US20150175706A1 - Novel Antibodies Against Cancer Target Block Tumor Growth, Angiogenesis and Metastatis - Google Patents
Novel Antibodies Against Cancer Target Block Tumor Growth, Angiogenesis and Metastatis Download PDFInfo
- Publication number
- US20150175706A1 US20150175706A1 US14/571,801 US201414571801A US2015175706A1 US 20150175706 A1 US20150175706 A1 US 20150175706A1 US 201414571801 A US201414571801 A US 201414571801A US 2015175706 A1 US2015175706 A1 US 2015175706A1
- Authority
- US
- United States
- Prior art keywords
- cadherin
- antibody
- antibodies
- cancer
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010028980 Neoplasm Diseases 0.000 title abstract description 130
- 201000011510 cancer Diseases 0.000 title description 54
- 230000004614 tumor growth Effects 0.000 title description 12
- 230000005747 tumor angiogenesis Effects 0.000 title description 3
- 102000000905 Cadherin Human genes 0.000 claims abstract description 166
- 108050007957 Cadherin Proteins 0.000 claims abstract description 166
- 108050000637 N-cadherin Proteins 0.000 claims abstract description 166
- 239000012634 fragment Substances 0.000 claims description 23
- 210000004408 hybridoma Anatomy 0.000 claims description 17
- 238000001727 in vivo Methods 0.000 claims description 13
- 230000000890 antigenic effect Effects 0.000 claims description 9
- 238000000338 in vitro Methods 0.000 claims description 9
- 125000003275 alpha amino acid group Chemical group 0.000 claims 4
- 238000000034 method Methods 0.000 abstract description 48
- 238000011282 treatment Methods 0.000 abstract description 20
- 238000002560 therapeutic procedure Methods 0.000 abstract description 9
- 238000003745 diagnosis Methods 0.000 abstract description 7
- 210000004027 cell Anatomy 0.000 description 92
- 150000001413 amino acids Chemical group 0.000 description 58
- 108090000623 proteins and genes Proteins 0.000 description 56
- 150000007523 nucleic acids Chemical class 0.000 description 52
- 150000001875 compounds Chemical class 0.000 description 48
- 102000039446 nucleic acids Human genes 0.000 description 44
- 108020004707 nucleic acids Proteins 0.000 description 44
- 102000004169 proteins and genes Human genes 0.000 description 41
- 230000000694 effects Effects 0.000 description 40
- 108090000765 processed proteins & peptides Proteins 0.000 description 39
- 235000018102 proteins Nutrition 0.000 description 39
- 210000001519 tissue Anatomy 0.000 description 36
- 235000001014 amino acid Nutrition 0.000 description 35
- 229940024606 amino acid Drugs 0.000 description 35
- 230000014509 gene expression Effects 0.000 description 34
- 229920001184 polypeptide Polymers 0.000 description 34
- 102000004196 processed proteins & peptides Human genes 0.000 description 34
- 239000000203 mixture Substances 0.000 description 31
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 30
- 230000027455 binding Effects 0.000 description 30
- 238000009739 binding Methods 0.000 description 30
- 239000003098 androgen Substances 0.000 description 29
- 206010060862 Prostate cancer Diseases 0.000 description 28
- 108020004459 Small interfering RNA Proteins 0.000 description 28
- 230000002401 inhibitory effect Effects 0.000 description 26
- 230000012010 growth Effects 0.000 description 25
- 239000000523 sample Substances 0.000 description 23
- 239000003814 drug Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 18
- 125000003729 nucleotide group Chemical group 0.000 description 18
- 239000002773 nucleotide Substances 0.000 description 17
- 102000040430 polynucleotide Human genes 0.000 description 17
- 108091033319 polynucleotide Proteins 0.000 description 17
- 239000002157 polynucleotide Substances 0.000 description 17
- 239000000427 antigen Substances 0.000 description 16
- 108091007433 antigens Proteins 0.000 description 16
- 102000036639 antigens Human genes 0.000 description 16
- 235000002639 sodium chloride Nutrition 0.000 description 16
- 238000009472 formulation Methods 0.000 description 15
- 210000002307 prostate Anatomy 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- 238000009396 hybridization Methods 0.000 description 14
- 239000003112 inhibitor Substances 0.000 description 14
- 230000003213 activating effect Effects 0.000 description 13
- 229940079593 drug Drugs 0.000 description 13
- 230000008685 targeting Effects 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 108020004705 Codon Proteins 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 230000000903 blocking effect Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 206010027476 Metastases Diseases 0.000 description 10
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 10
- 230000009401 metastasis Effects 0.000 description 10
- 239000012190 activator Substances 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 238000001574 biopsy Methods 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 206010005003 Bladder cancer Diseases 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 238000002512 chemotherapy Methods 0.000 description 8
- 229940127089 cytotoxic agent Drugs 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 238000001794 hormone therapy Methods 0.000 description 8
- 238000011275 oncology therapy Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 210000000130 stem cell Anatomy 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 210000004881 tumor cell Anatomy 0.000 description 8
- 201000005112 urinary bladder cancer Diseases 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 206010062904 Hormone-refractory prostate cancer Diseases 0.000 description 7
- 108091005461 Nucleic proteins Proteins 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- -1 gene Chemical class 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 6
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 229920000159 gelatin Polymers 0.000 description 6
- 239000008273 gelatin Substances 0.000 description 6
- 235000019322 gelatine Nutrition 0.000 description 6
- 235000011852 gelatine desserts Nutrition 0.000 description 6
- 229940127121 immunoconjugate Drugs 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 206010061289 metastatic neoplasm Diseases 0.000 description 6
- 230000002018 overexpression Effects 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 239000003053 toxin Substances 0.000 description 6
- 231100000765 toxin Toxicity 0.000 description 6
- 108700012359 toxins Proteins 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 108091030071 RNAI Proteins 0.000 description 5
- 241000283984 Rodentia Species 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 239000002254 cytotoxic agent Substances 0.000 description 5
- 231100000599 cytotoxic agent Toxicity 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000009368 gene silencing by RNA Effects 0.000 description 5
- 230000002147 killing effect Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000651 prodrug Substances 0.000 description 5
- 229940002612 prodrug Drugs 0.000 description 5
- 238000001959 radiotherapy Methods 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 229960003048 vinblastine Drugs 0.000 description 5
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 229930012538 Paclitaxel Natural products 0.000 description 4
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 4
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229930182817 methionine Chemical group 0.000 description 4
- 229960001592 paclitaxel Drugs 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- KAWIOCMUARENDQ-UHFFFAOYSA-N 2-(4-chlorophenyl)sulfanyl-n-(4-pyridin-2-yl-1,3-thiazol-2-yl)acetamide Chemical compound C1=CC(Cl)=CC=C1SCC(=O)NC1=NC(C=2N=CC=CC=2)=CS1 KAWIOCMUARENDQ-UHFFFAOYSA-N 0.000 description 3
- 108091007504 ADAM10 Proteins 0.000 description 3
- 102100032187 Androgen receptor Human genes 0.000 description 3
- 108060000903 Beta-catenin Proteins 0.000 description 3
- 102000015735 Beta-catenin Human genes 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 108010092160 Dactinomycin Proteins 0.000 description 3
- 102100039673 Disintegrin and metalloproteinase domain-containing protein 10 Human genes 0.000 description 3
- 108091008794 FGF receptors Proteins 0.000 description 3
- 108700012941 GNRH1 Proteins 0.000 description 3
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- 108010006035 Metalloproteases Proteins 0.000 description 3
- 102000005741 Metalloproteases Human genes 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 206010061309 Neoplasm progression Diseases 0.000 description 3
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 3
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 3
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 3
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 3
- 108010039491 Ricin Proteins 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 208000008385 Urogenital Neoplasms Diseases 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 108010080146 androgen receptors Proteins 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000002280 anti-androgenic effect Effects 0.000 description 3
- 239000000051 antiandrogen Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 210000005068 bladder tissue Anatomy 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 229960001338 colchicine Drugs 0.000 description 3
- 229960000640 dactinomycin Drugs 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 3
- 229960005420 etoposide Drugs 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 102000052178 fibroblast growth factor receptor activity proteins Human genes 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000009036 growth inhibition Effects 0.000 description 3
- 229940093915 gynecological organic acid Drugs 0.000 description 3
- 238000005734 heterodimerization reaction Methods 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000011532 immunohistochemical staining Methods 0.000 description 3
- 238000009169 immunotherapy Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000007937 lozenge Substances 0.000 description 3
- 230000001394 metastastic effect Effects 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004393 prognosis Methods 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 230000005751 tumor progression Effects 0.000 description 3
- 210000003932 urinary bladder Anatomy 0.000 description 3
- 208000037964 urogenital cancer Diseases 0.000 description 3
- 229960004528 vincristine Drugs 0.000 description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- BMKDZUISNHGIBY-ZETCQYMHSA-N (+)-dexrazoxane Chemical compound C([C@H](C)N1CC(=O)NC(=O)C1)N1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-ZETCQYMHSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 108010066676 Abrin Proteins 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 2
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 229930192392 Mitomycin Natural products 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 238000011579 SCID mouse model Methods 0.000 description 2
- 229940123237 Taxane Drugs 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 102000004243 Tubulin Human genes 0.000 description 2
- 108090000704 Tubulin Proteins 0.000 description 2
- 229940122803 Vinca alkaloid Drugs 0.000 description 2
- 230000035508 accumulation Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229960004308 acetylcysteine Drugs 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- JKOQGQFVAUAYPM-UHFFFAOYSA-N amifostine Chemical compound NCCCNCCSP(O)(O)=O JKOQGQFVAUAYPM-UHFFFAOYSA-N 0.000 description 2
- 229960001097 amifostine Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 230000005907 cancer growth Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229940044683 chemotherapy drug Drugs 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000007387 excisional biopsy Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000009650 gentamicin protection assay Methods 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000013537 high throughput screening Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 239000002596 immunotoxin Substances 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000007386 incisional biopsy Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 150000002611 lead compounds Chemical class 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 208000037819 metastatic cancer Diseases 0.000 description 2
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000013188 needle biopsy Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- 238000011474 orchiectomy Methods 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000002831 pharmacologic agent Substances 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 238000010837 poor prognosis Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229940076155 protein modulator Drugs 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011472 radical prostatectomy Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002511 suppository base Substances 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- 229960001278 teniposide Drugs 0.000 description 2
- 229960003604 testosterone Drugs 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 230000004565 tumor cell growth Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- WCGUUGGRBIKTOS-GPOJBZKASA-N (3beta)-3-hydroxyurs-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C WCGUUGGRBIKTOS-GPOJBZKASA-N 0.000 description 1
- MWWSFMDVAYGXBV-MYPASOLCSA-N (7r,9s)-7-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.O([C@@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-MYPASOLCSA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 1
- CQOQDQWUFQDJMK-SSTWWWIQSA-N 2-methoxy-17beta-estradiol Chemical compound C([C@@H]12)C[C@]3(C)[C@@H](O)CC[C@H]3[C@@H]1CCC1=C2C=C(OC)C(O)=C1 CQOQDQWUFQDJMK-SSTWWWIQSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- MIJYXULNPSFWEK-GTOFXWBISA-N 3beta-hydroxyolean-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C MIJYXULNPSFWEK-GTOFXWBISA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 229940123672 Cadherin antagonist Drugs 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 108010031896 Cell Cycle Proteins Proteins 0.000 description 1
- 102000005483 Cell Cycle Proteins Human genes 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- 102100021238 Dynamin-2 Human genes 0.000 description 1
- JKLISIRFYWXLQG-UHFFFAOYSA-N Epioleonolsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4CCC3C21C JKLISIRFYWXLQG-UHFFFAOYSA-N 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 102100038970 Histone-lysine N-methyltransferase EZH2 Human genes 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000817607 Homo sapiens Dynamin-2 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101000882127 Homo sapiens Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 1
- 206010071119 Hormone-dependent prostate cancer Diseases 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical group C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Chemical group CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000283953 Lagomorpha Species 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 108010089704 Lim Kinases Proteins 0.000 description 1
- 102000008020 Lim Kinases Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004907 Macro-emulsion Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010027459 Metastases to lymph nodes Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- YBRJHZPWOMJYKQ-UHFFFAOYSA-N Oleanolic acid Natural products CC1(C)CC2C3=CCC4C5(C)CCC(O)C(C)(C)C5CCC4(C)C3(C)CCC2(C1)C(=O)O YBRJHZPWOMJYKQ-UHFFFAOYSA-N 0.000 description 1
- MIJYXULNPSFWEK-UHFFFAOYSA-N Oleanolinsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4=CCC3C21C MIJYXULNPSFWEK-UHFFFAOYSA-N 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 229940083963 Peptide antagonist Drugs 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000004257 Potassium Channel Human genes 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 206010070308 Refractory cancer Diseases 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102000002259 TNF-Related Apoptosis-Inducing Ligand Receptors Human genes 0.000 description 1
- 108010000449 TNF-Related Apoptosis-Inducing Ligand Receptors Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 1
- 101710187743 Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 239000003817 anthracycline antibiotic agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000002927 anti-mitotic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000013059 antihormonal agent Substances 0.000 description 1
- 239000003524 antilipemic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 230000005773 cancer-related death Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 229940045200 cardioprotective agent Drugs 0.000 description 1
- 230000001451 cardiotoxic effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011254 conventional chemotherapy Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960000605 dexrazoxane Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- ZEXSWWSPNTYEJC-UHFFFAOYSA-N dihydroxy-propoxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCOP(O)(O)=S ZEXSWWSPNTYEJC-UHFFFAOYSA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000011347 external beam therapy Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000002434 gonadorelin derivative Substances 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 239000000797 iron chelating agent Substances 0.000 description 1
- 229940075525 iron chelating agent Drugs 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- ZKUKMWMSYCIYRD-ZXFNITATSA-N lenampicillin Chemical compound O1C(=O)OC(COC(=O)[C@H]2C(S[C@H]3N2C([C@H]3NC(=O)[C@H](N)C=2C=CC=CC=2)=O)(C)C)=C1C ZKUKMWMSYCIYRD-ZXFNITATSA-N 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 238000000670 ligand binding assay Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 208000010658 metastatic prostate carcinoma Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- ONCZDRURRATYFI-QTCHDTBASA-N methyl (2z)-2-methoxyimino-2-[2-[[(e)-1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]acetate Chemical compound CO\N=C(/C(=O)OC)C1=CC=CC=C1CO\N=C(/C)C1=CC=CC(C(F)(F)F)=C1 ONCZDRURRATYFI-QTCHDTBASA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 229960002237 metoprolol Drugs 0.000 description 1
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- JYIYPKOJFKMEKS-UHFFFAOYSA-N n-(2,2-dimethyl-1-phenylpropylidene)hydroxylamine Chemical compound CC(C)(C)C(=NO)C1=CC=CC=C1 JYIYPKOJFKMEKS-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000683 nonmetastatic effect Effects 0.000 description 1
- 238000007826 nucleic acid assay Methods 0.000 description 1
- 230000030648 nucleus localization Effects 0.000 description 1
- 210000004287 null lymphocyte Anatomy 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229940100243 oleanolic acid Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001582 osteoblastic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 108020001213 potassium channel Proteins 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 description 1
- 229960003912 probucol Drugs 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- HZLWUYJLOIAQFC-UHFFFAOYSA-N prosapogenin PS-A Natural products C12CC(C)(C)CCC2(C(O)=O)CCC(C2(CCC3C4(C)C)C)(C)C1=CCC2C3(C)CCC4OC1OCC(O)C(O)C1O HZLWUYJLOIAQFC-UHFFFAOYSA-N 0.000 description 1
- 208000023958 prostate neoplasm Diseases 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 210000003370 receptor cell Anatomy 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000013319 spin trapping Methods 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229940096998 ursolic acid Drugs 0.000 description 1
- PLSAJKYPRJGMHO-UHFFFAOYSA-N ursolic acid Natural products CC1CCC2(CCC3(C)C(C=CC4C5(C)CCC(O)C(C)(C)C5CCC34C)C2C1C)C(=O)O PLSAJKYPRJGMHO-UHFFFAOYSA-N 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2896—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/626—Diabody or triabody
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- the present invention was in part supported by NIH/NCI SOMI Training Grant R25 CA 098010 and NIH/NCI UCLA Prostate SPORE, P50 CA 092131. The government has certain rights in this invention.
- Prostate cancer is the most common malignancy and the second leading cause of cancer-related death in American men. Prostate cancer is a biologically and clinically heterogeneous disease. A majority of men with this malignancy harbor slow-growing tumors that may not impact an individual's natural lifespan, while others are struck by rapidly progressive, metastatic tumors. PSA screening is limited by a lack of specificity and an inability to predict which patients are at risk to develop hormone refractory metastatic disease. Recent studies advocating a lower PSA threshold for diagnosis may increase the number of prostate cancer diagnoses and further complicate the identification of patients with indolent vs. aggressive cancers (Punglia et al., N Engl J Med , 349: 335-342 (2003)). New serum and tissue markers that correlate with clinical outcome or identify patients with potentially aggressive disease are urgently needed (Welsh et al., Prot Natl Acad Sci USA , 100: 3410-3415 (2003)).
- N-cadherin As a putative diagnostic and therapeutic target in prostate and bladder cancers (WO/2007/109347). Our previous disclosure demonstrated significant expression of the target in high risk and advanced prostate and bladder tumors and showed that expression of the target is associated with poor prognosis and progression to androgen independence. Although there has been previous speculation that N-cadherin might be a useful therapy target, the only existing drug was a peptide antagonist, which did not show any preclinical activity against prostate cancer. To our knowledge, our invention provides the first monoclonal antibodies that are active against cancers expressing the target. In addition, the existing N-cadherin antagonist targets only the first extracellular domain of the protein. We describe antibodies that target the first and fourth extracellular domains.
- the invention encompasses multiple monoclonal antibodies against the first and fourth extracellular domains of the N-cadherin protein. These antibodies block tumor growth, angiogenesis and metastasis in in vivo models of prostate and other cancers. They work by blocking N-cadherin signal transduction pathways that are critical for tumor growth, invasion, angiogenesis and metastasis. The antibodies may also be useful for in vivo maging of N-cadherin positive tumors and/or for tissue diagnosis and prognosis.
- the invention can be practiced alone as single antibodies to treat or prevent tumor growth and metastasis. They may be used as adjuvants or as therapeutics for existing tumors. They may be used in combination to block multiple domains of the N-cadherin protein. They may also be used in combination with chemotherapy or other targeted cancer agents, particularly those that target synergistic signal transduction pathways or those that target downstream or upstream pathways involved in N-cadherin mediated signal transduction.
- the invention provides compositions and methods that target N-Cadherin in the diagnosis, prognosis, and treatment of cancers expressing N-Cadherin including, but not limited to, prostate cancer and bladder cancer.
- the present invention provides a hybridoma cell line deposited as ATCC Accession No. PTA-9387 and an antibody produced by this hybridoma cell line, as well as another hybridoma cell line deposited as ATCC Accession No. PTA-9388 and an antibody produced by this hybridoma cell line. Also provided is an antibody or fragment thereof capable of binding to domains 1-3 of N-cadherin, the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No.
- an antibody or fragment thereof capable of binding to domain 4 of N-cadherin, the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9388.
- Such an antibody may be humanized or fully human; or it may be a diabody or single chain antibody (scFv).
- the antibody comprises a heavy chain comprising an amino acid sequence with at least 90% sequence identity to SEQ ID NO:1 or SEQ ID NO:3.
- the antibody comprises a light chain comprising an amino acid sequence with at least 90% sequence identity to SEQ ID NO:2 or SEQ ID NO:4. In some embodiments, the antibody comprises any of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4. In some embodiments, the antibody comprises SEQ ID NO:1 and SEQ ID NO:2 or SEQ ID NO:3 and SEQ ID NO:4.
- this invention provides a method of inhibiting the growth of cancer cells in a patient.
- the method comprises the step of: administering an antibody (or its fragment) of this invention to a patient under conditions sufficient for binding the antibody (or its fragment) to the cancer cells, which express or overexpress N-Cadherin.
- the antibody inhibits the growth of cancer cells by (a) activating or inhibiting NF kappa-B signaling and transcription; (b) activating or inhibiting N-cadherin internalization; (c) activating or inhibiting PI3 kinase or Akt pathway; (d) activating or inhibiting ⁇ -catenin signaling; (e) blocking heterodimerization of N-cadherin with FGFR or other tyrosine kinase receptor; or (f) blocking or enhancing cleavage by ADAM10 or other metallopeptidase.
- the cancer cells are urogenital cancer cells, prostate cancer cells, or bladder cancer cells.
- the invention provides a method of treating a cancer patient.
- the method comprises the steps of: (a) obtaining a test tissue sample from an individual at risk of having a cancer that expresses a N-cadherin protein; (b) determining the presence or absence or amount of the N-cadherin protein in the test tissue sample in comparison to a control tissue sample from an individual known to be negative for the cancer; thereby diagnosing said cancer that expresses a N-cadherin protein, wherein the N-cadherin protein is expressed at normal or low levels, or is expressed by a subset of cells, or is overexpressed; and (c) administering an effective amount of N-cadherin antibody (or its fragment) of this invention to the individual at risk of having a cancer that expresses a N-Cadherin protein.
- the tissue sample is prostate or bladder tissue.
- the cancer is a prostate cancer or bladder cancer, or it may be a metastatic cancer.
- the antibody (or its fragment) blocks hormone refractory prostate cancer, or antibody blocks cancer stem cells.
- the antibody in some cases is a monoclonal antibody, an scFv, or a diabody.
- the tissue sample is prostate or bladder tissue.
- the present invention provides a method of diagnosing a cancer patient.
- the method comprises the steps of: (a) obtaining a test tissue sample from an individual at risk of having a cancer that expresses a N-cadherin protein; (b) determining the presence or absence or amount of the N-cadherin protein in the test tissue sample in comparison to a control tissue sample from an individual known to be negative for the cancer by contacting a sample with an effective amount of N-cadherin antibody (or its fragment) of this invention; thereby diagnosing said cancer that expresses a N-cadherin protein, wherein the N-cadherin protein is expressed at normal or low levels, or is expressed by a subset of cells, or is overexpressed.
- the present invention provides a method of identifying cancer stem cells.
- the method comprises the steps of: (a) obtaining a test tissue sample from an individual at risk of having a cancer that expresses a N-cadherin protein; (b) determining the presence or absence of cancer stem cells in the test tissue sample in comparison to a control tissue sample from an individual known to be negative for the cancer; wherein the N-cadherin protein is expressed at normal or low levels, or is expressed by a subset of the stem cells and is not overexpressed, using the antibody (or its fragment) of this invention.
- the tissue sample is prostate or bladder tissue.
- the cancer is a prostate cancer, a bladder cancer, a hormone refractory prostate cancer, or a metastatic cancer.
- FIG. 1 FACS analysis of antibody clones targeting the first extracellular domain of the N-Cadherin protein.
- FIG. 2 FACS analysis of antibody clones targeting the fourth extracellular domain of the N-Cadherin protein.
- FIG. 3 FACS analysis of purified monoclonal N-Cadherin antibody clones.
- FIG. 4 In vitro invasion assay of monoclonal N-Cadherin antibody clones.
- FIG. 5 FIG. 5A . Growth curve of N-Cadherin null tumors under treatment by antibodies against N-Cadherin, 1H7 and EC4, showing no significant inhibitory effect.
- FIG. 5B Tumor growth curve of PC3 prostate cancer cells treated with the same antibodies, demonstrating effectiveness in growth inhibition.
- FIG. 5C Growth curve of large established PC3 tumors under treatment by the 1H7 and EC4 antibodies.
- FIG. 5D Long term growth curve of PC3 tumors under treatment by the EC4 antibody.
- FIG. 6 In vivo experiment showing effect of antibodies against N-Cadherin.
- FIG. 7 FIG. 7A . Immunohistochemical staining of an addrogen independent LAPC9 prostate cancer.
- FIG. 7B Treatment of androgen dependent and independent LAPC-9 tumors with N-cadherin antibodies.
- FIG. 8 Tumor Growth Curve of sorted and unsorted LAPC9AI cells.
- FIGS. 9 and 10 FACS results on processed N-Cadherin sorted tumors.
- FIG. 11 Growth curves of LNCaP-C1 tumors, showing inhibitory effects of N-cadherin antibodies.
- FIG. 12 N-cadherin antibodies inhibit growth of established LAPC-9 androgen independent tumors ( FIG. 12A ) and large established LAPC-9 androgen independent tumors ( FIG. 12B ).
- FIG. 13 Inhibition of PC3 tumor growth in nude mice by antibody EC4 in a dose-correlated manner.
- FIG. 14 N-Cadherin antibodies 1H7 and EC4 show an inhibitory effect on the growth of LAPC-9 androgen dependent tumor in two studies in which the tumor pregression was followed for up to 45 days ( FIG. 14A ) and 70 days ( FIG. 14B ).
- FIG. 15 N-Cadherin sorted cells show a growth advantage in castrated SCID mice.
- FIG. 16 Correlation between N-cadherin expression and androgen receptor level in successive passages of LAPC9 tumor cells.
- This invention relates to novel monoclonal antibodies targeting the cell surface protein N-Cadherin for therapy of cancers that express N-Cadherin.
- the cancers can be prostate cancer, bladder cancer, or other cancers that express N-Cadherin.
- the inventors have now provided sequence listings (SEQ ID NOs:1-4) for the heavy chain and light chain of each of the N-Cadherin antibodies 1H7 and EC4.
- This invention also relates to methods of treating cancers using antibodies targeting N-Cadherin.
- the inventors have discovered that the antibodies may work by activating or inhibiting NF kappa-B signaling and transcription, or by activating or inhibiting N-cadherin internalization, or by activating or inhibiting PI3 kinase or Akt pathway, or by activating or inhibiting ⁇ -catenin signaling, or by blocking heterodimerization of N-cadherin with FGFR or other tyrosine kinase receptor; or by blocking or enhancing cleavage by ADAM10 or other metallopeptidase.
- the inventors report evidence showing that N-Cadherin antibodies function by altering one or more of these pathways.
- N-Cadherin refers to nucleic acids, e.g., gene, pre-mRNA, mRNA, and polypeptides, polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to a polypeptide encoded by a respectively referenced nucleic acid or an amino acid sequence described herein, for example, as depicted in GenBank Accession Nos.
- NM — 001792 N-Cadherin mRNA
- NP — 001783 N-Cadherin protein
- antibodies specifically bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising a referenced amino acid sequence as depicted in GenBank Accession No. NP — 001783 (N-Cadherin protein); immunogenic fragments respectively thereof, and conservatively modified variants respectively thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid encoding a referenced amino acid sequence as depicted in GenBank Accession No.
- NP — 001783 (N-Cadherin protein) and conservatively modified variants respectively thereof; (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 150, 200, 250, 500, 1000, or more nucleotides, to a reference nucleic acid sequence as shown in GenBank Accession No. NM — 001792 (N-Cadherin mRNA).
- a polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or any mammal.
- the nucleic acids and proteins of the invention include both naturally occurring or recombinant molecules.
- “Cancer” refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid tumors and lymphoid cancers, kidney, breast, lung, kidney, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, esophagus, and liver cancer, lymphoma, including non-Hodgkin's and Hodgkin's lymphoma, leukemia, and multiple myeloma.
- Urinital cancer refers to human cancers of urinary tract and genital tissues, including but not limited to kidney, bladder, urinary tract, urethra, prostrate, penis, testicle, vulva, vagina, cervical and ovary tissues.
- the cancer to be treated herein may be one characterized by excessive activation of N-cadherin.
- the cancer to be treated herein may be one where the N-cadherin protein is expressed at normal or low levels, or one where the N-cadherin protein is expressed by a subset of cells, and where the N-cadherin protein is not overexpressed.
- a diagnostic or prognostic assay will be performed to determine whether the patient's cancer is characterized by expression of N-cadherin.
- Assays for determining such amplification/express ion are contemplated and include the immunohistochemistry, FISH and shed antigen assays, southern blotting, or PCR techniques.
- the N-cadherin expression or amplification may be evaluated using an in vivo diagnostic assay, e.g. by administering a molecule (such as an antibody) which binds the molecule to be detected and is tagged with a detectable label (e.g. a radioactive isotope) and externally scanning the patient for localization of the label.
- a detectable label e.g. a radioactive isotope
- the cancer to be treated is not yet invasive, but expresses N-cadherin.
- “Therapy resistant” cancers, tumor cells, and tumors refers to cancers that have become resistant or refractory to either or both apoptosis-mediated (e.g., through death receptor cell signaling, for example, Fas ligand receptor, TRAIL receptors, TNF-R1, chemotherapeutic drugs, radiation) and non-apoptosis mediated (e.g., toxic drugs, chemicals) cancer therapies, including chemotherapy, hormonal therapy, radiotherapy, and immunotherapy.
- apoptosis-mediated e.g., through death receptor cell signaling, for example, Fas ligand receptor, TRAIL receptors, TNF-R1, chemotherapeutic drugs, radiation
- non-apoptosis mediated e.g., toxic drugs, chemicals
- “Overexpression” refers to RNA or protein expression of N-Cadherin in a test tissue sample that is significantly higher that RNA or protein expression of N-Cadherin in a control tissue sample.
- the tissue sample is autologous.
- Cancerous test tissue samples e.g., bladder, prostate
- hormone independent e.g., androgen independence
- refractoriness to treatment or an increased likelihood of same typically have at least two fold higher expression of N-Cadherin mRNA or protein, often up to three, four, five, eight, ten or more fold higher expression of N-Cadherin in comparison to cancer tissues from patients who are less likely to progress to metastasis or to normal (i.e., non-cancer) tissue samples.
- Overexpression therefore refers to both overexpression of protein and RNA (due to increased transcription, post transcriptional processing, translation, post translational processing, altered stability, and altered protein degradation), as well as local overexpression due to altered protein traffic patterns (increased nuclear localization), and augmented functional activity, e.g., as in an increased enzyme hydrolysis of substrate.
- Overexpression can also be by 50%, 60%, 70%, 80%, 90% or more in comparison to a normal cell or comparison cell (e.g., a BPH cell).
- cancer that expresses N-Cadherin and “cancer associated with the expression of N-Cadherin” interchangeably refer to cancer cells or tissues that express N-Cadherin in accordance with the above definition.
- cancer-associated antigen or “tumor-specific marker” or “tumor marker” interchangeably refers to a molecule (typically protein, carbohydrate or lipid) that is preferentially expressed in a cancer cell in comparison to a normal cell, and which is useful for the preferential targeting of a pharmacological agent to the cancer cell.
- a marker or antigen can be expressed on the cell surface or intracellularly.
- a cancer-associated antigen is a molecule that is expressed or stabilized with minimal degradation in a cancer cell in comparison to a normal cell, for instance, 2-fold expression, 3-fold expression or more in comparison to a normal cell.
- a cancer-associated antigen is a molecule that is inappropriately synthesized in the cancer cell, for instance, a molecule that contains deletions, additions or mutations in comparison to the molecule expressed on a normal cell. Oftentimes, a cancer-associated antigen will be expressed exclusively in a cancer cell and not synthesized or expressed in a normal cell.
- Exemplified cell surface tumor markers include the proteins c-erbB-2 and human epidermal growth factor receptor (HER) for breast cancer, PSMA for prostate cancer, and carbohydrate mucins in numerous cancers, including breast, ovarian and colorectal.
- Exemplified intracellular tumor markers include, for example, mutated tumor suppressor or cell cycle proteins, such as p53.
- An “agonist” refers to an agent that binds to a polypeptide or polynucleotide of the invention, stimulates, increases, activates, facilitates, enhances activation, sensitizes or up regulates the activity or expression of a polypeptide or polynucleotide of the invention.
- an “antagonist” refers to an agent that inhibits expression of a polypeptide or polynucleotide of the invention or binds to, partially or totally blocks stimulation, decreases, prevents, delays activation, inactivates, desensitizes, or down regulates the activity of a polypeptide or polynucleotide of the invention.
- Inhibitors “Inhibitors,” “activators,” and “modulators” of expression or of activity are used to refer to inhibitory, activating, or modulating molecules, respectively, identified using in vitro and in vivo assays for expression or activity, e.g., ligands, agonists, antagonists, and their homologs and mimetics.
- modulator includes inhibitors and activators.
- Inhibitors are agents that, e.g., inhibit expression of a polypeptide or polynucleotide of the invention or bind to, partially or totally block stimulation or enzymatic activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity of a polypeptide or polynucleotide of the invention, e.g., antagonists.
- Activators are agents that, e.g., induce or activate the expression of a polypeptide or polynucleotide of the invention or bind to, stimulate, increase, open, activate, facilitate, enhance activation or enzymatic activity, sensitize or up regulate the activity of a polypeptide or polynucleotide of the invention, e.g., agonists.
- Modulators include naturally occurring and synthetic ligands, antagonists, agonists, small chemical molecules and the like.
- Assays to identify inhibitors and activators include, e.g., applying putative modulator compounds to cells, in the presence or absence of a polypeptide or polynucleotide of the invention and then determining the functional effects on a polypeptide or polynucleotide of the invention activity. Samples or assays comprising a polypeptide or polynucleotide of the invention that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of effect.
- Control samples (untreated with modulators) are assigned a relative activity value of 100% Inhibition is achieved when the activity value of a polypeptide or polynucleotide of the invention relative to the control is about 80%, optionally 50% or 25-1%. Activation is achieved when the activity value of a polypeptide or polynucleotide of the invention relative to the control is 110%, optionally 150%, optionally 200-500%, or 1000-3000% higher.
- test compound or “drug candidate” or “modulator” or grammatical equivalents as used herein describes any molecule, either naturally occurring or synthetic, e.g., protein, oligopeptide (e.g., from about 5 to about 25 amino acids in length, preferably from about 10 to 20 or 12 to 18 amino acids in length, preferably 12, 15, or 18 amino acids in length), small organic molecule, polysaccharide, lipid, fatty acid, polynucleotide, RNAi, siRNA, antibody, oligonucleotide, etc.
- the test compound can be in the form of a library of test compounds, such as a combinatorial or randomized library that provides a sufficient range of diversity.
- Test compounds are optionally linked to a fusion partner, e.g., targeting compounds, rescue compounds, dimerization compounds, stabilizing compounds, addressable compounds, and other functional moieties.
- a fusion partner e.g., targeting compounds, rescue compounds, dimerization compounds, stabilizing compounds, addressable compounds, and other functional moieties.
- new chemical entities with useful properties are generated by identifying a test compound (called a “lead compound”) with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds.
- HTS high throughput screening
- a “small organic molecule” refers to an organic molecule, either naturally occurring or synthetic, that has a molecular weight of more than about 50 Daltons and less than about 2500 Daltons, preferably less than about 2000 Daltons, preferably between about 100 to about 1000 Daltons, more preferably between about 200 to about 500 Daltons.
- Cytotoxic agents include “cell-cycle-specific” or “antimitotic” or “cytoskeletal-interacting” drugs. These terms interchangeably refer to any pharmacological agent that blocks cells in mitosis. Such agents are useful in chemotherapy.
- cell-cycle-specific-drugs bind to the cytoskeletal protein tubulin and block the ability of tubulin to polymerize into microtubules, resulting in the arrest of cell division at metaphase.
- Exemplified cell-cycle-specific drugs include vinca alkaloids, taxanes, colchicine, and podophyllotoxin.
- Exemplified vinca alkaloids include vinblastine, vincristine, vindesine and vinorelbine.
- Exemplified taxanes include paclitaxel and docetaxel.
- Another example of a cytoskeletal-interacting drug includes 2-methoxyestradiol.
- siRNA refers to a nucleic acid that forms a double stranded RNA, which double stranded RNA has the ability to reduce or inhibit expression of a gene or target gene when the siRNA expressed in the same cell as the gene or target gene.
- siRNA or “RNAi” thus refers to the double stranded RNA formed by the complementary strands.
- the complementary portions of the siRNA that hybridize to form the double stranded molecule typically have substantial or complete identity.
- an siRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a double stranded siRNA.
- the siRNA is at least about 15-50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, preferable about preferably about 20-30 base nucleotides, preferably about 20-25 or about 24-29 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.
- siRNA molecules and vectors are well known to those of ordinary skill in the art. For instance, an efficient process for designing a suitable siRNA is to start at the AUG start codon of the mRNA transcript and scan for AA dinucleotide sequences (see, Elbashir et al. EMBO J 20: 6877-6888 (2001). Each AA and the 3′ adjacent nucleotides are potential siRNA target sites. The length of the adjacent site sequence will determine the length of the siRNA. For instance, 19 adjacent sites would give a 21 Nucleotide long siRNA siRNAs with 3′ overhanging UU dinucleotides are often the most effective. This approach is also compatible with using RNA pol III to transcribe hairpin siRNAs.
- RNA pol III terminates transcription at 4-6 nucleotide poly(T) tracts to create RNA molecules having a short poly(U) tail.
- siRNAs with other 3′ terminal dinucleotide overhangs can also effectively induce RNAi and the sequence may be empirically selected.
- target sequences with more than 16-17 contiguous base pairs of homology to other coding sequences can be avoided by conducting a BLAST search (see, National Center for Biotechnology Information (NCBI) website: ncbi.nlm.nih.gov/BLAST).
- the siRNA can be administered directly or an siRNA expression vectors can be used to induce RNAi can have different design criteria.
- a vector can have inserted two inverted repeats separated by a short spacer sequence and ending with a string of T's which serve to terminate transcription.
- the expressed RNA transcript is predicted to fold into a short hairpin siRNA.
- the selection of siRNA target sequence, the length of the inverted repeats that encode the stem of a putative hairpin, the order of the inverted repeats, the length and composition of the spacer sequence that encodes the loop of the hairpin, and the presence or absence of 5′-overhangs, can vary.
- a preferred order of the siRNA expression cassette is sense strand, short spacer, and antisense strand.
- Hairpin siRNAs with these various stem lengths can be suitable.
- the length of the loops linking sense and antisense strands of the hairpin siRNA can have varying lengths (e.g., 3 to 9 nucleotides, or longer).
- the vectors may contain promoters and expression enhancers or other regulatory elements which are operably linked to the nucleotide sequence encoding the siRNA.
- the expression “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
- the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
- Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. These control elements may be designed to allow the clinician to turn off or on the expression of the gene by adding or controlling external factors to which the regulatory elements are responsive.
- Suitable vectors containing the desired therapeutic gene coding and control sequences employs standard ligation and restriction techniques, which are well understood in the art (see Maniatis et al., in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1982)). Isolated plasmids, DNA sequences, or synthesized oligonucleotides are cleaved, tailored, and re-ligated in the form desired.
- Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
- DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
- a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
- “operably linked” means that the DNA sequences being linked are near each other, and, in the case of a secretory leader, contiguous and in reading phase.
- enhancers do not have to be contiguous Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
- Determining the functional effect refers to assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a polynucleotide or polypeptide of the invention, e.g., measuring physical and chemical or phenotypic effects.
- Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein; measuring inducible markers or transcriptional activation of the protein; measuring binding activity or binding assays, e.g.
- RNA stability e.g., G-protein binding; G-protein coupled receptor (GPCR) phosphorylation or dephosphorylation; signal transduction, e.g., receptor-ligand interactions, second messenger concentrations (e.g., cAMP, 1P3, or intracellular Ca 2+ ); identification of downstream or reporter gene expression (CAT, luciferase, ⁇ -gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.
- CAT reporter gene expression
- Samples or assays comprising a nucleic acid or protein disclosed herein that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition.
- Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%.
- Activation is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.
- Biological sample includes sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histological purposes. Such samples include blood and blood fractions or products (e.g., serum, plasma, platelets, red blood cells, and the like), sputum, tissue, cultured cells, e.g., primary cultures, explants, and transformed cells, stool, urine, etc.
- a biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, Mouse; rabbit; or a bird; reptile; or fish.
- a “biopsy” refers to the process of removing a tissue sample for diagnostic or prognostic evaluation, and to the tissue specimen itself. Any biopsy technique known in the art can be applied to the diagnostic and prognostic methods of the present invention. The biopsy technique applied will depend on the tissue type to be evaluated (i.e., prostate, lymph node, liver, bone marrow, blood cell), the size and type of the tumor (i.e., solid or suspended (i.e., blood or ascites)), among other factors. Representative biopsy techniques include excisional biopsy, incisional biopsy, needle biopsy, surgical biopsy, and bone marrow biopsy. An “excisional biopsy” refers to the removal of an entire tumor mass with a small margin of normal tissue surrounding it.
- An “incisional biopsy” refers to the removal of a wedge of tissue that includes a cross-sectional diameter of the tumor.
- a diagnosis or prognosis made by endoscopy or fluoroscopy can require a “core-needle biopsy” of the tumor mass, or a “fine-needle aspiration biopsy” which generally obtains a suspension of cells from within the tumor mass. Biopsy techniques are discussed, for example, in Harrison's Principles of Internal Medicine , Kasper, et al., eds., 16th ed., 2005, Chapter 70, and throughout Part V.
- nucleic acids or polypeptide sequences refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI website: ncbi.nlm.nih.gov/BLAST/ or the like).
- sequences are then said to be “substantially identical.”
- This definition also refers to, or may be applied to, the compliment of a test sequence.
- the definition also includes sequences that have deletions and/or additions, as well as those that have substitutions.
- the preferred algorithms can account for gaps and the like.
- identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.
- sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
- test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated.
- sequence algorithm program parameters Preferably, default program parameters can be used, or alternative parameters can be designated.
- sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
- a “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
- Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol.
- BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention.
- Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) website.
- This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence.
- T is referred to as the neighborhood word score threshold (Altschul et al., supra).
- a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
- the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
- Nucleic acid refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof.
- the term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides.
- Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).
- nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.
- a particular nucleic acid sequence also implicitly encompasses “splice variants.”
- a particular protein encoded by a nucleic acid implicitly encompasses any protein encoded by a splice variant of that nucleic acid.
- “Splice variants,” as the name suggests, are products of alternative splicing of a gene. After transcription, an initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides.
- Mechanisms for the production of splice variants vary, but include alternate splicing of exons. Alternate polypeptides derived from the same nucleic acid by read-through transcription are also encompassed by this definition.
- polypeptide “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues.
- the terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.
- amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
- Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
- Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an ⁇ carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
- Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
- Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide.
- nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid.
- each codon in a nucleic acid except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan
- TGG which is ordinarily the only codon for tryptophan
- amino acid sequences one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.
- the following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).
- a “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means.
- useful labels include 32 P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.
- recombinant when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified.
- recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.
- heterologous when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature.
- the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source.
- a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).
- stringent hybridization conditions refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Probes , “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (T m ) for the specific sequence at a defined ionic strength pH.
- T m thermal melting point
- the T m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T m , 50% of the probes are occupied at equilibrium).
- Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.
- a positive signal is at least two times background, preferably 10 times background hybridization.
- Exemplary stringent hybridization conditions can be as following: 50% formamide, 5 ⁇ SSC, and 1% SDS, incubating at 42° C., or, 5 ⁇ SSC, 1% SDS, incubating at 65° C., with wash in 0.2 ⁇ SSC, and 0.1% SDS at 65° C.
- Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions.
- Exemplary “moderately stringent hybridization conditions” include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 1 ⁇ SSC at 45° C. A positive hybridization is at least twice background.
- Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology , ed. Ausubel, et al., John Wiley & Sons.
- a temperature of about 36° C. is typical for low stringency amplification, although annealing temperatures may vary between about 32° C. and 48° C. depending on primer length.
- a temperature of about 62° C. is typical, although high stringency annealing temperatures can range from about 50° C. to about 65° C., depending on the primer length and specificity.
- Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C.-95° C. for 30 sec-2 min., an annealing phase lasting 30 sec.-2 min., and an extension phase of about 72° C. for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications , Academic Press, Inc. N.Y.).
- Antibody refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen.
- the recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes.
- Light chains are classified as either kappa or lambda.
- Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
- the antigen-binding region of an antibody will be most critical in specificity and affinity of binding.
- An exemplary immunoglobulin (antibody) structural unit comprises a tetramer.
- Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD).
- the N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
- the terms variable light chain (V L ) and variable heavy chain (V H ) refer to these light and heavy chains respectively.
- Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases.
- pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′ 2 , a dimer of Fab which itself is a light chain joined to V H —C H 1 by a disulfide bond.
- the F(ab)′ 2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)′ 2 dimer into an Fab′ monomer.
- the Fab′ monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed.
- antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology.
- antibody also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990))
- the genes encoding the heavy and light chains of an antibody of interest can be cloned from a cell, e.g., the genes encoding a monoclonal antibody can be cloned from a hybridoma and used to produce a recombinant monoclonal antibody.
- Gene libraries encoding heavy and light chains of monoclonal antibodies can also be made from hybridoma or plasma cells. Random combinations of the heavy and light chain gene products generate a large pool of antibodies with different antigenic specificity (see, e.g., Kuby, Immunology (3 rd ed. 1997)). Techniques for the production of single chain antibodies or recombinant antibodies (U.S. Pat. No. 4,946,778, U.S. Pat. No.
- transgenic mice or other organisms such as other mammals, may be used to express humanized or human antibodies (see, e.g., U.S. Pat. Nos.
- phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)).
- Antibodies can also be made bispecific, i.e., able to recognize two different antigens (see, e.g., WO 93/08829, Traunecker et al., EMBO J. 10:3655-3659 (1991); and Suresh et al., Methods in Enzymology 121:210 (1986)).
- Antibodies can also be heteroconjugates, e.g., two covalently joined antibodies, or immunotoxins (see, e.g., U.S. Pat. No. 4,676,980, WO 91/00360; WO 92/200373; and EP 03089).
- a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988) and Presta, Curr. Op. Struct. Biol.
- humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
- humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- a “chimeric antibody” is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.
- the preferred antibodies of, and for use according to the invention include humanized and/or chimeric monoclonal antibodies.
- the antibody is conjugated to an “effector” moiety.
- the effector moiety can be any number of molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety.
- the antibody modulates the activity of the protein.
- effector moieties include, but are not limited to, an anti-tumor drug, a toxin, a radioactive agent, a cytokine, a second antibody or an enzyme.
- the invention provides an embodiment wherein the antibody of the invention is linked to an enzyme that converts a prodrug into a cytotoxic agent.
- the immunoconjugate can be used for targeting the effector moiety to a N-cadherin positive cell, particularly cells which express the N-cadherin protein. Such differences can be readily apparent when viewing the bands of gels with approximately similarly loaded with test and controls samples.
- cytotoxic agents include, but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethiduim bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, diphteria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes.
- Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent
- the invention provides antibodies to N-cadherin.
- N-cadherin antibodies may be used systemically to treat cancer (e.g., prostate or bladder cancer) alone or when conjugated with an effector moiety.
- N-cadherin antibodies conjugated with toxic agents, such as ricin, as well as unconjugated antibodies may be useful therapeutic agents naturally targeted to N-cadherin-bearing prostate cancer cells. Such antibodies can be useful in blocking invasiveness.
- Suitable N-cadherin antibodies for use according to the invention include, but are not limited to, GC4, 1H7, 1F12, and 2B3.
- a suitable N-cadherin antibody for use according to the invention comprises an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to any of SEQ ID NOs:1, 2, 3, or 4.
- the recombinant protein of the invention comprising the antigen-binding region of any of the monoclonal antibodies of the invention can be used to treat cancer.
- the antigen-binding region of the recombinant protein is joined to at least a functionally active portion of a second protein having therapeutic activity.
- the second protein can include, but is not limited to, an enzyme, lymphokine, oncostatin or toxin.
- Suitable toxins include doxorubicin, daunorubicin, taxol, ethiduim bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, diphteria toxin, Pseudomonas exotoxin (PE) A, PE40, ricin, abrin, glucocorticoid and radioisotopes.
- PE Pseudomonas exotoxin
- the specified antibodies bind to a particular protein at least two times the background and more typically more than 10 to 100 times background.
- Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein.
- polyclonal antibodies can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the selected antigen and not with other proteins.
- This selection may be achieved by subtracting out antibodies that cross-react with other molecules.
- a variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein.
- solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Using Antibodies, A Laboratory Manual (1998) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).
- terapéuticaally effective dose or amount herein is meant a dose that produces effects for which it is administered.
- the exact dose and formulation will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Remington: The Science and Practice of Pharmacy , 20th Edition, Gennaro, Editor (2003), and Pickar, Dosage Calculations (1999)).
- pharmaceutically acceptable salts or “pharmaceutically acceptable carrier” is meant to include salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein.
- base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent.
- pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt.
- acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent.
- Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like.
- inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and
- salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, e.g., Berge et al., Journal of Pharmaceutical Science 66:1-19 (1977)).
- Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
- Other pharmaceutically acceptable carriers known to those of skill in the art are suitable for the present invention.
- the neutral forms of the compounds may be regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner.
- the parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the present invention.
- the present invention provides compounds which are in a prodrug form.
- Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention.
- prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
- Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
- Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are all intended to be encompassed within the scope of the present invention.
- EMT Epithelial to Mesenchymal Transition
- the present invention discloses two mouse hybridoma cell lines that produces monoclonal antibody capable of binding to the antigenic determinant of N-cadherin.
- the mouse hybridoma cell lines are deposited as ATCC Accession No. PTA-9387 (1H7) and ATCC Accession No. PTA-9388 (EC4).
- Provided herein are the amino acid sequences for the heavy chain and light chain of 1H7 (SEQ ID NOs:1 and 2) and of EC4 (SEQ ID NOs:3 and 4).
- an antibody is produced by the hybridoma cell line designated as ATCC Accession No. PTA-9387. In another embodiment of the invention, an antibody is produced by the hybridoma cell line designated as ATCC Accession No. PTA-9388.
- ATCC American Type Culture Collection
- an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9387 is produced.
- an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9388 is produced.
- the antibody is capable of binding to the first extracellular domain of N-cadherin. In some embodiments, the antibody is capable of binding to the second extracellular domain of N-cadherin. In some embodiments, the antibody is capable of binding to the third extracellular domain of N-cadherin. In some embodiments, the antibody is capable of binding to the first to third extracellular domains of N-cadherin. In some embodiments, the antibody is capable of binding to the fourth extracellular domain of N-cadherin.
- an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9387 comprises a heavy chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:1 and/or a light chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:2.
- the antibody or fragment thereof comprises a heavy chain comprising the amino acid sequence of SEQ ID NO:1 and/or a light chain comprising the amino acid sequence of SEQ ID NO:2.
- an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9388 comprises a heavy chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:3 and/or a light chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:4.
- the antibody or fragment thereof comprises a heavy chain comprising the amino acid sequence of SEQ ID NO:3 and/or a light chain comprising the amino acid sequence of SEQ ID NO:4.
- the present invention further relates to methods of inhibiting the growth, or killing, of cancer cells in a patient.
- the methods generally comprise administering the antibody or binding fragment thereof of claim 5 or 13 to a patient under conditions sufficient for binding the antibody or binding fragment thereof to said tumor cells or prostate cancer tumor cells; modulating cellular activity; inhibiting angiogenesis of the tumor cells; and causing growth inhibition or killing of the tumor cells, wherein the cancer cells express or overexpress N-Cadherin.
- the antibody modulates cellular activity by activating or inhibiting NF kappa-B signaling and transcription. In some embodiments of the invention, the antibody modulates cellular activity by activating or inhibiting N-cadherin internalization. In some embodiments of the invention, the antibody modulates cellular activity by activating or inhibiting PI3 kinase or Akt pathway. In some embodiments of the invention, the antibody modulates cellular activity by activating or inhibiting ⁇ -catenin signaling. In some embodiments of the invention, the antibody modulates cellular activity by blocking heterodimerization of N-cadherin with FGFR or other tyrosine kinase receptor. In some other embodiments of the invention, the antibody modulates cellular activity by blocking or enhancing cleavage by ADAM10 or other metallopeptidase.
- the antibody inhibits the growth, or killing, of urogenital cancer cells in a patient. In some embodiments, the antibody inhibits the growth, or killing, of prostate cancer cells in a patient. In some other embodiments, the antibody inhibits the growth, or killing, of bladder cancer cells in a patient.
- the anti-N-cadherin antibodies or immunoconjugates are administered to a human patient in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes.
- Intravenous or subcutaneous administration of the antibody is preferred.
- the administration may be local or systemic.
- compositions for administration will commonly comprise an agent as described herein (e.g., N-cadherin inhibitors, N-cadherin antibodies and immunoconjugates, N-cadherin siRNA and vectors thereof) dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier.
- a pharmaceutically acceptable carrier preferably an aqueous carrier.
- aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter.
- These compositions may be sterilized by conventional, well known sterilization techniques.
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs.
- a typical pharmaceutical composition for intravenous administration will vary according to the agent.
- Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in such publications as Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pa. (1980).
- compositions can be administered in a variety of unit dosage forms depending upon the method of administration.
- unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges.
- antibodies when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecules with a composition to render them resistant to acidic and enzymatic hydrolysis, or by packaging the molecules in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.
- compositions particularly, of the antibodies and immunoconjugates and inhibitors for use with the present invention can be prepared by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers.
- Such formulations can be lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations used.
- Acceptable carriers, excipients or stabilizers can be acetate, phosphate, citrate, and other organic acids; antioxidant (e.g., ascorbic acid) preservatives; low molecular weight polypeptides; proteins, such as serum albumin or gelatin, or hydrophilic polymers such as polyvinylpyllolidone; and amino acids, monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents; and ionic and non-ionic surfactants (e.g., polysorbate); salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants.
- the antibody can be formulated at a concentration of between 0.5-200 mg/ml, or between 10-50 mg/ml.
- the formulation may also provide additional active compounds, including, chemotherapeutic agents, cytotoxic agents, cytokines, growth inhibitory agent, and anti-hormonal agent.
- the active ingredients may also prepared as sustained-release preparations (e.g., semi-permeable matrices of solid hydrophobic polymers (e.g., polyesters, hydrogels (for example, poly (2-hydroxyethyl-methacrylate), or poly (vinylalcohol)), polylactides.
- the antibodies and immunoconjugates may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- compositions can be administered for therapeutic or prophylactic treatments.
- compositions are administered to a patient suffering from a disease (e.g., cancer) in a “therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient.
- a “patient” or “subject” for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications.
- the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.
- Other known cancer therapies can be used in combination with the methods of the invention.
- the compositions for use according to the invention may also be used to target or sensitize a cell to other cancer therapeutic agents such as 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like.
- the methods of the invention with other cancer therapies (e.g, radical prostatectomy), radiation therapy (external beam or brachytherapy), hormone therapy (e.g., orchiectomy, LHRH-analog therapy to suppress testosterone production, anti-androgen therapy), or chemotherapy.
- Radical prostatectomy involves removal of the entire prostate gland plus some surrounding tissue. This treatment is used commonly when the cancer is thought not to have spread beyond the tissue. Radiation therapy is commonly used to treat prostate cancer that is still confined to the prostate gland, or has spread to nearby tissue. If the disease is more advanced, radiation may be used to reduce the size of the tumor.
- Hormone therapy is often used for patients whose prostate cancer has spread beyond the prostate or has recurred.
- LHRH Luteinizing hormone-releasing hormone
- Anti-androgens e.g., flutamide, bicalutamide, and nilutamide
- Total androgen blockade refers to the use of anti-androgens in combination with orchiectomy or LHRH analogs, the s combination is called.
- Chemotherapy is an option for patients whose prostate cancer has spread outside of the prostate gland and for whom hormone therapy has failed.
- doxorubicin Adriamycin
- estramustine etoposide
- mitoxantrone vinblastine
- paclitaxel Two or more drugs are often given together to reduce the likelihood of the cancer cells becoming resistant to chemotherapy.
- Small cell carcinoma is a rare type of prostate cancer that is more likely to respond to chemotherapy than to hormonal therapy.
- a “cardioprotectant” is also administered with the N-cadherin antibody, N-cadherin binding inhibitor, or N-cadherin siRNA molecule for use to according to the invention (see, U.S. Pat. No. 6,949,245).
- a cardioprotectant is a compound or composition which prevents or reduces myocardial dysfunction (i.e. cardiomyopathy and/or congestive heart failure) associated with administration of a drug, such as an anthracycline antibiotic to a patient.
- the cardioprotectant may, for example, block or reduce a free-radical-mediated cardiotoxic effect and/or prevent or reduce oxidative-stress injury.
- cardioprotectants encompassed by the present definition include the iron-chelating agent dexrazoxane (ICRF-187) (Seifert et al. The Annals of Pharmacotherapy 28:1063-1072 (1994)); a lipid-lowering agent and/or anti-oxidant such as probucol (Singal et al. J. Mol. Cell Cardiol.
- amifostine (aminothiol 2-[(3-aminopropyl)amino]ethanethiol-dihydrogen phosphate ester, also called WR-2721, and the dephosphorylated cellular uptake form thereof called WR-1065) and S-3-(3-methylaminopropylamino)propylphosphoro-thioic acid (WR-151327), see Green et al. Cancer Research 54:738-741 (1994); digoxin (Bristow, M. R. In: Bristow M R, ed. Drug-Induced Heart Disease.
- beta-blockers such as metoprolol (Hjalmarson et al. Drugs 47: Suppl 4:31-9 (1994); and Shaddy et al. Am. Heart J. 129:197-9 (1995)); vitamin E; ascorbic acid (vitamin C); free radical scavengers such as oleanolic acid, ursolic acid and N-acetylcysteine (NAC); spin trapping compounds such as alpha-phenyl-tert-butyl nitrone (PBN); (Paracchini et al., Anticancer Res. 13:1607-1612 (1993)); selenoorganic compounds such as P251 (Elbesen); and the like.
- vitamin E ascorbic acid (vitamin C); free radical scavengers such as oleanolic acid, ursolic acid and N-acetylcysteine (NAC); spin trapping compounds such as alpha-phenyl-tert-butyl
- the combined administrations contemplates coadministration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities.
- N-cadherin protein modulators can be administered alone or co-administered in combination with conventional chemotherapy, radiotherapy or immunotherapy as well as currently developed therapeutics.
- Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions.
- liquid solutions such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or PEG 400
- capsules, sachets or tablets each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin
- suspensions in an appropriate liquid such as water, saline or PEG 400
- Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers.
- Lozenge forms can comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- a flavor e.g., sucrose
- an inert base such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- Aerosol formulations i.e., they can be “nebulized”) to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
- Suitable formulations for rectal administration include, for example, suppositories, which consist of the packaged nucleic acid with a suppository base.
- Suitable suppository bases include natural or synthetic triglycerides or paraffin hydrocarbons.
- gelatin rectal capsules which consist of a combination of the compound of choice with a base, including, for example, liquid triglycerides, polyethylene glycols, and paraffin hydrocarbons.
- Formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
- compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally.
- Parenteral administration, oral administration, and intravenous administration are the preferred methods of administration.
- the formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials.
- Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
- Cells transduced by nucleic acids for ex vivo therapy can also be administered intravenously or parenterally as described above.
- the pharmaceutical preparation is preferably in unit dosage form.
- the preparation is subdivided into unit doses containing appropriate quantities of the active component.
- the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
- the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
- the composition can, if desired, also contain other compatible therapeutic agents.
- Preferred pharmaceutical preparations deliver one or more active N-cadherin protein modulators, optionally in combination with one or more chemotherapeutic agents or immunotherapeutic agents, in a sustained release formulation.
- the N-cadherin modulator is administered therapeutically as a sensitizing agent that increases the susceptibility of tumor cells to other cytotoxic cancer therapies, including chemotherapy, radiation therapy, immunotherapy and hormonal therapy.
- the N-cadherin modulators or inhibitors utilized in the pharmaceutical method of the invention are administered at the initial dosage of about 0.001 mg/kg to about 1000 mg/kg daily.
- the dosages may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. For example, dosages can be empirically determined considering the type and stage of cancer diagnosed in a particular patient.
- the dose administered to a patient should be sufficient to effect a beneficial therapeutic response in the patient over time.
- the size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular vector, or transduced cell type in a particular patient. Determination of the proper dosage for a particular situation is within the skill of the practitioner. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day, if desired.
- the pharmaceutical preparations for use according to the invention are typically delivered to a mammal, including humans and non-human mammals.
- Non-human mammals treated using the present methods include domesticated animals (i.e., canine, feline, murine, rodentia, and lagomorpha) and agricultural animals (bovine, equine, ovine, porcine).
- FIG. 1 shows recognition of the protein on the surface of prostate cancer cells.
- FIG. 2 shows that clones recognize N-cadherin on the surface of prostate cancer cells.
- FIG. 3 shows that purified monoclonal clones recognize the protein on the cell surface.
- FIG. 4 shows that the monoclonal antibodies 1F12, 1H7 and 2B3 generated by the inventors' group all inhibit the invasiveness of N-cadherin positive cancer cells.
- GC4 is a control.
- FIG. 5B when tumors reached palpable stage at day 15, antibodies or control were given twice weekly (200 micrograms) for two weeks. Both 1H7 and EC4 were able to slow growth of the tumors. They also completely blocked metastasis. 5/5 control mice had lymph node metastases, compared with 0/5 and 0/5 1H7 and EC4 treated mice, respectively. In contrast, the 1H7 and EC4 antibodies had no effect on the growth of N-Cadherin null tumors ( FIG. 5A ).
- FIGS. 5C and 5D show clear inhibitory effects of N-Cadherin antibodies on the growth of PC3 tumors, either in treatment of large established tumors (treatment starting on Day 21) or in long term treatment (treatment lasting as long as 62 days).
- the two control tumors are very red, consistent with profound angiogenesis. They are also deeply adherent to and invasive into the local flank musculature.
- the 1H7 and EC4 treated mice have pale, clear tumors that do not invade into local muscle. The tumors peel easily off of the underlying tissues, which demonstrates inhibition of angiogenesis and blockade of local invasion by the anti-N-cadherin antibodies, consistent with the finding that these mice had no metastatic disease.
- the inventors have carried out immunohistochemical staining of an androgen independent LAPC 9 prostate cancer.
- the result shows that N-cadherin is only expressed by a small subset of cells ( FIG. 7A ).
- N-cadherin can be a target for treatment and diagnosis even though N-cadherin is not overexpressed in the cells or only expressed in a subset of cells.
- the androgen dependent and independent LAPC-9 tumors were treated with control PBS or N-cadherin antibodies 1H7 and EC4, respectively.
- the results show that even though N-cadherin is expressed in only a small subset of the androgen independent cells, that treatment with antibody is sufficient to delay the growth and progression of the androgen independent tumors ( FIG. 7B ).
- N-cadherin marks a population of androgen independent stem cells. Blocking growth of the stem cells is enough to block growth of the tumor. These results also show that antibodies may work on cells that express normal or even low levels of N-cadherin.
- N-cadherin positive and negative cells were sorted, yielding a population of cells that were 100% and 0% positive for N-cadherin, respectively.
- Cells were then injected into castrate mice, and the N-cadherin positive cells formed tumors more quickly and efficiently than the negative population ( FIG. 8 ), suggesting that N-cadherin positive cells either have a growth advantage, or they have stem cell characteristics and are more tumorigenic than the negative population.
- Unsorted cells grow similar to the N-cadherin positive cells.
- N-cadherin positive cells are stem cells that can give rise to more differentiated, N-cadherin negative cells.
- N-cadherin negative population gives rise to tumors that are 9% N-cadherin positive ( FIGS. 9 and 10 ), similar to the unsorted cells ( FIGS. 9 and 10 ).
- N-Cadherin antibodies 1H7 and EC4 were administered to mice bearing LNCaP-C1 tumors from Day 45 to Day 56, and their inhibitory effects on tumor growth were apparent by Day 72.
- N-Cadherin antibodies 1H7 and EC4 were administered to mice bearing established LAPC-9 androgen independent tumors (passage 7) at 10 mg/kg twice a week starting on Day 15. The inhibitory effect is apparent by Day 30.
- the inhibitory effects of 1H7 and EC4 on large established LAPC-9 androgen independent tumors are shown in FIG. 12B , where the animals did not receive antibody treatment until Day 17.
- N-Cadherin is widely expressed in a variety of tissues, its potential toxicity is a concern if anti-N-Cadherin antibodies are to be used as therapeutic agents.
- the present inventors have found that the 1H7 and EC4 antibodies cross-react with murine N-Cadherin but no in vivo toxicity has been observed in either long-term or dose escalation studies in mice.
- N-Cadherin antibodies 1H7 and EC4 effectively inhibited the androgen independent progression of LAPC-9 androgen dependent tumors in castrated mice.
- the antibodies were administered from Day 0 to Day 31 and the animals were observed for 45 days.
- the effect of long term antibody treatment was observed. 1H7 showed moderate delay in tumor progression, whereas EC4 showed a more prolonged effect in blocking tumor progression.
- FIG. 15 N-Cadherin positive LAPC-9 tumors showed growth advantage over N-Cadherin negative LAPC-9 tumors in castrated SCID mice.
- FIG. 16 illustrates the inversed correlation between N-Cadherin expression level and androgen receptor expression in LAPC-9 androgen independent cells: along with the successive passages, the LAPC-9 cells progressly gained androgen independence while their expression of N-Cadherin increased and their expression of androgen receptor decreased.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Oncology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention provides antibodies that target the first-third domains of N-cadherein and the fourth domain of N-cadherin, for diagnosis and therapy of cancers related to N-cadherein. Methods of diagnosis and treatment utilizing these antibodies are also described.
Description
- This application is a continuation-in-part of PCT/US09/39526, filed Apr. 3, 2009, which is an application claiming benefit under 35 U.S.C. §119(e) of U.S. Patent Application No. 61/042,604, filed Apr. 4, 2008, and U.S. Patent Application No. 61/113,054, filed Nov. 10, 2008, each of which is herein incorporated by reference in its entirety.
- The present invention was in part supported by NIH/NCI SOMI Training Grant R25 CA 098010 and NIH/NCI UCLA Prostate SPORE, P50 CA 092131. The government has certain rights in this invention.
- Prostate cancer is the most common malignancy and the second leading cause of cancer-related death in American men. Prostate cancer is a biologically and clinically heterogeneous disease. A majority of men with this malignancy harbor slow-growing tumors that may not impact an individual's natural lifespan, while others are struck by rapidly progressive, metastatic tumors. PSA screening is limited by a lack of specificity and an inability to predict which patients are at risk to develop hormone refractory metastatic disease. Recent studies advocating a lower PSA threshold for diagnosis may increase the number of prostate cancer diagnoses and further complicate the identification of patients with indolent vs. aggressive cancers (Punglia et al., N Engl J Med, 349: 335-342 (2003)). New serum and tissue markers that correlate with clinical outcome or identify patients with potentially aggressive disease are urgently needed (Welsh et al., Prot Natl Acad Sci USA, 100: 3410-3415 (2003)).
- Recent expression profiling studies suggest that expression signatures for metastatic vs. non-metastatic tumors may reside in the primary tumor (Ramaswamy et al., Nat Genet, 33: 49-54 (2003); Sotiriou et al., Proc Natl Acad Sci USA, 100: 10393-10398 (2003)). Additional features that predispose tumors to metastasize to specific organs may also be present at some frequency in the primary tumor (Kang et al., Cancer Cell, 3: 537-549 (2003)). These recent observations suggest that novel markers of pre-metastatic or pre-hormone refractory prostate cancer may be identified in early stage disease. These markers may also play a role in the biology of metastatic or hormone refractory prostate cancer progression. Recent examples of genes present in primary tumors that correlate with outcome and play a role in the biology of prostate cancer progression include EZH2 and LIM kinase (Varambally et al., Nature, 419: 624-629 (2002); Yoshioka et al., Proc Natl Acad Sci USA, 100: 7247-7252 (2003)). However, neither of these two genes is secreted.
- In order to identify new candidate serum or tissue markers of hormone refractory prostate cancer, we compared gene expression profiles of paired hormone dependent and hormone refractory prostate cancer xenografts. The LAPC-9 xenograft was established from an osteoblastic bone metastasis and progresses from androgen dependence to independence following castration in immune deficient mice (Craft et al., Cancer Research, In Press (1999)).
- It has been used previously to identify candidate therapeutic targets in prostate cancer. Differentially expressed genes were validated and then examined for sequence homology to secreted or cell surface proteins. The identification, characterization and initial validation of N-Cadherin, which is expressed in both hormone refractory prostate cancer and bladder cancer, has been previously reported (WO/2007/109347).
- We previously disclosed our identification of N-cadherin as a putative diagnostic and therapeutic target in prostate and bladder cancers (WO/2007/109347). Our previous disclosure demonstrated significant expression of the target in high risk and advanced prostate and bladder tumors and showed that expression of the target is associated with poor prognosis and progression to androgen independence. Although there has been previous speculation that N-cadherin might be a useful therapy target, the only existing drug was a peptide antagonist, which did not show any preclinical activity against prostate cancer. To our knowledge, our invention provides the first monoclonal antibodies that are active against cancers expressing the target. In addition, the existing N-cadherin antagonist targets only the first extracellular domain of the protein. We describe antibodies that target the first and fourth extracellular domains. All have significant antitumor activity. To our knowledge, this is the first description of the concept of targeting the fourth extracellular domain. Our antibodies can be used a single agents, in combination, and also conceptually as agents that can be combined with antagonists of parallel or downstream pathways to N-cadherin.
- The invention encompasses multiple monoclonal antibodies against the first and fourth extracellular domains of the N-cadherin protein. These antibodies block tumor growth, angiogenesis and metastasis in in vivo models of prostate and other cancers. They work by blocking N-cadherin signal transduction pathways that are critical for tumor growth, invasion, angiogenesis and metastasis. The antibodies may also be useful for in vivo maging of N-cadherin positive tumors and/or for tissue diagnosis and prognosis.
- The invention can be practiced alone as single antibodies to treat or prevent tumor growth and metastasis. They may be used as adjuvants or as therapeutics for existing tumors. They may be used in combination to block multiple domains of the N-cadherin protein. They may also be used in combination with chemotherapy or other targeted cancer agents, particularly those that target synergistic signal transduction pathways or those that target downstream or upstream pathways involved in N-cadherin mediated signal transduction.
- There are currently no approved therapies or diagnostics targeting N-cadherin. The only drug targeting this pathway has not been highly successful in Phase II trials and has shown no activity in the preclinical models that our invention is active against, suggesting the clear superiority of our approach and our agents.
- Accordingly, the invention provides compositions and methods that target N-Cadherin in the diagnosis, prognosis, and treatment of cancers expressing N-Cadherin including, but not limited to, prostate cancer and bladder cancer.
- In one aspect, the present invention provides a hybridoma cell line deposited as ATCC Accession No. PTA-9387 and an antibody produced by this hybridoma cell line, as well as another hybridoma cell line deposited as ATCC Accession No. PTA-9388 and an antibody produced by this hybridoma cell line. Also provided is an antibody or fragment thereof capable of binding to domains 1-3 of N-cadherin, the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9387, or an antibody or fragment thereof capable of binding to
domain 4 of N-cadherin, the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9388. Such an antibody may be humanized or fully human; or it may be a diabody or single chain antibody (scFv). In some embodiments, the antibody comprises a heavy chain comprising an amino acid sequence with at least 90% sequence identity to SEQ ID NO:1 or SEQ ID NO:3. In some embodiments, the antibody comprises a light chain comprising an amino acid sequence with at least 90% sequence identity to SEQ ID NO:2 or SEQ ID NO:4. In some embodiments, the antibody comprises any of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4. In some embodiments, the antibody comprises SEQ ID NO:1 and SEQ ID NO:2 or SEQ ID NO:3 and SEQ ID NO:4. - In a second aspect, this invention provides a method of inhibiting the growth of cancer cells in a patient. The method comprises the step of: administering an antibody (or its fragment) of this invention to a patient under conditions sufficient for binding the antibody (or its fragment) to the cancer cells, which express or overexpress N-Cadherin. The antibody (or its fragment) inhibits the growth of cancer cells by (a) activating or inhibiting NF kappa-B signaling and transcription; (b) activating or inhibiting N-cadherin internalization; (c) activating or inhibiting PI3 kinase or Akt pathway; (d) activating or inhibiting β-catenin signaling; (e) blocking heterodimerization of N-cadherin with FGFR or other tyrosine kinase receptor; or (f) blocking or enhancing cleavage by ADAM10 or other metallopeptidase. In some embodiments, the cancer cells are urogenital cancer cells, prostate cancer cells, or bladder cancer cells.
- In a third aspect, the invention provides a method of treating a cancer patient. The method comprises the steps of: (a) obtaining a test tissue sample from an individual at risk of having a cancer that expresses a N-cadherin protein; (b) determining the presence or absence or amount of the N-cadherin protein in the test tissue sample in comparison to a control tissue sample from an individual known to be negative for the cancer; thereby diagnosing said cancer that expresses a N-cadherin protein, wherein the N-cadherin protein is expressed at normal or low levels, or is expressed by a subset of cells, or is overexpressed; and (c) administering an effective amount of N-cadherin antibody (or its fragment) of this invention to the individual at risk of having a cancer that expresses a N-Cadherin protein.
- In some embodiments, the tissue sample is prostate or bladder tissue. In some embodiments, the cancer is a prostate cancer or bladder cancer, or it may be a metastatic cancer. In some embodiments, the antibody (or its fragment) blocks hormone refractory prostate cancer, or antibody blocks cancer stem cells. The antibody in some cases is a monoclonal antibody, an scFv, or a diabody. In other some embodiments, the tissue sample is prostate or bladder tissue.
- In a fourth aspect, the present invention provides a method of diagnosing a cancer patient. The method comprises the steps of: (a) obtaining a test tissue sample from an individual at risk of having a cancer that expresses a N-cadherin protein; (b) determining the presence or absence or amount of the N-cadherin protein in the test tissue sample in comparison to a control tissue sample from an individual known to be negative for the cancer by contacting a sample with an effective amount of N-cadherin antibody (or its fragment) of this invention; thereby diagnosing said cancer that expresses a N-cadherin protein, wherein the N-cadherin protein is expressed at normal or low levels, or is expressed by a subset of cells, or is overexpressed.
- In a fifth aspect, the present invention provides a method of identifying cancer stem cells. The method comprises the steps of: (a) obtaining a test tissue sample from an individual at risk of having a cancer that expresses a N-cadherin protein; (b) determining the presence or absence of cancer stem cells in the test tissue sample in comparison to a control tissue sample from an individual known to be negative for the cancer; wherein the N-cadherin protein is expressed at normal or low levels, or is expressed by a subset of the stem cells and is not overexpressed, using the antibody (or its fragment) of this invention. In some embodiments, the tissue sample is prostate or bladder tissue. In some embodiments, the cancer is a prostate cancer, a bladder cancer, a hormone refractory prostate cancer, or a metastatic cancer.
-
FIG. 1 . FACS analysis of antibody clones targeting the first extracellular domain of the N-Cadherin protein. -
FIG. 2 . FACS analysis of antibody clones targeting the fourth extracellular domain of the N-Cadherin protein. -
FIG. 3 . FACS analysis of purified monoclonal N-Cadherin antibody clones. -
FIG. 4 . In vitro invasion assay of monoclonal N-Cadherin antibody clones. -
FIG. 5 .FIG. 5A . Growth curve of N-Cadherin null tumors under treatment by antibodies against N-Cadherin, 1H7 and EC4, showing no significant inhibitory effect.FIG. 5B . Tumor growth curve of PC3 prostate cancer cells treated with the same antibodies, demonstrating effectiveness in growth inhibition.FIG. 5C . Growth curve of large established PC3 tumors under treatment by the 1H7 and EC4 antibodies.FIG. 5D . Long term growth curve of PC3 tumors under treatment by the EC4 antibody. -
FIG. 6 . In vivo experiment showing effect of antibodies against N-Cadherin. -
FIG. 7 .FIG. 7A . Immunohistochemical staining of an addrogen independent LAPC9 prostate cancer.FIG. 7B . Treatment of androgen dependent and independent LAPC-9 tumors with N-cadherin antibodies. -
FIG. 8 . Tumor Growth Curve of sorted and unsorted LAPC9AI cells. -
FIGS. 9 and 10 . FACS results on processed N-Cadherin sorted tumors. -
FIG. 11 . Growth curves of LNCaP-C1 tumors, showing inhibitory effects of N-cadherin antibodies. -
FIG. 12 . N-cadherin antibodies inhibit growth of established LAPC-9 androgen independent tumors (FIG. 12A ) and large established LAPC-9 androgen independent tumors (FIG. 12B ). -
FIG. 13 . Inhibition of PC3 tumor growth in nude mice by antibody EC4 in a dose-correlated manner. -
FIG. 14 . N-Cadherin antibodies 1H7 and EC4 show an inhibitory effect on the growth of LAPC-9 androgen dependent tumor in two studies in which the tumor pregression was followed for up to 45 days (FIG. 14A ) and 70 days (FIG. 14B ). -
FIG. 15 . N-Cadherin sorted cells show a growth advantage in castrated SCID mice. -
FIG. 16 . Correlation between N-cadherin expression and androgen receptor level in successive passages of LAPC9 tumor cells. - This invention relates to novel monoclonal antibodies targeting the cell surface protein N-Cadherin for therapy of cancers that express N-Cadherin. The cancers can be prostate cancer, bladder cancer, or other cancers that express N-Cadherin. The inventors have now provided sequence listings (SEQ ID NOs:1-4) for the heavy chain and light chain of each of the N-Cadherin antibodies 1H7 and EC4.
- This invention also relates to methods of treating cancers using antibodies targeting N-Cadherin. The inventors have discovered that the antibodies may work by activating or inhibiting NF kappa-B signaling and transcription, or by activating or inhibiting N-cadherin internalization, or by activating or inhibiting PI3 kinase or Akt pathway, or by activating or inhibiting β-catenin signaling, or by blocking heterodimerization of N-cadherin with FGFR or other tyrosine kinase receptor; or by blocking or enhancing cleavage by ADAM10 or other metallopeptidase. The inventors report evidence showing that N-Cadherin antibodies function by altering one or more of these pathways.
- “N-Cadherin” refers to nucleic acids, e.g., gene, pre-mRNA, mRNA, and polypeptides, polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to a polypeptide encoded by a respectively referenced nucleic acid or an amino acid sequence described herein, for example, as depicted in GenBank Accession Nos. NM—001792 (N-Cadherin mRNA) and NP—001783 (N-Cadherin protein); (2) specifically bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising a referenced amino acid sequence as depicted in GenBank Accession No. NP—001783 (N-Cadherin protein); immunogenic fragments respectively thereof, and conservatively modified variants respectively thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid encoding a referenced amino acid sequence as depicted in GenBank Accession No. NP—001783 (N-Cadherin protein) and conservatively modified variants respectively thereof; (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 150, 200, 250, 500, 1000, or more nucleotides, to a reference nucleic acid sequence as shown in GenBank Accession No. NM—001792 (N-Cadherin mRNA). A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or any mammal. The nucleic acids and proteins of the invention include both naturally occurring or recombinant molecules.
- “Cancer” refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid tumors and lymphoid cancers, kidney, breast, lung, kidney, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, esophagus, and liver cancer, lymphoma, including non-Hodgkin's and Hodgkin's lymphoma, leukemia, and multiple myeloma. “Urogenital cancer” refers to human cancers of urinary tract and genital tissues, including but not limited to kidney, bladder, urinary tract, urethra, prostrate, penis, testicle, vulva, vagina, cervical and ovary tissues.
- The cancer to be treated herein may be one characterized by excessive activation of N-cadherin. Alternatively, the cancer to be treated herein may be one where the N-cadherin protein is expressed at normal or low levels, or one where the N-cadherin protein is expressed by a subset of cells, and where the N-cadherin protein is not overexpressed. In one embodiment of the invention, a diagnostic or prognostic assay will be performed to determine whether the patient's cancer is characterized by expression of N-cadherin. Various assays for determining such amplification/express ion are contemplated and include the immunohistochemistry, FISH and shed antigen assays, southern blotting, or PCR techniques. Moreover, the N-cadherin expression or amplification may be evaluated using an in vivo diagnostic assay, e.g. by administering a molecule (such as an antibody) which binds the molecule to be detected and is tagged with a detectable label (e.g. a radioactive isotope) and externally scanning the patient for localization of the label. In some embodiments, the cancer to be treated is not yet invasive, but expresses N-cadherin.
- “Therapy resistant” cancers, tumor cells, and tumors refers to cancers that have become resistant or refractory to either or both apoptosis-mediated (e.g., through death receptor cell signaling, for example, Fas ligand receptor, TRAIL receptors, TNF-R1, chemotherapeutic drugs, radiation) and non-apoptosis mediated (e.g., toxic drugs, chemicals) cancer therapies, including chemotherapy, hormonal therapy, radiotherapy, and immunotherapy.
- “Overexpression” refers to RNA or protein expression of N-Cadherin in a test tissue sample that is significantly higher that RNA or protein expression of N-Cadherin in a control tissue sample. In one embodiment, the tissue sample is autologous. Cancerous test tissue samples (e.g., bladder, prostate) associated with invasiveness, metastasis, hormone independent (e.g., androgen independence), or refractoriness to treatment or an increased likelihood of same typically have at least two fold higher expression of N-Cadherin mRNA or protein, often up to three, four, five, eight, ten or more fold higher expression of N-Cadherin in comparison to cancer tissues from patients who are less likely to progress to metastasis or to normal (i.e., non-cancer) tissue samples. Such differences may be readily apparent when viewing the bands of gels with approximately similarly loaded with test and controls samples. Prostate cancers expressing increased amounts of N-Cadherin are more likely to become invasive, metastasize, or progress to androgen independent or treatment refractory cancer. Various cutoffs are pertinent for N-Cadherin positivity, since it is possible that a small percentage of N-Cadherin positive cells in primary tumors may identify tumors with a high risk for recurrence and metastasis. The terms “overexpress,” “overexpression” or “overexpressed” interchangeably refer to a gene that is transcribed or translated at a detectably greater level, usually in a cancer cell, in comparison to a normal cell. Overexpression therefore refers to both overexpression of protein and RNA (due to increased transcription, post transcriptional processing, translation, post translational processing, altered stability, and altered protein degradation), as well as local overexpression due to altered protein traffic patterns (increased nuclear localization), and augmented functional activity, e.g., as in an increased enzyme hydrolysis of substrate. Overexpression can also be by 50%, 60%, 70%, 80%, 90% or more in comparison to a normal cell or comparison cell (e.g., a BPH cell).
- The terms “cancer that expresses N-Cadherin” and “cancer associated with the expression of N-Cadherin” interchangeably refer to cancer cells or tissues that express N-Cadherin in accordance with the above definition.
- The terms “cancer-associated antigen” or “tumor-specific marker” or “tumor marker” interchangeably refers to a molecule (typically protein, carbohydrate or lipid) that is preferentially expressed in a cancer cell in comparison to a normal cell, and which is useful for the preferential targeting of a pharmacological agent to the cancer cell. A marker or antigen can be expressed on the cell surface or intracellularly. Oftentimes, a cancer-associated antigen is a molecule that is expressed or stabilized with minimal degradation in a cancer cell in comparison to a normal cell, for instance, 2-fold expression, 3-fold expression or more in comparison to a normal cell. Oftentimes, a cancer-associated antigen is a molecule that is inappropriately synthesized in the cancer cell, for instance, a molecule that contains deletions, additions or mutations in comparison to the molecule expressed on a normal cell. Oftentimes, a cancer-associated antigen will be expressed exclusively in a cancer cell and not synthesized or expressed in a normal cell. Exemplified cell surface tumor markers include the proteins c-erbB-2 and human epidermal growth factor receptor (HER) for breast cancer, PSMA for prostate cancer, and carbohydrate mucins in numerous cancers, including breast, ovarian and colorectal. Exemplified intracellular tumor markers include, for example, mutated tumor suppressor or cell cycle proteins, such as p53.
- An “agonist” refers to an agent that binds to a polypeptide or polynucleotide of the invention, stimulates, increases, activates, facilitates, enhances activation, sensitizes or up regulates the activity or expression of a polypeptide or polynucleotide of the invention.
- An “antagonist” refers to an agent that inhibits expression of a polypeptide or polynucleotide of the invention or binds to, partially or totally blocks stimulation, decreases, prevents, delays activation, inactivates, desensitizes, or down regulates the activity of a polypeptide or polynucleotide of the invention.
- “Inhibitors,” “activators,” and “modulators” of expression or of activity are used to refer to inhibitory, activating, or modulating molecules, respectively, identified using in vitro and in vivo assays for expression or activity, e.g., ligands, agonists, antagonists, and their homologs and mimetics. The term “modulator” includes inhibitors and activators. Inhibitors are agents that, e.g., inhibit expression of a polypeptide or polynucleotide of the invention or bind to, partially or totally block stimulation or enzymatic activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity of a polypeptide or polynucleotide of the invention, e.g., antagonists. Activators are agents that, e.g., induce or activate the expression of a polypeptide or polynucleotide of the invention or bind to, stimulate, increase, open, activate, facilitate, enhance activation or enzymatic activity, sensitize or up regulate the activity of a polypeptide or polynucleotide of the invention, e.g., agonists. Modulators include naturally occurring and synthetic ligands, antagonists, agonists, small chemical molecules and the like. Assays to identify inhibitors and activators include, e.g., applying putative modulator compounds to cells, in the presence or absence of a polypeptide or polynucleotide of the invention and then determining the functional effects on a polypeptide or polynucleotide of the invention activity. Samples or assays comprising a polypeptide or polynucleotide of the invention that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of effect. Control samples (untreated with modulators) are assigned a relative activity value of 100% Inhibition is achieved when the activity value of a polypeptide or polynucleotide of the invention relative to the control is about 80%, optionally 50% or 25-1%. Activation is achieved when the activity value of a polypeptide or polynucleotide of the invention relative to the control is 110%, optionally 150%, optionally 200-500%, or 1000-3000% higher.
- The term “test compound” or “drug candidate” or “modulator” or grammatical equivalents as used herein describes any molecule, either naturally occurring or synthetic, e.g., protein, oligopeptide (e.g., from about 5 to about 25 amino acids in length, preferably from about 10 to 20 or 12 to 18 amino acids in length, preferably 12, 15, or 18 amino acids in length), small organic molecule, polysaccharide, lipid, fatty acid, polynucleotide, RNAi, siRNA, antibody, oligonucleotide, etc. The test compound can be in the form of a library of test compounds, such as a combinatorial or randomized library that provides a sufficient range of diversity. Test compounds are optionally linked to a fusion partner, e.g., targeting compounds, rescue compounds, dimerization compounds, stabilizing compounds, addressable compounds, and other functional moieties. Conventionally, new chemical entities with useful properties are generated by identifying a test compound (called a “lead compound”) with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.
- A “small organic molecule” refers to an organic molecule, either naturally occurring or synthetic, that has a molecular weight of more than about 50 Daltons and less than about 2500 Daltons, preferably less than about 2000 Daltons, preferably between about 100 to about 1000 Daltons, more preferably between about 200 to about 500 Daltons.
- Cytotoxic agents include “cell-cycle-specific” or “antimitotic” or “cytoskeletal-interacting” drugs. These terms interchangeably refer to any pharmacological agent that blocks cells in mitosis. Such agents are useful in chemotherapy. Generally, cell-cycle-specific-drugs bind to the cytoskeletal protein tubulin and block the ability of tubulin to polymerize into microtubules, resulting in the arrest of cell division at metaphase. Exemplified cell-cycle-specific drugs include vinca alkaloids, taxanes, colchicine, and podophyllotoxin. Exemplified vinca alkaloids include vinblastine, vincristine, vindesine and vinorelbine. Exemplified taxanes include paclitaxel and docetaxel. Another example of a cytoskeletal-interacting drug includes 2-methoxyestradiol.
- An “siRNA” or “RNAi” refers to a nucleic acid that forms a double stranded RNA, which double stranded RNA has the ability to reduce or inhibit expression of a gene or target gene when the siRNA expressed in the same cell as the gene or target gene. “siRNA” or “RNAi” thus refers to the double stranded RNA formed by the complementary strands. The complementary portions of the siRNA that hybridize to form the double stranded molecule typically have substantial or complete identity. In one embodiment, an siRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a double stranded siRNA. Typically, the siRNA is at least about 15-50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, preferable about preferably about 20-30 base nucleotides, preferably about 20-25 or about 24-29 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.
- The design and making of siRNA molecules and vectors are well known to those of ordinary skill in the art. For instance, an efficient process for designing a suitable siRNA is to start at the AUG start codon of the mRNA transcript and scan for AA dinucleotide sequences (see, Elbashir et al. EMBO J 20: 6877-6888 (2001). Each AA and the 3′ adjacent nucleotides are potential siRNA target sites. The length of the adjacent site sequence will determine the length of the siRNA. For instance, 19 adjacent sites would give a 21 Nucleotide long siRNA siRNAs with 3′ overhanging UU dinucleotides are often the most effective. This approach is also compatible with using RNA pol III to transcribe hairpin siRNAs. RNA pol III terminates transcription at 4-6 nucleotide poly(T) tracts to create RNA molecules having a short poly(U) tail. However, siRNAs with other 3′ terminal dinucleotide overhangs can also effectively induce RNAi and the sequence may be empirically selected. For selectivity, target sequences with more than 16-17 contiguous base pairs of homology to other coding sequences can be avoided by conducting a BLAST search (see, National Center for Biotechnology Information (NCBI) website: ncbi.nlm.nih.gov/BLAST).
- The siRNA can be administered directly or an siRNA expression vectors can be used to induce RNAi can have different design criteria. A vector can have inserted two inverted repeats separated by a short spacer sequence and ending with a string of T's which serve to terminate transcription. The expressed RNA transcript is predicted to fold into a short hairpin siRNA. The selection of siRNA target sequence, the length of the inverted repeats that encode the stem of a putative hairpin, the order of the inverted repeats, the length and composition of the spacer sequence that encodes the loop of the hairpin, and the presence or absence of 5′-overhangs, can vary. A preferred order of the siRNA expression cassette is sense strand, short spacer, and antisense strand. Hairpin siRNAs with these various stem lengths (e.g., 15 to 30) can be suitable. The length of the loops linking sense and antisense strands of the hairpin siRNA can have varying lengths (e.g., 3 to 9 nucleotides, or longer). The vectors may contain promoters and expression enhancers or other regulatory elements which are operably linked to the nucleotide sequence encoding the siRNA. The expression “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. These control elements may be designed to allow the clinician to turn off or on the expression of the gene by adding or controlling external factors to which the regulatory elements are responsive.
- Construction of suitable vectors containing the desired therapeutic gene coding and control sequences employs standard ligation and restriction techniques, which are well understood in the art (see Maniatis et al., in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1982)). Isolated plasmids, DNA sequences, or synthesized oligonucleotides are cleaved, tailored, and re-ligated in the form desired.
- Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are near each other, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
- “Determining the functional effect” refers to assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a polynucleotide or polypeptide of the invention, e.g., measuring physical and chemical or phenotypic effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein; measuring inducible markers or transcriptional activation of the protein; measuring binding activity or binding assays, e.g. binding to antibodies; measuring changes in ligand binding affinity; measurement of calcium influx; measurement of the accumulation of an enzymatic product of a polypeptide of the invention or depletion of an substrate; changes in enzymatic activity, e.g., kinase activity, measurement of changes in protein levels of a polypeptide of the invention; measurement of RNA stability; G-protein binding; G-protein coupled receptor (GPCR) phosphorylation or dephosphorylation; signal transduction, e.g., receptor-ligand interactions, second messenger concentrations (e.g., cAMP, 1P3, or intracellular Ca2+); identification of downstream or reporter gene expression (CAT, luciferase, β-gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.
- Samples or assays comprising a nucleic acid or protein disclosed herein that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.
- “Biological sample” includes sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histological purposes. Such samples include blood and blood fractions or products (e.g., serum, plasma, platelets, red blood cells, and the like), sputum, tissue, cultured cells, e.g., primary cultures, explants, and transformed cells, stool, urine, etc. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, Mouse; rabbit; or a bird; reptile; or fish.
- A “biopsy” refers to the process of removing a tissue sample for diagnostic or prognostic evaluation, and to the tissue specimen itself. Any biopsy technique known in the art can be applied to the diagnostic and prognostic methods of the present invention. The biopsy technique applied will depend on the tissue type to be evaluated (i.e., prostate, lymph node, liver, bone marrow, blood cell), the size and type of the tumor (i.e., solid or suspended (i.e., blood or ascites)), among other factors. Representative biopsy techniques include excisional biopsy, incisional biopsy, needle biopsy, surgical biopsy, and bone marrow biopsy. An “excisional biopsy” refers to the removal of an entire tumor mass with a small margin of normal tissue surrounding it. An “incisional biopsy” refers to the removal of a wedge of tissue that includes a cross-sectional diameter of the tumor. A diagnosis or prognosis made by endoscopy or fluoroscopy can require a “core-needle biopsy” of the tumor mass, or a “fine-needle aspiration biopsy” which generally obtains a suspension of cells from within the tumor mass. Biopsy techniques are discussed, for example, in Harrison's Principles of Internal Medicine, Kasper, et al., eds., 16th ed., 2005, Chapter 70, and throughout Part V.
- The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI website: ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be “substantially identical.” This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.
- For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
- A “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)).
- A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990), respectively. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) website. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=−4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=−4, and a comparison of both strands.
- “Nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).
- Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.
- A particular nucleic acid sequence also implicitly encompasses “splice variants.” Similarly, a particular protein encoded by a nucleic acid implicitly encompasses any protein encoded by a splice variant of that nucleic acid. “Splice variants,” as the name suggests, are products of alternative splicing of a gene. After transcription, an initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides. Mechanisms for the production of splice variants vary, but include alternate splicing of exons. Alternate polypeptides derived from the same nucleic acid by read-through transcription are also encompassed by this definition. Any products of a splicing reaction, including recombinant forms of the splice products, are included in this definition. An example of potassium channel splice variants is discussed in Leicher, et al., J. Biol. Chem. 273(52):35095-35101 (1998).
- The terms “polypeptide,” “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.
- The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
- Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence with respect to the expression product, but not with respect to actual probe sequences.
- As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.
- The following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).
- A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include 32P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.
- The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.
- The term “heterologous” when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).
- The phrase “stringent hybridization conditions” refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Probes, “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5×SSC, and 1% SDS, incubating at 42° C., or, 5×SSC, 1% SDS, incubating at 65° C., with wash in 0.2×SSC, and 0.1% SDS at 65° C.
- Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary “moderately stringent hybridization conditions” include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 1×SSC at 45° C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, et al., John Wiley & Sons.
- For PCR, a temperature of about 36° C. is typical for low stringency amplification, although annealing temperatures may vary between about 32° C. and 48° C. depending on primer length. For high stringency PCR amplification, a temperature of about 62° C. is typical, although high stringency annealing temperatures can range from about 50° C. to about 65° C., depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C.-95° C. for 30 sec-2 min., an annealing phase lasting 30 sec.-2 min., and an extension phase of about 72° C. for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.).
- “Antibody” refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody will be most critical in specificity and affinity of binding.
- An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.
- Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′2, a dimer of Fab which itself is a light chain joined to VH—
C H1 by a disulfide bond. The F(ab)′2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)′2 dimer into an Fab′ monomer. The Fab′ monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990)) - For preparation of suitable antibodies of the invention and for use according to the invention, e.g., recombinant, monoclonal, or polyclonal antibodies, many techniques known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4: 72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)). The genes encoding the heavy and light chains of an antibody of interest can be cloned from a cell, e.g., the genes encoding a monoclonal antibody can be cloned from a hybridoma and used to produce a recombinant monoclonal antibody. Gene libraries encoding heavy and light chains of monoclonal antibodies can also be made from hybridoma or plasma cells. Random combinations of the heavy and light chain gene products generate a large pool of antibodies with different antigenic specificity (see, e.g., Kuby, Immunology (3rd ed. 1997)). Techniques for the production of single chain antibodies or recombinant antibodies (U.S. Pat. No. 4,946,778, U.S. Pat. No. 4,816,567) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized or human antibodies (see, e.g., U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, Marks et al., Bio/Technology 10:779-783 (1992); Lonberg et al., Nature 368:856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14:845-51 (1996); Neuberger, Nature Biotechnology 14:826 (1996); and Lonberg & Huszar, Intern. Rev. Immunol. 13:65-93 (1995)). Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)). Antibodies can also be made bispecific, i.e., able to recognize two different antigens (see, e.g., WO 93/08829, Traunecker et al., EMBO J. 10:3655-3659 (1991); and Suresh et al., Methods in Enzymology 121:210 (1986)). Antibodies can also be heteroconjugates, e.g., two covalently joined antibodies, or immunotoxins (see, e.g., U.S. Pat. No. 4,676,980, WO 91/00360; WO 92/200373; and EP 03089).
- Methods for humanizing or primatizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988) and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- A “chimeric antibody” is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity. The preferred antibodies of, and for use according to the invention include humanized and/or chimeric monoclonal antibodies.
- In one embodiment, the antibody is conjugated to an “effector” moiety. The effector moiety can be any number of molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the antibody modulates the activity of the protein. Such effector moieties include, but are not limited to, an anti-tumor drug, a toxin, a radioactive agent, a cytokine, a second antibody or an enzyme. Further, the invention provides an embodiment wherein the antibody of the invention is linked to an enzyme that converts a prodrug into a cytotoxic agent.
- The immunoconjugate can be used for targeting the effector moiety to a N-cadherin positive cell, particularly cells which express the N-cadherin protein. Such differences can be readily apparent when viewing the bands of gels with approximately similarly loaded with test and controls samples. Examples of cytotoxic agents include, but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethiduim bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, diphteria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes. Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme.
- In some embodiments, the invention provides antibodies to N-cadherin. N-cadherin antibodies may be used systemically to treat cancer (e.g., prostate or bladder cancer) alone or when conjugated with an effector moiety. N-cadherin antibodies conjugated with toxic agents, such as ricin, as well as unconjugated antibodies may be useful therapeutic agents naturally targeted to N-cadherin-bearing prostate cancer cells. Such antibodies can be useful in blocking invasiveness. Suitable N-cadherin antibodies for use according to the invention include, but are not limited to, GC4, 1H7, 1F12, and 2B3. In some embodiments, a suitable N-cadherin antibody for use according to the invention comprises an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to any of SEQ ID NOs:1, 2, 3, or 4.
- Additionally, the recombinant protein of the invention comprising the antigen-binding region of any of the monoclonal antibodies of the invention can be used to treat cancer. In such a situation, the antigen-binding region of the recombinant protein is joined to at least a functionally active portion of a second protein having therapeutic activity. The second protein can include, but is not limited to, an enzyme, lymphokine, oncostatin or toxin. Suitable toxins include doxorubicin, daunorubicin, taxol, ethiduim bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, diphteria toxin, Pseudomonas exotoxin (PE) A, PE40, ricin, abrin, glucocorticoid and radioisotopes.
- Techniques for conjugating therapeutic agents to antibodies are well known (see, e.g., Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., “Antibodies For Drug Delivery” in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review” in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); and Thorpe et al., “The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates”, Immunol. Rev., 62:119-58 (1982)).
- The phrase “specifically (or selectively) binds” to an antibody or “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein, often in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein at least two times the background and more typically more than 10 to 100 times background. Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the selected antigen and not with other proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Using Antibodies, A Laboratory Manual (1998) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).
- By “therapeutically effective dose or amount” herein is meant a dose that produces effects for which it is administered. The exact dose and formulation will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Remington: The Science and Practice of Pharmacy, 20th Edition, Gennaro, Editor (2003), and Pickar, Dosage Calculations (1999)).
- The term “pharmaceutically acceptable salts” or “pharmaceutically acceptable carrier” is meant to include salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present invention contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, e.g., Berge et al., Journal of Pharmaceutical Science 66:1-19 (1977)). Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts. Other pharmaceutically acceptable carriers known to those of skill in the art are suitable for the present invention.
- The neutral forms of the compounds may be regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the present invention.
- In addition to salt forms, the present invention provides compounds which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
- Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
- Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are all intended to be encompassed within the scope of the present invention.
- Epithelial to Mesenchymal Transition (EMT) refers to the acquisition of stromal features by epithelial tumor cells. In cancer, EMT is associated with invasive and motile behavior and may be central process underlying metastasis. EMT is associated with poor prognosis and is mediated by multiple transcription factors, such as, SNAIL, SLUG and TWIST.
- The present invention discloses two mouse hybridoma cell lines that produces monoclonal antibody capable of binding to the antigenic determinant of N-cadherin. The mouse hybridoma cell lines are deposited as ATCC Accession No. PTA-9387 (1H7) and ATCC Accession No. PTA-9388 (EC4). Provided herein are the amino acid sequences for the heavy chain and light chain of 1H7 (SEQ ID NOs:1 and 2) and of EC4 (SEQ ID NOs:3 and 4).
- In one embodiment of the invention, an antibody is produced by the hybridoma cell line designated as ATCC Accession No. PTA-9387. In another embodiment of the invention, an antibody is produced by the hybridoma cell line designated as ATCC Accession No. PTA-9388.
- The cells were deposited as ATCC Accession No. PTA-9387 and ATCC Accession No. PTA-9388 pursuant to the Budapest Treaty at the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110, on Jul. 23, 2008. Viability was tested and certified on Aug. 29, 2008.
- In some embodiments of the invention, an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9387 is produced. In some embodiments of the invention, an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9388 is produced.
- In some embodiments, the antibody is capable of binding to the first extracellular domain of N-cadherin. In some embodiments, the antibody is capable of binding to the second extracellular domain of N-cadherin. In some embodiments, the antibody is capable of binding to the third extracellular domain of N-cadherin. In some embodiments, the antibody is capable of binding to the first to third extracellular domains of N-cadherin. In some embodiments, the antibody is capable of binding to the fourth extracellular domain of N-cadherin.
- In some embodiments, an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9387 comprises a heavy chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:1 and/or a light chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:2. In some embodiments, the antibody or fragment thereof comprises a heavy chain comprising the amino acid sequence of SEQ ID NO:1 and/or a light chain comprising the amino acid sequence of SEQ ID NO:2.
- In some embodiments, an antibody or fragment thereof capable of binding to the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9388 comprises a heavy chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:3 and/or a light chain comprising an amino acid sequence with at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO:4. In some embodiments, the antibody or fragment thereof comprises a heavy chain comprising the amino acid sequence of SEQ ID NO:3 and/or a light chain comprising the amino acid sequence of SEQ ID NO:4.
- The present invention further relates to methods of inhibiting the growth, or killing, of cancer cells in a patient. The methods generally comprise administering the antibody or binding fragment thereof of
claim 5 or 13 to a patient under conditions sufficient for binding the antibody or binding fragment thereof to said tumor cells or prostate cancer tumor cells; modulating cellular activity; inhibiting angiogenesis of the tumor cells; and causing growth inhibition or killing of the tumor cells, wherein the cancer cells express or overexpress N-Cadherin. - In some embodiments of the invention, the antibody modulates cellular activity by activating or inhibiting NF kappa-B signaling and transcription. In some embodiments of the invention, the antibody modulates cellular activity by activating or inhibiting N-cadherin internalization. In some embodiments of the invention, the antibody modulates cellular activity by activating or inhibiting PI3 kinase or Akt pathway. In some embodiments of the invention, the antibody modulates cellular activity by activating or inhibiting β-catenin signaling. In some embodiments of the invention, the antibody modulates cellular activity by blocking heterodimerization of N-cadherin with FGFR or other tyrosine kinase receptor. In some other embodiments of the invention, the antibody modulates cellular activity by blocking or enhancing cleavage by ADAM10 or other metallopeptidase.
- In some embodiments, the antibody inhibits the growth, or killing, of urogenital cancer cells in a patient. In some embodiments, the antibody inhibits the growth, or killing, of prostate cancer cells in a patient. In some other embodiments, the antibody inhibits the growth, or killing, of bladder cancer cells in a patient.
- The anti-N-cadherin antibodies or immunoconjugates are administered to a human patient in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous or subcutaneous administration of the antibody is preferred. The administration may be local or systemic.
- The compositions for administration will commonly comprise an agent as described herein (e.g., N-cadherin inhibitors, N-cadherin antibodies and immunoconjugates, N-cadherin siRNA and vectors thereof) dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs.
- Thus, a typical pharmaceutical composition for intravenous administration will vary according to the agent. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in such publications as Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pa. (1980).
- The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that antibodies when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecules with a composition to render them resistant to acidic and enzymatic hydrolysis, or by packaging the molecules in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.
- Pharmaceutical formulations, particularly, of the antibodies and immunoconjugates and inhibitors for use with the present invention can be prepared by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers. Such formulations can be lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations used. Acceptable carriers, excipients or stabilizers can be acetate, phosphate, citrate, and other organic acids; antioxidant (e.g., ascorbic acid) preservatives; low molecular weight polypeptides; proteins, such as serum albumin or gelatin, or hydrophilic polymers such as polyvinylpyllolidone; and amino acids, monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents; and ionic and non-ionic surfactants (e.g., polysorbate); salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants. The antibody can be formulated at a concentration of between 0.5-200 mg/ml, or between 10-50 mg/ml.
- The formulation may also provide additional active compounds, including, chemotherapeutic agents, cytotoxic agents, cytokines, growth inhibitory agent, and anti-hormonal agent. The active ingredients may also prepared as sustained-release preparations (e.g., semi-permeable matrices of solid hydrophobic polymers (e.g., polyesters, hydrogels (for example, poly (2-hydroxyethyl-methacrylate), or poly (vinylalcohol)), polylactides. The antibodies and immunoconjugates may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
- The compositions can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., cancer) in a “therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. A “patient” or “subject” for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human. Other known cancer therapies can be used in combination with the methods of the invention. For example, the compositions for use according to the invention may also be used to target or sensitize a cell to other cancer therapeutic agents such as 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like.
- In other embodiments, the methods of the invention with other cancer therapies (e.g, radical prostatectomy), radiation therapy (external beam or brachytherapy), hormone therapy (e.g., orchiectomy, LHRH-analog therapy to suppress testosterone production, anti-androgen therapy), or chemotherapy. Radical prostatectomy involves removal of the entire prostate gland plus some surrounding tissue. This treatment is used commonly when the cancer is thought not to have spread beyond the tissue. Radiation therapy is commonly used to treat prostate cancer that is still confined to the prostate gland, or has spread to nearby tissue. If the disease is more advanced, radiation may be used to reduce the size of the tumor. Hormone therapy is often used for patients whose prostate cancer has spread beyond the prostate or has recurred. The objective of hormone therapy is to lower levels of the male hormones, androgens and thereby cause the prostate cancer to shrink or grow more slowly. Luteinizing hormone-releasing hormone (LHRH) agonists decrease the production of testosterone. These agents may be injected either monthly or longer. Two such analogs are leuprolide and goserelin. Anti-androgens (e.g., flutamide, bicalutamide, and nilutamide) may also be used. Total androgen blockade refers to the use of anti-androgens in combination with orchiectomy or LHRH analogs, the s combination is called. Chemotherapy is an option for patients whose prostate cancer has spread outside of the prostate gland and for whom hormone therapy has failed. It is not expected to destroy all of the cancer cells, but it may slow tumor growth and reduce pain. Some of the chemotherapy drugs used in treating prostate cancer that has returned or continued to grow and spread after treatment with hormonal therapy include doxorubicin (Adriamycin), estramustine, etoposide, mitoxantrone, vinblastine, and paclitaxel. Two or more drugs are often given together to reduce the likelihood of the cancer cells becoming resistant to chemotherapy. Small cell carcinoma is a rare type of prostate cancer that is more likely to respond to chemotherapy than to hormonal therapy.
- In some embodiments, a “cardioprotectant” is also administered with the N-cadherin antibody, N-cadherin binding inhibitor, or N-cadherin siRNA molecule for use to according to the invention (see, U.S. Pat. No. 6,949,245). A cardioprotectant is a compound or composition which prevents or reduces myocardial dysfunction (i.e. cardiomyopathy and/or congestive heart failure) associated with administration of a drug, such as an anthracycline antibiotic to a patient. The cardioprotectant may, for example, block or reduce a free-radical-mediated cardiotoxic effect and/or prevent or reduce oxidative-stress injury. Examples of cardioprotectants encompassed by the present definition include the iron-chelating agent dexrazoxane (ICRF-187) (Seifert et al. The Annals of Pharmacotherapy 28:1063-1072 (1994)); a lipid-lowering agent and/or anti-oxidant such as probucol (Singal et al. J. Mol. Cell Cardiol. 27:1055-1063 (1995)); amifostine (aminothiol 2-[(3-aminopropyl)amino]ethanethiol-dihydrogen phosphate ester, also called WR-2721, and the dephosphorylated cellular uptake form thereof called WR-1065) and S-3-(3-methylaminopropylamino)propylphosphoro-thioic acid (WR-151327), see Green et al. Cancer Research 54:738-741 (1994); digoxin (Bristow, M. R. In: Bristow M R, ed. Drug-Induced Heart Disease. New York: Elsevier 191-215 (1980)); beta-blockers such as metoprolol (Hjalmarson et al. Drugs 47: Suppl 4:31-9 (1994); and Shaddy et al. Am. Heart J. 129:197-9 (1995)); vitamin E; ascorbic acid (vitamin C); free radical scavengers such as oleanolic acid, ursolic acid and N-acetylcysteine (NAC); spin trapping compounds such as alpha-phenyl-tert-butyl nitrone (PBN); (Paracchini et al., Anticancer Res. 13:1607-1612 (1993)); selenoorganic compounds such as P251 (Elbesen); and the like.
- The combined administrations contemplates coadministration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities.
- Molecules and compounds identified that indirectly or directly modulate the expression and/or function of a N-cadherin protein can be useful in treating cancers that, respectively, express N-cadherin. N-cadherin protein modulators can be administered alone or co-administered in combination with conventional chemotherapy, radiotherapy or immunotherapy as well as currently developed therapeutics.
- Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or
PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions. Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers. Lozenge forms can comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art. - The compound of choice, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be “nebulized”) to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
- Suitable formulations for rectal administration include, for example, suppositories, which consist of the packaged nucleic acid with a suppository base. Suitable suppository bases include natural or synthetic triglycerides or paraffin hydrocarbons. In addition, it is also possible to use gelatin rectal capsules which consist of a combination of the compound of choice with a base, including, for example, liquid triglycerides, polyethylene glycols, and paraffin hydrocarbons.
- Formulations suitable for parenteral administration, such as, for example, by intraarticular (in the joints), intravenous, intramuscular, intratumoral, intradermal, intraperitoneal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally. Parenteral administration, oral administration, and intravenous administration are the preferred methods of administration. The formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials.
- Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. Cells transduced by nucleic acids for ex vivo therapy can also be administered intravenously or parenterally as described above.
- The pharmaceutical preparation is preferably in unit dosage form. In such form the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form. The composition can, if desired, also contain other compatible therapeutic agents.
- Preferred pharmaceutical preparations deliver one or more active N-cadherin protein modulators, optionally in combination with one or more chemotherapeutic agents or immunotherapeutic agents, in a sustained release formulation. Typically, the N-cadherin modulator is administered therapeutically as a sensitizing agent that increases the susceptibility of tumor cells to other cytotoxic cancer therapies, including chemotherapy, radiation therapy, immunotherapy and hormonal therapy.
- In therapeutic use for the treatment of cancer, the N-cadherin modulators or inhibitors utilized in the pharmaceutical method of the invention are administered at the initial dosage of about 0.001 mg/kg to about 1000 mg/kg daily. A daily dose range of about 0.01 mg/kg to about 500 mg/kg, or about 0.1 mg/kg to about 200 mg/kg, or about 1 mg/kg to about 100 mg/kg, or about 10 mg/kg to about 50 mg/kg, can be used. The dosages, however, may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. For example, dosages can be empirically determined considering the type and stage of cancer diagnosed in a particular patient. The dose administered to a patient, in the context of the present invention should be sufficient to effect a beneficial therapeutic response in the patient over time. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular vector, or transduced cell type in a particular patient. Determination of the proper dosage for a particular situation is within the skill of the practitioner. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day, if desired.
- The pharmaceutical preparations (e.g., N-cadherin siRNAs, N-cadherin antibodies, N-cadherin vaccines, N-cadherin inhibitors, and immunoconjugates) for use according to the invention are typically delivered to a mammal, including humans and non-human mammals.
- Non-human mammals treated using the present methods include domesticated animals (i.e., canine, feline, murine, rodentia, and lagomorpha) and agricultural animals (bovine, equine, ovine, porcine).
- The following examples are offered to illustrate, but not limit the claimed invention.
-
FIG. 1 shows recognition of the protein on the surface of prostate cancer cells. -
FIG. 2 shows that clones recognize N-cadherin on the surface of prostate cancer cells. -
FIG. 3 shows that purified monoclonal clones recognize the protein on the cell surface. -
FIG. 4 shows that the monoclonal antibodies 1F12, 1H7 and 2B3 generated by the inventors' group all inhibit the invasiveness of N-cadherin positive cancer cells. GC4 is a control. - PC3 cells were implanted subcutaneously and grown. As shown in
FIG. 5B , when tumors reached palpable stage atday 15, antibodies or control were given twice weekly (200 micrograms) for two weeks. Both 1H7 and EC4 were able to slow growth of the tumors. They also completely blocked metastasis. 5/5 control mice had lymph node metastases, compared with 0/5 and 0/5 1H7 and EC4 treated mice, respectively. In contrast, the 1H7 and EC4 antibodies had no effect on the growth of N-Cadherin null tumors (FIG. 5A ).FIGS. 5C and 5D show clear inhibitory effects of N-Cadherin antibodies on the growth of PC3 tumors, either in treatment of large established tumors (treatment starting on Day 21) or in long term treatment (treatment lasting as long as 62 days). - As shown in
FIG. 6 , the two control tumors are very red, consistent with profound angiogenesis. They are also deeply adherent to and invasive into the local flank musculature. In contrast, the 1H7 and EC4 treated mice have pale, clear tumors that do not invade into local muscle. The tumors peel easily off of the underlying tissues, which demonstrates inhibition of angiogenesis and blockade of local invasion by the anti-N-cadherin antibodies, consistent with the finding that these mice had no metastatic disease. - The inventors have carried out immunohistochemical staining of an androgen
independent LAPC 9 prostate cancer. The result shows that N-cadherin is only expressed by a small subset of cells (FIG. 7A ). - To determine whether N-cadherin can be a target for treatment and diagnosis even though N-cadherin is not overexpressed in the cells or only expressed in a subset of cells, the inventors have studied the tumor growth of androgen dependent and independent LAPC-9 tumors. The androgen dependent and independent LAPC-9 tumors were treated with control PBS or N-cadherin antibodies 1H7 and EC4, respectively. The results show that even though N-cadherin is expressed in only a small subset of the androgen independent cells, that treatment with antibody is sufficient to delay the growth and progression of the androgen independent tumors (
FIG. 7B ). These results suggest that the N-cadherin population of cells is required for androgen independent tumor formation, and that blocking it is sufficient to delay tumor progression. These results are consistent with an interpretation that N-cadherin marks a population of androgen independent stem cells. Blocking growth of the stem cells is enough to block growth of the tumor. These results also show that antibodies may work on cells that express normal or even low levels of N-cadherin. - In order to determine the effects of N-cadherin positive cells on tumor cell growth, N-cadherin positive and negative cells were sorted, yielding a population of cells that were 100% and 0% positive for N-cadherin, respectively. Cells were then injected into castrate mice, and the N-cadherin positive cells formed tumors more quickly and efficiently than the negative population (
FIG. 8 ), suggesting that N-cadherin positive cells either have a growth advantage, or they have stem cell characteristics and are more tumorigenic than the negative population. Unsorted cells grow similar to the N-cadherin positive cells. - FACS analysis of tumors that grew from purely N-cadherin positive and negative cells, vs the control unsorted population. Tumors from 100% N-cad positive cells are only 41.25% positive for N-cadherin (
FIGS. 9 and 10 ), suggesting that these cells give rise to N-cadherin null cells. This is consistent with the hypothesis that N-cadherin positive cells are stem cells that can give rise to more differentiated, N-cadherin negative cells. Meanwhile, the N-cadherin negative population gives rise to tumors that are 9% N-cadherin positive (FIGS. 9 and 10 ), similar to the unsorted cells (FIGS. 9 and 10 ). This suggests that growth of these cells requires that a stem-like population acquire or upregulated N-cadherin in order to form androgen independent tumors. The delay in tumorigenicity is caused by the requirement for N-cadherin to give rise to androgen independent tumors. - As shown in
FIG. 11 , N-Cadherin antibodies 1H7 and EC4 were administered to mice bearing LNCaP-C1 tumors fromDay 45 to Day 56, and their inhibitory effects on tumor growth were apparent by Day 72. - As shown in
FIG. 12A , N-Cadherin antibodies 1H7 and EC4 were administered to mice bearing established LAPC-9 androgen independent tumors (passage 7) at 10 mg/kg twice a week starting onDay 15. The inhibitory effect is apparent byDay 30. The inhibitory effects of 1H7 and EC4 on large established LAPC-9 androgen independent tumors are shown inFIG. 12B , where the animals did not receive antibody treatment untilDay 17. - As shown in
FIG. 13 , growth of PC3 tumors in nude mice was inhibited by the EC4 antibody (administered fromDay 13 to Day 27), with a more prominent inhibitory effect observed in experiments where a higher dose of the antibody was administered. - Because N-Cadherin is widely expressed in a variety of tissues, its potential toxicity is a concern if anti-N-Cadherin antibodies are to be used as therapeutic agents. The present inventors have found that the 1H7 and EC4 antibodies cross-react with murine N-Cadherin but no in vivo toxicity has been observed in either long-term or dose escalation studies in mice.
- As shown in
FIGS. 14A and 14B , N-Cadherin antibodies 1H7 and EC4 effectively inhibited the androgen independent progression of LAPC-9 androgen dependent tumors in castrated mice. In the first study (FIG. 14A ), the antibodies were administered fromDay 0 toDay 31 and the animals were observed for 45 days. In the second study (FIG. 14B ), the effect of long term antibody treatment was observed. 1H7 showed moderate delay in tumor progression, whereas EC4 showed a more prolonged effect in blocking tumor progression. - As shown in
FIG. 15 , N-Cadherin positive LAPC-9 tumors showed growth advantage over N-Cadherin negative LAPC-9 tumors in castrated SCID mice. On the other hand,FIG. 16 illustrates the inversed correlation between N-Cadherin expression level and androgen receptor expression in LAPC-9 androgen independent cells: along with the successive passages, the LAPC-9 cells progressly gained androgen independence while their expression of N-Cadherin increased and their expression of androgen receptor decreased. - All patents, patent applications, and other publications, including GenBank Accession Numbers, cited in this application are incorporated by reference in the entirety for all purposes.
Claims (10)
1-12. (canceled)
13. An antibody or fragment thereof that will specifically bind to domain 4 of N-cadherin, the same antigenic determinant of N-cadherin, in vivo or in vitro, as does the monoclonal antibody produced by the hybridoma cell line deposited at the American Type Culture Collection having ATCC Accession No. PTA-9388, wherein the antibody or fragment thereof comprises (i) a heavy chain comprising an amino acid sequence with at least 90% sequence identity to SEQ ID NO:3, and/or (ii) a light chain comprising an amino acid sequence with at least 90% sequence identity to SEQ ID NO:4.
14. The antibody of claim 13 , wherein the antibody is humanized or fully human.
15. The antibody of claim 13 , wherein the antibody is a diabody or scFv.
16. The antibody of claim 13 , wherein the antibody comprises a heavy chain comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:3.
17. The antibody of claim 13 , wherein the antibody comprises SEQ ID NO:3.
18. The antibody of claim 13 , wherein the antibody comprises a light chain comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:4.
19. The antibody of claim 13 , wherein the antibody comprises SEQ ID NO:4.
20. The antibody of claim 13 , wherein the antibody comprises SEQ ID NO:3 and SEQ ID NO:4.
21-42. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/571,801 US20150175706A1 (en) | 2008-04-04 | 2014-12-16 | Novel Antibodies Against Cancer Target Block Tumor Growth, Angiogenesis and Metastatis |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US4260408P | 2008-04-04 | 2008-04-04 | |
| US11305408P | 2008-11-10 | 2008-11-10 | |
| PCT/US2009/039526 WO2009124281A2 (en) | 2008-04-04 | 2009-04-03 | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis |
| US12/895,661 US20110086029A1 (en) | 2008-04-04 | 2010-09-30 | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis |
| US14/571,801 US20150175706A1 (en) | 2008-04-04 | 2014-12-16 | Novel Antibodies Against Cancer Target Block Tumor Growth, Angiogenesis and Metastatis |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/895,661 Continuation US20110086029A1 (en) | 2008-04-04 | 2010-09-30 | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150175706A1 true US20150175706A1 (en) | 2015-06-25 |
Family
ID=41136122
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/936,189 Expired - Fee Related US9388247B2 (en) | 2008-04-04 | 2009-04-03 | Antibodies against cancer target block tumor growth, angiogenesis and metastatis |
| US12/895,661 Abandoned US20110086029A1 (en) | 2008-04-04 | 2010-09-30 | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis |
| US14/571,801 Abandoned US20150175706A1 (en) | 2008-04-04 | 2014-12-16 | Novel Antibodies Against Cancer Target Block Tumor Growth, Angiogenesis and Metastatis |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/936,189 Expired - Fee Related US9388247B2 (en) | 2008-04-04 | 2009-04-03 | Antibodies against cancer target block tumor growth, angiogenesis and metastatis |
| US12/895,661 Abandoned US20110086029A1 (en) | 2008-04-04 | 2010-09-30 | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis |
Country Status (12)
| Country | Link |
|---|---|
| US (3) | US9388247B2 (en) |
| EP (1) | EP2271362A4 (en) |
| JP (1) | JP2011521619A (en) |
| KR (1) | KR20100132998A (en) |
| AU (1) | AU2009231570A1 (en) |
| BR (1) | BRPI0911152A2 (en) |
| CA (1) | CA2720025A1 (en) |
| CO (1) | CO6331345A2 (en) |
| EA (1) | EA201001603A1 (en) |
| IL (1) | IL208402A0 (en) |
| MX (1) | MX2010010835A (en) |
| WO (1) | WO2009124281A2 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100278821A1 (en) * | 2006-03-21 | 2010-11-04 | The Regents Of The University Of California | N-cadherin: target for cancer diagnosis and therapy |
| US8663635B2 (en) * | 2006-03-21 | 2014-03-04 | The Regents Of The University Of California | N-cadherin: target for cancer diagnosis and therapy |
| EP2390666A1 (en) * | 2006-03-21 | 2011-11-30 | The Regents of The University of California | N-Cadherin as target for cancer diagnosis and therapy |
| AU2009231570A1 (en) * | 2008-04-04 | 2009-10-08 | The Regents Of The University Of California | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis |
| US8703920B2 (en) * | 2008-11-10 | 2014-04-22 | The Regents Of The University Of California | Fully human antibodies against N-cadherin |
| CA2760642A1 (en) | 2009-05-01 | 2010-11-04 | The University Of Tokyo | Anti-cadherin antibody |
| CN104203280A (en) | 2012-03-27 | 2014-12-10 | 诺华股份有限公司 | Treatment of fibrosis |
| US20200165351A1 (en) * | 2017-06-06 | 2020-05-28 | The Regents Of The University Of California | Humanized anti-n-cadherin antibodies and uses thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005061544A2 (en) * | 2003-12-22 | 2005-07-07 | Glaxo Group Limited | Nogo-a neutralising immunoglobulins for treatment of neurological diseases |
| WO2007109347A2 (en) * | 2006-03-21 | 2007-09-27 | The Regents Of The University Of California | N-cadherin and ly6 e: targets for cancer diagnosis and therapy |
| WO2012021841A2 (en) * | 2010-08-12 | 2012-02-16 | Attogen Inc. | Antibody molecules to oncogenic isoforms of fibroblast growth factor receptor-2 and uses thereof |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5889157A (en) * | 1990-10-12 | 1999-03-30 | The United States Of America As Represented By The Department Of Health And Human Services | Humanized B3 antibody fragments, fusion proteins, and uses thereof |
| AU669124B2 (en) * | 1991-09-18 | 1996-05-30 | Kyowa Hakko Kirin Co., Ltd. | Process for producing humanized chimera antibody |
| US6680175B2 (en) * | 1998-05-05 | 2004-01-20 | Adherex Technologies, Inc. | Methods for diagnosing and evaluating cancer |
| US6277824B1 (en) * | 1998-07-10 | 2001-08-21 | Adherex Technologies | Compounds and methods for modulating adhesion molecule function |
| US20030054985A1 (en) | 2000-02-22 | 2003-03-20 | Stuart Aaronson | N-cadherin modulated migration, invasion, and metastasis |
| US20030190602A1 (en) * | 2001-03-12 | 2003-10-09 | Monogen, Inc. | Cell-based detection and differentiation of disease states |
| CA2523716C (en) | 2003-05-31 | 2014-11-25 | Micromet Ag | Human anti-human cd3 binding molecules |
| EP1786463A4 (en) * | 2004-03-26 | 2009-05-20 | Human Genome Sciences Inc | Antibodies against nogo receptor |
| CA2612021A1 (en) * | 2005-06-13 | 2006-12-28 | The Regents Of The University Of Michigan | Compositions and methods for treating and diagnosing cancer |
| US8663635B2 (en) * | 2006-03-21 | 2014-03-04 | The Regents Of The University Of California | N-cadherin: target for cancer diagnosis and therapy |
| US20100278821A1 (en) * | 2006-03-21 | 2010-11-04 | The Regents Of The University Of California | N-cadherin: target for cancer diagnosis and therapy |
| AU2009231570A1 (en) | 2008-04-04 | 2009-10-08 | The Regents Of The University Of California | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis |
| US8703920B2 (en) * | 2008-11-10 | 2014-04-22 | The Regents Of The University Of California | Fully human antibodies against N-cadherin |
-
2009
- 2009-04-03 AU AU2009231570A patent/AU2009231570A1/en not_active Abandoned
- 2009-04-03 KR KR1020107024830A patent/KR20100132998A/en not_active Withdrawn
- 2009-04-03 MX MX2010010835A patent/MX2010010835A/en not_active Application Discontinuation
- 2009-04-03 WO PCT/US2009/039526 patent/WO2009124281A2/en not_active Ceased
- 2009-04-03 US US12/936,189 patent/US9388247B2/en not_active Expired - Fee Related
- 2009-04-03 EA EA201001603A patent/EA201001603A1/en unknown
- 2009-04-03 EP EP09728878A patent/EP2271362A4/en not_active Withdrawn
- 2009-04-03 BR BRPI0911152A patent/BRPI0911152A2/en not_active IP Right Cessation
- 2009-04-03 CA CA2720025A patent/CA2720025A1/en not_active Abandoned
- 2009-04-03 JP JP2011503226A patent/JP2011521619A/en active Pending
-
2010
- 2010-09-30 US US12/895,661 patent/US20110086029A1/en not_active Abandoned
- 2010-10-03 IL IL208402A patent/IL208402A0/en unknown
- 2010-11-03 CO CO10136147A patent/CO6331345A2/en not_active Application Discontinuation
-
2014
- 2014-12-16 US US14/571,801 patent/US20150175706A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005061544A2 (en) * | 2003-12-22 | 2005-07-07 | Glaxo Group Limited | Nogo-a neutralising immunoglobulins for treatment of neurological diseases |
| WO2007109347A2 (en) * | 2006-03-21 | 2007-09-27 | The Regents Of The University Of California | N-cadherin and ly6 e: targets for cancer diagnosis and therapy |
| WO2012021841A2 (en) * | 2010-08-12 | 2012-02-16 | Attogen Inc. | Antibody molecules to oncogenic isoforms of fibroblast growth factor receptor-2 and uses thereof |
Non-Patent Citations (14)
| Title |
|---|
| Caldas et al. (Mol. Immunol. 2003 May; 39 (15): 941-952) * |
| Casset et al. (Biochem. Biophys. Res. Commun. 2003 Jul 18; 307 (1): 198-205). * |
| Chien et al. (Proc. Natl. Acad. Sci. USA. 1989 Jul; 86 (14): 5532-5536) * |
| De Pascalis et al. (J. Immunol. 2002; 169 (6): 3076-3084) * |
| Giusti et al. (Proc. Natl. Acad. Sci. USA. 1987 May; 84 (9): 2926-2930) * |
| Gussow et al. (Methods in Enzymology. 1991; 203: 99-121) * |
| Holm et al. (Mol. Immunol. 2007 Feb; 44 (6): 1075-1084) * |
| MacCallum et al. (J. Mol. Biol. 1996 Oct 11; 262 (5): 732-745) * |
| Mariuzza et al. (Annu. Rev. Biophys. Biophys. Chem. 1987; 16: 139-159) * |
| Rudikoff et al (Proc. Natl. Acad. Sci. USA. 1982; 79: 1979-1983) * |
| Tanaka et al. (Nat. Med. 2010 Dec; 16 (12): 1414-20) * |
| Vajdos et al. (J. Mol. Biol. 2002 Jul 5; 320 (2): 415-428) * |
| Winkler et al. (J. Immunol. 2000 Oct 15; 165 (8): 4505-4514) * |
| Wu et al. (J. Mol. Biol. 1999 Nov 19; 294 (1): 151-162) * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011521619A (en) | 2011-07-28 |
| IL208402A0 (en) | 2010-12-30 |
| US20110086029A1 (en) | 2011-04-14 |
| CA2720025A1 (en) | 2009-10-08 |
| EA201001603A1 (en) | 2011-06-30 |
| KR20100132998A (en) | 2010-12-20 |
| BRPI0911152A2 (en) | 2015-10-06 |
| MX2010010835A (en) | 2011-02-22 |
| WO2009124281A3 (en) | 2009-12-30 |
| US9388247B2 (en) | 2016-07-12 |
| WO2009124281A2 (en) | 2009-10-08 |
| CO6331345A2 (en) | 2011-10-20 |
| EP2271362A2 (en) | 2011-01-12 |
| AU2009231570A1 (en) | 2009-10-08 |
| US20110142838A1 (en) | 2011-06-16 |
| EP2271362A4 (en) | 2011-10-05 |
| WO2009124281A9 (en) | 2010-02-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20150175706A1 (en) | Novel Antibodies Against Cancer Target Block Tumor Growth, Angiogenesis and Metastatis | |
| US8703920B2 (en) | Fully human antibodies against N-cadherin | |
| Kuan et al. | Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme | |
| US9470689B2 (en) | N-cadherin: target for cancer diagnosis and therapy | |
| EP2390666A1 (en) | N-Cadherin as target for cancer diagnosis and therapy | |
| JP2006517911A (en) | Antibodies against GPR64 and methods of use thereof | |
| US20100278821A1 (en) | N-cadherin: target for cancer diagnosis and therapy | |
| CN102164956A (en) | Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis | |
| JP6462632B2 (en) | Antibody to mutant α-actinin-4 | |
| WO2013035208A1 (en) | ANTIBODY AGAINST MUTANT α-ACTININ-4 | |
| JPWO2013035208A1 (en) | Antibody to mutant α-actinin-4 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |