US20150179405A1 - Upper electrode and plasma processing apparatus - Google Patents
Upper electrode and plasma processing apparatus Download PDFInfo
- Publication number
- US20150179405A1 US20150179405A1 US14/415,258 US201314415258A US2015179405A1 US 20150179405 A1 US20150179405 A1 US 20150179405A1 US 201314415258 A US201314415258 A US 201314415258A US 2015179405 A1 US2015179405 A1 US 2015179405A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- electrode part
- upper electrode
- plate
- central portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012545 processing Methods 0.000 title claims abstract description 98
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 32
- 239000010703 silicon Substances 0.000 claims abstract description 32
- 238000005507 spraying Methods 0.000 claims abstract description 17
- 239000000919 ceramic Substances 0.000 claims description 51
- 230000002093 peripheral effect Effects 0.000 claims description 47
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 71
- 239000007789 gas Substances 0.000 description 52
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000007750 plasma spraying Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/3255—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
Definitions
- Various aspects and embodiments of the present disclosure relate to an upper electrode and a plasma processing apparatus.
- plasma processing apparatuses have been widely used to perform plasma processings for the purpose of, for example, depositing or etching a thin film.
- the plasma processing apparatuses may involve, for example, a plasma chemical vapor deposition (CVD) apparatus that performs a deposition processing of a thin film and a plasma etching apparatus that performs an etching processing.
- CVD plasma chemical vapor deposition
- the plasma processing apparatus includes, for example, a processing container that defines a plasma processing space, a placing table that is provided in the processing container to place a substrate to be processed thereon, and an upper electrode that is disposed to face the placing table across the plasma processing space and includes a conductive electrode plate.
- Patent Document 1 discloses that a plate-like member including a flow path of a processing gas for a plasma processing is formed of a conductive material having high heat conductivity, and an electrode plate of an upper electrode is detachably provided on a surface of the plate-like member where the outlet of the flow path is formed, thereby performing the cooling of the electrode plate.
- Patent Document 1 Japanese Patent Laid-Open Publication No. 2007-273596
- the electrode plate is detachably provided on the surface of the plate-like member where the outlet of the processing gas flow path is formed, the electrode plate is bent by its own weight so that a gap is generated between the plate-like member and the electrode plate. Therefore, heat is hardly transmitted from the electrode plate to the plate-like member. As a result, the uniformity of the temperature of the upper electrode may be impaired in the prior art.
- An upper electrode includes a plate-like member and an electrode part.
- the plate-like member is provided with a flow path that distributes a processing gas used for a plasma processing.
- the electrode part is formed in a film shape by thermal spraying of silicon onto a surface of the plate-like member where an outlet of the flow path is formed.
- an upper electrode and a plasma processing apparatus are realized, in which the uniformity of the temperature of the upper electrode may be maintained.
- FIG. 1 is a vertical cross-sectional view schematically illustrating a configuration of a plasma processing apparatus according to an exemplary embodiment.
- FIG. 2 is a vertical cross-sectional view illustrating the upper electrode according to the exemplary embodiment.
- FIG. 3 is a vertical-sectional view illustrating modified example 1 of the upper electrode according to the exemplary embodiment.
- FIG. 4 is a vertical-sectional view illustrating modified example 2 of the upper electrode according to the exemplary embodiment.
- FIG. 5 is a vertical-sectional view illustrating modified example 3 of the upper electrode according to the exemplary embodiment.
- FIG. 6 is a vertical-sectional view illustrating modified example 4 of the upper electrode according to the exemplary embodiment.
- FIG. 7 is a vertical-sectional view illustrating modified example 5 of the upper electrode according to the exemplary embodiment.
- FIG. 8 is a vertical-sectional view illustrating modified example 6 of the upper electrode according to the exemplary embodiment.
- FIG. 9 is a vertical-sectional view illustrating modified example 7 of the upper electrode according to the exemplary embodiment.
- FIG. 1 is a vertical cross-sectional view schematically illustrating a configuration of a plasma processing apparatus according to an exemplary embodiment.
- a plasma processing apparatus 2 is configured as a capacitively coupled parallel-plate plasma etching apparatus, and includes a processing chamber 21 serving as a processing container that defines a plasma processing space for a plasma processing. On the bottom of the processing chamber 21 serving as a processing container, a support base 23 is disposed via an insulating plate 22 that is made of a ceramic. A susceptor 24 made of, for example, aluminum and constituting a lower electrode is provided on the support base 23 . An electrostatic chuck 25 is provided in a central upper portion of the susceptor 24 to attract and hold a wafer W serving as a substrate to be processed by an electrostatic force.
- the electrostatic chuck 25 has a configuration in which an electrode 26 formed of a conductive film is sandwiched between a pair of insulating layers. The electrode 26 is electrically connected with a direct current (DC) power supply 27 .
- DC direct current
- a conductive focus ring (correction ring) 25 a made of, for example, silicon is disposed on the top of the susceptor 24 so as to surround the electrostatic chuck 25 .
- Reference numeral “ 28 ” in the drawing denotes a cylindrical inner wall member made of, for example, quartz, and provided to surround the susceptor 24 and the support base 23 .
- a coolant chamber 29 is formed, for example, along the circumferential direction of the support base 23 .
- a coolant at a predetermined temperature for example, cooling water is circulated and supplied from a chiller unit (not illustrated), which is provided outside, into the coolant chamber 29 through pipes 30 a , 30 b .
- the processing temperature of the wafer W on the susceptor 24 may be controlled by the temperature of the coolant.
- a heat transfer gas for example, helium (He) gas, supplied from a heat transfer gas supplying unit (not illustrated) to a gap between the upper surface of the electrostatic chuck 25 and the rear surface of the wafer W through a gas supply line 31 .
- He helium
- An upper electrode 4 is provided above the susceptor 24 , which is the lower electrode, to face the susceptor 24 across the plasma processing space of the processing chamber 21 .
- a space between the upper electrode 4 and the susceptor 24 forms the plasma processing space that generates plasma.
- FIG. 2 is a vertical cross-sectional view illustrating the upper electrode according to an exemplary embodiment.
- the upper electrode 4 includes a plate-like member 41 as an electrode body, and an electrode part 42 .
- the plate-like member 41 is supported in an upper portion of the processing chamber 21 by an insulating shielding member 45 .
- the plate-like member 41 is formed in a disc shape by a conductive material having relatively high heat conductivity such as, for example, aluminum, the surface of which is anodized, and functions as a cooling plate to cool the electrode part 42 which is heated by the plasma generated in the plasma processing space.
- the plate-like member 41 includes therein a gas introduction port 46 that introduces a processing gas for the plasma processing, a gas diffusion chamber 43 that diffuses the processing gas introduced from the gas introduction port 46 , and gas distribution holes 43 a serving as flow paths that distribute the processing gas diffused by the gas diffusion chamber 43 .
- the electrode part 42 is formed in a film shape by thermally spraying silicon onto a surface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed.
- the electrode part 42 is formed in a film shape, as well as in a disc shape corresponding to the shape of the plate-like member 41 , by thermally spraying silicon onto the surface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed.
- a plasma spraying method may be used, for example.
- the plasma spraying method is a film forming method, in which a film is formed by energizing a rare gas in a nozzle to generate a plasma flow, feeding a thermal spraying material such as, for example, powdered silicon, into the generated plasma flow, and injecting the plasma flow fed with the thermal spraying material to a workpiece from the nozzle.
- the plasma spraying method is characterized by a relatively high adhesion between the workpiece and the film.
- the film formed by the plasma spraying method is characterized by a high hardness, a strong adhesion between particles, a high density, and a smooth shape.
- the plasma spraying method is also characterized in that a thermal distortion of the workpiece is small, and that deterioration of the workpiece may be suppressed.
- the electrode part 42 includes gas introduction holes 42 a formed to penetrate the electrode part 42 in the thickness direction.
- the gas introduction holes 42 a are arranged to be overlapped with the outlets of the gas distribution holes 43 a of the plate-like member 41 . Therefore, the processing gas supplied to the gas diffusion chamber 43 is diffused in a shower form and supplied into the processing chamber 21 through the gas distribution holes 43 a and the gas introduction holes 42 a.
- the resistivity of the peripheral portion of the electrode part 42 and the resistivity of a central portion of the electrode part 42 are set to different values by adjusting concentrations of boron added to the silicon in the peripheral portion of the electrode part 42 and in the central portion of the electrode part 42 .
- the resistivity of the peripheral portion of the electrode part 42 and the resistivity of the central portion of the electrode part 42 may be set to different values within a range of 0.01 m ⁇ cm to 100 ⁇ cm.
- the resistivity of the central portion of the electrode part 42 is set to a value larger than the resistivity of the peripheral portion of the electrode part 42 by adjusting the concentration of the boron in the silicon in the central portion of the electrode part 42 to a value larger than the concentration of the boron in the silicon in the peripheral portion of the electrode part 42 . Accordingly, the impedance of the central portion of the electrode part 42 with respect to the plasma becomes larger than that of the peripheral portion of the electrode part 42 .
- the resistivity of the central portion of the electrode part 42 is set to a value smaller than the resistivity of the peripheral portion of the electrode part 42 by adjusting the concentration of the boron in the silicon in the central portion of the electrode part 42 to a value smaller than the concentration of the boron in the silicon in the peripheral portion of the electrode part 42 . Accordingly, the impedance of the central portion of the electrode part 42 with respect to the plasma becomes smaller than that of the peripheral portion of the electrode part 42 .
- the gas introduction port 46 of the plate-like member 41 is connected with a gas supply pipe 47 .
- the gas supply pipe 47 is connected with a processing gas source 48 .
- the gas supply pipe 47 is provided with a mass flow controller (MFC) 49 and an opening/closing valve V 1 sequentially from its upstream side.
- MFC mass flow controller
- a gas such as, for example, a fluorocarbon gas (C x F y ) including C 4 F 8 gas is supplied from the processing gas source 48 to the gas diffusion chamber 43 through the gas supply pipe 47 , and then, supplied into the processing chamber 21 .
- the gas supply pipe 47 , the processing gas supply source 48 , and the upper electrode 4 constitute a processing gas supply unit.
- the upper electrode 4 is electrically connected to a variable DC power supply 52 through a low pass filter (LPF) 51 .
- the variable DC power supply 52 is configured to turn ON/OFF power feeding by an ON/OFF switch 53 .
- the current/voltage of the variable DC power source 52 and the ON/OFF of the ON/OFF switch 53 is adapted to be controlled by a controller 54 .
- a cylindrical grounding conductor 21 a is provided to extend above a height position of the upper electrode 4 from the side wall of the processing chamber 21 .
- the grounding conductor 21 a has an upper wall in its upper portion.
- the susceptor 24 serving as the lower electrode, is electrically connected with the first high frequency power supply 62 through a matcher 61 . Further, the susceptor 24 is electrically connected with the second high frequency power supply 64 through a matcher 63 .
- the first high frequency power supply 62 has a role to generate plasma in the plasma processing space between the upper electrode 4 and the susceptor 24 by outputting a power having a high frequency of 27 MHz or more, for example, 40 MHz. An etching processing is performed on the wafer W by the plasma generated in the plasma processing space.
- the second high frequency power supply 64 has a role to draw ion species generated by outputting a power having a high frequency of 13.56 MHz or less, for example, 2 MHz, to the wafer W held on the electrostatic chuck.
- An exhaust port 71 is formed on the bottom of the processing chamber 21 , and the exhaust port 71 is connected with an exhaust device 73 , serving as an exhaust unit, through an exhaust pipe 72 .
- the exhaust device 73 includes, for example, a vacuum pump, and is able to decompress the inside of the processing chamber 21 to a desired vacuum pressure.
- a wafer W carrying-in/out port 74 is formed on the side wall of the processing chamber 21 , and the carrying-in/out port 74 may be opened or closed by a gate valve 75 .
- Reference numerals “ 76 ” and “ 77 ” in the drawing denote deposit shields.
- the deposit shield 76 is provided along the inner wall surface of the processing chamber 21 .
- the deposit shield has a role to suppress any etching byproducts (deposits) from adhering to the processing chamber 21 , and is detachably provided on the inner wall surface.
- a conductive member (GND block) 79 is provided on a portion of the deposit shield 76 constituting the inner wall of the processing chamber 21 at substantially the same height position as the wafer W and connected to a ground in a DC mode. As a result, an abnormal discharge is suppressed.
- the electrode part 42 is formed in a film shape by thermally spraying silicon onto the surface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed, it is possible to avoid a situation where a gap serving as a thermal resistance is generated between the plate-like member 41 and the electrode part 42 .
- the uniformity of the temperature of the upper electrode 4 including the plate-like member 41 and the electrode part 42 may be maintained, a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- the electrode part 42 of the upper electrode 4 is consumed due to damage caused by plasma.
- the electrode part 42 is formed in a film shape by thermally spraying silicon onto the surface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed, the electrode part 42 may be easily formed by thermally spraying silicon again even in a case where the electrode part 42 of the upper electrode 4 is consumed.
- an increase in cost associated with the replacement may be suppressed.
- the impedance of the electrode part 42 with respect to plasma may be controlled properly.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- the upper electrode 4 has been described as an example, in which the resistivity of the peripheral portion of the electrode part 42 and the resistivity of the central portion of the electrode part 42 are set to different values by adjusting the concentrations of boron added to the silicon in the peripheral portion of the electrode part 42 and in the central portion of the electrode part 42 .
- exemplary embodiments are not limited thereto.
- modified examples of the upper electrode 4 will be described.
- FIG. 3 is a vertical-sectional view illustrating modified example 1 of the upper electrode according to the exemplary embodiment.
- An upper electrode 104 according to modified example 1 is different from the upper electrode 4 illustrated in FIG. 2 in that an electrode part 142 is provided in place of the electrode part 42 . Accordingly, for the same configurations as the upper electrode 4 illustrated in FIG. 2 , the descriptions thereof will be omitted.
- the resistivity of the peripheral portion of the electrode part 142 and the resistivity of the central portion of the electrode part 142 are set to different values by adjusting the film thicknesses of silicon in the peripheral portion of the electrode part 142 and in the central portion of the electrode part 142 .
- the resistivity of the peripheral portion of the electrode part 142 and the resistivity of the central portion of the electrode part 142 are set to different values within a range of 0.01 m ⁇ cm to 100 ⁇ cm.
- the resistivity of the central portion of the electrode part 142 is set to a value larger than the resistivity of the peripheral portion of the electrode part 142 by adjusting the film thickness of the silicon in the central portion of the electrode part 142 to a value larger than the film thickness of the silicon in the peripheral portion of the electrode part 142 . Accordingly, the impedance of the central portion of the electrode part 142 with respect to the plasma becomes larger than that of the peripheral portion of the electrode part 142 .
- the impedance of the electrode part 142 with respect to the plasma may be controlled properly.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- FIG. 4 is a vertical-sectional view illustrating modified example 2 of the upper electrode according to the exemplary embodiment.
- An upper electrode 204 according to modified example 2 is different from the upper electrode 4 illustrated in FIG. 2 in that an electrode part 242 is provided in place of the electrode part 42 . Accordingly, for the same configurations as the upper electrode 4 illustrated in FIG. 2 , the descriptions thereof will be omitted.
- the resistivity of the peripheral portion of the electrode part 242 and the resistivity of the central portion of the electrode part 242 are set to different values by adjusting the film thicknesses of silicon in the peripheral portion of the electrode part 242 and in the central portion of the electrode part 242 .
- the resistivity of the peripheral portion of the electrode part 242 and the resistivity of the central portion of the electrode part 242 are set to different values within a range of 0.01 m ⁇ cm to 100 ⁇ cm.
- the resistivity of the central portion of the electrode part 242 is set to a value smaller than the resistivity of the peripheral portion of the electrode part 242 by adjusting the film thickness of the silicon in the central portion of the electrode part 242 to a value smaller than the film thickness of the silicon in the peripheral portion of the electrode part 242 . Accordingly, the impedance of the central portion of the electrode part 242 with respect to the plasma becomes smaller than that of the peripheral portion of the electrode part 242 .
- the impedance of the electrode part 242 with respect to the plasma may be controlled properly.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- FIG. 5 is a vertical-sectional view illustrating modified example 3 of the upper electrode according to the exemplary embodiment.
- An upper electrode 304 according to modified example 3 is different from the upper electrode 4 illustrated in FIG. 2 in that a ceramic film part 344 is formed between the plate-like member 41 and the electrode part 42 . Accordingly, for the same configurations as the upper electrode 4 illustrated in FIG. 2 , the descriptions thereof will be omitted.
- the upper electrode 304 of modified example 3 includes a ceramic film part 344 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and the electrode part 42 .
- alumina Al 2 O 3
- Yttria Y 2 O 3
- the ceramic film part 344 is formed over the entire surfaces of the plate-like member 41 and the electrode part 42 .
- the ceramic film part 344 includes openings overlapped with the gas distribution holes 43 a of the plate-like member 41 and the gas introduction holes 42 a of the electrode part 42 . Therefore, the processing gas supplied to the gas diffusion chamber 43 is diffused in a shower form and supplied into the processing chamber 21 through the gas distribution holes 43 a , the openings of the ceramic film part 344 , and the gas introduction holes 42 a.
- the plate-like member 41 may be protected from the plasma and the impedance of the electrode part 42 with respect to the plasma may be controlled properly.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- FIG. 6 is a vertical-sectional view illustrating modified example 4 of the upper electrode according to the exemplary embodiment.
- An upper electrode 404 according to modified example 4 has the same configuration as that of the upper electrode 304 illustrated in FIG. 5 , but is different from the upper electrode 304 illustrated in FIG. 5 in that a ceramic film part 444 is provided in place of the ceramic film part 344 . Accordingly, for the same configurations as the upper electrode 304 illustrated in FIG. 5 , the descriptions thereof will be omitted.
- the upper electrode 404 of modified example 4 includes a ceramic film part 444 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and the electrode part 42 .
- alumina Al 2 O 3
- Yttria Y 2 O 3
- the ceramic film part 444 is formed at a position corresponding to the central portion of the electrode part 42 . That is, in the electrode 404 of modified example 4, the ceramic film part 344 is formed only at a position corresponding to the central portion of the electrode part 42 , rather than being formed over the entire surface of the electrode part 42 .
- the plate-like member 41 may be protected from the plasma and the impedance of the central portion of the electrode part 42 with respect to the plasma may be increased.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- FIG. 7 is a vertical-sectional view illustrating modified example 5 of the upper electrode according to the exemplary embodiment.
- An upper electrode 504 according to modified example 5 is different from the upper electrode 304 illustrated in FIG. 5 in that a ceramic film part 544 is provided in place of the ceramic film part 344 . Accordingly, for the same configurations as the upper electrode 304 illustrated in FIG. 5 , the descriptions thereof will be omitted.
- the upper electrode 504 of modified example 5 includes a ceramic film part 544 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and the electrode part 42 .
- alumina Al 2 O 3
- Yttria Y 2 O 3
- the ceramic film part 544 is formed at a position corresponding to the peripheral portion of the electrode part 42 . That is, in the electrode 504 of modified example 5, the ceramic film part 544 is only at a position corresponding to the peripheral portion of the electrode part 42 rather than being formed over the entire surface of the electrode part 42 .
- the plate-like member 41 may be protected from the plasma and the impedance of the peripheral portion of the electrode part 42 with respect to the plasma may be controlled properly.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- FIG. 8 is a vertical-sectional view illustrating modified example 6 of the upper electrode according to the exemplary embodiment.
- An upper electrode 604 according to modified example 6 is different from the upper electrode 304 illustrated in FIG. 5 in that a ceramic film part 644 is provided in place of the ceramic film part 344 . Accordingly, for the same configurations as the upper electrode 304 illustrated in FIG. 5 , the descriptions thereof will be omitted.
- the upper electrode 604 of modified example 6 includes a ceramic film part 644 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and the electrode part 42 .
- alumina Al 2 O 3
- Yttria Y 2 O 3
- the film thickness of the ceramic film part 644 is set to be different between the position corresponding to the peripheral portion of the electrode part 42 and the position corresponding to the central portion of the electrode part 42 .
- the film thickness of the ceramic film part 644 at the position corresponding to the central portion of the electrode part 42 is set to a value larger than the film thickness of the ceramic film part 644 at the position corresponding to the peripheral portion of the electrode part 42 . Therefore, the impedance of the central portion of the electrode part 42 with respect to the plasma may become larger than that of the peripheral portion of the electrode part 42 .
- the impedance of the electrode part 42 with respect to the plasma may be controlled properly.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- FIG. 9 is a vertical-sectional view illustrating modified example 7 of the upper electrode according to the exemplary embodiment.
- An upper electrode 704 according to modified example 7 has the same configuration as that of the upper electrode 304 illustrated in FIG. 5 , but is different from the upper electrode 304 illustrated in FIG. 5 in that a ceramic film part 744 is provided in place of the ceramic film part 344 . Accordingly, for the same configurations as the upper electrode 304 illustrated in FIG. 5 , the descriptions thereof will be omitted.
- the upper electrode 704 of modified example 7 includes a ceramic film part 744 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and the electrode part 42 .
- alumina Al 2 O 3
- Yttria Y 2 O 3
- the film thickness of the ceramic film part 744 is set to be different between the position corresponding to the peripheral portion of the electrode part 42 and the position corresponding to the central portion of the electrode part 42 .
- the film thickness of the ceramic film part 744 at the position corresponding to the central portion of the electrode part 42 is set to a value smaller than the film thickness of the ceramic film part 744 at the position corresponding to the peripheral portion of the electrode part 42 . Therefore, the impedance of the central portion of the electrode part 42 with respect to the plasma may become smaller than that of the peripheral portion of the electrode part 42 .
- the impedance of the electrode part 42 with respect to the plasma may be controlled properly.
- a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
- the electrode part 42 is formed in a film shape by thermally spraying silicon onto the surface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed, it is possible to avoid a situation where a gap serving as a thermal resistance is generated between the plate-like member 41 and the electrode part 42 .
- the uniformity of the temperature of the upper electrode 4 including the plate-like member 41 and the electrode part 42 may be maintained, a uniform plasma processing may be performed on the entire processing target surface of the wafer W.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Abstract
In an exemplary embodiment, an upper electrode is disposed in a processing chamber to face a susceptor and provided with a plate-like member and an electrode part. In an exemplary embodiment, the plate-like member is formed with a gas distribution hole that distributes a processing gas used for a plasma processing. The electrode part is formed in a film shape by thermally spraying silicon onto a surface of the plate-like member where an outlet of the gas distribution hole is formed.
Description
- Various aspects and embodiments of the present disclosure relate to an upper electrode and a plasma processing apparatus.
- In semiconductor device manufacturing processes, plasma processing apparatuses have been widely used to perform plasma processings for the purpose of, for example, depositing or etching a thin film. The plasma processing apparatuses may involve, for example, a plasma chemical vapor deposition (CVD) apparatus that performs a deposition processing of a thin film and a plasma etching apparatus that performs an etching processing.
- The plasma processing apparatus includes, for example, a processing container that defines a plasma processing space, a placing table that is provided in the processing container to place a substrate to be processed thereon, and an upper electrode that is disposed to face the placing table across the plasma processing space and includes a conductive electrode plate.
- In the plasma processing apparatus, since the upper electrode is exposed directly to plasma, the temperature of the upper electrode is increased. Therefore, it has been known that an electrode plate of the upper electrode is provided on a relatively highly heat-conductive member in order to suppress the increase of temperature. For example, Patent Document 1 discloses that a plate-like member including a flow path of a processing gas for a plasma processing is formed of a conductive material having high heat conductivity, and an electrode plate of an upper electrode is detachably provided on a surface of the plate-like member where the outlet of the flow path is formed, thereby performing the cooling of the electrode plate.
- Patent Document 1: Japanese Patent Laid-Open Publication No. 2007-273596
- However, it was difficult to maintain the uniformity of the temperature of the upper electrode in the prior art. That is, in the prior art, since the electrode plate is detachably provided on the surface of the plate-like member where the outlet of the processing gas flow path is formed, the electrode plate is bent by its own weight so that a gap is generated between the plate-like member and the electrode plate. Therefore, heat is hardly transmitted from the electrode plate to the plate-like member. As a result, the uniformity of the temperature of the upper electrode may be impaired in the prior art.
- An upper electrode according to an aspect of the present disclosure includes a plate-like member and an electrode part. The plate-like member is provided with a flow path that distributes a processing gas used for a plasma processing. The electrode part is formed in a film shape by thermal spraying of silicon onto a surface of the plate-like member where an outlet of the flow path is formed.
- According to various aspects and embodiments of the present disclosure, an upper electrode and a plasma processing apparatus are realized, in which the uniformity of the temperature of the upper electrode may be maintained.
-
FIG. 1 is a vertical cross-sectional view schematically illustrating a configuration of a plasma processing apparatus according to an exemplary embodiment. -
FIG. 2 is a vertical cross-sectional view illustrating the upper electrode according to the exemplary embodiment. -
FIG. 3 is a vertical-sectional view illustrating modified example 1 of the upper electrode according to the exemplary embodiment. -
FIG. 4 is a vertical-sectional view illustrating modified example 2 of the upper electrode according to the exemplary embodiment. -
FIG. 5 is a vertical-sectional view illustrating modified example 3 of the upper electrode according to the exemplary embodiment. -
FIG. 6 is a vertical-sectional view illustrating modified example 4 of the upper electrode according to the exemplary embodiment. -
FIG. 7 is a vertical-sectional view illustrating modified example 5 of the upper electrode according to the exemplary embodiment. -
FIG. 8 is a vertical-sectional view illustrating modified example 6 of the upper electrode according to the exemplary embodiment. -
FIG. 9 is a vertical-sectional view illustrating modified example 7 of the upper electrode according to the exemplary embodiment. - Hereinafter, various exemplary embodiments of the present disclosure will be described with reference to drawings. Meanwhile, in each drawing, the same or corresponding parts will be denoted by the same reference numerals.
- First, the entire configuration of a plasma processing apparatus will be described.
FIG. 1 is a vertical cross-sectional view schematically illustrating a configuration of a plasma processing apparatus according to an exemplary embodiment. - A
plasma processing apparatus 2 is configured as a capacitively coupled parallel-plate plasma etching apparatus, and includes aprocessing chamber 21 serving as a processing container that defines a plasma processing space for a plasma processing. On the bottom of theprocessing chamber 21 serving as a processing container, asupport base 23 is disposed via aninsulating plate 22 that is made of a ceramic. Asusceptor 24 made of, for example, aluminum and constituting a lower electrode is provided on thesupport base 23. Anelectrostatic chuck 25 is provided in a central upper portion of thesusceptor 24 to attract and hold a wafer W serving as a substrate to be processed by an electrostatic force. Theelectrostatic chuck 25 has a configuration in which anelectrode 26 formed of a conductive film is sandwiched between a pair of insulating layers. Theelectrode 26 is electrically connected with a direct current (DC)power supply 27. - In order to improve a uniformity of etching, a conductive focus ring (correction ring) 25 a made of, for example, silicon is disposed on the top of the
susceptor 24 so as to surround theelectrostatic chuck 25. Reference numeral “28” in the drawing denotes a cylindrical inner wall member made of, for example, quartz, and provided to surround thesusceptor 24 and thesupport base 23. - Inside the
support base 23, acoolant chamber 29 is formed, for example, along the circumferential direction of thesupport base 23. A coolant at a predetermined temperature, for example, cooling water is circulated and supplied from a chiller unit (not illustrated), which is provided outside, into thecoolant chamber 29 through 30 a, 30 b. The processing temperature of the wafer W on thepipes susceptor 24 may be controlled by the temperature of the coolant. Further, a heat transfer gas, for example, helium (He) gas, supplied from a heat transfer gas supplying unit (not illustrated) to a gap between the upper surface of theelectrostatic chuck 25 and the rear surface of the wafer W through agas supply line 31. - An
upper electrode 4 is provided above thesusceptor 24, which is the lower electrode, to face thesusceptor 24 across the plasma processing space of theprocessing chamber 21. A space between theupper electrode 4 and thesusceptor 24 forms the plasma processing space that generates plasma. - Here, a configuration of the
upper electrode 4 will be described in detail.FIG. 2 is a vertical cross-sectional view illustrating the upper electrode according to an exemplary embodiment. As illustrated inFIG. 2 , theupper electrode 4 includes a plate-like member 41 as an electrode body, and anelectrode part 42. - The plate-
like member 41 is supported in an upper portion of theprocessing chamber 21 by aninsulating shielding member 45. The plate-like member 41 is formed in a disc shape by a conductive material having relatively high heat conductivity such as, for example, aluminum, the surface of which is anodized, and functions as a cooling plate to cool theelectrode part 42 which is heated by the plasma generated in the plasma processing space. The plate-like member 41 includes therein agas introduction port 46 that introduces a processing gas for the plasma processing, agas diffusion chamber 43 that diffuses the processing gas introduced from thegas introduction port 46, andgas distribution holes 43 a serving as flow paths that distribute the processing gas diffused by thegas diffusion chamber 43. - The
electrode part 42 is formed in a film shape by thermally spraying silicon onto asurface 41 a of the plate-like member 41 where the outlets of thegas distribution holes 43 a are formed. In the present exemplary embodiment, theelectrode part 42 is formed in a film shape, as well as in a disc shape corresponding to the shape of the plate-like member 41, by thermally spraying silicon onto thesurface 41 a of the plate-like member 41 where the outlets of thegas distribution holes 43 a are formed. As for a method of thermally spraying silicon, a plasma spraying method may be used, for example. The plasma spraying method is a film forming method, in which a film is formed by energizing a rare gas in a nozzle to generate a plasma flow, feeding a thermal spraying material such as, for example, powdered silicon, into the generated plasma flow, and injecting the plasma flow fed with the thermal spraying material to a workpiece from the nozzle. The plasma spraying method is characterized by a relatively high adhesion between the workpiece and the film. Further, the film formed by the plasma spraying method is characterized by a high hardness, a strong adhesion between particles, a high density, and a smooth shape. Meanwhile, the plasma spraying method is also characterized in that a thermal distortion of the workpiece is small, and that deterioration of the workpiece may be suppressed. - The
electrode part 42 includesgas introduction holes 42 a formed to penetrate theelectrode part 42 in the thickness direction. The gas introduction holes 42 a are arranged to be overlapped with the outlets of the gas distribution holes 43 a of the plate-like member 41. Therefore, the processing gas supplied to thegas diffusion chamber 43 is diffused in a shower form and supplied into theprocessing chamber 21 through the gas distribution holes 43 a and the gas introduction holes 42 a. - Further, in the present exemplary embodiment, when the
electrode part 42 is formed by thermally spraying silicon, the resistivity of the peripheral portion of theelectrode part 42 and the resistivity of a central portion of theelectrode part 42 are set to different values by adjusting concentrations of boron added to the silicon in the peripheral portion of theelectrode part 42 and in the central portion of theelectrode part 42. The resistivity of the peripheral portion of theelectrode part 42 and the resistivity of the central portion of theelectrode part 42 may be set to different values within a range of 0.01 mΩcm to 100 Ωcm. For example, the resistivity of the central portion of theelectrode part 42 is set to a value larger than the resistivity of the peripheral portion of theelectrode part 42 by adjusting the concentration of the boron in the silicon in the central portion of theelectrode part 42 to a value larger than the concentration of the boron in the silicon in the peripheral portion of theelectrode part 42. Accordingly, the impedance of the central portion of theelectrode part 42 with respect to the plasma becomes larger than that of the peripheral portion of theelectrode part 42. Further, for example, the resistivity of the central portion of theelectrode part 42 is set to a value smaller than the resistivity of the peripheral portion of theelectrode part 42 by adjusting the concentration of the boron in the silicon in the central portion of theelectrode part 42 to a value smaller than the concentration of the boron in the silicon in the peripheral portion of theelectrode part 42. Accordingly, the impedance of the central portion of theelectrode part 42 with respect to the plasma becomes smaller than that of the peripheral portion of theelectrode part 42. - Referring back to
FIG. 1 , thegas introduction port 46 of the plate-like member 41 is connected with agas supply pipe 47. Thegas supply pipe 47 is connected with aprocessing gas source 48. Thegas supply pipe 47 is provided with a mass flow controller (MFC) 49 and an opening/closing valve V1 sequentially from its upstream side. And, as a processing gas for etching, a gas such as, for example, a fluorocarbon gas (CxFy) including C4F8 gas is supplied from theprocessing gas source 48 to thegas diffusion chamber 43 through thegas supply pipe 47, and then, supplied into theprocessing chamber 21. Thegas supply pipe 47, the processinggas supply source 48, and theupper electrode 4 constitute a processing gas supply unit. - The
upper electrode 4 is electrically connected to a variableDC power supply 52 through a low pass filter (LPF) 51. The variableDC power supply 52 is configured to turn ON/OFF power feeding by an ON/OFF switch 53. The current/voltage of the variableDC power source 52 and the ON/OFF of the ON/OFF switch 53 is adapted to be controlled by acontroller 54. - Further, when a high frequency power is applied to the susceptor 24 from first and second high frequency power supplies 62, 64 to generate plasma in the plasma processing space, the ON/
OFF switch 53 is turned ON by thecontroller 54 so that a predetermined negative DC voltage is applied to theupper electrode 4. Acylindrical grounding conductor 21 a is provided to extend above a height position of theupper electrode 4 from the side wall of theprocessing chamber 21. The groundingconductor 21 a has an upper wall in its upper portion. - The
susceptor 24, serving as the lower electrode, is electrically connected with the first highfrequency power supply 62 through amatcher 61. Further, thesusceptor 24 is electrically connected with the second highfrequency power supply 64 through amatcher 63. The first highfrequency power supply 62 has a role to generate plasma in the plasma processing space between theupper electrode 4 and thesusceptor 24 by outputting a power having a high frequency of 27 MHz or more, for example, 40 MHz. An etching processing is performed on the wafer W by the plasma generated in the plasma processing space. The second highfrequency power supply 64 has a role to draw ion species generated by outputting a power having a high frequency of 13.56 MHz or less, for example, 2 MHz, to the wafer W held on the electrostatic chuck. - An
exhaust port 71 is formed on the bottom of theprocessing chamber 21, and theexhaust port 71 is connected with an exhaust device 73, serving as an exhaust unit, through anexhaust pipe 72. The exhaust device 73 includes, for example, a vacuum pump, and is able to decompress the inside of theprocessing chamber 21 to a desired vacuum pressure. Further, a wafer W carrying-in/outport 74 is formed on the side wall of theprocessing chamber 21, and the carrying-in/outport 74 may be opened or closed by agate valve 75. - Reference numerals “76” and “77” in the drawing denote deposit shields. The
deposit shield 76 is provided along the inner wall surface of theprocessing chamber 21. The deposit shield has a role to suppress any etching byproducts (deposits) from adhering to theprocessing chamber 21, and is detachably provided on the inner wall surface. A conductive member (GND block) 79 is provided on a portion of thedeposit shield 76 constituting the inner wall of theprocessing chamber 21 at substantially the same height position as the wafer W and connected to a ground in a DC mode. As a result, an abnormal discharge is suppressed. - According to the present exemplary embodiment, since the
electrode part 42 is formed in a film shape by thermally spraying silicon onto thesurface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed, it is possible to avoid a situation where a gap serving as a thermal resistance is generated between the plate-like member 41 and theelectrode part 42. As a result, according to the present exemplary embodiment, since the uniformity of the temperature of theupper electrode 4 including the plate-like member 41 and theelectrode part 42 may be maintained, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. - Meanwhile, since the
upper electrode 4 is disposed to face thesusceptor 24 across the plasma processing space in theprocessing chamber 21, theelectrode part 42 of theupper electrode 4 is consumed due to damage caused by plasma. According to the present exemplary embodiment, since theelectrode part 42 is formed in a film shape by thermally spraying silicon onto thesurface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed, theelectrode part 42 may be easily formed by thermally spraying silicon again even in a case where theelectrode part 42 of theupper electrode 4 is consumed. As a result, according to the present exemplary embodiment, since it is unnecessary to replace the entireupper electrode 4, an increase in cost associated with the replacement may be suppressed. - Further, according to the present exemplary embodiment, since the resistivity of the peripheral portion of the
electrode part 42 and the resistivity of the central portion of theelectrode part 42 are set to different values, the impedance of theelectrode part 42 with respect to plasma may be controlled properly. As a result, according to the present exemplary embodiment, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. - In the above-mentioned exemplary embodiment, the
upper electrode 4 has been described as an example, in which the resistivity of the peripheral portion of theelectrode part 42 and the resistivity of the central portion of theelectrode part 42 are set to different values by adjusting the concentrations of boron added to the silicon in the peripheral portion of theelectrode part 42 and in the central portion of theelectrode part 42. However, exemplary embodiments are not limited thereto. Hereinafter, modified examples of theupper electrode 4 will be described. -
FIG. 3 is a vertical-sectional view illustrating modified example 1 of the upper electrode according to the exemplary embodiment. Anupper electrode 104 according to modified example 1 is different from theupper electrode 4 illustrated inFIG. 2 in that anelectrode part 142 is provided in place of theelectrode part 42. Accordingly, for the same configurations as theupper electrode 4 illustrated inFIG. 2 , the descriptions thereof will be omitted. - As illustrated in
FIG. 3 , in theupper electrode 104 of modified example 1, the resistivity of the peripheral portion of theelectrode part 142 and the resistivity of the central portion of theelectrode part 142 are set to different values by adjusting the film thicknesses of silicon in the peripheral portion of theelectrode part 142 and in the central portion of theelectrode part 142. Preferably, the resistivity of the peripheral portion of theelectrode part 142 and the resistivity of the central portion of theelectrode part 142 are set to different values within a range of 0.01 mΩcm to 100 Ωcm. In this example, the resistivity of the central portion of theelectrode part 142 is set to a value larger than the resistivity of the peripheral portion of theelectrode part 142 by adjusting the film thickness of the silicon in the central portion of theelectrode part 142 to a value larger than the film thickness of the silicon in the peripheral portion of theelectrode part 142. Accordingly, the impedance of the central portion of theelectrode part 142 with respect to the plasma becomes larger than that of the peripheral portion of theelectrode part 142. - According to the
upper electrode 104 of modified example 1, since the resistivity of the central portion of theelectrode part 142 is set to a value larger than the resistivity of the peripheral portion of theelectrode part 142 by adjusting the film thickness of the silicon in the central portion of theelectrode part 142 to a value larger than the film thickness of the silicon in the peripheral portion of theelectrode part 142, the impedance of theelectrode part 142 with respect to the plasma may be controlled properly. As a result, according to theupper electrode 104 of modified example 1, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. -
FIG. 4 is a vertical-sectional view illustrating modified example 2 of the upper electrode according to the exemplary embodiment. Anupper electrode 204 according to modified example 2 is different from theupper electrode 4 illustrated inFIG. 2 in that anelectrode part 242 is provided in place of theelectrode part 42. Accordingly, for the same configurations as theupper electrode 4 illustrated inFIG. 2 , the descriptions thereof will be omitted. - As illustrated in
FIG. 4 , in theupper electrode 204 of modified example 2, the resistivity of the peripheral portion of theelectrode part 242 and the resistivity of the central portion of theelectrode part 242 are set to different values by adjusting the film thicknesses of silicon in the peripheral portion of theelectrode part 242 and in the central portion of theelectrode part 242. The resistivity of the peripheral portion of theelectrode part 242 and the resistivity of the central portion of theelectrode part 242 are set to different values within a range of 0.01 mΩcm to 100 Ωcm. In this example, the resistivity of the central portion of theelectrode part 242 is set to a value smaller than the resistivity of the peripheral portion of theelectrode part 242 by adjusting the film thickness of the silicon in the central portion of theelectrode part 242 to a value smaller than the film thickness of the silicon in the peripheral portion of theelectrode part 242. Accordingly, the impedance of the central portion of theelectrode part 242 with respect to the plasma becomes smaller than that of the peripheral portion of theelectrode part 242. - According to the
upper electrode 204 of modified example 2, since the resistivity of the central portion of theelectrode part 242 is set to a value smaller than the resistivity of the peripheral portion of theelectrode part 242 by adjusting the film thickness of the silicon in the central portion of theelectrode part 242 to a value smaller than the film thickness of the silicon in the peripheral portion of theelectrode part 242, the impedance of theelectrode part 242 with respect to the plasma may be controlled properly. As a result, according to theupper electrode 204 of modified example 2, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. -
FIG. 5 is a vertical-sectional view illustrating modified example 3 of the upper electrode according to the exemplary embodiment. Anupper electrode 304 according to modified example 3 is different from theupper electrode 4 illustrated inFIG. 2 in that aceramic film part 344 is formed between the plate-like member 41 and theelectrode part 42. Accordingly, for the same configurations as theupper electrode 4 illustrated inFIG. 2 , the descriptions thereof will be omitted. - As illustrated in
FIG. 5 , theupper electrode 304 of modified example 3 includes aceramic film part 344 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and theelectrode part 42. As the ceramic thermally sprayed between the plate-like member 41 and theelectrode part 42, alumina (Al2O3) or Yttria (Y2O3) may be used, for example. In this example, theceramic film part 344 is formed over the entire surfaces of the plate-like member 41 and theelectrode part 42. - Meanwhile, the
ceramic film part 344 includes openings overlapped with the gas distribution holes 43 a of the plate-like member 41 and the gas introduction holes 42 a of theelectrode part 42. Therefore, the processing gas supplied to thegas diffusion chamber 43 is diffused in a shower form and supplied into theprocessing chamber 21 through the gas distribution holes 43 a, the openings of theceramic film part 344, and the gas introduction holes 42 a. - According to the
upper electrode 304 of modified example 3, by theceramic film part 344, the plate-like member 41 may be protected from the plasma and the impedance of theelectrode part 42 with respect to the plasma may be controlled properly. As a result, according to theupper electrode 304 of modified example 3, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. -
FIG. 6 is a vertical-sectional view illustrating modified example 4 of the upper electrode according to the exemplary embodiment. Anupper electrode 404 according to modified example 4 has the same configuration as that of theupper electrode 304 illustrated inFIG. 5 , but is different from theupper electrode 304 illustrated inFIG. 5 in that aceramic film part 444 is provided in place of theceramic film part 344. Accordingly, for the same configurations as theupper electrode 304 illustrated inFIG. 5 , the descriptions thereof will be omitted. - As illustrated in
FIG. 6 , theupper electrode 404 of modified example 4 includes aceramic film part 444 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and theelectrode part 42. As the ceramic thermally sprayed between the plate-like member 41 and theelectrode part 42, alumina (Al2O3) or Yttria (Y2O3) may be used, for example. Theceramic film part 444 is formed at a position corresponding to the central portion of theelectrode part 42. That is, in theelectrode 404 of modified example 4, theceramic film part 344 is formed only at a position corresponding to the central portion of theelectrode part 42, rather than being formed over the entire surface of theelectrode part 42. - According to the
upper electrode 404 of modified example 4, by theceramic film part 444 formed at a position corresponding to the central portion of theelectrode part 42, the plate-like member 41 may be protected from the plasma and the impedance of the central portion of theelectrode part 42 with respect to the plasma may be increased. As a result, according to theupper electrode 404 of modified example 4, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. -
FIG. 7 is a vertical-sectional view illustrating modified example 5 of the upper electrode according to the exemplary embodiment. Anupper electrode 504 according to modified example 5 is different from theupper electrode 304 illustrated inFIG. 5 in that aceramic film part 544 is provided in place of theceramic film part 344. Accordingly, for the same configurations as theupper electrode 304 illustrated inFIG. 5 , the descriptions thereof will be omitted. - As illustrated in
FIG. 7 , theupper electrode 504 of modified example 5 includes aceramic film part 544 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and theelectrode part 42. As the ceramic thermally sprayed between the plate-like member 41 and theelectrode part 42, alumina (Al2O3) or Yttria (Y2O3) may be used, for example. Theceramic film part 544 is formed at a position corresponding to the peripheral portion of theelectrode part 42. That is, in theelectrode 504 of modified example 5, theceramic film part 544 is only at a position corresponding to the peripheral portion of theelectrode part 42 rather than being formed over the entire surface of theelectrode part 42. - According to the
upper electrode 504 of modified example 5, by theceramic film part 544 formed at a position corresponding to the peripheral portion of theelectrode part 42, the plate-like member 41 may be protected from the plasma and the impedance of the peripheral portion of theelectrode part 42 with respect to the plasma may be controlled properly. As a result, according to theupper electrode 504 of modified example 5, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. -
FIG. 8 is a vertical-sectional view illustrating modified example 6 of the upper electrode according to the exemplary embodiment. Anupper electrode 604 according to modified example 6 is different from theupper electrode 304 illustrated inFIG. 5 in that aceramic film part 644 is provided in place of theceramic film part 344. Accordingly, for the same configurations as theupper electrode 304 illustrated inFIG. 5 , the descriptions thereof will be omitted. - As illustrated in
FIG. 8 , theupper electrode 604 of modified example 6 includes aceramic film part 644 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and theelectrode part 42. As the ceramic thermally sprayed between the plate-like member 41 and theelectrode part 42, alumina (Al2O3) or Yttria (Y2O3) may be used, for example. The film thickness of theceramic film part 644 is set to be different between the position corresponding to the peripheral portion of theelectrode part 42 and the position corresponding to the central portion of theelectrode part 42. In this example, the film thickness of theceramic film part 644 at the position corresponding to the central portion of theelectrode part 42 is set to a value larger than the film thickness of theceramic film part 644 at the position corresponding to the peripheral portion of theelectrode part 42. Therefore, the impedance of the central portion of theelectrode part 42 with respect to the plasma may become larger than that of the peripheral portion of theelectrode part 42. - According to the
upper electrode 604 of modified example 6, since the film thickness of theceramic film part 644 at the position corresponding to the central portion of theelectrode part 42 is set to a value larger than the film thickness of theceramic film part 644 at the position corresponding to the peripheral portion of theelectrode part 42, the impedance of theelectrode part 42 with respect to the plasma may be controlled properly. As a result, according to theupper electrode 604 of modified example 6, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. -
FIG. 9 is a vertical-sectional view illustrating modified example 7 of the upper electrode according to the exemplary embodiment. Anupper electrode 704 according to modified example 7 has the same configuration as that of theupper electrode 304 illustrated inFIG. 5 , but is different from theupper electrode 304 illustrated inFIG. 5 in that aceramic film part 744 is provided in place of theceramic film part 344. Accordingly, for the same configurations as theupper electrode 304 illustrated inFIG. 5 , the descriptions thereof will be omitted. - As illustrated in
FIG. 9 , theupper electrode 704 of modified example 7 includes aceramic film part 744 formed in a film shape by thermally spraying ceramic between the plate-like member 41 and theelectrode part 42. As the ceramic thermally sprayed between the plate-like member 41 and theelectrode part 42, alumina (Al2O3) or Yttria (Y2O3) may be used, for example. The film thickness of theceramic film part 744 is set to be different between the position corresponding to the peripheral portion of theelectrode part 42 and the position corresponding to the central portion of theelectrode part 42. In this example, the film thickness of theceramic film part 744 at the position corresponding to the central portion of theelectrode part 42 is set to a value smaller than the film thickness of theceramic film part 744 at the position corresponding to the peripheral portion of theelectrode part 42. Therefore, the impedance of the central portion of theelectrode part 42 with respect to the plasma may become smaller than that of the peripheral portion of theelectrode part 42. - According to the
upper electrode 704 of modified example 7, since the film thickness of theceramic film part 744 at the position corresponding to the central portion of theelectrode part 42 is set to a value smaller than the film thickness of theceramic film part 744 at the position corresponding to the peripheral portion of theelectrode part 42, the impedance of theelectrode part 42 with respect to the plasma may be controlled properly. As a result, according to theupper electrode 704 of modified example 7, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. - As described above, according to the plasma processing apparatus of the present exemplary embodiment, since the
electrode part 42 is formed in a film shape by thermally spraying silicon onto thesurface 41 a of the plate-like member 41 where the outlets of the gas distribution holes 43 a are formed, it is possible to avoid a situation where a gap serving as a thermal resistance is generated between the plate-like member 41 and theelectrode part 42. As a result, according to the present exemplary embodiment, since the uniformity of the temperature of theupper electrode 4 including the plate-like member 41 and theelectrode part 42 may be maintained, a uniform plasma processing may be performed on the entire processing target surface of the wafer W. -
-
- 1: plasma processing apparatus
- 4, 104, 204, 304, 404, 504, 604, 704: upper electrode
- 21: processing chamber (processing container)
- 24: susceptor (lower electrode)
- 25: electrostatic chuck
- 41: plate-like member
- 41 a: surface
- 42, 142, 242: electrode part
- 42 a: gas introduction hole
- 43: gas diffusion chamber
- 43 a: gas distribution hole (flow path)
- 344, 444, 544, 644, 744: ceramic film part
Claims (9)
1. An upper electrode comprising:
a plate-like member provided with a flow path that distributes a processing gas used for a plasma processing; and
an electrode part formed in a film shape by thermally spraying silicon onto a surface the plate-like member where an outlet of the flow path is formed.
2. The upper electrode of claim 1 , wherein a resistivity of a peripheral portion of the electrode part and a resistivity of a central portion of the electrode part are set to different values by adjusting concentrations of boron added to the silicon in the peripheral portion of the electrode part and in the central portion of the electrode part.
3. The upper electrode of claim 1 , wherein a resistivity of a peripheral portion of the electrode part and a resistivity of a central portion of the electrode part are set to different values by adjusting film thicknesses of the silicon in the peripheral portion of the electrode part and in the central portion of the electrode part.
4. The upper electrode of claim 2 , wherein the resistivity of the peripheral portion of the electrode part and the resistivity of the central portion of the electrode part are set to different values within a range of 0.01 mΩcm to 100 Ωcm.
5. The upper electrode of claim 1 , further comprising:
a ceramic film part formed in a film shape by thermally spraying ceramic between the plate-like member and the electrode part.
6. The upper electrode of claim 5 , wherein the ceramic film part is formed at a position corresponding to the central portion of the electrode part.
7. The upper electrode of claim 5 , wherein the ceramic film part is formed at a position corresponding to the peripheral portion of the electrode part.
8. The upper electrode of claim 5 , wherein a film thickness of the ceramic film part is set to be different between the position corresponding to the peripheral portion of the electrode part and the position corresponding to the central portion of the electrode part.
9. A plasma processing apparatus comprising:
a processing container configured to define a plasma processing space;
a lower electrode provided in the processing container and configured to place a substrate to be processed thereon; and
an upper electrode disposed to face the lower electrode across the plasma processing space,
wherein the upper electrode includes:
a plate-like member provided with a flow path that distributes a processing gas used for a plasma processing; and
an electrode part formed in a film shape by thermally spraying silicon onto a surface of the plate-like member where an outlet of the flow path is formed.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/415,258 US20150179405A1 (en) | 2012-07-17 | 2013-07-02 | Upper electrode and plasma processing apparatus |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012-158841 | 2012-07-17 | ||
| JP2012158841A JP6068849B2 (en) | 2012-07-17 | 2012-07-17 | Upper electrode and plasma processing apparatus |
| US201261674509P | 2012-07-23 | 2012-07-23 | |
| US14/415,258 US20150179405A1 (en) | 2012-07-17 | 2013-07-02 | Upper electrode and plasma processing apparatus |
| PCT/JP2013/068167 WO2014013864A1 (en) | 2012-07-17 | 2013-07-02 | Upper electrode and plasma processing apparatus |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2013/068167 A-371-Of-International WO2014013864A1 (en) | 2012-07-17 | 2013-07-02 | Upper electrode and plasma processing apparatus |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/296,827 Division US11515125B2 (en) | 2012-07-17 | 2019-03-08 | Upper electrode and plasma processing apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150179405A1 true US20150179405A1 (en) | 2015-06-25 |
Family
ID=49948696
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/415,258 Abandoned US20150179405A1 (en) | 2012-07-17 | 2013-07-02 | Upper electrode and plasma processing apparatus |
| US16/296,827 Active 2033-10-13 US11515125B2 (en) | 2012-07-17 | 2019-03-08 | Upper electrode and plasma processing apparatus |
| US17/983,128 Pending US20230061699A1 (en) | 2012-07-17 | 2022-11-08 | Upper electrode and plasma processing apparatus |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/296,827 Active 2033-10-13 US11515125B2 (en) | 2012-07-17 | 2019-03-08 | Upper electrode and plasma processing apparatus |
| US17/983,128 Pending US20230061699A1 (en) | 2012-07-17 | 2022-11-08 | Upper electrode and plasma processing apparatus |
Country Status (5)
| Country | Link |
|---|---|
| US (3) | US20150179405A1 (en) |
| JP (1) | JP6068849B2 (en) |
| KR (1) | KR102025457B1 (en) |
| TW (1) | TWI585849B (en) |
| WO (1) | WO2014013864A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160203955A1 (en) * | 2015-01-09 | 2016-07-14 | Tokyo Electron Limited | Cooling structure and parallel plate etching apparatus |
| US20170178868A1 (en) * | 2015-12-18 | 2017-06-22 | Samsung Electronics Co., Ltd. | Upper electrode for plasma processing apparatus and plasma processing apparatus having the same |
| WO2020083917A1 (en) * | 2018-10-25 | 2020-04-30 | Aixtron Se | Shield plate for a cvd reactor |
| US20220076921A1 (en) * | 2018-12-28 | 2022-03-10 | Tokyo Electron Limited | Plasma processing apparatus and control method |
| US20230125435A1 (en) * | 2021-10-27 | 2023-04-27 | Applied Materials, Inc. | Ion extraction assembly having variable electrode thickness for beam uniformity control |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10964514B2 (en) * | 2017-10-17 | 2021-03-30 | Lam Research Corporation | Electrode for plasma processing chamber |
| JP7172717B2 (en) * | 2019-02-25 | 2022-11-16 | 三菱マテリアル株式会社 | Electrode plate for plasma processing equipment |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050061445A1 (en) * | 1999-05-06 | 2005-03-24 | Tokyo Electron Limited | Plasma processing apparatus |
| US20090041568A1 (en) * | 2006-01-31 | 2009-02-12 | Tokyo Electron Limited | Substrate processing apparatus, substrate placing table used for same, and member exposed to plasma |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3308091B2 (en) * | 1994-02-03 | 2002-07-29 | 東京エレクトロン株式会社 | Surface treatment method and plasma treatment device |
| US5569356A (en) * | 1995-05-19 | 1996-10-29 | Lam Research Corporation | Electrode clamping assembly and method for assembly and use thereof |
| TW335517B (en) * | 1996-03-01 | 1998-07-01 | Hitachi Ltd | Apparatus and method for processing plasma |
| US6121540A (en) * | 1998-06-30 | 2000-09-19 | Kabushiki Kaisha Toshiba | Composite material substrate for solar cells, and solar cell |
| US6228438B1 (en) * | 1999-08-10 | 2001-05-08 | Unakis Balzers Aktiengesellschaft | Plasma reactor for the treatment of large size substrates |
| US6894245B2 (en) * | 2000-03-17 | 2005-05-17 | Applied Materials, Inc. | Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression |
| JP4454781B2 (en) * | 2000-04-18 | 2010-04-21 | 東京エレクトロン株式会社 | Plasma processing equipment |
| WO2002023610A1 (en) | 2000-09-14 | 2002-03-21 | Tokyo Electron Limited | Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device |
| JP4047616B2 (en) * | 2002-04-03 | 2008-02-13 | 東京エレクトロン株式会社 | Plasma processing apparatus and plasma processing method |
| KR20050095846A (en) * | 2003-01-28 | 2005-10-04 | 토소가부시키가이샤 | Corrosion-resistant member and method for producing same |
| WO2004073850A1 (en) * | 2003-02-14 | 2004-09-02 | Tokyo Electron Limited | Gas feeding apparatus |
| JP4349952B2 (en) * | 2004-03-24 | 2009-10-21 | 京セラ株式会社 | Wafer support member and manufacturing method thereof |
| JP5040119B2 (en) * | 2006-02-22 | 2012-10-03 | 東京エレクトロン株式会社 | Environmentally resistant member, semiconductor manufacturing apparatus, and environmentally resistant member manufacturing method |
| US7895970B2 (en) * | 2005-09-29 | 2011-03-01 | Tokyo Electron Limited | Structure for plasma processing chamber, plasma processing chamber, plasma processing apparatus, and plasma processing chamber component |
| JP2007250569A (en) * | 2006-03-13 | 2007-09-27 | Tokyo Electron Ltd | Plasma treatment apparatus and member to be exposed in plasma |
| JP2007243020A (en) * | 2006-03-10 | 2007-09-20 | Hitachi High-Technologies Corp | Plasma processing equipment |
| JP4935149B2 (en) | 2006-03-30 | 2012-05-23 | 東京エレクトロン株式会社 | Electrode plate for plasma processing and plasma processing apparatus |
| JP5683822B2 (en) * | 2009-03-06 | 2015-03-11 | 東京エレクトロン株式会社 | Plasma processing apparatus and electrode for plasma processing apparatus |
| JP5361457B2 (en) * | 2009-03-06 | 2013-12-04 | 東京エレクトロン株式会社 | Plasma processing apparatus and electrode for plasma processing apparatus |
| JP5359642B2 (en) * | 2009-07-22 | 2013-12-04 | 東京エレクトロン株式会社 | Deposition method |
| JP5835985B2 (en) * | 2010-09-16 | 2015-12-24 | 東京エレクトロン株式会社 | Plasma processing apparatus and plasma processing method |
| JP2012109377A (en) * | 2010-11-17 | 2012-06-07 | Tokyo Electron Ltd | Electrode structure and plasma processing apparatus |
| SG192967A1 (en) * | 2011-03-04 | 2013-09-30 | Novellus Systems Inc | Hybrid ceramic showerhead |
-
2012
- 2012-07-17 JP JP2012158841A patent/JP6068849B2/en active Active
-
2013
- 2013-07-02 WO PCT/JP2013/068167 patent/WO2014013864A1/en not_active Ceased
- 2013-07-02 US US14/415,258 patent/US20150179405A1/en not_active Abandoned
- 2013-07-02 KR KR1020157001213A patent/KR102025457B1/en active Active
- 2013-07-16 TW TW102125401A patent/TWI585849B/en active
-
2019
- 2019-03-08 US US16/296,827 patent/US11515125B2/en active Active
-
2022
- 2022-11-08 US US17/983,128 patent/US20230061699A1/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050061445A1 (en) * | 1999-05-06 | 2005-03-24 | Tokyo Electron Limited | Plasma processing apparatus |
| US20090041568A1 (en) * | 2006-01-31 | 2009-02-12 | Tokyo Electron Limited | Substrate processing apparatus, substrate placing table used for same, and member exposed to plasma |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160203955A1 (en) * | 2015-01-09 | 2016-07-14 | Tokyo Electron Limited | Cooling structure and parallel plate etching apparatus |
| US20170178868A1 (en) * | 2015-12-18 | 2017-06-22 | Samsung Electronics Co., Ltd. | Upper electrode for plasma processing apparatus and plasma processing apparatus having the same |
| WO2020083917A1 (en) * | 2018-10-25 | 2020-04-30 | Aixtron Se | Shield plate for a cvd reactor |
| CN113169023A (en) * | 2018-10-25 | 2021-07-23 | 艾克斯特朗欧洲公司 | Shielding plate for CVD reactor |
| US11746419B2 (en) | 2018-10-25 | 2023-09-05 | Aixtron Se | Shield plate for a CVD reactor |
| US12084768B2 (en) | 2018-10-25 | 2024-09-10 | Aixtron Se | Method for using shield plate in a CVD reactor |
| US20220076921A1 (en) * | 2018-12-28 | 2022-03-10 | Tokyo Electron Limited | Plasma processing apparatus and control method |
| US11742183B2 (en) * | 2018-12-28 | 2023-08-29 | Tokyo Electron Limited | Plasma processing apparatus and control method |
| US20230125435A1 (en) * | 2021-10-27 | 2023-04-27 | Applied Materials, Inc. | Ion extraction assembly having variable electrode thickness for beam uniformity control |
| US12125680B2 (en) * | 2021-10-27 | 2024-10-22 | Applied Materials, Inc. | Ion extraction assembly having variable electrode thickness for beam uniformity control |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20150036100A (en) | 2015-04-07 |
| US20230061699A1 (en) | 2023-03-02 |
| US11515125B2 (en) | 2022-11-29 |
| TWI585849B (en) | 2017-06-01 |
| JP6068849B2 (en) | 2017-01-25 |
| US20190272977A1 (en) | 2019-09-05 |
| JP2014022517A (en) | 2014-02-03 |
| WO2014013864A1 (en) | 2014-01-23 |
| TW201417171A (en) | 2014-05-01 |
| KR102025457B1 (en) | 2019-09-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230061699A1 (en) | Upper electrode and plasma processing apparatus | |
| US11380526B2 (en) | Stage and plasma processing apparatus | |
| US10276405B2 (en) | Plasma processing apparatus | |
| KR102216011B1 (en) | Showerhead having a detachable high resistivity gas distribution plate | |
| US9263298B2 (en) | Plasma etching apparatus and plasma etching method | |
| TWI734185B (en) | Plasma processing apparatus | |
| US7895970B2 (en) | Structure for plasma processing chamber, plasma processing chamber, plasma processing apparatus, and plasma processing chamber component | |
| US20070215279A1 (en) | Plasma processing apparatus, plasma processing method, focus ring, and focus ring component | |
| JP2018049830A (en) | Shower head having removable gas distribution plate | |
| KR20130093102A (en) | Apparatus for controlling the flow of a gas in a process chamber | |
| US11430636B2 (en) | Plasma processing apparatus and cleaning method | |
| TW201836439A (en) | Gas supply device, plasma processing device, and manufacturing method of the gas supply device for achieving uniformity of the film thickness of a thermal spraying film formed on gas discharge ports | |
| KR20140092257A (en) | Plasma processing method and plasma processing apparatus | |
| TW201737389A (en) | Substrate processing apparatus | |
| US20070256638A1 (en) | Electrode plate for use in plasma processing and plasma processing system | |
| KR20120137426A (en) | Sputtering apparatus and sputtering method | |
| TW202133262A (en) | Plasma processing apparatus and plasma processing method | |
| WO2023058480A1 (en) | Upper electrode structure, and plasma processing device | |
| JP6298293B2 (en) | Substrate processing apparatus, shutter mechanism, and plasma processing apparatus | |
| US20110021034A1 (en) | Substrate processing apparatus and method | |
| CN110246741B (en) | Substrate mounting structure and plasma processing apparatus | |
| JP5650837B2 (en) | Substrate processing equipment | |
| TW202217908A (en) | Process kit with protective ceramic coatings for hydrogen and nh3 plasma application | |
| KR101171988B1 (en) | Apparatus for plasma processing | |
| TWI580322B (en) | Substrate processing equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TOKYO ELECTRON LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAITO, MICHISHIGE;REEL/FRAME:034735/0498 Effective date: 20150115 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |