SEQ ID NO:72 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP-ANT, SEQ ID NO:114, encoded by the cDNA, SEQ ID NO:115.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and ⁇ CEA, SEQ ID NO:84 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP- ⁇ CEA, SEQ ID NO:116, encoded by the cDNA, SEQ ID NO:117.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ⁇ CEA, SEQ ID NO:84 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP- ⁇ CEA, SEQ ID NO:118, encoded by the cDNA, SEQ ID NO:119.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and EGF, SEQ ID NO:90 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP-EGF, SEQ ID NO:120, encoded by the cDNA, SEQ ID NO:121.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and EGF, SEQ ID NO:90 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP-EGF, SEQ ID NO:122, encoded by the cDNA, SEQ ID NO:123.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and TAT, SEQ ID N0:78 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP-TAT, SEQ ID NO:124, encoded by the cDNA, SEQ ID NO:125.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP-TAT, SEQ ID NO:126, encoded by the cDNA, SEQ ID NO:127.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and ANT, SEQ ID NO:72 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP-ANT, SEQ ID NO:128, encoded by the cDNA, SEQ ID NO:129.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ANT, SEQ ID NO:72 to the C-terminal of a Rattus norvegicus MVP, SEQ ID NO:10, to create polylysine-MVP-ANT, SEQ ID NO:130, encoded by the cDNA, SEQ ID NO:131.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and ⁇ CEA, SEQ ID NO:84 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP- ⁇ CEA, SEQ ID NO:132, encoded by the cDNA, SEQ ID NO:133.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ⁇ CEA, SEQ ID NO:84 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO: 10, to create polylysine-MVP- ⁇ CEA, SEQ ID NO:134, encoded by the cDNA, SEQ ID NO:135.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and EGF, SEQ ID NO:90 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP-EGF, SEQ ID NO:136, encoded by the cDNA, SEQ ID NO:137.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and EGF, SEQ ID NO:90 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create polylysine-MVP-EGF, SEQ ID NO:138, encoded by the cDNA, SEQ ID NO:139.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP-TAT, SEQ ID NO:140, encoded by the cDNA, SEQ ID NO:141.
- the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create polylysine-MVP-TAT, SEQ ID NO:142, encoded by the cDNA, SEQ ID NO:143.
- a vault-like particle comprising MVP and VPARP or a portion of VPARP, where the MVP is modified by adding an amino acid sequence to the N-terminal or is modified by adding an amino acid sequence to the C-terminal, or is modified both by adding an amino acid sequence to the N-terminal and by adding an amino acid sequence to the C-terminal, and where the VPARP or portion of VPARP is modified by adding an amino acid sequence to the N-terminal or is modified by adding an amino acid sequence to the C-terminal, or is modified both by adding an amino acid sequence to the N-terminal and by adding an amino acid sequence to the C-terminal.
- the modifications can be any modification as disclosed in this disclosure, for the same purposes as disclosed in this disclosure.
- a method of preventing damage by one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle comprises providing vault-like particles according to the present invention.
- the method further comprises administering the vault-like particles to the organism, tissue, cells or environmental medium, and allowing the vault-like particles to sequester the one or more than one substance within the vault-like particles.
- the vault-like particles comprise, consist essentially of or consist of a modified MVP according to the present invention. In another embodiment, the vault-like particles comprise a modified VPARP or portion of VPARP according to the present invention. In another embodiment, the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or portion of VPARP according to the present invention. In a preferred embodiment, the vault-like particles comprise, consist essentially of or consist of MVP modified by adding a peptide to the N-terminal to create a one or more than one of heavy metal binding domains. In one embodiment, the one or more than one substance is a heavy metal selected from the group consisting of cadmium, copper, gold and mercury.
- the one or more than one substance is a toxin selected from the group consisting of arsenate, dioxin, an organochlorine, a pentachlorophenol and a polychlorinated biphenyl.
- the providing step comprises expressing the vault-like particles in a eukaryotic organisms, such as for example an Acanthomoeba sp., yeast or Dictostelium discoidieum, capable of proliferating in contaminated soil, and the administering step comprises introducing the organisms with the expressed vault-like particles into the contaminated soil.
- vault-like particles comprising an arsenate reductase enzyme within the vault-like particles can be expressed in the organisms and used to detoxify soil.
- modified MVP is provided comprising one or more than one arsenate-binding domain at the N-terminal.
- Arsenate reductase enzyme is cloned with residues 1473-1724 of human VPARP, SEQ ID NO:3 at either the C-terminal or the N-terminal. Both proteins are co-expressed in a primitive eukaryotic organisms, such as acanthomoeba, yeast or Dictostelium discoidieum, capable of proliferating in contaminated soil. The organisms engineered to contain the two modified proteins are introduced into contaminated soil, where they are exposed to the environmental toxin, such as arsenate.
- the expressed vault-like particles comprising 96 or more copies of the arsenate-binding domain and the detoxification enzyme, arsenate reductase within the vault-like particles, then sequester and detoxify the environmental toxin, arsenate in the environmental medium.
- a method of delivering one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium comprises providing vault-like particles according to the present invention comprising the one or more than one substance.
- the method further comprises administering the vault-like particles comprising the one or more than one substance to the organism, tissue, cells or environmental medium.
- the vault-like particles comprise, consist essentially of or consist of a modified MVP according to the present invention, in addition to the one or more than one substance.
- the vault-like particles comprise a modified VPARP or modified portion of VPARP according to the present invention.
- the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or modified portion of VPARP according to the present invention.
- the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding.
- the substance is adenosine deaminase.
- a method of delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium comprises providing a vault-like particle comprising the one or more than one sensor and administering the vault-like particle to the organism, specific tissue, specific cells, or environmental medium.
- the vault-like particles comprise, consist essentially of or consist of a modified MVP according to the present invention, in addition to the one or more than one sensor.
- the vault-like particles comprise a modified VPARP or modified portion of VPARP according to the present invention.
- the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or modified portion of VPARP according to the present invention.
- the sensor can be any suitable sensor, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, such as for example, a chemical sensor such as a cyclic-AMP binding protein, an ionic sensor such as a calcium or potassium sensor, a microorganism sensor such an antibody specific for E. coli, an optical sensor such as a quantum dot, and a pH sensor such as green fluorescence protein.
- the sensor is a fluorescent sensor.
- the present invention is a method of detecting a signal from a sensor within an organism, or a specific tissue or specific cells.
- the method comprises delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium, according to a method of the present invention.
- the presence of the sensor is detected.
- Detection is performed using standard techniques, such as for example, fluorometry or spectrophotometry. This method can be used, for example, to determine the pH within cells, where the sensor is a pH dependent fluorescent sensor, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- a method of making vault-like particles comprises creating polynucleotide sequences encoding one or more than one polypeptide selected from the group consisting of MVP, modified MVP, VPARP, a portion of VPARP, modified VPARP, a modified portion of VPARP, TEP1, a portion of TEP1, modified TEP1 and a modified portion of TEP1, using standard molecular biological procedures, such as polymerase chain reaction and specific oligonucleotides, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- the polynucleotide sequences are used to generate a bacmid DNA that is used to generate a baculovirus comprising the sequence.
- the baculovirus is then used to infect insect cells for protein production using an in situ assembly system, such as the baculovirus protein expression system, according to standard techniques, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- an in situ assembly system such as the baculovirus protein expression system
- a method of making vault-like particles having one or more than one substance such as an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding, within the vault-like particles.
- the method comprises making the vault-like particles according to a method of the present invention.
- the vault-like particles are purified using, such as for example, standard procedures over sucrose gradients.
- the vault-like particles are co-incubated with one or more than one substance, until the one or more than one substance equilibrates within the vault-like particles or until enough of the one or more than one substance is loaded in the vault-like particles for the intended purpose.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Nanotechnology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Toxicology (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medical Informatics (AREA)
Abstract
A method of using vaults as carrier molecules to deliver one or more than one substance to an organism, or to a specific tissue or to specific cells, or to an environmental medium. A vault-like particle. A method of preventing damage by one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle. A method of delivering one or more than one substance or a sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium. According to another embodiment of the present invention, there is provided a method of making vault-like particles, and making vault-like particles comprising one or more than one substance, or one or more than one sensor.
Description
- The content of the ASCII text file of the sequence listing named “20141210—034044—133CON1_seq” which is 878 kb in size was created on Dec. 10, 2014, and electronically submitted via EFS-Web herewith the application, and was downloaded from the PAIR records for U.S. Pat. No. 12/252,200, which version had a filing/load date of Jan. 21, 2009, is incorporated herein by reference in its entirety.
- This invention was made with Government support under 0210690 and 9722353, awarded by the National Science Foundation. The Government has certain rights in the invention
- Vaults are ubiquitous, highly conserved cellular components found in phylogeny as diverse as mammals, avians, amphibians, the slime mold Dictyostelium discoideum, and the protozoan Trypanosoma brucei. Scanning transmission electron microscopic analysis has shown that the molecular mass of vaults is about 12.9±1 MDa, and cryo-electronmicrograph single particle reconstruction has determined that vaults have an overall dimension of about 420×420×750 Å. Thus, vaults have a greater mass and size than many icosahedral viruses. The function of vaults is currently unknown.
- Vaults are ribonucleoprotein particles comprising three different proteins, designated MVP, VPARP and TEP1, and between one and three different untranslated RNA molecules, designated vRNAs. For example, the rat Rattus norvegicus has only one form of vRNA per vault, while humans have three forms of vRNA per vault. The major vault protein, MVP, a 95.8 kDa protein in Rattus norvegicus and a 99.3 kDa protein in humans, is present in 96 copies per vault and accounts for about 75% of the total protein mass of the vault particle. The two other proteins, the vault poly-ADP ribose polymerase, VPARP, a 193.3 kDa protein in humans, and the telomerase/vault associated protein 1, TEP1, a 292 kDa protein in Rattus norvegicus and a 290 kDa protein in humans, are each present in between about 2 and 16 copies per vault.
- VPARP, is a poly ADP-ribosyl polymerase apparently unique to vaults. It includes a region of about 350 amino acids that shares 28% identity with the catalytic domain of poly ADP-ribosyl polymerase, PARP, a nuclear protein that catalyzes the formation of ADP-ribose polymers in response to DNA damage. VPARP catalyzes an NAD-dependent poly ADP-ribosylation reaction, and purified vaults have poly ADP-ribosylation activity that targets MVP, as well as VPARP itself.
- Cryo-electron microscopy studies have determined that the vaults are hollow, barrel-like structures with two protruding end caps and an invaginated waist. Regular small openings surround the vault cap. These openings are large enough to allow small molecules and ions to enter the interior of the vault. The volume of the internal cavity of the vault is about 5×107 Å3, large enough to enclose two ribosomes.
- According to one embodiment of the present invention, there is provided a method of using vaults as carrier molecules to deliver one or more than one substance to an organism, or to a specific tissue or to specific cells, or to an environmental medium. The method comprises providing vaults, incorporating the one or more than one substance into the vaults, and administering the vaults comprising the one or more than one substance to the organism, to the specific tissue, to the specific cells, or to the environmental medium. In one embodiment, the vaults provided are purified from natural sources. In another embodiment, the vaults provided are generated using recombinant technology. In one embodiment, incorporation is accomplished by incubating the vaults with the one or more than one substance. In one embodiment, the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding.
- According to another embodiment of the present invention, there is provided a vault-like particle comprising MVP. In one embodiment, the vault-like particle further comprises VPARP or modified VPARP, or a portion of VPARP or a modified portion of VPARP. In another embodiment, the vault-like further comprises TEP1 or modified TEP1, or a portion of TEP1 or a modified portion of TEP1.
- According to another embodiment of the present invention, there is provided a vault-like particle comprising modified MVP. In one embodiment, the modified MVP comprises an amino acid sequence added to the N-terminal of the MVP which results in one or more than one substance-binding domain within the vault-like particle. In another embodiment, the one or more than one substance-binding domain is between 1 and 95 substance-binding domains. In another embodiment, the one or more than one substance-binding domain is 96 substance-binding domains. In another embodiment, the one or more than one substance-binding domain is greater than 96 substance-binding domains. In one embodiment, the one or more than one substance-binding domain within the vault-like particle is one or more than one heavy metal binding domain. In a preferred embodiment, the one or more than one heavy metal binding domain binds a heavy metal selected from the group consisting of cadmium, copper, gold and mercury. In a preferred embodiment, the peptide added to the N-terminal is a cysteine-rich peptide. In a preferred embodiment, the one or more than one substance-binding domain within the vault-like particle is one or more than one polynucleotide-binding domain. In a preferred embodiment, the one or more than one polynucleotide-binding domain is a non-specific polynucleotide-binding peptide. In a preferred embodiment, the one or more than one polynucleotide-binding domain is a specific polynucleotide-binding peptide.
- In another embodiment, the modified MVP of the vault-like particle comprising modified MVP comprises an amino acid sequence added to the N-terminal of the MVP creates a sensor in the vault-like particle. In one embodiment, the sensor is selected from the group consisting of a chemical sensor, an ionic sensor, a microorganism sensor, an optical sensor and a pH sensor. In one embodiment, the sensor is a green fluorescent protein.
- In another embodiment, the modified MVP of the vault-like particle comprising modified MVP comprises an amino acid sequence added to the C-terminal of the MVP which results in one or more than one receptor-binding domain. In one embodiment, the one or more than one receptor-binding domain is between 1 and 95 receptor-binding domains. In another embodiment, the one or more than one receptor-binding domain is 96 receptor-binding domains. In another embodiment, the one or more than one receptor-binding domain is greater than 96 receptor-binding domains. In one embodiment, the one or more than one receptor-binding domain is non-specific. In another embodiment, the one or more than one receptor-binding domain is specific.
- In another embodiment, the modified MVP further comprises an amino acid sequence added to the C-terminal of the MVP which results in one or more than one receptor-binding domain. In one embodiment, the one or more than one receptor-binding domain is between 1 and 95 receptor-binding domains. In another embodiment, the one or more than one receptor-binding domain is 96 receptor-binding domains. In another embodiment, the one or more than one receptor-binding domain, is greater than 96 receptor-binding domains. In one embodiment, the one or more than one receptor-binding domain is non-specific. In another embodiment, the one or more than one receptor-binding domain is specific.
- In another embodiment, the modified MVP comprises both an amino acid sequence added to the C-terminal of the MVP and an amino acid sequence added to the N-terminal of the MVP.
- According to another embodiment of the present invention, there is provided a vault-like particle comprising MVP or modified MVP, and further comprises VPARP or a portion of VPARP comprising at least about 150 consecutive residues of VPARP. In one embodiment, the portion of VPARP comprises residues from about residue 1562 to 1724 of human VPARP, SEQ ID NO:3. In another embodiment, the portion of VPARP comprises residues from about residue 1473 to 1724 of human VPARP, SEQ ID NO:3. In another embodiment, the VPARP or portion of VPARP is modified. In one embodiment, the modification comprises adding an amino acid sequence added to the C-terminal of the VPARP or portion of VPARP. In another embodiment, the modification comprises adding an amino acid sequence added to the N-terminal of the VPARP or portion of VPARP. In another embodiment, the modification comprises adding an amino acid sequence added to both the C-terminal and the N-terminal of the VPARP or portion of VPARP. In one embodiment, the modified MVP comprises an amino acid sequence added to the C-terminal of the MVP. In another embodiment, the modified MVP comprises an amino acid sequence added to the N-terminal of the MVP. In another embodiment, the modified MVP comprises both a peptide added to the C-terminal and a peptide added to the N-terminal.
- According to another embodiment of the present invention, there is provided a method of preventing damage by one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle. The method comprises providing vault-like particles, administering the vault-like particles to the organism, tissue, cells or environmental medium, and allowing the vault-like particles to sequester the one or more than one substance within the vault-like particles. In one embodiment, the one or more than one substance is a heavy metal selected from the group consisting of cadmium, copper, gold and mercury. In another embodiment, the one or more than one substance is a toxin selected from the group consisting of arsenate, dioxin, an organochlorine, a pentachlorophenol and a polychlorinated biphenyl. In one embodiment, providing the vault-like particles comprises expressing the vault-like particles in a eukaryotic organism.
- According to another embodiment of the present invention, there is provided a method of delivering one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium. The method comprises providing vault-like particles comprising the one or more than one substance, and administering the vault-like particles comprising the one or more than one substance to the organism, tissue, cells or environmental medium. In one embodiment, the vault-like particles comprise, consist essentially of or consist of a modified MVP in addition to the one or more than one substance. In another embodiment, the vault-like particles comprise a modified VPARP or modified portion of VPARP. In another embodiment, the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or modified portion of VPARP. In another embodiment, the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding. In another embodiment, the one or more than one substance is adenosine deaminase.
- According to another embodiment of the present invention, there is provided a method of delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium. The method comprises providing a vault-like particle comprising the one or more than one sensor and administering the vault-like particle to the organism, specific tissue, specific cells, or environmental medium. In one embodiment, the vault-like particles comprise, consist essentially of or consist of a modified MVP, in addition to the one or more than one sensor. In another embodiment, the vault-like particles comprise a modified VPARP or modified portion of VPARP. In another embodiment, the vault-like particles comprise both a modified MVP, and a modified VPARP or modified portion of VPARP. In one embodiment, the sensor is selected from the group consisting of a chemical sensor, a fluorescent sensor, an ionic sensor, a microorganism sensor, an optical sensor, and a pH sensor.
- According to another embodiment of the present invention, there is provided a method of detecting a signal from a sensor within an organism, or a specific tissue or specific cells. The method comprises delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium according to the present invention, and detecting the presence of the sensor. In one embodiment, detection is accomplished by fluorometry or by spectrophotometry.
- According to another embodiment of the present invention, there is provided a method of making vault-like particles. The method comprises creating polynucleotide sequences encoding one or more than one polypeptide selected from the group consisting of MVP, modified MVP, VPARP, a portion of VPARP, modified VPARP, a modified portion of VPARP, TEP1, a portion of TEP1, modified TEP1 and a modified portion of TEP1, using the polynucleotide sequences created to generate a bacmid DNA, using the bacmid DNA to generate a baculovirus comprising the sequence, and using the baculovirus to infect insect cells for protein production using an in situ assembly system.
- According to another embodiment of the present invention, there is provided a method of making vault-like particles comprising one or more than one substance. The method comprises making vault-like particles according to claim 63, and co-incubated the vault-like particles with the one or more than one substance. In one embodiment, the one or more than one substance is selected from the group consisting of enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding. In another embodiment, the method further comprises purifying the vault-like particles after making the vault-like particles.
- According to one embodiment of the present invention, there is provided a method of using vaults as carrier molecules to deliver one or more than one substance to an organism, or to a specific tissue or specific cells. The method comprises administering vaults comprising the substance to the organism, tissue or cells.
- According to another embodiment of the present invention, there is provided a vault-like particle useful as a carrier molecule for delivering one or more than one substance to a living system, such as an organism, specific tissue or specific cell, or to an environmental medium. According to another embodiment of the present invention, there is provided a method of delivering one or more than one substance to an organism, or to a specific tissue or specific cells, or to an environmental medium. The method comprises providing vault-like particles comprising the substance, and administering the vault-like particles comprising the substance to the organism, tissue or cells, or to the environmental medium.
- According to another embodiment of the present invention, there is provided a method of delivering vault-like particles to a specific tissue or specific cells, or to an environmental medium. The method comprises providing vault-like particles having a receptor-binding domain on the surface of the vault-like particles, and administering the vault-like particles to the tissue or cells, or to the environmental medium.
- According to another embodiment of the present invention, there is provided a vault-like particle useful for sequestering the one or more than one substance within the vault-like particle. According to another embodiment of the present invention, there is provided a method of preventing damage by one or more than one substance to an organism, or to a specific tissue or specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle. The method comprises providing vault-like particles comprising one or more than one substance-binding domain within the vault-like particle, administering the vault-like particles to the organism, tissue or cells, or to the environmental medium, and allowing the vault-like particles to sequester the one or more than one substance within the vault-like particles.
- Advantageously, both vaults and vault-like particles are resistant to degradation, such as intracellular degradation or environmental degradation, and therefore, can be used to deliver substances to or to remove substances from both living and non-living systems. The embodiments of the present invention will now be disclosed in greater detail.
- As used in this disclosure, “MVP,” “VPARP” and “TEP1” means the full naturally occurring polypeptide sequence. “vRNA” means the full naturally occurring polynucleotide sequence. As will be appreciated by one of ordinary skill in the art with reference to this disclosure, the actual sequence of any of MVP, VPARP, TEP1 and vRNAs can be from any species suitable for the purposes disclosed in this disclosure, even though reference or examples are made to sequences from specific species. For example, when delivering substances to human organs or tissues, it is preferred to use human vaults or vault-like particles comprising human sequences for MVP, VPARP, TEP1 and vRNAs. Further, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, there are some intraspecies variations in the sequences of MVP, VPARP, TEP1 and vRNAs that are not relevant to the purposes of the present invention. Therefore, references to MVP, VPARP, TEP1 and vRNAs are intended to include such intraspecies variants.
- As used in this disclosure, the term “vault” or “vault particle,” as compared to the term “vault-like particle” defined below, refers to a naturally occurring macro-molecular structure having MVP, VPARP, TEP1 and one or more than one vRNA, whether purified from natural sources or generated through recombinant technology.
- As used in this disclosure, the term “vault-like particle” refers to a macro-molecular structure comprising any of the following:
- 1) MVP without VPARP, TEP1 and vRNA;
- 2) MVP and either VPARP or a portion of VPARP, without TEP1 and vRNA;
- 3) MVP and TEP1 or a portion of TEP1 with or without the one or more than one vRNA, and without VPARP;
- 4) MVP without VPARP, TEP1 and vRNA, where the MVP is modified to attract a specific substance within the vault-like particle, or modified to attract the vault-like particle to a specific tissue, cell type or environmental medium, or modified both to attract a specific substance within the vault-like particle and to attract the vault particle to a specific tissue, cell type or environmental medium; and
- 5) MVP, and either VPARP or a portion of VPARP, or TEP1 or a portion of TEP1 with or without the one or more than one vRNA, or with both VPARP or a portion of VPARP, and TEP1, with or without the one or more than one vRNA, where one or more than one of the MVP, VPARP or portion of VPARP and TEP1 is modified to attract a specific substance within the vault-like particle, or modified to attract the vault particle to a specific tissue, cell type or environmental medium, or modified both to attract a specific substance within the vault-like particle and to attract the vault particle to a specific tissue, cell type or environmental medium.
- As used in this disclosure, the term “modified” and variations of the term, such as “modification,” means one or more than one change to the naturally occurring sequence of MVP, VPARP or TEP1 selected from the group consisting of addition of a polypeptide sequence to the C-terminal, addition of a polypeptide sequence to the N-terminal, deletion of between about 1 and 100 amino acid residues from the C-terminal, deletion of between about 1 and 100 amino acid residues from the N-terminal, substitution of one or more than one amino acid residue that does not change the function of the polypeptide, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, such as for example, an alanine to glycine substitution, and a combination of the preceding.
- As used in this disclosure, the term “human” means “Homo sapiens.”
- As used in this disclosure, the terms “organism,” “tissue” and “cell” include naturally occurring organisms, tissues and cells, genetically modified organisms, tissues and cells, and pathological tissues and cells, such as tumor cell lines in vitro and tumors in vivo.
- As used in this disclosure, the term “environmental medium” means a non-living composition, composite, material, or mixture.
- As used in this disclosure, the term “administering” includes any suitable route of administration, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, including direct injection into a solid organ, direct injection into a cell mass such as a tumor, inhalation, intraperitoneal injection, intravenous injection, topical application on a mucous membrane, or application to or dispersion within an environmental medium, and a combination of the preceding. In one embodiment, the dosage of vaults or vault-like particles, with or without one or more than one substance enclosed within the vaults or vault-like particles, is between about 0.1 and 10,000 micrograms per kilogram of body weight or environmental medium. In another embodiment, the dosage of vaults or vault-like particles, with or without one or more than one substance enclosed within the vaults or vault-like particles, is between about 1 and 1,000 micrograms per kilogram of body weight or environmental medium. In another embodiment, the dosage of vaults or vault-like particles, with or without one or more than one substance enclosed within the vaults or vault-like particles, is between about 10 and 1,000 micrograms per kilogram of body weight or environmental medium. For intravenous injection and intraperitoneal injection, the dosage is preferably administered in a final volume of between about 0.1 and 10 ml. For inhalation the dosage is preferably administered in a final volume of between about 0.01 and 1 ml. As will be appreciated by one of ordinary skill in the art with reference to this disclosure, the dose can be repeated a one or more than one of times as needed using the same parameters to effect the purposes disclosed in this disclosure.
- As used in this disclosure, “MS2” means the Enterobacteriophage MS2 coat protein, which is an RNA-binding protein that specifically binds a 21-nt RNA stem-loop with high affinity.
- As used in this disclosure, the term “comprise” and variations of the term, such as “comprising” and “comprises,” are not intended to exclude other additives, components, integers or steps.
- In one embodiment, the present invention is a method of using naturally occurring vaults as carrier molecules to deliver one or more than one substance to an organism, or to a specific tissue or specific cells, or to an environmental medium. The method comprises, first, providing vaults. In one embodiment, the vaults are purified from natural sources, such as mammalian liver or spleen tissue, using methods known to those with skill in the art, such as for example tissue homogenization, differential centrifugation, discontinuous sucrose gradient fractionation and cesium chloride gradient fractionation. In another embodiment, the vaults are made using recombinant technology. Next, the one or more than one substance is incorporated into the provided vaults. In a preferred embodiment, incorporation is accomplished by incubating the vaults with the one or more than one substance at an appropriate temperature and for an appropriate time, as will be appreciated by one of ordinary skill in the art with reference to this disclosure. The vaults containing the one or more than one substance are then purified, such as for example sucrose gradient fractionation, as will be appreciated by one of ordinary skill in the art with reference to this disclosure. In a preferred embodiment, the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding. Next, the vaults comprising the one or more than one substance are administered to an organism, to a specific tissue, to specific cells, or to an environmental medium. Administration is accomplished using any suitable route, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- According to another embodiment of the present invention, there is provided a vault-like particle useful as a carrier molecule for delivering one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, or useful for preventing damage by one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle. The vault-like particle comprises MVP or modified MVP, and can further comprise VPARP or modified VPARP, a portion of VPARP or a modified portion of VPARP, and TEP1 or modified TEP1, a portion of TEP1 or a modified portion of TEP1 with or without the one or more than one vRNA. In a preferred embodiment, the modifications are designed to attract a specific substance within the vault-like particle, to attract the vault-like particle to a specific tissue or cell type, or both to attract a specific substance within the vault-like particle and to attract the vault particle to a specific tissue or cell type.
- In one embodiment, the MVP is human MVP, SEQ ID NO:1, GenBank accession number CAA56256, encoded by the cDNA, SEQ ID NO:2, GenBank accession number X79882. In another embodiment, the VPARP is human VPARP, SEQ ID NO:3, GenBank accession number AAD47250, encoded by the cDNA, SEQ ID NO:4, GeWank accession number AF158255. In another embodiment, the TEP1 is human TEP1, SEQ ID NO:5, GenBank accession number AAC51107, encoded by the cDNA, SEQ ID NO:6, GenBank accession number U86136. In another embodiment, the vRNA is human vRNA, SEQ ID NO:7, GenBank accession number AF045143, SEQ ID NO:8, GenBank accession number AF045144, or SEQ ID NO:9, GenBank accession number AF045145, or a combination of the preceding.
- In one embodiment, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, GenBank accession number AAC52161, encoded by the cDNA, SEQ ID NO:11, GenBank accession number U09870. In another embodiment, the TEP1 is Rattus norvegicus TEP1, SEQ ID NO:12, GenBank accession number AAB51690, encoded by the cDNA, SEQ ID NO:13, GenBank accession number U89282. In another embodiment, the vRNA is Rattus norvegicus vRNA, SEQ ID NO:14, GenBank accession number Z1171. As can be seen, Rattus norvegicus MVP and human MVP share over 90% homology.
- The following disclosure of vault protein modifications references specific examples using specific human and Rattus norvegicus sequences of MVP, VPARP and TEP1 sequences, however, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, corresponding modifications can be made using other sequences of these species and can be made using sequences from other species as appropriate for the disclosed purposes.
- According to one embodiment of the present invention, there is provided a vault-like particle comprising, consisting essentially of, or consisting of modified MVP. In a preferred embodiment, the modification comprises adding an amino acid sequence to the N-terminal of the MVP which results in one or more than one substance-binding domain within the vault-like particle. When each copy of the MVP is modified in this manner, one or more than one of the substance-binding domains, such as 96 substance-binding domains, is present in each vault-like particle, however, vault-like particles can also be assembled from a mixture of MVP with the N-terminal modified and MVP without the N-terminal modified, to create vault-like particle with less than 96 substance-binding domains in the vault-like particle, and the added amino acid terminal sequences can be polymerized as will be appreciated by one of ordinary skill in the art with reference to this disclosure to create more than 96 substance-binding domains in the vault-like particle.
- In a preferred embodiment, there is provided a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the N-terminal to create a one or more than one of heavy metal binding domains. In a preferred embodiment, the heavy metal binding domains bind a heavy metal selected from the group consisting of cadmium, copper, gold and mercury. In a preferred embodiment, the peptide added to the N-terminal is a cysteine-rich peptide (CP), such as for example, SEQ ID NO:15, the MVP is human MVP, SEQ ID NO:1, and the modification results in CP-MVP, SEQ ID NO:16, encoded by the cDNA, SEQ ID NO:17. In another preferred embodiment, the cysteine-rich peptide is SEQ ID NO:15, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in CP-MVP, SEQ ID NO:18, encoded by the cDNA, SEQ ID NO:19. These embodiments are particularly useful because vault-like particles consisting of CP-MVP, SEQ ID NO:16 or SEQ ID NO:18, are stable without the presence of other vault proteins.
- In another embodiment, there is provided a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the N-terminal to create one or more than one polynucleotide-binding domain. In a preferred embodiment, the peptide is a non-specific polynucleotide-binding peptide, such as for example, HisT7, SEQ ID NO:20, encoded by the cDNA, SEQ ID NO:21, or a polylysine such as SEQ ID NO:22, encoded by the cDNA, SEQ ID NO:23, the MVP is human MVP, SEQ ID NO:1, and the modification results in HisT7-MVP, SEQ ID NO:24, encoded by the cDNA, SEQ ID NO:25, or in polylysine-MVP, SEQ ID NO:26, encoded by the cDNA, SEQ ID NO:27, respectfully. In another preferred embodiment, the peptide is a non-specific polynucleotide-binding peptide, such as for example, HisT7, SEQ ID NO:20, encoded by the cDNA, SEQ ID NO:21, or a polylysine such as SEQ ID NO:22, encoded by the cDNA, SEQ ID NO:23, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in HisT7-MVP, SEQ ID NO:28, encoded by the cDNA, SEQ ID NO:29, or in polylysine-MVP, SEQ ID NO:30, encoded by the cDNA, SEQ ID NO:31, respectfully. HisT7-MVP, SEQ ID NO:24 and SEQ ID NO:28, are examples of modified MVP that can also be used to bind specific antibodies within the vault-like particle, in these cases, the T7 monoclonal antibody, but corresponding modifications can be made to bind other specific antibodies, as will be appreciated by one of ordinary skill in the art with reference to this disclosure. In another preferred embodiment, the peptide is a specific DNA binding peptide, such as for example, GAL4, SEQ ID NO:32, encoded by the cDNA, SEQ ID NO:33, the MVP is human MVP, SEQ ID NO:1, and the modification results in GAL4-MVP, SEQ ID NO:34, encoded by the cDNA, SEQ ID NO:35. In another preferred embodiment, the peptide is a specific DNA binding peptide, such as for example, GAL4, SEQ ID NO:32, encoded by the cDNA, SEQ ID NO:33, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in GAL4-MVP, SEQ ID NO:36, encoded by the cDNA, SEQ ID NO:37. In another preferred embodiment, the peptide is a specific RNA binding peptide, such as for example, MS2, SEQ ID NO:38, encoded by the cDNA, SEQ ID NO:39, the MVP is human MVP, SEQ ID NO:1, and the modification results in MS2-MVP, SEQ ID NO:40, encoded by the cDNA, SEQ ID NO:41. In another preferred embodiment, the peptide is an RNA binding peptide, such as for example, MS2, SEQ ID NO:38, encoded by the cDNA, SEQ ID NO:39, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MS2-MVP, SEQ ID NO:42, encoded by the cDNA, SEQ ID NO:43.
- In another embodiment, there is provided a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the N-terminal to create a sensor in the vault-like particle. The sensor can be any suitable sensor, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, such as for example, a chemical sensor such as a cyclic-AMP binding protein, an ionic sensor such as a calcium or potassium sensor, a microorganism sensor such an antibody specific for E. coli, an optical sensor such as a quantum dot, and a pH sensor such as green fluorescence protein. In a preferred embodiment, the sensor is a fluorescent protein, such as green fluorescent protein (GL), SEQ ID NO:44, encoded by the cDNA, SEQ ID NO:45, the MVP is human MVP, SEQ ID NO:1, and the modification results in GL-MVP, SEQ ID NO:46, encoded by the cDNA, SEQ ID NO:47. In another preferred embodiment, the sensor is a fluorescent protein, such as green fluorescent protein (GL), SEQ ID NO:44, encoded by the cDNA, SEQ ID NO:45, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in GL-MVP, SEQ ID NO:48, encoded by the cDNA, SEQ ID NO:49.
- In another embodiment, there is provided a vault-like particle comprising MVP or modified MVP, and further comprising VPARP or a portion of VPARP comprising at least about 150 consecutive residues of VPARP, and modified by adding a peptide to either the C-terminal or the N-terminal to create a one or more than one of substance-binding domains or a one or more than one of sensors within the vault-like particles having the same purposes as disclosed with reference to modified MVP in this disclosure. By way of example only, in one embodiment, the residues are from about residue 1562 to residue 1724 of human VPARP, SEQ ID NO:3. In another embodiment, the residues are from about residue 1473 to residue 1724 of human VPARP, SEQ ID NO:3. The substance-binding domains on the VPARP or portion of VPARP serve the same functions as disclosed in this disclosure with respect to N-terminal modifications of MVP. For example, in one embodiment, the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding CP, SEQ ID NO:15, to the N-terminal, to create (1473-1724)CP-VPARP, SEQ ID NO:50, encoded by the cDNA, SEQ ID NO:51. In another embodiment, the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding CP, SEQ ID NO:15, to the N-terminal, to create CP-VPARP, SEQ ID NO:52, encoded by the cDNA, SEQ ID NO:53. In one embodiment, the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding GAL4, SEQ ID NO:32, to the N-terminal, to create GAL4-(1473-1724)VPARP, SEQ ID NO:54, encoded by the cDNA, SEQ ID NO:55. In another embodiment, the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding GAL4, SEQ ID NO:32, to the N-terminal, to create GAL4-VPARP, SEQ ID NO:56, encoded by the cDNA, SEQ ID NO:57. In another embodiment, the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding GL, SEQ ID NO:44, to the N-terminal, to create GL-(1473-1724)VPARP, SEQ ID NO:58, encoded by the cDNA, SEQ ID NO:59. In another embodiment, the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding GL, SEQ ID NO:44, to the N-terminal, to create GL-VPARP, SEQ ID NO:60, encoded by the cDNA, SEQ ID NO:61. In another embodiment, the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding MS2, SEQ ID NO:38, to the N-terminal, to create MS2-(1473-1724)VPARP, SEQ ID NO:62, encoded by the cDNA, SEQ ID NO:63. In another embodiment, the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding MS2, SEQ ID NO:38, to the N-terminal, to create MS2-VPARP, SEQ ID NO:64, encoded by the cDNA, SEQ ID NO:65. In another embodiment, the vault-like particles comprise residues 1473-1724 of VPARP, SEQ ID NO:3, modified by adding a Photinus pyralis luciferase (LUC), SEQ ID NO:66 GenBank accession number P08659, encoded by the pGL3-Basic vector SEQ ID NO:67, GenBank accession number U47295 to the N-terminal, to create LUC-(1473-1724)VPARP, SEQ ID NO:68, encoded by the cDNA, SEQ ID NO:69.
- In another embodiment, the vault-like particles comprise VPARP, SEQ ID NO:3, modified by adding LUC, SEQ ID NO:66, to the N-terminal, to create LUC-VPARP, SEQ ID NO:71, encoded by the cDNA, SEQ ID NO:72. Further, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, the present invention also includes corresponding modifications to the C-terminal of VPARP or a portion of VPARP, and serve the same function. In a preferred embodiment, the substance binding domain binds the enzyme adenosine deaminase.
- According to one embodiment of the present invention, there is provided a vault-like particle comprising, consisting essentially of, or consisting of MVP modified by adding an amino acid sequence to the C-terminal of the MVP which results in one or more than one receptor-binding domain, such as a protein targeting domain, on the surface of the vault-like particle. When each copy of the MVP is modified in this manner, one or more than one of the receptor-binding domains, such as 96 receptor-binding domains, is present on each vault-like particle, however, vault-like particles can also be assembled from a mixture of MVP with the C-terminal modified and MVP without the C-terminal modified, to create vault-like particle with less than 96 receptor-binding domains on the vault-like particle.
- In a preferred embodiment, there is provided a vault-like particle comprising, consisting essentially of, or consisting of an MVP modified by adding a peptide to the C-terminal to create a one or more than one of eukaryotic cell receptor-binding domains on the exterior of the vault-like particles. In a preferred embodiment, the eukaryotic cell receptor-binding domain is generally non-specific. For example, in one embodiment, the peptide is Antennapedia (ANT), SEQ ID NO:72, encoded by the cDNA, SEQ ID NO:73, the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP-ANT, SEQ ID NO:74, encoded by the cDNA, SEQ ID NO:75. In another embodiment, the peptide is ANT, SEQ ID NO:72, encoded by the cDNA, SEQ ID NO:73, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP-ANT, SEQ ID NO:76, encoded by the cDNA, SEQ ID NO:77. In another embodiment, the peptide is HIV-Tat (TAT), SEQ ID NO:78, encoded by the cDNA, SEQ ID NO:79, the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP-TAT, SEQ ID NO:80, encoded by the cDNA, SEQ ID NO:81. In another embodiment, the peptide is TAT, SEQ ID NO:78, encoded by the cDNA, SEQ ID NO:79, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP-TAT, SEQ ID NO:82, encoded by the cDNA, SEQ ID NO:83. In another embodiment, the eukaryotic cell receptor-binding domain is specific to a certain type of eukaryotic cell receptor, such as for example a carcinoembryonic antigen receptor, a protein found on the surface of about 50% of all human tumors, or an epidermal growth factor (EGF) receptor. For example, in one embodiment, the peptide is anti-CEA scFv diabody (αCEA), SEQ ID NO:84, encoded by the cDNA, SEQ ID NO:85, the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP-αCEA, SEQ ID NO:86, encoded by the cDNA, SEQ ID NO:87. In another embodiment, the peptide is αCEA, SEQ ID NO:84, encoded by the cDNA, SEQ ID NO:85, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP-αCEA, SEQ ID NO:88, encoded by the cDNA, SEQ ID NO:89. In another embodiment, the peptide is EGF, SEQ ID NO:90, encoded by the cDNA, SEQ ID NO:91, the MVP is human MVP, SEQ ID NO:1, and the modification results in MVP-EGF, SEQ ID NO:92, encoded by the cDNA, SEQ ID NO:93. In another embodiment, the peptide is EGF, SEQ ID NO:90, encoded by the cDNA, SEQ ID NO:91, the MVP is Rattus norvegicus MVP, SEQ ID NO:10, and the modification results in MVP-EGF, SEQ ID NO:94, encoded by the cDNA, SEQ ID NO:95.
- According to one embodiment of the present invention, there is provided a vault-like particle comprising, consisting essentially of, or consisting of MVP modified by adding an amino acid sequence to the N-terminal and also modified by adding an amino acid sequence to the C-terminal. The modification of the N-terminal and the modification of the C-terminal can be any modification as disclosed in this disclosure, for the same purposes as disclosed in this disclosure. For example, the modification of the N-terminal can result in a substance-binding domain, such as for example a heavy metal binding domain or a polynucleotide binding domain, or can result in a sensor within the vault-like particle. The modification of the C-terminal can result in one or more than one receptor-binding domain on the surface of the vault-like particle. By way of example only, in one embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and ANT, SEQ ID NO:72 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP-ANT, SEQ ID NO:96, encoded by the cDNA, SEQ ID NO:97. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ANT, SEQ ID NO:72 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP-ANT, SEQ ID N0:98, encoded by the cDNA, SEQ ID NO:99. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and αCEA, SEQ ID NO:84 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP-αCEA, SEQ ID NO:100, encoded by the cDNA, SEQ ID NO:101. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and αCEA, SEQ ID NO:84 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP-αCEA, SEQ ID NO: 102, encoded by the cDNA, SEQ ID NO: 103. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and EGF, SEQ ID NO:90 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP-EGF, SEQ ID NO:104, encoded by the cDNA, SEQ ID NO:105. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and EGF, SEQ ID NO:90 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP-EGF, SEQ ID NO:106, encoded by the cDNA, SEQ ID NO:107. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of human MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of human MVP, SEQ ID NO:1, to create GAL4-MVP-TAT, SEQ ID NO:108, encoded by the cDNA, SEQ ID NO:109. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding GAL4, SEQ ID NO:32, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create GAL4-MVP-TAT, SEQ ID NO:110, encoded by the cDNA, SEQ ID NO:111. In one embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and ANT, SEQ ID NO:72 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP-ANT, SEQ ID NO:112, encoded by the cDNA, SEQ ID NO:113. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ANT, SEQ ID NO:72 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP-ANT, SEQ ID NO:114, encoded by the cDNA, SEQ ID NO:115. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and αCEA, SEQ ID NO:84 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP-αCEA, SEQ ID NO:116, encoded by the cDNA, SEQ ID NO:117. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and αCEA, SEQ ID NO:84 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP-αCEA, SEQ ID NO:118, encoded by the cDNA, SEQ ID NO:119. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and EGF, SEQ ID NO:90 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP-EGF, SEQ ID NO:120, encoded by the cDNA, SEQ ID NO:121. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and EGF, SEQ ID NO:90 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP-EGF, SEQ ID NO:122, encoded by the cDNA, SEQ ID NO:123. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of human MVP, SEQ ID NO:1, and TAT, SEQ ID N0:78 to the C-terminal of human MVP, SEQ ID NO:1, to create MS2-MVP-TAT, SEQ ID NO:124, encoded by the cDNA, SEQ ID NO:125.
- In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding MS2, SEQ ID NO:38, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create MS2-MVP-TAT, SEQ ID NO:126, encoded by the cDNA, SEQ ID NO:127. In one embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and ANT, SEQ ID NO:72 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP-ANT, SEQ ID NO:128, encoded by the cDNA, SEQ ID NO:129. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and ANT, SEQ ID NO:72 to the C-terminal of a Rattus norvegicus MVP, SEQ ID NO:10, to create polylysine-MVP-ANT, SEQ ID NO:130, encoded by the cDNA, SEQ ID NO:131. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and αCEA, SEQ ID NO:84 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP-αCEA, SEQ ID NO:132, encoded by the cDNA, SEQ ID NO:133. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and αCEA, SEQ ID NO:84 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO: 10, to create polylysine-MVP-αCEA, SEQ ID NO:134, encoded by the cDNA, SEQ ID NO:135.
- In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and EGF, SEQ ID NO:90 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP-EGF, SEQ ID NO:136, encoded by the cDNA, SEQ ID NO:137.
- In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:10, and EGF, SEQ ID NO:90 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create polylysine-MVP-EGF, SEQ ID NO:138, encoded by the cDNA, SEQ ID NO:139. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of human MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of human MVP, SEQ ID NO:1, to create polylysine-MVP-TAT, SEQ ID NO:140, encoded by the cDNA, SEQ ID NO:141. In another embodiment, the vault-like particle comprises, consists essentially of, or consists of MVP modified by adding polylysine, SEQ ID NO:22, to the N-terminal of Rattus norvegicus MVP, SEQ ID NO:1, and TAT, SEQ ID NO:78 to the C-terminal of Rattus norvegicus MVP, SEQ ID NO:10, to create polylysine-MVP-TAT, SEQ ID NO:142, encoded by the cDNA, SEQ ID NO:143.
- According to another embodiment of the present invention, there is provided a vault-like particle comprising MVP and VPARP or a portion of VPARP, where the MVP is modified by adding an amino acid sequence to the N-terminal or is modified by adding an amino acid sequence to the C-terminal, or is modified both by adding an amino acid sequence to the N-terminal and by adding an amino acid sequence to the C-terminal, and where the VPARP or portion of VPARP is modified by adding an amino acid sequence to the N-terminal or is modified by adding an amino acid sequence to the C-terminal, or is modified both by adding an amino acid sequence to the N-terminal and by adding an amino acid sequence to the C-terminal. The modifications can be any modification as disclosed in this disclosure, for the same purposes as disclosed in this disclosure.
- In another embodiment of the present invention, there is provided a method of preventing damage by one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium, by sequestering the one or more than one substance within a vault-like particle. The method comprises providing vault-like particles according to the present invention. The method further comprises administering the vault-like particles to the organism, tissue, cells or environmental medium, and allowing the vault-like particles to sequester the one or more than one substance within the vault-like particles.
- In one embodiment, the vault-like particles comprise, consist essentially of or consist of a modified MVP according to the present invention. In another embodiment, the vault-like particles comprise a modified VPARP or portion of VPARP according to the present invention. In another embodiment, the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or portion of VPARP according to the present invention. In a preferred embodiment, the vault-like particles comprise, consist essentially of or consist of MVP modified by adding a peptide to the N-terminal to create a one or more than one of heavy metal binding domains. In one embodiment, the one or more than one substance is a heavy metal selected from the group consisting of cadmium, copper, gold and mercury. In another embodiment, the one or more than one substance is a toxin selected from the group consisting of arsenate, dioxin, an organochlorine, a pentachlorophenol and a polychlorinated biphenyl. In a preferred embodiment, the providing step comprises expressing the vault-like particles in a eukaryotic organisms, such as for example an Acanthomoeba sp., yeast or Dictostelium discoidieum, capable of proliferating in contaminated soil, and the administering step comprises introducing the organisms with the expressed vault-like particles into the contaminated soil. For example, vault-like particles comprising an arsenate reductase enzyme within the vault-like particles can be expressed in the organisms and used to detoxify soil. For example, in one embodiment, modified MVP is provided comprising one or more than one arsenate-binding domain at the N-terminal.
- Arsenate reductase enzyme is cloned with residues 1473-1724 of human VPARP, SEQ ID NO:3 at either the C-terminal or the N-terminal. Both proteins are co-expressed in a primitive eukaryotic organisms, such as acanthomoeba, yeast or Dictostelium discoidieum, capable of proliferating in contaminated soil. The organisms engineered to contain the two modified proteins are introduced into contaminated soil, where they are exposed to the environmental toxin, such as arsenate. The expressed vault-like particles, comprising 96 or more copies of the arsenate-binding domain and the detoxification enzyme, arsenate reductase within the vault-like particles, then sequester and detoxify the environmental toxin, arsenate in the environmental medium.
- In another embodiment of the present invention, there is provided a method of delivering one or more than one substance to an organism, to a specific tissue, to specific cells, or to an environmental medium. The method comprises providing vault-like particles according to the present invention comprising the one or more than one substance. The method further comprises administering the vault-like particles comprising the one or more than one substance to the organism, tissue, cells or environmental medium. In one embodiment, the vault-like particles comprise, consist essentially of or consist of a modified MVP according to the present invention, in addition to the one or more than one substance.
- In another embodiment, the vault-like particles comprise a modified VPARP or modified portion of VPARP according to the present invention. In another embodiment, the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or modified portion of VPARP according to the present invention. In a preferred embodiment, the one or more than one substance is selected from the group consisting of an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding. In a particularly preferred embodiment, the substance is adenosine deaminase.
- In another embodiment of the present invention, there is provided a method of delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium. The method comprises providing a vault-like particle comprising the one or more than one sensor and administering the vault-like particle to the organism, specific tissue, specific cells, or environmental medium. In one embodiment, the vault-like particles comprise, consist essentially of or consist of a modified MVP according to the present invention, in addition to the one or more than one sensor. In another embodiment, the vault-like particles comprise a modified VPARP or modified portion of VPARP according to the present invention. In another embodiment, the vault-like particles comprise both a modified MVP according to the present invention, and a modified VPARP or modified portion of VPARP according to the present invention. The sensor can be any suitable sensor, as will be appreciated by one of ordinary skill in the art with reference to this disclosure, such as for example, a chemical sensor such as a cyclic-AMP binding protein, an ionic sensor such as a calcium or potassium sensor, a microorganism sensor such an antibody specific for E. coli, an optical sensor such as a quantum dot, and a pH sensor such as green fluorescence protein. In a preferred embodiment, the sensor is a fluorescent sensor.
- In another embodiment, the present invention is a method of detecting a signal from a sensor within an organism, or a specific tissue or specific cells. The method comprises delivering one or more than one sensor to an organism, to a specific tissue, to specific cells, or to an environmental medium, according to a method of the present invention. Then, the presence of the sensor is detected. Detection is performed using standard techniques, such as for example, fluorometry or spectrophotometry. This method can be used, for example, to determine the pH within cells, where the sensor is a pH dependent fluorescent sensor, as will be appreciated by one of ordinary skill in the art with reference to this disclosure.
- According to another embodiment of the present invention, there is provided a method of making vault-like particles according to the present invention. The method comprises creating polynucleotide sequences encoding one or more than one polypeptide selected from the group consisting of MVP, modified MVP, VPARP, a portion of VPARP, modified VPARP, a modified portion of VPARP, TEP1, a portion of TEP1, modified TEP1 and a modified portion of TEP1, using standard molecular biological procedures, such as polymerase chain reaction and specific oligonucleotides, as will be appreciated by one of ordinary skill in the art with reference to this disclosure. Preferably, the polynucleotide sequences are used to generate a bacmid DNA that is used to generate a baculovirus comprising the sequence. The baculovirus is then used to infect insect cells for protein production using an in situ assembly system, such as the baculovirus protein expression system, according to standard techniques, as will be appreciated by one of ordinary skill in the art with reference to this disclosure. Advantageously, we have used the baculovirus protein expression system to produce milligram quantities of vault-like particles, and this system can be scaled up to allow production of gram quantities of vault-like particles according to the present invention.
- In another embodiment of the present invention, there is provided a method of making vault-like particles having one or more than one substance, such as an enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding, within the vault-like particles. The method comprises making the vault-like particles according to a method of the present invention. Next, the vault-like particles are purified using, such as for example, standard procedures over sucrose gradients. Then, the vault-like particles are co-incubated with one or more than one substance, until the one or more than one substance equilibrates within the vault-like particles or until enough of the one or more than one substance is loaded in the vault-like particles for the intended purpose.
- Although the present invention has been discussed in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the scope of the appended claims should not be limited to the description of preferred embodiments contained in this disclosure. All references cited herein are incorporated by reference to their entirety.
Claims (6)
1-62. (canceled)
63. A method of making vault-like particles comprising: a) creating polynucleotide sequences encoding one or more than one polypeptide selected from the group consisting of MVP, modified MVP, VPARP, a portion of VPARP, modified VPARP, a modified portion of VPARP, TEP1, a portion of TEP1, modified TEP1 and a modified portion of TEP1; b) using the polynucleotide sequences created to generate a bacmid DNA; c) using the bacmid DNA to generate a baculovirus comprising the sequence; and d) using the baculovirus to infect insect cells for protein production using an in situ assembly system.
64. A method of making vault-like particles comprising one or more than one substance, the method comprising: a) making vault-like particles according to claim 63 ; and b) co-incubated the vault-like particles with the one or more than one substance.
65. The method of claim 64 , where the one or more than one substance is selected from the group consisting of enzyme, a pharmaceutical agent, a plasmid, a polynucleotide, a polypeptide, a sensor and a combination of the preceding.
66. The method of claim 64 , further comprising purifying the vault-like particles after making the vault-like particles.
67. The method of claim 66 , where the portion of VPARP is amino acids 1562-1724 (SEQ ID NO:3).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/800,156 US20150368671A1 (en) | 2003-03-10 | 2015-07-15 | Vault and Vault like Carrier Molecules |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US45380003P | 2003-03-10 | 2003-03-10 | |
| PCT/US2004/007434 WO2004081533A2 (en) | 2003-03-10 | 2004-03-10 | Vault and vault-like carrier molecules |
| US10/547,530 US7482319B2 (en) | 2003-03-10 | 2004-03-10 | Vault and vault-like carrier molecules |
| US12/252,200 US8933203B2 (en) | 2003-03-10 | 2008-10-15 | Vault and vault-like carrier molecules |
| US14/565,676 US9114173B2 (en) | 2003-03-10 | 2014-12-10 | Vault and vault like carrier molecules |
| US14/800,156 US20150368671A1 (en) | 2003-03-10 | 2015-07-15 | Vault and Vault like Carrier Molecules |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/565,676 Continuation US9114173B2 (en) | 2003-03-10 | 2014-12-10 | Vault and vault like carrier molecules |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150368671A1 true US20150368671A1 (en) | 2015-12-24 |
Family
ID=32990824
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/547,530 Expired - Lifetime US7482319B2 (en) | 2003-03-10 | 2004-03-10 | Vault and vault-like carrier molecules |
| US12/252,200 Expired - Lifetime US8933203B2 (en) | 2003-03-10 | 2008-10-15 | Vault and vault-like carrier molecules |
| US14/565,676 Expired - Lifetime US9114173B2 (en) | 2003-03-10 | 2014-12-10 | Vault and vault like carrier molecules |
| US14/800,156 Abandoned US20150368671A1 (en) | 2003-03-10 | 2015-07-15 | Vault and Vault like Carrier Molecules |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/547,530 Expired - Lifetime US7482319B2 (en) | 2003-03-10 | 2004-03-10 | Vault and vault-like carrier molecules |
| US12/252,200 Expired - Lifetime US8933203B2 (en) | 2003-03-10 | 2008-10-15 | Vault and vault-like carrier molecules |
| US14/565,676 Expired - Lifetime US9114173B2 (en) | 2003-03-10 | 2014-12-10 | Vault and vault like carrier molecules |
Country Status (3)
| Country | Link |
|---|---|
| US (4) | US7482319B2 (en) |
| EP (4) | EP2937097A1 (en) |
| WO (1) | WO2004081533A2 (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7482319B2 (en) | 2003-03-10 | 2009-01-27 | The Regents Of The University Of California | Vault and vault-like carrier molecules |
| WO2006045591A2 (en) * | 2004-10-25 | 2006-05-04 | Devgen N.V. | Method and constructs for delivering double stranded rna to pest organisms |
| EP2049565B1 (en) * | 2006-07-21 | 2015-01-28 | Centre National De La Recherche Scientifique (Cnrs) | Positive cytomodulines to improve bioreactor productivity. |
| US8124109B2 (en) | 2008-05-15 | 2012-02-28 | The Regents Of The University Of California | Vault compositions for immunization against chlamydia genital infection |
| CN105031618A (en) | 2009-11-02 | 2015-11-11 | 加利福尼亚大学董事会 | Vault complexes for cytokine delivery |
| US8551781B2 (en) | 2009-11-19 | 2013-10-08 | The Regents Of The University Of California | Vault complexes for facilitating biomolecule delivery |
| IT1400167B1 (en) | 2010-05-21 | 2013-05-17 | Fiat Group Automobiles Spa | SILENT DUCT FOR FLUID FLOWS AND METHOD FOR ITS ACHIEVEMENT. |
| KR101665901B1 (en) | 2012-11-19 | 2016-10-12 | 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 | Artificial bioparticle and method for manufacturing same |
| WO2016049122A1 (en) * | 2014-09-24 | 2016-03-31 | The Regents Of The University Of California | Cell-free methods of producing vault particles and vault particles resulting therefrom |
| WO2016154559A1 (en) * | 2015-03-25 | 2016-09-29 | Indiana University Research And Technology Corporation | Peptides that modulate the effect of the crmp: neurofibromin complex on synaptic transmission |
| US11036560B1 (en) | 2016-12-20 | 2021-06-15 | Amazon Technologies, Inc. | Determining isolation types for executing code portions |
| US10545979B2 (en) * | 2016-12-20 | 2020-01-28 | Amazon Technologies, Inc. | Maintaining data lineage to detect data events |
| CN111526793A (en) | 2017-10-27 | 2020-08-11 | 朱诺诊断学公司 | Apparatus, system and method for ultra low volume liquid biopsy |
| AU2019244115A1 (en) | 2018-03-30 | 2020-11-19 | Juno Diagnostics, Inc. | Deep learning-based methods, devices, and systems for prenatal testing |
| US11261471B2 (en) * | 2018-05-18 | 2022-03-01 | The Regents Of The University Of California | Methods and compositions for making vault particles in yeast |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999049025A2 (en) * | 1998-03-27 | 1999-09-30 | The Regents Of The University Of California | Human vault rna |
| US6156879A (en) * | 1998-06-03 | 2000-12-05 | The Regents Of The University Of California | Human minor vault protein p193 |
| CA2360318A1 (en) * | 1999-04-09 | 2000-10-19 | Geron Corporation | A second mammalian tankyrase |
| US7482319B2 (en) * | 2003-03-10 | 2009-01-27 | The Regents Of The University Of California | Vault and vault-like carrier molecules |
| US8124109B2 (en) | 2008-05-15 | 2012-02-28 | The Regents Of The University Of California | Vault compositions for immunization against chlamydia genital infection |
| CN105031618A (en) | 2009-11-02 | 2015-11-11 | 加利福尼亚大学董事会 | Vault complexes for cytokine delivery |
| US8551781B2 (en) * | 2009-11-19 | 2013-10-08 | The Regents Of The University Of California | Vault complexes for facilitating biomolecule delivery |
-
2004
- 2004-03-10 US US10/547,530 patent/US7482319B2/en not_active Expired - Lifetime
- 2004-03-10 EP EP15164128.9A patent/EP2937097A1/en not_active Withdrawn
- 2004-03-10 EP EP20100196033 patent/EP2338505B1/en not_active Expired - Lifetime
- 2004-03-10 WO PCT/US2004/007434 patent/WO2004081533A2/en not_active Ceased
- 2004-03-10 EP EP04719308A patent/EP1610809A4/en not_active Ceased
- 2004-03-10 EP EP20100196012 patent/EP2338504B1/en not_active Expired - Lifetime
-
2008
- 2008-10-15 US US12/252,200 patent/US8933203B2/en not_active Expired - Lifetime
-
2014
- 2014-12-10 US US14/565,676 patent/US9114173B2/en not_active Expired - Lifetime
-
2015
- 2015-07-15 US US14/800,156 patent/US20150368671A1/en not_active Abandoned
Non-Patent Citations (1)
| Title |
|---|
| Kar et al., Novel CCL21-Vault Nanocapsule Intratumoral Delivery Inhibits Lung Cancer Growth, PLoS One, May 2011, Volume 6, Issue 5, e18758 * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2338505A2 (en) | 2011-06-29 |
| US20060148086A1 (en) | 2006-07-06 |
| US8933203B2 (en) | 2015-01-13 |
| US9114173B2 (en) | 2015-08-25 |
| EP2937097A1 (en) | 2015-10-28 |
| EP2338504B1 (en) | 2015-05-06 |
| US20150093334A1 (en) | 2015-04-02 |
| EP2338504A2 (en) | 2011-06-29 |
| US20100086610A1 (en) | 2010-04-08 |
| EP2338504A3 (en) | 2011-10-12 |
| EP2338505A3 (en) | 2011-10-12 |
| EP2338505B1 (en) | 2015-05-20 |
| WO2004081533A2 (en) | 2004-09-23 |
| US7482319B2 (en) | 2009-01-27 |
| WO2004081533A3 (en) | 2005-05-06 |
| EP1610809A2 (en) | 2006-01-04 |
| EP1610809A4 (en) | 2008-02-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9114173B2 (en) | Vault and vault like carrier molecules | |
| JP4697982B2 (en) | Modular transfection system | |
| Oess et al. | Novel cell permeable motif derived from the PreS2-domain of hepatitis-B virus surface antigens | |
| Fu et al. | Targeted delivery of proteins into the central nervous system mediated by rabies virus glycoprotein-derived peptide | |
| Lixin et al. | Novel properties of the nucleolar targeting signal of human angiogenin | |
| US8759488B2 (en) | High stability streptavidin mutant proteins | |
| Catez et al. | Unique motif for nucleolar retention and nuclear export regulated by phosphorylation | |
| Holloway et al. | High-level expression of three members of the murine angiogenin family in Escherichia coli and purification of the recombinant proteins | |
| EP1476176A2 (en) | Transport peptides and uses therefor | |
| Jang et al. | Direct expression of antimicrobial peptides in an intact form by a translationally coupled two-cistron expression system | |
| JP5127709B2 (en) | Membrane translocation peptide | |
| CN101613410B (en) | Rnase and toxalbumin membrane transposition structural domain fusion rotein and its production and use | |
| Linardou et al. | Deoxyribonuclease I (DNase I) A novel approach for targeted cancer therapy | |
| US12305200B2 (en) | Methods and compositions for vault nanoparticle immobilization of therapeutic molecules and for vault targeting | |
| KR102334576B1 (en) | Fusion protein and bio-imaging composition comprising the same | |
| KR101665901B1 (en) | Artificial bioparticle and method for manufacturing same | |
| KR102398032B1 (en) | 5'-nucleotidas variants for treatment cancer | |
| KR20240072944A (en) | Method for preparing cyclic protein and uses thereof | |
| EP1800696A1 (en) | MBP-mediated molecular cargo delivery into cells | |
| KR20220039247A (en) | CD47 binder and liposome complex for treatment cancer | |
| Catez et al. | Unique Motif for Nucleolar Retention and | |
| Todorova | Methods of protein delivery into mammalian cells for gene therapy and genetic studies | |
| Lew | Harnessing inteins as a protein engineering tool |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF CALIFORNIA, LOS ANGELES;REEL/FRAME:038176/0926 Effective date: 20160316 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |