US20150289356A1 - Power module - Google Patents
Power module Download PDFInfo
- Publication number
- US20150289356A1 US20150289356A1 US14/441,064 US201314441064A US2015289356A1 US 20150289356 A1 US20150289356 A1 US 20150289356A1 US 201314441064 A US201314441064 A US 201314441064A US 2015289356 A1 US2015289356 A1 US 2015289356A1
- Authority
- US
- United States
- Prior art keywords
- heat dissipation
- dissipation substrate
- resin case
- cooling fin
- power module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
- H01L23/043—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
- H01L23/049—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being perpendicular to the base
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/10—Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/13—Mountings, e.g. non-detachable insulating substrates characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/16—Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
- H01L23/18—Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
- H01L23/24—Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/40—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
- H01L23/4006—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/209—Heat transfer by conduction from internal heat source to heat radiating structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Definitions
- the present invention relates to an attachment structure in a power module used to form tight contact of a heat dissipation substrate on which a power semiconductor element is mounted with a cooling fin in the power module, for example.
- a resin case and a cooling fin are fixed with a screw and a heat dissipation substrate on which a power semiconductor element is mounted is attached to the cooling fin by adopting means of pressing the heat dissipation substrate against the cooling fin with a projection provided to the resin case (see patent literature 1, for example).
- Patent Literature 1 Publication of Japanese Patent No. 3225457 (page 2 and FIG. 1)
- the present invention has been made to solve the aforementioned problem.
- the present invention is intended to provide a power module capable of avoiding the occurrence of a crack in resin filling in a resin case by suppressing deformation of the resin case to occur by fixing of a heat dissipation substrate to a cooling fin.
- a power module of the present invention includes: a heat dissipation substrate on which a power semiconductor element is mounted, the heat dissipation substrate having a tilted part formed at an end portion thereof; a resin case contacting a surface on which the power semiconductor element is mounted; a cooling fin contacting a rear surface of the heat dissipation substrate; and pressure means contacting the tilted part at the end portion of the heat dissipation substrate to press the heat dissipation substrate against the cooling fin.
- a corner (outer periphery) of a cross section of the heat dissipation substrate is formed into the tilted part and the tilted part formed at the outer periphery of the heat dissipation substrate is pressed with the pressure means.
- FIG. 1 is a diagrammatic view showing the cross-sectional structure of a power module of a first embodiment of the present invention.
- FIG. 2 is a diagrammatic view showing the cross-sectional structure of a power module of a second embodiment of the present invention.
- FIG. 3 is a diagrammatic view showing the cross-sectional structure of a bush of a different shape according to the second embodiment of the present invention.
- FIG. 4 is a diagrammatic view showing the cross-sectional structure of a power module of a third embodiment of the present invention.
- FIG. 5 is a diagrammatic view showing the cross-sectional structure of a power module of a fourth embodiment of the present invention.
- FIG. 1 is a diagrammatic view showing the cross-sectional structure of a power module of a first embodiment of the present invention.
- a power module 100 includes a resin case 6 , a cooling fin 10 , a pressure member 13 as pressure means, and a heat dissipation substrate 20 .
- the resin case 6 has passage holes 15 as through holes formed in an outer periphery thereof.
- the cooling fin 10 has screw holes 16 formed in an outer periphery thereof.
- the heat dissipation substrate 20 has a metal base 1 and an insulating layer 2 .
- a metal pattern 3 is formed on the heat dissipation substrate 20 .
- a power semiconductor element 4 is mounted on the metal pattern 3 via solder (not shown in the drawings).
- the heat dissipation substrate 20 has a tilted part at one end portion thereof. The tilted part is tilted to a lower position from an inner side toward an outer periphery of the heat dissipation substrate 20 .
- the power semiconductor element 4 may be an IGBT (insulated-gate-bipolar-transistor) or a power MOSFET (metal-oxide-semiconductor-field-effect-transistor), for example.
- the power semiconductor element 4 may be an FWD (free-wheeling-diode).
- the aforementioned respective shapes of the power semiconductor element 4 and the metal pattern 3 form an inverter circuit, for example.
- the power module 100 includes this inverter circuit.
- Aluminum and copper, and alloys thereof are applicable to form the metal base 1 in terms of heat dissipation performance and density. It is desirable that the metal pattern 3 be made of copper or a copper alloy in terms of electric resistance and heat dissipation performance. Regarding the respective thicknesses of the metal base 1 and the metal pattern 3 in terms of productivity and economic aspect, it is desirable that the metal base 1 be from about 0.5 to about 3.0 mm and the metal pattern 3 be from about 0.1 to 0.5 mm.
- the insulating layer 2 be made of epoxy or liquid crystal polymer filled with a filler material having high heat dissipation performance.
- the thickness of the insulating layer 2 is determined based on a rated voltage to be used and desired heat dissipation properties. It is desirable that this thickness be in a range from about 0.1 to about 0.3 mm.
- the heat dissipation substrate 20 is formed on which the power semiconductor element 4 is mounted.
- the tilted part is formed at a corner (outer periphery) of each of opposite cross-sectional ends of the heat dissipation substrate 20 shown in FIG. 1 .
- This tilted part is formed at the metal base 1 or at the metal base 1 and the insulating layer 2 .
- a tilted part may be omitted from an end portion of the metal base 1 on a side opposite a surface of the metal base 1 on which the power semiconductor element 4 is mounted.
- FIG. 1( b ) is a diagrammatic view showing the cross-sectional structure of the outer periphery of the heat dissipation substrate 20 in an enlarged manner.
- the tilted part is tilted to an angle in a range from 20 to 60 degrees suitably, desirably from 30 to 45 degrees relative to a flat surface on which the power semiconductor element 4 is mounted.
- the heat dissipation substrate 20 on which the power semiconductor element 4 is mounted is fixed in the resin case 6 via adhesive 5 .
- the resin case 6 is made of PPS (poly-phenylene-sulfide).
- a terminal 7 includes a main terminal and a control terminal built in the resin case 6 .
- the terminal 7 is connected to the power semiconductor element 4 arranged inside the resin case 6 .
- the power semiconductor element 4 is electrically connected to the outside via the terminal 7 .
- connections are formed between the gate of an IGBT as the power semiconductor element 4 and the control terminal, between the emitter of the IGBT as the power semiconductor element 4 and the main terminal, and between the collector and the main terminal. These connections are formed using aluminum wires 8 of a diameter of 0.4 mm, for example.
- the aluminum wires 8 are bonded to the power semiconductor element 4 and the terminal 7 by an ultrasonic method.
- the aluminum wires 8 may be replaced by copper wires.
- the copper wires feature lower resistance than aluminum wires, so that they act effectively particularly for the power semiconductor element 4 to handle a large current.
- filling resin 9 is provided in a region formed by the resin case 6 and the heat dissipation substrate 20 .
- resin mainly containing gel or an epoxy resin is used as the filling resin 9 .
- the module including the heat dissipation substrate 20 , the resin case 6 , and the filling resin 9 arranged integrally is attached with screws 12 to the cooling fin 10 .
- the resin case 6 is provided with the passage holes 15 for screw fastening.
- Bushes 11 are provided in the passage holes 15 .
- the bushes 11 are used for fixing the resin case 6 to the cooling fin 10 reliably.
- This module is fixed to the cooling fin 10 by fastening the screws 12 into the screw holes 16 in the cooling fin 10 via the passage holes 15 .
- the bushes 11 may have a circular cylindrical shape. Meanwhile, the shape of the bushes 11 is not limited to a circular cylinder but it may also be a polygon as long as such a shape allows insertion of the bushes 11 in the passage holes 15 .
- the bushes 11 are simply required to be greater than the depth of the passage holes 15 in the resin case 6 .
- the bushes 11 may have a shape that makes the bushes 11 get caught on the resin case 6 on a side of the resin case 6 where the screws 12 are inserted.
- Provision of the pressure member 13 between the bushes 11 and the cooling fin 10 makes the pressure member 13 receive compressive force resulting from screw axial force.
- the tilted part is formed at an end portion of the heat dissipation substrate 20 .
- the pressure member 13 abuts on the tilted part of the metal base 1 , or the tilted part formed at the metal base 1 and the insulating layer 2 .
- the pressure member 13 has a tilted part that can contact the tilted part of the heat dissipation substrate 20 .
- the tilted part of the pressure member 13 is formed in a part contacting the tilted part of the heat dissipation substrate 20 .
- the thickness of the pressure member 13 is the same as or smaller by a range from about 0.1 to about 0.2 mm than that of the heat dissipation substrate 20 .
- the pressure member 13 produces the effect of pressing the heat dissipation substrate 20 against the cooling fin 10 .
- the bushes 11 project from the passage holes 15 toward the cooling fin 10 and the adhesive 5 and the bushes 11 together form gaps between the resin case 6 and the pressure member 13 .
- the pressure member 13 be made of metal.
- the material for the pressure member 13 is not limited to metal but it is simply required to be resistant to temporal change.
- the absence of a tilted part at a cross-sectional end of the heat dissipation substrate 20 forms surface contact between the flat surface of the heat dissipation substrate 20 and the resin case 6 , thereby causing rotation moment acting in the resin case 6 with a corner (outer periphery) of the cross-sectional end of the heat dissipation substrate 20 as a fulcrum resulting from screw fastening.
- the occurrence of the rotation moment in the resin case 6 deforms the resin case 6 and the filling resin 9 .
- the filling resin 9 is generally lower in Young's modulus than the resin case 6 and does not have high strength. Thus, stress concentration is likely to occur at the filling resin 9 in a place where the resin case 6 projects by the presence of the terminal 7 , for example. These are considered to be the cause for the crack in the filling resin 9 .
- a flat surface part of the heat dissipation substrate 20 forms surface contact with the resin case 6
- the tilted part is formed at a corner of a cross-sectional end of the heat dissipation substrate 20
- the heat dissipation substrate 20 is pressed against the cooling fin 10 using the pressure member 13 having the tilted part.
- the heat dissipation substrate 20 is pressed while the tilted part of the heat dissipation substrate 20 and the tilted part of the pressure member 13 contact at least multiple points, specifically while substantially surface contact is formed between these tilted parts.
- the heat dissipation substrate 20 is pressed with two surfaces of the resin case 6 and the tilted part of the pressure member 13 against the cooling fin 10 . Further, rotation moment (stress) acting with the corner of the cross-sectional end of the heat dissipation substrate 20 as a fulcrum is not applied directly to the resin case 6 but it is transmitted via the pressure member 13 to the resin case 6 . This reduces the rotation moment to be applied to the resin case 6 further to suppress deformation of the resin case 6 in the direction of the rotation. As a result, the occurrence of a crack in the filling resin 9 was not recognized even under a fastening torque of 3.5 Nm.
- the heat dissipation substrate 20 is pressed against the cooling fin 10 with the flat surface part of the heat dissipation substrate 20 and the resin case 6 , and the tilted part of the heat dissipation substrate 20 and the tilted part of the pressure member 13 .
- the heat dissipation substrate 20 is pressed against the cooling fin 10 using two or more surfaces including the flat surface and the tilted surface of the heat dissipation substrate 20 .
- the pressure member 13 acts to make transmission of stress to the resin case 6 unlikely, thereby suppressing bending displacement of the resin case 6 when the resin case 6 is fastened with screws to the cooling fin 10 .
- the surface contact between the tilted parts of the heat dissipation substrate 20 and the pressure member 13 makes it possible to relax a requested dimensional tolerance and a requested position tolerance of the pressure member 13 , thereby facilitating processing and assembly. Further, pressing the heat dissipation substrate 20 with the pressure member 13 not made of resin subjected to temporal change easily but made of metal resistant to temporal change can reduce temporal change of force applied to press the heat dissipation substrate 20 against the cooling fin 10 . This allows the power module to have stable heat resistance for a long time.
- the pressure member 13 is made of metal having favorable heat conductivity, heat generated in the power semiconductor element 4 can be transferred from the heat dissipation substrate 20 to the cooling fin 10 via the pressure member 13 . This reduces the heat resistance of the power module to achieve the effect of extending the lifetime of the power module.
- the pressure member 13 is formed to extend along the entire outer periphery of the heat dissipation substrate 20 . Meanwhile, the pressure member 13 is not always required to press the entire outer periphery but it may be arranged only in a place near a position where the resin case 6 is fastened with a screw so high stress is applied to the resin case 6 . This can reduce the size of the pressure member 13 to bring an advantage in terms of cost.
- a second embodiment differs from the first embodiment in that the bush 11 replaces the pressure member 13 as pressure means used in the first embodiment. Using the bush 11 in this way still makes the bush 11 press the tilted part formed at the heat dissipation substrate 20 . This can suppress bending displacement of the resin case 6 and reduce stress to occur in the filling resin 9 , so that the occurrence of a crack in the filling resin 9 can be avoided.
- FIG. 2 is a diagrammatic view showing the cross-sectional structure of a power module of the second embodiment of the present invention.
- the cross-sectional structure shown in an enlarged manner in the diagrammatic view of FIG. 2 is about a fixing part of the resin case 6 and the cooling fin 10 that forms a characteristic part of the second embodiment.
- a power module 200 includes the resin case 6 , the cooling fin 10 , the bush 11 , and the heat dissipation substrate 20 .
- the resin case 6 has the passage hole 15 as a through hole formed in an outer periphery thereof.
- the cooling fin 10 has the screw hole 16 formed in an outer periphery thereof.
- FIG. 3 is a diagrammatic view showing the cross-sectional structure of a bush 21 of a different shape.
- a bush 21 shown in FIG. 3 has a tilted part responsive to the tilted part of the heat dissipation substrate 20 .
- the bush 21 is arranged in the passage hole 15 in the resin case 6 .
- the tilted part of the heat dissipation substrate 20 is pressed with the tilted part formed at a tip portion of the bush 21 near the cooling fin 10 .
- the screw 12 is fastened into the screw hole 16 in the cooling fin 10 via the passage hole 15 . Further, the flat surface part and the tilted part of the heat dissipation substrate 20 are pressed with the resin case 6 and the bush 21 respectively, thereby fixing the heat dissipation substrate 20 to the cooling fin 10 .
- the occurrence of a crack in the filling resin 9 was not recognized after attachment to the cooling fin 10 with an M5 screw under a fastening torque of 3.5 Nm, for example.
- Forming the bush 11 into the shape of FIG. 3 with the tilted part increases an area of contact with the tilted part of the heat dissipation substrate 20 .
- the heat dissipation substrate 20 can be pressed against the cooling fin 10 more stably.
- the heat dissipation substrate 20 is pressed against the cooling fin 10 with the flat surface part of the heat dissipation substrate 20 and the resin case 6 , and the tilted part of the heat dissipation substrate 20 and the bush 11 .
- the heat dissipation substrate 20 is pressed against the cooling fin 10 using two or more surfaces including the flat surface and the tilted surface of the heat dissipation substrate 20 .
- This can suppress bending displacement of the resin case 6 when the resin case 6 is fastened with a screw to the cooling fin 10 .
- This achieves reduction in stress to occur in the filling resin 9 , so that the occurrence of a crack in the filling resin 9 can be avoided. Further, omitting the process of attaching the pressure member 13 can simply manufacturing steps.
- a third embodiment differs from the first embodiment in that a tilted part formed at the resin case 6 in a position facing the tilted part of the heat dissipation substrate 20 replaces the pressure member 13 as pressure means used in the first embodiment.
- the resin case 6 is formed as an integrated structure with the pressure means.
- the tilted part formed at the resin case 6 is also used to press the tilted part of the heat dissipation substrate 20 . This can suppress bending displacement of the resin case 6 and reduce stress to occur in the filling resin 9 , so that the occurrence of a crack in the filling resin 9 can be avoided.
- FIG. 4 is a diagrammatic view showing the cross-sectional structure of a power module of the third embodiment of the present invention.
- the cross-sectional structure shown in an enlarged manner in the diagrammatic view of FIG. 4 is about a fixing part of the resin case 6 and the cooling fin 10 that forms a characteristic part of the third embodiment.
- a power module 300 includes the resin case 6 with the tilted part, the cooling fin 10 , and the heat dissipation substrate 20 .
- the resin case 6 has the passage hole 15 as a through hole formed in an outer periphery thereof.
- the cooling fin 10 has the screw hole 16 formed in an outer periphery thereof.
- the bush 11 is arranged in the passage hole 15 in the resin case 6 .
- the tilted part of the heat dissipation substrate 20 is pressed with the tilted part formed at the resin case 6 .
- the screw 12 is fastened into the screw hole 16 in the cooling fin 10 via the passage hole 15 .
- the flat surface part and the tilted part of the heat dissipation substrate 20 are pressed with a flat surface part and the tilted part of the resin case 6 respectively, thereby fixing the heat dissipation substrate 20 to the cooling fin 10 .
- the occurrence of a crack in the filling resin 9 was not recognized after attachment to the cooling fin 10 with an M5 screw under a fastening torque of 3.5 Nm, for example.
- the heat dissipation substrate 20 is pressed against the cooling fin 10 with the flat surface part of the heat dissipation substrate 20 and the resin case 6 , and the tilted part of the heat dissipation substrate 20 and the tilted part of the resin case 6 .
- the heat dissipation substrate 20 is pressed against the cooling fin 10 using two or more surfaces including the flat surface and the tilted surface of the heat dissipation substrate 20 .
- This can suppress bending displacement of the resin case 6 when the resin case 6 is fastened with a screw to the cooling fin 10 .
- This achieves reduction in stress to occur in the filling resin 9 so that the occurrence of a crack in the filling resin 9 can be avoided.
- the respective tilted parts of the resin case 6 and the heat dissipation substrate 20 are aligned with each other. This allows attachment of the resin case 6 to a position closer to the inside with respect to the heat dissipation substrate 20 . This can minimize the size of an area to be used by the heat dissipation substrate 20 and reduce the usage amount of the filling resin 9 . As a result, heat distortion due to a difference in a coefficient of thermal expansion among the filling resin 9 , the resin case 6 , and the heat dissipation substrate 20 can be reduced.
- a fourth embodiment differs from the first embodiment in that a spring 14 provided to the resin case 6 replaces the pressure member 13 as pressure means used in the first embodiment.
- the spring 14 is also used to press the tilted part formed at the heat dissipation substrate 20 . This can suppress bending displacement of the resin case 6 and reduce stress to occur in the filling resin 9 , so that the occurrence of a crack in the filling resin 9 can be avoided.
- FIG. 5 is a diagrammatic view showing the cross-sectional structure of a power module of the fourth embodiment of the present invention.
- the cross-sectional structure shown in an enlarged manner in the diagrammatic view of FIG. 5 is about a fixing part of the resin case 6 and the cooling fin 10 that forms a characteristic part of the fourth embodiment.
- a power module 400 includes the resin case 6 , the cooling fin 10 , the spring 14 as pressure means, and the heat dissipation substrate 20 .
- the resin case 6 has the passage hole 15 as a through hole formed in an outer periphery thereof.
- the cooling fin 10 has the screw hole 16 formed in an outer periphery thereof.
- the bush 11 is arranged in the passage hole 15 in the resin case 6 .
- the tilted part of the heat dissipation substrate 20 is pressed with the spring 14 provided to the resin case 6 .
- the screw 12 is fastened into the screw hole 16 in the cooling fin 10 via the passage hole 15 . Further, the flat surface part and the tilted part of the heat dissipation substrate 20 are pressed with the resin case 6 and the spring 14 of the resin case 6 respectively, thereby fixing the heat dissipation substrate 20 to the cooling fin 10 .
- the spring 14 is formed of a metallic member.
- the material for the spring 14 is not limited to a metallic member. It is desirable that the spring 14 provided to the resin case 6 be formed into a tilted shape responsive to the tilted part of the heat dissipation substrate 20 . However, such a shape is not given as limitation but the spring 14 may be any shape that can be used to press the heat dissipation substrate 20 against the cooling fin 10 .
- the occurrence of a crack in the filling resin 9 was not recognized after attachment to the cooling fin 10 with an M5 screw under a fastening torque of 3.5 Nm, for example.
- the heat dissipation substrate 20 is pressed against the cooling fin 10 with the flat surface part of the heat dissipation substrate 20 and the resin case 6 , and the tilted part of the heat dissipation substrate 20 and the spring 14 provided to the resin case 6 .
- the heat dissipation substrate 20 is pressed against the cooling fin 10 using two or more surfaces including the flat surface and the tilted surface of the heat dissipation substrate 20 .
- This can suppress bending displacement of the resin case 6 when the resin case 6 is fastened with a screw to the cooling fin 10 .
- This achieves reduction in stress to occur in the filling resin 9 so that the occurrence of a crack in the filling resin 9 can be avoided.
- the spring 14 and the tilted part of the dissipation substrate 20 are aligned with each other. This allows attachment of the resin case 6 to a position closer to the inside with respect to the heat dissipation substrate 20 . This can minimize the size of an area to be used by the heat dissipation substrate 20 and reduce the usage amount of the filling resin 9 . As a result, heat distortion due to a difference in a coefficient of thermal expansion among the filling resin 9 , the resin case 6 , and the heat dissipation substrate 20 can be reduced.
- the spring 14 not made of resin subjected to temporal change easily but made of metal resistant to temporal change can reduce temporal change of force applied to press the heat dissipation substrate 20 against the cooling fin 10 . This allows the power module to have stable heat resistance for a long time.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
- The present invention relates to an attachment structure in a power module used to form tight contact of a heat dissipation substrate on which a power semiconductor element is mounted with a cooling fin in the power module, for example.
- In a conventional power module, a resin case and a cooling fin are fixed with a screw and a heat dissipation substrate on which a power semiconductor element is mounted is attached to the cooling fin by adopting means of pressing the heat dissipation substrate against the cooling fin with a projection provided to the resin case (see
patent literature 1, for example). - Patent Literature 1: Publication of Japanese Patent No. 3225457 (
page 2 and FIG. 1) - In the conventional power module, as a result of use of the resin case for fixing the heat dissipation substrate to the cooling fin, stress resulting from screw axial force is applied to the resin case. This stress deforms the resin case. This deformation of the resin case causes a crack in resin filling in the resin case. This crack causes the problem of a failure in a breakdown voltage or fluctuation of electrical properties.
- The present invention has been made to solve the aforementioned problem. The present invention is intended to provide a power module capable of avoiding the occurrence of a crack in resin filling in a resin case by suppressing deformation of the resin case to occur by fixing of a heat dissipation substrate to a cooling fin.
- A power module of the present invention includes: a heat dissipation substrate on which a power semiconductor element is mounted, the heat dissipation substrate having a tilted part formed at an end portion thereof; a resin case contacting a surface on which the power semiconductor element is mounted; a cooling fin contacting a rear surface of the heat dissipation substrate; and pressure means contacting the tilted part at the end portion of the heat dissipation substrate to press the heat dissipation substrate against the cooling fin.
- According to the present invention, a corner (outer periphery) of a cross section of the heat dissipation substrate is formed into the tilted part and the tilted part formed at the outer periphery of the heat dissipation substrate is pressed with the pressure means. This suppresses deformation of the resin case acting with the corner of the outer periphery of the heat dissipation substrate as a fulcrum, so that the occurrence of a crack in resin filling in the resin case can be avoided.
-
FIG. 1 is a diagrammatic view showing the cross-sectional structure of a power module of a first embodiment of the present invention. -
FIG. 2 is a diagrammatic view showing the cross-sectional structure of a power module of a second embodiment of the present invention. -
FIG. 3 is a diagrammatic view showing the cross-sectional structure of a bush of a different shape according to the second embodiment of the present invention. -
FIG. 4 is a diagrammatic view showing the cross-sectional structure of a power module of a third embodiment of the present invention. -
FIG. 5 is a diagrammatic view showing the cross-sectional structure of a power module of a fourth embodiment of the present invention. - In all the drawings referred to below for description of embodiments, structures with the same signs mean that these structures are the same or corresponding structures.
-
FIG. 1 is a diagrammatic view showing the cross-sectional structure of a power module of a first embodiment of the present invention. As shown inFIG. 1( a), apower module 100 includes aresin case 6, acooling fin 10, apressure member 13 as pressure means, and aheat dissipation substrate 20. Theresin case 6 haspassage holes 15 as through holes formed in an outer periphery thereof. Thecooling fin 10 hasscrew holes 16 formed in an outer periphery thereof. - The
heat dissipation substrate 20 has ametal base 1 and aninsulating layer 2. Ametal pattern 3 is formed on theheat dissipation substrate 20. Apower semiconductor element 4 is mounted on themetal pattern 3 via solder (not shown in the drawings). Theheat dissipation substrate 20 has a tilted part at one end portion thereof. The tilted part is tilted to a lower position from an inner side toward an outer periphery of theheat dissipation substrate 20. - The
power semiconductor element 4 may be an IGBT (insulated-gate-bipolar-transistor) or a power MOSFET (metal-oxide-semiconductor-field-effect-transistor), for example. Alternatively, thepower semiconductor element 4 may be an FWD (free-wheeling-diode). - The aforementioned respective shapes of the
power semiconductor element 4 and themetal pattern 3 form an inverter circuit, for example. Thepower module 100 includes this inverter circuit. - Aluminum and copper, and alloys thereof are applicable to form the
metal base 1 in terms of heat dissipation performance and density. It is desirable that themetal pattern 3 be made of copper or a copper alloy in terms of electric resistance and heat dissipation performance. Regarding the respective thicknesses of themetal base 1 and themetal pattern 3 in terms of productivity and economic aspect, it is desirable that themetal base 1 be from about 0.5 to about 3.0 mm and themetal pattern 3 be from about 0.1 to 0.5 mm. - It is preferable that the insulating
layer 2 be made of epoxy or liquid crystal polymer filled with a filler material having high heat dissipation performance. The thickness of theinsulating layer 2 is determined based on a rated voltage to be used and desired heat dissipation properties. It is desirable that this thickness be in a range from about 0.1 to about 0.3 mm. - In this way, the
heat dissipation substrate 20 is formed on which thepower semiconductor element 4 is mounted. The tilted part is formed at a corner (outer periphery) of each of opposite cross-sectional ends of theheat dissipation substrate 20 shown inFIG. 1 . This tilted part is formed at themetal base 1 or at themetal base 1 and theinsulating layer 2. A tilted part may be omitted from an end portion of themetal base 1 on a side opposite a surface of themetal base 1 on which thepower semiconductor element 4 is mounted. -
FIG. 1( b) is a diagrammatic view showing the cross-sectional structure of the outer periphery of theheat dissipation substrate 20 in an enlarged manner. The tilted part is tilted to an angle in a range from 20 to 60 degrees suitably, desirably from 30 to 45 degrees relative to a flat surface on which thepower semiconductor element 4 is mounted. As shown inFIG. 1( b), if a tilted surface has a tilt of 30 degrees and if a size a of the tilted surface in the thickness direction of theheat dissipation substrate 20 is 1.5 mm, for example, a width b at a tilted surface part in the direction of the flat surface is determined to be 1.5×√{square root over (3)}=2.6 mm. Reserving 2 mm or more for the width b at the tilted surface part is desirable for holding the substrate reliably to counter vibration from outside, for example. - The
heat dissipation substrate 20 on which thepower semiconductor element 4 is mounted is fixed in theresin case 6 viaadhesive 5. Theresin case 6 is made of PPS (poly-phenylene-sulfide). Aterminal 7 includes a main terminal and a control terminal built in theresin case 6. Theterminal 7 is connected to thepower semiconductor element 4 arranged inside theresin case 6. Thepower semiconductor element 4 is electrically connected to the outside via theterminal 7. As an example, connections are formed between the gate of an IGBT as thepower semiconductor element 4 and the control terminal, between the emitter of the IGBT as thepower semiconductor element 4 and the main terminal, and between the collector and the main terminal. These connections are formed usingaluminum wires 8 of a diameter of 0.4 mm, for example. Thealuminum wires 8 are bonded to thepower semiconductor element 4 and theterminal 7 by an ultrasonic method. Thealuminum wires 8 may be replaced by copper wires. The copper wires feature lower resistance than aluminum wires, so that they act effectively particularly for thepower semiconductor element 4 to handle a large current. - To protect the
power semiconductor element 4 and an area where thealuminum wires 8 are provided and to ensure an insulating breakdown voltage, fillingresin 9 is provided in a region formed by theresin case 6 and theheat dissipation substrate 20. As an example, resin mainly containing gel or an epoxy resin is used as the fillingresin 9. - The module including the
heat dissipation substrate 20, theresin case 6, and the fillingresin 9 arranged integrally is attached withscrews 12 to the coolingfin 10. Theresin case 6 is provided with the passage holes 15 for screw fastening.Bushes 11 are provided in the passage holes 15. Thebushes 11 are used for fixing theresin case 6 to the coolingfin 10 reliably. This module is fixed to the coolingfin 10 by fastening thescrews 12 into the screw holes 16 in the coolingfin 10 via the passage holes 15. Thebushes 11 may have a circular cylindrical shape. Meanwhile, the shape of thebushes 11 is not limited to a circular cylinder but it may also be a polygon as long as such a shape allows insertion of thebushes 11 in the passage holes 15. Regarding the length of thebushes 11, thebushes 11 are simply required to be greater than the depth of the passage holes 15 in theresin case 6. Alternatively, thebushes 11 may have a shape that makes thebushes 11 get caught on theresin case 6 on a side of theresin case 6 where thescrews 12 are inserted. - Provision of the
pressure member 13 between thebushes 11 and the coolingfin 10 makes thepressure member 13 receive compressive force resulting from screw axial force. The tilted part is formed at an end portion of theheat dissipation substrate 20. Thepressure member 13 abuts on the tilted part of themetal base 1, or the tilted part formed at themetal base 1 and the insulatinglayer 2. Thepressure member 13 has a tilted part that can contact the tilted part of theheat dissipation substrate 20. The tilted part of thepressure member 13 is formed in a part contacting the tilted part of theheat dissipation substrate 20. The thickness of thepressure member 13 is the same as or smaller by a range from about 0.1 to about 0.2 mm than that of theheat dissipation substrate 20. As a result of the aforementioned structure, thepressure member 13 produces the effect of pressing theheat dissipation substrate 20 against the coolingfin 10. After the screw fastening, thebushes 11 project from the passage holes 15 toward the coolingfin 10 and the adhesive 5 and thebushes 11 together form gaps between theresin case 6 and thepressure member 13. It is desirable that thepressure member 13 be made of metal. Meanwhile, the material for thepressure member 13 is not limited to metal but it is simply required to be resistant to temporal change. - In a structure without a tilted part at a cross-sectional end of the
heat dissipation substrate 20, if theresin case 6 is fastened with two M5 screws, for example, the occurrence of a crack in the fillingresin 9 was recognized under a screw torque of 3.5 Nm. This is considered to occur for the reason as follows. The absence of a tilted part at a cross-sectional end of theheat dissipation substrate 20 forms surface contact between the flat surface of theheat dissipation substrate 20 and theresin case 6, thereby causing rotation moment acting in theresin case 6 with a corner (outer periphery) of the cross-sectional end of theheat dissipation substrate 20 as a fulcrum resulting from screw fastening. The occurrence of the rotation moment in theresin case 6 deforms theresin case 6 and the fillingresin 9. The fillingresin 9 is generally lower in Young's modulus than theresin case 6 and does not have high strength. Thus, stress concentration is likely to occur at the fillingresin 9 in a place where theresin case 6 projects by the presence of theterminal 7, for example. These are considered to be the cause for the crack in the fillingresin 9. - In contrast, in the structure of the present invention, a flat surface part of the
heat dissipation substrate 20 forms surface contact with theresin case 6, the tilted part is formed at a corner of a cross-sectional end of theheat dissipation substrate 20, and theheat dissipation substrate 20 is pressed against the coolingfin 10 using thepressure member 13 having the tilted part. Theheat dissipation substrate 20 is pressed while the tilted part of theheat dissipation substrate 20 and the tilted part of thepressure member 13 contact at least multiple points, specifically while substantially surface contact is formed between these tilted parts. As a result, theheat dissipation substrate 20 is pressed with two surfaces of theresin case 6 and the tilted part of thepressure member 13 against the coolingfin 10. Further, rotation moment (stress) acting with the corner of the cross-sectional end of theheat dissipation substrate 20 as a fulcrum is not applied directly to theresin case 6 but it is transmitted via thepressure member 13 to theresin case 6. This reduces the rotation moment to be applied to theresin case 6 further to suppress deformation of theresin case 6 in the direction of the rotation. As a result, the occurrence of a crack in the fillingresin 9 was not recognized even under a fastening torque of 3.5 Nm. - In the power module of the aforementioned structure, the
heat dissipation substrate 20 is pressed against the coolingfin 10 with the flat surface part of theheat dissipation substrate 20 and theresin case 6, and the tilted part of theheat dissipation substrate 20 and the tilted part of thepressure member 13. In this way, theheat dissipation substrate 20 is pressed against the coolingfin 10 using two or more surfaces including the flat surface and the tilted surface of theheat dissipation substrate 20. Thus, thepressure member 13 acts to make transmission of stress to theresin case 6 unlikely, thereby suppressing bending displacement of theresin case 6 when theresin case 6 is fastened with screws to the coolingfin 10. This achieves reduction in stress to occur in the fillingresin 9, so that the occurrence of a crack in the fillingresin 9 can be avoided. The surface contact between the tilted parts of theheat dissipation substrate 20 and thepressure member 13 makes it possible to relax a requested dimensional tolerance and a requested position tolerance of thepressure member 13, thereby facilitating processing and assembly. Further, pressing theheat dissipation substrate 20 with thepressure member 13 not made of resin subjected to temporal change easily but made of metal resistant to temporal change can reduce temporal change of force applied to press theheat dissipation substrate 20 against the coolingfin 10. This allows the power module to have stable heat resistance for a long time. - Additionally, if the
pressure member 13 is made of metal having favorable heat conductivity, heat generated in thepower semiconductor element 4 can be transferred from theheat dissipation substrate 20 to the coolingfin 10 via thepressure member 13. This reduces the heat resistance of the power module to achieve the effect of extending the lifetime of the power module. - In this embodiment, the
pressure member 13 is formed to extend along the entire outer periphery of theheat dissipation substrate 20. Meanwhile, thepressure member 13 is not always required to press the entire outer periphery but it may be arranged only in a place near a position where theresin case 6 is fastened with a screw so high stress is applied to theresin case 6. This can reduce the size of thepressure member 13 to bring an advantage in terms of cost. - A second embodiment differs from the first embodiment in that the
bush 11 replaces thepressure member 13 as pressure means used in the first embodiment. Using thebush 11 in this way still makes thebush 11 press the tilted part formed at theheat dissipation substrate 20. This can suppress bending displacement of theresin case 6 and reduce stress to occur in the fillingresin 9, so that the occurrence of a crack in the fillingresin 9 can be avoided. -
FIG. 2 is a diagrammatic view showing the cross-sectional structure of a power module of the second embodiment of the present invention. The cross-sectional structure shown in an enlarged manner in the diagrammatic view ofFIG. 2 is about a fixing part of theresin case 6 and the coolingfin 10 that forms a characteristic part of the second embodiment. As shown inFIG. 2 , apower module 200 includes theresin case 6, the coolingfin 10, thebush 11, and theheat dissipation substrate 20. Theresin case 6 has thepassage hole 15 as a through hole formed in an outer periphery thereof. The coolingfin 10 has thescrew hole 16 formed in an outer periphery thereof. -
FIG. 3 is a diagrammatic view showing the cross-sectional structure of abush 21 of a different shape. Abush 21 shown inFIG. 3 has a tilted part responsive to the tilted part of theheat dissipation substrate 20. - The
bush 21 is arranged in thepassage hole 15 in theresin case 6. The tilted part of theheat dissipation substrate 20 is pressed with the tilted part formed at a tip portion of thebush 21 near the coolingfin 10. Thescrew 12 is fastened into thescrew hole 16 in the coolingfin 10 via thepassage hole 15. Further, the flat surface part and the tilted part of theheat dissipation substrate 20 are pressed with theresin case 6 and thebush 21 respectively, thereby fixing theheat dissipation substrate 20 to the coolingfin 10. - In the structure of the present invention, the occurrence of a crack in the filling
resin 9 was not recognized after attachment to the coolingfin 10 with an M5 screw under a fastening torque of 3.5 Nm, for example. - Forming the
bush 11 into the shape ofFIG. 3 with the tilted part increases an area of contact with the tilted part of theheat dissipation substrate 20. As a result, theheat dissipation substrate 20 can be pressed against the coolingfin 10 more stably. - In the power module of the aforementioned structure, the
heat dissipation substrate 20 is pressed against the coolingfin 10 with the flat surface part of theheat dissipation substrate 20 and theresin case 6, and the tilted part of theheat dissipation substrate 20 and thebush 11. In this way, theheat dissipation substrate 20 is pressed against the coolingfin 10 using two or more surfaces including the flat surface and the tilted surface of theheat dissipation substrate 20. This can suppress bending displacement of theresin case 6 when theresin case 6 is fastened with a screw to the coolingfin 10. This achieves reduction in stress to occur in the fillingresin 9, so that the occurrence of a crack in the fillingresin 9 can be avoided. Further, omitting the process of attaching thepressure member 13 can simply manufacturing steps. - A third embodiment differs from the first embodiment in that a tilted part formed at the
resin case 6 in a position facing the tilted part of theheat dissipation substrate 20 replaces thepressure member 13 as pressure means used in the first embodiment. In this structure, theresin case 6 is formed as an integrated structure with the pressure means. The tilted part formed at theresin case 6 is also used to press the tilted part of theheat dissipation substrate 20. This can suppress bending displacement of theresin case 6 and reduce stress to occur in the fillingresin 9, so that the occurrence of a crack in the fillingresin 9 can be avoided. -
FIG. 4 is a diagrammatic view showing the cross-sectional structure of a power module of the third embodiment of the present invention. The cross-sectional structure shown in an enlarged manner in the diagrammatic view ofFIG. 4 is about a fixing part of theresin case 6 and the coolingfin 10 that forms a characteristic part of the third embodiment. As shown inFIG. 4 , apower module 300 includes theresin case 6 with the tilted part, the coolingfin 10, and theheat dissipation substrate 20. Theresin case 6 has thepassage hole 15 as a through hole formed in an outer periphery thereof. The coolingfin 10 has thescrew hole 16 formed in an outer periphery thereof. - The
bush 11 is arranged in thepassage hole 15 in theresin case 6. The tilted part of theheat dissipation substrate 20 is pressed with the tilted part formed at theresin case 6. Thescrew 12 is fastened into thescrew hole 16 in the coolingfin 10 via thepassage hole 15. Further, the flat surface part and the tilted part of theheat dissipation substrate 20 are pressed with a flat surface part and the tilted part of theresin case 6 respectively, thereby fixing theheat dissipation substrate 20 to the coolingfin 10. - In the structure of the present invention, the occurrence of a crack in the filling
resin 9 was not recognized after attachment to the coolingfin 10 with an M5 screw under a fastening torque of 3.5 Nm, for example. - In the power module of the aforementioned structure, the
heat dissipation substrate 20 is pressed against the coolingfin 10 with the flat surface part of theheat dissipation substrate 20 and theresin case 6, and the tilted part of theheat dissipation substrate 20 and the tilted part of theresin case 6. In this way, theheat dissipation substrate 20 is pressed against the coolingfin 10 using two or more surfaces including the flat surface and the tilted surface of theheat dissipation substrate 20. This can suppress bending displacement of theresin case 6 when theresin case 6 is fastened with a screw to the coolingfin 10. This achieves reduction in stress to occur in the fillingresin 9, so that the occurrence of a crack in the fillingresin 9 can be avoided. Further, as a result of the provision of the tilted part at theresin case 6, the respective tilted parts of theresin case 6 and theheat dissipation substrate 20 are aligned with each other. This allows attachment of theresin case 6 to a position closer to the inside with respect to theheat dissipation substrate 20. This can minimize the size of an area to be used by theheat dissipation substrate 20 and reduce the usage amount of the fillingresin 9. As a result, heat distortion due to a difference in a coefficient of thermal expansion among the fillingresin 9, theresin case 6, and theheat dissipation substrate 20 can be reduced. - A fourth embodiment differs from the first embodiment in that a
spring 14 provided to theresin case 6 replaces thepressure member 13 as pressure means used in the first embodiment. Thespring 14 is also used to press the tilted part formed at theheat dissipation substrate 20. This can suppress bending displacement of theresin case 6 and reduce stress to occur in the fillingresin 9, so that the occurrence of a crack in the fillingresin 9 can be avoided. -
FIG. 5 is a diagrammatic view showing the cross-sectional structure of a power module of the fourth embodiment of the present invention. The cross-sectional structure shown in an enlarged manner in the diagrammatic view ofFIG. 5 is about a fixing part of theresin case 6 and the coolingfin 10 that forms a characteristic part of the fourth embodiment. As shown inFIG. 5 , apower module 400 includes theresin case 6, the coolingfin 10, thespring 14 as pressure means, and theheat dissipation substrate 20. Theresin case 6 has thepassage hole 15 as a through hole formed in an outer periphery thereof. The coolingfin 10 has thescrew hole 16 formed in an outer periphery thereof. - The
bush 11 is arranged in thepassage hole 15 in theresin case 6. The tilted part of theheat dissipation substrate 20 is pressed with thespring 14 provided to theresin case 6. Thescrew 12 is fastened into thescrew hole 16 in the coolingfin 10 via thepassage hole 15. Further, the flat surface part and the tilted part of theheat dissipation substrate 20 are pressed with theresin case 6 and thespring 14 of theresin case 6 respectively, thereby fixing theheat dissipation substrate 20 to the coolingfin 10. Thespring 14 is formed of a metallic member. However, as long as thespring 14 can be used to press theheat dissipation substrate 20 against the coolingfin 10 and can reduce temporal change of force applied to press theheat dissipation substrate 20, the material for thespring 14 is not limited to a metallic member. It is desirable that thespring 14 provided to theresin case 6 be formed into a tilted shape responsive to the tilted part of theheat dissipation substrate 20. However, such a shape is not given as limitation but thespring 14 may be any shape that can be used to press theheat dissipation substrate 20 against the coolingfin 10. - In the structure of the present invention, the occurrence of a crack in the filling
resin 9 was not recognized after attachment to the coolingfin 10 with an M5 screw under a fastening torque of 3.5 Nm, for example. - In the power module of the aforementioned structure, the
heat dissipation substrate 20 is pressed against the coolingfin 10 with the flat surface part of theheat dissipation substrate 20 and theresin case 6, and the tilted part of theheat dissipation substrate 20 and thespring 14 provided to theresin case 6. In this way, theheat dissipation substrate 20 is pressed against the coolingfin 10 using two or more surfaces including the flat surface and the tilted surface of theheat dissipation substrate 20. This can suppress bending displacement of theresin case 6 when theresin case 6 is fastened with a screw to the coolingfin 10. This achieves reduction in stress to occur in the fillingresin 9, so that the occurrence of a crack in the fillingresin 9 can be avoided. Further, as a result of the provision of thespring 14 to theresin case 6, thespring 14 and the tilted part of thedissipation substrate 20 are aligned with each other. This allows attachment of theresin case 6 to a position closer to the inside with respect to theheat dissipation substrate 20. This can minimize the size of an area to be used by theheat dissipation substrate 20 and reduce the usage amount of the fillingresin 9. As a result, heat distortion due to a difference in a coefficient of thermal expansion among the fillingresin 9, theresin case 6, and theheat dissipation substrate 20 can be reduced. Further, using thespring 14 not made of resin subjected to temporal change easily but made of metal resistant to temporal change can reduce temporal change of force applied to press theheat dissipation substrate 20 against the coolingfin 10. This allows the power module to have stable heat resistance for a long time. - 1 Meal base
- 2 Insulating layer
- 3 Metal pattern
- 4 Power semiconductor element
- 5 Adhesive
- 6 Resin case
- 7 Terminal
- 8 Aluminum wire
- 9 Filling resin
- 10 Cooling fin
- 11 Bush
- 12 Screw
- 13 Pressure member
- 14 Spring
- 15 Passage hole
- 16 Screw hole
- 17 Heat dissipation substrate
- 21 Bush with tilted part
- 100, 200, 300, 400 Power module
Claims (8)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012-260002 | 2012-11-28 | ||
| JP2012260002 | 2012-11-28 | ||
| PCT/JP2013/003182 WO2014083717A1 (en) | 2012-11-28 | 2013-05-20 | Power module |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20150289356A1 true US20150289356A1 (en) | 2015-10-08 |
| US9521737B2 US9521737B2 (en) | 2016-12-13 |
Family
ID=50827384
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/441,064 Active 2033-06-14 US9521737B2 (en) | 2012-11-28 | 2013-05-20 | Power module |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US9521737B2 (en) |
| JP (1) | JP5881860B2 (en) |
| CN (1) | CN104838493B (en) |
| DE (1) | DE112013005676B4 (en) |
| WO (1) | WO2014083717A1 (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160104654A1 (en) * | 2013-09-10 | 2016-04-14 | Mitsubishi Electric Corporation | Semiconductor device and semiconductor module |
| US20160149380A1 (en) * | 2014-11-20 | 2016-05-26 | Hamilton Sundstrand Corporation | Power control assembly with vertically mounted power devices |
| US20160300770A1 (en) * | 2013-11-26 | 2016-10-13 | Mitsubishi Electric Corporation | Power module and method of manufacturing power module |
| US20170170096A1 (en) * | 2014-07-09 | 2017-06-15 | Mitsubishi Electric Corporation | Semiconductor device |
| US9887154B2 (en) * | 2014-04-21 | 2018-02-06 | Mitsubishi Electric Corporation | Semiconductor device and method of manufacturing the semiconductor device |
| US20190355657A1 (en) * | 2018-05-16 | 2019-11-21 | Fuji Electric Co., Ltd. | Semiconductor module and semiconductor device using the same |
| US20200170147A1 (en) * | 2018-11-22 | 2020-05-28 | Fuji Electric Co., Ltd. | Semiconductor module, vehicle and manufacturing method |
| US11019756B2 (en) * | 2017-04-20 | 2021-05-25 | Mitsubishi Electric Corporation | Power conversion device |
| US20210384396A1 (en) * | 2018-12-18 | 2021-12-09 | Soulnano Limited | Uv led array with power interconnect and heat sink |
| JP2023057597A (en) * | 2021-10-12 | 2023-04-24 | 富士電機株式会社 | semiconductor module |
| US12062591B2 (en) | 2020-01-29 | 2024-08-13 | Hitachi Energy Ltd | Power semiconductor module with baseplate and heat dissipating element |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015083201A1 (en) * | 2013-12-05 | 2015-06-11 | 三菱電機株式会社 | Power semiconductor device |
| JP6589631B2 (en) * | 2015-12-25 | 2019-10-16 | 富士電機株式会社 | Semiconductor device |
| JP6946698B2 (en) * | 2017-03-31 | 2021-10-06 | 富士電機株式会社 | Semiconductor devices and manufacturing methods for semiconductor devices |
| US10785864B2 (en) * | 2017-09-21 | 2020-09-22 | Amazon Technologies, Inc. | Printed circuit board with heat sink |
| JP6816691B2 (en) * | 2017-09-29 | 2021-01-20 | 三菱電機株式会社 | Semiconductor device |
| US10319659B2 (en) * | 2017-10-13 | 2019-06-11 | Semiconductor Components Industries, Llc | Semiconductor package and related methods |
| EP3499563B1 (en) * | 2017-12-13 | 2020-04-15 | SEMIKRON Elektronik GmbH & Co. KG | Semiconductor power module and method for assembling a semiconductor power module in a force-fitting manner |
| USD906240S1 (en) * | 2018-06-04 | 2020-12-29 | Semikron Elektronik Gmbh & Co. Kg | Powercore module |
| JP2020141023A (en) * | 2019-02-27 | 2020-09-03 | 株式会社 日立パワーデバイス | Semiconductor device |
| CN113557602A (en) * | 2019-03-15 | 2021-10-26 | 三菱电机株式会社 | Semiconductor device, and semiconductor device with cooling member |
| KR102428948B1 (en) * | 2020-06-15 | 2022-08-04 | 에스티씨 주식회사 | Cooling module with improved insulation efficiency |
| JP7487695B2 (en) * | 2021-03-26 | 2024-05-21 | 三菱電機株式会社 | Semiconductor Device |
| JP7563285B2 (en) * | 2021-04-21 | 2024-10-08 | 住友電気工業株式会社 | Semiconductor Device |
| JP7400773B2 (en) * | 2021-05-27 | 2023-12-19 | 株式会社デンソー | semiconductor equipment |
| JP7751178B2 (en) * | 2021-06-17 | 2025-10-08 | ミネベアパワーデバイス株式会社 | Power Semiconductor Module |
| JP7734565B2 (en) * | 2021-11-13 | 2025-09-05 | 新電元工業株式会社 | Semiconductor Module |
| CN117672980A (en) * | 2023-12-18 | 2024-03-08 | 上海狮门半导体有限公司 | A kind of power module and electronic equipment |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6963131B2 (en) * | 2002-10-30 | 2005-11-08 | Tyco Electronics Amp Gmbh | Integrated circuit system with a latent heat storage module |
| US7808100B2 (en) * | 2008-04-21 | 2010-10-05 | Infineon Technologies Ag | Power semiconductor module with pressure element and method for fabricating a power semiconductor module with a pressure element |
| US8154114B2 (en) * | 2007-08-06 | 2012-04-10 | Infineon Technologies Ag | Power semiconductor module |
| US8637979B2 (en) * | 2010-06-15 | 2014-01-28 | Mitsubishi Electric Corporation | Semiconductor device |
| US20140374896A1 (en) * | 2012-09-13 | 2014-12-25 | Fuji Electric Co., Ltd. | Semiconductor device, method for installing heat dissipation member to semiconductor device, and a method for producing semiconductor device |
| US9041196B2 (en) * | 2012-08-01 | 2015-05-26 | Infineon Technologies Ag | Semiconductor module arrangement and method for producing and operating a semiconductor module arrangement |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5172755A (en) | 1992-04-01 | 1992-12-22 | Digital Equipment Corporation | Arcuate profiled heatsink apparatus and method |
| JPH06204366A (en) | 1992-12-28 | 1994-07-22 | Mitsubishi Electric Corp | Bare chip heat dissipation base |
| JPH06302732A (en) | 1993-02-17 | 1994-10-28 | Toyota Autom Loom Works Ltd | Semiconductor device |
| JP3225457B2 (en) | 1995-02-28 | 2001-11-05 | 株式会社日立製作所 | Semiconductor device |
| JP3272922B2 (en) | 1995-11-15 | 2002-04-08 | 株式会社東芝 | Semiconductor device |
| JPH11274398A (en) | 1998-03-20 | 1999-10-08 | Mitsubishi Electric Corp | Power module |
| JP2000299419A (en) | 1999-04-15 | 2000-10-24 | Denso Corp | Semiconductor device |
| JP2006024639A (en) | 2004-07-06 | 2006-01-26 | Mitsubishi Electric Corp | Semiconductor device |
| JP5388673B2 (en) * | 2008-05-07 | 2014-01-15 | パナソニック株式会社 | Electronic components |
| DE102009026558B3 (en) | 2009-05-28 | 2010-12-02 | Infineon Technologies Ag | Power semiconductor module with movably mounted circuit carriers and method for producing such a power semiconductor module |
| CN201491449U (en) * | 2009-09-04 | 2010-05-26 | 联昌电子企业股份有限公司 | Inclined heat radiation module for improving heat radiation efficiency and reducing length of welding pin |
-
2013
- 2013-05-20 JP JP2014549756A patent/JP5881860B2/en active Active
- 2013-05-20 WO PCT/JP2013/003182 patent/WO2014083717A1/en not_active Ceased
- 2013-05-20 CN CN201380062029.6A patent/CN104838493B/en active Active
- 2013-05-20 DE DE112013005676.3T patent/DE112013005676B4/en active Active
- 2013-05-20 US US14/441,064 patent/US9521737B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6963131B2 (en) * | 2002-10-30 | 2005-11-08 | Tyco Electronics Amp Gmbh | Integrated circuit system with a latent heat storage module |
| US8154114B2 (en) * | 2007-08-06 | 2012-04-10 | Infineon Technologies Ag | Power semiconductor module |
| US7808100B2 (en) * | 2008-04-21 | 2010-10-05 | Infineon Technologies Ag | Power semiconductor module with pressure element and method for fabricating a power semiconductor module with a pressure element |
| US8637979B2 (en) * | 2010-06-15 | 2014-01-28 | Mitsubishi Electric Corporation | Semiconductor device |
| US9041196B2 (en) * | 2012-08-01 | 2015-05-26 | Infineon Technologies Ag | Semiconductor module arrangement and method for producing and operating a semiconductor module arrangement |
| US20140374896A1 (en) * | 2012-09-13 | 2014-12-25 | Fuji Electric Co., Ltd. | Semiconductor device, method for installing heat dissipation member to semiconductor device, and a method for producing semiconductor device |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9646912B2 (en) * | 2013-09-10 | 2017-05-09 | Mitsubishi Electric Corporation | Semiconductor device and semiconductor module having cooling fins |
| US9935034B2 (en) | 2013-09-10 | 2018-04-03 | Mitsubishi Electric Corporation | Semiconductor device and semiconductor module having cooling fins |
| US20160104654A1 (en) * | 2013-09-10 | 2016-04-14 | Mitsubishi Electric Corporation | Semiconductor device and semiconductor module |
| US20160300770A1 (en) * | 2013-11-26 | 2016-10-13 | Mitsubishi Electric Corporation | Power module and method of manufacturing power module |
| US9673118B2 (en) * | 2013-11-26 | 2017-06-06 | Mitsubishi Electric Corporation | Power module and method of manufacturing power module |
| US9887154B2 (en) * | 2014-04-21 | 2018-02-06 | Mitsubishi Electric Corporation | Semiconductor device and method of manufacturing the semiconductor device |
| US10770371B2 (en) * | 2014-07-09 | 2020-09-08 | Mitsubishi Electric Corporation | Semiconductor device |
| US20170170096A1 (en) * | 2014-07-09 | 2017-06-15 | Mitsubishi Electric Corporation | Semiconductor device |
| US20160149380A1 (en) * | 2014-11-20 | 2016-05-26 | Hamilton Sundstrand Corporation | Power control assembly with vertically mounted power devices |
| US11019756B2 (en) * | 2017-04-20 | 2021-05-25 | Mitsubishi Electric Corporation | Power conversion device |
| US10867901B2 (en) * | 2018-05-16 | 2020-12-15 | Fuji Electric Co., Ltd. | Semiconductor module and semiconductor device using the same |
| US20190355657A1 (en) * | 2018-05-16 | 2019-11-21 | Fuji Electric Co., Ltd. | Semiconductor module and semiconductor device using the same |
| US20200170147A1 (en) * | 2018-11-22 | 2020-05-28 | Fuji Electric Co., Ltd. | Semiconductor module, vehicle and manufacturing method |
| US11129310B2 (en) * | 2018-11-22 | 2021-09-21 | Fuji Electric Co., Ltd. | Semiconductor module, vehicle and manufacturing method |
| US20210384396A1 (en) * | 2018-12-18 | 2021-12-09 | Soulnano Limited | Uv led array with power interconnect and heat sink |
| US11664484B2 (en) * | 2018-12-18 | 2023-05-30 | Soulnano Limited | UV LED array with power interconnect and heat sink |
| US12062591B2 (en) | 2020-01-29 | 2024-08-13 | Hitachi Energy Ltd | Power semiconductor module with baseplate and heat dissipating element |
| JP2023057597A (en) * | 2021-10-12 | 2023-04-24 | 富士電機株式会社 | semiconductor module |
| JP7757699B2 (en) | 2021-10-12 | 2025-10-22 | 富士電機株式会社 | Semiconductor Module |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104838493A (en) | 2015-08-12 |
| JP5881860B2 (en) | 2016-03-09 |
| WO2014083717A1 (en) | 2014-06-05 |
| CN104838493B (en) | 2017-07-14 |
| DE112013005676T5 (en) | 2015-09-10 |
| US9521737B2 (en) | 2016-12-13 |
| DE112013005676B4 (en) | 2022-10-13 |
| JPWO2014083717A1 (en) | 2017-01-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9521737B2 (en) | Power module | |
| CN1988137B (en) | Semiconductor device | |
| JP5272768B2 (en) | Power semiconductor device and manufacturing method thereof | |
| US9887142B2 (en) | Power semiconductor device | |
| EP2500939B2 (en) | Power semiconductor module attachment structure | |
| JP5262793B2 (en) | Power semiconductor device and manufacturing method thereof | |
| EP2690658B1 (en) | Power semiconductor module and power unit device | |
| JP6548146B2 (en) | Circuit structure | |
| JP5071405B2 (en) | Power semiconductor device | |
| US11043443B2 (en) | Electric device and heat radiator | |
| JP6570685B1 (en) | Power semiconductor device and manufacturing method thereof | |
| CN103548136B (en) | Connection carrier and semiconductor device for semiconductor chip | |
| JP6541593B2 (en) | Power semiconductor device | |
| US10916491B2 (en) | Semiconductor module | |
| US10361294B2 (en) | Semiconductor device | |
| JP2012134200A (en) | Semiconductor heat radiator | |
| US20120056313A1 (en) | Semiconductor package | |
| JP2006245362A (en) | Semiconductor device and electrode terminal used therefor | |
| JP2007165426A (en) | Semiconductor device | |
| JP6872953B2 (en) | Fixing structure of heat-generating parts and fixing method of heat-generating parts | |
| CN107204292A (en) | The manufacture method of semiconductor device and semiconductor device | |
| JP2006114716A (en) | Power semiconductor device | |
| CN112154523A (en) | Resistor with a resistor element | |
| JP2014195024A (en) | Semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IZUO, SHINICHI;TAYA, MASAKI;OBARA, TAICHI;AND OTHERS;SIGNING DATES FROM 20150312 TO 20150316;REEL/FRAME:035577/0784 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |