US20150240298A1 - Recombinase polymerase amplification reagents and kits - Google Patents
Recombinase polymerase amplification reagents and kits Download PDFInfo
- Publication number
- US20150240298A1 US20150240298A1 US14/705,150 US201514705150A US2015240298A1 US 20150240298 A1 US20150240298 A1 US 20150240298A1 US 201514705150 A US201514705150 A US 201514705150A US 2015240298 A1 US2015240298 A1 US 2015240298A1
- Authority
- US
- United States
- Prior art keywords
- rpa
- reaction
- dna
- freeze dried
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6848—Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
Definitions
- the present invention relates to reagents and kits, and the use of such reagents and kits, for the amplification of nucleic acids. More specifically, the present invention relates to the use of reagents and kits in recombinase polymerase amplification processes.
- Recombinase Polymerase Amplification is a process in which recombinase-mediated targeting of oligonucleotides to DNA targets is coupled to DNA synthesis by a polymerase (U.S. Pat. No. 7,270,981 filed Feb. 21, 2003; U.S. Pat. No. 7,399,590 filed Sep. 1, 2004; U.S. Pat. No. 7,435,561 filed Jul. 25, 2006 and U.S. Pat. No. 7,485,428 filed Aug. 13, 2007, as well as, U.S. application Ser. No. 11/628,179, filed Aug. 30, 2007; Ser. No.
- RPA depends upon components of the cellular DNA replication and repair machinery.
- the notion of employing some of this machinery for in vitro DNA amplification has existed for some time (Zarling et al., U.S. Pat. No. 5,223,414), however the concept has not transformed to a working technology until recently as, despite a long history of research in the area of recombinase function involving principally the E. coli RecA protein, in vitro conditions permitting sensitive amplification of DNA have only recently been determined (Piepenburg et al. U.S. Pat. No.
- the RPA technology depended critically on the empirical finding that high molecular weight polyethylene glycol species (particularly >10,000 Daltons or more) very profoundly influenced the reaction behavior. It has previously been discovered that polyethylene glycol species ranging in size from at least molecular weight 12,000 to 100,000 stimulate RPA reactions strongly. While it is unclear how crowding agents influence processes within an amplification reaction, a large variety of biochemical consequences are attributed to crowding agents and are probably key to their influence on RPA reactions.
- Crowding agents have been reported to enhance the interaction of polymerase enzymes with DNA (Zimmerman and Harrison, 1987), to improve the activity of polymerases (Chan E. W. et al., 1980), to influence the kinetics of RecA binding to DNA in the presence of SSB (Lavery P E, Kowalczykowski S C. J Biol Chem. 1992 May 5; 267(13):9307-14). Crowding agents are reported to have marked influence on systems in which co-operative binding of monomers is known to occur such as during rod and filament formation (Rivas et al., 2003) by increasing association constants by potentially several orders of magnitude (see Minton, 2001).
- crowding agents influence the kinetics of multiple protein-protein, protein-nucleic acid, and nucleic acid-nucleic acid interactions within the reaction.
- the dependence on large molecular weight crowding agents for the most substantial reaction improvement may reflect a need to restrict the crowding effect to reaction components over a certain size (for example oligonucleotides, oligonucleotide:protein filaments, duplex products, protein components) while permitting efficient diffusion of others (say nucleotides, smaller peptides such as UvsY).
- the high molecular weight preference might reflect findings elsewhere that as PEG molecular weight increases the concentration of metal ions required to promote DNA condensation decreases. In any case it is an empirical finding that RPA is made effective by the use of high molecular weight polyethylene glycols.
- RPA provides a kit and reagents for, as well as methods of, DNA amplification, termed RPA.
- RPA comprises the following steps (See FIG. 1 ): First, a recombinase agent is contacted with a first and a second nucleic acid primer to form a first and a second nucleoprotein primer. Second, the first and second nucleoprotein primers are contacted to a double stranded target sequence to form a first double stranded structure at a first portion of said first strand and form a double stranded structure at a second portion of said second strand so the 3′ ends of said first nucleic acid primer and said second nucleic acid primer are oriented towards each other on a given template DNA molecule.
- first and second nucleoprotein primers are extended by DNA polymerases to generate first and second double stranded nucleic acids, and first and second displaced strands of nucleic acid. Finally, the second and third steps are repeated until a desired degree of amplification is reached.
- compositions and kits for recombinase polymerase amplification processes of DNA amplification of a target nucleic acid molecule which include one or more freeze dried pellets.
- each freeze dried pellet includes a combination of the following reagents in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5%-5% (weight/lyophilization mixture volume) of polyethylene glycol (e.g., 2.28% (weight/lyophilization mixture volume) of polyethylene glycol with a molecular weight of 35 kilodaltons); (2) 2.5%-7.5% weight/volume of trehalose (e.g., 5.7%); (3) 0-60 mM Tris buffer; (4) 1-10 mM DTT; (5) 150-400 ⁇ M dNTPs; (6) 1.5-3.5 mM ATP; (7) 100-350 ng/ ⁇ L uvsX recombinase; (8) optionally
- rehydration buffers for reconstituting freeze dried pellets for nucleic acid amplification are provided.
- the rehydration buffer for reconstituting the freeze dried pellets are included with the kits described herein and, the rehydration buffer includes 0-60 mM Tris buffer, 50-150 mM Potassium Acetate, and 2.5%-7.5% weight/volume of polyethylene glycol.
- the kits further include a 160-320 mM Magnesium Acetate solution.
- the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process.
- the freeze dried pellets also include a nuclease.
- the nuclesase is exonuclease III (exoIII), endonuclease IV (Nfo) or 8-oxoguanine DNA glycosylase (fpg).
- kits or compositions may further include positive control primers and target DNA to test the activity of the kit components.
- the kit can include a positive control DNA (e.g., human genomic DNA) and first and second primers specific for the positive control DNA.
- kits or compositions described herein that include one or more freeze dried pellets and rehydration buffer is provided.
- at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume.
- Magnesium e.g., Magnesium Acetate solution
- the reaction is incubated until a desired degree of amplification is achieved. In some embodiments, this last step comprises mixing the sample several minutes after the reaction is initiated.
- embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate).
- the methods include at least three steps.
- the first step the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule.
- the reaction is
- embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification.
- the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule.
- kits for nucleic acid amplification processes such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets.
- the freeze dried pellets comprise polyethylene glycol.
- the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG).
- the freeze dried pellets comprise trehalose.
- the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- embodiments of the present invention include any of the freeze dried pellets described herein.
- the freeze dried pellets comprise polyethylene glycol.
- the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG).
- the freeze dried pellets comprise trehalose.
- the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein.
- the rehydration buffer comprises polyethylene glycol (e.g., 0.3%-7.5% weight/volume of PEG).
- a kit comprising any of the foregoing rehydration buffers is provided.
- FIG. 1 schematically depicts an RPA reaction.
- FIG. 2 depicts the structure of an annealed Exo-probe.
- the abasic THF residue is cleaved by exonuclease only when the probe is bound. Cleavage by exonuclease separates the fluorophore and quencher and generates fluorescent signal.
- FIG. 3 depicts the structure of an annealed LF-probe.
- the abasic THF residue is cleaved by Nfo only when the probe is bound.
- FIG. 4 depicts the structure of an annealed Fpg-probe.
- the abasic dR residue is cleaved by fpg only when the probe is bound. Cleavage by fpg releases the fluorophore from the probe and generates fluorescent signal.
- RPA is a method (process) for amplifying DNA fragments.
- RPA employs enzymes, known as recombinases, that are capable of pairing oligonucleotide primers with homologous sequence in duplex DNA. In this way, DNA synthesis is directed to defined points in a sample DNA.
- recombinases enzymes, known as recombinases, that are capable of pairing oligonucleotide primers with homologous sequence in duplex DNA.
- DNA synthesis is directed to defined points in a sample DNA.
- an exponential amplification reaction is initiated if the target sequence is present. The reaction progresses rapidly and results in specific amplification from just a few target copies (such as less than 10,000 copies, less than 1000 copies, less than 100 copies or less than 10 copies) to detectable levels within as little as 20-40 minutes.
- RPA reactions contain a blend of proteins and other factors that are required to support both the activity of the recombination element of the system, as well as those which support DNA synthesis from the 3′ ends of olignucleotides paired to complementary substrates.
- the key protein component of the recombination system is the recombinase itself, which may originate from prokaryotic, viral or eukaryotic origin. Additionally, however, there is a requirement for single-stranded DNA binding proteins to stabilize nucleic acids during the various exchange transactions that are ongoing in the reaction. A polymerase with strand-displacing character is required specifically as many substrates are still partially duplex in character.
- a system comprising a bacteriophage T6 UvsX recombinase (e.g., T6UvsXH66S), a bacteriophage Rb69 UvsY loading agent, a bacteriophage Rb69 gp32 and a S. aureus Pol I large fragment has proven to be effective.
- Embodiments of the present invention provide for Recombinase Polymerase Amplification (RPA)—a method for the amplification of target nucleic acid polymers. They also provide for a general in vitro environment in which high recombinase activity is maintained in a highly dynamic recombination environment, supported by ATP.
- RPA Recombinase Polymerase Amplification
- One benefit of RPA is that it may be performed without the need for thermal melting of double-stranded templates. Therefore, the need for expensive thermocyclers is also eliminated.
- nucleic acid primers are targeted to homologous double-stranded, or partially double-stranded, sequences using recombinase agents, which form D-loop structures.
- the invading single-stranded primers, which are part of the D-loops, are used to initiate polymerase synthesis reactions.
- a single primer species will amplify a target nucleic acid sequence through multiple rounds of double-stranded invasion followed by synthesis. If two opposing primers are used, amplification of a fragment—the target sequence—can be achieved.
- the target sequence to be amplified in any of the embodiments of the present invention, is preferably a double stranded DNA.
- the embodiments of the present invention are not limited to double stranded DNA because other nucleic acid molecules, such as a single stranded DNA or RNA can be turned into double stranded DNA by one of skill in the art using known methods.
- Suitable double stranded target DNA may be a genomic DNA or a cDNA.
- An RPA of the invention may amplify a target nucleic acid at least 10 fold, preferably at least 100 fold, more preferably at least 1,000 fold, even more preferably at least 10,000 fold, and most preferably at least 1,000,000 fold.
- nucleic acid polymer or ‘nucleic acids’ as used in this description can be interpreted broadly and include DNA and RNA as well as other hybridizing nucleic-acid-like molecules such as those with substituted backbones e.g. peptide nucleic acids (PNAs), morpholino backboned nucleic acids, locked nucleic acid or other nucleic acids with modified bases and sugars.
- PNAs peptide nucleic acids
- morpholino backboned nucleic acids locked nucleic acid or other nucleic acids with modified bases and sugars.
- nucleic acids of embodiments of the present invention may be labeled with a detectable label.
- a detectable label includes, for example, a fluorochrome, an enzyme, a fluorescence quencher, an enzyme inhibitor, a radioactive label and a combination thereof.
- RPA Reactive protein adisol
- the reagents for RPA may be freeze dried (i.e., lyophilized) before use. Freeze dried reagents offer the advantage of not requiring refrigeration to maintain activity. For example, a tube of RPA reagents may be stored at room temperature. This advantage is especially useful in field conditions where access to refrigeration is limited. Freeze dried reagents also offer the advantage of long term storage without significant activity loss. For example, a tube of RPA reagents may be stored at ⁇ 20° C. for up to six months without significant activity loss.
- the reagents that can be freeze dried before use can include, at least, the recombinase, the single stranded DNA binding protein, the DNA polymerase, the dNTPs or the mixture of dNTPs and ddNTPs, the reducing agent, the ATP or ATP analog, the recombinase loading protein, and the first primer and optionally a second primer or a combination of any of these.
- the RPA reagents may be freeze dried onto the bottom of a tube, or on a bead (or another type of solid support).
- the reagents are reconstituted with buffer (a) Tris-Acetate buffer at a concentration of between 0 mM to 60 mM; (b) 50 mM to 150 mM Potassium Acetate and (c) polyethylene glycol at a concentration of between 2.5% to 7.5% by weight/volume. If the primers were not added before freeze drying, they can be added at this stage. Finally, a target nucleic acid, or a sample suspected of containing a target nucleic acid is added to begin the reaction.
- the target, or sample, nucleic acid may be contained within the reconstitution buffer as a consequence of earlier extraction or processing steps. The reaction is incubated until a desired degree of amplification is achieved.
- the tube containing the RPA reaction is placed into an incubator block set to a temperature of 37° C. and is incubated for 4 minutes. The sample is then taken out of the incubator, vortexed and spun down. The sample is then returned to the incubator block and incubated for an additional 15-40 minutes.
- kits for performing RPA reactions comprise kits for performing RPA reactions.
- the kits include one or more freeze dried pellets each including a combination of reagents for performing RPA reactions.
- the kits comprise 8 freeze dried pellets.
- the kits comprise 96 freeze dried pellets. If desired, the freeze dried reagents may be stored for 1 day, 1 week, 1 month or 1 year or more before use.
- the pellets can be assembled by combining each reagent in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5%-5% (weight/lyophilization mixture volume) of polyethylene glycol; (2) 2.5%-7.5% weight/volume of trehalose; (3) 0-60 mM Tris buffer; (4) 1-10 mM DTT; (5) 150-400 ⁇ M dNTPs; (6) 1.5-3.5 mM ATP; (7) 100-350 ng/ ⁇ L uvsX recombinase; (8) optionally 50-200 ng/ ⁇ L uvsY; (9) 150-800 ng/ ⁇ L gp32; (10) 30-150 ng/ ⁇ L Bsu polymerase or Sau polymerase; (11) 20-75 mM phosphocreatine; and (12) 10-200 ng/ ⁇ L creatine kinase.
- concentrations which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried
- the reagents in the solution mixture frozen for lyophilization can have approximately the following concentrations: (1) 2.28% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons; (2) 5.7% weight/volume of trehalose; (3) 25 mM Tris buffer; (4) 5 mM DTT; (5) 240 ⁇ M dNTPs; (6) 2.5 mM ATP; (7) 260 ng/ ⁇ L uvsX recombinase; (8) 88 ng/ ⁇ L uvsY; (9) 254 ng/ ⁇ L gp32; (10) 90 ng/ ⁇ L Bsu polymerase or Sau polymerase; (11) 50 mM phosphocreatine; and (12) 100 ng/ ⁇ L creatine kinase.
- the reagents may be freeze dried onto the bottom of a tube or in a well of a multi-well container.
- the reagents may be dried or attached onto a mobile solid support such
- volume of the reagent mixture that is frozen and lyophilized is the same as the final volume of the RPA reaction after rehydration, this is not necessary.
- an 80 ⁇ L volume of reagents can be freeze dried, which can then be reconstituted to a final RPA reaction volume of 50 ⁇ L.
- kits further include a rehydration buffer for reconstituting the freeze dried pellets, where the rehydration buffer includes 0-60 mM Tris buffer, 50-150 mM Potassium Acetate, and 0.3%-7.5% weight/volume of polyethylene glycol.
- the rehydration buffer includes approximately 25 mM Tris buffer, 100 mM Potassium Acetate, and 5.46% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons.
- the kit will comprise 4 mL of rehydration buffer.
- kits further include a 160-320 mM Magnesium Acetate solution (e.g., about 280 mM Magnesium Acetate solution). In some embodiments, the kit will comprise 250 ⁇ L of the Magnesium Acetate solution. In other embodiments, the rehydration buffer itself will comprise 8-16 mM Magnesium Acetate (e.g., about 14 mM Magnesium Acetate).
- the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process. In certain embodiments of the foregoing kits, the freeze dried pellets also include 50-200 ng/ ⁇ L of either exonuclease III (exoIII), endonuclease IV (Nfo) or 8-oxoguanine DNA glycosylase (fpg).
- exoIII exonuclease III
- Nfo endonuclease IV
- fpg 8-oxoguanine DNA glycosylase
- the kit may further include positive control primers and target DNA to test the activity of the kit components.
- the kit can include a positive control DNA (e.g., human genomic DNA) and first and second primers specific for the positive control DNA.
- embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification.
- the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule.
- kits for nucleic acid amplification processes such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets.
- the freeze dried pellets comprise polyethylene glycol.
- the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG).
- the freeze dried pellets comprise trehalose.
- the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- embodiments of the present invention include any of the freeze dried pellets described herein.
- the freeze dried pellets comprise polyethylene glycol.
- the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG).
- the freeze dried pellets comprise trehalose.
- the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein.
- the rehydration buffer comprises polyethylene glycol (e.g., 0.3%-7.5% weight/volume of PEG).
- a kit comprising any of the foregoing rehydration buffers is provided.
- kits that include one or more freeze dried pellets and rehydration buffer are provided.
- at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume.
- Magnesium e.g., Magnesium Acetate solution
- the reaction is incubated until a desired degree of amplification is achieved.
- RPA is a versatile method, but it can be improved by incorporation of features to control the RPA reaction.
- Embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate). For example, the method includes at least three steps.
- the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule.
- a crowding agent e.g., polyethylene glycol
- the reaction is incubated until a desired degree of amplification is achieved.
- one or more of the reagents are freeze dried before the first step. Furthermore, it is possible to initiate a plurality of RPA reactions simultaneously by the simultaneous addition of Magnesium to each reaction.
- a rehydration solution is prepared from the following rehydration buffer:
- reaction volume of RPA Reaction volumes of 25 ⁇ L, 50 ⁇ L, 100 ⁇ L, 1 mL, 10 mL and 100 mL or larger may be performed in one vessel. For the examples given below, a reaction volume of 50 ⁇ L is used.
- a nuclease may also be added to each freeze dried reaction pellet.
- the “Exo RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 96 ng/ ⁇ L exonuclease III (exoIII).
- the “Nfo RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 62 ng/ ⁇ L endonuclease IV (Nfo).
- the “Fpg RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 114 ng/ ⁇ L 8-oxoguanine DNA glycosylase (fpg).
- the tubes with the freeze dried pellets can be vacuum-sealed in pouches, for example in 12 strips of 8 pouches/strip for a total of 96 RPA reactions. While the vacuum-sealed pouches can be stored at room temperature for days without loss of activity, long term storage (up to at least about six months) at ⁇ 20° C. is preferred.
- the rehydration buffer can be stored as frozen aliquots, for example 4 ⁇ 1.2 mL aliquots. For long term storage (up to at least about six months), storage at ⁇ 20° C. is preferred. Unused rehydration buffer can be refrozen, or stored at 4° C. for up to 1 week. However, excessive freeze-thaw cycles should be avoided.
- a basic RPA reaction for each sample is established by reconstituting the basic RPA freeze-dried reaction pellet of Example 1 with a suitable rehydration solution.
- the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, and template (and water to a total volume of 47.5 ⁇ L per sample).
- the components of the rehydration solution can be combined in a master-mix for the number of samples required.
- a number of different rehydration solutions are to be made (here according to the number of primer pairs being tested).
- components common to all reactions e.g., template, rehydration buffer, water
- the different rehydration solutions are then used as normal according to the protocol below.
- the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
- the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and H 2 O to a total volume of 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- the 47.5 ⁇ L of rehydration solution is transferred to a basic RPA freeze-dried reaction pellet of Example 1.
- the sample is mixed by pipetting up and down until the entire pellet has been resuspended.
- the tubes are place into a suitable incubator block (e.g., set to a temperature of 37-39° C.) and are incubated for 4 minutes. For ultra-high sensitivity, after 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator block. The total incubation time is 20-40 minutes. If a timecourse of the reaction is desired the incubation time is adjusted as required. After the reaction is completed, the outcome of each reaction is typically analyzed by an endpoint method, such as agarose-gel-electrophoresis.
- an endpoint method such as agarose-gel-electrophoresis.
- a detection probe can be used to monitor RPA reactions.
- the probe is a third oligonucleotide primer which recognizes the target amplicon and is typically homologous to sequences between the main amplification primers.
- fluorophore/quencher with probes in real-time detection formats is a very convenient way to monitor amplification events in RPA reactions.
- RPA technology is compatible with a variety of different types of oligonucleotide probes.
- Exo-probes are generally 46-52 oligonucleotides long. Signal is generated by an internal dT fluorophore (Fluorescein or TAMRA) and quenched by an internal dT quencher (typically Black Hole Quencher (BHQ) 1 or 2) located 1-5 bases 3′ to the fluorophore. In this case, probes are restricted to contain sequences where two thymines can be found with ⁇ 6 intervening nucleotides. One of the bases between the fluorophore and quencher is the abasic nucleotide analog, tetrahydrofuran (THF—sometimes referred to as a ‘dSpacer’).
- TAMRA internal dT fluorophore
- BHQ Black Hole Quencher
- FIG. 2 depicts a typical annealed Exo-probe.
- LF-probes are often 46-52 oligonucleotides long and intended for detection of RPA reactions in simple sandwich assays such as lateral flow strips.
- the probe is blocked from polymerase extension by making the last nucleotide a dideoxy nucleotide.
- a THF is typically positioned about 30 bases from the 5′ end of the probe and 16 bases from the 3′ end. When the probe has annealed to the target sequence, Nfo nuclease will recognize and cleave the THF. This allows the 5′ portion of the cut probe to then act as a primer, ultimately leading to an amplicon containing the 5′ portion of the probe conjoined to the opposing primer.
- the amplicon is detected by virtue of labels attached to the 5′ end of the opposing primer (usually biotin) and to the 5′ end of the probe (usually FAM).
- the duplex formed is captured on a surface coated with the appropriate capture molecule (e.g., streptavidin for biotin or an anti-FAM antibody for FAM).
- RPA products are run on lateral flow strips, such as available from Milenia Biotec.
- FIG. 3 depicts a typical annealed LF-probe.
- Fpg-probes are generally 35 oligonucleotides long.
- a quencher typically Black Hole Quencher (BHQ) 1 or 2).
- Signal is generated by a fluorophore (typically FAM or Texas Red) attached to the ribose of a base-less nucleotide analog (a so-called dR residue; a fluorophore/O-linker effectively replaces the base at the Cl position of the ribose) 4-6 bases downstream of the 5′ end.
- fpg will recognize and cleave the dR, thereby releasing the fluorophore from the probe and generating a fluorescent signal.
- FIG. 4 is a schematic of a typical annealed Fpg-probe.
- FIG. 7 depicts the structure of an annealed Fpg-probe. The abasic dR residue is cleaved by fpg only when the probe is bound. This releases the fluorophore from the probe and generates fluorescent signal.
- a RPA reaction using exonuclease III is performed using a modified protocol of Example 2.
- Each sample is established by reconstituting the Exo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution.
- the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Exo-probe (and water to a total volume of 47.5 ⁇ L per sample).
- the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
- the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and 0.6 ⁇ L of an Exo-probe (10 ⁇ M) as described in Example 3. H 2 O is added to bring the total volume of the foregoing components to 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- Example 1 For each sample, the 47.5 ⁇ L of rehydration solution is transferred to an Exo RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 ⁇ L of 280 mM Magnesium-Acetate is added and is mixed well to initiate the reaction.
- the tubes are place into a suitable thermal incubator/fluorometer (e.g., isothermally set to a temperature of 37-39° C.) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
- a suitable thermal incubator/fluorometer e.g., isothermally set to a temperature of 37-39° C.
- a RPA reaction using Nfo is performed using a modified protocol of Example 2.
- Each sample is established by reconstituting the Nfo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution.
- the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an LF-probe (and water to a total volume of 47.5 ⁇ L per sample).
- the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
- the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and 0.6 ⁇ L of an LF-probe (10 ⁇ M) as described in Example 3. H 2 O is added to bring the total volume of the foregoing components to 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- Example 1 For each sample, the 47.5 ⁇ L of rehydration solution is transferred to an Nfo RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 ⁇ L of 280 mM Magnesium-Acetate is added and is mixed well to initiate the reaction.
- the tubes are place into a suitable incubator block (e.g., set to a temperature of 37-39° C.) and are incubated for 4 minutes.
- a suitable incubator block e.g., set to a temperature of 37-39° C.
- the samples are taken out of the incubator, vortexed, spun down and returned to the incubator block.
- the total incubation time is 15-30 minutes.
- the outcome of each reaction is typically analyzed by an endpoint method, such as a sandwich assay technique.
- a RPA reaction using fpg is performed using a modified protocol of Example 2.
- Each sample is established by reconstituting the Fpg RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution.
- the rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Fpg-probe (and water to a total volume of 47.5 ⁇ L per sample).
- the reaction is initiated by the addition of 2.5 ⁇ L of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 ⁇ L per sample.
- the rehydration solution is prepared by adding 2.4 ⁇ L of the first primer (10 ⁇ M), 2.4 ⁇ L of the second primer (10 ⁇ M), the Template and 0.6 ⁇ L of an Fpg-probe (10 ⁇ M) as described in Example 3. H 2 O is added to bring the total volume of the foregoing components to 18 ⁇ L. 29.5 ⁇ L of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- the 47.5 ⁇ L of rehydration solution is transferred to an Fpg RPA Freeze Dried Reaction Pellet of Example 1.
- the sample is mixed by pipetting up and down until the entire pellet has been resuspended.
- 2.5 ⁇ L of 280 mM Magnesium-Acetate is added and is mixed well to initiate the reaction.
- the tubes are place into a suitable thermal incubator/fluorometer (e.g., isothermally set to a temperature of 37-39° C.) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
- a suitable thermal incubator/fluorometer e.g., isothermally set to a temperature of 37-39° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
- This application claims the benefit of priority to U.S. patent application Ser. No. 13/375,264, filed Feb. 9, 2012, which is a US National of PCT/US2010/037611, filed Jun. 7, 2010, which claims the benefit of U.S. Provisional Patent Application No. 61/184,397 filed Jun. 5, 2009, which is hereby incorporated by reference in its entirety.
- The present invention relates to reagents and kits, and the use of such reagents and kits, for the amplification of nucleic acids. More specifically, the present invention relates to the use of reagents and kits in recombinase polymerase amplification processes.
- Recombinase Polymerase Amplification (RPA) is a process in which recombinase-mediated targeting of oligonucleotides to DNA targets is coupled to DNA synthesis by a polymerase (U.S. Pat. No. 7,270,981 filed Feb. 21, 2003; U.S. Pat. No. 7,399,590 filed Sep. 1, 2004; U.S. Pat. No. 7,435,561 filed Jul. 25, 2006 and U.S. Pat. No. 7,485,428 filed Aug. 13, 2007, as well as, U.S. application Ser. No. 11/628,179, filed Aug. 30, 2007; Ser. No. 11/800,318 filed May 4, 2007 and 61/179,793 filed May 20, 2009; the disclosures of the foregoing patents and patent applications are each hereby incorporated by reference in its entirety). RPA depends upon components of the cellular DNA replication and repair machinery. The notion of employing some of this machinery for in vitro DNA amplification has existed for some time (Zarling et al., U.S. Pat. No. 5,223,414), however the concept has not transformed to a working technology until recently as, despite a long history of research in the area of recombinase function involving principally the E. coli RecA protein, in vitro conditions permitting sensitive amplification of DNA have only recently been determined (Piepenburg et al. U.S. Pat. No. 7,399,590, also Piepenburg et al., PlosBiology 2006). Development of a ‘dynamic’ recombination environment having adequate rates of both recombinase loading and unloading that maintains high levels of recombination activity for over an hour in the presence of polymerase activity proved technically challenging and needed specific crowding agents, notably PEG molecules of high molecular weight (e.g., Carbowax 20M molecular weight 15-20,000 and PEG molecular weight 35,000), in combination with the use of recombinase-loading factors, specific strand-displacing polymerases and a robust energy regeneration system.
- The RPA technology depended critically on the empirical finding that high molecular weight polyethylene glycol species (particularly >10,000 Daltons or more) very profoundly influenced the reaction behavior. It has previously been discovered that polyethylene glycol species ranging in size from at least molecular weight 12,000 to 100,000 stimulate RPA reactions strongly. While it is unclear how crowding agents influence processes within an amplification reaction, a large variety of biochemical consequences are attributed to crowding agents and are probably key to their influence on RPA reactions.
- Crowding agents have been reported to enhance the interaction of polymerase enzymes with DNA (Zimmerman and Harrison, 1987), to improve the activity of polymerases (Chan E. W. et al., 1980), to influence the kinetics of RecA binding to DNA in the presence of SSB (Lavery P E, Kowalczykowski S C. J Biol Chem. 1992 May 5; 267(13):9307-14). Crowding agents are reported to have marked influence on systems in which co-operative binding of monomers is known to occur such as during rod and filament formation (Rivas et al., 2003) by increasing association constants by potentially several orders of magnitude (see Minton, 2001). In the RPA system multiple components rely on co-operative binding to nucleic acids, including the formation of SSB filaments, recombinase filaments, and possibly the condensation of loading agents such as UvsY. Crowding agents are also well known to enhance the hybridization of nucleic acids (Amasino, 1986), and this is a process that is also necessary within RPA reactions. Finally, and not least, PEG is known to drive the condensation of DNA molecules in which they change from elongated structures to compact globular or toroidal forms, thus mimicking structures more common in many in vivo contexts (see Lerman, 1971; also see Vasilevskaya. et. al., 1995; also see Zinchenko and Anatoly, 2005) and also to affect the supercoiling free energy of DNA (Naimushin et al., 2001).
- Without intending to be bound by theory, it is likely that crowding agents influence the kinetics of multiple protein-protein, protein-nucleic acid, and nucleic acid-nucleic acid interactions within the reaction. The dependence on large molecular weight crowding agents for the most substantial reaction improvement (probably greater than about 10,000 Daltons in size) may reflect a need to restrict the crowding effect to reaction components over a certain size (for example oligonucleotides, oligonucleotide:protein filaments, duplex products, protein components) while permitting efficient diffusion of others (say nucleotides, smaller peptides such as UvsY). Further, it may also be that the high molecular weight preference might reflect findings elsewhere that as PEG molecular weight increases the concentration of metal ions required to promote DNA condensation decreases. In any case it is an empirical finding that RPA is made effective by the use of high molecular weight polyethylene glycols.
- In addition to a need for specific type of ‘crowded’ reaction conditions as described above (reaction in the presence of crowding agents), effective RPA reaction kinetics depend on a high degree of ‘dynamic’ activity within the reaction with respect to recombinase-DNA interactions. In other words, the available data which includes (i) reaction inhibition by ATP-γ-S, or removal of the acidic C terminus of RecA or UvsX, and (ii) inhibition by excessive ATP (Piepenburg et al., 2006) suggest that not only is it important that recombinase filaments can be formed rapidly, but also important that they can disassemble quickly. This data is consistent with predictions made in earlier U.S. Pat. No. 7,270,981. Rapid filament formation ensures that at any given moment there will be a high steady state level of functional recombinase-DNA filaments, while rapid disassembly ensures that completed strand exchange complexes can be accessed by polymerases.
- The invention provides a kit and reagents for, as well as methods of, DNA amplification, termed RPA. RPA comprises the following steps (See
FIG. 1 ): First, a recombinase agent is contacted with a first and a second nucleic acid primer to form a first and a second nucleoprotein primer. Second, the first and second nucleoprotein primers are contacted to a double stranded target sequence to form a first double stranded structure at a first portion of said first strand and form a double stranded structure at a second portion of said second strand so the 3′ ends of said first nucleic acid primer and said second nucleic acid primer are oriented towards each other on a given template DNA molecule. Third, the 3′ end of said first and second nucleoprotein primers are extended by DNA polymerases to generate first and second double stranded nucleic acids, and first and second displaced strands of nucleic acid. Finally, the second and third steps are repeated until a desired degree of amplification is reached. - In one aspect, embodiments of the present invention provide compositions and kits for recombinase polymerase amplification processes of DNA amplification of a target nucleic acid molecule, which include one or more freeze dried pellets. For example, each freeze dried pellet includes a combination of the following reagents in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5%-5% (weight/lyophilization mixture volume) of polyethylene glycol (e.g., 2.28% (weight/lyophilization mixture volume) of polyethylene glycol with a molecular weight of 35 kilodaltons); (2) 2.5%-7.5% weight/volume of trehalose (e.g., 5.7%); (3) 0-60 mM Tris buffer; (4) 1-10 mM DTT; (5) 150-400 μM dNTPs; (6) 1.5-3.5 mM ATP; (7) 100-350 ng/μL uvsX recombinase; (8) optionally 50-200 ng/μL uvsY; (9) 150-800 ng/μL gp32; (10) 30-150 ng/μL Bacillus subtilis Pol I (Bsu) polymerase or S. aureus Pol I large fragment (Sau polymerase); (11) 20-75 mM phosphocreatine; and (12) 10-200 ng/μL creatine kinase.
- In another aspect, rehydration buffers for reconstituting freeze dried pellets for nucleic acid amplification are provided. In some embodiments, the rehydration buffer for reconstituting the freeze dried pellets are included with the kits described herein and, the rehydration buffer includes 0-60 mM Tris buffer, 50-150 mM Potassium Acetate, and 2.5%-7.5% weight/volume of polyethylene glycol. In certain embodiments, the kits further include a 160-320 mM Magnesium Acetate solution.
- In certain embodiments of the compositions and kits described herein, the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process. In certain embodiments of the foregoing kits, the freeze dried pellets also include a nuclease. For example, the nuclesase is exonuclease III (exoIII), endonuclease IV (Nfo) or 8-oxoguanine DNA glycosylase (fpg).
- In certain embodiments of the compositions and kits described herein, the kits or compositions may further include positive control primers and target DNA to test the activity of the kit components. For example, the kit can include a positive control DNA (e.g., human genomic DNA) and first and second primers specific for the positive control DNA.
- In another aspect, methods of recombinase polymerase amplification are provided comprising the following steps: First, one of the kits or compositions described herein that include one or more freeze dried pellets and rehydration buffer is provided. Second, at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume. Third, Magnesium (e.g., Magnesium Acetate solution) is added to initiate the reaction. Finally, the reaction is incubated until a desired degree of amplification is achieved. In some embodiments, this last step comprises mixing the sample several minutes after the reaction is initiated.
- In yet another aspect, embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate). For example, the methods include at least three steps. In the first step, the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule. In the second step, Magnesium is added to initiate the reaction. In the third step, the reaction is incubated until a desired degree of amplification is achieved. In certain embodiments, one or more of the reagents are freeze dried before the first step.
- In yet another aspect, embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification. For example, the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule.
- In another aspect, embodiments of the present invention include kits for nucleic acid amplification processes, such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- In yet another aspect, embodiments of the present invention include any of the freeze dried pellets described herein. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- In yet another aspect, embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein. In some embodiments, the rehydration buffer comprises polyethylene glycol (e.g., 0.3%-7.5% weight/volume of PEG). In some embodiments, a kit comprising any of the foregoing rehydration buffers is provided.
- Other embodiments, objects, aspects, features, and advantages of the invention will be apparent from the accompanying description and claims. It is contemplated that whenever appropriate, any embodiment of the present invention can be combined with one or more other embodiments of the present invention, even though the embodiments are described under different aspects of the present invention.
-
FIG. 1 schematically depicts an RPA reaction. -
FIG. 2 depicts the structure of an annealed Exo-probe. The abasic THF residue is cleaved by exonuclease only when the probe is bound. Cleavage by exonuclease separates the fluorophore and quencher and generates fluorescent signal. -
FIG. 3 depicts the structure of an annealed LF-probe. The abasic THF residue is cleaved by Nfo only when the probe is bound. -
FIG. 4 depicts the structure of an annealed Fpg-probe. The abasic dR residue is cleaved by fpg only when the probe is bound. Cleavage by fpg releases the fluorophore from the probe and generates fluorescent signal. - Brief Description of RPA
- RPA is a method (process) for amplifying DNA fragments. RPA employs enzymes, known as recombinases, that are capable of pairing oligonucleotide primers with homologous sequence in duplex DNA. In this way, DNA synthesis is directed to defined points in a sample DNA. Using two gene-specific primers, an exponential amplification reaction is initiated if the target sequence is present. The reaction progresses rapidly and results in specific amplification from just a few target copies (such as less than 10,000 copies, less than 1000 copies, less than 100 copies or less than 10 copies) to detectable levels within as little as 20-40 minutes.
- RPA reactions contain a blend of proteins and other factors that are required to support both the activity of the recombination element of the system, as well as those which support DNA synthesis from the 3′ ends of olignucleotides paired to complementary substrates. The key protein component of the recombination system is the recombinase itself, which may originate from prokaryotic, viral or eukaryotic origin. Additionally, however, there is a requirement for single-stranded DNA binding proteins to stabilize nucleic acids during the various exchange transactions that are ongoing in the reaction. A polymerase with strand-displacing character is required specifically as many substrates are still partially duplex in character. Reduction to practice has established that in order to make the reaction capable of amplifying from trace levels of nucleic acids precise in vitro conditions are required that include the use of crowding agents and loading proteins. A system comprising a bacteriophage T6 UvsX recombinase (e.g., T6UvsXH66S), a bacteriophage Rb69 UvsY loading agent, a bacteriophage Rb69 gp32 and a S. aureus Pol I large fragment has proven to be effective.
- Embodiments of the present invention provide for Recombinase Polymerase Amplification (RPA)—a method for the amplification of target nucleic acid polymers. They also provide for a general in vitro environment in which high recombinase activity is maintained in a highly dynamic recombination environment, supported by ATP. One benefit of RPA is that it may be performed without the need for thermal melting of double-stranded templates. Therefore, the need for expensive thermocyclers is also eliminated.
- Throughout this specification, various patents, published patent applications and scientific references are cited to describe the state and content of the art. Those disclosures, in their entireties, are hereby incorporated into the present specification by reference.
- In Recombinase Polymerase Amplification single-stranded, or partially single-stranded, nucleic acid primers are targeted to homologous double-stranded, or partially double-stranded, sequences using recombinase agents, which form D-loop structures. The invading single-stranded primers, which are part of the D-loops, are used to initiate polymerase synthesis reactions. A single primer species will amplify a target nucleic acid sequence through multiple rounds of double-stranded invasion followed by synthesis. If two opposing primers are used, amplification of a fragment—the target sequence—can be achieved.
- The target sequence to be amplified, in any of the embodiments of the present invention, is preferably a double stranded DNA. However, the embodiments of the present invention are not limited to double stranded DNA because other nucleic acid molecules, such as a single stranded DNA or RNA can be turned into double stranded DNA by one of skill in the art using known methods. Suitable double stranded target DNA may be a genomic DNA or a cDNA. An RPA of the invention may amplify a target nucleic acid at least 10 fold, preferably at least 100 fold, more preferably at least 1,000 fold, even more preferably at least 10,000 fold, and most preferably at least 1,000,000 fold.
- The terms ‘nucleic acid polymer’ or ‘nucleic acids’ as used in this description can be interpreted broadly and include DNA and RNA as well as other hybridizing nucleic-acid-like molecules such as those with substituted backbones e.g. peptide nucleic acids (PNAs), morpholino backboned nucleic acids, locked nucleic acid or other nucleic acids with modified bases and sugars.
- In addition, nucleic acids of embodiments of the present invention may be labeled with a detectable label. A detectable label includes, for example, a fluorochrome, an enzyme, a fluorescence quencher, an enzyme inhibitor, a radioactive label and a combination thereof.
- Lyophilization of the RPA Reaction
- One advantage of RPA is that the reagents for RPA, may be freeze dried (i.e., lyophilized) before use. Freeze dried reagents offer the advantage of not requiring refrigeration to maintain activity. For example, a tube of RPA reagents may be stored at room temperature. This advantage is especially useful in field conditions where access to refrigeration is limited. Freeze dried reagents also offer the advantage of long term storage without significant activity loss. For example, a tube of RPA reagents may be stored at −20° C. for up to six months without significant activity loss.
- While lyophilization is a well-established process there is no guarantee that all components of a reaction system will successfully be co-lyophilized and reconstituted under the same conditions. We have attempted to lyophilize RPA reactions with and without various of the final reaction components. The disaccharide sugar trehalose proves in these experiments to be required to stabilize the lyophilisate, permitting room temperature storage for at least 10 days. We have also found that it is preferable to exclude the salt (e.g., Potassium Acetate) and reduce the buffer concentration to 25 mM of Tris or less from the lyophilisate, to maximize its stability—particularly for storage above 0° C.
- We have also found that, if salt is present in the lyophilisate, polyethylene glycol is required to stabilize the lyophilisate. By contrast, if salt is not present, then PEG is not required to stabilize the lyophilizate, and need only be provided in the rehydration buffer. A typical RPA reaction will have a final PEG concentration in the reaction of 5%-6% (w/v).
- In addition trehalose and PEG, the reagents that can be freeze dried before use can include, at least, the recombinase, the single stranded DNA binding protein, the DNA polymerase, the dNTPs or the mixture of dNTPs and ddNTPs, the reducing agent, the ATP or ATP analog, the recombinase loading protein, and the first primer and optionally a second primer or a combination of any of these.
- In some embodiments, the RPA reagents may be freeze dried onto the bottom of a tube, or on a bead (or another type of solid support). In use, the reagents are reconstituted with buffer (a) Tris-Acetate buffer at a concentration of between 0 mM to 60 mM; (b) 50 mM to 150 mM Potassium Acetate and (c) polyethylene glycol at a concentration of between 2.5% to 7.5% by weight/volume. If the primers were not added before freeze drying, they can be added at this stage. Finally, a target nucleic acid, or a sample suspected of containing a target nucleic acid is added to begin the reaction. The target, or sample, nucleic acid may be contained within the reconstitution buffer as a consequence of earlier extraction or processing steps. The reaction is incubated until a desired degree of amplification is achieved.
- We have found that it is possible to increase the sensitivity of the RPA reaction by agitating or mixing the sample several minutes (e.g., two, three, four, five or six minutes) after reconstituting and initiating the reaction. For example, after reconstituting and initiating the RPA reaction, the tube containing the RPA reaction is placed into an incubator block set to a temperature of 37° C. and is incubated for 4 minutes. The sample is then taken out of the incubator, vortexed and spun down. The sample is then returned to the incubator block and incubated for an additional 15-40 minutes.
- In one aspect, embodiments of the present invention comprise kits for performing RPA reactions. In certain embodiments, the kits include one or more freeze dried pellets each including a combination of reagents for performing RPA reactions. In certain embodiments, the kits comprise 8 freeze dried pellets. In some embodiments, the kits comprise 96 freeze dried pellets. If desired, the freeze dried reagents may be stored for 1 day, 1 week, 1 month or 1 year or more before use.
- In certain embodiments, the pellets can be assembled by combining each reagent in the following concentrations (which unless otherwise indicated can be the concentration either when reconstituted or when freeze dried): (1) 1.5%-5% (weight/lyophilization mixture volume) of polyethylene glycol; (2) 2.5%-7.5% weight/volume of trehalose; (3) 0-60 mM Tris buffer; (4) 1-10 mM DTT; (5) 150-400 μM dNTPs; (6) 1.5-3.5 mM ATP; (7) 100-350 ng/μL uvsX recombinase; (8) optionally 50-200 ng/μL uvsY; (9) 150-800 ng/μL gp32; (10) 30-150 ng/μL Bsu polymerase or Sau polymerase; (11) 20-75 mM phosphocreatine; and (12) 10-200 ng/μL creatine kinase. For example, the reagents in the solution mixture frozen for lyophilization can have approximately the following concentrations: (1) 2.28% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons; (2) 5.7% weight/volume of trehalose; (3) 25 mM Tris buffer; (4) 5 mM DTT; (5) 240 μM dNTPs; (6) 2.5 mM ATP; (7) 260 ng/μL uvsX recombinase; (8) 88 ng/μL uvsY; (9) 254 ng/μL gp32; (10) 90 ng/μL Bsu polymerase or Sau polymerase; (11) 50 mM phosphocreatine; and (12) 100 ng/μL creatine kinase. The reagents may be freeze dried onto the bottom of a tube or in a well of a multi-well container. The reagents may be dried or attached onto a mobile solid support such as a bead or a strip, or a well.
- While it is often preferred that the volume of the reagent mixture that is frozen and lyophilized is the same as the final volume of the RPA reaction after rehydration, this is not necessary. For example, an 80 μL volume of reagents can be freeze dried, which can then be reconstituted to a final RPA reaction volume of 50 μL.
- In certain embodiments, the kits further include a rehydration buffer for reconstituting the freeze dried pellets, where the rehydration buffer includes 0-60 mM Tris buffer, 50-150 mM Potassium Acetate, and 0.3%-7.5% weight/volume of polyethylene glycol. For example, the rehydration buffer includes approximately 25 mM Tris buffer, 100 mM Potassium Acetate, and 5.46% weight/volume of polyethylene glycol with a molecular weight of 35 kilodaltons. In certain embodiments, the kit will comprise 4 mL of rehydration buffer.
- In certain embodiments, the kits further include a 160-320 mM Magnesium Acetate solution (e.g., about 280 mM Magnesium Acetate solution). In some embodiments, the kit will comprise 250 μL of the Magnesium Acetate solution. In other embodiments, the rehydration buffer itself will comprise 8-16 mM Magnesium Acetate (e.g., about 14 mM Magnesium Acetate).
- In certain embodiments of the foregoing kits, the freeze dried pellets also include the first and/or the second nucleic acid primers for the RPA process. In certain embodiments of the foregoing kits, the freeze dried pellets also include 50-200 ng/μL of either exonuclease III (exoIII), endonuclease IV (Nfo) or 8-oxoguanine DNA glycosylase (fpg).
- In any of the foregoing embodiments, the kit may further include positive control primers and target DNA to test the activity of the kit components. For example, the kit can include a positive control DNA (e.g., human genomic DNA) and first and second primers specific for the positive control DNA.
- In yet another aspect, embodiments of the present invention also include nucleic acid amplification mixtures for isothermal nucleic acid amplification. For example, the mixtures include at least: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one strand displacing polymerase DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) ATP or ATP analog; (6) trehalose; (7) optionally at least one recombinase loading protein; (8) optionally polyethylene glycol (9) optionally a first primer and optionally a second primer; and (10) optionally a target nucleic acid molecule.
- In another aspect, embodiments of the present invention include kits for nucleic acid amplification processes, such as isothermal nucleic acid amplification processes (e.g., RPA amplification of DNA) a target nucleic acid molecule, which include one or more freeze dried pellets. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- In yet another aspect, embodiments of the present invention include any of the freeze dried pellets described herein. In some embodiments, the freeze dried pellets comprise polyethylene glycol. For example, the amount of polyethylene glycol in the freeze dried pellets is an amount to allow the amplification process to proceed (0.3%-7.5% weight/lyophilization mixture volume of PEG). In some embodiments, the freeze dried pellets comprise trehalose. For example, the amount of trehalose in the freeze dried pellets is 2.5%-7.5% weight/lyophilization mixture volume of trehalose.
- In yet another aspect, embodiments of the present invention include rehydration buffers for reconstituting the freeze dried pellets described herein. In some embodiments, the rehydration buffer comprises polyethylene glycol (e.g., 0.3%-7.5% weight/volume of PEG). In some embodiments, a kit comprising any of the foregoing rehydration buffers is provided.
- RPA Initiation by Magnesium
- In another aspect, methods of recombinase polymerase amplification are provided comprising the following steps: First, one of the foregoing kits that include one or more freeze dried pellets and rehydration buffer is provided. Second, at least one of the freeze dried pellets is reconstituted, in any order, with the rehydration buffer, the first and the second nucleic acid primers for the RPA process, the target nucleic acid, and optionally water to a desired volume. Third, Magnesium (e.g., Magnesium Acetate solution) is added to initiate the reaction. Finally, the reaction is incubated until a desired degree of amplification is achieved.
- RPA is a versatile method, but it can be improved by incorporation of features to control the RPA reaction. Embodiments of the present invention also provide methods to control RPA reactions, achieved by initiating the RPA reaction with the addition of Magnesium (e.g., with Magnesium Acetate). For example, the method includes at least three steps. In the first step, the following reagents are combined in a solution in the absence of Magnesium: (1) at least one recombinase; (2) at least one single stranded DNA binding protein; (3) at least one DNA polymerase; (4) dNTPs or a mixture of dNTPs and ddNTPs; (5) a crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a reducing agent; (8) ATP or ATP analog; (9) optionally at least one recombinase loading protein; (10) a first primer and optionally a second primer; and (11) a target nucleic acid molecule. In the second step, Magnesium is added to initiate the reaction. In the third step, the reaction is incubated until a desired degree of amplification is achieved. In certain embodiments, one or more of the reagents are freeze dried before the first step. Furthermore, it is possible to initiate a plurality of RPA reactions simultaneously by the simultaneous addition of Magnesium to each reaction.
- The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.
- To form a freeze dried reaction pellet for a typical single basic RPA reaction, the following RPA reagents with the indicated concentrations are freeze dried (lyophilized) onto the bottom of a tube:
-
-
Component Concentration PEG 35,000 2.28% (w/v) Trehalose 5.7% (w/v) UvsX recombinase 260 ng/μL UvsY 88 ng/μL Gp32 254 ng/μL Sau polymerase 90 ng/μL ATP 2.5 mM dNTPs 240 nM Tris buffer 25 mM DTT 5 mM Phosphocreatine 50 mM Creatine kinase 100 ng/μL - For reconstituting the freeze dried reaction pellet, a rehydration solution is prepared from the following rehydration buffer:
-
-
Component Concentration Tris buffer 25 mM Potassium Acetate 100 mM PEG 35,000 5.46% (w/v) - Unlike PCR, which requires small volumes for rapid temperature change, there is no limit to the reaction volume of RPA. Reaction volumes of 25 μL, 50 μL, 100 μL, 1 mL, 10 mL and 100 mL or larger may be performed in one vessel. For the examples given below, a reaction volume of 50 μL is used.
- To permit monitoring of the RPA reaction, a nuclease may also be added to each freeze dried reaction pellet. For example, the “Exo RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 96 ng/μL exonuclease III (exoIII). Similarly, the “Nfo RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 62 ng/μL endonuclease IV (Nfo). Finally, the “Fpg RPA Freeze Dried Reaction Pellet” is the basic RPA freeze-dried reaction pellet plus 114 ng/μL 8-oxoguanine DNA glycosylase (fpg).
- The tubes with the freeze dried pellets can be vacuum-sealed in pouches, for example in 12 strips of 8 pouches/strip for a total of 96 RPA reactions. While the vacuum-sealed pouches can be stored at room temperature for days without loss of activity, long term storage (up to at least about six months) at −20° C. is preferred. The rehydration buffer can be stored as frozen aliquots, for example 4×1.2 mL aliquots. For long term storage (up to at least about six months), storage at −20° C. is preferred. Unused rehydration buffer can be refrozen, or stored at 4° C. for up to 1 week. However, excessive freeze-thaw cycles should be avoided.
- A basic RPA reaction for each sample is established by reconstituting the basic RPA freeze-dried reaction pellet of Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, and template (and water to a total volume of 47.5 μL per sample).
- The components of the rehydration solution can be combined in a master-mix for the number of samples required. In some circumstances, for example when performing a primer screen, a number of different rehydration solutions are to be made (here according to the number of primer pairs being tested). In that case components common to all reactions (e.g., template, rehydration buffer, water) is prepared as a master-mix, distributed in a corresponding volume into fresh tubes, and is combined with the required volume of the different primer pairs. The different rehydration solutions are then used as normal according to the protocol below.
- The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 μL per sample.
- For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and H2O to a total volume of 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- For each sample, the 47.5 μL of rehydration solution is transferred to a basic RPA freeze-dried reaction pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended.
- For each sample, 2.5 μL of 280 mM Magnesium-Acetate is added and is mixed well. One way to do this simultaneously for many samples is to place the Magnesium-Acetate into the lid of the reaction tubes and then spin it down into the tubes to initiate the reactions. The reaction mixture is vortexed briefly and is spun down once again.
- The tubes are place into a suitable incubator block (e.g., set to a temperature of 37-39° C.) and are incubated for 4 minutes. For ultra-high sensitivity, after 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator block. The total incubation time is 20-40 minutes. If a timecourse of the reaction is desired the incubation time is adjusted as required. After the reaction is completed, the outcome of each reaction is typically analyzed by an endpoint method, such as agarose-gel-electrophoresis.
- A detection probe can be used to monitor RPA reactions. The probe is a third oligonucleotide primer which recognizes the target amplicon and is typically homologous to sequences between the main amplification primers. The use of fluorophore/quencher with probes in real-time detection formats is a very convenient way to monitor amplification events in RPA reactions.
- RPA technology is compatible with a variety of different types of oligonucleotide probes. The structures of three types—Exo-probes, LF-probes, and Fpg-probes—are each discussed below.
- Exo-Probes
- Exo-probes are generally 46-52 oligonucleotides long. Signal is generated by an internal dT fluorophore (Fluorescein or TAMRA) and quenched by an internal dT quencher (typically Black Hole Quencher (BHQ) 1 or 2) located 1-5
bases 3′ to the fluorophore. In this case, probes are restricted to contain sequences where two thymines can be found with <6 intervening nucleotides. One of the bases between the fluorophore and quencher is the abasic nucleotide analog, tetrahydrofuran (THF—sometimes referred to as a ‘dSpacer’). There should be at least 30 nucleotides placed 5′ to the THF site, and at least a further 15 located 3′ to it. When the probe has hybridized to the target sequence, Exonuclease III will recognize and cleave the THF, thereby separating the fluorophore and quencher and generating a fluorescent signal. The THF should be at least 31 bases from the 5′ end of the probe and 16 bases from the 3′ end. Finally, the probe is blocked from polymerase extension by a 3′-blocking group (e.g., Biotin-TEG).FIG. 2 depicts a typical annealed Exo-probe. - While there is no fixed rule describing the best position of a given probe relative to its corresponding amplification primers, care must be taken to avoid the possibility that primer artefacts can be detected by the probe. Although primers that have the same direction as the probe can even overlap its 5′ part, this overlap must not extend up to the fluorophore/abasic-site/quencher portion of the probe (i.e., the overlap of the primer should be restricted to the 5′-most 27 nucleotides of the probe or so). This design will prevent the inadvertent generation of hybridization targets for the ‘sensitive’ sequence element of the probe by primer artefacts. Primers opposing the direction of the probe should not overlap to avoid the occurrence of primer-probe dimers.
- LF-Probes
- LF-probes are often 46-52 oligonucleotides long and intended for detection of RPA reactions in simple sandwich assays such as lateral flow strips. The probe is blocked from polymerase extension by making the last nucleotide a dideoxy nucleotide. As in an Exo-probe, a THF is typically positioned about 30 bases from the 5′ end of the probe and 16 bases from the 3′ end. When the probe has annealed to the target sequence, Nfo nuclease will recognize and cleave the THF. This allows the 5′ portion of the cut probe to then act as a primer, ultimately leading to an amplicon containing the 5′ portion of the probe conjoined to the opposing primer. The amplicon is detected by virtue of labels attached to the 5′ end of the opposing primer (usually biotin) and to the 5′ end of the probe (usually FAM). The duplex formed is captured on a surface coated with the appropriate capture molecule (e.g., streptavidin for biotin or an anti-FAM antibody for FAM). RPA products are run on lateral flow strips, such as available from Milenia Biotec.
FIG. 3 depicts a typical annealed LF-probe. - While there is no fixed rule describing the best position of a given probe relative to its corresponding amplification primers, care must be taken to avoid the possibility that primer artefacts can be detected by the probe. Although primers that have the same direction as the probe can even overlap its 5′ part, this overlap must not extend up to the abasic-site portion of the probe (i.e., the overlap of the primer should be restricted to the 5′-most 27 nucleotides of the probe or so). This design will prevent the inadvertent generation of hybridization targets for the ‘sensitive’ sequence element of the probe by primer artefacts. Primers opposing the direction of the probe should not overlap to avoid the occurrence of primer-probe dimers. The opposing amplification primer is usually labelled with biotin.
- Fpg-Probes
- Fpg-probes are generally 35 oligonucleotides long. At the 5′ end of the probe is a quencher (typically Black Hole Quencher (BHQ) 1 or 2). Signal is generated by a fluorophore (typically FAM or Texas Red) attached to the ribose of a base-less nucleotide analog (a so-called dR residue; a fluorophore/O-linker effectively replaces the base at the Cl position of the ribose) 4-6 bases downstream of the 5′ end. When the probe has annealed to the target sequence, fpg will recognize and cleave the dR, thereby releasing the fluorophore from the probe and generating a fluorescent signal. Finally, the probe is blocked from polymerase extension by a 3′-blocking group (e.g., Biotin-TEG).
FIG. 4 is a schematic of a typical annealed Fpg-probe.FIG. 7 depicts the structure of an annealed Fpg-probe. The abasic dR residue is cleaved by fpg only when the probe is bound. This releases the fluorophore from the probe and generates fluorescent signal. - While there is no fixed rule describing the best position of a given Fpg-probe relative to the amplification primers with which it is used, care must be taken to avoid the possibility that primer artefacts can be detected by the probe. As a result any overlap between primers and the probe should be avoided.
- A RPA reaction using exonuclease III is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Exo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Exo-probe (and water to a total volume of 47.5 μL per sample). The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 μL per sample.
- For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and 0.6 μL of an Exo-probe (10 μM) as described in Example 3. H2O is added to bring the total volume of the foregoing components to 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- For each sample, the 47.5 μL of rehydration solution is transferred to an Exo RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 μL of 280 mM Magnesium-Acetate is added and is mixed well to initiate the reaction.
- The tubes are place into a suitable thermal incubator/fluorometer (e.g., isothermally set to a temperature of 37-39° C.) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
- A RPA reaction using Nfo is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Nfo RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an LF-probe (and water to a total volume of 47.5 μL per sample). The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 μL per sample.
- For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and 0.6 μL of an LF-probe (10 μM) as described in Example 3. H2O is added to bring the total volume of the foregoing components to 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- For each sample, the 47.5 μL of rehydration solution is transferred to an Nfo RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 μL of 280 mM Magnesium-Acetate is added and is mixed well to initiate the reaction.
- The tubes are place into a suitable incubator block (e.g., set to a temperature of 37-39° C.) and are incubated for 4 minutes. For ultra-high sensitivity after 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator block. The total incubation time is 15-30 minutes. After the reaction is completed, the outcome of each reaction is typically analyzed by an endpoint method, such as a sandwich assay technique.
- A RPA reaction using fpg is performed using a modified protocol of Example 2. Each sample is established by reconstituting the Fpg RPA Freeze Dried Reaction Pellet of Example 1 with a suitable rehydration solution. The rehydration solution is prepared from the rehydration buffer of Example 1, amplification primers, template and an Fpg-probe (and water to a total volume of 47.5 μL per sample). The reaction is initiated by the addition of 2.5 μL of a 280 mM Magnesium-Acetate solution, bringing the final reaction volume to 50 μL per sample.
- For each sample, the rehydration solution is prepared by adding 2.4 μL of the first primer (10 μM), 2.4 μL of the second primer (10 μM), the Template and 0.6 μL of an Fpg-probe (10 μM) as described in Example 3. H2O is added to bring the total volume of the foregoing components to 18 μL. 29.5 μL of the rehydration buffer of Example 1 is added. The rehydration solution is then vortexed and is spun briefly.
- For each sample, the 47.5 μL of rehydration solution is transferred to an Fpg RPA Freeze Dried Reaction Pellet of Example 1. The sample is mixed by pipetting up and down until the entire pellet has been resuspended. For each sample, 2.5 μL of 280 mM Magnesium-Acetate is added and is mixed well to initiate the reaction.
- The tubes are place into a suitable thermal incubator/fluorometer (e.g., isothermally set to a temperature of 37-39° C.) and are incubated while fluorescence measurements are periodically taken. After 4 minutes, the samples are taken out of the incubator, vortexed, spun down and returned to the incubator/fluorometer. The total incubation/detection time is 20 minutes.
- The details of one or more embodiments of the invention have been set forth in the accompanying description above. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims.
- In the specification and the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Unless expressly stated otherwise, the techniques employed or contemplated herein are standard methodologies well known to one of ordinary skill in the art. All sequence citations, patents, patent applications and publications cited in this specification are hereby incorporated by reference herein, including the disclosures provided by U.S. Pat. No. 7,270,981 filed Feb. 21, 2003; U.S. Pat. No. 7,399,590 filed Sep. 1, 2004; U.S. Pat. No. 7,435,561 filed Jul. 25, 2006 and U.S. Pat. No. 7,485,428 filed Aug. 13, 2007, as well as, U.S. application Ser. No. 11/628,179, filed Aug. 30, 2007; Ser. No. 11/800,318 filed May 4, 2007 and 61/179,793 filed May 20, 2009.
Claims (3)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/705,150 US20150240298A1 (en) | 2009-06-05 | 2015-05-06 | Recombinase polymerase amplification reagents and kits |
| US17/865,671 US20230052199A1 (en) | 2009-06-05 | 2022-07-15 | Recombinase polymerase amplification reagents and kits |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18439709P | 2009-06-05 | 2009-06-05 | |
| PCT/US2010/037611 WO2010141940A1 (en) | 2009-06-05 | 2010-06-07 | Recombinase polymerase amplification reagents and kits |
| US201213375264A | 2012-02-09 | 2012-02-09 | |
| US14/705,150 US20150240298A1 (en) | 2009-06-05 | 2015-05-06 | Recombinase polymerase amplification reagents and kits |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/375,264 Division US9057097B2 (en) | 2009-06-05 | 2010-06-07 | Recombinase polymerase amplification reagents and kits |
| PCT/US2010/037611 Division WO2010141940A1 (en) | 2009-06-05 | 2010-06-07 | Recombinase polymerase amplification reagents and kits |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/865,671 Continuation US20230052199A1 (en) | 2009-06-05 | 2022-07-15 | Recombinase polymerase amplification reagents and kits |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150240298A1 true US20150240298A1 (en) | 2015-08-27 |
Family
ID=43298213
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/375,264 Active 2032-01-13 US9057097B2 (en) | 2009-06-05 | 2010-06-07 | Recombinase polymerase amplification reagents and kits |
| US14/705,150 Abandoned US20150240298A1 (en) | 2009-06-05 | 2015-05-06 | Recombinase polymerase amplification reagents and kits |
| US17/865,671 Pending US20230052199A1 (en) | 2009-06-05 | 2022-07-15 | Recombinase polymerase amplification reagents and kits |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/375,264 Active 2032-01-13 US9057097B2 (en) | 2009-06-05 | 2010-06-07 | Recombinase polymerase amplification reagents and kits |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/865,671 Pending US20230052199A1 (en) | 2009-06-05 | 2022-07-15 | Recombinase polymerase amplification reagents and kits |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US9057097B2 (en) |
| EP (3) | EP2438196B1 (en) |
| ES (1) | ES3022638T3 (en) |
| WO (1) | WO2010141940A1 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10161012B2 (en) * | 2017-02-22 | 2018-12-25 | National Taiwan University | Method and kit for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection |
| US10195610B2 (en) | 2014-03-10 | 2019-02-05 | Click Diagnostics, Inc. | Cartridge-based thermocycler |
| US10987674B2 (en) | 2016-04-22 | 2021-04-27 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
| WO2021195150A1 (en) * | 2020-03-23 | 2021-09-30 | Visby Medical, Inc. | Devices and methods for detection of target viruses |
| US11162130B2 (en) | 2017-11-09 | 2021-11-02 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
| US11167285B2 (en) | 2014-12-31 | 2021-11-09 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
| US11193119B2 (en) | 2016-05-11 | 2021-12-07 | Visby Medical, Inc. | Devices and methods for nucleic acid extraction |
| US20230313323A1 (en) * | 2020-03-26 | 2023-10-05 | Ionian Technologies, Llc | Assays for detecting coronavirus disease 2019 (covid-19) |
| WO2024030985A1 (en) | 2022-08-04 | 2024-02-08 | Abbott Laboratories | Assays for detecting monkeypox virus |
| US11952636B2 (en) | 2020-01-03 | 2024-04-09 | Visby Medical, Inc. | Devices and methods for antibiotic susceptibility testing |
| EP4553170A1 (en) * | 2023-11-13 | 2025-05-14 | midge medical GmbH | Pellet comprising a specific polymer species |
| WO2025104103A1 (en) * | 2023-11-13 | 2025-05-22 | Diebold Innovation Gmbh | Pellet comprising a specific polymer species |
Families Citing this family (67)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7399590B2 (en) | 2002-02-21 | 2008-07-15 | Asm Scientific, Inc. | Recombinase polymerase amplification |
| AU2003215391B2 (en) | 2002-02-21 | 2007-05-24 | Abbott Diagnostics Scarborough, Inc. | Recombinase Polymerase Amplification |
| US8030000B2 (en) | 2002-02-21 | 2011-10-04 | Alere San Diego, Inc. | Recombinase polymerase amplification |
| CA2616241C (en) | 2005-07-25 | 2012-02-07 | Asm Scientific, Inc. | Methods for multiplexing recombinase polymerase amplification |
| CA2650993C (en) | 2006-05-04 | 2015-06-16 | Asm Scientific, Inc. | Recombinase polymerase amplification |
| US9309557B2 (en) | 2010-12-17 | 2016-04-12 | Life Technologies Corporation | Nucleic acid amplification |
| US9334531B2 (en) | 2010-12-17 | 2016-05-10 | Life Technologies Corporation | Nucleic acid amplification |
| US9309566B2 (en) | 2010-12-17 | 2016-04-12 | Life Technologies Corporation | Methods, compositions, systems, apparatuses and kits for nucleic acid amplification |
| WO2010135310A1 (en) | 2009-05-20 | 2010-11-25 | Biosite Incorporated | Dna glycosylase/lyase and ap endonuclease substrates |
| EP2438196B1 (en) * | 2009-06-05 | 2016-12-21 | Alere San Diego, Inc. | Recombinase polymerase amplification reagents and kits |
| US9184099B2 (en) | 2010-10-04 | 2015-11-10 | The Board Of Trustees Of The Leland Stanford Junior University | Biosensor devices, systems and methods therefor |
| GB2499340B (en) | 2010-10-04 | 2015-10-28 | Genapsys Inc | Methods for sequencing nucleic acids |
| US9399217B2 (en) | 2010-10-04 | 2016-07-26 | Genapsys, Inc. | Chamber free nanoreactor system |
| CN110079588B (en) | 2010-12-17 | 2024-03-15 | 生命技术公司 | Methods, compositions, systems, instruments and kits for nucleic acid amplification |
| JP5961247B2 (en) * | 2011-04-07 | 2016-08-02 | アリーア サン ディエゴ, インコーポレイテッド | Recombinase polymerase amplification mixture monitoring |
| US8585973B2 (en) | 2011-05-27 | 2013-11-19 | The Board Of Trustees Of The Leland Stanford Junior University | Nano-sensor array |
| US9926596B2 (en) | 2011-05-27 | 2018-03-27 | Genapsys, Inc. | Systems and methods for genetic and biological analysis |
| US9352312B2 (en) | 2011-09-23 | 2016-05-31 | Alere Switzerland Gmbh | System and apparatus for reactions |
| WO2013082619A1 (en) | 2011-12-01 | 2013-06-06 | Genapsys, Inc. | Systems and methods for high efficiency electronic sequencing and detection |
| JP2013153709A (en) * | 2012-01-31 | 2013-08-15 | Fujirebio Inc | Method for correcting detection signal in isothermal nucleic acid amplification reaction |
| SG11201406717RA (en) * | 2012-04-19 | 2014-11-27 | Life Technologies Corp | Nucleic acid amplification |
| CN114214394A (en) | 2012-06-08 | 2022-03-22 | 爱奥尼安技术公司 | Nucleotide amplification reaction |
| CA2896879C (en) | 2013-03-15 | 2020-09-22 | Genapsys, Inc. | Systems and methods for biological analysis |
| CN103451291B (en) * | 2013-09-02 | 2014-11-05 | 中国农业科学院生物技术研究所 | RPA (Recombinase Polymerase Amplification) detection method for CrylAb/CrylAc insect-resistant gene |
| EP3792921A1 (en) | 2013-12-11 | 2021-03-17 | Genapsys, Inc. | Systems and methods for biological analysis and computation |
| WO2015161054A2 (en) | 2014-04-18 | 2015-10-22 | Genapsys, Inc. | Methods and systems for nucleic acid amplification |
| EP2966177A1 (en) * | 2014-07-09 | 2016-01-13 | Vetgenomics, S.L. | Methods for detecting target DNA sequences |
| CN107208075B (en) | 2014-09-29 | 2021-08-24 | 伊卢米纳剑桥有限公司 | Recombinase mutant |
| US10344336B2 (en) | 2015-06-09 | 2019-07-09 | Life Technologies Corporation | Methods, systems, compositions, kits, apparatus and computer-readable media for molecular tagging |
| US20180291413A1 (en) | 2015-10-06 | 2018-10-11 | Thermo Fisher Scientific Geneart Gmbh | Devices and methods for producing nucleic acids and proteins |
| GB201519565D0 (en) | 2015-11-05 | 2015-12-23 | Alere San Diego Inc | Sample preparation device |
| US10329601B2 (en) | 2015-12-28 | 2019-06-25 | Ionian Technologies, Inc. | Nicking and extension amplification reaction (NEAR) of Streptococcus species |
| EP3411499B1 (en) | 2016-02-05 | 2023-11-08 | Gen-Probe Incorporated | Dried amplification compositions |
| EP4556571A3 (en) | 2016-02-26 | 2025-09-03 | Abbott Diagnostics Scarborough, Inc. | Redox labeled oligonucleotide probes and their use |
| AU2017228401B2 (en) | 2016-03-04 | 2023-07-27 | Abbott Diagnostics Scarborough, Inc. | Automated nested recombinase polymerase amplification |
| KR102168695B1 (en) | 2016-03-28 | 2020-10-21 | 일루미나, 인코포레이티드 | Recombinase mutant |
| US11299777B2 (en) | 2016-04-04 | 2022-04-12 | Nat Diagnostics, Inc. | Isothermal amplification components and processes |
| US9617587B1 (en) | 2016-04-04 | 2017-04-11 | Nat Diagnostics, Inc. | Isothermal amplification components and processes |
| CN109790575A (en) | 2016-07-20 | 2019-05-21 | 吉纳普赛斯股份有限公司 | Systems and methods for nucleic acid sequencing |
| AU2018227436A1 (en) | 2017-02-28 | 2019-09-12 | Abbott Diagnostics Scarborough, Inc. | Microfluidic devices and related methods |
| EP4491721A3 (en) | 2017-05-19 | 2025-03-05 | Gen-Probe Incorporated | Dried compositions containing flap endonuclease |
| US11572580B2 (en) * | 2017-06-07 | 2023-02-07 | Takara Bio Inc. | Oligonucleotide preservation method |
| JP6701450B2 (en) * | 2017-07-05 | 2020-05-27 | オリシロジェノミクス株式会社 | DNA production method and DNA fragment ligation kit |
| RU2020100221A (en) | 2017-08-31 | 2021-09-30 | Иониан Текнолоджис, Ллс | REACTION OF AMPLIFICATION WITH RUPTURE AND ELONGATION (NEAR) OF VARIETIES OF THE RESPIRATORY SYNCITIAL VIRUS |
| WO2019055780A1 (en) | 2017-09-14 | 2019-03-21 | Alere San Diego Inc. | Detection of recombinase polymerase amplification using dual-hapten probe |
| EP3684951A4 (en) | 2017-09-21 | 2021-06-16 | Genapsys, Inc. | Systems and methods for nucleic acid sequencing |
| CN107893103A (en) * | 2017-11-29 | 2018-04-10 | 默禾医疗科技(上海)有限公司 | Recombinase and protein concentration when active level method in recombinase polymeric enzymatic amplification |
| CN112292460A (en) | 2018-06-12 | 2021-01-29 | 主基因有限公司 | Nucleic acid amplification method |
| CN108410954A (en) * | 2018-07-10 | 2018-08-17 | 默禾医疗科技(上海)有限公司 | The compounding method of reaction buffer in a kind of room temperature amplification reaction system |
| CN108866244A (en) * | 2018-08-31 | 2018-11-23 | 杭州奥盛仪器有限公司 | Detect RPA primer and probe, kit and its method of prawn irido virus |
| DE102018222357A1 (en) * | 2018-12-19 | 2020-06-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | In vitro method for the detection of at least one nucleic acid which is in a living being in whole blood outside the blood cells and device and kit therefor |
| GB201905303D0 (en) | 2019-04-15 | 2019-05-29 | Thermo Fisher Scient Geneart Gmbh | Multiplex assembly of nucleic acid molecules |
| NL2024019B1 (en) * | 2019-10-15 | 2021-06-17 | Univ Delft Tech | Detection of a target polynucleotide |
| GB201916379D0 (en) | 2019-11-11 | 2019-12-25 | Biocrucible Ltd | Biochemical reaction methods and reagents |
| WO2021220192A2 (en) | 2020-04-30 | 2021-11-04 | Stab Vida - Investigação E Serviços Em Ciências Biológicas, Lda | Method and portable device for detection of nucleic sequences in suspected coronavirus samples |
| WO2022078775A1 (en) * | 2020-10-14 | 2022-04-21 | Midge Medical Gmbh | Isothermal nucleic acid amplification methods for point-of-need diagnosis |
| EP3995592A1 (en) * | 2020-11-09 | 2022-05-11 | midge medical GmbH | Multimeric isothermal nucleic acid amplification methods for point-of-need diagnosis |
| CN116724127A (en) * | 2020-12-31 | 2023-09-08 | 生命技术公司 | Rehydration buffer solution and method |
| MX2023007842A (en) | 2021-01-08 | 2023-09-19 | Cellanome Inc | Devices and methods for analyzing biological samples. |
| CN113215269B (en) * | 2021-04-27 | 2022-07-26 | 中国农业大学 | Detection kit for visual detection of potato rot stem nematodes and application thereof |
| US20240210431A1 (en) | 2021-04-29 | 2024-06-27 | Abbott Laboratories | Systems and methods for pooling samples for high-throughput analysis |
| CN114085891A (en) | 2021-11-23 | 2022-02-25 | 广州达安基因股份有限公司 | Reverse transcription amplification system and method based on recombinase polymerase amplification technology |
| CN113981045B (en) | 2021-11-23 | 2025-09-16 | 广州达安基因股份有限公司 | Method for preparing isothermal amplification mixed enzyme system |
| CN114934100B (en) * | 2022-05-05 | 2024-08-06 | 江苏省食品药品监督检验研究院 | Kit for detecting residual DNA of Vero cells by using real-time fluorescence RAA method and detection method thereof |
| CO2022007673A1 (en) * | 2022-05-31 | 2022-06-10 | Corporacion Centro De Investig En Palma De Aceite | Composition and method of detection of phytomonas staheli by rpa-lfa |
| NL2033124B1 (en) | 2022-09-23 | 2024-03-29 | Rapidemic B V | Methods and device for multiple-label nucleic acid amplification and detection |
| CN115948515A (en) * | 2022-12-30 | 2023-04-11 | 圣湘生物科技股份有限公司 | Recombinase-mediated total freeze-drying constant temperature amplification system and its preparation method and application |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005118853A2 (en) * | 2004-06-01 | 2005-12-15 | Asm Scientific, Inc. | Recombinase polymerase amplification |
| WO2008035205A2 (en) * | 2006-05-04 | 2008-03-27 | Asm Scientific, Inc. | Recombinase polymerase amplification |
| WO2008090340A2 (en) * | 2007-01-23 | 2008-07-31 | Cambridge Enterprise Limited | Nucleic acid amplification and testing |
| US9057097B2 (en) * | 2009-06-05 | 2015-06-16 | Alere San Diego Inc. | Recombinase polymerase amplification reagents and kits |
| US10036057B2 (en) * | 2002-02-21 | 2018-07-31 | Alere San Diego, Inc. | Recombinase polymerase amplification |
Family Cites Families (73)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5430136A (en) | 1984-10-16 | 1995-07-04 | Chiron Corporation | Oligonucleotides having selectably cleavable and/or abasic sites |
| US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
| US4965188A (en) | 1986-08-22 | 1990-10-23 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme |
| US5858652A (en) | 1988-08-30 | 1999-01-12 | Abbott Laboratories | Detection and amplification of target nucleic acid sequences |
| GB8903627D0 (en) | 1989-02-17 | 1989-04-05 | Unilever Plc | Assays |
| ES2089038T3 (en) | 1990-01-26 | 1996-10-01 | Abbott Lab | IMPROVED PROCEDURE TO AMPLIFY WHITE NUCLEIC ACIDS APPLICABLE FOR THE REACTION IN THE POLYMERASE AND LIGASE CHAIN. |
| US5326692B1 (en) | 1992-05-13 | 1996-04-30 | Molecular Probes Inc | Fluorescent microparticles with controllable enhanced stokes shift |
| AU661505B2 (en) | 1990-05-07 | 1995-07-27 | Tapestry Pharmaceuticals, Inc. | Diagnostic applications of double D-loop formation |
| US5273881A (en) | 1990-05-07 | 1993-12-28 | Daikin Industries, Ltd. | Diagnostic applications of double D-loop formation |
| US5223414A (en) | 1990-05-07 | 1993-06-29 | Sri International | Process for nucleic acid hybridization and amplification |
| CA2087724C (en) | 1990-07-24 | 2003-09-16 | John J. Sninsky | Reduction of non-specific amplification during in vitro nucleic acid amplification using modified nucleic acid bases |
| US5455166A (en) | 1991-01-31 | 1995-10-03 | Becton, Dickinson And Company | Strand displacement amplification |
| US5556751A (en) | 1991-04-25 | 1996-09-17 | Amoco Corporation | Selective amplification system using Q-β replicase |
| CA2077135A1 (en) | 1991-08-30 | 1993-03-01 | Joh-E Ikeda | A method of dna amplification |
| US5733733A (en) | 1992-08-04 | 1998-03-31 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
| US5834202A (en) | 1992-08-04 | 1998-11-10 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
| WO1994003624A1 (en) | 1992-08-04 | 1994-02-17 | Auerbach Jeffrey I | Methods for the isothermal amplification of nucleic acid molecules |
| US5614389A (en) | 1992-08-04 | 1997-03-25 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
| CA2122203C (en) | 1993-05-11 | 2001-12-18 | Melinda S. Fraiser | Decontamination of nucleic acid amplification reactions |
| FR2708288B1 (en) | 1993-07-26 | 1995-09-01 | Bio Merieux | Method for amplification of nucleic acids by transcription using displacement, reagents and necessary for the implementation of this method. |
| US6165793A (en) | 1996-03-25 | 2000-12-26 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
| US6117679A (en) | 1994-02-17 | 2000-09-12 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
| US5648211A (en) | 1994-04-18 | 1997-07-15 | Becton, Dickinson And Company | Strand displacement amplification using thermophilic enzymes |
| US5942391A (en) | 1994-06-22 | 1999-08-24 | Mount Sinai School Of Medicine | Nucleic acid amplification method: ramification-extension amplification method (RAM) |
| US5705366A (en) | 1994-09-15 | 1998-01-06 | Johnson & Johnson Clinical Diagnostics, Inc. | Coamplification of target nucleic acids using volume exclusion agent in reaction composition, test kit and test device useful therefor |
| US5656430A (en) | 1995-06-07 | 1997-08-12 | Trevigen, Inc. | Oscillating signal amplifier for nucleic acid detection |
| US5916779A (en) | 1995-09-21 | 1999-06-29 | Becton, Dickinson And Company | Strand displacement amplification of RNA targets |
| US5731150A (en) | 1995-11-01 | 1998-03-24 | Chiron Diagnostic Corporation | IS6110 based molecular detection of mycobacterium tuberculosis |
| US5853990A (en) | 1996-07-26 | 1998-12-29 | Edward E. Winger | Real time homogeneous nucleotide assay |
| WO1998008975A1 (en) | 1996-08-29 | 1998-03-05 | Daikin Industries, Ltd. | Methods for targeting, enriching, detecting and/or isolating target nucleic acid sequence using reca-like recombinase |
| WO1998045474A1 (en) | 1997-04-04 | 1998-10-15 | Innogenetics N.V. | Isothermal polymerase chain reaction by cycling the concentration of divalent metal ions |
| US6245506B1 (en) | 1997-07-30 | 2001-06-12 | Bbi Bioseq, Inc. | Integrated sequencing device |
| WO1999060158A1 (en) | 1998-05-19 | 1999-11-25 | Laboratory Of Molecular Biophotonics | Solid phase for detecting nucleic acid and method for detecting nucleic acid |
| US6087112A (en) | 1998-12-30 | 2000-07-11 | Oligos Etc. Inc. | Arrays with modified oligonucleotide and polynucleotide compositions |
| EP1149175A2 (en) | 1999-01-11 | 2001-10-31 | President And Fellows Of Harvard College | Isothermal amplification of dna |
| WO2000046408A1 (en) | 1999-02-04 | 2000-08-10 | Sloan-Kettering Institute For Cancer Research | Process for dna replication |
| US6699693B1 (en) | 1999-02-04 | 2004-03-02 | Sloan-Kettering Institute For Cancer Research | Process for DNA replication |
| US6387621B1 (en) | 1999-04-27 | 2002-05-14 | University Of Utah Research Foundation | Automated analysis of real-time nucleic acid amplification |
| NO314091B1 (en) | 2000-01-12 | 2003-01-27 | Biotec Pharmacon Asa | Heat-labile uracil DNA glycosylase, DNA sequence encoding the enzyme, microorganism containing the DNA sequence, and use of the enzyme |
| WO2001070947A2 (en) | 2000-03-20 | 2001-09-27 | Maxygen, Inc. | Method for generating recombinant dna molecules in complex mixtures |
| US20020061530A1 (en) | 2000-07-31 | 2002-05-23 | Belotserkovskii Boris P. | Enhanced targeting of DNA sequences by recombinase protein and single-stranded homologous DNA probes using DNA analog activation |
| US6379899B1 (en) | 2001-03-13 | 2002-04-30 | Discoverx | Isothermal exponential RNA amplification in complex mixtures |
| DE60226856D1 (en) | 2001-04-20 | 2008-07-10 | Penn State Res Found | METHOD FOR MANIPULATING NUCLEIC ACIDS |
| US7112423B2 (en) | 2001-07-15 | 2006-09-26 | Keck Graduate Institute | Nucleic acid amplification using nicking agents |
| WO2004022701A2 (en) | 2001-07-15 | 2004-03-18 | Keck Graduate Institute | Exponential amplification of nucleic acids using nicking agents |
| EP1420069A4 (en) | 2001-08-20 | 2005-11-02 | Takara Bio Inc | Nucleic acid amplification methods |
| AU2002341898A2 (en) | 2001-09-28 | 2003-04-07 | University Of Delaware | Polymorphism detection and separation |
| KR100445560B1 (en) | 2001-10-31 | 2004-08-21 | (주)바이오넥스 | Method of manufacturing kit for isolating nucleic acids or biological materials, kit manufactured by the method, and apparatus using the kit |
| US7244562B2 (en) | 2001-11-01 | 2007-07-17 | Gene Check, Inc. | RecA assisted detection of mutations, single nucleotide polymorphisms and specific sequences |
| AU2003215391B2 (en) | 2002-02-21 | 2007-05-24 | Abbott Diagnostics Scarborough, Inc. | Recombinase Polymerase Amplification |
| US7399590B2 (en) | 2002-02-21 | 2008-07-15 | Asm Scientific, Inc. | Recombinase polymerase amplification |
| US20040137456A1 (en) | 2002-04-04 | 2004-07-15 | Hiroki Yokota | Method for identifying and characterizing individual dna molecules |
| US20030228611A1 (en) | 2002-05-01 | 2003-12-11 | President And Fellows Of Harvard College | Nucleic acid memory device |
| US6713262B2 (en) | 2002-06-25 | 2004-03-30 | Agilent Technologies, Inc. | Methods and compositions for high throughput identification of protein/nucleic acid binding pairs |
| WO2004007078A1 (en) | 2002-07-12 | 2004-01-22 | British Biocell International Limited | Lateral flow assay device and method |
| US20040038213A1 (en) | 2002-08-06 | 2004-02-26 | Kwon Jai W. | Genotyping by in situ PCR amplification of a polynucleotide in a tissue biopsy |
| AU2003274914A1 (en) | 2002-08-21 | 2004-03-11 | Epoch Biosciences, Inc. | Abasic site endonuclease assay |
| AU2003272438B2 (en) | 2002-09-20 | 2009-04-02 | New England Biolabs, Inc. | Helicase dependent amplification of nucleic acids |
| US7662594B2 (en) | 2002-09-20 | 2010-02-16 | New England Biolabs, Inc. | Helicase-dependent amplification of RNA |
| WO2004081224A2 (en) | 2003-03-11 | 2004-09-23 | Gene Check, Inc. | Reca-assisted allele specific oligonucleotide extension method |
| DE10315640A1 (en) | 2003-04-04 | 2004-10-14 | Ignatov, Konstantin | Process for the controlled release of components into a solution |
| JP2005110621A (en) | 2003-10-10 | 2005-04-28 | Aisin Seiki Co Ltd | Nucleic acid amplification method and nucleic acid amplification reagent kit |
| US20050191682A1 (en) | 2004-02-17 | 2005-09-01 | Affymetrix, Inc. | Methods for fragmenting DNA |
| US7745125B2 (en) | 2004-06-28 | 2010-06-29 | Roche Molecular Systems, Inc. | 2′-terminator related pyrophosphorolysis activated polymerization |
| WO2006040187A2 (en) | 2004-10-11 | 2006-04-20 | Epigenomics Ag | A method for the carry-over protection in dna amplification systems targeting methylation analysis achieved by a modified pre-treatment of nucleic acids |
| US20060110765A1 (en) | 2004-11-23 | 2006-05-25 | Wang Xiao B | Detection of nucleic acid variation by cleavage-amplification (CleavAmp) method |
| EP1896610A2 (en) * | 2005-05-03 | 2008-03-12 | Handylab, Inc. | Lyophilized pellets |
| CA2616241C (en) | 2005-07-25 | 2012-02-07 | Asm Scientific, Inc. | Methods for multiplexing recombinase polymerase amplification |
| US8357488B2 (en) | 2007-05-18 | 2013-01-22 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention | Primers and probes for the detection of streptococcus pneumoniae |
| US9689031B2 (en) | 2007-07-14 | 2017-06-27 | Ionian Technologies, Inc. | Nicking and extension amplification reaction for the exponential amplification of nucleic acids |
| JP2009139487A (en) | 2007-12-04 | 2009-06-25 | Nippon Sheet Glass Co Ltd | Erect life-size lens array plate |
| WO2010135310A1 (en) | 2009-05-20 | 2010-11-25 | Biosite Incorporated | Dna glycosylase/lyase and ap endonuclease substrates |
| CN114214394A (en) | 2012-06-08 | 2022-03-22 | 爱奥尼安技术公司 | Nucleotide amplification reaction |
-
2010
- 2010-06-07 EP EP10784225.4A patent/EP2438196B1/en active Active
- 2010-06-07 ES ES17186755T patent/ES3022638T3/en active Active
- 2010-06-07 WO PCT/US2010/037611 patent/WO2010141940A1/en not_active Ceased
- 2010-06-07 EP EP17186755.9A patent/EP3360974B1/en active Active
- 2010-06-07 EP EP25169258.8A patent/EP4596717A2/en active Pending
- 2010-06-07 US US13/375,264 patent/US9057097B2/en active Active
-
2015
- 2015-05-06 US US14/705,150 patent/US20150240298A1/en not_active Abandoned
-
2022
- 2022-07-15 US US17/865,671 patent/US20230052199A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10036057B2 (en) * | 2002-02-21 | 2018-07-31 | Alere San Diego, Inc. | Recombinase polymerase amplification |
| WO2005118853A2 (en) * | 2004-06-01 | 2005-12-15 | Asm Scientific, Inc. | Recombinase polymerase amplification |
| WO2008035205A2 (en) * | 2006-05-04 | 2008-03-27 | Asm Scientific, Inc. | Recombinase polymerase amplification |
| WO2008090340A2 (en) * | 2007-01-23 | 2008-07-31 | Cambridge Enterprise Limited | Nucleic acid amplification and testing |
| US9057097B2 (en) * | 2009-06-05 | 2015-06-16 | Alere San Diego Inc. | Recombinase polymerase amplification reagents and kits |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10195610B2 (en) | 2014-03-10 | 2019-02-05 | Click Diagnostics, Inc. | Cartridge-based thermocycler |
| US10960399B2 (en) | 2014-03-10 | 2021-03-30 | Visby Medical, Inc. | Cartridge-based thermocycler |
| US11167285B2 (en) | 2014-12-31 | 2021-11-09 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
| US12138624B2 (en) | 2014-12-31 | 2024-11-12 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
| US11273443B2 (en) | 2014-12-31 | 2022-03-15 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
| US10987674B2 (en) | 2016-04-22 | 2021-04-27 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
| US11529633B2 (en) | 2016-04-22 | 2022-12-20 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
| US12208394B2 (en) | 2016-04-22 | 2025-01-28 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
| US11193119B2 (en) | 2016-05-11 | 2021-12-07 | Visby Medical, Inc. | Devices and methods for nucleic acid extraction |
| US10161012B2 (en) * | 2017-02-22 | 2018-12-25 | National Taiwan University | Method and kit for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection |
| US11168354B2 (en) | 2017-11-09 | 2021-11-09 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
| US11162130B2 (en) | 2017-11-09 | 2021-11-02 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
| US12037635B2 (en) | 2017-11-09 | 2024-07-16 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
| US11952636B2 (en) | 2020-01-03 | 2024-04-09 | Visby Medical, Inc. | Devices and methods for antibiotic susceptibility testing |
| WO2021195150A1 (en) * | 2020-03-23 | 2021-09-30 | Visby Medical, Inc. | Devices and methods for detection of target viruses |
| US20230313323A1 (en) * | 2020-03-26 | 2023-10-05 | Ionian Technologies, Llc | Assays for detecting coronavirus disease 2019 (covid-19) |
| WO2024030985A1 (en) | 2022-08-04 | 2024-02-08 | Abbott Laboratories | Assays for detecting monkeypox virus |
| EP4553170A1 (en) * | 2023-11-13 | 2025-05-14 | midge medical GmbH | Pellet comprising a specific polymer species |
| WO2025104103A1 (en) * | 2023-11-13 | 2025-05-22 | Diebold Innovation Gmbh | Pellet comprising a specific polymer species |
Also Published As
| Publication number | Publication date |
|---|---|
| ES3022638T3 (en) | 2025-05-28 |
| US20120129173A1 (en) | 2012-05-24 |
| EP2438196A1 (en) | 2012-04-11 |
| EP2438196B1 (en) | 2016-12-21 |
| EP2438196A4 (en) | 2012-11-28 |
| EP3360974A1 (en) | 2018-08-15 |
| US20230052199A1 (en) | 2023-02-16 |
| EP4596717A2 (en) | 2025-08-06 |
| US9057097B2 (en) | 2015-06-16 |
| EP3360974B1 (en) | 2025-04-09 |
| WO2010141940A1 (en) | 2010-12-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230052199A1 (en) | Recombinase polymerase amplification reagents and kits | |
| US10501780B2 (en) | Compositions for in situ nucleic acid analysis | |
| US8288522B2 (en) | Detection of nucleic acids through amplification of surrogate nucleic acids | |
| AU2010298202B2 (en) | Detection of nucleic acids in crude matrices | |
| US20080193946A1 (en) | Universal and Target Specific Reagent Beads for Nucleic Acid Amplification | |
| US20120190027A1 (en) | Ligation-based method of normalized quantification of nucleic acids | |
| US20220170086A1 (en) | Looped primer and loop-de-loop method for detecting target nucleic acid | |
| US9090926B2 (en) | Method for cell lysis and PCR within the same reaction chamber | |
| JP5798631B2 (en) | Method for cell lysis in RT-PCR reaction buffer | |
| US20250136956A1 (en) | Improved enzyme pellet and preparation method therefor and use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ALERE SAN DIEGO INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PIEPENBURG, OLAF;ARMES, NIALL A.;REEL/FRAME:035575/0571 Effective date: 20120130 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| AS | Assignment |
Owner name: ABBOTT DIAGNOSTICS SCARBOROUGH, INC., MAINE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALERE SAN DIEGO INC.;REEL/FRAME:054604/0936 Effective date: 20201209 |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
| STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: REPLY BRIEF FILED AND FORWARDED TO BPAI |
|
| STCV | Information on status: appeal procedure |
Free format text: APPEAL READY FOR REVIEW |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |