US20150140759A1 - Integrated circuit devices including finfets and methods of forming the same - Google Patents
Integrated circuit devices including finfets and methods of forming the same Download PDFInfo
- Publication number
- US20150140759A1 US20150140759A1 US14/491,044 US201414491044A US2015140759A1 US 20150140759 A1 US20150140759 A1 US 20150140759A1 US 201414491044 A US201414491044 A US 201414491044A US 2015140759 A1 US2015140759 A1 US 2015140759A1
- Authority
- US
- United States
- Prior art keywords
- recess
- forming
- fin
- width
- gate line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
-
- H01L29/66818—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H01L29/1033—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
- H10D30/0245—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET] by further thinning the channel after patterning the channel, e.g. using sacrificial oxidation on fins
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
- H10D30/6211—Fin field-effect transistors [FinFET] having fin-shaped semiconductor bodies integral with the bulk semiconductor substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/797—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/01—Manufacture or treatment
- H10D62/021—Forming source or drain recesses by etching e.g. recessing by etching and then refilling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/257—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are characterised by top-view geometrical layouts, e.g. interdigitated, semi-circular, annular or L-shaped electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0193—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/834—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET] comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/853—Complementary IGFETs, e.g. CMOS comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/011—Manufacture or treatment comprising FinFETs
Definitions
- Present inventive concepts generally relate to the field of electronics, and more particular to integrated circuit devices.
- Integrated circuit devices such as semiconductor devices, have been developed to perform high-speed operation at low voltage. Further, manufacturing processes of integrated circuit devices have been developed to increase integration of the devices.
- Fin field effect transistors that include non-planar channels have been developed to reduce a short channel effect.
- a semiconductor device may include a semiconductor substrate, a fin formed on the semiconductor substrate and a gate line formed in a direction that crosses the fin.
- the device may also include a first recess region, which is formed not to overlap with the gate line in the fin and has a first width as its maximum width, and a second recess region, which is formed not to overlap with the gate line, is formed on a lower portion of the first recess region in the fin and has a second width that may be different from the first width as its maximum width.
- the device may further include a source/drain region formed to fill the first and second recess regions.
- the first width may be wider than the second width.
- the width of the second recess region may become wider as going from a lower portion to an upper portion thereof.
- the width of the first recess region may become wider as going from a lower portion to an upper portion thereof
- corner portions of the first and second recess regions may have curved surfaces.
- the first and second recesses may have a rectangular shape, and the first width may be wider than the second width.
- the first recess region may have a rectangular shape
- the second recess region may have a triangular shape
- the first width and the second width may be equal to each other.
- a method for fabricating a semiconductor device may include forming a fin on a substrate and forming a gate line crossing the fin on the substrate. The method may also include forming a first recess in the fin at a side of the gate line and forming a second recess in the first recess.
- the first recess may have a first width as a maximum width and may not overlap with the gate line.
- the second recess may have a second width as a maximum width that may be different from the first width and may not overlap with the gate line.
- the method may further include forming a source/drain region in the first and second recesses.
- the second width may be less than the first width.
- forming the first and second recesses may include performing respective anisotropic etching processes.
- the method may also include forming a passivation layer on an inner sidewall of the first recess prior to forming the second recess.
- the method may include removing the passivation layer after forming the second recess and prior to forming the source/drain region.
- the passivation layer may include SiN, SiO2, HfO, AlO, TiN, TiO, Cr or AlN.
- forming the first recess may include sequentially performing an anisotropic etching process and an isotropic etching process.
- forming the second recess may include performing an anisotropic etching process.
- a method of forming an integrated circuit device may include forming a fin extending in a first direction on a substrate and forming a gate structure on the fin.
- the gate structure may extend in a second direction that is different from the first direction.
- the method may also include forming a first recess in the fin at a side of the gate structure and forming a second recess in the first recess.
- the first recess may have a first width in the first direction and may have a first depth relative to an upper surface of the fin.
- the second recess may have a second width in the first direction that may be less than the first width and may have a second depth relative to the upper surface of the fin that may be greater than the first depth.
- the method may further include forming a source/drain pattern in the first and second recesses.
- the second depth may be less than a height of the fin relative to an upper surface of the substrate.
- the first depth may be less than the first width.
- the method may also include forming an isolation layer surrounding a first portion of the fin and extending between the substrate and the gate structure.
- the fin may protrude from the substrate in a third direction that is substantially perpendicular to the first direction, and a second portion of the fin that is exposed by the isolation layer may have a thickness in the third direction that may be greater than the first depth.
- the thickness of the second portion of the fin may be greater than the second depth.
- a first horizontal distance between the side of the gate structure and the first recess may be greater than a second horizontal distance between the side of the gate structure and the second recess.
- the second recess may have a variable width decreasing with a depth the second recess.
- the method may include forming a passivation layer on an inner surface of the first recess prior to forming the second recess.
- the passivation layer may include SiN, SiO2, HfO, AlO, TiN, TiO, Cr or AlN.
- forming the first recess may include performing a first anisotropic etching process
- forming the second recess may include performing a second anisotropic etching process
- forming the source/drain pattern in the first and second recesses may include epitaxially growing the source/drain pattern.
- the source/drain pattern may include a stress material.
- FIG. 1 is a perspective view illustrating a finFET.
- FIG. 2 is a cross-sectional view taken along the line A-A′ of FIG. 1 .
- FIGS. 3 and 4 are a perspective view and a cross-sectional view respectively illustrating a defect in a semiconductor device including a finFET.
- FIGS. 5 and 6 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- FIGS. 7 and 8 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- FIGS. 9 and 10 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- FIG. 11 is a circuit diagram of a semiconductor device according to some embodiments of present inventive concepts.
- FIGS. 12 and 13 are layouts of a semiconductor device according to some embodiments of present inventive concepts.
- FIGS. 14 to 17 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- FIGS. 18 to 20 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- FIG. 21 is a block diagram of an electronic system including a semiconductor device according to some embodiments of present inventive concepts.
- FIGS. 22 and 23 are diagrams illustrating electronic devices including a semiconductor device according to some embodiments of present inventive concepts.
- spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- Example embodiments of present inventive concepts will be described herein with reference to perspective views, cross-sectional views and/or plan views that are schematic illustrations of idealized embodiments and intermediate structures of example embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, example embodiments of present inventive concepts should not be construed as limited to the particular shapes illustrated herein but may include deviations in shapes that result, for example, from manufacturing.
- Integrated circuit devices for example, semiconductor devices, and methods of forming those devices according to some embodiments of present inventive concepts may secure a process margin by reducing defects and may thus improve a yield of manufacturing processes of those devices.
- the integrated circuit devices may include a recess having a modified profile at a lower portion thereof.
- the recess may be formed in a fin and a source/drain region may be formed in the recess in subsequent processes.
- a source/drain region formed in a recess which has a “U” shape and is formed in a fin, may contact a gate line when a distance (i.e., proximity) between the gate line and the recess is about 11 nm or less. Accordingly, manufacturing processes may need to secure a distance between the gate line and the recess of about 13 nm or greater.
- a recess may have a modified profile at a lower portion thereof and defects caused by shorts between the gate line and the source/drain region may thus be prevented or reduced even though when a distance between the gate line and the recess is about 13 nm or less.
- FIG. 1 is a perspective view illustrating a finFET
- FIG. 2 is a cross-sectional view taken along the line A-A′ of FIG. 1 .
- a finFET may include a substrate 100 , an isolation layer pattern 200 , a fin 130 , and a gate line 300 .
- the substrate 100 may include semiconductor material.
- the substrate 100 may be a rigid substrate, for example, a silicon substrate, an SOI (Silicon On Insulator) substrate, a gallium arsenide substrate, a silicon germanium substrate, a ceramic substrate, a quartz substrate, or a glass substrate.
- the substrate 100 may be a flexible plastic substrate including, for example, polyimide, polyester, polycarbonate, polyethersulfone, polymethylmethacrylate, polyethylene naphthalate, or polyethyleneterephthalate.
- the isolation layer pattern 200 may be formed on the substrate 100 to define an active region and may be used for device isolation.
- the isolation layer pattern 200 may include an insulating layer, for example, an HDP oxide layer, an SOG oxide layer, or a CVD oxide layer, but the isolation layer pattern 200 is not limited thereto.
- the fin 130 may be formed on the substrate 100 and may protrude from the substrate 100 in a third direction Z1.
- the fin 130 may extend in a second direction Y1 that is substantially perpendicular to the third direction Z1.
- the fin 130 may be a part of the substrate 100 or may include an epitaxial layer that is grown from the substrate 100 using an epitaxial growth process.
- the fin 130 may include semiconductor material.
- the isolation layer pattern 200 may cover an upper surface of the substrate 100 and a side surface of the fin 130 .
- the gate line 300 may cross the fin 130 and may cover a portion of the fin 130 .
- the gate line 300 may extend in a first direction X1.
- the gate line 300 may include an interface layer pattern 310 , a gate insulating layer pattern 320 , a work function adjustment layer pattern 330 and a gate metal pattern 340 , which are sequentially formed on the fin 130 .
- the gate line 300 may also include a gate spacer 350 .
- the interface layer pattern 310 may be formed on the isolation layer pattern 200 and the fin 130 .
- the interface layer pattern 310 may serve to prevent or reduce an inferior interface between the isolation layer pattern 200 and the gate insulating layer pattern 320 .
- the interface layer pattern 310 may include a low-k material layer, which has a dielectric constant k equal to or lower than 9,
- the interface layer pattern 310 may include a silicon oxide layer (dielectric constant k is about 4) or a silicon oxynitride layer (dielectric constant k is in a range of about 4 to about 8 depending on contents of oxygen and nitrogen).
- the interface layer pattern 310 may be made of silicate or may be made of a combination of the above listed layers/materials.
- the gate insulating layer pattern 320 may be formed on the interface layer pattern 310 . In some embodiments, the gate insulating layer pattern 320 may be formed on the isolation layer pattern 200 and the fin 130 without an intervening interface layer pattern 310 .
- the gate insulating layer pattern 320 may include a high-k material.
- the gate insulating layer pattern 320 may include, for example, HfSiON, HFO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , SrTiO 3 , BaTiO 3 , and/or SrTiO 3 .
- the gate insulating layer pattern 320 may be formed to have a proper thickness depending on types of devices.
- the gate insulating layer pattern 320 may be HfO 2 and may have a thickness equal to or less than 50 ⁇ (Angstroms), but not limited thereto.
- the gate insulating layer pattern 320 including HfO 2 may have a thickness in a range of about 5 ⁇ to about 50 ⁇ .
- the work function adjustment layer pattern 330 may be formed on the gate insulating layer pattern 320 .
- the work function adjustment layer pattern 330 may contact the gate insulating layer pattern 320 .
- the work function adjustment layer pattern 330 may be used to provide work function adjustment.
- the work function adjustment layer pattern 330 may include, for example, metal nitride.
- the work function adjustment layer pattern 330 may include Mo, Pd, Ru, Pt, TiN, WN, TaN, Ir, TaC, RuN, TiAl, TaAlC, TiAlN, MoN, or combination thereof.
- the work function adjustment layer pattern 330 may be a TiN layer or a double layer including a lower TiN layer and an upper TaN layer, but the work function adjustment layer pattern 330 is not limited thereto.
- a capping layer may be formed between the gate insulating layer pattern 320 and the work function adjustment layer pattern 330 .
- the capping layer may be used to provide the work function adjustment.
- the capping layer may be used as a buffer between the gate insulating layer pattern 320 and the work function adjustment layer pattern 330 such that work function may be adjusted more precisely in comparison to a case where only the work function adjustment layer pattern 330 is used without the capping layer.
- the capping layer may include, for example, LaO, GdO, DyO, SrO, BaO, aluminum oxide, aluminum metal oxide, or combination thereof, but the capping layer is not limited thereto.
- the gate metal pattern 340 may be formed on the work function adjustment layer pattern 330 .
- the gate metal pattern 340 may contact the work function adjustment layer pattern 330 as illustrated in FIG. 1 .
- the gate metal pattern 340 may be formed in a space defined by the work function adjustment layer pattern 330 .
- the gate metal pattern 340 may fill the space defined by the work function adjustment layer pattern 330 .
- the gate metal pattern 340 may include a conductive material, for example, W or Al, but the gate metal pattern 340 is not limited thereto.
- the gate spacer 350 may be formed on at least one side surface of the gate metal pattern 340 .
- the gate spacer 350 may include a nitride layer, an oxynitride layer, a low-k insulation layer or a combination thereof. It is illustrated that the gate spacer 350 has a curved side surface, but present inventive concepts, are not limited thereto. It will be understood that the shape of the gate spacer 350 may have various shapes. For example, the gate spacer 350 may have an “I” shape or an “L” shape. Further, the gate spacer 350 is illustrated as a single layer, but present inventive concepts are not limited thereto. In some embodiments, the gate spacer 350 may be formed as a multilayer stack.
- FIGS. 3 and 4 are a perspective view and a cross-sectional view respectively illustrating a defect in a semiconductor device including a finFET.
- a semiconductor device including a finFET may have a recess region 361 a formed in the fin 130 and the recess region 361 a may have a “U” shape.
- the gate line 300 may include a lower portion 370 including a material, for example polysilicon, which is not completely removed and thus remains in an area where the fin 130 contacts the gate line 300 .
- the source/drain region 360 a may be formed in the recess region 361 a using an epitaxial growth process and the source/drain region 360 a may have a “U” shape because of a “U” shape of the recess region 361 a . As illustrated in FIG.
- FIGS. 5 and 6 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- a semiconductor device including a finFET may have a recess region 361 b that is formed in the fin 130 and may have a lower portion having a shape modified from a “U” shape.
- the semiconductor device may include a substrate 100 , a fin 130 , a gate line 300 , a first recess region 362 b , a second recess region 363 b , and a source/drain region 360 b .
- the substrate 100 may include semiconductor material.
- the substrate 100 , the fin 130 , and the gate line 330 may be substantially the same as or similar to those discussed with reference to FIGS. 1 and 2 .
- the recess region 361 b may include the first recess region 362 b and the second recess region 363 b .
- the recess region 361 b may be formed using etching processes.
- the first recess region 362 b may be formed in the fin 130 and may not overlap with (e.g., laterally overlap with) the gate line 300 .
- a maximum width of the first recess region 362 b may be a first width W1.
- the second recess region 363 b may be formed not to overlap with the gate line 300 and may be formed at a lower portion of the first recess region 362 b .
- a maximum width of the second recess region 363 b may be a second width W2. It will be understood that a “width” of the first and second recess regions 362 b and 363 b may refer to a width in a direction that the fin 130 extends.
- the first width W1 and the second width W2 may be different. For example, the first width W1 may be greater than the second width W2.
- the first recess region 362 b may be formed using a first etching process and the second recess region 363 b may be formed using a second etching process such that the first recess region 362 b and the second recess region 363 b may thus have different maximum widths.
- the first recess region 362 b and the second recess region 363 b may be formed using an in-situ process. Widths of the first recess region 362 b and the second recess region 363 b may become wider as going from a lower portion to an upper portion thereof.
- Widths of the first recess region 362 b and the second recess region 363 b may decrease with a depth of the recess 361 b .
- the first recess region 362 b and the second recess region 363 b may have curved corner portions.
- the first recess region 362 b and the second recess region 363 b may be formed not to overlap with the gate line 300 and defects caused by shorts between the lower portion of the gate line 370 and the source/drain region 360 b may thus be prevented or reduced.
- the source/drain region 360 b may be formed in the first recess region 362 b and the second recess region 363 b .
- the source/drain region 360 b may fill the first recess region 362 b and the second recess region 363 b .
- the first and second recess regions 362 b and 363 b that are formed not to overlap with the gate line 300 in the fin 130 may effectively prevent or reduce defects caused by shorts between the lower portion of the gate line 370 and the source/drain region 360 b .
- the second recess region 363 b that is formed at the lower portion of the first recess region 362 b may have a width less than the width of the first recess region 362 b , and defects caused by shorts between the lower portion of the gate line 370 and the source/drain region 360 b may thus be prevented or reduced.
- the recess region 361 b may have a paint brush shape (e.g., the shape illustrated in FIG. 6 .)
- the gate line 300 and the recess region 361 b may be spaced apart from each other in a horizontal direction (e.g., a direction substantially parallel to an upper surface of the substrate 100 .)
- a horizontal distance between a side of the gate line 300 and the first recess region 362 b may be greater than a horizontal distance between the side of the gate line 300 and the second recess region 363 c.
- the source/drain region 360 b may be formed in the fill the first recess region 362 b and the second recess region 363 b . In some embodiments, the source/drain region 360 b may be formed to fill the first recess region 362 b and the second recess region 363 b .
- the source/drain region 360 b may be formed by doping source/drain material while growing an epitaxial layer in the first recess region 362 b and the second recess region 363 b using an epitaxial growth process. In some embodiments, the source/drain region 360 b may be formed by injecting the source/drain material using an ion injection process after growing an epitaxial layer in the first recess region 362 b and the second recess region 363 b.
- the source/drain region 360 b may be formed on at least one side of the gate line 300 and may be formed in the fin 130 .
- the source/drain region 360 a and the gate line 300 may be insulated from each other by the gate spacer 350 .
- a silicide layer may be formed on the source/drain region 360 b and a contact may be formed on the silicide layer.
- the silicide layer may be formed between the source/drain region 360 b and the contact and may serve to reduce surface resistance and/or contact resistance.
- the source/drain region 360 b may include a compressive stress material when the gate line 300 is a gate line of a PMOS transistor.
- the compressive stress material may be a material having a lattice constant greater than a lattice constant of a material included in the substrate 100 .
- the substrate may include Si and the compressive stress material may be SiGe.
- the compressive stress material may improve mobility of carriers of a channel region by applying compressive stress to the fin 130 .
- the source/drain region 360 b may include a tensile stress material when the gate line 300 is a gate line of an NMOS transistor.
- the tensile stress material may include a material having a lattice constant equivalent to or less than a lattice constant of a material included in the substrate 100 .
- the substrate 100 may include Si and the source/drain region 360 b may include Si or SiC that has a lattice constant less than a lattice constant of Si.
- FIGS. 7 and 8 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- a semiconductor device including a finFET may include a first recess region 362 c and a second recess region 363 c , and each of the first recess region 362 c and the second recess region 363 c may have a rectangular shape.
- a first width W3 of the first recess region 362 c may be wider than a second width W4 of the second recess region 363 c.
- the first recess region 362 c and the second recess region 363 c may be formed not to overlap with the gate line 300 and defects caused by shorts between the lower portion of the gate line 370 and the source/drain region 360 c may thus be prevented or reduced.
- the second recess region 363 c formed at a lower portion of the first recess region 362 c may have the second width W4 less than the first width W3 of the first recess region 362 c , and defects caused by shorts between the lower portion of the gate line 370 and the source/drain region 360 c may thus be prevented or reduced.
- the recess region 361 c may have a hammer shape (e.g., the shape illustrated in FIG. 8 .)
- FIGS. 9 and 10 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- a semiconductor device including a finFET may have a first recess region 362 d and a second recess region 363 d .
- the first recess region 362 d may have a rectangular shape and the second recess region 363 d may have a triangular shape.
- a first width W5 of the first recess region 362 d may be substantially the same as or similar to a second width W6 of the second recess region 363 d .
- the second recess region 363 d may have a triangular shape and a width of the second recess region 363 d may thus become narrower as going from an upper portion to a lower portion thereof.
- the width of the second recess region 363 d may decrease with a depth of the second recess region 363 d.
- the first recess region 362 d and the second recess region 363 d may be formed not to overlap with the gate line 300 , and defects caused by shorts between the lower portion of the gate line 370 and the source/drain region 360 d may thus be prevented or reduced.
- the second recess region 363 d may be formed at a lower portion of the first recess region 362 d and a width of the second recess region 363 d may become narrower as going from an upper portion to a lower portion thereof. Therefore, defects caused by shorts between the lower portion of the gate line 370 and the source/drain region 360 d may thus be prevented or reduced.
- the recess region 361 d may have a pen point shape (e.g., the shape illustrated in FIG. 10 .)
- FIGS. 11 to 13 A semiconductor device according to some embodiments of present inventive concepts will be described with reference to FIGS. 11 to 13 .
- FIG. 11 is a circuit diagram of a semiconductor device according to some embodiments of present inventive concepts.
- FIGS. 12 and 13 are layouts of a semiconductor device according to some embodiments of present inventive concepts. Semiconductor devices according to some embodiments of present inventive concepts may be applied to all apparatuses including general logic devices and FIGS. 11 , 12 and 13 illustrate a Static random-access memory (SRAM) as an example.
- SRAM Static random-access memory
- a semiconductor device may include a pair of inverters INV 1 and INV 2 connected in parallel between a power supply node Vcc and a ground node Vss.
- a first path transistor PS 1 and a second pass transistor PS 2 may be connected to output nodes of the respective inverters INV 1 and INV 2 .
- the first pass transistor PS 1 and the second pass transistor PS 2 may be connected to a bit line BL and a complementary bit line /BL, respectively.
- Gates of the first pass transistor PS 1 and the second pass transistor PS 2 may be connected to a word line WL.
- the first inverter INV 1 may include a first pull-up transistor PU 1 and a first pull-down transistor PD 1 , which are connected in series
- the second inverter INV 2 may include a second pull-up transistor PU 2 and a second pull-down transistor PD 2 .
- Each of the first pull-up transistor PU 1 and the second pull-up transistor PU 2 may be a PMOS transistor
- each of the first pull-down transistor PD 1 and the second pull-down transistor PD 2 may be a NMOS transistor.
- the first inverter INV 1 and the second inverter INV 2 may constitute one latch circuit in a manner that an input node of the first inverter INV 1 is connected to an output node of the second inverter INV 2 , and an input node of the second inverter INV 2 is connected to an output node of the first inverter INV 1 .
- a first fin 410 , a second fin 420 , a third fin 430 , and a fourth fin 440 which are spaced apart from one another, may be formed to extend in a first direction, for example, a vertical direction of FIG. 12 .
- lengths of the second fin 420 and the third fin 430 in the first direction may be shorter than lengths of the first fin 410 and the fourth fin 440 in the first direction.
- a first gate line 351 , a second gate line 352 , a third gate line 353 , and a fourth gate line 354 may extend in a second direction, for example, a horizontal direction of FIG. 12 , and may be formed to cross the first through fourth fins 410 , 420 , 430 and 440 .
- the first gate line 351 may be formed to entirely overlap with the first fin 410 and the second fin 420 in the first direction and may be formed to partially overlap with the third fin 430 in the first direction. Stated in other words, the first gate line 351 may overlap with only an edge portion of the third fin 430 .
- the third gate line 353 may be formed to entirely overlap with the fourth fin 440 and the third fin 430 in the first direction and may be formed to partially overlap with the second fin 420 in the first direction.
- the third gate line 353 may overlap with only an edge portion of the second fin 420 .
- the second gate line 352 and the fourth gate line 354 may be formed to entirely overlap with the respective first fin 410 and fourth fin 440 in the first direction.
- the first pull-up transistor PU 1 may be defined around a region where the first gate line 351 and the second fin 420 cross each other
- the first pull-down transistor PD 1 may be defined around a region where the first gate line 351 and the first fin 410 cross each other
- the first pass transistor PS 1 may be defined around a region where the second gate line 352 and the first fin 410 cross each other.
- the second pull-up transistor PU 2 may be defined around a region where the third gate line 353 and the third fin 430 cross each other, the second pull-down transistor PD 2 may be defined around a region where the third gate line 353 and the fourth fin 440 cross each other, and the second pass transistor PS 2 may be defined around a region where the fourth gate line 354 and the fourth fin 440 cross each other.
- recess regions may be formed on sides of the first to fourth gate lines 351 to 354 in the respective first to fourth fins 410 to 440 , and source/drain regions may be formed in the respective recess regions. Further, contacts 450 may be formed.
- a shared contact 461 connecting the second fin 420 , the third gate line 353 , and a wiring 471 and a shared contact 462 connecting the third fin 430 , the first gate line 351 , and a wiring 472 may be formed.
- Each of the first pull-up transistor PU 1 , the first pull-down transistor PD 1 , the first pass transistor PS 1 , the second pull-up transistor PU 2 , the second pull-down transistor PD 2 , and the second pass transistor PS 2 may include a finFET according to some embodiments of present inventive concepts.
- FIGS. 14 to 17 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- a fin 130 may be formed on a substrate 100 .
- the substrate 100 may include semiconductor material.
- Gate lines 300 a and 300 b may be formed on the substrate 100 and may cross the fin 130 .
- the gate line 300 a may include an interface layer pattern 310 a , a gate insulating layer pattern 320 a , a work function adjustment layer pattern 330 a and a gate metal pattern 340 a , which are sequentially formed on the fin 130 .
- the gate line 300 a may also include a gate spacer 350 a .
- the gate line 300 b may include an interface layer pattern 310 b , a gate insulating layer pattern 320 b , a work function adjustment layer pattern 330 b , a gate metal pattern 340 b and a gate spacer 350 b.
- a first recess region 362 which has a first width W1 as a maximum width, may be formed in the fin 130 and may be formed not to overlap with the gate lines 300 a and 300 b .
- the first recess region 362 may be formed using an anisotropic etching process.
- the first recess region 362 may have a depth that is less than a width of the first recess region 362 .
- a passivation layer 400 may be deposited on the substrate 100 and may cover an inner surface of the first recess region 362 .
- the passivation layer 400 may serve to protect a side wall of the first recess region 362 when a second recess region 363 is formed through subsequent processes.
- the passivation layer 400 may include SiN, SiO 2 , HfO, AlO, TiN, TiO, Cr, or AlN.
- the second recess region 363 which has a second width W2 as a maximum width, may be formed at a lower portion of the first recess region 362 in the fin 130 and may be formed not to overlap with the gate lines 300 a and 300 b .
- the second width W2 may be less than the first width W1.
- the second recess region 363 may be formed using an anisotropic etching process.
- the second recess region 363 may have a depth that is greater than a width of the second recess region 363 .
- the passivation layer 400 may be removed and a recess region 361 including a lower portion that has a modified profile may be formed.
- FIG. 17 illustrates the recess region 361 having a paint brush shape, but not limited thereto.
- the recess region 361 may have various shapes.
- the recess region 361 may have a hammer shape (e.g., the shape illustrated in FIG. 8 ) or a pen point shape (e.g., the shape illustrated in FIG. 10 ),
- a source/drain region may be formed in the recess region 361 .
- the source/drain region may be formed to fill the recess region 361 .
- the source/drain region may be formed by doping source/drain material while growing an epitaxial layer in the first recess region 362 and the second recess region 363 using an epitaxial growth process.
- the source/drain region may be formed by injecting/implanting the source/drain material using an ion injection/implant process after growing an epitaxial layer.
- FIGS. 18 to 20 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts.
- a first recess region 362 may be formed performing an isotropic etching process after an anisotropic etching process (e.g., the process illustrated in FIG. 14 ) is performed.
- the first recess region 362 may be preliminarily formed to have a depth that is less than a width of the first recess region 362 using an anisotropic etching process, and then the recess region 362 may be formed to have an elliptical shape using an isotropic etching process.
- a passivation layer 500 may be deposited to cover the interior of the first recess region 362 .
- the passivation layer 500 may serve to protect a sidewall of the first recess region 362 when a second recess region 363 is formed in subsequent processes.
- the passivation layer 500 may include SiN, SiO2, HfO, AlO, TiN, TiO, Cr, or AlN.
- the second recess region 363 may be formed using an anisotropic etching process.
- the passivation layer 500 may be removed after forming the second recess region 363 .
- the source/drain region may be formed in the recess region 361 .
- the source/drain region may fill the recess region 361 .
- methods according to some embodiments of present inventive concepts may further include forming mask layers and/or mask patterns.
- a mask pattern may be formed on the passivation layer 400 to cover the gate lines 300 a and 300 b , an upper surface of the fin 130 and side portions of the first recess region 362 before forming the second recess so that only central portion of the first recess region 362 are exposed through the mask pattern when forming the second recess region 363 of FIG. 16 .
- FIG. 21 is a block diagram of an electronic system including a semiconductor device according to some embodiments of present inventive concepts.
- an electronic system 1100 may include a controller 1110 , an input/output (I/O) device 1120 , a memory 1130 , an interface 1140 , and a bus 1150 .
- the controller 1110 , the I/O device 1120 , the memory 1130 , and/or the interface 1140 may be coupled to one another through the bus 1150 .
- the bus 1150 may correspond to paths through which data is transferred.
- the controller 1110 may include at least one of a microprocessor, a digital signal processor, a microcontroller, and logic elements that can perform similar functions.
- the I/O device 1120 may include a keypad, a keyboard and/or a display device.
- the memory 1130 may store data and/or commands.
- the interface 1140 may function to transfer data to a communication network or receive data from the communication network.
- the interface 1140 may be of a wired or wireless type.
- the interface 1140 may include an antenna and/or a wire or wireless transceiver.
- the electronic system 1100 may further include a high-speed DRAM and/or SRAM as an operating memory to improve operation of the controller 1110 .
- the memory 1130 , the controller 1110 and/or the I/O device 1120 may include finFETs according to some embodiments of present inventive concepts.
- the electronic system 1100 may be applied to a PDA (Personal Digital Assistant), a portable computer, a web tablet, a wireless phone, a mobile phone, a digital music player, a memory card, or all electronic devices that can transmit and/or receive information in wireless environments.
- PDA Personal Digital Assistant
- portable computer a portable computer
- web tablet a wireless phone
- mobile phone a mobile phone
- digital music player a digital music player
- memory card or all electronic devices that can transmit and/or receive information in wireless environments.
- FIGS. 22 and 23 are diagrams illustrating electronic devices including a semiconductor device according to some embodiments of present inventive concepts.
- FIG. 22 illustrates a tablet PC
- FIG. 23 illustrates a notebook PC.
- the tablet PC and/or the notebook PC may include semiconductor devices according to some embodiments of present inventive concepts.
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
- This U.S. non-provisional application claims priority under 35 U.S.C. §119 to Korean Patent Application No. 10-2013-0142211, filed on Nov. 21, 2013, in the Korean Intellectual Property Office, the disclosure of which is hereby incorporated by reference herein in its entirety.
- Present inventive concepts generally relate to the field of electronics, and more particular to integrated circuit devices.
- Integrated circuit devices, such as semiconductor devices, have been developed to perform high-speed operation at low voltage. Further, manufacturing processes of integrated circuit devices have been developed to increase integration of the devices.
- Manufacturing processes that increase integration of integrated circuit devices including field effect transistors (FETs), however, may cause a short channel effect. Fin field effect transistors (finFETs) that include non-planar channels have been developed to reduce a short channel effect.
- A semiconductor device may include a semiconductor substrate, a fin formed on the semiconductor substrate and a gate line formed in a direction that crosses the fin. The device may also include a first recess region, which is formed not to overlap with the gate line in the fin and has a first width as its maximum width, and a second recess region, which is formed not to overlap with the gate line, is formed on a lower portion of the first recess region in the fin and has a second width that may be different from the first width as its maximum width. The device may further include a source/drain region formed to fill the first and second recess regions.
- According to various embodiments, the first width may be wider than the second width.
- According to various embodiments, the width of the second recess region may become wider as going from a lower portion to an upper portion thereof.
- In various embodiments, the width of the first recess region may become wider as going from a lower portion to an upper portion thereof
- According to various embodiments, corner portions of the first and second recess regions may have curved surfaces.
- In various embodiments, the first and second recesses may have a rectangular shape, and the first width may be wider than the second width.
- In various embodiments, the first recess region may have a rectangular shape, the second recess region may have a triangular shape, and the first width and the second width may be equal to each other.
- A method for fabricating a semiconductor device may include forming a fin on a substrate and forming a gate line crossing the fin on the substrate. The method may also include forming a first recess in the fin at a side of the gate line and forming a second recess in the first recess. The first recess may have a first width as a maximum width and may not overlap with the gate line. The second recess may have a second width as a maximum width that may be different from the first width and may not overlap with the gate line. The method may further include forming a source/drain region in the first and second recesses.
- In various embodiments, the second width may be less than the first width.
- According to various embodiments, forming the first and second recesses may include performing respective anisotropic etching processes.
- According to various embodiments, the method may also include forming a passivation layer on an inner sidewall of the first recess prior to forming the second recess.
- In various embodiments, the method may include removing the passivation layer after forming the second recess and prior to forming the source/drain region.
- In various embodiments, the passivation layer may include SiN, SiO2, HfO, AlO, TiN, TiO, Cr or AlN.
- According to various embodiments, forming the first recess may include sequentially performing an anisotropic etching process and an isotropic etching process.
- In various embodiments, forming the second recess may include performing an anisotropic etching process.
- A method of forming an integrated circuit device may include forming a fin extending in a first direction on a substrate and forming a gate structure on the fin. The gate structure may extend in a second direction that is different from the first direction. The method may also include forming a first recess in the fin at a side of the gate structure and forming a second recess in the first recess. The first recess may have a first width in the first direction and may have a first depth relative to an upper surface of the fin. The second recess may have a second width in the first direction that may be less than the first width and may have a second depth relative to the upper surface of the fin that may be greater than the first depth. The method may further include forming a source/drain pattern in the first and second recesses.
- According to various embodiments, the second depth may be less than a height of the fin relative to an upper surface of the substrate.
- In various embodiments, the first depth may be less than the first width.
- According to various embodiments, the method may also include forming an isolation layer surrounding a first portion of the fin and extending between the substrate and the gate structure. The fin may protrude from the substrate in a third direction that is substantially perpendicular to the first direction, and a second portion of the fin that is exposed by the isolation layer may have a thickness in the third direction that may be greater than the first depth.
- In various embodiments, the thickness of the second portion of the fin may be greater than the second depth.
- In various embodiments, a first horizontal distance between the side of the gate structure and the first recess may be greater than a second horizontal distance between the side of the gate structure and the second recess.
- According to various embodiments, the second recess may have a variable width decreasing with a depth the second recess.
- In various embodiments, the method may include forming a passivation layer on an inner surface of the first recess prior to forming the second recess.
- According to various embodiments, the passivation layer may include SiN, SiO2, HfO, AlO, TiN, TiO, Cr or AlN.
- According to various embodiments, forming the first recess may include performing a first anisotropic etching process, and forming the second recess may include performing a second anisotropic etching process.
- According to various embodiments, forming the source/drain pattern in the first and second recesses may include epitaxially growing the source/drain pattern.
- In various embodiments, the source/drain pattern may include a stress material.
-
FIG. 1 is a perspective view illustrating a finFET. -
FIG. 2 is a cross-sectional view taken along the line A-A′ ofFIG. 1 . -
FIGS. 3 and 4 are a perspective view and a cross-sectional view respectively illustrating a defect in a semiconductor device including a finFET. -
FIGS. 5 and 6 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts. -
FIGS. 7 and 8 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts. -
FIGS. 9 and 10 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts. -
FIG. 11 is a circuit diagram of a semiconductor device according to some embodiments of present inventive concepts. -
FIGS. 12 and 13 are layouts of a semiconductor device according to some embodiments of present inventive concepts. -
FIGS. 14 to 17 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts. -
FIGS. 18 to 20 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts. -
FIG. 21 is a block diagram of an electronic system including a semiconductor device according to some embodiments of present inventive concepts. -
FIGS. 22 and 23 are diagrams illustrating electronic devices including a semiconductor device according to some embodiments of present inventive concepts. - Example embodiments will be described with reference to the accompanying drawings. Many different forms and embodiments are possible without deviating from the spirit and teachings of this disclosure and so the disclosure should not be construed as limited to the example embodiments set forth herein, Rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of the disclosure to those skilled in the art. Like reference numbers refer to like elements throughout. In the drawings, the sizes and relative sizes of layers and regions may be exaggerated for clarity.
- It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element, or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.
- Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the embodiments. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprising,” “having,” “including,” and “containing,” when used in this specification, specify the presence of the stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
- Unless otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be understood that all terms used herein are intended merely to better illuminate present inventive concepts and are not a limitation on the scope of present inventive concepts. Further, It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and this specification and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
- Example embodiments of present inventive concepts will be described herein with reference to perspective views, cross-sectional views and/or plan views that are schematic illustrations of idealized embodiments and intermediate structures of example embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, example embodiments of present inventive concepts should not be construed as limited to the particular shapes illustrated herein but may include deviations in shapes that result, for example, from manufacturing.
- It will be understood that although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Thus, a first element could be termed a second element without departing from the teachings of present inventive concepts.
- Integrated circuit devices, for example, semiconductor devices, and methods of forming those devices according to some embodiments of present inventive concepts may secure a process margin by reducing defects and may thus improve a yield of manufacturing processes of those devices. Specifically, the integrated circuit devices may include a recess having a modified profile at a lower portion thereof. The recess may be formed in a fin and a source/drain region may be formed in the recess in subsequent processes.
- As appreciated by the present inventors, a source/drain region formed in a recess, which has a “U” shape and is formed in a fin, may contact a gate line when a distance (i.e., proximity) between the gate line and the recess is about 11 nm or less. Accordingly, manufacturing processes may need to secure a distance between the gate line and the recess of about 13 nm or greater. In integrated circuit devices according to some embodiments of present inventive concepts, a recess may have a modified profile at a lower portion thereof and defects caused by shorts between the gate line and the source/drain region may thus be prevented or reduced even though when a distance between the gate line and the recess is about 13 nm or less.
-
FIG. 1 is a perspective view illustrating a finFET, andFIG. 2 is a cross-sectional view taken along the line A-A′ ofFIG. 1 . - Referring to
FIGS. 1 and 2 , a finFET may include asubstrate 100, anisolation layer pattern 200, afin 130, and agate line 300. - The
substrate 100 may include semiconductor material. Thesubstrate 100 may be a rigid substrate, for example, a silicon substrate, an SOI (Silicon On Insulator) substrate, a gallium arsenide substrate, a silicon germanium substrate, a ceramic substrate, a quartz substrate, or a glass substrate. In some embodiments, thesubstrate 100 may be a flexible plastic substrate including, for example, polyimide, polyester, polycarbonate, polyethersulfone, polymethylmethacrylate, polyethylene naphthalate, or polyethyleneterephthalate. - The
isolation layer pattern 200 may be formed on thesubstrate 100 to define an active region and may be used for device isolation. Theisolation layer pattern 200 may include an insulating layer, for example, an HDP oxide layer, an SOG oxide layer, or a CVD oxide layer, but theisolation layer pattern 200 is not limited thereto. - The
fin 130 may be formed on thesubstrate 100 and may protrude from thesubstrate 100 in a third direction Z1. Thefin 130 may extend in a second direction Y1 that is substantially perpendicular to the third direction Z1. Thefin 130 may be a part of thesubstrate 100 or may include an epitaxial layer that is grown from thesubstrate 100 using an epitaxial growth process. Thefin 130 may include semiconductor material. Theisolation layer pattern 200 may cover an upper surface of thesubstrate 100 and a side surface of thefin 130. - The
gate line 300 may cross thefin 130 and may cover a portion of thefin 130. Thegate line 300 may extend in a first direction X1. Thegate line 300 may include aninterface layer pattern 310, a gate insulatinglayer pattern 320, a work functionadjustment layer pattern 330 and agate metal pattern 340, which are sequentially formed on thefin 130. Thegate line 300 may also include agate spacer 350. - The
interface layer pattern 310 may be formed on theisolation layer pattern 200 and thefin 130. Theinterface layer pattern 310 may serve to prevent or reduce an inferior interface between theisolation layer pattern 200 and the gate insulatinglayer pattern 320. Theinterface layer pattern 310 may include a low-k material layer, which has a dielectric constant k equal to or lower than 9, For example, theinterface layer pattern 310 may include a silicon oxide layer (dielectric constant k is about 4) or a silicon oxynitride layer (dielectric constant k is in a range of about 4 to about 8 depending on contents of oxygen and nitrogen). In some embodiments, theinterface layer pattern 310 may be made of silicate or may be made of a combination of the above listed layers/materials. - The gate insulating
layer pattern 320 may be formed on theinterface layer pattern 310. In some embodiments, the gate insulatinglayer pattern 320 may be formed on theisolation layer pattern 200 and thefin 130 without an interveninginterface layer pattern 310. The gate insulatinglayer pattern 320 may include a high-k material. The gate insulatinglayer pattern 320 may include, for example, HfSiON, HFO2, ZrO2, Ta2O5, TiO2, SrTiO3, BaTiO3, and/or SrTiO3. The gate insulatinglayer pattern 320 may be formed to have a proper thickness depending on types of devices. In some embodiments, the gate insulatinglayer pattern 320 may be HfO2 and may have a thickness equal to or less than 50 Å (Angstroms), but not limited thereto. For example, the gate insulatinglayer pattern 320 including HfO2 may have a thickness in a range of about 5 Å to about 50 Å. - The work function
adjustment layer pattern 330 may be formed on the gate insulatinglayer pattern 320. The work functionadjustment layer pattern 330 may contact the gate insulatinglayer pattern 320. The work functionadjustment layer pattern 330 may be used to provide work function adjustment. The work functionadjustment layer pattern 330 may include, for example, metal nitride. For example, the work functionadjustment layer pattern 330 may include Mo, Pd, Ru, Pt, TiN, WN, TaN, Ir, TaC, RuN, TiAl, TaAlC, TiAlN, MoN, or combination thereof. In some embodiments, the work functionadjustment layer pattern 330 may be a TiN layer or a double layer including a lower TiN layer and an upper TaN layer, but the work functionadjustment layer pattern 330 is not limited thereto. - A capping layer may be formed between the gate insulating
layer pattern 320 and the work functionadjustment layer pattern 330. The capping layer may be used to provide the work function adjustment. Specifically, the capping layer may be used as a buffer between the gate insulatinglayer pattern 320 and the work functionadjustment layer pattern 330 such that work function may be adjusted more precisely in comparison to a case where only the work functionadjustment layer pattern 330 is used without the capping layer. The capping layer may include, for example, LaO, GdO, DyO, SrO, BaO, aluminum oxide, aluminum metal oxide, or combination thereof, but the capping layer is not limited thereto. - The
gate metal pattern 340 may be formed on the work functionadjustment layer pattern 330. Thegate metal pattern 340 may contact the work functionadjustment layer pattern 330 as illustrated inFIG. 1 . Thegate metal pattern 340 may be formed in a space defined by the work functionadjustment layer pattern 330. In some embodiments, thegate metal pattern 340 may fill the space defined by the work functionadjustment layer pattern 330. Thegate metal pattern 340 may include a conductive material, for example, W or Al, but thegate metal pattern 340 is not limited thereto. - The
gate spacer 350 may be formed on at least one side surface of thegate metal pattern 340. Thegate spacer 350 may include a nitride layer, an oxynitride layer, a low-k insulation layer or a combination thereof. It is illustrated that thegate spacer 350 has a curved side surface, but present inventive concepts, are not limited thereto. It will be understood that the shape of thegate spacer 350 may have various shapes. For example, thegate spacer 350 may have an “I” shape or an “L” shape. Further, thegate spacer 350 is illustrated as a single layer, but present inventive concepts are not limited thereto. In some embodiments, thegate spacer 350 may be formed as a multilayer stack. -
FIGS. 3 and 4 are a perspective view and a cross-sectional view respectively illustrating a defect in a semiconductor device including a finFET. - Referring to
FIGS. 3 and 4 , a semiconductor device including a finFET may have arecess region 361 a formed in thefin 130 and therecess region 361 a may have a “U” shape. As appreciated by the present inventors, thegate line 300 may include alower portion 370 including a material, for example polysilicon, which is not completely removed and thus remains in an area where thefin 130 contacts thegate line 300. The source/drain region 360 a may be formed in therecess region 361 a using an epitaxial growth process and the source/drain region 360 a may have a “U” shape because of a “U” shape of therecess region 361 a. As illustrated inFIG. 3 , there may be shorts between the lower portion of thegate line 370 and a lower portion of the source/drain region 360 a and may thus cause defects. It will be understood that when a distance between thegate line 300 and the source/drain region 360 a is equal to or less than 13 nm, those defects may limit increase in integration of the semiconductor device. -
FIGS. 5 and 6 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts. - Referring to
FIGS. 5 and 6 , a semiconductor device including a finFET may have arecess region 361 b that is formed in thefin 130 and may have a lower portion having a shape modified from a “U” shape. The semiconductor device may include asubstrate 100, afin 130, agate line 300, afirst recess region 362 b, asecond recess region 363 b, and a source/drain region 360 b. Thesubstrate 100 may include semiconductor material. - The
substrate 100, thefin 130, and thegate line 330 may be substantially the same as or similar to those discussed with reference toFIGS. 1 and 2 . Therecess region 361 b may include thefirst recess region 362 b and thesecond recess region 363 b. Therecess region 361 b may be formed using etching processes. - The
first recess region 362 b may be formed in thefin 130 and may not overlap with (e.g., laterally overlap with) thegate line 300. A maximum width of thefirst recess region 362 b may be a first width W1. Thesecond recess region 363 b may be formed not to overlap with thegate line 300 and may be formed at a lower portion of thefirst recess region 362 b. A maximum width of thesecond recess region 363 b may be a second width W2. It will be understood that a “width” of the first and 362 b and 363 b may refer to a width in a direction that thesecond recess regions fin 130 extends. The first width W1 and the second width W2 may be different. For example, the first width W1 may be greater than the second width W2. - In some embodiments, the
first recess region 362 b may be formed using a first etching process and thesecond recess region 363 b may be formed using a second etching process such that thefirst recess region 362 b and thesecond recess region 363 b may thus have different maximum widths. In some embodiments, thefirst recess region 362 b and thesecond recess region 363 b may be formed using an in-situ process. Widths of thefirst recess region 362 b and thesecond recess region 363 b may become wider as going from a lower portion to an upper portion thereof. Widths of thefirst recess region 362 b and thesecond recess region 363 b may decrease with a depth of therecess 361 b. Thefirst recess region 362 b and thesecond recess region 363 b may have curved corner portions. - The
first recess region 362 b and thesecond recess region 363 b may be formed not to overlap with thegate line 300 and defects caused by shorts between the lower portion of thegate line 370 and the source/drain region 360 b may thus be prevented or reduced. Specifically, the source/drain region 360 b may be formed in thefirst recess region 362 b and thesecond recess region 363 b. In some embodiments, the source/drain region 360 b may fill thefirst recess region 362 b and thesecond recess region 363 b. Therefore, the first and 362 b and 363 b that are formed not to overlap with thesecond recess regions gate line 300 in thefin 130 may effectively prevent or reduce defects caused by shorts between the lower portion of thegate line 370 and the source/drain region 360 b. Further, thesecond recess region 363 b that is formed at the lower portion of thefirst recess region 362 b may have a width less than the width of thefirst recess region 362 b, and defects caused by shorts between the lower portion of thegate line 370 and the source/drain region 360 b may thus be prevented or reduced. In some embodiments, therecess region 361 b may have a paint brush shape (e.g., the shape illustrated inFIG. 6 .) - Referring to
FIG. 6 , thegate line 300 and therecess region 361 b may be spaced apart from each other in a horizontal direction (e.g., a direction substantially parallel to an upper surface of thesubstrate 100.) A horizontal distance between a side of thegate line 300 and thefirst recess region 362 b may be greater than a horizontal distance between the side of thegate line 300 and thesecond recess region 363 c. - The source/
drain region 360 b may be formed in the fill thefirst recess region 362 b and thesecond recess region 363 b. In some embodiments, the source/drain region 360 b may be formed to fill thefirst recess region 362 b and thesecond recess region 363 b. The source/drain region 360 b may be formed by doping source/drain material while growing an epitaxial layer in thefirst recess region 362 b and thesecond recess region 363 b using an epitaxial growth process. In some embodiments, the source/drain region 360 b may be formed by injecting the source/drain material using an ion injection process after growing an epitaxial layer in thefirst recess region 362 b and thesecond recess region 363 b. - The source/
drain region 360 b may be formed on at least one side of thegate line 300 and may be formed in thefin 130. The source/drain region 360 a and thegate line 300 may be insulated from each other by thegate spacer 350. In some embodiments, a silicide layer may be formed on the source/drain region 360 b and a contact may be formed on the silicide layer. The silicide layer may be formed between the source/drain region 360 b and the contact and may serve to reduce surface resistance and/or contact resistance. - The source/
drain region 360 b may include a compressive stress material when thegate line 300 is a gate line of a PMOS transistor. The compressive stress material may be a material having a lattice constant greater than a lattice constant of a material included in thesubstrate 100. For example, the substrate may include Si and the compressive stress material may be SiGe. The compressive stress material may improve mobility of carriers of a channel region by applying compressive stress to thefin 130. The source/drain region 360 b may include a tensile stress material when thegate line 300 is a gate line of an NMOS transistor. The tensile stress material may include a material having a lattice constant equivalent to or less than a lattice constant of a material included in thesubstrate 100. For example, thesubstrate 100 may include Si and the source/drain region 360 b may include Si or SiC that has a lattice constant less than a lattice constant of Si. -
FIGS. 7 and 8 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts. - Referring to
FIGS. 7 and 8 , a semiconductor device including a finFET may include afirst recess region 362 c and asecond recess region 363 c, and each of thefirst recess region 362 c and thesecond recess region 363 c may have a rectangular shape. A first width W3 of thefirst recess region 362 c may be wider than a second width W4 of thesecond recess region 363 c. - The
first recess region 362 c and thesecond recess region 363 c may be formed not to overlap with thegate line 300 and defects caused by shorts between the lower portion of thegate line 370 and the source/drain region 360 c may thus be prevented or reduced. Thesecond recess region 363 c formed at a lower portion of thefirst recess region 362 c may have the second width W4 less than the first width W3 of thefirst recess region 362 c, and defects caused by shorts between the lower portion of thegate line 370 and the source/drain region 360 c may thus be prevented or reduced. In some embodiments, therecess region 361 c may have a hammer shape (e.g., the shape illustrated inFIG. 8 .) -
FIGS. 9 and 10 are a perspective view and a cross-sectional view respectively illustrating a semiconductor device including a finFET according to some embodiments of present inventive concepts. - Referring to
FIGS. 9 and 10 , a semiconductor device including a finFET may have afirst recess region 362 d and asecond recess region 363 d. Thefirst recess region 362 d may have a rectangular shape and thesecond recess region 363 d may have a triangular shape. A first width W5 of thefirst recess region 362 d may be substantially the same as or similar to a second width W6 of thesecond recess region 363 d. Thesecond recess region 363 d may have a triangular shape and a width of thesecond recess region 363 d may thus become narrower as going from an upper portion to a lower portion thereof. The width of thesecond recess region 363 d may decrease with a depth of thesecond recess region 363 d. - The
first recess region 362 d and thesecond recess region 363 d may be formed not to overlap with thegate line 300, and defects caused by shorts between the lower portion of thegate line 370 and the source/drain region 360 d may thus be prevented or reduced. Further, thesecond recess region 363 d may be formed at a lower portion of thefirst recess region 362 d and a width of thesecond recess region 363 d may become narrower as going from an upper portion to a lower portion thereof. Therefore, defects caused by shorts between the lower portion of thegate line 370 and the source/drain region 360 d may thus be prevented or reduced. In some embodiments, therecess region 361 d may have a pen point shape (e.g., the shape illustrated inFIG. 10 .) - A semiconductor device according to some embodiments of present inventive concepts will be described with reference to
FIGS. 11 to 13 . -
FIG. 11 is a circuit diagram of a semiconductor device according to some embodiments of present inventive concepts.FIGS. 12 and 13 are layouts of a semiconductor device according to some embodiments of present inventive concepts. Semiconductor devices according to some embodiments of present inventive concepts may be applied to all apparatuses including general logic devices andFIGS. 11 , 12 and 13 illustrate a Static random-access memory (SRAM) as an example. - Referring to
FIG. 11 , a semiconductor device according to some embodiments of present inventive concepts may include a pair of inverters INV1 and INV2 connected in parallel between a power supply node Vcc and a ground node Vss. A first path transistor PS1 and a second pass transistor PS2 may be connected to output nodes of the respective inverters INV1 and INV2. The first pass transistor PS1 and the second pass transistor PS2 may be connected to a bit line BL and a complementary bit line /BL, respectively. Gates of the first pass transistor PS1 and the second pass transistor PS2 may be connected to a word line WL. - The first inverter INV1 may include a first pull-up transistor PU1 and a first pull-down transistor PD1, which are connected in series, and the second inverter INV2 may include a second pull-up transistor PU2 and a second pull-down transistor PD2. Each of the first pull-up transistor PU1 and the second pull-up transistor PU2 may be a PMOS transistor, and each of the first pull-down transistor PD1 and the second pull-down transistor PD2 may be a NMOS transistor.
- The first inverter INV1 and the second inverter INV2 may constitute one latch circuit in a manner that an input node of the first inverter INV1 is connected to an output node of the second inverter INV2, and an input node of the second inverter INV2 is connected to an output node of the first inverter INV1.
- Referring to
FIGS. 11 , 12 and 13, afirst fin 410, asecond fin 420, athird fin 430, and afourth fin 440, which are spaced apart from one another, may be formed to extend in a first direction, for example, a vertical direction ofFIG. 12 , In some embodiments, lengths of thesecond fin 420 and thethird fin 430 in the first direction may be shorter than lengths of thefirst fin 410 and thefourth fin 440 in the first direction. - A
first gate line 351, asecond gate line 352, athird gate line 353, and afourth gate line 354 may extend in a second direction, for example, a horizontal direction ofFIG. 12 , and may be formed to cross the first through 410, 420, 430 and 440. Specifically, thefourth fins first gate line 351 may be formed to entirely overlap with thefirst fin 410 and thesecond fin 420 in the first direction and may be formed to partially overlap with thethird fin 430 in the first direction. Stated in other words, thefirst gate line 351 may overlap with only an edge portion of thethird fin 430. Thethird gate line 353 may be formed to entirely overlap with thefourth fin 440 and thethird fin 430 in the first direction and may be formed to partially overlap with thesecond fin 420 in the first direction. Thethird gate line 353 may overlap with only an edge portion of thesecond fin 420. Thesecond gate line 352 and thefourth gate line 354 may be formed to entirely overlap with the respectivefirst fin 410 andfourth fin 440 in the first direction. - As illustrated in
FIG. 12 , the first pull-up transistor PU1 may be defined around a region where thefirst gate line 351 and thesecond fin 420 cross each other, the first pull-down transistor PD1 may be defined around a region where thefirst gate line 351 and thefirst fin 410 cross each other, and the first pass transistor PS1 may be defined around a region where thesecond gate line 352 and thefirst fin 410 cross each other. The second pull-up transistor PU2 may be defined around a region where thethird gate line 353 and thethird fin 430 cross each other, the second pull-down transistor PD2 may be defined around a region where thethird gate line 353 and thefourth fin 440 cross each other, and the second pass transistor PS2 may be defined around a region where thefourth gate line 354 and thefourth fin 440 cross each other. - According to some embodiments of present inventive concepts, recess regions may be formed on sides of the first to
fourth gate lines 351 to 354 in the respective first tofourth fins 410 to 440, and source/drain regions may be formed in the respective recess regions. Further,contacts 450 may be formed. - In addition, a shared
contact 461 connecting thesecond fin 420, thethird gate line 353, and awiring 471 and a sharedcontact 462 connecting thethird fin 430, thefirst gate line 351, and awiring 472 may be formed. - Each of the first pull-up transistor PU1, the first pull-down transistor PD1, the first pass transistor PS1, the second pull-up transistor PU2, the second pull-down transistor PD2, and the second pass transistor PS2 may include a finFET according to some embodiments of present inventive concepts.
- Methods for forming a semiconductor device according to some embodiments of present inventive concepts will be described with reference to
FIGS. 14 to 20 . -
FIGS. 14 to 17 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts. - Referring to
FIG. 14 , afin 130 may be formed on asubstrate 100. Thesubstrate 100 may include semiconductor material. 300 a and 300 b may be formed on theGate lines substrate 100 and may cross thefin 130. Thegate line 300 a may include aninterface layer pattern 310 a, a gate insulatinglayer pattern 320 a, a work functionadjustment layer pattern 330 a and agate metal pattern 340 a, which are sequentially formed on thefin 130. Thegate line 300 a may also include agate spacer 350 a. Thegate line 300 b may include aninterface layer pattern 310 b, a gate insulatinglayer pattern 320 b, a work functionadjustment layer pattern 330 b, agate metal pattern 340 b and agate spacer 350 b. - A
first recess region 362, which has a first width W1 as a maximum width, may be formed in thefin 130 and may be formed not to overlap with the 300 a and 300 b. Thegate lines first recess region 362 may be formed using an anisotropic etching process. Thefirst recess region 362 may have a depth that is less than a width of thefirst recess region 362. - Referring to
FIG. 15 , apassivation layer 400 may be deposited on thesubstrate 100 and may cover an inner surface of thefirst recess region 362. Thepassivation layer 400 may serve to protect a side wall of thefirst recess region 362 when asecond recess region 363 is formed through subsequent processes. Thepassivation layer 400 may include SiN, SiO2, HfO, AlO, TiN, TiO, Cr, or AlN. - Referring to
FIG. 16 , thesecond recess region 363, which has a second width W2 as a maximum width, may be formed at a lower portion of thefirst recess region 362 in thefin 130 and may be formed not to overlap with the 300 a and 300 b. The second width W2 may be less than the first width W1. Thegate lines second recess region 363 may be formed using an anisotropic etching process. Thesecond recess region 363 may have a depth that is greater than a width of thesecond recess region 363. - Referring to
FIG. 17 , thepassivation layer 400 may be removed and arecess region 361 including a lower portion that has a modified profile may be formed.FIG. 17 illustrates therecess region 361 having a paint brush shape, but not limited thereto. Therecess region 361 may have various shapes. In some embodiments, therecess region 361 may have a hammer shape (e.g., the shape illustrated inFIG. 8 ) or a pen point shape (e.g., the shape illustrated inFIG. 10 ), A source/drain region may be formed in therecess region 361. The source/drain region may be formed to fill therecess region 361. The source/drain region may be formed by doping source/drain material while growing an epitaxial layer in thefirst recess region 362 and thesecond recess region 363 using an epitaxial growth process. The source/drain region may be formed by injecting/implanting the source/drain material using an ion injection/implant process after growing an epitaxial layer. -
FIGS. 18 to 20 are cross-sectional views illustrating intermediate structures provided in a method of forming a semiconductor device including a finFET according to some embodiments of present inventive concepts. - Referring to
FIG. 18 , afirst recess region 362 may be formed performing an isotropic etching process after an anisotropic etching process (e.g., the process illustrated inFIG. 14 ) is performed. Thefirst recess region 362 may be preliminarily formed to have a depth that is less than a width of thefirst recess region 362 using an anisotropic etching process, and then therecess region 362 may be formed to have an elliptical shape using an isotropic etching process. - Referring to
FIG. 19 , apassivation layer 500 may be deposited to cover the interior of thefirst recess region 362. Thepassivation layer 500 may serve to protect a sidewall of thefirst recess region 362 when asecond recess region 363 is formed in subsequent processes. Thepassivation layer 500 may include SiN, SiO2, HfO, AlO, TiN, TiO, Cr, or AlN. - Referring to
FIG. 20 , thesecond recess region 363 may be formed using an anisotropic etching process. In some embodiments, thepassivation layer 500 may be removed after forming thesecond recess region 363. The source/drain region may be formed in therecess region 361. The source/drain region may fill therecess region 361. - It will be understood that methods according to some embodiments of present inventive concepts may further include forming mask layers and/or mask patterns. For example, referring to
FIG. 15 , a mask pattern may be formed on thepassivation layer 400 to cover the 300 a and 300 b, an upper surface of thegate lines fin 130 and side portions of thefirst recess region 362 before forming the second recess so that only central portion of thefirst recess region 362 are exposed through the mask pattern when forming thesecond recess region 363 ofFIG. 16 . -
FIG. 21 is a block diagram of an electronic system including a semiconductor device according to some embodiments of present inventive concepts. - Referring to
FIG. 21 , anelectronic system 1100 may include acontroller 1110, an input/output (I/O)device 1120, amemory 1130, aninterface 1140, and abus 1150. Thecontroller 1110, the I/O device 1120, thememory 1130, and/or theinterface 1140 may be coupled to one another through thebus 1150. Thebus 1150 may correspond to paths through which data is transferred. - The
controller 1110 may include at least one of a microprocessor, a digital signal processor, a microcontroller, and logic elements that can perform similar functions. The I/O device 1120 may include a keypad, a keyboard and/or a display device. Thememory 1130 may store data and/or commands. Theinterface 1140 may function to transfer data to a communication network or receive data from the communication network. Theinterface 1140 may be of a wired or wireless type. For example, theinterface 1140 may include an antenna and/or a wire or wireless transceiver. In some embodiments, theelectronic system 1100 may further include a high-speed DRAM and/or SRAM as an operating memory to improve operation of thecontroller 1110. Thememory 1130, thecontroller 1110 and/or the I/O device 1120 may include finFETs according to some embodiments of present inventive concepts. - The
electronic system 1100 may be applied to a PDA (Personal Digital Assistant), a portable computer, a web tablet, a wireless phone, a mobile phone, a digital music player, a memory card, or all electronic devices that can transmit and/or receive information in wireless environments. -
FIGS. 22 and 23 are diagrams illustrating electronic devices including a semiconductor device according to some embodiments of present inventive concepts.FIG. 22 illustrates a tablet PC, andFIG. 23 illustrates a notebook PC. The tablet PC and/or the notebook PC may include semiconductor devices according to some embodiments of present inventive concepts. - The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of present inventive concepts. Thus, to the maximum extent allowed by law, the scope is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/713,349 US9263521B2 (en) | 2013-11-21 | 2015-05-15 | Integrated circuit devices including finFETs and methods of forming the same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2013-0142211 | 2013-11-21 | ||
| KR1020130142211A KR102105363B1 (en) | 2013-11-21 | 2013-11-21 | Semiconductor device and fabricating method thereof |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/713,349 Continuation US9263521B2 (en) | 2013-11-21 | 2015-05-15 | Integrated circuit devices including finFETs and methods of forming the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US9034700B1 US9034700B1 (en) | 2015-05-19 |
| US20150140759A1 true US20150140759A1 (en) | 2015-05-21 |
Family
ID=53054601
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/491,044 Active US9034700B1 (en) | 2013-11-21 | 2014-09-19 | Integrated circuit devices including finFETs and methods of forming the same |
| US14/713,349 Active US9263521B2 (en) | 2013-11-21 | 2015-05-15 | Integrated circuit devices including finFETs and methods of forming the same |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/713,349 Active US9263521B2 (en) | 2013-11-21 | 2015-05-15 | Integrated circuit devices including finFETs and methods of forming the same |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US9034700B1 (en) |
| KR (1) | KR102105363B1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11043593B2 (en) * | 2015-01-15 | 2021-06-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
| TWI757750B (en) * | 2019-05-31 | 2022-03-11 | 台灣積體電路製造股份有限公司 | Semiconductor device and method for manufacturing the same |
| US11489062B2 (en) | 2019-05-31 | 2022-11-01 | Taiwan Semiconductor Manufacturing Co., Ltd | Optimized proximity profile for strained source/drain feature and method of fabricating thereof |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150214331A1 (en) * | 2014-01-30 | 2015-07-30 | Globalfoundries Inc. | Replacement metal gate including dielectric gate material |
| US9293459B1 (en) | 2014-09-30 | 2016-03-22 | International Business Machines Corporation | Method and structure for improving finFET with epitaxy source/drain |
| US9660025B2 (en) * | 2015-08-31 | 2017-05-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Structure and formation method of semiconductor device structure |
| KR102323943B1 (en) | 2015-10-21 | 2021-11-08 | 삼성전자주식회사 | Method of manufacturing semiconductor device |
| US10020304B2 (en) * | 2015-11-16 | 2018-07-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin field effect transistor, semiconductor device and fabricating method thereof |
| US10529803B2 (en) * | 2016-01-04 | 2020-01-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device with epitaxial source/drain |
| US9685554B1 (en) * | 2016-03-07 | 2017-06-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin field effect transistor and semiconductor device |
| US9905645B2 (en) * | 2016-05-24 | 2018-02-27 | Samsung Electronics Co., Ltd. | Vertical field effect transistor having an elongated channel |
| US9893189B2 (en) * | 2016-07-13 | 2018-02-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for reducing contact resistance in semiconductor structures |
| KR102552949B1 (en) | 2016-09-02 | 2023-07-06 | 삼성전자주식회사 | Semiconductor device |
| US10217815B1 (en) | 2017-10-30 | 2019-02-26 | Taiwan Semiconductor Manufacturing Co., Ltd | Integrated circuit device with source/drain barrier |
| CN109950314B (en) * | 2017-12-21 | 2023-01-20 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and manufacturing method thereof |
| US11101366B2 (en) * | 2018-07-31 | 2021-08-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Remote plasma oxide layer |
| US11069578B2 (en) | 2019-05-31 | 2021-07-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing a semiconductor device |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8927353B2 (en) * | 2007-05-07 | 2015-01-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin field effect transistor and method of forming the same |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR0169601B1 (en) * | 1994-12-28 | 1999-02-01 | 김주용 | How to Form Contact Holes |
| KR100610496B1 (en) | 2004-02-13 | 2006-08-09 | 삼성전자주식회사 | Field effect transistor device having fin structure for channel and its manufacturing method |
| US7361958B2 (en) * | 2004-09-30 | 2008-04-22 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
| KR100596829B1 (en) | 2004-10-01 | 2006-07-03 | 주식회사 하이닉스반도체 | Transistor Formation Method of Semiconductor Device |
| US20070228425A1 (en) | 2006-04-04 | 2007-10-04 | Miller Gayle W | Method and manufacturing low leakage MOSFETs and FinFETs |
| KR100912960B1 (en) * | 2006-12-27 | 2009-08-20 | 주식회사 하이닉스반도체 | Transistor having recess channel and manufacturing method thereof |
| US7696568B2 (en) | 2007-05-21 | 2010-04-13 | Micron Technology, Inc. | Semiconductor device having reduced sub-threshold leakage |
| KR100973269B1 (en) | 2008-04-18 | 2010-08-02 | 주식회사 하이닉스반도체 | Gate of Semiconductor Device and Formation Method |
| KR101060770B1 (en) * | 2008-10-02 | 2011-08-31 | 주식회사 하이닉스반도체 | Semiconductor device manufacturing method |
| US8264021B2 (en) | 2009-10-01 | 2012-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Finfets and methods for forming the same |
| US8362575B2 (en) | 2009-09-29 | 2013-01-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Controlling the shape of source/drain regions in FinFETs |
| US8796759B2 (en) * | 2010-07-15 | 2014-08-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin-like field effect transistor (FinFET) device and method of manufacturing same |
| US8367498B2 (en) | 2010-10-18 | 2013-02-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin-like field effect transistor (FinFET) device and method of manufacturing same |
| US20130020640A1 (en) * | 2011-07-18 | 2013-01-24 | Chen John Y | Semiconductor device structure insulated from a bulk silicon substrate and method of forming the same |
| US8685825B2 (en) | 2011-07-27 | 2014-04-01 | Advanced Ion Beam Technology, Inc. | Replacement source/drain finFET fabrication |
-
2013
- 2013-11-21 KR KR1020130142211A patent/KR102105363B1/en active Active
-
2014
- 2014-09-19 US US14/491,044 patent/US9034700B1/en active Active
-
2015
- 2015-05-15 US US14/713,349 patent/US9263521B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8927353B2 (en) * | 2007-05-07 | 2015-01-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin field effect transistor and method of forming the same |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11043593B2 (en) * | 2015-01-15 | 2021-06-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
| US11705519B2 (en) | 2015-01-15 | 2023-07-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and manufacturing method thereof |
| TWI757750B (en) * | 2019-05-31 | 2022-03-11 | 台灣積體電路製造股份有限公司 | Semiconductor device and method for manufacturing the same |
| US11489062B2 (en) | 2019-05-31 | 2022-11-01 | Taiwan Semiconductor Manufacturing Co., Ltd | Optimized proximity profile for strained source/drain feature and method of fabricating thereof |
| US11824102B2 (en) | 2019-05-31 | 2023-11-21 | Taiwan Semiconductor Manufacturing Co., Ltd | Optimized proximity profile for strained source/drain feature and method of fabricating thereof |
| US12317548B2 (en) | 2019-05-31 | 2025-05-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Optimized proximity profile for strained source/drain feature and method of fabricating thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US9034700B1 (en) | 2015-05-19 |
| KR20150058888A (en) | 2015-05-29 |
| US9263521B2 (en) | 2016-02-16 |
| KR102105363B1 (en) | 2020-04-28 |
| US20150249130A1 (en) | 2015-09-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9034700B1 (en) | Integrated circuit devices including finFETs and methods of forming the same | |
| US9087886B2 (en) | Semiconductor device | |
| KR102158961B1 (en) | Semiconductor device and method for fabricating the same | |
| US9054189B1 (en) | Semiconductor device and method for fabricating the same | |
| KR102221224B1 (en) | Method for fabricating the semiconductor device | |
| US10319858B2 (en) | Semiconductor devices having lower and upper fins and method for fabricating the same | |
| US9461148B2 (en) | Semiconductor device and method of fabricating the same | |
| US20150357427A1 (en) | Integrated Circuit Device with Metal Gates Including Diffusion Barrier Layers and Fabricating Methods Thereof | |
| US9064732B2 (en) | Semiconductor device including work function control film patterns and method for fabricating the same | |
| US20130285143A1 (en) | Integrated Circuit Devices Including Stress Proximity Effects and Methods of Fabricating the Same | |
| US9312188B2 (en) | Method for fabricating semiconductor device | |
| US9209177B2 (en) | Semiconductor devices including gates and dummy gates of different materials | |
| US20140264597A1 (en) | Semiconductor device and a method for fabricating the same | |
| US9812448B2 (en) | Semiconductor devices and methods for fabricating the same | |
| US20150333075A1 (en) | Semiconductor Device | |
| US20140346617A1 (en) | Semiconductor device and method for fabricating the same | |
| US9087900B1 (en) | Semiconductor device and method for fabricating the same | |
| US20140312387A1 (en) | Semiconductor device and method for fabricating the same | |
| KR102410135B1 (en) | Semiconductor device and method for fabricating the same | |
| KR102394881B1 (en) | Semiconductor device and method for fabricating the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JEONG, YEONG-JONG;LEE, JEONG-YUN;QUAN, SHI LI;AND OTHERS;REEL/FRAME:033776/0757 Effective date: 20140828 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |