US20150218280A1 - CD20 scFv-ELPs METHODS AND THERAPEUTICS - Google Patents
CD20 scFv-ELPs METHODS AND THERAPEUTICS Download PDFInfo
- Publication number
- US20150218280A1 US20150218280A1 US14/420,308 US201314420308A US2015218280A1 US 20150218280 A1 US20150218280 A1 US 20150218280A1 US 201314420308 A US201314420308 A US 201314420308A US 2015218280 A1 US2015218280 A1 US 2015218280A1
- Authority
- US
- United States
- Prior art keywords
- scfv
- elp
- polypeptide
- cell
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 title claims description 103
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 title claims description 103
- 239000003814 drug Substances 0.000 title claims description 33
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 135
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 110
- 229920001184 polypeptide Polymers 0.000 claims abstract description 102
- 239000000203 mixture Substances 0.000 claims abstract description 51
- 210000004027 cell Anatomy 0.000 claims description 198
- 206010028980 Neoplasm Diseases 0.000 claims description 44
- 238000011282 treatment Methods 0.000 claims description 44
- 230000006907 apoptotic process Effects 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 39
- 108091033319 polynucleotide Proteins 0.000 claims description 36
- 102000040430 polynucleotide Human genes 0.000 claims description 36
- 239000002157 polynucleotide Substances 0.000 claims description 36
- 150000001413 amino acids Chemical class 0.000 claims description 32
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 27
- 230000001225 therapeutic effect Effects 0.000 claims description 17
- 208000035475 disorder Diseases 0.000 claims description 14
- 238000001727 in vivo Methods 0.000 claims description 14
- 201000010099 disease Diseases 0.000 claims description 13
- 201000011510 cancer Diseases 0.000 claims description 12
- 238000000338 in vitro Methods 0.000 claims description 12
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 11
- 230000008685 targeting Effects 0.000 claims description 11
- 239000013598 vector Substances 0.000 claims description 10
- 239000012798 spherical particle Substances 0.000 claims description 9
- 230000003211 malignant effect Effects 0.000 claims description 6
- 229940124597 therapeutic agent Drugs 0.000 claims description 6
- 208000023275 Autoimmune disease Diseases 0.000 claims description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 2
- 239000002246 antineoplastic agent Substances 0.000 claims description 2
- 108091081062 Repeated sequence (DNA) Proteins 0.000 claims 1
- 229940041181 antineoplastic drug Drugs 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 description 54
- 230000004927 fusion Effects 0.000 description 53
- 102000004169 proteins and genes Human genes 0.000 description 51
- 235000018102 proteins Nutrition 0.000 description 47
- 229940024606 amino acid Drugs 0.000 description 31
- 239000002105 nanoparticle Substances 0.000 description 31
- 235000001014 amino acid Nutrition 0.000 description 30
- 230000027455 binding Effects 0.000 description 30
- 239000003795 chemical substances by application Substances 0.000 description 30
- 230000007704 transition Effects 0.000 description 26
- 239000012634 fragment Substances 0.000 description 25
- 239000002953 phosphate buffered saline Substances 0.000 description 24
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 24
- 230000000694 effects Effects 0.000 description 21
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 20
- 108090000672 Annexin A5 Proteins 0.000 description 18
- 102000004121 Annexin A5 Human genes 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 17
- 229940079593 drug Drugs 0.000 description 16
- 239000012071 phase Substances 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- 102000005962 receptors Human genes 0.000 description 15
- 238000004132 cross linking Methods 0.000 description 14
- 102000037865 fusion proteins Human genes 0.000 description 14
- 108020001507 fusion proteins Proteins 0.000 description 14
- 230000006882 induction of apoptosis Effects 0.000 description 14
- -1 sugars Chemical class 0.000 description 14
- 241000282414 Homo sapiens Species 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 238000010186 staining Methods 0.000 description 12
- 238000000604 cryogenic transmission electron microscopy Methods 0.000 description 11
- 210000000952 spleen Anatomy 0.000 description 11
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 230000003833 cell viability Effects 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 239000008194 pharmaceutical composition Substances 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 230000035508 accumulation Effects 0.000 description 8
- 238000009825 accumulation Methods 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 8
- 238000000502 dialysis Methods 0.000 description 8
- 210000004185 liver Anatomy 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 8
- 150000007523 nucleic acids Chemical class 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 239000012980 RPMI-1640 medium Substances 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 230000000712 assembly Effects 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 230000001351 cycling effect Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000000569 multi-angle light scattering Methods 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 7
- 230000035899 viability Effects 0.000 description 7
- 102000011727 Caspases Human genes 0.000 description 6
- 108010076667 Caspases Proteins 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 6
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 6
- 229960000723 ampicillin Drugs 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 235000013922 glutamic acid Nutrition 0.000 description 6
- 239000004220 glutamic acid Substances 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000002983 circular dichroism Methods 0.000 description 5
- 238000002296 dynamic light scattering Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 229960004198 guanidine Drugs 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 235000018977 lysine Nutrition 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000004153 renaturation Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000001338 self-assembly Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 4
- 208000003950 B-cell lymphoma Diseases 0.000 description 4
- 101710132601 Capsid protein Proteins 0.000 description 4
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 4
- 206010039509 Scab Diseases 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical class NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 4
- 229920001222 biopolymer Polymers 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000003196 chaotropic effect Effects 0.000 description 4
- 238000004624 confocal microscopy Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 238000010587 phase diagram Methods 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001742 protein purification Methods 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 4
- 229960004641 rituximab Drugs 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 3
- LFTRJWKKLPVMNE-RCBQFDQVSA-N 2-[[(2s)-2-[[2-[[(2s)-1-[(2s)-2-amino-3-methylbutanoyl]pyrrolidine-2-carbonyl]amino]acetyl]amino]-3-methylbutanoyl]amino]acetic acid Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O LFTRJWKKLPVMNE-RCBQFDQVSA-N 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 108010001857 Cell Surface Receptors Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 3
- 108010014258 Elastin Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 102000008100 Human Serum Albumin Human genes 0.000 description 3
- 108091006905 Human Serum Albumin Proteins 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- 231100000070 MTS assay Toxicity 0.000 description 3
- 238000000719 MTS assay Methods 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical compound CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000005775 apoptotic pathway Effects 0.000 description 3
- 230000005756 apoptotic signaling Effects 0.000 description 3
- 238000011717 athymic nude mouse Methods 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000009169 immunotherapy Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 102000006240 membrane receptors Human genes 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 230000005945 translocation Effects 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 238000013042 tunel staining Methods 0.000 description 3
- 108010054022 valyl-prolyl-glycyl-valyl-glycine Proteins 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical group OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical class NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 2
- 239000012099 Alexa Fluor family Substances 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102000016942 Elastin Human genes 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 2
- 201000011176 T-cell adult acute lymphocytic leukemia Diseases 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 230000001640 apoptogenic effect Effects 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 210000002665 bowman capsule Anatomy 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000007398 colorimetric assay Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- XVOYSCVBGLVSOL-UHFFFAOYSA-N cysteic acid Chemical class OC(=O)C(N)CS(O)(=O)=O XVOYSCVBGLVSOL-UHFFFAOYSA-N 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000007783 downstream signaling Effects 0.000 description 2
- 229920002549 elastin Polymers 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000036732 histological change Effects 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 238000001155 isoelectric focusing Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- DLBFLQKQABVKGT-UHFFFAOYSA-L lucifer yellow dye Chemical compound [Li+].[Li+].[O-]S(=O)(=O)C1=CC(C(N(C(=O)NN)C2=O)=O)=C3C2=CC(S([O-])(=O)=O)=CC3=C1N DLBFLQKQABVKGT-UHFFFAOYSA-L 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000424 optical density measurement Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical class C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 2
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000036326 tumor accumulation Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 231100000747 viability assay Toxicity 0.000 description 2
- 238000003026 viability measurement method Methods 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical class OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 1
- MRTPISKDZDHEQI-YFKPBYRVSA-N (2s)-2-(tert-butylamino)propanoic acid Chemical class OC(=O)[C@H](C)NC(C)(C)C MRTPISKDZDHEQI-YFKPBYRVSA-N 0.000 description 1
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical class CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 description 1
- GLUBGSQJZSHRHV-FCBBYGLXSA-N (3s,9s)-5,7-difluoro-3,9-bis[[(2s)-2-[[(2s)-3-methyl-2-(phenylmethoxycarbonylamino)butanoyl]amino]propanoyl]amino]-4,6,8-trioxoundecanedioic acid Chemical compound N([C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)C(F)C(=O)C(F)C(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)OCC=1C=CC=CC=1)C(C)C)C(=O)OCC1=CC=CC=C1 GLUBGSQJZSHRHV-FCBBYGLXSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical compound NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- QEDXSHCYPROEOK-UHFFFAOYSA-N 3-phosphanylpropanoic acid Chemical compound OC(=O)CCP QEDXSHCYPROEOK-UHFFFAOYSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Chemical group OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 230000024704 B cell apoptotic process Effects 0.000 description 1
- 102000011185 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 108050001413 B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 229940123169 Caspase inhibitor Drugs 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- QWIZNVHXZXRPDR-UHFFFAOYSA-N D-melezitose Natural products O1C(CO)C(O)C(O)C(O)C1OC1C(O)C(CO)OC1(CO)OC1OC(CO)C(O)C(O)C1O QWIZNVHXZXRPDR-UHFFFAOYSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101150118343 ELP gene Proteins 0.000 description 1
- 102100033167 Elastin Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101000851054 Homo sapiens Elastin Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical class O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical class CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical class NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical class OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical group OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical class NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical group OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- XIGSAGMEBXLVJJ-YFKPBYRVSA-N L-homocitrulline Chemical class NC(=O)NCCCC[C@H]([NH3+])C([O-])=O XIGSAGMEBXLVJJ-YFKPBYRVSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Chemical class CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical class CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical group C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical group C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical group OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 101150098873 MS4A1 gene Proteins 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101150008132 NDE1 gene Proteins 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Chemical class OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Chemical class NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Chemical class OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 102000001788 Proto-Oncogene Proteins c-raf Human genes 0.000 description 1
- 108010029869 Proto-Oncogene Proteins c-raf Proteins 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241001138501 Salmonella enterica Species 0.000 description 1
- 108010077895 Sarcosine Chemical class 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000194026 Streptococcus gordonii Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108700042805 TRU-015 Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Chemical group CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Chemical group 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Chemical group C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- MIFGOLAMNLSLGH-QOKNQOGYSA-N Z-Val-Ala-Asp(OMe)-CH2F Chemical compound COC(=O)C[C@@H](C(=O)CF)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)OCC1=CC=CC=C1 MIFGOLAMNLSLGH-QOKNQOGYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- BLQCQNFLEGAHPA-RRKCRQDMSA-N [[(2r,3s,5r)-5-(5-bromo-2,4-dioxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C(Br)=C1 BLQCQNFLEGAHPA-RRKCRQDMSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940124691 antibody therapeutics Drugs 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000011210 chromatographic step Methods 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000012899 de-mixing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229920000359 diblock copolymer Polymers 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Chemical class OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Chemical group OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 125000005179 haloacetyl group Chemical group 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000037417 hyperactivation Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 108091006086 inhibitor proteins Proteins 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 238000007422 luminescence assay Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- QWIZNVHXZXRPDR-WSCXOGSTSA-N melezitose Chemical compound O([C@@]1(O[C@@H]([C@H]([C@@H]1O[C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O)CO)CO)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O QWIZNVHXZXRPDR-WSCXOGSTSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 229950005751 ocrelizumab Drugs 0.000 description 1
- 229960002450 ofatumumab Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000013105 post hoc analysis Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003461 sulfonyl halides Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 238000012349 terminal deoxynucleotidyl transferase dUTP nick-end labeling Methods 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 230000010512 thermal transition Effects 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Chemical class ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 230000002476 tumorcidal effect Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Chemical group OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229950000815 veltuzumab Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- A61K47/48561—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/6435—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a connective tissue peptide, e.g. collagen, fibronectin or gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6849—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/78—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/735—Fusion polypeptide containing domain for protein-protein interaction containing a domain for self-assembly, e.g. a viral coat protein (includes phage display)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
Definitions
- Non-Hodgkin Lymphoma accounts for 4% of all reported cancers.
- the most prescribed course of treatment is a regimen of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP).
- the CHOP regimen developed in the 70's, is effective in 90% of the patients but is responsible for severe side effects.
- NHL is characterized by increased production of malignant B-cells, which can be targeted specifically through cell-surface CD20.
- Antibodies against CD20 have been developed for NHL and have successfully made their way to the clinic. The most prominent example is RituximabTM, a chimeric antibody that targets malignant as well as normal B-cells. Crosslinking of RituximabTM using a secondary antibody against the Fc region promotes cell apoptosis, which led to the observation that CD20-mediated apoptosis can be potentiated through strategies that induce multivalency.
- Multivalent antibodies against CD20 are potent inhibitors of the MAP Kinase pathway and upregulate Raf-1 kinase inhibitor protein (RKIP), which promotes apoptosis.
- RKIP Raf-1 kinase inhibitor protein
- recombinant polypeptides comprising, or alternatively consisting essentially of, or yet further consisting of an elastin-like peptide (ELP) and a scFv, or a biological equivalent of the scFv.
- ELP elastin-like peptide
- a scFv refers to a single-chain variable fragment of an antibody or ligand.
- Another aspect relates to isolated polynucleotides encoding the recombinant scFv-ELP polypeptides as described herein. Further aspects relate to vectors and/or host cells comprising the polynucleotides encoding the recombinant scFv-ELP. In yet further aspects relate to compositions comprising, or alternatively consisting essentially of, or yet further consisting of at least two polypeptides, described herein, organized in a cylindrical particle or a spherical particle, further consisting of a core comprised of the scFv of the recombinant polypeptide.
- compositions comprising, or alternatively consisting essentially of, or yet further consisting of a carrier and the polypeptide described herein, a polynucleotide described herein, or vectors and/or host cells comprising, or alternatively consisting essentially of, or yet further consisting of a polynucleotide described herein.
- Still further aspects relate to methods for preparing a therapeutic polypeptide, comprising, or alternatively consisting essentially of, or yet further consisting of: expressing the polypeptide of this disclosure in a suitable expression system. Still further aspects relate to methods for denaturing and refolding the polypeptide of this disclosure. Also provided are methods of denaturing and refolding of the polypeptide at least twice, or at least thrice, or at least four times.
- Another method aspect relates to a method for inducing apoptosis of a CD20+ cell comprising, or alternatively consisting essentially of, or yet further consisting of contacting the cell with an effective amount of the polypeptide of a recombinant scFv-ELP polypeptide described herein where the scFv component of the ELP is the single chain variable region from the anti-CD20 antibody.
- CD20-related disorder such as treating CD20 expressing cancer or autoimmune disease, comprising, or alternatively consisting essentially of, or yet further consisting of administering to a patient in need of such treatment a recombinant scFv-ELP polypeptide described herein where the scFv component of the ELP is the single chain variable region from the anti-CD20 antibody or administering the polynucleotide encoding such polypeptides.
- a further aspect relates to a method for targeting a scFv-ELP to a cell comprising, or alternatively consisting essentially of, or yet further consisting of contacting the cell with an effective amount of the polypeptide described herein, wherein the scFv component of the scFv-ELP binds to a cellular component of the cell.
- the method is useful therapeutically and to screen for new molecules or agents that may affect the apoptotic pathway. For example, a test drug or agent is contacted with the cell, the polypeptide under conditions favorable to binding of the polypeptide to the cell receptor.
- the ability of the agent to inhibit the binding of the polypeptide to the cell receptor would be an indication that the test drug or agent is a candidate therapeutic for regulation of the cell through that receptor, e.g., apoptosis through binding of the CD20 cell surface receptor.
- FIGS. 1A-1C show phase diagrams of ELP and scFv ELP fusions.
- FIG. 1A Phase diagram of ELP A192
- FIG. 1B Phase diagram of scFv A192
- FIG. 1C Linear regression shows a concentration dependent change in transition temperature.
- FIG. 2 shows the crosslinking of surface bound CD20 by a secondary antibody promotes translocation of the cross-linked complex to lipid rafts causing downstream signaling of apoptotic pathways.
- FIG. 3 depicts the structure of the scFv-ELP.
- the scFv fragment was genetically fused to the N-terminus of ELP.
- the ELP was fused to the variable light chain of the scFv.
- the plasmid containing the fusion was transformed into E. coli and expressed.
- FIGS. 4A-4B demonstrate the properties of the genetically expressed scFv ELP fusions.
- FIG. 4A scFv A192 can be purified using inverse temperature cycling (ITC). R-Reducing conditions, NP-Non-reducing conditions
- FIG. 4B scFv A192 assembles particles with hydrodynamic radius of ⁇ 32 nm whereas A192 is ⁇ 6 nm.
- FIGS. 5A-5B depict the genetically expressed scFv assemble monodisperse spherical particles.
- FIG. 5A Uranyl Acetate contrast enhanced transmission electron microscopy (TEM) images of scFv A192 reveals nanoparticles, which are 51.7 ⁇ 12.4 nm wide.
- FIG. 5B Cryo TEM images of scFv A192 show monodisperse particles of 48.1 ⁇ 11.8 nm in diameter. Scale bar represents 50 nm.
- TEM transmission electron microscopy
- FIG. 6 shows that scFv fusion reduces ELP transition temperature. Fusion of scFv to the ELP drops the transition temperature ⁇ 20° C. The drop in transition temperature correlates with nanoparticle assembly.
- FIGS. 7A-H demonstrates scFv CD20 recognition using confocal microscopy.
- Panels A to D show Rhodamine (RHD) labeled scFV A192 forms distinct punctate bodies on Raji cell surface.
- Panels E to H show no scFv A192 binding on CEM cells.
- FIGS. 8A-F show the recognition of CD20 surface antigen by the scFv-ELPs.
- FIGS. 8A to 8C show RDH labeled scFv A192 forms distinct punctate bodies on CD20‘+’ve Raji cell surface.
- FIGS. 8D-F show no scFv A192 binding on CD20‘ ⁇ ’ve CEM cells.
- FIGS. 9A-9H show that unlabeled CD20 antibody abolishes scFv CD20 binding.
- Antibody treated CD20+ Raji cells FIG. 9A-D , show no scFv A192 binding.
- Untreated Raji cells FIG. 9E-H show scFv A192 binding.
- FIG. 10 show scFv ELP induce Raji cell apoptosis.
- Annexin V staining show induction of apoptosis in CD20+ Raji cells (Left) and not in CD20-CEM cells (Right).
- FIG. 11 depicts a MTS assay that shows selective killing of CD20+ Raji cells.
- the high IC50 of scFV ELP can be attributed to self-assembly of scFv ELP into nanoparticles initiated by the scFv tag.
- FIGS. 12A-F show that scFv ELP induce Raji cell apoptosis.
- Annexin V (ANX) staining show induction of apoptosis in Cd20 ‘+’ve Raji cells (top) and not in Cd20 ‘ ⁇ ’ve CEM cells (bottom).
- FIG. 13 depicts the scheme used to make the scFv-ELP DNA constructs described in Example 1.
- FIGS. 14A-14B show that Antibody Core Protein Polymer Nanoworms (ACPPNs) enhance apoptotic signaling.
- FIG. 14A Expression of a fusion between a single chain antibody (scFv) and an environmentally-responsive protein polymer (i.e. ELPs) yields stable nanoworms. The nanoworms target cell-surface CD20 receptor, inducing apoptosis in B-cells and hence will be ideal for lymphoma therapies.
- FIG. 14B An anti-CD20 scFv consisting of both a heavy and light chain was fused to the amino terminus of an elastin-like polypeptide (ELP). The ELP protein polymer, A192, was selected to promote solubility at physiological conditions and phase separation upon binding the cell surface.
- ELP protein polymer A192
- FIGS. 15A-15B depict renaturation of scFv fusion forms ACPPNs.
- FIG. 15A cryoTEM images of ‘raw’ scFv fusion form spherical assemblies with a diameter of 48.1 ⁇ 11.8 nm.
- FIG. 15B cryoTEM images of ‘refolded’ particles show a major population of ‘nanoworms’ with lengths of 56.2 ⁇ 15.9 nm with a minor spherical particles with a diameter of 27.4 ⁇ 7.5 nm. Scale bar represents 100 nm.
- FIGS. 16A-16C show that ACPPNs competitively target CD20+ cells.
- FIG. 16A Panels i-iii and vii-ix show CD20 recognition by RHD labeled RTXN on both Raji and SU-DHL-7 cells. RHD labeled RTXN forms a ring pattern around the target cell. Crosslinking surface bound RTXN by a 2° goat Anti human Fc (Panels iv-vi and x-xii) shows the ring pattern shift to a more punctate appearance.
- FIG. 16B Panels i-iii show recognition of surface CD20 by RHD labeled ACPPNs. ACPPNs binding also forms a punctate appearance similar to crosslinked RTXN.
- FIGS. 17A-17F show ACPPNs reduce viability of CD20+ human lymphoma cell lines by inducing apoptosis.
- FIG. 17A Trypan blue exclusion showed a significant increase in trypan blue positive cells with increasing concentrations of ACPPNs.
- FIG. 17B CD20+ cells, Raji, and SU-DHL-7, show a concentration dependent reduction in cell viability.
- the calculated IC50s for Raji and SU-DHL-7 are 32 and 41 ⁇ M respectively CD20 ⁇ , CEM, are less effected by ACPPNs treatment.
- the IC50 for CEM cells is 294 ⁇ M which is ten times higher than ACPPNs.
- FIG. 17A Trypan blue exclusion showed a significant increase in trypan blue positive cells with increasing concentrations of ACPPNs.
- FIG. 17B CD20+ cells, Raji, and SU-DHL-7, show a concentration dependent reduction in cell viability.
- ACPPNs induces apoptosis to the same extent as 2° GAH crosslinked RTXN.
- FIGS. FIGS. E-F ACPPN treatment substantially increased caspase activity in both Raji and SU-DHL-7 cells.
- FIGS. 18A-18J show that ACPPNs treatment shows relatively high tumor accumulation and reduces tumor burden in Raji xenografts.
- compositions and methods include the recited elements, but do not exclude others.
- Consisting essentially of when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination when used for the intended purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants or inert carriers. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.
- composition is also intended to encompass a combination of active agent and another carrier, e.g., compound or composition, inert (for example, a detectable agent or label) or active, such as an adjuvant, diluent, binder, stabilizer, buffers, salts, lipophilic solvents, preservative, adjuvant or the like.
- carrier e.g., compound or composition
- inert for example, a detectable agent or label
- active such as an adjuvant, diluent, binder, stabilizer, buffers, salts, lipophilic solvents, preservative, adjuvant or the like.
- Carriers also include pharmaceutical excipients and additives proteins, peptides, amino acids, lipids, and carbohydrates (e.g., sugars, including monosaccharides, di-, tri-, tetra-, and oligosaccharides; derivatized sugars such as alditols, aldonic acids, esterified sugars and the like; and polysaccharides or sugar polymers), which can be present singly or in combination, comprising alone or in combination 1-99.99% by weight or volume.
- Exemplary protein excipients include serum albumin such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, and the like.
- amino acid/antibody components which can also function in a buffering capacity, include alanine, glycine, arginine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like.
- Carbohydrate excipients are also intended within the scope of this invention, examples of which include but are not limited to monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like; disaccharides, such as lactose, sucrose, trehalose, cellobiose, and the like; polysaccharides, such as raffinose, melezitose, maltodextrins, dextrans, starches, and the like; and alditols, such as mannitol, xylitol, maltitol, lactitol, xylitol sorbitol (glucitol) and myoinositol.
- monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like
- disaccharides such as lactose, sucrose
- pharmaceutically acceptable carrier refers to reagents, cells, compounds, materials, compositions, and/or dosage forms that are not only compatible with the cells and other agents to be administered therapeutically, but also are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other complication commensurate with a reasonable benefit/risk ratio.
- Pharmaceutically acceptable carriers suitable for use in the present invention include liquids, semi-solid (e.g., gels) and solid materials (e.g., cell scaffolds and matrices, tubes sheets and other such materials as known in the art and described in greater detail herein).
- biodegradable materials may be designed to resist degradation within the body (non-biodegradable) or they may be designed to degrade within the body (biodegradable, bioerodable).
- a biodegradable material may further be bioresorbable or bioabsorbable, i.e., it may be dissolved and absorbed into bodily fluids (water-soluble implants are one example), or degraded and ultimately eliminated from the body, either by conversion into other materials or breakdown and elimination through natural pathways.
- a “pharmaceutical composition” is intended to include the combination of an active agent with a carrier, inert or active, making the composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.
- a mammal includes but is not limited to a human, a feline, a canine, a simian, a murine, a bovine, an equine, a porcine or an ovine.
- purified protein or peptide as used herein, is intended to refer to a composition, isolatable from other components, wherein the protein or peptide is purified to any degree relative to its naturally-obtainable state.
- a purified protein or peptide therefore also refers to a protein or peptide, free from the environment in which it may naturally occur.
- therapeutic refers to an agent or component capable of inducing a biological effect in vivo and/or in vitro.
- the biological effect may be useful for treating and/or preventing a condition, disorder, or disease in a subject or patient.
- a therapeutic may include, without limitation, a small molecule, a nucleic acid, or a polypeptide.
- CD20 or “B-lymphocyte antigen CD20” refers to a protein expressed on the surface of B-cells. In humans, CD20 is encoded by the MS4A1 gene. “Anti-CD20” or “Anti-CD20 antibody” refers to an antibody that specifically recognizes the CD20 antigen. Some current therapeutics are anti-CD20 antibodies. These include, for example, Rituximab, Ofatumumab, AME-133v (by Applied Molecular Evolution), Ocrelizumab for multiple sclerosis, TRU-015 (by Trubion), and IMMU-106 (veltuzumab).
- the term “biological equivalent thereof” is used synonymously with “equivalent” unless otherwise specifically intended.
- the term intends those having minimal homology while still maintaining desired structure or functionality.
- any polynucleotide, polypeptide or protein mentioned herein also includes equivalents thereof.
- an equivalent intends at least about 60%, or 65%, or 70%, or 75%, or 80% homology or identity and alternatively, at least about 85%, or alternatively at least about 90%, or alternatively at least about 95%, or alternatively 98% percent homology or identity and exhibits substantially equivalent biological activity to the reference protein, polypeptide or nucleic acid.
- a biological equivalent is a peptide encoded by a nucleic acid that hybridizes under stringent conditions to a nucleic acid or complement that encodes the peptide.
- Hybridization reactions can be performed under conditions of different “stringency”. In general, a low stringency hybridization reaction is carried out at about 40° C. in about 10 ⁇ SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50° C. in about 6 ⁇ SSC, and a high stringency hybridization reaction is generally performed at about 60° C. in about 1 ⁇ SSC.
- Hybridization reactions can also be performed under “physiological conditions” which is well known to one of skill in the art.
- a non-limiting example of a physiological condition is the temperature, ionic strength, pH and concentration of Mg 2+ normally found in a cell.
- An equivalent polynucleotide is one that hybridizes under stringent conditions to the reference polynucleotide or the complement of the reference polynucleotide, an in one aspect, having similar biological activity as the reference polynucleotide.
- a polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) having a certain percentage (for example, about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 97%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences.
- the alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Current Protocols in Molecular Biology (Ausubel et al., eds. 1987) Supplement 30, section 7.7.18, Table 7.7.1.
- default parameters are used for alignment.
- a preferred alignment program is BLAST, using default parameters.
- “Homology” or “identity” or “similarity” refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An “unrelated” or “non-homologous” sequence shares less than 40% identity, or alternatively less than 25% identity, with one of the sequences of the present invention.
- polynucleotide or polypeptide refers to a polynucleotide or a polypeptide having a substantial homology or identity to the reference polynucleotide or polypeptide or one that hybridizes under conditions of high stringency to the reference polynucleotide or its complement.
- An equivalent polypeptide is encoded by a polynucleotide that hybridizes to a polynucleotide or its complement that expresses the reference polypeptide.
- a “substantial homology” is greater than about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 98% homology.
- expression refers to the process by which polynucleotides are transcribed into mRNA and/or the process by which the transcribed mRNA is subsequently being translated into peptides, polypeptides, or proteins. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in an eukaryotic cell.
- encode refers to a polynucleotide which is said to “encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof.
- the antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.
- Regulatory polynucleotide sequences intends any one or more of promoters, operons, enhancers, as known to those skilled in the art to facilitate and enhance expression of polynucleotides.
- An “expression vehicle” is a vehicle or a vector, non-limiting examples of which include viral vectors or plasmids, that assist with or facilitate expression of a gene or polynucleotide that has been inserted into the vehicle or vector.
- a “delivery vehicle” is a vehicle or a vector that assists with the delivery of an exogenous polynucleotide into a target cell.
- the delivery vehicle may assist with expression or it may not, such as traditional calcium phosphate transfection compositions.
- scFv refers to a single-chain variable fragment.
- scFv is a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a linker peptide.
- the linker peptide can be from about 5 to 40 amino acids or from about 10 to 30 amino acids or about 5, 10, 15, 20, 25, 30, 35, or 40 amino acids in length.
- Single-chain variable fragments lack the constant Fc region found in complete antibody molecules, and, thus, the common binding sites (e.g., Protein G) used to purify antibodies. These fragments can often be purified or immobilized using Protein L, since Protein L interacts with the variable region of kappa light chains.
- an effective amount refers to the amount of an active agent or a pharmaceutical composition sufficient to induce a desired biological and/or therapeutic result. That result can be alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system.
- the effective amount will vary depending upon the health condition or disease stage of the subject being treated, timing of administration, the manner of administration and the like, all of which can be determined readily by one of ordinary skill in the art.
- the terms “treating,” “treatment” and the like are used herein to mean obtaining a desired pharmacologic and/or physiologic effect.
- the effect may be prophylactic in terms of completely or partially preventing a disorder or sign or symptom thereof, and/or may be therapeutic in terms of a partial or complete cure for a disorder and/or adverse effect attributable to the disorder.
- the term CD20+ or CD20-related disorder intends a disease or condition marked by the expression of the CD20 receptor on the diseased or cell or tissue.
- the disease is cancer such as lymphoma (non-Hodgkin's lymphoma) or CD20 expressing leukemias.
- the disease is an autoimmune disease such as Sjogren's syndrome, rheumatoid arthritis, coeliac disease, Crohn's disease and systemic lupus erythematosus. Tarella et al. (2013) Autoimmunity Reviews 12:802-813.
- a CD20-related disorder is any that has been treated by conventional CD20 antibody therapies such as rituximab.
- nanoparticle and “nanoworm” are intended to encompass the ELP-antibody fusion constructs unless otherwise noted. Applicants have discovered that denaturing and renaturing the nanoparticles will yield nanoworms having distinct dimensions from the more spherical nanoparticles.
- to “treat” further includes systemic amelioration of the symptoms associated with the pathology and/or a delay in onset of symptoms.
- Clinical and sub-clinical evidence of “treatment” will vary with the pathology, the subject and the treatment.
- an “antibody” includes whole antibodies and any antigen binding fragment or a single chain thereof.
- the term “antibody” includes any protein or peptide containing molecule that comprises at least a portion of an immunoglobulin molecule. Examples of such include, but are not limited to a complementarity determining region (CDR) of a heavy or light chain or a ligand binding portion thereof, a heavy chain or light chain variable region, a heavy chain or light chain constant region, a framework (FR) region, or any portion thereof, or at least one portion of a binding protein, any of which can be incorporated into an antibody of the present invention.
- CDR complementarity determining region
- antibody is further intended to encompass digestion fragments, specified portions, derivatives and variants thereof, including antibody mimetics or comprising portions of antibodies that mimic the structure and/or function of an antibody or specified fragment or portion thereof, including single chain antibodies and fragments thereof. It also includes in some aspects, antibody variants, polyclonal antibodies, human antibodies, humanized antibodies, chimeric antibodies, antibody derivatives, a bispecific molecule, a multispecific molecule, a heterospecific molecule, heteroantibodies and human monoclonal antibodies.
- binding fragments encompassed within the term “antigen binding portion” of an antibody include a Fab fragment, a monovalent fragment consisting of the V L , V H , C L and CH, domains; a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment consisting of the V H and C H , domains; a Fv fragment consisting of the V L and V H domains of a single arm of an antibody, a dAb fragment (Ward et al. (1989) Nature 341:544-546), which consists of a V H domain; and an isolated complementarity determining region (CDR).
- Fab fragment a monovalent fragment consisting of the V L , V H , C L and CH, domains
- F(ab′)2 fragment a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region
- a Fd fragment consisting of the
- V L and V H are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the V L and V H regions pair to form monovalent molecules (known as single chain Fv (scFv)).
- scFv single chain Fv
- Single chain antibodies are also intended to be encompassed within the term “fragment of an antibody.” Any of the above-noted antibody fragments are obtained using conventional techniques known to those of skill in the art, and the fragments are screened for binding specificity and neutralization activity in the same manner as are intact antibodies.
- administering can be effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosage of administration are known to those of skill in the art and will vary with the composition used for therapy, the purpose of the therapy, the target cell being treated, and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician. Suitable dosage formulations and methods of administering the agents are known in the art. Route of administration can also be determined and method of determining the most effective route of administration are known to those of skill in the art and will vary with the composition used for treatment, the purpose of the treatment, the health condition or disease stage of the subject being treated, and target cell or tissue.
- route of administration include oral administration, nasal administration, injection, topical application, intrapentoneal, intravenous and by inhalation.
- An agent of the present invention can be administered for therapy by any suitable route of administration. It will also be appreciated that the preferred route will vary with the condition and age of the recipient, and the disease being treated.
- agents and compositions of the present invention can be used in the manufacture of medicaments and for the treatment of humans and other animals by administration in accordance with conventional procedures, such as an active ingredient in pharmaceutical compositions.
- the term “detectable label” intends a directly or indirectly detectable compound or composition that is conjugated directly or indirectly to the composition to be detected.
- the detectable label is a non-naturally occurring detectable label in that it is not normally associated with the compound or composition as found in nature.
- a combination of a compound or composition and detectable label excludes combination that occur in nature.
- Non-limiting examples of such tags include, e.g., N-terminal histidine tags (N-His), magnetically active isotopes, e.g., 115 Sn, 117 Sn and 119 Sn, a non-radioactive isotopes such as 13 C and 15 N, polynucleotide or protein such as an antibody so as to generate a “labeled” composition.
- N-His N-terminal histidine tags
- magnetically active isotopes e.g., 115 Sn, 117 Sn and 119 Sn
- a non-radioactive isotopes such as 13 C and 15 N
- polynucleotide or protein such as an antibody so as to generate a “labeled” composition.
- a radioisotope is not attached to a nucleic acid in nature.
- the term also includes sequences conjugated to the polynucleotide that will provide a signal upon expression of the inserted sequences,
- radioisotope labels or fluorescent labels or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.
- the labels can be suitable for small scale detection or more suitable for high-throughput screening.
- suitable labels include, but are not limited to magnetically active isotopes, non-radioactive isotopes, radioisotopes, fluorochromes, luminescent compounds, dyes, and proteins, including enzymes.
- the label may be simply detected or it may be quantified.
- a response that is simply detected generally comprises a response whose existence merely is confirmed
- a response that is quantified generally comprises a response having a quantifiable (e.g., numerically reportable) value such as an intensity, polarization, and/or other property.
- the detectable response may be generated directly using a luminophore or fluorophore associated with an assay component actually involved in binding, or indirectly using a luminophore or fluorophore associated with another (e.g., reporter or indicator) component.
- luminescent labels that produce signals include, but are not limited to bioluminescence and chemiluminescence.
- Detectable luminescence response generally comprises a change in, or an occurrence of, a luminescence signal.
- Suitable methods and luminophores for luminescently labeling assay components are known in the art and described for example in Haugland, Richard P. (1996) Handbook of Fluorescent Probes and Research Chemicals (6 th ed.).
- luminescent probes include, but are not limited to, aequorin and luciferases.
- fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade BlueTM, and Texas Red.
- suitable optical dyes are described in the Haugland, Richard P. (1996) Handbook of Fluorescent Probes and Research Chemicals (6 th ed.).
- the fluorescent label is functionalized to facilitate covalent attachment to a cellular component present in or on the surface of the cell or tissue such as a cell surface marker.
- Suitable functional groups including, but not are limited to, isothiocyanate groups, amino groups, haloacetyl groups, maleimides, succinimidyl esters, and sulfonyl halides, all of which may be used to attach the fluorescent label to a second molecule.
- the choice of the functional group of the fluorescent label will depend on the site of attachment to either a linker, the agent, the marker, or the second labeling agent.
- This disclosure relates to genetically engineered polypeptide nanoparticles targeted to CD20+ cells.
- CD20+ cancers such as non-Hodgkin lymphoma, for example
- new drug carriers are required that are biocompatible and easily modified with bioactive peptides.
- An emerging solution to this challenge utilizes genetically engineered polypeptides to drive the assembly of nanostructures. Elastin-like-polypeptide engages in a unique phase transition behavior, which can mediate self-assembly of nanoparticles.
- Described herein is a class of ELP fusion proteins with scFv fragments which are intended for inducing apoptosis in the target cell.
- the scFv-ELP fusion proteins are able to self-assemble to nanoparticles, which can also be utilized for gene therapy and drug delivery to the target cancerous cells.
- Elastin-Like Polypeptides Elastin-Like Polypeptides
- Elastin-like-polypeptides are a genetically engineered polypeptide with unique phase behavior (see for e.g. S. R. MacEwan, et al., Biopolymers 94(1) (2010) 60-77) which promotes recombinant expression, protein purification and self-assembly of nanostructures (see for e.g. A. Chilkoti, et al., Advanced Drug Delivery Reviews 54 (2002) 1093-1111).
- ELPs are artificial polypeptides composed of repeated pentapeptide sequences, (Val-Pro-Gly-Xaa-Gly)n (SEQ ID NO: 6) derived from human tropoelastin, where Xaa is the “guest residue” Which is any amino acid. In one embodiment, Xaa is any amino acid except proline and n is an integer of at least one.
- This peptide motif displays rapid and reversible de-mixing from aqueous solutions above a transition temperature, T t . Below T t , ELPs adopt a highly water soluble random coil conformation; however, above T t , they separate from solution, coalescing into a second aqueous phase.
- the T t of ELPs can be tuned by choosing the guest residue and ELP chain length as well as fusion peptides at the design level (see for e.g. MacEwan S R, et al., Biopolymers 94(1): 60-77).
- the ELP phase is both biocompatible and highly specific for ELPs or ELP fusion proteins, even in complex biological mixtures.
- Genetically engineered ELPs are monodisperse, biodegradable, non-toxic. Throughout this description, ELPs are identified by the single letter amino acid code of the guest residue followed by the number of repeat units, n.
- S48I48 represents a diblock copolymer ELP with 48 serine (S) pentamers at the amino terminus and 48 isoleucine (I) pentamers at the carboxy terminus.
- the diameter of the substantially spherical nanoparticle can be from about 1 to about 1000 nm or from about 1 to about 500 nm, or from about 1 to about 100 nm, or from about 1 to about 50 nm, or from about 1 to 5 nm, or from about 3 to 20 nm, or from about 20 to about 50 nm, or from about 30 to about 50 nm, or from about 35 to about 45 nm. In one embodiment, the diameter is about 30 nm.
- the length of the nanoworm can be from about 10 to 1000 nm, or from about 10 to 500 nm, or from about 1 to about 100 nm or from about 5 to about 75 nm, or from about 5 to about 75 nm, or from about 10 to about 50 nm, or from about 15 to about 65 nm, or from about 10 to about 65 nm, or from about 15 to about 60 nm.
- the width of the nanoworm can be from about 50 to 1 nm, or from about 40 to 1 nm, or from about 35 to about 1 nm or from about 30 to about 1 nm, or from about 25 to about 1 nm, or from about 20 to about 1 nm.
- the fusion proteins are composed of elastin-like-polypeptides and high affinity polypeptides. These fusion proteins can be expressed from a variety of expression systems known to those skilled in the art and easily purified by the phase transition behavior of ELPs. These ELP fusion proteins are able to conjugate small molecules, such as, for example, chemotherapeutic agents, anti-inflammation agents, antibiotics and polypeptides such as antibodies and antibody fragments and other water soluble drugs. In addition, the ELP nanoparticles are useful for carrying DNA, RNA, protein and peptide-based therapeutics.
- ELPs have potential advantages over chemically synthesized polymers as drug delivery agents.
- ELP can self-assemble into multivalent nanoparticles that can have excellent site-specific accumulation and drug carrying properties.
- ELP are designed from native amino acid sequences found extensively in the human body they are biodegradable, biocompatible, and tolerated by the immune system.
- ELPs undergo an inverse phase transition temperature, T t , above which they phase separate into large aggregates. By localized heating, additional ELP can be drawn into the target site, which may be beneficial for increasing drug concentrations.
- a therapeutic such as a drug may be attached to the ELP through cysteine, lysine, glutamic acid or aspartic acid residues present in the polymer.
- the cysteine, lysine, glutamic acid or aspartic acid residues are generally present throughout the length of the polymer.
- the cysteine, lysine, glutamic acid or aspartic acid residues are clustered at the end of the polymer.
- therapeutics are attached to the cysteine residues of the ELP using thiol reactive linkers.
- therapeutics are attached to the lysine residues of the high molecular weight polymer sequence using NHS (N-hydroxysuccinimide) chemistry to modify the primary amine group present on these residues.
- therapeutics are attached to the glutamic acid or aspartic acid residues of the ELP using EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride) chemistry to modify the carboxylic acid group present on the ELP residues.
- the therapeutic associated with the ELP may be hydrophobic or hydrophilic. Which the drug is hydrophobic, attachment to the terminus of the ELP may facilitate formation of the multivalent nanoparticle.
- the number of drug particles attached to the ELP can be from about 1 to about 30, or from about 1 to about 10, or about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
- the attachment points for a therapeutic are equally distributed along the backbone of the ELP, and the resulting drug-ELP is prevented from forming nanoparticle structures under physiological salt and temperature conditions.
- the ELPs may also be associated with a detectable label that allows for the visual detection of in vivo uptake of the ELPs.
- Suitable labels include, for example, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, Alexa-Fluor®, stilbene, Lucifer Yellow, Cascade BlueTM, and Texas Red.
- Other suitable optical dyes are described in Haugland, Richard P. (1996) Molecular Probes Handbook.
- the ELP components comprise, or alternatively consist essentially of, or yet further consist of: polymeric or oligomeric repeats of the pentapeptide [VPGXG] n (SEQ ID NO: 6), where the guest residue X is any amino acid, that in one aspect, excludes proline and n is the number of repeats.
- X may be a naturally occurring or non-naturally occurring amino acid.
- X is selected from alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine and valine.
- X is a natural amino acid other than proline or cysteine.
- the ELP comprises, or alternatively consists essentially of, or yet further consists of: the primary sequence of [VPGAG] n (SEQ ID NO: 7), [VPGAG] n [VPGIG] n (SEQ ID NO: 8), or [VPGSG] n [VPGIG] n (SEQ ID NO: 9).
- n or the number of repeats can be from the group of about 1 to 500, about 30-500, about 20-200, about 20-100, about 30-200, about 40-200, about 45-200, about 30-100, about 40-100, about 45-100, about 20, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 100, about 105, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, or about 200.
- n is about 96, about 48, or about 192.
- the guest residue X may be a non-classical (non-genetically encoded) amino acid.
- non-classical amino acids include: D-isomers of the common amino acids, 2,4-diaminobutyric acid, ⁇ -amino isobutyric acid, A-aminobutyric acid, Abu, 2-amino butyric acid, ⁇ -Abu, ⁇ -Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, ⁇ -alanine, fluoro-amino acids, designer amino acids such as ⁇ -methyl amino acids, C ⁇ -
- Selection of X is independent in each ELP structural unit (e.g., for each structural unit defined herein having a guest residue X).
- X may be independently selected for each structural unit as an amino acid having a positively charged side chain, an amino acid having a negatively charged side chain, or an amino acid having a neutral side chain, including in some embodiments, a hydrophobic side chain.
- the structural units, or in some cases polymeric or oligomeric repeats, of the ELP sequences may be separated by one or more amino acid residues that do not eliminate the overall effect of the molecule, that is, in imparting certain improvements to the therapeutic component as described.
- such one or more amino acids also do not eliminate or substantially affect the phase transition properties of the ELP component (relative to the deletion of such one or more amino acids).
- the ELP component in some embodiments is selected or designed to provide a T t ranging from about 10 to about 80° C., such as from about 35 to about 60° C., or from about 38 to about 45° C. In some embodiments, the T t is greater than about 40° C. or greater than about 42° C., or greater than about 45° C., or greater than about 50° C.
- the transition temperature in some embodiments, is above the body temperature of the subject or patient (e.g., >37° C.) thereby remaining soluble in vivo, or in other embodiments, the T t is below the body temperature (e.g., ⁇ 37° C.) to provide alternative advantages, such as in vivo formation of a drug depot for sustained release of the therapeutic agent.
- the transition temperature may be about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, about 50, about 55, about 60, about 65, or about 70° C.
- the transition temperature is at or below physiological level such that the ELPs are assembled into nanoparticles when administered to a patient.
- the transition temperature of the ELP-scFv is less than or equal to 37° C.
- the transition temperature is about 36, about 35, about 34, about 33, about 32, about 31, about 30, about 29, about 28, about 27, about 26, about 25, about 20, about 15, or about 10° C.
- the T t of the ELP component can be modified by varying ELP chain length.
- the hydrophobicity scale developed by Urry et al. (PCT/US96/05186, which is hereby incorporated by reference in its entirety) is preferred for predicting the approximate T t of a specific ELP sequence.
- ELP component length can be kept relatively small, while maintaining a target T t , by incorporating a larger fraction of hydrophobic guest residues (e.g., amino acid residues having hydrophobic side chains) in the ELP sequence.
- T t of the ELP component is affected by the identity and hydrophobicity of the guest residue, X
- additional properties of the molecule may also be affected. Such properties include, but are not limited to solubility, bioavailability, persistence, and half-life of the molecule.
- polypeptides comprising, or alternatively consisting essentially of, or yet further consisting of: an elastin-like peptide (ELP) and a scFv, or a biological equivalent of the scFv.
- ELP elastin-like peptide
- scFv scFv assemblies
- ACPPNs antibody core protein polymer nanoworms
- the scFv comprises, or alternatively consists essentially of or yet further consists of the single chain variable region from the anti-CD20 antibody.
- the single chain variable region from the scFv include the polypeptides of SEQ ID NOS: 1 and 2.
- the scFv comprises, or alternatively consists essentially of or yet further consists of the sequence of SEQ ID NO: 1 or SEQ ID NO: 2 or a biological equivalent thereof.
- the scFv-ELP polypeptide corresponds to a sequence selected from the group consisting of SEQ ID NOS: 3, 4, and 5 or a biological equivalent thereof.
- the scFv can have a peptide linker between the heavy and light chains.
- the linker is variable in length and, in certain embodiments, comprise amino acid residues such as glycine or serine. It is also within the scope of this disclosure to have scFvs with linker peptides that are too short for the two variable regions to fold together (about five amino acids), forcing scFvs to dimerize. This type is known as diabodies. Diabodies have been shown to have dissociation constants up to 40-fold lower than corresponding scFvs, meaning that they have a much higher affinity to their target. Consequently, diabody drugs could be dosed much lower than other therapeutic antibodies and are capable of highly specific targeting of tumors in vivo.
- Still shorter linkers (one or two amino acids) lead to the formation of trimers, so-called triabodies or tribodies. Tetrabodies have also been produced. They exhibit an even higher affinity to their targets than diabodies. All of these formats can be composed from variable fragments with specificity for two different antigens, in which case they are types of bispecific antibodies.
- ELPs, ELP fusions and other recombinant proteins described herein can be prepared by expressing polynucleotides encoding the polypeptide sequences of this invention in an appropriate host cell, i.e., a prokaryotic or eukaryotic host cell This can be accomplished by methods of recombinant DNA technology known to those skilled in the art. It is known to those skilled in the art that modifications can be made to any peptide to provide it with altered properties. Polypeptides of the invention can be modified to include unnatural amino acids.
- the peptides may comprise D-amino acids, a combination of D- and L-amino acids, and various “designer” amino acids (e.g., ⁇ -methyl amino acids, C- ⁇ -methyl amino acids, and N- ⁇ -methyl amino acids, etc.) to convey special properties to peptides.
- various “designer” amino acids e.g., ⁇ -methyl amino acids, C- ⁇ -methyl amino acids, and N- ⁇ -methyl amino acids, etc.
- peptides with ⁇ -helices, ⁇ turns, ⁇ sheets, ⁇ -turns, and cyclic peptides can be generated.
- beta-turn spiral secondary structure or random secondary structure is preferred.
- the ELPs can be expressed and purified from a suitable host cell system.
- suitable host cells include prokaryotic and eukaryotic cells, which include, but are not limited to bacterial cells, yeast cells, insect cells, animal cells, mammalian cells, murine cells, rat cells, sheep cells, simian cells and human cells.
- Examples of bacterial cells include Escherichia coli, Salmonella enterica and Streptococcus gordonii .
- the host cell is E. coli .
- the cells can be purchased from a commercial vendor such as the American Type Culture Collection (ATCC, Rockville Md., USA) or cultured from an isolate using methods known in the art.
- suitable eukaryotic cells include, but are not limited to 293T HEK cells, as well as the hamster cell line BHK-21; the murine cell lines designated NIH3T3, NSO, C127, the simian cell lines COS, Vero; and the human cell lines HeLa, PER.C6 (commercially available from Crucell) U-937 and Hep G2.
- a non-limiting example of insect cells include Spodoptera frugiperda .
- yeast useful for expression include, but are not limited to Saccharomyces, Schizosaccharomyces, Hansenula, Candida, Torulopsis, Yarrowia , or Pichia . See e.g., U.S. Pat. Nos. 4,812,405; 4,818,700; 4,929,555; 5,736,383; 5,955,349; 5,888,768 and 6,258,559.
- the phase transition behavior of the ELPs allows for easy purification.
- the ELPs may also be purified from host cells using methods known to those skilled in the art. These techniques involve, at one level, the crude fractionation of the cellular milieu to polypeptide and non-polypeptide fractions. Having separated the polypeptide from other proteins, the polypeptide of interest may be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suited to the preparation of a pure peptide or polypeptide are filtration, ion-exchange chromatography, exclusion chromatography, polyacrylamide gel electrophoresis, affinity chromatography, or isoelectric focusing.
- a particularly efficient method of purifying peptides is fast protein liquid chromatography or even HPLC.
- protein purification may also be aided by the thermal transition properties of the ELP domain as described in U.S. Pat. No. 6,852,834.
- Additional techniques include, for example, precipitation with ammonium sulfate, PEG, antibodies and the like or by heat denaturation, followed by centrifugation; chromatography steps such as ion exchange, gel filtration, reverse phase, hydroxylapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques.
- chromatography steps such as ion exchange, gel filtration, reverse phase, hydroxylapatite and affinity chromatography
- isoelectric focusing gel electrophoresis
- combinations of such and other techniques include, for example, precipitation with ammonium sulfate, PEG, antibodies and the like or by heat denaturation, followed by centrifugation; chromatography steps such as ion exchange, gel filtration, reverse phase, hydroxylapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques.
- purified will refer to a protein or peptide composition that has been subjected to fractionation to remove various other components, and which composition substantially retains its expressed biological activity. Where the term “substantially purified” is used, this designation will refer to a composition in which the protein or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.
- Various methods for quantifying the degree of purification of the protein or peptide will be known to those of skill in the art in light of the present disclosure. These include, for example, determining the specific activity of an active fraction, or assessing the amount of polypeptides within a fraction by SDS/PAGE analysis.
- a preferred method for assessing the purity of a fraction is to calculate the specific activity of the fraction, to compare it to the specific activity of the initial extract, and to thus calculate the degree of purity, herein assessed by a “-fold purification number.”
- the actual units used to represent the amount of activity will, of course, be dependent upon the particular assay technique chosen to follow the purification and whether or not the expressed protein or peptide exhibits a detectable activity.
- scFv-ELP Upon purification, scFv-ELP assembles predominantly spherical nanostructures that have moderate activity; however, their potency can be significantly enhanced through denaturation and refolding.
- refolding of the scFv domain results in the formation of high-aspect ratio cylindrical micelles (also known as nanoworms).
- These high aspect ratio particles morphologies exhibit enhanced apoptotic signaling and potency.
- Refolding can be achieved either in the absence or presence of reducing regents (including, but not limited to, dithiothreitol, beta mercaptoethanol, or tris carboxyethyl phosphine).
- Denaturation is accomplished by incubation with chaotropic salts (including, but not limited to, Guanadinium hydrochloride or Urea) at concentrations between 2 and 8 M.
- chaotropic salts including, but not limited to, Guanadinium hydrochloride or Urea
- dialysis buffers may include, but are not limited to, tris hydrochloride or phosphate buffered saline. The molecular weight cuttoff for dialysis can be selected between 3 and 20 kD.
- Dialysis can occur at temperatures between 4 and 37 Celsius over a period of 1-2 days with successive changes in buffer.
- the scFv-ELP retentate may be clarified using ultracentrifugation at 4,000-13,000 RPM.
- the scFv-ELP nanoworms may be concentrated by inducing the ELP-mediated phase separation through the addition of 1-4 M sodium chloride at temperatures between 25 and 42 degrees Celsius. If desired, the nanoworms can be sterile filtered through a 0.2 um filter.
- compositions are further provided.
- the compositions comprise a carrier and ELPs as described herein.
- the carriers can be one or more of a solid support or a pharmaceutically acceptable carrier.
- the compositions are formulated with one or more pharmaceutically acceptable excipients, diluents, carriers and/or adjuvants.
- embodiments of the compositions include ELPs, formulated with one or more pharmaceutically acceptable auxiliary substances.
- the invention provides pharmaceutical formulations in which the one or more of an isolated polypeptide of the invention, an isolated polynucleotide of the invention, a vector of the invention, an isolated host cell of the invention, or an antibody of the invention can be formulated into preparations for injection in accordance with the invention by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives or other antimicrobial agents.
- an aqueous or nonaqueous solvent such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol
- solubilizers isotonic agents
- suspending agents emulsifying agents
- a non-limiting example of such is a antimicrobial agent such as other vaccine components such as surface antigens, e.g. a Type IV Pilin protein (see Jurcisek and Bakaletz (2007) J. of Bacteriology 189(10):3868-3875) and antibacterial agents.
- a antimicrobial agent such as other vaccine components such as surface antigens, e.g. a Type IV Pilin protein (see Jurcisek and Bakaletz (2007) J. of Bacteriology 189(10):3868-3875) and antibacterial agents.
- Embodiments of the pharmaceutical formulations of the invention include those in which the ELP is formulated in an injectable composition.
- injectable pharmaceutical formulations of the invention are prepared as liquid solutions or suspensions; or as solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection.
- the preparation may also be emulsified or the active ingredient encapsulated in liposome vehicles in accordance with other embodiments of the pharmaceutical formulations of the invention.
- Suitable excipient vehicles are, for example, water, saline, dextrose, glycerol, ethanol, or the like, and combinations thereof.
- the vehicle may contain minor amounts of auxiliary substances such as wetting or emulsifying agents or pH buffering agents.
- auxiliary substances such as wetting or emulsifying agents or pH buffering agents.
- Routes of administration applicable to the methods and compositions described herein include intranasal, intramuscular, subcutaneous, intradermal, topical application, intravenous, nasal, oral, inhalation, and other enteral and parenteral routes of administration. Routes of administration may be combined, if desired, or adjusted depending upon the agent and/or the desired effect.
- An active agent can be administered in a single dose or in multiple doses.
- Embodiments of these methods and routes suitable for delivery include systemic or localized routes.
- the scFv polypeptides described herein are useful for the specific targeting of scFv-ELPs to cells.
- One aspect relates to a method for targeting a scFv-ELP to a cell comprising, or alternatively consisting essentially of, or yet further consisting of: contacting the cell with an effective amount of the scFv-ELP polypeptide, wherein the scFv component of the scFv-ELP binds to a cellular component of the cell.
- the contacting can be to a cell in vitro or in vivo.
- the scFv component binds to a cell surface receptor of the cell.
- the scFv component binds to a intercellular receptor or a cellular component found on the surface or inside of the cell.
- These polypeptides may be used to target cell populations with a specific component by using a scFv that recognizes the specific component.
- the targeting can facilitate drug delivery by conjugating a drug to the scFv-ELP or facilitate cellular signaling by agonizing or antagonizing a cellular receptor.
- the cellular signaling may induce a specific cellular response.
- multivalent biding of the anti-CD20 to the cell-surface receptor induces apoptosis of the cell.
- one aspect relates to a method for inducing apoptosis of a CD20+ cell comprising contacting the cell with an effective amount of the scFv-ELP polypeptide wherein the scFv component comprises, or alternatively consists essentially of or yet further consists of the single chain variable region from the anti-CD20 antibody.
- the cell is a malignant B-cell.
- the compositions are useful to treat a CD20-related disease or disorder, e.g., a CD20-expressing cancer, by administering to a patient in need of such treatment the polypeptide of any one of the compositions of this invention.
- the CD2-expressing cancer is non-Hodgkin lymphoma.
- the entire anti-CD20 antibody is linked to the ELP. Linking the entire antibody to the ELP may provide additional benefits to therapeutic applications utilizing the anti-CD20 antibody alone.
- the ELP-conjugated CD20 antibody may provide a more efficient mechanism for crosslinking the antibody. Since activation of apoptosis in CD20+ cells requires multivalent binding of the CD20 cell surface antigen, the ELP-conjugated anti-CD20 antibody may provide more efficient activation of apoptosis.
- a portion of the anti-CD20 antibody is used.
- a further aspect relates to a method for treating a CD20 expressing cancer, comprising administering to a patient in need of such treatment the scFv-ELP polypeptide wherein the scFv component comprises, or alternatively consists essentially of or yet further consists of the single chain variable region from the anti-CD20 antibody or a polynucleotide encoding such polypeptide.
- a CD20 expressing cancer is non-Hodgkin lymphoma.
- kits for treating a CD20 expressing cancer in a subject comprising the scFv-ELP polypeptide wherein the scFv component comprises the single chain variable region from the anti-CD20 antibody or a polynucleotide encoding such polypeptide, and optionally, instructions for use.
- Administration of the therapeutic agent or substance of the present invention to a patient will follow general protocols for the administration of that particular secondary therapy, taking into account the toxicity, if any, of the treatment. It is expected that the treatment cycles would be repeated as necessary. It also is contemplated that various standard therapies, as well as surgical intervention, may be applied in combination with the described therapy.
- kits for treating a CD20 expressing cancer in a subject or for conducting a screen containing an ELP-CD20 polypeptide and/or polynucleotide, and optionally, instructions for use.
- the present invention also provides methods to identify leads and methods for inducing apoptosis or treating CD20+ cancers and/or disorders.
- the screen identifies lead compounds or biologics agents that mimic the ELP fusion polypeptide identified above and which are useful to treat these disorders or to treat or ameliorate the symptoms associated with the disorders.
- Test substances for screening can come from any source. They can be libraries of natural products, combinatorial chemical libraries, biological products made by recombinant libraries, etc. The source of the test substances is not critical to the invention.
- the present invention provides means for screening compounds and compositions which may previously have been overlooked in other screening schemes.
- suitable cell cultures or tissue cultures are first provided.
- the cell can be a cultured cell or a genetically modified cell which differentially expresses the receptor and/or receptor complex.
- the cells can be from a tissue culture.
- the cells are cultured under conditions (temperature, growth or culture medium and gas (CO 2 )) and for an appropriate amount of time to attain exponential proliferation without density dependent constraints. It also is desirable to maintain an additional separate cell culture; one which does not receive the agent being tested as a control.
- suitable cells may be cultured in microtiter plates and several agents may be assayed at the same time by noting genotypic changes, phenotypic changes and/or cell death.
- the agent is a composition other than a DNA or RNA nucleic acid molecule
- the suitable conditions may be by directly added to the cell culture or added to culture medium for addition.
- an “effective” amount must be added which can be empirically determined.
- the screen involves contacting the agent with a test cell expressing the complex and then assaying the cell its ability to provide a biological response similar to the ELP fusions described herein.
- the test cell or tissue sample is isolated from the subject to be treated and one or more potential agents are screened to determine the optimal therapeutic and/or course of treatment for that individual patient.
- a control wherein the ELP fusion of this invention is applied can be performed and the test agent can be compared to the control.
- an “agent” is intended to include, but not be limited to a biological or chemical compound such as a simple or complex organic or inorganic molecule, a peptide, a protein or an oligonucleotide.
- a biological or chemical compound such as a simple or complex organic or inorganic molecule, a peptide, a protein or an oligonucleotide.
- a vast array of compounds can be synthesized, for example oligomers, such as oligopeptides and oligonucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term “agent”.
- various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen.
- the agents and methods also are intended to be combined with other therapies. They can be administered concurrently or sequentially.
- the method provides a convenient animal model system which can be used prior to clinical testing of the therapeutic agent or alternatively, for lead optimization.
- a candidate agent is a potential drug, and may therefore be suitable for further development, if the agent binds the receptor or receptor complex each as compared to untreated, animal expressing the receptor and/or complex. It also can be useful to have a separate negative control group of cells or animals which are healthy and not treated, which provides a further basis for comparison.
- the nanoparticles are derived from protein polymers that are biologically inspired from a five amino acid motif identified in tropoelastin, a human extracellular matrix protein.
- Elastin-Like Polypeptides are ideal for NHL cancer nanomedicines because: (i) the development of a simple, recombinant approach to generate targeted nanomedicines, can become a platform for developing antibody nanomedicines targeted at other receptors; (ii) due to their low MW and lack of an Fc domain, scFv fragments are rapidly cleared by the kidney and have short circulation times.
- the scFv-ELP nanomedicines therefore present a unique opportunity to shift the mechanism of cell-killing to direct induction of apoptosis; (iv) the potential for local deposition of heat to target the hyper-activation of scFv-ELPs predominantly to tumors; and (v) ELP nanoparticles designed to phase separate under the skin, are a new approach to form slow-release depots that can extend the interval between dosing.
- the fusions in Table 1 have been cloned and expressed.
- the scFv ELPs were purified using inverse temperature cycling.
- the scFv fusion have similar phase behavior to ELP.
- Applicants have observed that scFv-ELPs promote nanoparticle assembly independent of temperature.
- the scFv-A192 nanoparticles have transition temperatures above physiological temperature; therefore they are expected to remain soluble in the body unless the tissue is deliberately heated ( FIG. 1 ).
- FIG. 1 shows phase diagrams of ELP and scFv ELP fusions including ELP A192 ( FIG. 1A ) and scFv A192 ( FIG. 1B ).
- the linear regression depicted in FIG. 1C shows a concentration dependent change in transition temperature.
- Non-Hodgkin's lymphomas are usually characterized by the uncontrolled replication of malignant B-cells.
- B-cell surface receptor, CD20 is an established surface marker which has been targeted using antibody therapeutics (for example, Rituximab).
- Antibody-mediated crosslinking of CD20 induces colocalization to lipid rafts and apoptotic signaling.
- scFv single chain antibody variable fragment
- Elastin like polypeptides Elastin like polypeptides
- the scFv sequence was ordered from IDT in a pIDTsmart vector.
- pIDTsmart vector is double digested with Nde1 (NEB) and BamH1 (NEB) and the scFv sequence purified using agarose gel extraction. The purified sequence is then inserted into a pET25b(+) plasmid which is digested similarly. The insert and the plasmid are ligated with DNA ligase (NEB).
- the pET25b(+) plasmid with the scFv insert is again double digested with BseR1 and XbaI and ligated to a pET25b(+) plasmid containing the desired ELP sequence.
- the ligated plasmid is sequence confirmed and transformed into Origami B cells (Novagen) and plated on agar plate with ampicillin. All colonies obtained are screened for expression of required protein and DMSO stocks made.
- the cloning scheme is depicted in FIG. 13 .
- the scFv fragment of anti-CD20 was genetically fused to the N-terminus of ELP ( FIG. 3 ).
- the ELP was fused to the variable light chain of the scFv.
- the plasmid containing the fusion was transformed into E. coli and expressed.
- the scFv A192 can be purified using inverse temperature cycling (ITC) ( FIG. 4A ) and assembles particles with hydrodynamic radius of ⁇ 32 nm whereas A192 is ⁇ 6 nm ( FIG. 4B ).
- Uranyl Acetate contrast enhanced transmission electron microscopy (TEM) images of scFv A192 reveals nanoparticles, which are 51.7 ⁇ 12.4 nm wide ( FIG. 5A ) and Cryo TEM images of scFv A192 show monodisperse particles of 48.1 ⁇ 11.8 nm in diameter ( FIG. 5B ). Fusion of scFv to the ELP drops the transition temperature ⁇ 20° C. The drop in transition temperature correlates with nanoparticle assembly ( FIG. 6 ).
- the scFv ELP fusion recognizes surface CD20.
- Rhodamine (RHD) labeled scFv A192 fusions bind CD20+ Raji cells ( FIG. 7A-D ).
- scFv A192 forms distinct punctate bodies on the cell surface ( FIG. 7C ).
- CD20 ⁇ CEM cells are not stained by scFv A192 ( FIG. 7E-H ).
- scFv A192 induces cell aggregation in CD20+ Raji cells.
- FIG. 8 also demonstrates the scFV ELP fusion recognition of cell surface CD20 receptors.
- the CD20 antibody abolishes scFv binding ( FIG. 9 ).
- Raji and CEM cells were treated with unlabeled CD20 antibody and washed.
- the washed cells were treated with RHD labeled scFv ELP to check CD20 binding.
- Pretreatment with CD20 antibody abolished scFv binding on Raji cells ( FIG. 9A-D ).
- the untreated cells show scFv binding ( FIG. 9E-H ) suggesting competitive CD20 binding.
- the scFv ELP fusion induce apoptosis in Raji cells.
- scFv ELP treated cells were stained with Annexin V to detect early stage apoptosis.
- scFv ELPs induced apoptosis in CD20+ Raji cells ( FIG. 10 , left panel) and not in CD20 ⁇ CEM cells ( FIG. 10 , right panel).
- scFv ELP fusion selectively kill Raji cells.
- MTS assay performed on Raji and CEM cells show selective killing on Raji cells ( FIG. 11 ).
- the selectivity illustrates CD20 targeting. It is worth noting the high IC50 value of the fusion. This can be attributed to self-assembly of scFv particles initiated by the scFv tag. The assembly reduces the number of available active scFv tag causing the increase in IC50.
- scFv ELP also induce Raji cell apoptosis.
- Annexin V (ANX) staining show induction of apoptosis in CD20 ‘+’ve Raji cells ( FIGS. 12A-C ) and not in CD20 ‘ ⁇ ’ve CEM cells ( FIGS. 12D-F ).
- ELPs are versatile polymers which can be modified by simple genetic modification.
- the ELP serves as a purification tag similar to Poly-histidine, which can be used to display single chain antibody fragments.
- the scFv region promotes assembly of multivalent particles that crosslink surface CD20 and induces apoptosis.
- Multivalent CD20 crosslinking does promote apoptosis in human B-cell lymphomas.
- Applicants were able to successfully express and purify scFv-ELP fusions which specifically target CD20+ cells.
- the flexibility of ELPs can be exploited to create an array of multifunctional particles with varied pharmacokinetic properties and potential enhanced biological activity.
- This crosslinking approach can drastically enhance the clinical activity of available B-cell lymphoma immunotherapy. Further modification of the scFv sequence can lead to development of fusions with better targeting and higher tumor killing efficiencies.
- the DNA sequence for anti CD20 scFv was designed and purchased from Integrated DNA Technologies (Coralville, Iowa). Cloning vector (Pet25b(+)), Top10, and Origami B (DE3) were purchased from Novagen (Darmstadt, Germany). Terrific broth (TB) dry powder was purchased from Mo-bio Laboratories (Carlsbad, Calif.). All restriction enzymes were purchased from New England Biolabs (Ipswich, Mass.). SYBR® safe DNA stain, low and high melting point agarose, AnnexinV/PI apoptosis kit and TUNEL staining kit were purchased from Invitrogen (Grand Island, N.Y.).
- DNA mini prep and DNA purification kits were purchased from Qiagen (Germantown, Md.). Bacteriological grade agar and sodium chloride was purchased from Sigma Aldrich (St. Louis, Mo.). Non-radioactive cell viability MTS assay kit was purchased from Promega (Madison, Wis.). Precast 4-20% SDS PAGE gels were purchased from Lonza (Basel, Switzerland). Raji, CEM, SU-DHL-7, RTXN, and chimeric Lym1(chLym-1) antibodies were provided to us by Dr. Alan Epstein (USC, Los Angeles, Calif.). Polyclonal goat anti human Fc antibody (2° GAH) was purchased from Thermo Scientific (Rockford, Ill.).
- RPMI 1640 Roswell Park Memorial Institute medium
- All cells were cultured in RPMI 1640 supplemented with 10% FBS at 37° C. humidified in 5% CO 2 .
- VPGIG n.a. n.a.
- VPGIG 96 Y
- Tt Transition temperature
- pH 7.4 determined by optical density measurements at 350 nm.
- ELP behavior in PBS # ELP behavior in PBS.
- ⁇ Molecular weight estimated using SDS-PAGE (n.a: not available).
- scFv sequence ‘QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYN QKFKGKATLTADKSSSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSAGG GGSGGGGSGGGGSQIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYA TSNLASGVPVRFSGSGSGTSYSLTISRVEAEDAATYYCQQWTSNPPTFGGGTKLEIKRT’ (SEQ ID NO: 13) Expression and Purification of scFv ELP Fusions
- the anti CD20 scFv was fused to ELPs using restriction enzyme digestion followed by sticky end ligation.
- the expressed protein was purified from bacterial lysates using inverse temperature cycling.
- the anti-CD20 scFv sequence (756 bp) was purchased in an ampicillin resistant proprietary pIDTsmartTM vector.
- the scFv sequence was inserted into a pet25b(+) expression vector containing the ELP sequences (Table 2) using restriction enzyme digestion. Sequence confirmed plasmid was transformed into Origami B (DE3) Escherichia coli ( E. coli ) using heat shock at 42° C. for 5 mins.
- the heat shocked bacteria was plated onto an ampicillin (100 ⁇ g/1) agar plates and incubated at 37° C. for 15-18 hrs and transformed colonies selected.
- the selected colonies were grown in 5 ml TB culture media with 100 ⁇ g/1 ampicillin for 15-18 hrs at 37° C.
- the cultures were pelleted at 4,000 rpm for 15 mins and lysed to check for protein expression using SDS-PAGE.
- a colony with high protein expression was selected and grown out in a 50 ml starter culture with 100 ⁇ g/1 ampicillin at 37° C.
- the bacterial culture was then pelleted and inoculated into 1 liter TB media with 100 ⁇ g/1 ampicillin.
- the cultures were grown for 24 hrs and bacteria suspended in filtered PBS (4 L of culture in 25 ml of PBS) for downstream cell lysis.
- the bacteria were lysed using ultrasonication to release expressed cytosolic fusion protein and bacterial DNA was complexed out using polyethylenimine (50% w/v PEI) at 12,000 rpm for 15 mins.
- the supernatant containing the fusion protein was filtered through a 0.2 ⁇ m filter before protein purification using inverse temperature cycling (ITC).
- ITC inverse temperature cycling
- the DNA free supernatant was equilibrated to room temperature and ELP phase transition induced by 3M NaCl (i.e. for 50 ml of supernatant 8 gms of NaCl).
- the ELP coacervate was spun down at 25° C. for 20 mins at 4000 rpm (HOT SPIN).
- the supernatant was discarded and the pellet solubilized in cold PBS.
- the solubilized pellet contains the ELP fusion with insoluble bacterial proteins which were centrifuged out at 4° C. at 12,000 rpm for 15 mins (COLD SPIN).
- the hot and cold cycle was repeated twice and 6M Guanidine HCl added to perform scFv refolding.
- Added guanidine is slowly removed by dialysis to promote scFv renaturation using a 20 kD cut off dialysis cassette against cold PBS at 4° C. Dialysis is carried out with a 100:1 sink condition with 4 changes of buffer. A cold spin is performed on the dialyzed protein and a final temperature cycling step performed to ensure complete removal of guanidine. The final protein stock is filtered through a sterile 0.2 ⁇ m filter and protein concentration determined using the molar extinction coefficient at 280 nm by:
- a 280 Absorbance at 280 nm
- a 350 Absorbance at 350 nm
- a peak Area of peak
- the Tt is used to understand the effect of scFv fusion on the ELP.
- the Tt of the fusions was determined using optical density measurements at 350 nm. Briefly, increasing concentrations of constructs were added to 300 ⁇ l Beckman Coulter Tm microcells (Brea, Calif.) and the temperature was ramped at a rate of 1° C./min. The optical density was plotted as a function of temperature, and the maximum first derivative of this curve was defined as the Tt. The Tt for all samples was determined in PBS.
- Light scattering was used to determine stability and assembly properties of the scFv ELP fusions. To prevent detection of artifacts, all buffers used were sterile filtered using 0.45 ⁇ m filter. Dynamic light scattering (DLS) was used to determine the hydrodynamic radius (R h ), temperature stability and the polydispersity of the protein in solution. Briefly, increasing concentrations of scFv ELP were pipetted into a 384-well clear bottom plate and read on a Wyatt DynaPro plate reader (Santa Barbara, Calif.) using a 830 nm laser and a 1° C./min temperature ramp from 20° C.-45° C.
- DLS hydrodynamic radius
- Multi angle light scattering was used to determine the R g , molecular weight, and coordination number of the scFv fusions.
- the fusions were analyzed using tandem size exclusion chromatography and multi angle light scattering (SEC-MALS). Briefly, 250 ⁇ g of constructs were injected onto a Shodex® size exclusion column using sterile filtered PBS at 0.5 ml/min. The column eluents were analyzed on a Wyatt Helios system (Santa Barbara, Calif.) and the data fit to a Debye plot to determine the R g and the molecular weight.
- SEC-MALS tandem size exclusion chromatography and multi angle light scattering
- the coordination number for the assemblies was determined by dividing the absolute molecular weight (M abs ) by the calculated monomeric scFv ELP molecular weight.
- the R g /R h ratio was used to determine the morphology of the scFv ELP fusion.
- cryoTEM Cryogenic TEM
- conTEM contrast stain TEM
- Micrographs were acquired using FEI Tecnai 12 TWIN TEM equipped with 16 bit 2K ⁇ 2K FEI eagle bottom mount camera (Hillsboro, Oreg.). All cryoTEM images were acquired at an accelerating voltage of 100 kV. Images were analyzed using ImageJ (NIH, USA).
- CD was performed to determine the secondary structure of the scFv constructs.
- the constructs were run on a Jasco J-815 CD spectrometer (Easton, Md.) using a quartz cuvette (path length ⁇ 1 mm) The ellipticity was monitored from 185-250 nm and the spectra of buffer subtracted post run. All the constructs were prepared in filtered diH 2 O. Deconvolution was performed under the assumption that the observed molar ellipticity [ ⁇ ] is a weighted linear sum of the ellipticity for known secondary structures. The data was fit using nonlinear regression on Microsoft Excel using
- ACPPNs Antibody Core Protein Polymer ‘Nanoworms’
- ELPs are hydrophilic biopolymers with pentameric repeats of [VPGXG] n , (SEQ ID NO: 6) where X can be any amino acid and n is an integer of at least 1. ELPs undergo a characteristic reversible phase transition above a certain critical temperature (LCST) (Urry, D. et al. (1997) J Phys Chem B 101:11007-11028.
- LCST critical temperature
- the recombinant scFv fusion was designed with the RTXN scFv fragment fused to the N-terminus of a large molecular weight (MW) ELP ( FIG. 14B ).
- the large MW ELPs were chosen for several reasons. ELP tags enable quick and efficient purification via inverse temperature cycling (ITC) and serve as biodegradable carriers for scFvs, improving their circulation time. Genetic engineering and biological synthesis allows for accurate control over length and sequence, and by designing the construct as a direct fusion of the scFv and ELP, chemical conjugation is avoided. Additionally, the bacterial expression of these fusions allows for a commercially viable product.
- the scFv fusions were purified from bacterial lysate using ITC.
- the purity determined through Coomassie stained SDS-PAGE was 91.4 ⁇ 1.3%.
- the yield of the fusion was estimated to be 20-30 mg/L of bacterial culture.
- the purified fusion retained its phase transitioning property but transitioned at a lower temperature due to the conjugation of the scFv fragment.
- the high absorbance at 350 nm suggests formation of large scFv A192 assemblies even at room temperature.
- the scFv A192 fusion transitions at ⁇ 41° C. when compared to the plain A192 ELP at ⁇ 55° C.
- DLS confirmed formation of assemblies with a R h of 85.7 ⁇ 16.5 nm.
- the R h for unmodified A192 is 6.7 ⁇ 0.2 nm, suggesting that the fusion assembled particles.
- the assembly of particles could be due to the scFv fusion and it is likely that the scFv is
- the refolded nanoparticles showed a major population of high aspect ratio nanoparticles with lengths of 56.2 ⁇ 15.9 nm and widths of 17.9 ⁇ 3.5 nm.
- a minor population of spherical particles with a diameter of 27.4 ⁇ 7.5 nm was also observed.
- the spherical particles may also be nanoworms with their long axes parallel to the electron beam. Based on their size, composition, and morphology, these refolded nanoparticles are defined as Antibody Core Protein Polymer Nanoworms (ACPPNs).
- ACPPNs Antibody Core Protein Polymer Nanoworms
- MALS analysis performed on raw scFv-A192 confirmed assembly of particles with an absolute molecular weight (M abs ) of 25,490 kD.
- M abs confirmed particle assembly with each particle made up of ⁇ 250 scFv-A192 monomers with an R g of 47.7 ⁇ 0.1 nm.
- the refolded particles showed a significant reduction in M abs giving rise to a mixture of 8,372 kD and 8,073 kD particles.
- the reduction in M abs translates to about 80 scFv A192 monomers making up these particles.
- the two populations have similar M abs but with varying radii of gyration of 45.2 ⁇ 0.1 and 33.7 ⁇ 0.1 nm respectively.
- the two particle populations appear as a single population with an R h of 65.3 ⁇ 15.5 nm using DLS.
- the R g /R h ratios were used to determine the morphology changes due to refolding.
- the raw scFv-A192 R g /R h of 0.56 shifted as high as 0.7 after refolding.
- the low R g /R h value for the scFv-A192 ( ⁇ 0.7 for polymeric micelles) is consistent with the assembly of spherical particles with a densely packed core.
- CD20 recognition was tested in CD20+ and CD20 ⁇ cells.
- CD20+ cells Burkitt's (Raji) and diffuse large B-cell lymphoma (SU-DHL-7) cell lines were evaluated against ACPPNs.
- scFv CD20 recognition was performed using rhodamine (RHD) labeled proteins under laser assisted confocal microscopy. Briefly, 50 ⁇ g of RHD labeled scFv ELP and RTXN were added to 1 ml of 2 ⁇ 10 5 cells suspended in 1% BSA DPBS.
- RHD rhodamine
- the cells were incubated with the protein for 15 mins at room temperature with occasional agitation. After incubation, cells were transferred to 3 ml test tubes and centrifuged at 750 rpm for 5 mins to remove unbound proteins. The cell pellets were washed twice with DPBS and suspended in 100 ⁇ l 1% BSA DPBS. The cells were mounted onto glass slides and observed under a Zeiss LSM510 confocal microscope with a 543 nm green excitation laser. For RTXN competition studies, the cells were incubated with 1 mg of unlabeled antibody for 15 mins and washed. Prior to incubation with RHD labeled scFv constructs for a further 15 mins.
- GAH crosslinked RTXN was imaged in a similar fashion to RHD RTXN treated cells but 10 ⁇ g of 2° GAH was added to the washed cells and incubated for a further 15 mins to induce crosslinking. After the incubation, the cells were washed and imaged. Images were analyzed using Image J (NIH, USA).
- a formazan based colorimetric assay was used to determine cell viability. Viability assays were performed on CD20+ and CD20 ⁇ cell lines used in CD20 binding assays. All assays were performed in 5% FBS RPMI 1640 supplemented with Pen-Strep. Briefly, 2 ⁇ 10 4 cells/well were pipetted in to 96-well plates and serial dilutions of scFv ELP and RTXN were added in triplicates. RPMI 1640 with appropriate protein dilution was used as blank control. The cells were incubated with the protein for 24 hrs, after which 30 ⁇ l of MTS/PMS was added to determine the number of viable cells. The cells were further incubated for 2 hrs and read at 490 nm using a Biorad benchmark Plus® plate reader (Hercules, Calif.). The % cell viability was calculated and plotted versus protein concentration and viability determined by:
- a treated Treated cell absorbance at 490 nm
- a cont Control absorbance at 490 nm with appropriate protein concentration
- Induction of apoptosis was determined using early and late stage apoptotic markers. Annexin V (ANXV)/PI staining was used to detect early induction of apoptosis.
- An antibody against HLA-Dr10 tumor cells, chLym-1 was used as a positive control for direct induction of apoptosis.
- the chLym-1 antibody binds HLA-Dr10 expressing tumor cells inducing cell lysis. Briefly, 2 ⁇ 10 5 cells in 10% FBS RPMI 1640 supplemented with Pen-Strep were added to each well in a 12 well plate.
- the cells were incubated with equivalent scFv concentrations of scFv ELP, RTXN, RTXN+2° GAH and chLym-1 at 37° C. with humidified 5% CO 2 for 18 hrs.
- scFv ELP equivalent scFv concentrations of scFv ELP, RTXN, RTXN+2° GAH and chLym-1 at 37° C. with humidified 5% CO 2 for 18 hrs.
- ANXV+ and PI+ compensation controls cells were treated with 50 ⁇ g of paclitaxel.
- 2° GAH mediated crosslinking the cells were incubated with RTXN for 30 mins and resuspended in fresh cell culture media. After washing, 100 ⁇ gs of 2° GAH was added the cells and incubated for 18 hrs. After incubation the cells were pelleted, washed twice with PBS, and suspended in 100 ⁇ l ANXV staining buffer.
- the cells were stained with ANXV and PI as per the manufacturer's instructions i.e. 5 ⁇ l of Alexa Fluor® 488-ANXV stock and 1 ⁇ l of 5-fold diluted PI stock were added to the cell and incubated for 15 mins.
- the volume of cells was made up to 500 ⁇ l with ANXV binding buffer and analyzed on an AttuneTM acoustic focusing flow cytometer (Life technologies, Grand Island, N.Y.). The data were collected as .fcs files and analyzed on Flowjo.
- Late stage apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL).
- TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling
- the labeling was performed as per the manufacturer's protocol. Briefly, 2 ⁇ 10 6 cells in 10% FBS RPMI 1640 supplemented with Pen-Strep were added to each well in a 12 well plate. The cells were treated with equivalent scFv concentrations of scFv ELP, RTXN, and RTXN+2° GAH and incubated at 37° C. with humidified 5% CO 2 for 18 hrs. The RTXN crosslinking by 2° GAH (100 ⁇ g) was performed similar to ANXV/PI staining procedure.
- Activation of the caspase cascade was detected using an FITC labeled cell penetrating irreversible caspase inhibitor, Z-VAD-FMK (carbobenzoxy-valyl-alanyl-aspartyl-fluoromethylketone) 29 .
- VAD-FMK binds different caspases with varying affinities 29 . Briefly, 2 ⁇ 10 5 cells/well in 10% FBS RPMI 1640 supplemented with Penn-Strep were added to 12 well plate and ACPPNs (Fv dose-1.5 mgs/ml) added to appropriate wells. The cells were incubated at 37° C. with humidified 5% CO 2 for 18 hrs.
- RTXN and ACPPNs were dosed at an equivalent scFv dose of 600 ⁇ g Animal dosing was started once all tumors reached 150 mm 3 and the total number of doses limited to 8 per mouse. The first two doses were administered on consecutive days and the following six doses given every other day. The weight of the mice and the tumor volumes were monitored and animals were sacrificed after reaching the tumor volume end point (1000 mm 3 ) or due to occurrence of any adverse reactions to treatment.
- Organs from sacrificed animals were harvested and fixed in zinc formalin for 18 hrs and dehydrated in 70% alcohol for 24 hrs before paraffin embedding. After dehydration the dry weights of the liver, spleen, and tumor recorded. After paraffin embedding, fine 5 ⁇ m slices of the organs were stained with Hematoxylin and eosin (H & E) and studied for histological changes. The tumor volume for this study was calculated using the following formula:
- Tumor ⁇ ⁇ volume ⁇ 6 ⁇ ( w 2 ⁇ l )
- RHD labeled RTXN and ACPPNs successfully recognized two CD20+B-cell lymphomas ( FIG. 16B (i-iii, vii-xi)).
- RTXN efficiently bound CD20 with equal distribution of CD20 on the cell surface ( FIG. 16A (i-iii, vii-xi)).
- the surface bound RTXN showed a speckled or punctate pattern on the cell surface due to translocation of crosslinked RTXN into lipid rafts ( FIG. 16A (iv-vi, x-xii)).
- ACPPNs also bound CD20 forming a punctate pattern similar in appearance to crosslinked RTXN.
- RTXN The binding of ACPPNs can be blocked by pretreating both CD20+ cells with unlabeled RTXN suggesting competitive binding of cell surface CD20.
- FIG. 16B (vii-xi, vii-xi)
- RTXN and ACPPNs showed minimal binding to CD20 ⁇ CEM cells.
- Unmodified A192 also showed minimal binding of Raji and SU-DHL-7 cells.
- RTXN showed potent concentration dependent reduction in viability of SU-DHL-7 cells with an IC50 of 4.8 ⁇ M.
- CD20 ⁇ cells, CEM did not respond to RTXN treatment but showed a slight decrease in viability at higher ACPPN concentrations.
- the IC50 of ACPPNs for CEM cells was 294 ⁇ M.
- chLym-1 Chimeric lym1
- the chLym-1 control is an anti HLA-Dr10 antibody which is an effective inducer of apoptosis on direct cell binding (Zhang, N. et al. (2007) Cancer Biother Radiopharm 22: 342-356 and Tobin, E. et al. Leuk Lymphoma 48: 944-956) ( FIG. 17C ).
- Treatment with an equi-scFv dose of chLym-1 performed better than plain ACPPNs in Raji cells but was less effective in SU-DHL-7 cells.
- variable response could be due to a lower expression of surface HLA-dr10 on SU-DHL-7 cells ( FIG. 17C ) (Rimsza, L. M. et al. (2004) Blood 103: 4251-4258. Unlike chLym-1, ACPPNs were equally potent in both cell lines. It is interesting to note that results for RTXN treated SU-DHL-7 cells from the formazan based viability assay are contrary to findings from ANXV/PI staining CEM cells treated with ACPPNs showed minimal induction of apoptosis and hence were not evaluated further ( FIG. 17C ).
- TUNEL staining was used to determine the induction of late apoptosis because ANXV/PI staining is known to detect early apoptosis. All proteins were compared with an equivalent Fv dose of 2.5 mg/ml.
- the efficacy of RTXN can be enhanced to the same extent as ACPPNs by crosslinking with 2° GAH ( FIG. 17D ).
- FIGS. 17 E-F The activation of the caspase cascade by ACPPNs is similar to hypercrosslinked RTXN. Zhang, N. et al. (2005) Clinical Cancer Research, Vol. 11:5971-5980. Hence the ACPPNs are effective inducers of apoptosis in both B-cell lymphoma cell lines and outperform RTXN in vitro.
- RHD labeled ACPPNs injected in Raji xenografted athymic nude mice showed accumulation in various organs ( FIG. 18A-H ).
- RHD signal was seen in the liver ( FIG. 1B A, E), spleen ( FIG. 18B , F), tumor ( FIG. 18C , G) and kidney ( FIG. 18D , H), and, minimal accumulation was observed in the heart and lungs.
- Repeated measures 1-way ANOVA performed on the mean tumor volumes showed a significant difference between ACPPNs, RTXN, and PBS treated group (P 0.0011).
- Tumor volumes of RTXN and PBS showed no statistically significant difference (P 0.148).
- ACPPNs treatment significantly improved survival when compared to RTXN and PBS treatment groups (P 0.013, FIG. 18J ).
- the median survival times for ACPPN, RTXN, and PBS were 33, 19 and 25 days, respectively.
- the administered doses were adequately tolerated but produced a weight loss ( ⁇ 20%) observed in ACPPNs group after the first dose. The weight was recovered by day 13 with no causalities to treatment.
- the dry weight of the organs in the three groups did not change appreciably except for the spleen.
- a slight increase in dry spleen weight was observed in RTXN and ACPPNs groups when compared to the PBS treatment group (Table 3).
- major organs collected showed no observable histological changes in the three groups except for the tumor.
- the tumors in the RTXN and ACPPNs treatment groups showed similar histology with prominent necrotic regions compared to that seen in the PBS groups.
- the particle formation was reduced by guanidine renaturation but the process led to the formation of recombinant ACPPNs which efficiently targeted CD20 expressed on the surface of B-cells lymphomas.
- the formation of ‘worms’ was confirmed using cryoTEM which showed particles of 56.2 ⁇ 15.9 nm in length.
- the worms still assemble with a scFv core but with a lower M abs and relatively constant R g . Due a lower mass distributed in the same volume after refolding Applicants hypothesize that the scFv core may be more accessible, allowing for CD20 recognition.
- the small population with a lower diameter could have a less accessible core and may not contribute to the molecules efficacy.
- RTXN showed potent reduction in SU-DHL-7 viability using formazan based assays but minimal cell staining apoptosis in both apoptosis assays. This contradiction could have arisen due to the 100 fold less cell concentrations used for the experiment.
- ACPPNs The in vitro activity of ACPPNs was successfully translated in vivo using a Raji cell xenograft.
- ACPPNs treatment showed a significant delay in tumor growth when compared a plain RTXN dosed at the same equivalent scFv dose.
- a high dose for ACPPNs was chosen based on its activity in vitro. Tumor accumulation of ACPPNs was confirmed by injecting Raji cell xenografted nude mice with RHD labeled reagent. The particles showed high liver, tumor and spleen accumulation ( FIG. 19A-H ). The high liver and spleen uptake is most likely attributed to the host reticuloendothelial system (Brigger, I., et al.
- novel first generation ACPPNs (1) outperform RTXN as a single agent, (2) are biodegradable due to their peptidic nature, (3) are genetically engineered to offer precise control over the sequence, (4) are cheaper to produce than high molecular weight antibodies, and (5) represent a simple platform to apply to various other scFv targets.
- scFv ELP Non-Hodgkin Lymphoma
- NDL Non-Hodgkin Lymphoma
- a multicenter, randomized, double-blind, placebo-controlled study is undertaken to evaluate treatment with a weight-based or fixed dose of scFv ELP fusions in subjects with NHL.
- a clinical study is performed to examine the efficacy and safety of a recombinant polypeptide comprising scFv ELP fusions.
- the scFv ELP is effective to treat and/or prevent NHL.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Nanotechnology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/420,308 US20150218280A1 (en) | 2012-08-10 | 2013-08-08 | CD20 scFv-ELPs METHODS AND THERAPEUTICS |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261682029P | 2012-08-10 | 2012-08-10 | |
| US14/420,308 US20150218280A1 (en) | 2012-08-10 | 2013-08-08 | CD20 scFv-ELPs METHODS AND THERAPEUTICS |
| PCT/US2013/054218 WO2014026054A2 (fr) | 2012-08-10 | 2013-08-08 | Procédés et produits thérapeutiques cd20 scfv-elp |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/054218 A-371-Of-International WO2014026054A2 (fr) | 2012-08-10 | 2013-08-08 | Procédés et produits thérapeutiques cd20 scfv-elp |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/254,531 Continuation US10961317B2 (en) | 2012-08-10 | 2019-01-22 | CD20 scFv-ELPs methods and therapeutics |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150218280A1 true US20150218280A1 (en) | 2015-08-06 |
Family
ID=50068720
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/420,308 Abandoned US20150218280A1 (en) | 2012-08-10 | 2013-08-08 | CD20 scFv-ELPs METHODS AND THERAPEUTICS |
| US16/254,531 Active US10961317B2 (en) | 2012-08-10 | 2019-01-22 | CD20 scFv-ELPs methods and therapeutics |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/254,531 Active US10961317B2 (en) | 2012-08-10 | 2019-01-22 | CD20 scFv-ELPs methods and therapeutics |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20150218280A1 (fr) |
| WO (1) | WO2014026054A2 (fr) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170073400A1 (en) * | 2015-09-11 | 2017-03-16 | Nascent Biotech, Inc. | Enhanced delivery of drugs to the brain |
| WO2017120589A1 (fr) * | 2016-01-08 | 2017-07-13 | Washington University | Compositions comprenant de la chémérine et méthodes pour les utiliser |
| WO2018183929A1 (fr) | 2017-03-30 | 2018-10-04 | Progenity Inc. | Traitement d'une maladie du tractus gastro-intestinal avec un agent immunomodulateur libéré à l'aide d'un dispositif ingérable |
| CN109136244A (zh) * | 2018-08-31 | 2019-01-04 | 河北璋达生物科技有限公司 | 一种可诱导凋亡的携带检测标签的cd20嵌合抗原受体t淋巴细胞及其应用 |
| WO2019246312A1 (fr) | 2018-06-20 | 2019-12-26 | Progenity, Inc. | Traitement d'une maladie du tractus gastro-intestinal avec un immunomodulateur |
| WO2019246317A1 (fr) | 2018-06-20 | 2019-12-26 | Progenity, Inc. | Traitement d'une maladie ou d'un état dans un tissu provenant de l'endoderme |
| WO2020106704A2 (fr) | 2018-11-19 | 2020-05-28 | Progenity, Inc. | Dispositif ingestible pour administrer un agent therapeutique dans le tractus digestif |
| US10961317B2 (en) | 2012-08-10 | 2021-03-30 | University Of Southern California | CD20 scFv-ELPs methods and therapeutics |
| WO2021119482A1 (fr) | 2019-12-13 | 2021-06-17 | Progenity, Inc. | Dispositif ingérable pour administrer un agent thérapeutique dans le tractus gastro-intestinal |
| US11124559B2 (en) | 2014-12-10 | 2021-09-21 | University Of Southern California | Generation of hemoglobin-based oxygen carriers using elastin-like polypeptides |
| US11224662B2 (en) | 2012-02-13 | 2022-01-18 | University Of Southern California | Methods and therapeutics comprising ligand-targeted ELPs |
| US11464867B2 (en) | 2018-02-13 | 2022-10-11 | University Of Southern California | Multimeric elastin-like polypeptides |
| US11492394B1 (en) | 2021-10-29 | 2022-11-08 | Nascent Biotech, Inc. | Kits and containers for treating vimentin expressing tumors |
| CN115845078A (zh) * | 2021-09-24 | 2023-03-28 | 沃肽生物科技(山东)有限公司 | 基于相分离的肿瘤靶向药物递送系统 |
| EP4252629A2 (fr) | 2016-12-07 | 2023-10-04 | Biora Therapeutics, Inc. | Procédés, dispositifs et systèmes de détection du tractus gastro-intestinal |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3837276A4 (fr) | 2018-08-16 | 2022-05-18 | Isolere Bio, Inc. | Polypeptide génétiquement codé pour la capture et la purification par affinité de produits biologiques |
| CN112888445B (zh) | 2018-08-30 | 2025-06-10 | 免疫生物公司 | 治疗老年化相关病症的方法 |
| CN120535649A (zh) | 2018-08-30 | 2025-08-26 | 免疫生物公司 | 单链嵌合多肽和其用途 |
| NZ772550A (en) | 2018-08-30 | 2025-08-29 | Immunitybio Inc | Multi-chain chimeric polypeptides and uses thereof |
| KR20220035394A (ko) | 2019-06-21 | 2022-03-22 | 에이치씨더블유 바이올로직스, 인크. | 다중-사슬 키메라 폴리펩티드 및 이의 용도 |
| AU2021220870A1 (en) | 2020-02-11 | 2022-08-04 | Immunitybio, Inc. | Methods of treating age-related and inflammatory diseases |
| WO2021163298A1 (fr) | 2020-02-11 | 2021-08-19 | HCW Biologics, Inc. | Méthodes d'activation de lymphocytes t régulateurs |
| KR20220140535A (ko) | 2020-02-11 | 2022-10-18 | 에이치씨더블유 바이올로직스, 인크. | 크로마토그래피 수지 및 이의 용도 |
| JP2023514611A (ja) * | 2020-02-19 | 2023-04-06 | アイソレア バイオ,インコーポレイテッド | タンパク質ベースの精製マトリックス及びその使用方法 |
| CN115836087A (zh) | 2020-04-29 | 2023-03-21 | Hcw生物科技公司 | 抗cd26蛋白及其用途 |
| WO2021247003A1 (fr) | 2020-06-01 | 2021-12-09 | HCW Biologics, Inc. | Méthodes de traitement de troubles liés au vieillissement |
| US12024545B2 (en) | 2020-06-01 | 2024-07-02 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
| KR20230031280A (ko) | 2020-06-01 | 2023-03-07 | 에이치씨더블유 바이올로직스, 인크. | 노화 관련 장애의 치료 방법 |
| EP4370541A1 (fr) | 2021-07-14 | 2024-05-22 | 2seventy bio, Inc. | Récepteurs de lymphocytes t modifiés fusionnés à des domaines de liaison d'anticorps |
| JP2025508939A (ja) | 2022-03-02 | 2025-04-10 | イミュニティーバイオ インコーポレイテッド | 膵臓癌の治療方法 |
| CN119546327A (zh) | 2022-04-08 | 2025-02-28 | 再生元制药公司 | 多部分受体和信号传导复合物 |
Family Cites Families (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4898926A (en) | 1987-06-15 | 1990-02-06 | The University Of Alabama At Birmingham/Research Foundation | Bioelastomer containing tetra/penta-peptide units |
| US20020013344A1 (en) | 1995-10-31 | 2002-01-31 | Joseph P. Steiner | Rotamas enzyme activity inhibitors |
| US6015662A (en) * | 1996-01-23 | 2000-01-18 | Abbott Laboratories | Reagents for use as calibrators and controls |
| US6852834B2 (en) | 2000-03-20 | 2005-02-08 | Ashutosh Chilkoti | Fusion peptides isolatable by phase transition |
| US20040254108A1 (en) * | 2003-06-13 | 2004-12-16 | Jing Ma | Preparation and application of anti-tumor bifunctional fusion proteins |
| WO2005061532A1 (fr) | 2003-12-23 | 2005-07-07 | Berthet Francois Xavier | Compositions et procedes pour detecter une infection pathogene |
| JP2006182721A (ja) | 2004-12-28 | 2006-07-13 | National Cardiovascular Center | 人工赤血球及びその製造方法 |
| WO2006078629A2 (fr) | 2005-01-18 | 2006-07-27 | Duke University | Polypeptides de type elastine reticulables in-situ pour le colmatage des defauts lors de la reparation de tissus cartilagineux |
| US8252740B2 (en) | 2006-01-27 | 2012-08-28 | The University Of Mississippi Medical Center | Thermally-targeted delivery of medicaments including doxorubicin |
| US8841414B1 (en) | 2006-01-27 | 2014-09-23 | University Of Mississippi Medical Center | Targeted delivery of therapeutic peptides by thermally responsive biopolymers |
| GB0604187D0 (en) | 2006-03-02 | 2006-04-12 | Fusion Antibodies Ltd | Peptide and uses thereof |
| US20100119529A1 (en) | 2006-05-12 | 2010-05-13 | Furgeson Darin Y | Elastin-like polymer delivery vehicles |
| US8367626B2 (en) | 2006-05-12 | 2013-02-05 | Wisconsin Alumni Research Foundation | Elastin-like polymer delivery vehicles |
| EP2043689A4 (fr) | 2006-07-24 | 2013-08-07 | Univ Duke | Administration de médicament avec biopolymères sensibles aux stimuli |
| CN103230598A (zh) | 2006-09-06 | 2013-08-07 | 费斯生物制药公司 | 融合肽治疗组合物 |
| WO2008033847A2 (fr) * | 2006-09-11 | 2008-03-20 | Emory University | Polymères protéiques modifiés |
| US20110110866A1 (en) | 2007-04-10 | 2011-05-12 | Duke University | Elastin-like polypeptide and gadolinium conjugate for magnetic resonance imaging |
| DE602008005596D1 (de) | 2007-06-21 | 2011-04-28 | Univ Muenchen Tech | Biologisch aktive proteine mit erhöhter in-vivo- und/oder in-vitro-stabilität |
| BRPI0815416A2 (pt) | 2007-08-15 | 2014-10-21 | Amunix Inc | Composições e métodos para modificar propriedades de polipeptídeos biologicamente ativos |
| CN101544694A (zh) * | 2008-03-28 | 2009-09-30 | 上海中信国健药业有限公司 | 抗cd20四价抗体、其制备方法和应用 |
| WO2010144612A1 (fr) * | 2009-06-09 | 2010-12-16 | Urry Intellectual Property Llc | Compositions et procédés d'optimisation de l'hydrophobicité d'un médicament et administration de médicament à des cellules |
| WO2011006069A1 (fr) | 2009-07-09 | 2011-01-13 | Georgia Tech Research Corporation | Peptides pour liaison au fibrinogène et à la fibrine |
| US8808748B2 (en) | 2010-04-20 | 2014-08-19 | Vindico NanoBio Technology Inc. | Biodegradable nanoparticles as novel hemoglobin-based oxygen carriers and methods of using the same |
| EP2635308A2 (fr) | 2010-11-01 | 2013-09-11 | Peptimed, Inc. | Compositions d'un système à base de peptides pour le ciblage spécifique de cellules |
| CA2827170A1 (fr) * | 2011-02-11 | 2012-08-16 | David M. Hilbert | Complexes plurispecifiques monovalents et multivalents et leurs utilisations |
| WO2013016578A2 (fr) | 2011-07-26 | 2013-01-31 | University Of Southern California | Libération contrôlée de produits biopharmaceutiques oculaires au moyen de polymères protéiques biosensibles |
| US20130210747A1 (en) | 2012-02-13 | 2013-08-15 | University Of Southern California | Methods and Therapeutics Comprising Ligand-Targeted ELPs |
| US20150218280A1 (en) | 2012-08-10 | 2015-08-06 | University Of Southern California | CD20 scFv-ELPs METHODS AND THERAPEUTICS |
| WO2014059384A2 (fr) | 2012-10-12 | 2014-04-17 | University Of Southern California | Elp ciblant icam-1 |
| WO2014059385A1 (fr) | 2012-10-12 | 2014-04-17 | University Of Southern California | Procédés et thérapie à base de petites molécules comportant un elps fondu |
| KR102109188B1 (ko) | 2013-04-01 | 2020-05-11 | 삼성전자주식회사 | 양이온성 지질을 포함하는 온도민감성 리포좀 및 그의 용도 |
| WO2016094627A1 (fr) | 2014-12-10 | 2016-06-16 | S-Aima Holding Company, Llc | Génération de transporteurs d'oxygène à base d'hémoglobine à l'aide de polypeptides de type élastine |
| CN106632682A (zh) | 2015-08-04 | 2017-05-10 | 清华大学 | 融合蛋白ifn-elp及其应用 |
| US11464867B2 (en) | 2018-02-13 | 2022-10-11 | University Of Southern California | Multimeric elastin-like polypeptides |
-
2013
- 2013-08-08 US US14/420,308 patent/US20150218280A1/en not_active Abandoned
- 2013-08-08 WO PCT/US2013/054218 patent/WO2014026054A2/fr not_active Ceased
-
2019
- 2019-01-22 US US16/254,531 patent/US10961317B2/en active Active
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11224662B2 (en) | 2012-02-13 | 2022-01-18 | University Of Southern California | Methods and therapeutics comprising ligand-targeted ELPs |
| US10961317B2 (en) | 2012-08-10 | 2021-03-30 | University Of Southern California | CD20 scFv-ELPs methods and therapeutics |
| US11124559B2 (en) | 2014-12-10 | 2021-09-21 | University Of Southern California | Generation of hemoglobin-based oxygen carriers using elastin-like polypeptides |
| US20170073400A1 (en) * | 2015-09-11 | 2017-03-16 | Nascent Biotech, Inc. | Enhanced delivery of drugs to the brain |
| US11028155B2 (en) * | 2015-09-11 | 2021-06-08 | Nascent Biotech, Inc. | Enhanced delivery of drugs to the brain |
| WO2017120589A1 (fr) * | 2016-01-08 | 2017-07-13 | Washington University | Compositions comprenant de la chémérine et méthodes pour les utiliser |
| US11938193B2 (en) | 2016-01-08 | 2024-03-26 | Washington University | Compositions comprising chemerin and methods of use thereof |
| EP4252629A2 (fr) | 2016-12-07 | 2023-10-04 | Biora Therapeutics, Inc. | Procédés, dispositifs et systèmes de détection du tractus gastro-intestinal |
| WO2018183929A1 (fr) | 2017-03-30 | 2018-10-04 | Progenity Inc. | Traitement d'une maladie du tractus gastro-intestinal avec un agent immunomodulateur libéré à l'aide d'un dispositif ingérable |
| EP4108183A1 (fr) | 2017-03-30 | 2022-12-28 | Biora Therapeutics, Inc. | Traitement d'une maladie du tractus gastro-intestinal avec un agent immunomodulateur libéré à l'aide d'un dispositif ingérable |
| US12458704B2 (en) | 2018-02-13 | 2025-11-04 | University Of Southern California | Multimeric elastin-like polypeptides |
| US11464867B2 (en) | 2018-02-13 | 2022-10-11 | University Of Southern California | Multimeric elastin-like polypeptides |
| WO2019246317A1 (fr) | 2018-06-20 | 2019-12-26 | Progenity, Inc. | Traitement d'une maladie ou d'un état dans un tissu provenant de l'endoderme |
| WO2019246312A1 (fr) | 2018-06-20 | 2019-12-26 | Progenity, Inc. | Traitement d'une maladie du tractus gastro-intestinal avec un immunomodulateur |
| CN109136244A (zh) * | 2018-08-31 | 2019-01-04 | 河北璋达生物科技有限公司 | 一种可诱导凋亡的携带检测标签的cd20嵌合抗原受体t淋巴细胞及其应用 |
| WO2020106757A1 (fr) | 2018-11-19 | 2020-05-28 | Progenity, Inc. | Dispositif ingérable pour administrer un agent thérapeutique au tube digestif |
| WO2020106754A1 (fr) | 2018-11-19 | 2020-05-28 | Progenity, Inc. | Méthodes et dispositifs pour traiter une maladie à l'aide d'agents biothérapeutiques |
| WO2020106704A2 (fr) | 2018-11-19 | 2020-05-28 | Progenity, Inc. | Dispositif ingestible pour administrer un agent therapeutique dans le tractus digestif |
| WO2021119482A1 (fr) | 2019-12-13 | 2021-06-17 | Progenity, Inc. | Dispositif ingérable pour administrer un agent thérapeutique dans le tractus gastro-intestinal |
| EP4309722A2 (fr) | 2019-12-13 | 2024-01-24 | Biora Therapeutics, Inc. | Dispositif ingérable pour l'administration d'un agent thérapeutique au tractus gastro-intestinal |
| CN115845078A (zh) * | 2021-09-24 | 2023-03-28 | 沃肽生物科技(山东)有限公司 | 基于相分离的肿瘤靶向药物递送系统 |
| US11492394B1 (en) | 2021-10-29 | 2022-11-08 | Nascent Biotech, Inc. | Kits and containers for treating vimentin expressing tumors |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2014026054A3 (fr) | 2014-06-05 |
| US20200079868A1 (en) | 2020-03-12 |
| US10961317B2 (en) | 2021-03-30 |
| WO2014026054A2 (fr) | 2014-02-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10961317B2 (en) | CD20 scFv-ELPs methods and therapeutics | |
| JP6553105B2 (ja) | クロロトキシン変異体、コンジュゲート、およびそれらを使用する方法 | |
| US11224662B2 (en) | Methods and therapeutics comprising ligand-targeted ELPs | |
| JP4689666B2 (ja) | アルブミン結合蛋白質を標的として用いる治療法 | |
| US12458704B2 (en) | Multimeric elastin-like polypeptides | |
| Li et al. | Advances in bone‐targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma | |
| JP6876618B2 (ja) | 治療目的のための抗体−ウレアーゼコンジュゲート | |
| US20190247317A1 (en) | Icam-1 targeting elps | |
| JP2018058879A (ja) | 線維症性疾患の処置のためのTrailレセプターアゴニスト | |
| McGonigle et al. | Neuropilin-1 drives tumor-specific uptake of chlorotoxin | |
| US9784730B2 (en) | Nanoparticle for targeting brain tumors and delivery of O6-benzylguanine | |
| US9901620B2 (en) | Trail receptor agonists for treatment of fibrotic disease | |
| US20190022190A1 (en) | Generation of hemoglobin-based oxygen carriers using elastin like polypeptides | |
| AU2019389807A1 (en) | Combined treatment of primary central nervous system lymphoma | |
| US20150209335A1 (en) | Methods and small molecule therapeutics comprising fused elps | |
| US20190290726A1 (en) | Protein polymer fusions for subcutaneous delivery of small molecules | |
| Tao et al. | Multivalent assembly of nucleolin-targeted F3 peptide potentiates TRAIL's tumor penetration and antitumor effects | |
| US20120165268A1 (en) | P53 fusion proteins and methods of making and using thereof | |
| US12448425B2 (en) | Therapeutic peptides | |
| CN112020555B (zh) | 肽及其应用 | |
| AU2021266157A1 (en) | Homing peptide-guided decorin conjugates for use in treating epidermolysis bullosa | |
| IL310109A (en) | Brain permeable multifunctional system and uses thereof | |
| HK1236396A1 (en) | Trail receptor agonists for treatment of fibrotic diseases |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EPSTEIN, ALAN L.;MACKAY, JOHN ANDREW;HU, PEISHENG;AND OTHERS;REEL/FRAME:055198/0628 Effective date: 20130614 Owner name: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EPSTEIN, ALAN L.;MACKAY, JOHN ANDREW;HU, PEISHENG;AND OTHERS;REEL/FRAME:055197/0779 Effective date: 20130614 |