US20150343034A1 - Compositions and methods for counteracting factor xa inhibition - Google Patents
Compositions and methods for counteracting factor xa inhibition Download PDFInfo
- Publication number
- US20150343034A1 US20150343034A1 US14/759,520 US201414759520A US2015343034A1 US 20150343034 A1 US20150343034 A1 US 20150343034A1 US 201414759520 A US201414759520 A US 201414759520A US 2015343034 A1 US2015343034 A1 US 2015343034A1
- Authority
- US
- United States
- Prior art keywords
- factor
- variant
- fxa
- amino acid
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010074860 Factor Xa Proteins 0.000 title claims abstract description 357
- 238000000034 method Methods 0.000 title claims abstract description 58
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- 230000005764 inhibitory process Effects 0.000 title claims description 16
- 239000003112 inhibitor Substances 0.000 claims abstract description 123
- 230000000694 effects Effects 0.000 claims abstract description 71
- 150000001413 amino acids Chemical class 0.000 claims description 114
- 229960001148 rivaroxaban Drugs 0.000 claims description 88
- KGFYHTZWPPHNLQ-AWEZNQCLSA-N rivaroxaban Chemical compound S1C(Cl)=CC=C1C(=O)NC[C@@H]1OC(=O)N(C=2C=CC(=CC=2)N2C(COCC2)=O)C1 KGFYHTZWPPHNLQ-AWEZNQCLSA-N 0.000 claims description 88
- 230000000740 bleeding effect Effects 0.000 claims description 48
- 108090000190 Thrombin Proteins 0.000 claims description 45
- 229960004072 thrombin Drugs 0.000 claims description 44
- 230000036470 plasma concentration Effects 0.000 claims description 43
- 230000035602 clotting Effects 0.000 claims description 42
- QNZCBYKSOIHPEH-UHFFFAOYSA-N Apixaban Chemical compound C1=CC(OC)=CC=C1N1C(C(=O)N(CC2)C=3C=CC(=CC=3)N3C(CCCC3)=O)=C2C(C(N)=O)=N1 QNZCBYKSOIHPEH-UHFFFAOYSA-N 0.000 claims description 41
- 229960003886 apixaban Drugs 0.000 claims description 41
- 206010053567 Coagulopathies Diseases 0.000 claims description 38
- 239000003814 drug Substances 0.000 claims description 20
- 230000004048 modification Effects 0.000 claims description 20
- 238000012986 modification Methods 0.000 claims description 20
- 230000001965 increasing effect Effects 0.000 claims description 18
- 229940123688 Direct Factor Xa inhibitor Drugs 0.000 claims description 17
- 208000014674 injury Diseases 0.000 claims description 14
- 208000027418 Wounds and injury Diseases 0.000 claims description 13
- 230000001154 acute effect Effects 0.000 claims description 13
- 230000006378 damage Effects 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 238000001356 surgical procedure Methods 0.000 claims description 12
- 229940024790 prothrombin complex concentrate Drugs 0.000 claims description 10
- 108010094028 Prothrombin Proteins 0.000 claims description 8
- 102100027378 Prothrombin Human genes 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 229940039716 prothrombin Drugs 0.000 claims description 8
- 238000002560 therapeutic procedure Methods 0.000 claims description 8
- 208000015294 blood coagulation disease Diseases 0.000 claims description 7
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 6
- 108010076282 Factor IX Proteins 0.000 claims description 6
- 108010054218 Factor VIII Proteins 0.000 claims description 6
- 102000001690 Factor VIII Human genes 0.000 claims description 6
- 108010054265 Factor VIIa Proteins 0.000 claims description 6
- 229940012414 factor viia Drugs 0.000 claims description 6
- 229960000301 factor viii Drugs 0.000 claims description 6
- 239000003805 procoagulant Substances 0.000 claims description 6
- 108010071241 Factor XIIa Proteins 0.000 claims description 5
- 108010080805 Factor XIa Proteins 0.000 claims description 5
- 108010018823 anti-inhibitor coagulant complex Proteins 0.000 claims description 5
- 229960004222 factor ix Drugs 0.000 claims description 5
- 229940105776 factor viii inhibitor bypassing activity Drugs 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 4
- 235000001014 amino acid Nutrition 0.000 description 68
- 229940024606 amino acid Drugs 0.000 description 65
- 239000008280 blood Substances 0.000 description 40
- 210000004369 blood Anatomy 0.000 description 39
- 208000032843 Hemorrhage Diseases 0.000 description 36
- 208000034158 bleeding Diseases 0.000 description 35
- 238000011282 treatment Methods 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 108090000623 proteins and genes Proteins 0.000 description 27
- 230000001225 therapeutic effect Effects 0.000 description 23
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 22
- 102000002262 Thromboplastin Human genes 0.000 description 20
- 230000023597 hemostasis Effects 0.000 description 20
- 230000002441 reversible effect Effects 0.000 description 20
- 108090000317 Chymotrypsin Proteins 0.000 description 19
- 229960002376 chymotrypsin Drugs 0.000 description 19
- 108010000499 Thromboplastin Proteins 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 108010014173 Factor X Proteins 0.000 description 14
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 13
- 238000003556 assay Methods 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- 238000003776 cleavage reaction Methods 0.000 description 10
- 108010014806 prothrombinase complex Proteins 0.000 description 10
- 230000007017 scission Effects 0.000 description 10
- 238000012032 thrombin generation assay Methods 0.000 description 10
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 9
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 9
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 9
- 108091005804 Peptidases Proteins 0.000 description 9
- 102000035195 Peptidases Human genes 0.000 description 9
- 231100000673 dose–response relationship Toxicity 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000013169 thromboelastometry Methods 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 239000004365 Protease Substances 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 101800001401 Activation peptide Proteins 0.000 description 7
- 102400000069 Activation peptide Human genes 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 6
- 102000009123 Fibrin Human genes 0.000 description 6
- 108010073385 Fibrin Proteins 0.000 description 6
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 6
- 102000001708 Protein Isoforms Human genes 0.000 description 6
- 108010029485 Protein Isoforms Proteins 0.000 description 6
- 230000023555 blood coagulation Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 230000015271 coagulation Effects 0.000 description 6
- 238000005345 coagulation Methods 0.000 description 6
- 229950003499 fibrin Drugs 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 108010074105 Factor Va Proteins 0.000 description 5
- 102220501226 Scaffold attachment factor B1_I16L_mutation Human genes 0.000 description 5
- 230000002429 anti-coagulating effect Effects 0.000 description 5
- 239000003146 anticoagulant agent Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000002648 combination therapy Methods 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 230000002439 hemostatic effect Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 208000032529 Accidental overdose Diseases 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 206010022523 Intentional overdose Diseases 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 230000010100 anticoagulation Effects 0.000 description 4
- 108010072035 antithrombin III-protease complex Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000012771 intravital microscopy Methods 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 235000019419 proteases Nutrition 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 4
- 229960005080 warfarin Drugs 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 108010062466 Enzyme Precursors Proteins 0.000 description 3
- 102000010911 Enzyme Precursors Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229940123583 Factor Xa inhibitor Drugs 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- 108010022999 Serine Proteases Proteins 0.000 description 3
- 102000012479 Serine Proteases Human genes 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 108010059382 Zea mays trypsin inhibitor Proteins 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229940127219 anticoagulant drug Drugs 0.000 description 3
- 239000000729 antidote Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229940019332 direct factor xa inhibitors Drugs 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000013152 interventional procedure Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 230000006337 proteolytic cleavage Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- FSNVAJOPUDVQAR-AVGNSLFASA-N Arg-Lys-Arg Chemical group NC(=N)NCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FSNVAJOPUDVQAR-AVGNSLFASA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 102220573160 E3 SUMO-protein ligase CBX4_I16F_mutation Human genes 0.000 description 2
- HGVDHZBSSITLCT-JLJPHGGASA-N Edoxaban Chemical compound N([C@H]1CC[C@@H](C[C@H]1NC(=O)C=1SC=2CN(C)CCC=2N=1)C(=O)N(C)C)C(=O)C(=O)NC1=CC=C(Cl)C=N1 HGVDHZBSSITLCT-JLJPHGGASA-N 0.000 description 2
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 108010090444 Innovin Proteins 0.000 description 2
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 2
- 241000581650 Ivesia Species 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 208000024248 Vascular System injury Diseases 0.000 description 2
- 208000012339 Vascular injury Diseases 0.000 description 2
- 102000004210 Vitamin K Epoxide Reductases Human genes 0.000 description 2
- 108090000779 Vitamin K Epoxide Reductases Proteins 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 229940075522 antidotes Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 229950011103 betrixaban Drugs 0.000 description 2
- XHOLNRLADUSQLD-UHFFFAOYSA-N betrixaban Chemical compound C=1C=C(Cl)C=NC=1NC(=O)C1=CC(OC)=CC=C1NC(=O)C1=CC=C(C(=N)N(C)C)C=C1 XHOLNRLADUSQLD-UHFFFAOYSA-N 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 108020001778 catalytic domains Proteins 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229950004553 darexaban Drugs 0.000 description 2
- IJNIQYINMSGIPS-UHFFFAOYSA-N darexaban Chemical compound C1=CC(OC)=CC=C1C(=O)NC1=CC=CC(O)=C1NC(=O)C1=CC=C(N2CCN(C)CCC2)C=C1 IJNIQYINMSGIPS-UHFFFAOYSA-N 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 229960000622 edoxaban Drugs 0.000 description 2
- 208000001780 epistaxis Diseases 0.000 description 2
- KANJSNBRCNMZMV-ABRZTLGGSA-N fondaparinux Chemical compound O[C@@H]1[C@@H](NS(O)(=O)=O)[C@@H](OC)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OS(O)(=O)=O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@@H]4[C@@H]([C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O4)NS(O)(=O)=O)[C@H](O3)C(O)=O)O)[C@@H](COS(O)(=O)=O)O2)NS(O)(=O)=O)[C@H](C(O)=O)O1 KANJSNBRCNMZMV-ABRZTLGGSA-N 0.000 description 2
- 229960001318 fondaparinux Drugs 0.000 description 2
- UHBYWPGGCSDKFX-VKHMYHEASA-N gamma-carboxy-L-glutamic acid Chemical compound OC(=O)[C@@H](N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-VKHMYHEASA-N 0.000 description 2
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 229960002725 isoflurane Drugs 0.000 description 2
- 210000004731 jugular vein Anatomy 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229950009478 otamixaban Drugs 0.000 description 2
- PFGVNLZDWRZPJW-OPAMFIHVSA-N otamixaban Chemical compound C([C@@H](C(=O)OC)[C@@H](C)NC(=O)C=1C=CC(=CC=1)C=1C=C[N+]([O-])=CC=1)C1=CC=CC(C(N)=N)=C1 PFGVNLZDWRZPJW-OPAMFIHVSA-N 0.000 description 2
- 125000001151 peptidyl group Chemical group 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108010041201 prothrombin fragment 1 Proteins 0.000 description 2
- 230000003331 prothrombotic effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 102220219558 rs1060501790 Human genes 0.000 description 2
- 102220238268 rs1343544501 Human genes 0.000 description 2
- 102220123704 rs72542427 Human genes 0.000 description 2
- 102200132327 rs769653717 Human genes 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- KWPACVJPAFGBEQ-IKGGRYGDSA-N (2s)-1-[(2r)-2-amino-3-phenylpropanoyl]-n-[(3s)-1-chloro-6-(diaminomethylideneamino)-2-oxohexan-3-yl]pyrrolidine-2-carboxamide Chemical compound C([C@@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)CCl)C1=CC=CC=C1 KWPACVJPAFGBEQ-IKGGRYGDSA-N 0.000 description 1
- LJCBAPRMNYSDOP-LVCYMWGESA-N (2s)-3-(7-carbamimidoylnaphthalen-2-yl)-2-[4-[(3s)-1-ethanimidoylpyrrolidin-3-yl]oxyphenyl]propanoic acid;hydron;chloride;pentahydrate Chemical compound O.O.O.O.O.Cl.C1N(C(=N)C)CC[C@@H]1OC1=CC=C([C@H](CC=2C=C3C=C(C=CC3=CC=2)C(N)=N)C(O)=O)C=C1 LJCBAPRMNYSDOP-LVCYMWGESA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 108090000935 Antithrombin III Proteins 0.000 description 1
- 102000004411 Antithrombin III Human genes 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- QYLJIYOGHRGUIH-CIUDSAMLSA-N Arg-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCNC(N)=N QYLJIYOGHRGUIH-CIUDSAMLSA-N 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 102100025566 Chymotrypsin-like protease CTRL-1 Human genes 0.000 description 1
- 108010038061 Chymotrypsinogen Proteins 0.000 description 1
- 102100029117 Coagulation factor X Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010016275 Fear Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010020100 Hip fracture Diseases 0.000 description 1
- 101000856199 Homo sapiens Chymotrypsin-like protease CTRL-1 Proteins 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000031853 Peritoneal haemorrhage Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 208000002667 Subdural Hematoma Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102100030951 Tissue factor pathway inhibitor Human genes 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- FRMFMFNMGQGMNB-BVSLBCMMSA-N Tyr-Pro-Trp Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=C(O)C=C1 FRMFMFNMGQGMNB-BVSLBCMMSA-N 0.000 description 1
- 206010046788 Uterine haemorrhage Diseases 0.000 description 1
- 229930003448 Vitamin K Natural products 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 238000012084 abdominal surgery Methods 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000702 anti-platelet effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229960005348 antithrombin iii Drugs 0.000 description 1
- 238000007486 appendectomy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 208000027503 bloody stool Diseases 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000002192 cholecystectomy Methods 0.000 description 1
- 238000007819 clotting time assay Methods 0.000 description 1
- 238000007820 coagulation assay Methods 0.000 description 1
- 229940105756 coagulation factor x Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- -1 coatings Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960000610 enoxaparin Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006624 extrinsic pathway Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 208000002085 hemarthrosis Diseases 0.000 description 1
- 208000035861 hematochezia Diseases 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229940029329 intrinsic factor Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 108010013555 lipoprotein-associated coagulation inhibitor Proteins 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000009593 lumbar puncture Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 208000001118 melena Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 1
- 208000011309 nasal bleeding Diseases 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000009805 platelet accumulation Effects 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940071643 prefilled syringe Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000012313 reversal agent Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000012622 synthetic inhibitor Substances 0.000 description 1
- JEOIUGLPMJAHBL-HWBMXIPRSA-N tert-butyl n-[(2s)-1-[(2s)-2-[[(2s)-5-(diaminomethylideneamino)-2-[(4-methyl-2-oxochromen-7-yl)amino]pentanoyl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]carbamate Chemical compound CC(C)(C)OC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC(=O)[C@H](CCCN=C(N)N)NC1=CC=C(C(C)=CC(=O)O2)C2=C1 JEOIUGLPMJAHBL-HWBMXIPRSA-N 0.000 description 1
- 230000002885 thrombogenetic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000001810 trypsinlike Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 150000003721 vitamin K derivatives Chemical class 0.000 description 1
- 229940046010 vitamin k Drugs 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000003462 zymogenic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
- A61K38/4846—Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6432—Coagulation factor Xa (3.4.21.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21006—Coagulation factor Xa (3.4.21.6)
Definitions
- Oral direct FXa inhibitors are emerging anticoagulants that have the potential to simplify dosing schemes and hemostatic monitoring in patients with prothrombotic diseases when compared to standard treatments, such as warfarin. Although these drugs have many advantages over warfarin, no fully efficacious reversal agent is available for these novel anticoagulants.
- the disclosure provides methods for reducing or preventing bleeding in a subject being treated with a direct Factor Xa (FXa) inhibitor by administering a composition comprising a Factor Xa variant containing at least one modification including substitution for the wild-type amino acid at position 16 (using the chymotrypsin numbering system) with Thr, Leu, Phe, Asp or Gly, or substitution for the wild-type amino acid at position 17 (using the chymotrypsin numbering system) with Leu, Ala, or Gly.
- FXa direct Factor Xa
- direct Factor Xa inhibitors include rivaroxaban or apixaban.
- the plasma concentration of the direct FXa inhibitor is a typical therapeutic amount or a supratherapeutic amount.
- the plasma concentration of rivaroxaban can be about 500 nM, or greater
- the plasma concentration of apixaban can be about 250 nM, or greater.
- the FXa variant contains the substitution I16L.
- the FXa variant is capable of countering the effect of the direct Factor Xa inhibitor at a plasma concentration that is at least 100-fold lower than the plasma concentration of the Factor Xa inhibitor.
- the composition comprising the FXa variant is administered before a planned surgery, after an injury, or after an intentional or accidental overdose with a direct FXa inhibitor.
- hemostasis in the subject is monitored using a hemostasis assay after a first dose with a FXa variant and, if adequate hemostasis is not attained by a predetermined time, at least one second dose of FXa variant is administered to achieve sufficient hemostasis.
- the predetermined time is about 15 mins, 30 mins, 45 mins or 60 mins after the first dose of FXa variant is administered. Other times are also possible.
- At least a second procoagulant is administered in addition to FXa variant, including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
- FXa variant including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
- the disclosure provides methods for increasing the amount of thrombin produced in response to activation of the extrinsic or intrinsic clotting pathway in a subject being treated with a direct Factor Xa (FXa) inhibitor by administering a composition comprising a Factor Xa variant containing at least one modification including substitution for the wild-type amino acid at position 16 (using the chymotrypsin numbering system) with Thr, Leu, Phe, Asp or Gly, or substitution for the wild-type amino acid at position 17 (using the chymotrypsin numbering system) with Leu, Ala, or Gly.
- direct Factor Xa inhibitors include rivaroxaban or apixaban.
- the plasma concentration of the direct FXa inhibitor is a typical therapeutic amount or a supratherapeutic amount.
- the plasma concentration of rivaroxaban can be about 500 nM, or greater, and the plasma concentration of apixaban can be about 250 nM, or greater.
- the FXa variant contains the substitution I16L.
- the amount of thrombin produced increases by about 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, or more.
- the FXa variant is capable of countering the effect of the direct Factor Xa inhibitor at a plasma concentration that is at least 100-fold lower than the plasma concentration of the Factor Xa inhibitor.
- the composition comprising the FXa variant is administered before a planned surgery, after an injury, or after an intentional or accidental overdose with a direct FXa inhibitor.
- hemostasis in the subject is monitored using a hemostasis assay after a first dose with a FXa variant and, if adequate hemostasis is not attained by a predetermined time, at least one second dose of FXa variant is administered to achieve sufficient hemostasis.
- the predetermined time is about 15 mins, 30 mins, 45 mins or 60 mins after the first dose of FXa variant is administered. Other times are also possible.
- at least a second procoagulant is administered in addition to FXa variant, including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
- the disclosure provides methods for decreasing clotting time (as measured, for example, using PT or INR, or some other assay) in a subject being treated with a direct Factor Xa (FXa) inhibitor by administering a composition comprising a Factor Xa variant containing at least one modification including substitution for the wild-type amino acid at position 16 (using the chymotrypsin numbering system) with Thr, Leu, Phe, Asp or Gly, or substitution for the wild-type amino acid at position 17 (using the chymotrypsin numbering system) with Leu, Ala, or Gly.
- direct Factor Xa inhibitors include rivaroxaban or apixaban.
- the plasma concentration of the direct FXa inhibitor is a typical therapeutic amount or a supratherapeutic amount.
- the plasma concentration of rivaroxaban can be about 500 nM, or greater, and the plasma concentration of apixaban can be about 250 nM, or greater.
- the FXa variant contains the substitution I16L.
- clotting time is reduced by about 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more.
- the FXa variant is capable of countering the effect of the direct Factor Xa inhibitor at a plasma concentration that is at least 100-fold lower than the plasma concentration of the Factor Xa inhibitor.
- the composition comprising the FXa variant is administered before a planned surgery, after an injury, or after an intentional or accidental overdose with a direct FXa inhibitor.
- hemostasis in the subject is monitored using a hemostasis assay after a first dose with a FXa variant and, if adequate hemostasis is not attained by a predetermined time, at least one second dose of FXa variant is administered to achieve sufficient hemostasis.
- the predetermined time is about 15 mins, 30 mins, 45 mins or 60 mins after the first dose of FXa variant is administered. Other times are also possible.
- At least a second procoagulant is administered in addition to FXa variant, including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
- FXa variant including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
- FIGS. 1A-B show inhibition of free wt-FXa or FXa I16L by rivaroxaban.
- the initial velocity of peptidyl substrate (SpecXa; 200 uM) hydrolysis by A) wt-FXa (2 nM) or B) FXa I16L (6 nM) was determined at increasing concentrations of rivaroxaban.
- the Ki value is given on each graph.
- FIGS. 2A-B show rivaroxaban inhibition of wt-FXa or FXa I16L assembled in prothrombinase.
- the initial velocity of peptidyl substrate (SpecXa; 200 uM) hydrolysis by A) wt-FXa (2 nM) or B) FXa I16L (6 nM) in the presence of PCPS (20 uM) and FVa (40 nM) was determined at increasing concentrations of rivaroxaban.
- FIG. 3 shows the effect of different concentrations of FXa I16L on reversing the effects on thrombin generation of rivaroxaban.
- FIGS. 4A-D show the effect of FXa I16L on reversing the effects of rivaroxaban.
- Normal human plasma was incubated with 500 nM rivaroxaban and in the absence or presence of increasing concentrations of FXa I16L .
- peak thrombin (A and C) and total thrombin generated (ETP; B and D) were plotted.
- FIGS. 5A-B show FXa I16L reverses the effects of high dose rivaroxaban.
- Normal human plasma was incubated with 7.5 uM rivaroxaban and in the absence or presence of increasing concentrations of FXa I16L .
- peak thrombin (A) and total thrombin generated (ETP; B) were plotted.
- FIGS. 6A-B show FXa I16L or FXa I16T reverses the effects of 250 nM apixaban.
- Normal human plasma was incubated with 250 nM apixaban and in the absence or presence of increasing concentrations of FXa I16L or FXa I16T .
- peak thrombin (A) and total thrombin generated (ETP; B) were plotted.
- FIGS. 7A-B show FXa I16L or FXa I16T reverses the effects of high dose apixaban.
- Normal human plasma was incubated with 2.0 uM Apixaban and in the absence or presence of increasing concentrations of FXa I16L or FXa I16T .
- peak thrombin (A) and total thrombin generated (ETP; B) were plotted.
- FIGS. 8A-B show FXa I16L corrects whole blood clotting in the presence of rivaroxaban.
- Whole blood thromboelastography was used to assess the ability of FXa I16L to reverse the effects of rivaroxaban at a typical (A) and a high (B) dose.
- FIGS. 9A-B show FXa I16L corrects whole blood clotting in the presence of apixaban.
- Whole blood thromboelastography was used to assess the ability of FXa I16L to reverse the effects of apixaban at a typical (A) and a high (B) dose.
- FIGS. 10A-B show that FXa I16L counteracts rivaroxaban in a thrombin generation assay.
- FIG. 10A shows a dose response of rivaroxaban and
- FIG. 10B shows a dose response of FXa I16L in the presence of rivaroxaban.
- FIG. 11 shows that FXa I16L counteracts rivaroxaban in a mouse tail clip bleeding model.
- FIG. 12 demonstrates that rivaroxaban administered to mice delays clotting time of whole blood measured using ROTEM and that administration with FXa I16L dose-responsively counteracts the effect of rivaroxaban.
- FIG. 13 shows that rivaroxaban administered to a mouse prevents clot formation at a site of vascular injury in the cremaster muscle caused by laser and that administration with FXa I16L counteracts the effect of rivaroxaban. Clot formation was visualized using intravital microscopy and fluorescently labeled antibodies against fibrin and platelets.
- FIG. 13A shows clot formation in an untreated mouse.
- FIG. 13B shows that rivaroxaban delayed and reduced platelet accumulation and prevented fibrin deposition.
- FIG. 13C shows that in a mouse administered rivaroxaban and FXa I16L clot formation occurred at the site of injury.
- FIG. 14 is the amino acid sequence of wild-type human Factor X preprotein (SEQ ID NO:1).
- the signal peptide corresponds to amino acids 1-23.
- the propeptide corresponds to amino acids 24-40.
- the mature light chain of activated Factor X (FXa) corresponds to amino acids 41-179.
- the mature heavy chain of activated FXa (after removal of the activation peptide) corresponds to amino acids 235-488.
- the activation peptide (AP) corresponds to amino acids 183-234.
- FIG. 15 is the nucleotide sequence of the cDNA encoding wild-type human Factor X preprotein (SEQ ID NO:2).
- the coding sequence corresponds to nucleotides 58 to 1524.
- the disclosure provides compositions and methods for counteracting the anti-coagulant effect of a direct FXa inhibitor in a subject in need thereof.
- Applicants have discovered that certain FXa variants rapidly and completely counteract the effect of a direct FXa inhibitor in a dose dependent manner. More specifically, applicants have discovered that a relatively small amount of an FXa variant restores normal coagulation activity in vivo in the presence of FXa inhibitor at therapeutic concentrations and even at supratherapeutic concentrations.
- Applicants' disclosure therefore contributes to fulfilling the promise of these advantageous anti-coagulants.
- Coagulation factor X is a zymogen which, upon activation by the intrinsic factor IX/factor VIII or extrinsic pathway (tissue factor/factor VIIa), becomes FXa, which is the protease moiety of prothrombinase. Following proteolytic cleavage of the Arg-Ile scissile bond, releasing an activation peptide (AP), a series of well defined structural changes in the zymogen drives the activation process to the mature active serine protease (See Toso et al., (2008) J. Biol. Chem. 283, 18627-18635; Bunce et al., (2011) Blood 117, 290-298; and Ivanciu et al., (2011) Nat.
- the mature FXa has a light chain and a heavy chain that contains the catalytic domain.
- the mature FXa becomes an active serine protease upon formation of the prothrombinase complex, which includes binding of an activated cofactor, Factor Va (FVa).
- FVa Factor Va
- FXa variants have been developed that upon activation cleavage yield a zymogen-like FXa variant. That is, once cleaved, the resulting FXa variant has poor active site function and is more resistant to inactivation by circulating inhibitors (i.e. antithrombin III and TFPI).
- the FXa variants thus, have longer half-lives in plasma than wild-type FXa.
- the FXa variant binds FVa, lipid membrane and calcium to form a fully active prothrombinase complex that efficiently activates prothrombin.
- the zymogen-like variants of FXa circulate in the zymogen-like conformation and do not seem to be thrombogenic (See Toso et al., (2008) J. Biol. Chem. 283, 18627-18635 and Ivanciu et al., (2011) Nat. Biotechnol. 29, 1028-1033, incorporated by reference herein in their entirety). Examples of such FXa variants are described in International patent publication WO2007/059513, incorporated herein by reference in its entirety.
- the enzymes of coagulation are trypsin-like enzymes that belong to the 51 peptidase family of proteases that bear a chymotrypsin-like fold.
- the coagulation proteases contain catalytic domains that are highly homologous to each other and to the ancestral serine proteases of digestion. The structural homology/identity is so great (>70%) that residues in the catalytic domains of the coagulation enzymes (including Factor Xa) are numbered according to the corresponding residues in chymotrypsinogen. (Chymotrypsin numbering system; see Bajaj and Birktoft, Methods Enzymol.
- an FXa variant may be an FXa protein comprising an amino acid substitution that makes the variant more zymogen-like compared to a wild-type FXa protein in vivo or in vitro.
- FXa variants of the disclosure substantially regain wild-type FXa activity upon formation of prothrombinase.
- Examples of FXa variants that are useful in methods of the disclosure are variants comprising a modification selected from the group consisting of: a) Ile at position 16 is Thr, Leu, Phe, Asp or Gly and b) Val at position 17 is Leu, Ala, or Gly, according to the chymotrypsin numbering system.
- FXa variants are FXa I16L and FXa II6T (the nomenclature used herein for the FXa variants recites the original amino acid at the numbered position according to the chymotrypsin numbering system followed by the substituted amino acid).
- the FXa variants can be variants of any mammalian FXa. Of particular interest, however, are FXa variants of human FXa.
- the FX variant that is activated into a variant FXa of the disclosure may be further modified by inserting a non-native intracellular proteolytic cleavage site.
- a non-native intracellular proteolytic cleavage site can be inserted between the Arg at position 234 of SEQ ID NO:1 (position 15 in the chymotrypsin numbering system) and the amino acid at the position corresponding to position 235 of SEQ ID NO:1 (position 16 in the chymotrypsin numbering system) in the variant FX zymogen.
- the non-native intracellular protease cleavage site is Arg-Lys-Arg or Arg-Lys-Arg-Arg-Lys-Arg (SEQ ID NO:3). These cleavage sites are efficiently recognized by proteases (PACE/furin-like enzymes) within the cell and are removed. This cleavage may result in a processed variant FXa in which the mature heavy chain of the molecule now begins at the amino acid at the position corresponding to position 235 of SEQ ID NO:1 (position 16 in the chymotrypsin numbering system). Introduction of this cleavage site at said position allows for the intracellular conversion of FX to FXa.
- proteases PACE/furin-like enzymes
- the entire amino acid sequence of the FX variant activation peptide (AP) i.e., amino acids 183-234 of SEQ ID NO:1 is replaced with a non-native intracellular protease cleavage site.
- the non-native intracellular protease cleavage site is Arg-Lys-Arg or Arg-Lys-Arg-Arg-Lys-Arg (SEQ ID NO:3).
- this modification allows for intracellular cleavage of the FX variant expressed by cells.
- the intracellular cleavage converts FX variant to activated zymogen-like FXa variant which is then secreted by cells for subsequent purification. This approach obviates the need for extracellular cleavage that would otherwise be required to activate the variant clotting factor, for example, after isolating the protein or just before blood clotting.
- FXa variants of the disclosure are derived from FX variant preproteins comprising native wild-type human signal sequence and/or propeptide sequence.
- FX signal sequences and/or propeptide from non-human species can be used in place of the corresponding native amino acid sequences.
- signal sequence and/or propeptide sequence from other human or non-human secreted proteins can be used in place of the corresponding native amino acid sequences.
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 (isoleucine in the wild-type sequence) is substituted with a different amino acid selected from the group consisting of threonine (Thr), leucine (Leu), phenylalanine (Phe), aspartic acid (Asp), or glycine (Gly).
- Thr threonine
- Leu leu
- Phe phenylalanine
- Asp aspartic acid
- Gly glycine
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Thr (i.e., I235T or I16T).
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Leu (i.e., I235L or I16L).
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Phe (i.e., I235F or I16F).
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Asp (i.e., I235D or I16D).
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Gly (i.e., I235G or I16G).
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 (valine in the wild-type sequence) is substituted with a different amino acid selected from the group consisting of leucine (Leu), alanine (Ala), or glycine (Gly).
- Leu leucine
- Al alanine
- Gly glycine
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 is substituted with Leu (i.e., V236L or V17L).
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 is substituted with Ala (i.e., V236A or V17A).
- a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 is substituted with Gly (i.e., V236G or V17G).
- FXa variants of the disclosure can include various isoforms of the light and/or mature heavy chain of the protein.
- Non-limiting exemplary isoforms of the FXa variant mature heavy chain include the alpha and beta versions of the mature heavy chain. Jesty et al., J Biol Chem. 1975 Jun. 25; 250(12):4497-504, incorporated by reference herein.
- Compositions of the disclosure can include FXa variant proteins in which one or the other or both alpha and beta mature heavy chain isoforms are represented.
- isoforms of FXa variant proteins can include isoforms in which a variable number of amino acids (for example, 1, 2, 3, 4, 5, 6, or more amino acids) are either missing from or added to the carboxy terminus of the light chain and/or mature heavy chains of the protein.
- a variable number of amino acids for example, 1, 2, 3, 4, 5, 6, or more amino acids
- FXa variants of the disclosure include proteins with a certain minimal degree of homology or sequence identity compared to the amino acid sequence of wild-type FXa in SEQ ID NO:1.
- FXa variants include proteins that contain a light and mature heavy chain that are at least 60%, 70%, 80%, 85%, 90%, 95%, 98%, or 99% homologous or identical in sequence with the wild-type FXa light and mature heavy chains in SEQ ID NO:1, wherein such FXa variants also include a substitution at the amino acid position corresponding to position 235 of SEQ ID NO:1 with Thr, Leu, Phe, Asp, or Gly, or a substitution at the amino acid position corresponding to position 236 of SEQ ID NO:1 with Leu, Ala, or Gly, and further wherein such FXa variants are zymogenic until incorporated into prothrombinase complex.
- the wild-type FXa light chain sequence corresponds to amino acids 41 to 179 and the wild-type FXa mature heavy chain sequence corresponds to amino acids 235 to 488.
- Percentage amino acid sequence homology or identity can readily be determined using software such as Protein BLAST available at the website of the National Center for Biotechnology Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
- FXa variants of the disclosure can also include FXa variants containing one or more post-translational modifications including, without limitation, one or more O-linked or N-linked carbohydrate groups or a variable number of gamma-carboxyglutamic acid (Gla) residues.
- FXa variants of the disclosure can further include chemically modified FXa variant proteins.
- Other FXa variants useful in the methods of the disclosure are also possible.
- FXa I16x refers to a variant of activated Factor X wherein the amino acid corresponding to position 235 in SEQ ID NO:1 (corresponding to position 16 in the chymotrypsin numbering system) is changed from the amino acid in the wild-type sequence (isoleucine) to a different amino acid denoted “x”.
- amino acid “x” can be threonine (Thr or T), leucine (Leu or L), phenylalanine (Phe or F), aspartic acid (Asp or D), or glycine (Gly or G).
- FXa V17y refers to a variant of activated Factor X wherein the amino acid corresponding to position 236 in SEQ ID NO:1 (corresponding to position 17 in the chymotrypsin numbering system) is changed from the amino acid in the wild-type sequence (valine) to a different amino acid denoted “y”.
- amino acid “y” can be leucine (Leu or L), alanine (Ala or A), or glycine (Gly or G).
- FXa I16x and FXa V17y are not limited by the protein sequence set forth in SEQ ID NO:1. Rather these terms additionally include the variety of isoforms and homologous proteins described herein with the specified substitution mutations at positions 16 or 17 in the chymotrypsin numbering system that behave as zymogens until incorporated into prothrombinase complex.
- An FXa variant of the disclosure may be produced by any technique for expressing a protein.
- isolated protein is a protein, polypeptide or variant that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature.
- a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be “isolated” from its naturally associated components.
- a protein may also be rendered substantially free of naturally-associated components by isolation, using protein purification techniques well known in the art.
- a protein or polypeptide is “substantially pure,” “substantially homogeneous,” or “substantially purified” when at least about 60 to 75% of a sample exhibits a single species of polypeptide.
- the polypeptide or protein may be monomeric or multimeric.
- a substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and may be over 99% pure.
- Protein purity or homogeneity may be indicated by a number of means well known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well known in the art for purification.
- a direct FXa inhibitor is an inhibitor that binds directly to FXa and selectively binds FXa over other proteases.
- Direct FXa inhibitors are noncompetitive inhibitors of FXa with respect to prothrombin. They bind the substrate binding cleft and inhibit FXa competitively with respect to small peptide substrates that also bind this region. They inhibit FXa with high picomolar affinity and are highly protein bound in plasma.
- Examples of direct FXa inhibitors are rivaroxaban, apixaban, betrixaban, darexaban, edoxaban and otamixaban. In certain embodiments, direct FXa inhibitors are selected from rivaroxaban and apixaban.
- an FXa variant can be used to counteract a direct FXa inhibitor that binds FXa or that binds FXa that has formed prothrombinase.
- the direct FXa inhibitors may or may not require cofactors of FXa for inhibition.
- an FXa variant, such as FXa I16L and FXa I16T are administered to a subject whose blood contains a direct FXa inhibitor.
- the disclosure encompasses the use of a FXa variant to counteract direct FXa inhibitors, including but not limited to synthetic inhibitors, small molecule inhibitors, orally available inhibitors, or reversible inhibitors.
- the FXa inhibitor may be any combination of these features, such as an orally available, synthetic, reversible, small molecule inhibitor.
- the direct FXa inhibitors may be selected from rivaroxaban, apixaban, betrixaban, darexaban, edoxaban and otamixaban (see Perzborn et al., Nat Rev Drug Discov. 2011 January; 10(1):61-75; Turpie, Arterioscler Thromb Vasc Biol.
- direct FXa inhibitors are selected from rivaroxaban or apixaban.
- a FXa variant of the disclosure can be administered to a subject to reverse the effects of a direct FXa inhibitor where such inhibitor occurs at therapeutic concentrations.
- a FXa variant of the disclosure can be administered to a subject to reverse the effects of a direct FXa inhibitor where such inhibitor occurs at supratherapeutic concentrations.
- a supratherapeutic concentration is one that is higher than that ordinarily considered required to safely achieve anti-coagulation in a particular subject or class of subjects.
- Supratherapeutic concentrations of a direct FXa inhibitor can result from accidental or intentional overdose.
- Supratherapeutic concentrations of a direct FXa inhibitor can also result from unexpected effects in particular subjects, such as an unexpectedly high sensitivity to these drugs, or unexpectedly slow rate of clearance, due for example to drug interactions or other factors. Determination of what would be a therapeutic concentration or supratherapeutic concentration of direct FXa inhibitor in a particular subject or class of subjects is within the knowledge of those ordinarily skilled in the art.
- an FXa variant is used to counteract a direct FXa inhibitor or inhibitors that selectively bind FXa over other trypsin-like proteases by at least 5-fold, at least 6-fold, at least 7-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 50-fold, at least 100-fold, at least, 500-fold, at least 1,000-fold, at least 5,000-fold or at least 10,000-fold.
- the direct FXa inhibitor may bind an FXa variant with a K i of about 2 ⁇ 10 ⁇ 7 M or less.
- K i refers to the inhibitor constant of a particular inhibitor-target interaction, which is the concentration required to produce half maximum inhibition.
- the disclosure contemplates, thus, counteracting a direct FXa inhibitor that binds an FXa variant free of the prothrombinase complex with a K i of about 2 ⁇ 10 ⁇ 8 M or less, about 1 ⁇ 10 ⁇ 8 M or less, about 9 ⁇ 10 ⁇ 9 M or less, about 8 ⁇ 10 ⁇ 9 M or less, about 7 ⁇ 10 ⁇ 9 M or less, about 6 ⁇ 10 ⁇ 9 M or less, about 5 ⁇ 10 ⁇ 9 M or less, about 4 ⁇ 10 ⁇ 9 M or less, about 3 ⁇ 10 ⁇ 9 M or less, about 2 ⁇ 10 ⁇ 9 M or less , about 1 ⁇ 10 ⁇ 9 M or less, about 9 ⁇ 10 ⁇ 10 M or less, about 8 ⁇ 10 ⁇ 10 M or less, about 7 ⁇ 10 ⁇ 10 M or less, about 6 ⁇ 10 ⁇ 10 M or less, about 5 ⁇ 10 ⁇ 10 M or less, about 4 ⁇ 10 ⁇ 10 M or less, about 3 ⁇ 10 ⁇ 10 M or less, about 2 ⁇ 10 ⁇ 10 M or less
- the direct FXa inhibitor to be counteracted by an FXa variant according to the methods of the disclosure may bind a wild-type FXa with a K i at least 1.5 fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, or at least 50-fold less than it binds the FXa variant.
- the direct FXa inhibitor may bind a wild-type FXa with a K i of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% less than the K i with an FXa variant free of the prothrombinase complex.
- the direct FXa inhibitor may bind a prothrombinase complex comprising a wild-type FXa with about the same K i as it binds a prothrombinase complex comprising an FXa variant.
- the disclosure provides methods for counteracting the effects of a direct FXa inhibitor in a subject who is bleeding (internally or externally) or is at risk of bleeding (e.g., in the course of a planned surgery) by administering a FXa variant.
- the direct FXa inhibitor may be present in the subject at a therapeutic concentration or a higher concentrations (i.e., a supratherapeutic concentration).
- the therapeutic concentration may be an overdose in sensitive individuals.
- the methods of the disclosure thus, are useful for providing an antidote to an overdose of a direct FXa inhibitor.
- the subject of treatment may be a human or a veterinary subject.
- Direct inhibitor overdose can be detected based on existence of symptoms or signs of excessively reduced clotting ability.
- Non-limiting examples include evidence of gastrointestinal bleeding, including dark tarry stools, bloody stools, and vomiting of blood.
- Other examples include nosebleeds, and increased tendency to, or severity of, bruising or bleeding from minor cuts and scrapes.
- direct inhibitor overdose can be detected directly or by measuring the ability of subject blood to clot and detecting deviations from the expected degree of anti-coagulation.
- Blood clotting potential can be measured in ways familiar to those ordinarily skilled in the art.
- overdose may be suspected when a subject's prothrombin time is excessively prolonged.
- overdose is confirmed when the prothrombin time expressed as an International Normalized Ratio (INR) is measured to be greater than about 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 12, 14, 16, 18, 20, or greater.
- ILR International Normalized Ratio
- the FXa variant may be administered whenever it is desired to counteract the effects of the direct FXa inhibitor, including but not limited to before a planned surgery, after an injury resulting in external or internal bleeding or after a direct FXa inhibitor overdose.
- the FXa variant may be administered at least about 12 hours, at least about 6 hours, at least about 3 hours, at least about 2 hours, at least about 1 hour, at least about 30 minutes, at least about 10 minutes, or at least about 5 minutes of when the desired counteracting effect is needed, such as before a planned surgery, after an injury resulting in external or internal bleeding or after a direct FXa inhibitor overdose.
- the disclosure provides a method of administering a FXa variant to effect the urgent reversal of acquired coagulopathy due to FXa inhibition therapy in a subject with acute major bleeding.
- subjects are adult human patients. In other embodiments, subjects are pediatric human patients.
- acute major bleeding is caused by trauma.
- acute major bleeding occurs during surgery or other type of interventional procedure.
- exemplary non-limiting interventional procedures include incisions, drainage, vascular surgery, appendectomy, herniotomy or hernioplasty, abdominal surgery, cholecystectomy, trephination (burr hole), lumbar puncture, cardiac pacemaker insertion, hip fracture surgery, and others.
- acute major bleeding can be spontaneous bleeding with no apparent cause.
- sites of acute major bleeding include gastrointestinal bleeding, subcutaneous or intramuscular bleeding, bladder bleeding, hemarthrosis, subdural hematoma, nasal bleeding, peritoneal bleeding, uterine bleeding, and other sites of bleeding.
- Effective treatment with FXa variants of the disclosure can reverse the effects of a direct FXa inhibitor.
- Successful reversal of such effects by a FXa variant can be determined in a variety of ways and be measured or monitored using different assays, methods, or endpoints.
- treatment with a FXa variant to reverse the effects of a direct FXa inhibitor is monitored using tests or assays performed on blood or plasma from a subject treated with FXa variant.
- a blood sample can be taken from a subject at a predetermined time after treatment with FXa variant.
- the blood, or plasma prepared from it, is then subjected to one or more tests to determine if certain hemostatic pharmacodynamic parameters have been normalized despite the presence of direct FXa inhibitor. If normalization is found then the subject need not be further treated with FXa variant. If normalization is not found, however, then further treatment with FXa variant in accordance with the methods of the disclosure may be required to reverse the effect of a direct FXa inhibitor.
- Tests for monitoring the effectiveness of treatment with a FXa variant include tests that directly or indirectly measure the ability to clot or that measure the activity of a direct FXa inhibitor.
- Non-limiting exemplary tests include prothrombin time or the related International Normalized Ratio, the prothrombinase-induced clotting time assay, thromboelastometry, thromboelastography, chromogenic anti-FXa assay, thrombin generation assay, level of prothrombin fragment 1+2, level of thrombin-antithrombin III complex, activated partial thromboplastin time, and partial thromboplastin time.
- Other tests are also possible within the knowledge of those of ordinary skill in the art.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces bleeding in the subject.
- treatment with FXa variant reduces bleeding in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant.
- treatment with FXa variant reduces bleeding in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces the activity of a direct FXa inhibitor in the subject.
- treatment with FXa variant reduces activity of the direct FXa inhibitor in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant.
- treatment with FXa variant reduces the activity of a direct FXa inhibitor in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- Activity of a direct FXa inhibitor can be monitored using a chromogenic anti-FXa assay, such as that described in Asmis, et al., Thromb Res., 129:492-498 (2012), or Barrett, et al., Thromb Haemost. 104:1263-71 (2010), each of which are incorporated by reference herein.
- a chromogenic anti-FXa assay such as that described in Asmis, et al., Thromb Res., 129:492-498 (2012), or Barrett, et al., Thromb Haemost. 104:1263-71 (2010), each of which are incorporated by reference herein.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant increases the amount of thrombin produced in the blood or plasma of the subject.
- treatment with FXa variant increases thrombin production in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, 1.5 fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, at least 50-fold, or more in the presence of a direct FXa inhibitor compared to the absence of an FXa variant.
- Thrombin production in the blood or plasma of a subject can be determined using the thrombin generation assay (TGA) or other technique familiar to those of ordinary skill in the art.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant increases clotting in the subject.
- treatment with FXa variant increases clotting in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, 1.5 fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, at least 50-fold, or more in the presence of a direct FXa inhibitor compared to the absence of an FXa variant.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces clotting time in the subject.
- treatment with FXa variant reduces clotting time in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant.
- treatment with FXa variant reduces clotting time in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- clotting time is determined by measuring the subject's prothrombin time (PT) which decreases as hemostasis is restored.
- PT is the amount of time it takes for serum to clot after addition of tissue factor. PT therefore measures the capability of the extrinsic clotting system to support clotting.
- PT can vary depending on the particular reagents a lab uses to run the test, but a normal PT is about 11 to 13 seconds.
- Clotting time can also be expressed using the International Normalized Ratio (INR), which eliminates lab to lab variability in clotting time measurements. Using the INR, a ratio of 0.8 to 1.1 indicates normal clotting.
- INR International Normalized Ratio
- a ratio of 0.8 to 1.1 indicates normal clotting.
- PT or INR can be determined at a predetermined time after a FXa variant is administered to a subject in need of reversal of the effects of a direct FXa inhibitor.
- treatment with a FXa variant to reverse the effects of a direct FXa inhibitor reduces the PT of a subject to about 25 seconds, 24 seconds, 23 seconds, 22 seconds, 21 seconds, 20 seconds, 19 seconds, 18 seconds, 17 seconds, 16 seconds, 15 seconds, 14 seconds, 13 seconds, 12 seconds, 11 seconds, 10 seconds, or less.
- treatment with a FXa variant reduces the INR or a subject to about 4.0, 3.9, 3.8, 3.7, 3.6, 3.5, 3.4, 3.3, 3.2, 3.1, 3.0, 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, or less.
- treatment with FXa variant reduces PT or INR in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- Prothrombin time can be measured at a predetermined after administration of a FXa variant.
- PT is measured 15 mins, 20 mins, 30 mins, 40 mins, 45 mins, 50 mins, 60 mins or more after administration of FXa. Other times are also possible according to the knowledge of those of ordinary skill in the art.
- Clotting time can also be measured using the one-step prothrombinase-induced clotting time (PiCT) assay as described in Graff, et al., Monitoring effects of direct FXa-inhibitors with a new one-step prothrombinase-induced clotting time (PiCT) assay: comparative in vitro investigation with heparin, enoxaparin, fondaparinux and DX 9065a, Int J Clin Pharmacol Ther., 45:237-43 (2007) and Harder, et al., Monitoring direct FXa-inhibitors and fondaparinux by Prothrombinase-induced Clotting Time (PiCT): relation to FXa-activity and influence of assay modifications, Thromb Res.,123:396-403 (2008), each of which are incorporated by reference.
- PiCT prothrombinase-induced clotting time
- the methods of thromboelastometry or thromboelastography may be used to analyze clot formation or clotting time.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant increases the level of prothrombin fragment 1+2 (PF1+2) in the blood or plasma of the subject.
- treatment with FXa variant increases PF1+2 in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, at least 50-fold, or more in the presence of a direct FXa inhibitor compared to the absence of an FXa variant.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces activated partial thromboplastin time (aPTT) in the subject.
- treatment with FXa variant reduces activated partial thromboplastin time (aPTT) in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant.
- reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces partial thromboplastin time (PTT) in the subject.
- treatment with FXa variant reduces partial thromboplastin time (PTT) in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant.
- treatment with FXa variant reduces PTT in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- clinical endpoints can be relied upon to determine if hemostasis has been adequately restored in a subject treated with a FXa variant to reverse the effects of a direct FXa inhibitor. For example, where a subject presents with acute bleeding, clinical hemostatic efficacy can be scored “very good” where prompt cessation of existing bleeding occurs after treatment with FXa variant; “satisfactory” where there is a 1-2 hr delay in bleeding cessation; “questionable” where there is a >2 hr delay in bleeding cessation; and “none” where an effect on bleeding is absent. Where treatment with FXa variant is determined to be less than satisfactory, then an additional dose of FXa variant can be administered to effect adequate hemostasis.
- clinical hemostatic efficacy can be scored “very good” where normal hemostasis is attained during the procedure; “satisfactory” where intraprocedural hemostasis is mildly abnormal as judged by quantity or quality of blood loss (e.g., slight oozing); “questionable” where intraprocedural hemostasis is moderately abnormal as judged by quantity or quality of blood loss (e.g., controllable bleeding); and “none” where intraprocedural hemostasis is severely abnormal as judged by quantity or quality of blood loss (e.g., severe refractory hemorrhage).
- a therapeutically effective dose of a direct FXa inhibitor depends upon numerous factors that are well known to a medical practitioner of skill in the art.
- a typical therapeutic plasma concentration of rivaroxaban is about 500 nM.
- an FXa variant can be administered to counteract lower or higher concentrations of inhibitor.
- the plasma concentration of rivaroxaban in a subject to be treated with an FXa variant may be lower or higher than the typical therapeutic concentration, for example about 100 nM, about 200 nM, about 300 nM, about 400 nM, about 500 nM, about 600 nM, about 700 nM, about 800 nM, about 900 nM or about 1,000 nM.
- a typical therapeutic plasma concentration of apixaban is about 250 nM.
- the FXa variant is administered to a subject with a plasma concentration of apixaban of about 100 nM, about 200 nM, about 300 nM, about 400 nM, about 500 nM, about 600 nM, about 700 nM, about 800 nM, about 900 nM or about 1,000 nM.
- an FXa variant can be used to counteract a direct FXa inhibitor in cases of overdose, such as when the plasma concentration of the inhibitor is at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or at least 1.5 fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, or at least 50-fold higher than the typical therapeutic plasma concentration.
- the FXa variants are surprisingly effective in counteracting a direct FXa inhibitor at a plasma concentration that is lower than the plasma concentration of the direct FXa inhibitor.
- the FXa variant counters the effect of a direct FXa inhibitor at a plasma concentration ratio of variant to inhibitor of about 1 to 10, about 1 to 25, about 1 to 50, about 1 to 100, about 1 to 250, about 1 to 500, about 1 to 1,000, about 1 to 2,500, about 1 to 5,000 or about 1 to 10,000.
- the FXa variant counters the effect of a direct FXa inhibitor at a plasma concentration of at least 10-fold, at least 25-fold, at least 50-fold, at least 100-fold, at least 250-fold, at least 500-fold, at least 1,000-fold, at least 2,500-fold, at least 5,000-fold, or at least 10,000-fold lower than the plasma concentration of the direct FXa inhibitor.
- the plasma concentration of an FXa variant sufficient to reverse the effect of a direct FXa inhibitor is calculated by multiplying the plasma concentration of the direct inhibitor by a conversion factor ranging from about 0.1 ⁇ 10 ⁇ 4 to about 1000 ⁇ 10 ⁇ 4 , about 4 ⁇ 10 ⁇ 4 to about 40 ⁇ 10 ⁇ 4 , about 20 ⁇ 10 ⁇ 4 to about 200 ⁇ 10 ⁇ 4 , or other ranges.
- Achieving a target plasma concentration of FXa variant sufficient to reverse overdose of a direct FXa inhibitor is within the knowledge of those ordinarily skilled in the art.
- estimates of relevant pharmacokinetic parameters such as subject plasma volume or other parameters, can be made based on upon subject sex, height and weight, or other factors, and used to calculate how much FXa variant needs be administered to achieve the target concentration.
- plasma concentrations can be monitored according to the knowledge of those ordinarily skilled in the art and this information used to maintain the concentration in any desired range.
- compositions and methods of the disclosure include a “therapeutically effective amount” or a “prophylactically effective amount” of an FXa variant.
- a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result.
- a therapeutically effective amount of the FXa variant may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the FXa variant to elicit a desired response in the individual.
- a therapeutically effective amount is also one in which any toxic or detrimental effects of the FXa variant are outweighed by the therapeutically beneficial effects.
- a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. For example, a dose may be given prior to a planned surgery.
- Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- a therapeutically or prophylactically-effective amount of an FXa variant administered is about 0.0001 to 50 mg/kg, about 0.001 to 50 mg/kg, about 0.001 to 5 mg/kg, about 0.001 to 0.5 mg/kg, about 0.001 to 0.05 mg/kg, about 0.01 to 5 mg/kg or about 0.01 to 0.5 mg/kg.
- a therapeutically or prophylactically-effective serum concentration of an FXa variant of the disclosure is about 0.0003 to 300 nM, about 0.003 to 300 nM, about 0.03 to 300 nM, about 0.003 to 30 nM, about 0.03 to 30 nM or about 0.3 to 3 nM.
- concentration of the FXa variant for example in blood or plasma, may be measured by any method known in the art.
- dosage values may vary with FXa inhibitor concentration. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
- kits comprising an FXa variant or a composition comprising such an FXa variant.
- a kit may include, in addition to the FXa variant or composition, diagnostic or additional therapeutic agents.
- a kit can also include instructions for use in a therapeutic method, as well as packaging material such as, but not limited to, ice, dry ice, styrofoam, foam, plastic, cellophane, shrink wrap, bubble wrap, cardboard and starch peanuts.
- the kit includes the FXa variant or a composition comprising it and one or more therapeutic agents that can be used in a method described herein.
- the FXa variant may be administered, for example in a composition comprising it, once or multiple times to a subject until adequate hemostasis is restored or the direct FXa inhibitor or inhibitors are no longer effective. Where multiple administrations are used they may administered hourly, daily, or at any other appropriate interval, including for example multiple daily doses. Multiple doses may be administered on a schedule such as every 10 minutes, every 15 minutes, every 20 minutes, every 30 minutes, every hour, every two hours, every three hours, every four hours, three times daily, twice daily, once daily, once every two days, once every three days, and once weekly.
- the FXa variant may also be administered continuously, e.g. via a minipump.
- the FXa variant may be administered, for example, via a parenteral route (e.g., intravenously, subcutaneously, intraperitoneally, or intramuscularly).
- the FXa variant will generally be administered as part of a pharmaceutical composition as described below.
- the FXa variant may be co-administered with another procoagulant including another FXa variant, Factor IX, Factor XIa, Factor XIIa, Factor VIII, Factor VIIa, FEIBA and prothrombin complex concentrate (PCC).
- another procoagulant including another FXa variant, Factor IX, Factor XIa, Factor XIIa, Factor VIII, Factor VIIa, FEIBA and prothrombin complex concentrate (PCC).
- Co-administration of an FXa variant of the disclosure with an additional therapeutic agent encompasses administering a pharmaceutical composition comprising the FXa variant and the additional therapeutic agent, as well as administering two or more separate pharmaceutical compositions, i.e., one comprising the FXa variant and the other(s) comprising the additional therapeutic agent(s).
- Co-administration or combination therapy further includes administering the FXa variant and additional therapeutic agent(s) simultaneously or sequentially, or both.
- the FXa variant may be administered once every three days, while the additional therapeutic agent is administered once daily at the same as the FXa variant, or at a different time.
- An FXa variant may be administered prior to or subsequent to treatment with the additional therapeutic agent.
- administration of an FXa variant of the disclosure may be part of a treatment regimen that includes other treatment modalities including surgery.
- the combination therapy may be administered to prevent recurrence of the condition.
- the combination therapy may be administered from multiple times hourly to weekly.
- the administrations may be on a schedule such as every 10 minutes, every 15 minutes, every 20 minutes, every 30 minutes, every hour, every two hours, every three hours, every four hours, three times daily, twice daily, once daily, once every two days, once every three days, once weekly, or may be administered continuously, e.g. via a minipump.
- the combination therapy may be administered, for example, via a parenteral route (e.g., intravenously, subcutaneously, intraperitoneally, or intramuscularly).
- the disclosure provides a composition comprising an FXa variant for use in counteracting a direct FXa inhibitor in a subject.
- the composition may comprise a pharmaceutically acceptable carrier, vehicle or other ingredients that are physiologically compatible.
- suitable carriers, vehicles and other ingredients include solvents (e.g., water, ethanol, saline, phosphate buffered saline), detergents, surfactants, dispersion media, coatings, antibacterial or antifungal agents, isotonifying agents, absorption delaying agents, sugars (e.g., sucrose, dextrose, lactose), polyalcohols (e.g., glycerol, mannitol, sorbitol), salts (e.g., sodium chloride, potassium chloride), wetting agents, emulsifying agents, preservatives, buffers, and agents capable of enhancing the stability or effectiveness of the FXa variant.
- solvents e.g., water, ethanol, saline, phosphate
- compositions for use according to the disclosure may be in any suitable form for administration to a subject, such as liquid solutions (e.g., injectable and infusible solutions).
- Compositions can be provided in a pre-mixed format ready for administration to a subject, for example, in a vial or pre-filled syringe. Such formats do not require reconstitution with diluent before administration.
- compositions can be provided in lyophilized form requiring reconstitution with diluent (e.g., sterile water or saline) before administration. If the latter, diluent can be provided with the lyophilisate in a separate container.
- compositions can be formulated for storage under refrigeration or at room temperature.
- the form of the composition depends, at least in part, on the intended mode of administration.
- the mode of administration is parenteral, including for example intravenous, subcutaneous, intraperitoneal, or intramuscular administration.
- compositions typically must be sterile and stable under the conditions of manufacture and storage.
- the composition can be formulated as a solution, microemulsion, dispersion, in liposomes, or other ordered structure suitable to high drug concentration.
- Sterile injectable solutions can be prepared by incorporating the FXa variant in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
- compositions herein may be administered to a subject being treated with a direct FXa inhibitor.
- the thrombin generation assay was used to assess whether the zymogen-like FXa variants can reverse the effects of direct FXa inhibitors in a more physiologic environment.
- the TGA measures thrombin production in plasma over time following the initiation of coagulation and was performed as previously described (See Bunce et al., (2011) Blood 117, 290-298, incorporated by reference herein in their entirety).
- Thrombin generation in normal human plasma was measured for 90 min at 37° C. in the presence or absence of 500 nM rivaroxaban.
- increasing amounts of FXa I16L was added to plasma containing 500 nM rivaroxaban.
- Thrombin generation was initiated with 2.0 pM tissue factor/4 uM phospholipid as well as CaCl 2 and a thrombin fluorogenic substrate.
- FXa I16L is similar to FXa I16L , however it has intrinsically less activity, has a longer plasma half-life, and has ⁇ 3-5-fold reduced activity compared to FXa I16L when assembled in the prothrombinase complex. Consistent with the rivaroxaban data, FXa I16L could restore peak thrombin ( FIG. 6A ) and total thrombin ( FIG.
- FXa I16L The ability of FXa I16L to accelerate whole blood clot formation in the presence of rivaroxaban or apixaban was examined using rotational thromboelastometry (ROTEM). Both direct FXa inhibitors alone and at two different concentrations have a substantial effect on whole blood clot formation: at low doses (therapeutic concentrations), whole blood clot formation is partially eliminated ( FIG. 8A and FIG. 9A ), while at high doses (supratherapeutic concentrations), whole blood clot formation is almost completely eliminated ( FIG. 8B and FIG. 9B ). The effects of either rivaroxaban or apixaban on whole blood clot formation could be reversed by FXa I16L .
- FIG. 10A A dose dependent inhibition of thrombin generation in normal human plasma was observed with in vitro rivaroxaban treatment (5-200 nM) ( FIG. 10A ). Rivaroxaban resulted in an increase in the lag time coupled with a decrease in the peak thrombin and a decrease in the ETP.
- a low dose of 0.03125 nM FXa I16L thrombin generation was restored to levels comparable to vehicle treated normal human plasma.
- FXa I16L The ability of FXa I16L to overcome the effects of rivaroxaban in vivo was assessed in an acute bleeding model in normal mice. The results demonstrated that a zymogen-like FXa variant could reverse the anticoagulant effect of a direct FXa inhibitor.
- mice Male C57B1/6 mice (The Jackson Laboratory, Bar Harbor, Me.) received a single intravenous injection of rivaroxaban at a dose of 10, 25 or 50 mg/kg. Thirty minutes later, mice were anesthetized with isoflurane and placed on a heated platform, and the body temperature of the mice was maintained at 37° C. prior to the tail cut. The tails were immersed in 50 mL pre-warmed phosphate buffered saline (PBS) at 37° C. for 2 minutes. A 3 mm tail cut was made and blood was collected into PBS for a 10 minute period.
- PBS pre-warmed phosphate buffered saline
- a quantitative assessment of the amount of bleeding was determined by hemoglobin content of the blood collected into PBS. Tubes were centrifuged to collect erythrocytes, resuspended in 5 mL lysis buffer (8.3 g/L NH 4 Cl, 1.0 g/L KHCO 3 , and 0.037 g/L EDTA), and the absorbance of the sample was measured at 575 nm. The absorbance values were converted to total blood loss ( ⁇ L) using a standard curve. The administration of rivaroxaban resulted in a dose dependent increase in blood loss following a tail cut ( FIG. 11 ).
- a dose of 50 mg/kg rivaroxaban resulted in an increase in blood loss following the tail transection.
- Mice were dosed with 50 mg/kg rivaroxaban and 30 minutes later 50 or 200 ug/kg of FXa I16L was dosed intravenously at 37° C. prior to the tail cut. Mice were then anesthetized with isoflurane and placed on a heated platform, and the body temperature of the mice was maintained at 37° C. prior to the tail cut. The tails were immersed in 50 mLs pre-warmed phosphate buffered saline (PBS) at 37° C. for 2 minutes.
- PBS pre-warmed phosphate buffered saline
- rivaroxaban As visualized using intravital microscopy, rivaroxaban was demonstrated to inhibit thrombus formation in the microcirculation of the mouse cremaster muscle after laser-induced injury. Further administration of FXa I16L could counteract the anti-coagulant effect of rivaroxaban in this system.
- the cremaster muscle of mice was exposed and visualized using intravital microscopy. A vascular injury in the muscle was then induced using a laser. After injury, clot formation was visualized using different fluorescently labeled antibodies that specifically recognize fibrin and platelets. Clotting is indicated by the presence of fluorescent signal from both types of antibodies.
- FIG. 13A After laser injury, an untreated mouse rapidly formed a clot at the site of injury that was stable for several minutes ( FIG. 13A ).
- the clot In the video frame, the clot is visible as the coincidence of fluorescent signal associated with antibodies against fibrin and platelets (light gray center region overlapping darker gray region).
- FIG. 13B In the video frame, only a reduced extent of platelets can be seen as indicated by the dark gray region, which reflects presence of fluorescent signal associated with anti-platelet antibodies.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Dermatology (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 61/759,332, filed 31 Jan. 2013, the contents of which are incorporated herein by reference in its entirety.
- The Sequence Listing submitted concurrently herewith under 37 CFR §1.821 in a computer readable form (CRF) via EFS-Web as file name PC072006_SEQLIST_ST25.txt is incorporated herein by reference. The electronic copy of the Sequence Listing was created on 18 Dec. 2013, with a file size of 7 kilobytes.
- Pharmacological anticoagulation is the mainstay of treatment for patients with prothrombotic conditions. For over fifty years, the only oral anticoagulant available was warfarin, an inhibitor of the vitamin K epoxide reductase (VKOR) that recycles oxidized vitamin K. Warfarin has many drawbacks, including unpredictable pharmacokinetics that necessitate frequent monitoring of coagulation parameters and dose adjustment. However, in the event of emergency bleeding or the need for urgent surgery, antidotes exist that allow rapid and complete reversal.
- Oral direct FXa inhibitors are emerging anticoagulants that have the potential to simplify dosing schemes and hemostatic monitoring in patients with prothrombotic diseases when compared to standard treatments, such as warfarin. Although these drugs have many advantages over warfarin, no fully efficacious reversal agent is available for these novel anticoagulants.
- The lack of a specific countermeasure to their effects, however, is a critical unmet clinical need that could limit the widespread adoption of these agents due to fears of unmanageable bleeding.
- Applicants have addressed this critical unmet clinical need by providing compositions and methods for counteracting the effects of direct activated Factor X (FXa) inhibitors.
- According to some embodiments, the disclosure provides methods for reducing or preventing bleeding in a subject being treated with a direct Factor Xa (FXa) inhibitor by administering a composition comprising a Factor Xa variant containing at least one modification including substitution for the wild-type amino acid at position 16 (using the chymotrypsin numbering system) with Thr, Leu, Phe, Asp or Gly, or substitution for the wild-type amino acid at position 17 (using the chymotrypsin numbering system) with Leu, Ala, or Gly. In certain embodiments, treatment with a composition comprising a FXa variant results in at least a 50% reduction in bleeding. According to certain embodiments, direct Factor Xa inhibitors include rivaroxaban or apixaban. In some embodiments, the plasma concentration of the direct FXa inhibitor is a typical therapeutic amount or a supratherapeutic amount. For example, in some embodiments, the plasma concentration of rivaroxaban can be about 500 nM, or greater, and the plasma concentration of apixaban can be about 250 nM, or greater. According to certain embodiments the FXa variant contains the substitution I16L. In some embodiments, the FXa variant is capable of countering the effect of the direct Factor Xa inhibitor at a plasma concentration that is at least 100-fold lower than the plasma concentration of the Factor Xa inhibitor. In certain embodiments, the composition comprising the FXa variant is administered before a planned surgery, after an injury, or after an intentional or accidental overdose with a direct FXa inhibitor. In some embodiments, hemostasis in the subject is monitored using a hemostasis assay after a first dose with a FXa variant and, if adequate hemostasis is not attained by a predetermined time, at least one second dose of FXa variant is administered to achieve sufficient hemostasis. According to some embodiments, the predetermined time is about 15 mins, 30 mins, 45 mins or 60 mins after the first dose of FXa variant is administered. Other times are also possible. In some other embodiments, at least a second procoagulant is administered in addition to FXa variant, including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
- According to some embodiments, the disclosure provides methods for increasing the amount of thrombin produced in response to activation of the extrinsic or intrinsic clotting pathway in a subject being treated with a direct Factor Xa (FXa) inhibitor by administering a composition comprising a Factor Xa variant containing at least one modification including substitution for the wild-type amino acid at position 16 (using the chymotrypsin numbering system) with Thr, Leu, Phe, Asp or Gly, or substitution for the wild-type amino acid at position 17 (using the chymotrypsin numbering system) with Leu, Ala, or Gly. According to certain embodiments, direct Factor Xa inhibitors include rivaroxaban or apixaban. In some embodiments, the plasma concentration of the direct FXa inhibitor is a typical therapeutic amount or a supratherapeutic amount. For example, in some embodiments, the plasma concentration of rivaroxaban can be about 500 nM, or greater, and the plasma concentration of apixaban can be about 250 nM, or greater. According to certain embodiments the FXa variant contains the substitution I16L. According to certain embodiments, the amount of thrombin produced increases by about 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, or more. In some embodiments, the FXa variant is capable of countering the effect of the direct Factor Xa inhibitor at a plasma concentration that is at least 100-fold lower than the plasma concentration of the Factor Xa inhibitor. In certain embodiments, the composition comprising the FXa variant is administered before a planned surgery, after an injury, or after an intentional or accidental overdose with a direct FXa inhibitor. In some embodiments, hemostasis in the subject is monitored using a hemostasis assay after a first dose with a FXa variant and, if adequate hemostasis is not attained by a predetermined time, at least one second dose of FXa variant is administered to achieve sufficient hemostasis. According to some embodiments, the predetermined time is about 15 mins, 30 mins, 45 mins or 60 mins after the first dose of FXa variant is administered. Other times are also possible. In some other embodiments, at least a second procoagulant is administered in addition to FXa variant, including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
- According to some embodiments, the disclosure provides methods for decreasing clotting time (as measured, for example, using PT or INR, or some other assay) in a subject being treated with a direct Factor Xa (FXa) inhibitor by administering a composition comprising a Factor Xa variant containing at least one modification including substitution for the wild-type amino acid at position 16 (using the chymotrypsin numbering system) with Thr, Leu, Phe, Asp or Gly, or substitution for the wild-type amino acid at position 17 (using the chymotrypsin numbering system) with Leu, Ala, or Gly. According to certain embodiments, direct Factor Xa inhibitors include rivaroxaban or apixaban. In some embodiments, the plasma concentration of the direct FXa inhibitor is a typical therapeutic amount or a supratherapeutic amount. For example, in some embodiments, the plasma concentration of rivaroxaban can be about 500 nM, or greater, and the plasma concentration of apixaban can be about 250 nM, or greater. According to certain embodiments the FXa variant contains the substitution I16L. According to certain embodiments, clotting time is reduced by about 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more. In some embodiments, the FXa variant is capable of countering the effect of the direct Factor Xa inhibitor at a plasma concentration that is at least 100-fold lower than the plasma concentration of the Factor Xa inhibitor. In certain embodiments, the composition comprising the FXa variant is administered before a planned surgery, after an injury, or after an intentional or accidental overdose with a direct FXa inhibitor. In some embodiments, hemostasis in the subject is monitored using a hemostasis assay after a first dose with a FXa variant and, if adequate hemostasis is not attained by a predetermined time, at least one second dose of FXa variant is administered to achieve sufficient hemostasis. According to some embodiments, the predetermined time is about 15 mins, 30 mins, 45 mins or 60 mins after the first dose of FXa variant is administered. Other times are also possible. In some other embodiments, at least a second procoagulant is administered in addition to FXa variant, including for example, a different FXa variant, factor IX, factor XIa, factor XIIa, factor VIII, factor VIIa, FEIBA or prothrombin complex concentrate (PCC).
-
FIGS. 1A-B show inhibition of free wt-FXa or FXaI16L by rivaroxaban. The initial velocity of peptidyl substrate (SpecXa; 200 uM) hydrolysis by A) wt-FXa (2 nM) or B) FXaI16L (6 nM) was determined at increasing concentrations of rivaroxaban. The Ki value is given on each graph. -
FIGS. 2A-B show rivaroxaban inhibition of wt-FXa or FXaI16L assembled in prothrombinase. The initial velocity of peptidyl substrate (SpecXa; 200 uM) hydrolysis by A) wt-FXa (2 nM) or B) FXaI16L (6 nM) in the presence of PCPS (20 uM) and FVa (40 nM) was determined at increasing concentrations of rivaroxaban. -
FIG. 3 shows the effect of different concentrations of FXaI16L on reversing the effects on thrombin generation of rivaroxaban. -
FIGS. 4A-D show the effect of FXaI16L on reversing the effects of rivaroxaban. Normal human plasma was incubated with 500 nM rivaroxaban and in the absence or presence of increasing concentrations of FXaI16L. Following data analysis, peak thrombin (A and C) and total thrombin generated (ETP; B and D) were plotted. -
FIGS. 5A-B show FXaI16L reverses the effects of high dose rivaroxaban. Normal human plasma was incubated with 7.5 uM rivaroxaban and in the absence or presence of increasing concentrations of FXaI16L. Following data analysis, peak thrombin (A) and total thrombin generated (ETP; B) were plotted. -
FIGS. 6A-B show FXaI16L or FXaI16T reverses the effects of 250 nM apixaban. Normal human plasma was incubated with 250 nM apixaban and in the absence or presence of increasing concentrations of FXaI16L or FXaI16T. Following data analysis, peak thrombin (A) and total thrombin generated (ETP; B) were plotted. -
FIGS. 7A-B show FXaI16L or FXaI16T reverses the effects of high dose apixaban. Normal human plasma was incubated with 2.0 uM Apixaban and in the absence or presence of increasing concentrations of FXaI16L or FXaI16T. Following data analysis, peak thrombin (A) and total thrombin generated (ETP; B) were plotted. -
FIGS. 8A-B show FXaI16L corrects whole blood clotting in the presence of rivaroxaban. Whole blood thromboelastography was used to assess the ability of FXaI16L to reverse the effects of rivaroxaban at a typical (A) and a high (B) dose. -
FIGS. 9A-B show FXaI16L corrects whole blood clotting in the presence of apixaban. Whole blood thromboelastography was used to assess the ability of FXaI16L to reverse the effects of apixaban at a typical (A) and a high (B) dose. -
FIGS. 10A-B show that FXaI16L counteracts rivaroxaban in a thrombin generation assay.FIG. 10A shows a dose response of rivaroxaban andFIG. 10B shows a dose response of FXaI16L in the presence of rivaroxaban. -
FIG. 11 shows that FXaI16L counteracts rivaroxaban in a mouse tail clip bleeding model. -
FIG. 12 demonstrates that rivaroxaban administered to mice delays clotting time of whole blood measured using ROTEM and that administration with FXaI16L dose-responsively counteracts the effect of rivaroxaban. -
FIG. 13 shows that rivaroxaban administered to a mouse prevents clot formation at a site of vascular injury in the cremaster muscle caused by laser and that administration with FXaI16L counteracts the effect of rivaroxaban. Clot formation was visualized using intravital microscopy and fluorescently labeled antibodies against fibrin and platelets.FIG. 13A shows clot formation in an untreated mouse.FIG. 13B shows that rivaroxaban delayed and reduced platelet accumulation and prevented fibrin deposition. By contrast,FIG. 13C shows that in a mouse administered rivaroxaban and FXaI16L clot formation occurred at the site of injury. -
FIG. 14 is the amino acid sequence of wild-type human Factor X preprotein (SEQ ID NO:1). The signal peptide corresponds to amino acids 1-23. The propeptide corresponds to amino acids 24-40. The mature light chain of activated Factor X (FXa) corresponds to amino acids 41-179. The mature heavy chain of activated FXa (after removal of the activation peptide) corresponds to amino acids 235-488. The activation peptide (AP) corresponds to amino acids 183-234. -
FIG. 15 is the nucleotide sequence of the cDNA encoding wild-type human Factor X preprotein (SEQ ID NO:2). The coding sequence corresponds to nucleotides 58 to 1524. - The disclosure provides compositions and methods for counteracting the anti-coagulant effect of a direct FXa inhibitor in a subject in need thereof. Applicants have discovered that certain FXa variants rapidly and completely counteract the effect of a direct FXa inhibitor in a dose dependent manner. More specifically, applicants have discovered that a relatively small amount of an FXa variant restores normal coagulation activity in vivo in the presence of FXa inhibitor at therapeutic concentrations and even at supratherapeutic concentrations. By providing fast and effective antidotes for the anti-coagulation effects of direct FXa inhibitors, Applicants' disclosure therefore contributes to fulfilling the promise of these advantageous anti-coagulants.
- Coagulation factor X (FX) is a zymogen which, upon activation by the intrinsic factor IX/factor VIII or extrinsic pathway (tissue factor/factor VIIa), becomes FXa, which is the protease moiety of prothrombinase. Following proteolytic cleavage of the Arg-Ile scissile bond, releasing an activation peptide (AP), a series of well defined structural changes in the zymogen drives the activation process to the mature active serine protease (See Toso et al., (2008) J. Biol. Chem. 283, 18627-18635; Bunce et al., (2011) Blood 117, 290-298; and Ivanciu et al., (2011) Nat. Biotechnol. 29, 1028-1033, incorporated by reference herein in their entirety). The mature FXa has a light chain and a heavy chain that contains the catalytic domain. The mature FXa becomes an active serine protease upon formation of the prothrombinase complex, which includes binding of an activated cofactor, Factor Va (FVa).
- Variant forms of FX have been developed that upon activation cleavage yield a zymogen-like FXa variant. That is, once cleaved, the resulting FXa variant has poor active site function and is more resistant to inactivation by circulating inhibitors (i.e. antithrombin III and TFPI). The FXa variants, thus, have longer half-lives in plasma than wild-type FXa. The FXa variant binds FVa, lipid membrane and calcium to form a fully active prothrombinase complex that efficiently activates prothrombin.
- The zymogen-like variants of FXa circulate in the zymogen-like conformation and do not seem to be thrombogenic (See Toso et al., (2008) J. Biol. Chem. 283, 18627-18635 and Ivanciu et al., (2011) Nat. Biotechnol. 29, 1028-1033, incorporated by reference herein in their entirety). Examples of such FXa variants are described in International patent publication WO2007/059513, incorporated herein by reference in its entirety.
- The enzymes of coagulation are trypsin-like enzymes that belong to the 51 peptidase family of proteases that bear a chymotrypsin-like fold. The coagulation proteases contain catalytic domains that are highly homologous to each other and to the ancestral serine proteases of digestion. The structural homology/identity is so great (>70%) that residues in the catalytic domains of the coagulation enzymes (including Factor Xa) are numbered according to the corresponding residues in chymotrypsinogen. (Chymotrypsin numbering system; see Bajaj and Birktoft, Methods Enzymol. 1993; 222:96-128, Table 2, and Bode W, Mayr I, Bauman Y, et al. The refined 1.9 Å crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Trp insertion segment. EMBO J 1989; 8(11):3467-3475, both of which are incorporated by reference herein in their entireties). Accordingly, amino acids may be referred to herein according to the chymotrypsin numbering system, which is well-known to those of skill in the art.
- According to the disclosure, an FXa variant may be an FXa protein comprising an amino acid substitution that makes the variant more zymogen-like compared to a wild-type FXa protein in vivo or in vitro. FXa variants of the disclosure substantially regain wild-type FXa activity upon formation of prothrombinase. Examples of FXa variants that are useful in methods of the disclosure are variants comprising a modification selected from the group consisting of: a) Ile at position 16 is Thr, Leu, Phe, Asp or Gly and b) Val at position 17 is Leu, Ala, or Gly, according to the chymotrypsin numbering system. Amino acids 16 and 17 in the chymotrypsin numbering system occur at amino acids 235 and 236, respectively, of SEQ ID NO:1 (human Factor X preproprotein). In certain embodiments, FXa variants are FXaI16L and FXaII6T (the nomenclature used herein for the FXa variants recites the original amino acid at the numbered position according to the chymotrypsin numbering system followed by the substituted amino acid). The FXa variants can be variants of any mammalian FXa. Of particular interest, however, are FXa variants of human FXa.
- In certain embodiments, the FX variant that is activated into a variant FXa of the disclosure may be further modified by inserting a non-native intracellular proteolytic cleavage site. In a non-limiting example, to express “activated” zymogen-like FXa variants in mammalian cells, a non-native intracellular proteolytic cleavage site can be inserted between the Arg at position 234 of SEQ ID NO:1 (
position 15 in the chymotrypsin numbering system) and the amino acid at the position corresponding to position 235 of SEQ ID NO:1 (position 16 in the chymotrypsin numbering system) in the variant FX zymogen. In certain embodiments, the non-native intracellular protease cleavage site is Arg-Lys-Arg or Arg-Lys-Arg-Arg-Lys-Arg (SEQ ID NO:3). These cleavage sites are efficiently recognized by proteases (PACE/furin-like enzymes) within the cell and are removed. This cleavage may result in a processed variant FXa in which the mature heavy chain of the molecule now begins at the amino acid at the position corresponding to position 235 of SEQ ID NO:1 (position 16 in the chymotrypsin numbering system). Introduction of this cleavage site at said position allows for the intracellular conversion of FX to FXa. - In certain embodiments the entire amino acid sequence of the FX variant activation peptide (AP) (i.e., amino acids 183-234 of SEQ ID NO:1) is replaced with a non-native intracellular protease cleavage site. According to certain embodiments, the non-native intracellular protease cleavage site is Arg-Lys-Arg or Arg-Lys-Arg-Arg-Lys-Arg (SEQ ID NO:3). As explained above, this modification allows for intracellular cleavage of the FX variant expressed by cells. The intracellular cleavage converts FX variant to activated zymogen-like FXa variant which is then secreted by cells for subsequent purification. This approach obviates the need for extracellular cleavage that would otherwise be required to activate the variant clotting factor, for example, after isolating the protein or just before blood clotting.
- In certain embodiments, FXa variants of the disclosure are derived from FX variant preproteins comprising native wild-type human signal sequence and/or propeptide sequence. In other embodiments, FX signal sequences and/or propeptide from non-human species can be used in place of the corresponding native amino acid sequences. And in yet other embodiments, signal sequence and/or propeptide sequence from other human or non-human secreted proteins can be used in place of the corresponding native amino acid sequences.
- In an exemplary embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 (isoleucine in the wild-type sequence) is substituted with a different amino acid selected from the group consisting of threonine (Thr), leucine (Leu), phenylalanine (Phe), aspartic acid (Asp), or glycine (Gly). These substitutions can respectively be written using the nomenclature I235T, I235L, I235F, I235D and I235G, where the first letter is the single letter code for isoleucine and the last letter is the single letter code for the amino acid being substituted into the wild-type sequence. Because position 235 of SEQ ID NO:1 is equivalent to position 16 in the chymotrypsin numbering system, the same substitutions can be written I16T, I16L, I16F, I16D and I16G. In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Thr (i.e., I235T or I16T). In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Leu (i.e., I235L or I16L). In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Phe (i.e., I235F or I16F). In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Asp (i.e., I235D or I16D). In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 235 is substituted with Gly (i.e., I235G or I16G).
- According to another exemplary embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 (valine in the wild-type sequence) is substituted with a different amino acid selected from the group consisting of leucine (Leu), alanine (Ala), or glycine (Gly). These substitutions can respectively be written using the nomenclature V236L, V236A, and V236G, where the first letter is the single letter code for valine and the last letter is the single letter code for the amino acid being substituted into the wild-type sequence. Because position 236 of SEQ ID NO:1 is equivalent to position 17 in the chymotrypsin numbering system, the same substitutions can be written V17L, V17A, and V17G. In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 is substituted with Leu (i.e., V236L or V17L). In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 is substituted with Ala (i.e., V236A or V17A). In an embodiment, a FXa variant comprises amino acids 41-179 and amino acids 235-488 of SEQ ID NO:1, wherein the amino acid at position 236 is substituted with Gly (i.e., V236G or V17G).
- In other embodiments, FXa variants of the disclosure, including those specific variants described in the preceding paragraphs, can include various isoforms of the light and/or mature heavy chain of the protein. Non-limiting exemplary isoforms of the FXa variant mature heavy chain include the alpha and beta versions of the mature heavy chain. Jesty et al., J Biol Chem. 1975 Jun. 25; 250(12):4497-504, incorporated by reference herein. Compositions of the disclosure can include FXa variant proteins in which one or the other or both alpha and beta mature heavy chain isoforms are represented.
- According to yet other embodiments, isoforms of FXa variant proteins, including those specific variants described in the preceding paragraphs, can include isoforms in which a variable number of amino acids (for example, 1, 2, 3, 4, 5, 6, or more amino acids) are either missing from or added to the carboxy terminus of the light chain and/or mature heavy chains of the protein.
- According to certain embodiments, FXa variants of the disclosure include proteins with a certain minimal degree of homology or sequence identity compared to the amino acid sequence of wild-type FXa in SEQ ID NO:1. Thus, for example, FXa variants include proteins that contain a light and mature heavy chain that are at least 60%, 70%, 80%, 85%, 90%, 95%, 98%, or 99% homologous or identical in sequence with the wild-type FXa light and mature heavy chains in SEQ ID NO:1, wherein such FXa variants also include a substitution at the amino acid position corresponding to position 235 of SEQ ID NO:1 with Thr, Leu, Phe, Asp, or Gly, or a substitution at the amino acid position corresponding to position 236 of SEQ ID NO:1 with Leu, Ala, or Gly, and further wherein such FXa variants are zymogenic until incorporated into prothrombinase complex. In the amino acid sequence of SEQ ID NO:1, the wild-type FXa light chain sequence corresponds to amino acids 41 to 179 and the wild-type FXa mature heavy chain sequence corresponds to amino acids 235 to 488. Percentage amino acid sequence homology or identity can readily be determined using software such as Protein BLAST available at the website of the National Center for Biotechnology Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
- According to other non-limiting embodiments, FXa variants of the disclosure can also include FXa variants containing one or more post-translational modifications including, without limitation, one or more O-linked or N-linked carbohydrate groups or a variable number of gamma-carboxyglutamic acid (Gla) residues. FXa variants of the disclosure can further include chemically modified FXa variant proteins. Other FXa variants useful in the methods of the disclosure are also possible.
- As used herein, the term FXaI16x refers to a variant of activated Factor X wherein the amino acid corresponding to position 235 in SEQ ID NO:1 (corresponding to position 16 in the chymotrypsin numbering system) is changed from the amino acid in the wild-type sequence (isoleucine) to a different amino acid denoted “x”. In some non-limiting exemplary embodiments, amino acid “x” can be threonine (Thr or T), leucine (Leu or L), phenylalanine (Phe or F), aspartic acid (Asp or D), or glycine (Gly or G).
- As used herein, the term FXaV17y refers to a variant of activated Factor X wherein the amino acid corresponding to position 236 in SEQ ID NO:1 (corresponding to position 17 in the chymotrypsin numbering system) is changed from the amino acid in the wild-type sequence (valine) to a different amino acid denoted “y”. In some non-limiting exemplary embodiments, amino acid “y” can be leucine (Leu or L), alanine (Ala or A), or glycine (Gly or G).
- The terms FXaI16x and FXaV17y are not limited by the protein sequence set forth in SEQ ID NO:1. Rather these terms additionally include the variety of isoforms and homologous proteins described herein with the specified substitution mutations at positions 16 or 17 in the chymotrypsin numbering system that behave as zymogens until incorporated into prothrombinase complex.
- An FXa variant of the disclosure may be produced by any technique for expressing a protein.
- An “isolated protein,” “isolated polypeptide” or “isolated variant” is a protein, polypeptide or variant that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature. Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be “isolated” from its naturally associated components. A protein may also be rendered substantially free of naturally-associated components by isolation, using protein purification techniques well known in the art.
- A protein or polypeptide is “substantially pure,” “substantially homogeneous,” or “substantially purified” when at least about 60 to 75% of a sample exhibits a single species of polypeptide. The polypeptide or protein may be monomeric or multimeric. A substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and may be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well known in the art for purification.
- The methods of the disclosure are useful to counteract a direct FXa inhibitor. A direct FXa inhibitor is an inhibitor that binds directly to FXa and selectively binds FXa over other proteases. Direct FXa inhibitors are noncompetitive inhibitors of FXa with respect to prothrombin. They bind the substrate binding cleft and inhibit FXa competitively with respect to small peptide substrates that also bind this region. They inhibit FXa with high picomolar affinity and are highly protein bound in plasma. Examples of direct FXa inhibitors are rivaroxaban, apixaban, betrixaban, darexaban, edoxaban and otamixaban. In certain embodiments, direct FXa inhibitors are selected from rivaroxaban and apixaban.
- According to the disclosure, an FXa variant can be used to counteract a direct FXa inhibitor that binds FXa or that binds FXa that has formed prothrombinase. The direct FXa inhibitors may or may not require cofactors of FXa for inhibition. According to the methods of the disclosure, an FXa variant, such as FXaI16L and FXaI16T, are administered to a subject whose blood contains a direct FXa inhibitor.
- The disclosure encompasses the use of a FXa variant to counteract direct FXa inhibitors, including but not limited to synthetic inhibitors, small molecule inhibitors, orally available inhibitors, or reversible inhibitors. The FXa inhibitor may be any combination of these features, such as an orally available, synthetic, reversible, small molecule inhibitor. In certain embodiments, the direct FXa inhibitors may be selected from rivaroxaban, apixaban, betrixaban, darexaban, edoxaban and otamixaban (see Perzborn et al., Nat Rev Drug Discov. 2011 January; 10(1):61-75; Turpie, Arterioscler Thromb Vasc Biol. 2007 June; 27(6):1238-47; Pinto et al., Expert Opin. Ther. Patents 22:645-661 (2012); Pinto, et al., J. Med. Chem. 50:5339-5356 (2007), each of which is incorporated by reference herein). In certain embodiments, direct FXa inhibitors are selected from rivaroxaban or apixaban.
- In some embodiments, a FXa variant of the disclosure can be administered to a subject to reverse the effects of a direct FXa inhibitor where such inhibitor occurs at therapeutic concentrations. In other embodiments, a FXa variant of the disclosure can be administered to a subject to reverse the effects of a direct FXa inhibitor where such inhibitor occurs at supratherapeutic concentrations. A supratherapeutic concentration is one that is higher than that ordinarily considered required to safely achieve anti-coagulation in a particular subject or class of subjects. Supratherapeutic concentrations of a direct FXa inhibitor can result from accidental or intentional overdose. Supratherapeutic concentrations of a direct FXa inhibitor can also result from unexpected effects in particular subjects, such as an unexpectedly high sensitivity to these drugs, or unexpectedly slow rate of clearance, due for example to drug interactions or other factors. Determination of what would be a therapeutic concentration or supratherapeutic concentration of direct FXa inhibitor in a particular subject or class of subjects is within the knowledge of those ordinarily skilled in the art.
- According to the disclosure, an FXa variant is used to counteract a direct FXa inhibitor or inhibitors that selectively bind FXa over other trypsin-like proteases by at least 5-fold, at least 6-fold, at least 7-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 50-fold, at least 100-fold, at least, 500-fold, at least 1,000-fold, at least 5,000-fold or at least 10,000-fold.
- The direct FXa inhibitor may bind an FXa variant with a Ki of about 2×10−7 M or less. “Ki” refers to the inhibitor constant of a particular inhibitor-target interaction, which is the concentration required to produce half maximum inhibition. One can determine the Ki by using methods known in the art. The disclosure contemplates, thus, counteracting a direct FXa inhibitor that binds an FXa variant free of the prothrombinase complex with a Ki of about 2×10−8 M or less, about 1×10−8 M or less, about 9×10−9 M or less, about 8×10−9 M or less, about 7×10−9 M or less, about 6×10−9 M or less, about 5×10−9 M or less, about 4×10−9 M or less, about 3×10−9 M or less, about 2×10−9 M or less , about 1×10−9 M or less, about 9×10−10 M or less, about 8×10−10 M or less, about 7×10−10 M or less, about 6×10−10 M or less, about 5×10−10 M or less, about 4×10−10 M or less, about 3×10−10 M or less, about 2×10−10 M or less, about 1×10−10 M or less, about 9×10−11 M or less, about 8×10−11 M or less, about 7×10−11 M or less, about 6×10−11 M or less, about 5×10−11 M or less, about 4×10−11 M or less, about 3×10−11 M or less, about 2×10−11 M or less, about 1×10−11 M or less, about 9×10−12 M or less, about 8×10−12 M or less, about 7×10−12 M or less, about 6×10−12 M or less, about 5×10−12 M or less, about 4×10−12 M or less, about 3×10−12 M or less, about 2×10−12M or less, or about 1×10−12 M or less, or less. The direct FXa inhibitor to be counteracted by an FXa variant according to the methods of the disclosure may bind a wild-type FXa with a Ki at least 1.5 fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, or at least 50-fold less than it binds the FXa variant. The direct FXa inhibitor may bind a wild-type FXa with a Ki of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% less than the Ki with an FXa variant free of the prothrombinase complex. The direct FXa inhibitor may bind a prothrombinase complex comprising a wild-type FXa with about the same Ki as it binds a prothrombinase complex comprising an FXa variant.
- In one aspect, the disclosure provides methods for counteracting the effects of a direct FXa inhibitor in a subject who is bleeding (internally or externally) or is at risk of bleeding (e.g., in the course of a planned surgery) by administering a FXa variant. In some embodiments, the direct FXa inhibitor may be present in the subject at a therapeutic concentration or a higher concentrations (i.e., a supratherapeutic concentration). In some embodiments, the therapeutic concentration may be an overdose in sensitive individuals. The methods of the disclosure, thus, are useful for providing an antidote to an overdose of a direct FXa inhibitor. In various embodiments, the subject of treatment may be a human or a veterinary subject.
- Direct inhibitor overdose can be detected based on existence of symptoms or signs of excessively reduced clotting ability. Non-limiting examples include evidence of gastrointestinal bleeding, including dark tarry stools, bloody stools, and vomiting of blood. Other examples include nosebleeds, and increased tendency to, or severity of, bruising or bleeding from minor cuts and scrapes.
- In a clinical setting, direct inhibitor overdose can be detected directly or by measuring the ability of subject blood to clot and detecting deviations from the expected degree of anti-coagulation. Blood clotting potential can be measured in ways familiar to those ordinarily skilled in the art. For example, overdose may be suspected when a subject's prothrombin time is excessively prolonged. In certain embodiments, overdose is confirmed when the prothrombin time expressed as an International Normalized Ratio (INR) is measured to be greater than about 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 12, 14, 16, 18, 20, or greater.
- The FXa variant may be administered whenever it is desired to counteract the effects of the direct FXa inhibitor, including but not limited to before a planned surgery, after an injury resulting in external or internal bleeding or after a direct FXa inhibitor overdose. According to the disclosure, the FXa variant may be administered at least about 12 hours, at least about 6 hours, at least about 3 hours, at least about 2 hours, at least about 1 hour, at least about 30 minutes, at least about 10 minutes, or at least about 5 minutes of when the desired counteracting effect is needed, such as before a planned surgery, after an injury resulting in external or internal bleeding or after a direct FXa inhibitor overdose.
- According to another embodiment, the disclosure provides a method of administering a FXa variant to effect the urgent reversal of acquired coagulopathy due to FXa inhibition therapy in a subject with acute major bleeding. In some embodiments, subjects are adult human patients. In other embodiments, subjects are pediatric human patients.
- In some embodiments, acute major bleeding is caused by trauma. In other embodiments, acute major bleeding occurs during surgery or other type of interventional procedure. Exemplary non-limiting interventional procedures include incisions, drainage, vascular surgery, appendectomy, herniotomy or hernioplasty, abdominal surgery, cholecystectomy, trephination (burr hole), lumbar puncture, cardiac pacemaker insertion, hip fracture surgery, and others. In yet other embodiments, acute major bleeding can be spontaneous bleeding with no apparent cause.
- Without limitation, sites of acute major bleeding include gastrointestinal bleeding, subcutaneous or intramuscular bleeding, bladder bleeding, hemarthrosis, subdural hematoma, nasal bleeding, peritoneal bleeding, uterine bleeding, and other sites of bleeding.
- Effective treatment with FXa variants of the disclosure can reverse the effects of a direct FXa inhibitor. Successful reversal of such effects by a FXa variant can be determined in a variety of ways and be measured or monitored using different assays, methods, or endpoints.
- In some embodiments, treatment with a FXa variant to reverse the effects of a direct FXa inhibitor is monitored using tests or assays performed on blood or plasma from a subject treated with FXa variant. A blood sample can be taken from a subject at a predetermined time after treatment with FXa variant. The blood, or plasma prepared from it, is then subjected to one or more tests to determine if certain hemostatic pharmacodynamic parameters have been normalized despite the presence of direct FXa inhibitor. If normalization is found then the subject need not be further treated with FXa variant. If normalization is not found, however, then further treatment with FXa variant in accordance with the methods of the disclosure may be required to reverse the effect of a direct FXa inhibitor. Tests for monitoring the effectiveness of treatment with a FXa variant include tests that directly or indirectly measure the ability to clot or that measure the activity of a direct FXa inhibitor. Non-limiting exemplary tests include prothrombin time or the related International Normalized Ratio, the prothrombinase-induced clotting time assay, thromboelastometry, thromboelastography, chromogenic anti-FXa assay, thrombin generation assay, level of
prothrombin fragment 1+2, level of thrombin-antithrombin III complex, activated partial thromboplastin time, and partial thromboplastin time. Other tests are also possible within the knowledge of those of ordinary skill in the art. - According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces bleeding in the subject. In some embodiments, treatment with FXa variant reduces bleeding in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant. In other embodiments, treatment with FXa variant reduces bleeding in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces the activity of a direct FXa inhibitor in the subject. In some embodiments, treatment with FXa variant reduces activity of the direct FXa inhibitor in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant. In other embodiments, treatment with FXa variant reduces the activity of a direct FXa inhibitor in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- Activity of a direct FXa inhibitor can be monitored using a chromogenic anti-FXa assay, such as that described in Asmis, et al., Thromb Res., 129:492-498 (2012), or Barrett, et al., Thromb Haemost. 104:1263-71 (2010), each of which are incorporated by reference herein.
- According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant increases the amount of thrombin produced in the blood or plasma of the subject. In some embodiments, treatment with FXa variant increases thrombin production in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, 1.5 fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, at least 50-fold, or more in the presence of a direct FXa inhibitor compared to the absence of an FXa variant. Thrombin production in the blood or plasma of a subject can be determined using the thrombin generation assay (TGA) or other technique familiar to those of ordinary skill in the art.
- According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant increases clotting in the subject. In some embodiments, treatment with FXa variant increases clotting in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, 1.5 fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, at least 50-fold, or more in the presence of a direct FXa inhibitor compared to the absence of an FXa variant.
- According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces clotting time in the subject. In some embodiments, treatment with FXa variant reduces clotting time in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant. In other embodiments, treatment with FXa variant reduces clotting time in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- According to some embodiments, clotting time is determined by measuring the subject's prothrombin time (PT) which decreases as hemostasis is restored. PT is the amount of time it takes for serum to clot after addition of tissue factor. PT therefore measures the capability of the extrinsic clotting system to support clotting. PT can vary depending on the particular reagents a lab uses to run the test, but a normal PT is about 11 to 13 seconds. Clotting time can also be expressed using the International Normalized Ratio (INR), which eliminates lab to lab variability in clotting time measurements. Using the INR, a ratio of 0.8 to 1.1 indicates normal clotting. PT or INR can be determined at a predetermined time after a FXa variant is administered to a subject in need of reversal of the effects of a direct FXa inhibitor.
- In some embodiments, treatment with a FXa variant to reverse the effects of a direct FXa inhibitor reduces the PT of a subject to about 25 seconds, 24 seconds, 23 seconds, 22 seconds, 21 seconds, 20 seconds, 19 seconds, 18 seconds, 17 seconds, 16 seconds, 15 seconds, 14 seconds, 13 seconds, 12 seconds, 11 seconds, 10 seconds, or less. In other embodiments, treatment with a FXa variant reduces the INR or a subject to about 4.0, 3.9, 3.8, 3.7, 3.6, 3.5, 3.4, 3.3, 3.2, 3.1, 3.0, 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, or less. According to other embodiments, treatment with FXa variant reduces PT or INR in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- Prothrombin time can be measured at a predetermined after administration of a FXa variant. Thus, in some non-limiting embodiments, PT is measured 15 mins, 20 mins, 30 mins, 40 mins, 45 mins, 50 mins, 60 mins or more after administration of FXa. Other times are also possible according to the knowledge of those of ordinary skill in the art.
- Clotting time can also be measured using the one-step prothrombinase-induced clotting time (PiCT) assay as described in Graff, et al., Monitoring effects of direct FXa-inhibitors with a new one-step prothrombinase-induced clotting time (PiCT) assay: comparative in vitro investigation with heparin, enoxaparin, fondaparinux and DX 9065a, Int J Clin Pharmacol Ther., 45:237-43 (2007) and Harder, et al., Monitoring direct FXa-inhibitors and fondaparinux by Prothrombinase-induced Clotting Time (PiCT): relation to FXa-activity and influence of assay modifications, Thromb Res.,123:396-403 (2008), each of which are incorporated by reference.
- In yet other embodiments, the methods of thromboelastometry or thromboelastography may be used to analyze clot formation or clotting time.
- According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant increases the level of
prothrombin fragment 1+2 (PF1+2) in the blood or plasma of the subject. In some embodiments, treatment with FXa variant increases PF1+2 in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, at least 50-fold, or more in the presence of a direct FXa inhibitor compared to the absence of an FXa variant. - According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant increases the level of thrombin-antithrombin III complex (TAT) in the blood or plasma of the subject. In some embodiments, treatment with FXa variant increases TAT in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, at least 50-fold, or more in the presence of a direct FXa inhibitor compared to the absence of an FXa variant.
- According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces activated partial thromboplastin time (aPTT) in the subject. In some embodiments, treatment with FXa variant reduces activated partial thromboplastin time (aPTT) in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant. In other embodiments, treatment with FXa variant reduces aPTT in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- According to some embodiments, reversing the effects of a direct FXa inhibitor in a subject by administering a FXa variant reduces partial thromboplastin time (PTT) in the subject. In some embodiments, treatment with FXa variant reduces partial thromboplastin time (PTT) in a subject at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% in the presence of a direct FXa inhibitor compared to absence of treatment with FXa variant. In other embodiments, treatment with FXa variant reduces PTT in a subject about 5%-10%, 10%-15%, 15%-20%, 20%-25%, 25%-30%, 30%-35%, 35%-40%, 40%-45%, 45%-50%, 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, or 95%-100%.
- In other embodiments, clinical endpoints can be relied upon to determine if hemostasis has been adequately restored in a subject treated with a FXa variant to reverse the effects of a direct FXa inhibitor. For example, where a subject presents with acute bleeding, clinical hemostatic efficacy can be scored “very good” where prompt cessation of existing bleeding occurs after treatment with FXa variant; “satisfactory” where there is a 1-2 hr delay in bleeding cessation; “questionable” where there is a >2 hr delay in bleeding cessation; and “none” where an effect on bleeding is absent. Where treatment with FXa variant is determined to be less than satisfactory, then an additional dose of FXa variant can be administered to effect adequate hemostasis. In a further example, where a subject is undergoing an interventional procedure, clinical hemostatic efficacy can be scored “very good” where normal hemostasis is attained during the procedure; “satisfactory” where intraprocedural hemostasis is mildly abnormal as judged by quantity or quality of blood loss (e.g., slight oozing); “questionable” where intraprocedural hemostasis is moderately abnormal as judged by quantity or quality of blood loss (e.g., controllable bleeding); and “none” where intraprocedural hemostasis is severely abnormal as judged by quantity or quality of blood loss (e.g., severe refractory hemorrhage).
- A therapeutically effective dose of a direct FXa inhibitor depends upon numerous factors that are well known to a medical practitioner of skill in the art. A typical therapeutic plasma concentration of rivaroxaban is about 500 nM. However, according to the disclosure, an FXa variant can be administered to counteract lower or higher concentrations of inhibitor. The plasma concentration of rivaroxaban in a subject to be treated with an FXa variant may be lower or higher than the typical therapeutic concentration, for example about 100 nM, about 200 nM, about 300 nM, about 400 nM, about 500 nM, about 600 nM, about 700 nM, about 800 nM, about 900 nM or about 1,000 nM.
- A typical therapeutic plasma concentration of apixaban is about 250 nM. In certain embodiments, the FXa variant is administered to a subject with a plasma concentration of apixaban of about 100 nM, about 200 nM, about 300 nM, about 400 nM, about 500 nM, about 600 nM, about 700 nM, about 800 nM, about 900 nM or about 1,000 nM.
- Likewise, according to the disclosure, an FXa variant can be used to counteract a direct FXa inhibitor in cases of overdose, such as when the plasma concentration of the inhibitor is at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or at least 1.5 fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, or at least 50-fold higher than the typical therapeutic plasma concentration.
- The FXa variants are surprisingly effective in counteracting a direct FXa inhibitor at a plasma concentration that is lower than the plasma concentration of the direct FXa inhibitor. According to the disclosure, the FXa variant counters the effect of a direct FXa inhibitor at a plasma concentration ratio of variant to inhibitor of about 1 to 10, about 1 to 25, about 1 to 50, about 1 to 100, about 1 to 250, about 1 to 500, about 1 to 1,000, about 1 to 2,500, about 1 to 5,000 or about 1 to 10,000. In certain embodiments, the FXa variant counters the effect of a direct FXa inhibitor at a plasma concentration of at least 10-fold, at least 25-fold, at least 50-fold, at least 100-fold, at least 250-fold, at least 500-fold, at least 1,000-fold, at least 2,500-fold, at least 5,000-fold, or at least 10,000-fold lower than the plasma concentration of the direct FXa inhibitor.
- In other embodiments, the plasma concentration of an FXa variant sufficient to reverse the effect of a direct FXa inhibitor is calculated by multiplying the plasma concentration of the direct inhibitor by a conversion factor ranging from about 0.1×10−4 to about 1000×10−4, about 4×10−4 to about 40×10−4, about 20×10−4 to about 200×10−4, or other ranges. In yet other embodiments, the conversion factor can be about 0.1×10−4, 0.5×10−4, 1×10−4, 2×10−4, 3×10−4, 4×10−4, 5×10−4, 6×10−4, 7×10−4, 8×10−4, 9×10−4, 10×10−4, 11×10−4, 12×10−4, 13×10−4, 14×10−4, 15×10−4, 16×10−4, 17×10−4, 18×10−4, 19×10−4, 20×10−4, 21×10−4, 22×10−4, 23×10−4, 24×10−4, 25×10−4, 26×10−4, 27×10−4, 28×10−4, 29×10−4, 30×10−4, 31×10−4, 32×10−4, 33×10−4, 34×10−4, 35×10−4, 36×10−4, 37×10−4, 38×10−4, 39×10−4, 40×10−4, 45×10−4, 50×10−4, 55×10−4, 60×10−4, 65×10−4, 70×10−4, 75×10−4, 80×10−4, 85×10−4, 90×10−4, 95×10−4, 100×10−4, 110×10−4, 120×10−4, 130×10−4, 140×10−4, 150×10−4, 160×10−4, 170×10−4, 180×10−4, 190×10−4, 200×10−4, 250×10−4, 300×10−4, 350×10−4, 400×10−4, 450×10−4, 500×10−4, 550×10−4, 600×10−4, 650×10−4, 700×10−4, 750×10−4, 800×10−4, 850×10−4, 900×10−4, 950×10−4, or 1000×10−4, and ranges among these numbers. Plasma concentration of FXa direct inhibitor can be measured according to the knowledge of the skilled artisan, for example, by radio-immuno assay (RIA) or other method.
- Achieving a target plasma concentration of FXa variant sufficient to reverse overdose of a direct FXa inhibitor is within the knowledge of those ordinarily skilled in the art. In a non-limiting example, estimates of relevant pharmacokinetic parameters, such as subject plasma volume or other parameters, can be made based on upon subject sex, height and weight, or other factors, and used to calculate how much FXa variant needs be administered to achieve the target concentration. After administering FXa variant, plasma concentrations can be monitored according to the knowledge of those ordinarily skilled in the art and this information used to maintain the concentration in any desired range.
- The compositions and methods of the disclosure include a “therapeutically effective amount” or a “prophylactically effective amount” of an FXa variant. A “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of the FXa variant may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the FXa variant to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the FXa variant are outweighed by the therapeutically beneficial effects. A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. For example, a dose may be given prior to a planned surgery.
- Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the disclosure are dictated by and directly dependent on (a) the unique characteristics of the FXa variant and the particular therapeutic or prophylactic effect to be achieved, and (b) the limitations inherent in the art of compounding such an FXa variant for the treatment of individuals.
- In certain embodiments, a therapeutically or prophylactically-effective amount of an FXa variant administered is about 0.0001 to 50 mg/kg, about 0.001 to 50 mg/kg, about 0.001 to 5 mg/kg, about 0.001 to 0.5 mg/kg, about 0.001 to 0.05 mg/kg, about 0.01 to 5 mg/kg or about 0.01 to 0.5 mg/kg.
- In certain embodiments, a therapeutically or prophylactically-effective serum concentration of an FXa variant of the disclosure is about 0.0003 to 300 nM, about 0.003 to 300 nM, about 0.03 to 300 nM, about 0.003 to 30 nM, about 0.03 to 30 nM or about 0.3 to 3 nM. The concentration of the FXa variant, for example in blood or plasma, may be measured by any method known in the art.
- It is to be noted that dosage values may vary with FXa inhibitor concentration. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
- Another aspect of the present disclosure provides kits comprising an FXa variant or a composition comprising such an FXa variant. A kit may include, in addition to the FXa variant or composition, diagnostic or additional therapeutic agents. A kit can also include instructions for use in a therapeutic method, as well as packaging material such as, but not limited to, ice, dry ice, styrofoam, foam, plastic, cellophane, shrink wrap, bubble wrap, cardboard and starch peanuts. In one embodiment, the kit includes the FXa variant or a composition comprising it and one or more therapeutic agents that can be used in a method described herein.
- The FXa variant may be administered, for example in a composition comprising it, once or multiple times to a subject until adequate hemostasis is restored or the direct FXa inhibitor or inhibitors are no longer effective. Where multiple administrations are used they may administered hourly, daily, or at any other appropriate interval, including for example multiple daily doses. Multiple doses may be administered on a schedule such as every 10 minutes, every 15 minutes, every 20 minutes, every 30 minutes, every hour, every two hours, every three hours, every four hours, three times daily, twice daily, once daily, once every two days, once every three days, and once weekly. The FXa variant may also be administered continuously, e.g. via a minipump. The FXa variant may be administered, for example, via a parenteral route (e.g., intravenously, subcutaneously, intraperitoneally, or intramuscularly). The FXa variant will generally be administered as part of a pharmaceutical composition as described below.
- In another embodiment, the FXa variant may be co-administered with another procoagulant including another FXa variant, Factor IX, Factor XIa, Factor XIIa, Factor VIII, Factor VIIa, FEIBA and prothrombin complex concentrate (PCC).
- Co-administration of an FXa variant of the disclosure with an additional therapeutic agent (combination therapy) encompasses administering a pharmaceutical composition comprising the FXa variant and the additional therapeutic agent, as well as administering two or more separate pharmaceutical compositions, i.e., one comprising the FXa variant and the other(s) comprising the additional therapeutic agent(s). Co-administration or combination therapy further includes administering the FXa variant and additional therapeutic agent(s) simultaneously or sequentially, or both. For instance, the FXa variant may be administered once every three days, while the additional therapeutic agent is administered once daily at the same as the FXa variant, or at a different time. An FXa variant may be administered prior to or subsequent to treatment with the additional therapeutic agent. Similarly, administration of an FXa variant of the disclosure may be part of a treatment regimen that includes other treatment modalities including surgery. The combination therapy may be administered to prevent recurrence of the condition. The combination therapy may be administered from multiple times hourly to weekly. The administrations may be on a schedule such as every 10 minutes, every 15 minutes, every 20 minutes, every 30 minutes, every hour, every two hours, every three hours, every four hours, three times daily, twice daily, once daily, once every two days, once every three days, once weekly, or may be administered continuously, e.g. via a minipump. The combination therapy may be administered, for example, via a parenteral route (e.g., intravenously, subcutaneously, intraperitoneally, or intramuscularly).
- In a further aspect, the disclosure provides a composition comprising an FXa variant for use in counteracting a direct FXa inhibitor in a subject. The composition may comprise a pharmaceutically acceptable carrier, vehicle or other ingredients that are physiologically compatible. Non-limiting examples of such carriers, vehicles and other ingredients include solvents (e.g., water, ethanol, saline, phosphate buffered saline), detergents, surfactants, dispersion media, coatings, antibacterial or antifungal agents, isotonifying agents, absorption delaying agents, sugars (e.g., sucrose, dextrose, lactose), polyalcohols (e.g., glycerol, mannitol, sorbitol), salts (e.g., sodium chloride, potassium chloride), wetting agents, emulsifying agents, preservatives, buffers, and agents capable of enhancing the stability or effectiveness of the FXa variant.
- A composition for use according to the disclosure may be in any suitable form for administration to a subject, such as liquid solutions (e.g., injectable and infusible solutions). Compositions can be provided in a pre-mixed format ready for administration to a subject, for example, in a vial or pre-filled syringe. Such formats do not require reconstitution with diluent before administration. Alternatively, compositions can be provided in lyophilized form requiring reconstitution with diluent (e.g., sterile water or saline) before administration. If the latter, diluent can be provided with the lyophilisate in a separate container. According to the knowledge of those of ordinary skill in the art, compositions can be formulated for storage under refrigeration or at room temperature. The form of the composition depends, at least in part, on the intended mode of administration. In certain embodiments, the mode of administration is parenteral, including for example intravenous, subcutaneous, intraperitoneal, or intramuscular administration.
- Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, in liposomes, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the FXa variant in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
- It is further contemplated by the present disclosure that any of the compositions herein may be administered to a subject being treated with a direct FXa inhibitor.
- It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be apparent to persons skilled in the art and are to be included within the and can be made without departing from the true scope of the invention.
- To test the sensitivity of FXaI16L toward rivaroxaban, inhibition assays were established. Rivaroxaban was an efficient inhibitor of wild-type FXa exhibiting an inhibition constant (Ki) of 0.582 nM (
FIG. 1A ). Due to the zymogen-like nature of FXaI16L, rivaroxaban bound with a ˜15-fold reduced affinity to this variant (Ki=9.3 nM) (FIG. 1B ). In contrast, when the variant was assembled in the prothrombinase complex (i.e. upon addition of FVa and phospholipid vesicles), the Ki for rivaroxaban was nearly restored to a value comparable to the wild-type enzyme (wt FXa, Ki=2.67 nM (FIG. 2A ); FXaI16L, Ki=3.4 nM (FIG. 2B ). - The thrombin generation assay (TGA) was used to assess whether the zymogen-like FXa variants can reverse the effects of direct FXa inhibitors in a more physiologic environment. The TGA measures thrombin production in plasma over time following the initiation of coagulation and was performed as previously described (See Bunce et al., (2011) Blood 117, 290-298, incorporated by reference herein in their entirety). Thrombin generation in normal human plasma was measured for 90 min at 37° C. in the presence or absence of 500 nM rivaroxaban. To evaluate if FXaI16L can reverse the effect of rivaroxaban, increasing amounts of FXaI16L was added to plasma containing 500 nM rivaroxaban. Thrombin generation was initiated with 2.0 pM tissue factor/4 uM phospholipid as well as CaCl2 and a thrombin fluorogenic substrate.
- The data demonstrated that the thrombin generation profile of plasma in the presence of 500 nM rivaroxaban was substantially reduced compared to plasma in the absence of rivaroxaban. In contrast, increasing concentrations of FXaI16L from 0.03 to 1 nM restored thrombin generation (
FIG. 3 ). These data show that unexpectedly low concentrations of FXaI16L in the nanomolar and subnanomolar range can reverse the effects of the inhibitor. Dose response analysis of FXaI16L in the presence of 500 nM rivaroxaban (a typical therapeutic plasma concentration) shows that the peak height of thrombin generation (FIGS. 4A and C) and total thrombin produced (ETP) (FIGS. 4B and D) essentially reached a maximum and was completely restored to normal levels between 1-3 nM of FXaI16L under these conditions. Further experiments showed that even in the presence of high concentration of rivaroxaban (7.5 μM; supratherapeutic), FXaI16L was still quite effective at a relatively low dose 3.0 nM) in restoring peak thrombin (FIG. 5A ) as well as total thrombin generated (FIG. 5B ). - Similar experiments were also performed to evaluate whether FXa zymogen-like variants could reverse the effects of another direct FXa inhibitor, apixaban. In these experiments, the effectiveness of FXaI16L with another zymogen-like FXa variant, FXaI16T, was also compared. FXaI16T is similar to FXaI16L, however it has intrinsically less activity, has a longer plasma half-life, and has ˜3-5-fold reduced activity compared to FXaI16L when assembled in the prothrombinase complex. Consistent with the rivaroxaban data, FXaI16L could restore peak thrombin (
FIG. 6A ) and total thrombin (FIG. 6B ) generated in the presence of 250 nM apixaban (a typical therapeutic plasma concentration) in a dose-dependent manner, which appears to reach a maximum between 1-3 nM of FXaI16L. FXaI16T was also effective at reversing the effects of apixaban; however, it appears that higher concentrations of this variant are needed to fully restore thrombin generation (FIG. 6 ). Both variants were still effective even in the presence of a higher concentration of apixaban (2 μM). However, under these conditions it appears that higher concentrations of both variants are needed to fully restore thrombin generation (FIG. 7A and B). - Whole blood thromboelastometry was used to assess the ability of the FXaI16L variant to reverse the effects of the direct FXa inhibitors in whole blood. In this system, blood is drawn from healthy volunteers. The first 2 mL of blood were discarded and the subsequent 5 mL of blood was collected into a vacutainer (BD, Franklin Lakes, N.J.). Corn trypsin inhibitor and sodium citrate were in the collection tube, prior to collection of the blood sample, to achieve a final concentration of 0.105 M citrate and 25 μg/mL corn trypsin inhibitor (Haematologic Technologies, Burlington, Vt.) in the blood. Two sets of reactions were analyzed for each donor. The initial reaction initiated 5 minutes post blood collection. The second reaction initiated 1 hour post initiation of first reaction (1
hour 5 minutes after collection). - Blood was analyzed using Thromboelastometry ROTEM®delta (Tem International GmbH, Munich, Germany). For the reaction: (1) 6 μL of vehicle, protein, and/or inhibitor were added to the empty cup, (2) 20 μL of 0.2 M CaCl2 (final concentration 11.6 mM), and (3) 20 μL of Innovin (final concentration in reaction 1:10,000; source of tissue factor) were added to the cup. Whole blood collected as described above was added to the reaction (300 μL) and recordings were allowed to proceed for approximately 30-60 minutes. The data collected was analyzed using the manufacture's software (Rotem Gamma Software Version 1.1.1).
- The ability of FXaI16L to accelerate whole blood clot formation in the presence of rivaroxaban or apixaban was examined using rotational thromboelastometry (ROTEM). Both direct FXa inhibitors alone and at two different concentrations have a substantial effect on whole blood clot formation: at low doses (therapeutic concentrations), whole blood clot formation is partially eliminated (
FIG. 8A andFIG. 9A ), while at high doses (supratherapeutic concentrations), whole blood clot formation is almost completely eliminated (FIG. 8B andFIG. 9B ). The effects of either rivaroxaban or apixaban on whole blood clot formation could be reversed by FXaI16L. In the presence of either 500 nM rivaroxaban or 250 nM apixaban, 0.3 nM FXaI16L could fully or nearly fully restore whole blood coagulation (FIG. 8A andFIG. 9A ). When higher concentrations of the direct FXa inhibitors were used (˜2 uM), 0.3 nM FXaI16L partially restored whole blood coagulation and 3 nM FXaI16L fully restored it (FIG. 8B andFIG. 9B ). These data demonstrated that an FXa zymogen-like variant can effectively reverse the anticoagulant effect of rivaroxaban or apixaban in plasma-based and whole-blood coagulation assays at both therapeutic and supratherapeutic concentrations of the inhibitor. - The results of these studies were confirmed and extended by testing if FXaI16L could counteract the anti-coagulant effect of rivaroxaban when both agents were administered in vivo. In these experiments, C57BL/6 mice were infused with rivaroxaban (1 mg/kg) or buffer via the tail vein. Mice were then prepared to expose the jugular vein and the vena cava. Approximately 10 min later FXaI16L (1 or 2 mg/kg) was infused by direct injection into the jugular vein. Five minutes post injection blood was collected via the vena cava into citrate and corn trypsin inhibitor. Collected blood was then analyzed by ROTEM using dilute tissue factor (Innovin, 1:42,000 dilution). Whole blood from mice administered buffer only clotted by about 2 min (
FIG. 12 ). Administration of 1 mg/kg rivaroxaban substantially prolonged the clot time to about 10 min (FIG. 12 ). Further administration of FXaI16L shortened clotting time in the presence of rivaroxaban in a dose dependent manner (FIG. 12 ). - The effect of FXaI16L on reversing rivaroxaban in plasma was examined in a thrombin generation assay (TGA) using the calibrated automated thrombography (CAT) system (Thrombinoscope BV, Maastricht, The Netherlands). Normal human plasma was obtained from George King Biomedical (Overland Park, Kan.). In the reaction, 20 μL of PPP-Reagent LOW containing 4 μM phospholipids and 1 pM tissue factor was added to 70 μL of pooled citrated normal human plasma (treated with 250 nM rivaroxaban, within the therapeutic plasma concentration range) in an Immulon 2HB round bottom 96 well plate with reactions duplicated. Immediately preceding reaction initiation, 10 μL of vehicle or FXaI16L was added to plasma at final concentrations ranging from 0.03125 nM to 0.5 nM FXaI16L, given a 120 μL total reaction volume. Reactions were initiated by addition of 20 μL FluCa buffer containing calcium chloride and fluorogenic substrate. Fluorescence of plasma reactions was read at 37° C. at 20 second intervals on a Fluoroskan Ascent fluorometer and compared to those of reference thrombin calibrator reactions to determine thrombin concentrations. The intensity of the fluorescence signal (FU) was continuously monitored at 37° C. using the CAT. Thrombin generation curves (nM thrombin vs. time) were analyzed to extract lag time, peak height, time to peak, and the area under the curve representing the endogenous thrombin potential (ETP) using the Thromboscope software (Thrombinoscope BV version).
- A dose dependent inhibition of thrombin generation in normal human plasma was observed with in vitro rivaroxaban treatment (5-200 nM) (
FIG. 10A ). Rivaroxaban resulted in an increase in the lag time coupled with a decrease in the peak thrombin and a decrease in the ETP. The addition of FXaI16L to rivaroxaban (250 nM) inhibited human plasma resulted in a dose dependent reversal of thrombin inhibition (FIG. 10B ): peak thrombin generation was restored, the lag phase was shorter, and the ETP increased. At a low dose of 0.03125 nM FXaI16L, thrombin generation was restored to levels comparable to vehicle treated normal human plasma. - The ability of FXaI16L to overcome the effects of rivaroxaban in vivo was assessed in an acute bleeding model in normal mice. The results demonstrated that a zymogen-like FXa variant could reverse the anticoagulant effect of a direct FXa inhibitor.
- To establish a dose of rivaroxaban that would prolong bleeding, male C57B1/6 mice (The Jackson Laboratory, Bar Harbor, Me.) received a single intravenous injection of rivaroxaban at a dose of 10, 25 or 50 mg/kg. Thirty minutes later, mice were anesthetized with isoflurane and placed on a heated platform, and the body temperature of the mice was maintained at 37° C. prior to the tail cut. The tails were immersed in 50 mL pre-warmed phosphate buffered saline (PBS) at 37° C. for 2 minutes. A 3 mm tail cut was made and blood was collected into PBS for a 10 minute period. A quantitative assessment of the amount of bleeding was determined by hemoglobin content of the blood collected into PBS. Tubes were centrifuged to collect erythrocytes, resuspended in 5 mL lysis buffer (8.3 g/L NH4Cl, 1.0 g/L KHCO3, and 0.037 g/L EDTA), and the absorbance of the sample was measured at 575 nm. The absorbance values were converted to total blood loss (μL) using a standard curve. The administration of rivaroxaban resulted in a dose dependent increase in blood loss following a tail cut (
FIG. 11 ). - In this model, a dose of 50 mg/kg rivaroxaban resulted in an increase in blood loss following the tail transection. Mice were dosed with 50 mg/kg rivaroxaban and 30 minutes later 50 or 200 ug/kg of FXaI16L was dosed intravenously at 37° C. prior to the tail cut. Mice were then anesthetized with isoflurane and placed on a heated platform, and the body temperature of the mice was maintained at 37° C. prior to the tail cut. The tails were immersed in 50 mLs pre-warmed phosphate buffered saline (PBS) at 37° C. for 2 minutes. A 3 mm tail cut was made and blood was collected into PBS for a 10 minute period and the assessment of the amount of bleeding was determined by hemoglobin content as described. In this model, the administration of the hemostatic FXaI16L variant decreased the excessive bleeding loss induced with rivaroxaban (
FIG. 11 ). - As visualized using intravital microscopy, rivaroxaban was demonstrated to inhibit thrombus formation in the microcirculation of the mouse cremaster muscle after laser-induced injury. Further administration of FXaI16L could counteract the anti-coagulant effect of rivaroxaban in this system.
- Using standard techniques, the cremaster muscle of mice was exposed and visualized using intravital microscopy. A vascular injury in the muscle was then induced using a laser. After injury, clot formation was visualized using different fluorescently labeled antibodies that specifically recognize fibrin and platelets. Clotting is indicated by the presence of fluorescent signal from both types of antibodies.
- After laser injury, an untreated mouse rapidly formed a clot at the site of injury that was stable for several minutes (
FIG. 13A ). In the video frame, the clot is visible as the coincidence of fluorescent signal associated with antibodies against fibrin and platelets (light gray center region overlapping darker gray region). Administration of 1 mg/kg rivaroxaban to a mouse, however, delayed the accumulation of platelets at the injury site and eliminated any signs of fibrin (FIG. 13B ). In the video frame, only a reduced extent of platelets can be seen as indicated by the dark gray region, which reflects presence of fluorescent signal associated with anti-platelet antibodies. By contrast, when a mouse was administered 1 mg/kg rivaroxaban followed by 0.5 mg/kg FXaI16L, a clot rapidly formed at the injury site (FIG. 13C ). In the video frame, the clot is indicated by the characteristic pattern of fluorescent signal associated with antibodies against platelets and fibrin. - Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclature used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art.
- The methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook J. & Russell D. Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2000); Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, John & Sons, Inc. (2002); Harlow and Lane Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1998); and Coligan et al., Short Protocols in Protein Science, Wiley, John & Sons, Inc. (2003), incorporated herein by reference. Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclature used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art.
- All publications, patents, patent applications or other documents cited herein are hereby incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, or other document was individually indicated to be incorporated by reference for all purposes.
- Throughout this specification and claims, the word “comprise,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
Claims (41)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/759,520 US20150343034A1 (en) | 2013-01-31 | 2014-01-23 | Compositions and methods for counteracting factor xa inhibition |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361759332P | 2013-01-31 | 2013-01-31 | |
| PCT/IB2014/058494 WO2014118677A1 (en) | 2013-01-31 | 2014-01-23 | Compositions and methods for counteracting factor xa inhibition |
| US14/759,520 US20150343034A1 (en) | 2013-01-31 | 2014-01-23 | Compositions and methods for counteracting factor xa inhibition |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2014/058494 A-371-Of-International WO2014118677A1 (en) | 2013-01-31 | 2014-01-23 | Compositions and methods for counteracting factor xa inhibition |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/873,416 Continuation US10588950B2 (en) | 2013-01-31 | 2018-01-17 | Compositions and methods for counteracting Factor Xa inhibition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150343034A1 true US20150343034A1 (en) | 2015-12-03 |
Family
ID=50114451
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/759,520 Abandoned US20150343034A1 (en) | 2013-01-31 | 2014-01-23 | Compositions and methods for counteracting factor xa inhibition |
| US15/873,416 Active US10588950B2 (en) | 2013-01-31 | 2018-01-17 | Compositions and methods for counteracting Factor Xa inhibition |
| US16/820,687 Abandoned US20210000930A1 (en) | 2013-01-31 | 2020-03-16 | Compositions and methods for counteracting factor xa inhibition |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/873,416 Active US10588950B2 (en) | 2013-01-31 | 2018-01-17 | Compositions and methods for counteracting Factor Xa inhibition |
| US16/820,687 Abandoned US20210000930A1 (en) | 2013-01-31 | 2020-03-16 | Compositions and methods for counteracting factor xa inhibition |
Country Status (12)
| Country | Link |
|---|---|
| US (3) | US20150343034A1 (en) |
| EP (1) | EP2950813B1 (en) |
| JP (2) | JP6437458B2 (en) |
| KR (1) | KR20150103205A (en) |
| CN (1) | CN104994868A (en) |
| AU (1) | AU2014210830A1 (en) |
| CA (1) | CA2897672A1 (en) |
| ES (1) | ES2761730T3 (en) |
| HK (1) | HK1215196A1 (en) |
| IL (1) | IL240147A0 (en) |
| MX (1) | MX2015008813A (en) |
| WO (1) | WO2014118677A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160032355A1 (en) * | 2014-07-31 | 2016-02-04 | Haemonetics Corporation | Detection and Classification of an Anticoagulant Using A Clotting Assay |
| US9757434B2 (en) | 2013-09-24 | 2017-09-12 | Pfizer Inc. | FXa variant compositions |
| US10537618B2 (en) | 2014-05-26 | 2020-01-21 | Academisch Ziekenhuis Leiden | Prohemostatic proteins for the treatment of bleeding |
| US10647780B2 (en) | 2016-05-25 | 2020-05-12 | Novartis Ag | Reversal binding agents for anti-factor XI/XIa antibodies and uses thereof |
| WO2020163685A1 (en) * | 2019-02-07 | 2020-08-13 | Portola Pharmaceuticals, Inc. | Methods for treating intracranial hemorrhage and assessing efficacy |
| US11168147B2 (en) | 2016-12-23 | 2021-11-09 | Novartis Ag | Factor XI antibodies and methods of use |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2761730T3 (en) | 2013-01-31 | 2020-05-20 | Pfizer | Compositions and procedures to counteract factor Xa inhibition |
| JP6629744B2 (en) * | 2013-11-01 | 2020-01-15 | ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィアThe Children’S Hospital Of Philadelphia | Compositions and methods for extending the half-life of factor Xa |
| AU2015208819B2 (en) * | 2014-01-24 | 2020-01-23 | Pfizer Inc. | Compositions and methods for treating intracerebral hemorrhage |
| US10676731B2 (en) | 2014-08-19 | 2020-06-09 | The Children's Hospital Of Philadelphia | Compositions and methods for modulating factor IX function |
| CN105440127B (en) * | 2015-12-30 | 2018-10-16 | 上海莱士血液制品股份有限公司 | It is a kind of using human plasma Cohn components III as the preparation method of the FEIBA of raw material |
| CN114681597A (en) * | 2022-03-11 | 2022-07-01 | 兆科药业(合肥)有限公司 | Application of viper venom hemocoagulase in preparation of drugs for reversing anticoagulation of coagulation factor Xa inhibitor |
Family Cites Families (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5597799A (en) | 1990-09-04 | 1997-01-28 | Cor Therapeutics, Inc. | Recombinant agents affecting thrombosis |
| US6369080B2 (en) | 1996-10-11 | 2002-04-09 | Cor Therapeutics, Inc. | Selective factor Xa inhibitors |
| US6262047B1 (en) | 1996-10-11 | 2001-07-17 | Cor Therapeutics, Inc. | Selective factor Xa inhibitors |
| AT405516B (en) | 1997-02-27 | 1999-09-27 | Immuno Ag | FACTOR X-ANALOG WITH MODIFIED PROTEASE SPLIT |
| AT405517B (en) * | 1997-02-27 | 1999-09-27 | Immuno Ag | FACTOR X-DELETION MUTANTS AND ANALOGS OF THEM |
| US6133256A (en) | 1997-04-14 | 2000-10-17 | Cor Therapeutics Inc | Selective factor Xa inhibitors |
| GB9908838D0 (en) | 1998-09-11 | 1999-06-16 | Univ London | Fibroblast inhibitor |
| AT410216B (en) | 1999-08-10 | 2003-03-25 | Baxter Ag | X-ANALOG FACTOR WITH IMPROVED ACTIVITY |
| US20040102388A1 (en) | 2000-03-22 | 2004-05-27 | High Katherine A. | Modified blood clotting factors and methods of use |
| US6905683B2 (en) | 2000-05-03 | 2005-06-14 | Novo Nordisk Healthcare A/G | Human coagulation factor VII variants |
| FR2831170B1 (en) | 2001-10-19 | 2004-03-19 | Inst Nat Sante Rech Med | MODIFIED PROTEINS C DIRECTLY ACTIVABLE WITH THROMBIN |
| FR2841904B1 (en) | 2002-07-03 | 2004-08-20 | Inst Nat Sante Rech Med | THROMBIN CLAVABLE X FACTOR ANALOGS |
| EP1728798A1 (en) | 2005-06-01 | 2006-12-06 | ZLB Behring GmbH | Coagulation factor X polypeptides with modified activation properties |
| DE102005028018A1 (en) * | 2005-06-16 | 2006-12-21 | Dade Behring Marburg Gmbh | Method for the standardization of coagulation tests |
| MX2008006313A (en) * | 2005-11-15 | 2008-11-06 | Philadelphia Children Hospital | Reactive dyestuffs, method for the production thereof, and use of the same. |
| EP1820508A1 (en) | 2006-02-21 | 2007-08-22 | CSL Behring GmbH | Coagulation factor X polypeptides with modified activation properties |
| EP1867660A1 (en) | 2006-06-14 | 2007-12-19 | CSL Behring GmbH | Proteolytically cleavable fusion protein comprising a blood coagulation factor |
| PT3078743T (en) * | 2007-09-28 | 2020-07-15 | Portola Pharm Inc | Antidotes for factor xa inhibitors and methods of using the same |
| US20100297257A1 (en) | 2007-11-09 | 2010-11-25 | National Institutes Of Health (Nih), U.S. Dept. Of Health And Human Services (Dhhs) | Anticoagulant antagonist and hemophillia procoagulant |
| US8455439B2 (en) | 2008-11-14 | 2013-06-04 | Portola Pharmaceuticals, Inc. | Antidotes for factor Xa inhibitors and methods of using the same in combination with blood coagulating agents |
| US8436144B2 (en) | 2008-12-19 | 2013-05-07 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Serine protease derivatives and uses in the prevention or the treatment of blood coagulation disorders |
| EP3604510B1 (en) | 2009-03-30 | 2025-03-26 | Alexion Pharmaceuticals, Inc. | Antidotes for factor xa inhibitors and methods of using the same |
| WO2011008885A1 (en) * | 2009-07-15 | 2011-01-20 | Portola Pharmaceuticals, Inc. | Unit dose formulation of antidotes for factor xa inhibitors and methods of using the same |
| GB2485590A (en) | 2010-11-22 | 2012-05-23 | Univ Ruprecht Karis Heidelberg | Method for detecting at least one direct factor Xa inhibitors |
| FR2972114B1 (en) | 2011-03-01 | 2013-03-15 | Univ Grenoble 1 | A NEW MOLECULAR LURE PROCOAGULANT FOR THE TREATMENT OF HEMOPHILS A OR B WITH OR WITHOUT INHIBITOR |
| EP2760887B1 (en) | 2011-09-30 | 2024-10-23 | The Children's Hospital of Philadelphia | Compositions and methods for modulating hemostasis |
| WO2013123248A1 (en) | 2012-02-16 | 2013-08-22 | Portola Pharmaceuticals, Inc. | MODULATION OF FACTOR Xa INHIBITOR MEDIATED BLOOD LOSS BY PARTIAL AND TRANSIENT ADMINISTRATION OF ANTIDOTE |
| FR3000895B1 (en) | 2013-01-11 | 2017-02-24 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies Sa | USE OF ANTIDOTES OF COAGULATION INHIBITORS INDICATED IN THE PREVENTION OR TREATMENT OF THROMBOEMBOLIC PATHOLOGIES |
| ES2761730T3 (en) | 2013-01-31 | 2020-05-20 | Pfizer | Compositions and procedures to counteract factor Xa inhibition |
| KR101988705B1 (en) * | 2013-09-24 | 2019-06-12 | 화이자 인코포레이티드 | Compositions comprising heterogeneous populations of recombinant human clotting factor xa proteins |
| JP6629744B2 (en) | 2013-11-01 | 2020-01-15 | ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィアThe Children’S Hospital Of Philadelphia | Compositions and methods for extending the half-life of factor Xa |
| AU2015208819B2 (en) * | 2014-01-24 | 2020-01-23 | Pfizer Inc. | Compositions and methods for treating intracerebral hemorrhage |
-
2014
- 2014-01-23 ES ES14704915T patent/ES2761730T3/en active Active
- 2014-01-23 MX MX2015008813A patent/MX2015008813A/en unknown
- 2014-01-23 CA CA2897672A patent/CA2897672A1/en not_active Abandoned
- 2014-01-23 US US14/759,520 patent/US20150343034A1/en not_active Abandoned
- 2014-01-23 JP JP2015555829A patent/JP6437458B2/en not_active Expired - Fee Related
- 2014-01-23 EP EP14704915.9A patent/EP2950813B1/en active Active
- 2014-01-23 KR KR1020157020717A patent/KR20150103205A/en not_active Withdrawn
- 2014-01-23 HK HK16103318.1A patent/HK1215196A1/en unknown
- 2014-01-23 AU AU2014210830A patent/AU2014210830A1/en not_active Abandoned
- 2014-01-23 CN CN201480006917.0A patent/CN104994868A/en active Pending
- 2014-01-23 WO PCT/IB2014/058494 patent/WO2014118677A1/en not_active Ceased
-
2015
- 2015-07-26 IL IL240147A patent/IL240147A0/en unknown
-
2018
- 2018-01-17 US US15/873,416 patent/US10588950B2/en active Active
- 2018-10-09 JP JP2018190856A patent/JP2019077677A/en not_active Withdrawn
-
2020
- 2020-03-16 US US16/820,687 patent/US20210000930A1/en not_active Abandoned
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10660946B2 (en) | 2013-09-24 | 2020-05-26 | Pfizer Inc. | Methods for purifying FXa variant proteins |
| US9757434B2 (en) | 2013-09-24 | 2017-09-12 | Pfizer Inc. | FXa variant compositions |
| US11304995B2 (en) | 2014-05-26 | 2022-04-19 | Academisch Ziekenhuis Leiden | Prohemostatic proteins for the treatment of bleeding |
| US10537618B2 (en) | 2014-05-26 | 2020-01-21 | Academisch Ziekenhuis Leiden | Prohemostatic proteins for the treatment of bleeding |
| US11357836B2 (en) | 2014-05-26 | 2022-06-14 | Academisch Ziekenhuis Leiden | Prohemostatic proteins for the treatment of bleeding |
| US12083170B2 (en) | 2014-05-26 | 2024-09-10 | Academisch Ziekenhuis Leiden | Prohemostatic proteins for the treatment of bleeding |
| US10501773B2 (en) * | 2014-07-31 | 2019-12-10 | Haemonetics Corporation | Detection and classification of an anticoagulant using a clotting assay |
| US10954549B2 (en) | 2014-07-31 | 2021-03-23 | Haemonetics Corporation | Detection and classification of an anticoagulant using a clotting assay |
| US20160032355A1 (en) * | 2014-07-31 | 2016-02-04 | Haemonetics Corporation | Detection and Classification of an Anticoagulant Using A Clotting Assay |
| US10647780B2 (en) | 2016-05-25 | 2020-05-12 | Novartis Ag | Reversal binding agents for anti-factor XI/XIa antibodies and uses thereof |
| US11168147B2 (en) | 2016-12-23 | 2021-11-09 | Novartis Ag | Factor XI antibodies and methods of use |
| US12012464B2 (en) | 2016-12-23 | 2024-06-18 | Novartis Ag | Factor XI antibodies and methods of use |
| WO2020163685A1 (en) * | 2019-02-07 | 2020-08-13 | Portola Pharmaceuticals, Inc. | Methods for treating intracranial hemorrhage and assessing efficacy |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104994868A (en) | 2015-10-21 |
| JP2019077677A (en) | 2019-05-23 |
| EP2950813A1 (en) | 2015-12-09 |
| HK1215196A1 (en) | 2016-08-19 |
| CA2897672A1 (en) | 2014-08-07 |
| US10588950B2 (en) | 2020-03-17 |
| US20210000930A1 (en) | 2021-01-07 |
| WO2014118677A1 (en) | 2014-08-07 |
| AU2014210830A1 (en) | 2015-07-16 |
| US20180344819A1 (en) | 2018-12-06 |
| JP2016511755A (en) | 2016-04-21 |
| EP2950813B1 (en) | 2019-09-04 |
| JP6437458B2 (en) | 2018-12-12 |
| KR20150103205A (en) | 2015-09-09 |
| IL240147A0 (en) | 2015-09-24 |
| ES2761730T3 (en) | 2020-05-20 |
| MX2015008813A (en) | 2016-03-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10588950B2 (en) | Compositions and methods for counteracting Factor Xa inhibition | |
| US6224862B1 (en) | Pharmaceutical preparation for treating blood coagulation disorders | |
| EP2680876B1 (en) | Gla-domainless factor xa for treating haemophilia a or b with or without antibody | |
| US20130064807A1 (en) | Use of thrombin mutants to inhibit the anticoagulation effect of thrombin inhibitors | |
| Persson et al. | Recombinant coagulation factor VIIa–from molecular to clinical aspects of a versatile haemostatic agent | |
| CN104995297B (en) | Factor X mutants | |
| US20160235824A1 (en) | Compositions and Methods for Increasing the Half-Life of Factor XA | |
| FR3007410A1 (en) | FACTOR X DEPRIVED WITH DOMAINE GLA | |
| JP2025522101A (en) | Drugs to promote hemostasis | |
| WO2003084466A2 (en) | FACTORVIIa COMPOSITIONS | |
| WO2005034990A1 (en) | Hemostatic composition containing antithrombin iii | |
| HK1128699A1 (en) | Compositions and methods for modulating hemostasis |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:CHILDREN'S HOSPITAL OF PHILADELPHIA;REEL/FRAME:051847/0477 Effective date: 20200128 |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:CHILDREN'S HOSPITAL OF PHILADELPHIA;REEL/FRAME:052284/0571 Effective date: 20200318 |