US20150136359A1 - Flexible heat transfer assembly - Google Patents
Flexible heat transfer assembly Download PDFInfo
- Publication number
- US20150136359A1 US20150136359A1 US14/084,284 US201314084284A US2015136359A1 US 20150136359 A1 US20150136359 A1 US 20150136359A1 US 201314084284 A US201314084284 A US 201314084284A US 2015136359 A1 US2015136359 A1 US 2015136359A1
- Authority
- US
- United States
- Prior art keywords
- heat transfer
- powder
- transfer assembly
- flexible heat
- covering layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 57
- 239000000843 powder Substances 0.000 claims abstract description 43
- 239000012767 functional filler Substances 0.000 claims abstract description 24
- 239000011347 resin Substances 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229920001971 elastomer Polymers 0.000 claims abstract description 11
- 239000005060 rubber Substances 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000000919 ceramic Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 7
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 7
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 4
- 239000012188 paraffin wax Substances 0.000 claims abstract description 4
- 239000000741 silica gel Substances 0.000 claims abstract description 4
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 4
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 4
- 229920002545 silicone oil Polymers 0.000 claims abstract description 4
- -1 polyethylene Polymers 0.000 claims description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 4
- 239000004925 Acrylic resin Substances 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 229920001684 low density polyethylene Polymers 0.000 claims description 4
- 239000004702 low-density polyethylene Substances 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 244000043261 Hevea brasiliensis Species 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000292 calcium oxide Substances 0.000 claims description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- 229920003052 natural elastomer Polymers 0.000 claims description 3
- 229920001194 natural rubber Polymers 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920003051 synthetic elastomer Polymers 0.000 claims description 3
- 239000005061 synthetic rubber Substances 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/02—Flexible elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3731—Ceramic materials or glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3736—Metallic materials
Definitions
- the present invention relates to a heat-absorbing device, and in particular, to a flexible heat transfer assembly.
- the integrated circuits disposed in a general mobile electronic device comprise active elements such as transistors. Heat is generated by theses active elements when they perform operations. As the performance requirement of the mobile electronic devices increases, more transistors have to be disposed in the integrated circuits, resulting in more and more heat generated. However, the surface of the chip is not increased accordingly and thus the heating density of the electronic device increases, causing the over-temperature problem of the heat-generating part. According to the 10° C. theory (i.e., the Arrhenius Law), a rise in temperature of the heat-generating part by 10° C. will halve the effective lifetime thereof. Therefore, the temperature control of the electronic product is considerably important.
- the damaged electronic devices caused by over-heating is over 50% of all the damaged ones. Over-temperature not only damages semiconductor devices, but also degrades the reliability and operating performance thereof.
- the recent development trend of electronic products has been towards a high-performance, high-speed, and compact design.
- the heat dissipation issue of electronic products causes a technical bottleneck of related products and becomes necessary to be considered. It is therefore necessary to look for a total solution, of package level, PCB-level, and system level, to the heat dissipation issue.
- the heat-generating part e.g., CPU
- metal heat dissipator are both solid, from a microscopic viewpoint, there are lots of pores, defects, and scratches on the surfaces of them; thus air will be easily trapped therein during the assembling of the heat-generating part and the metal heat dissipator. Due to the poor heat transfer rate of the air, the efficiency of the whole heat transfer will degrade.
- the main objective of the present invention is to provide a flexible heat transfer assembly.
- the present invention provides a flexible heat transfer assembly comprising a covering layer and a functional filler.
- the covering layer surroundingly forms a sealed chamber, in which the material of the covering layer is one of rubber, silica rubber, and resin.
- the functional filler is filled in the sealed chamber, in which the functional filler comprises at least one of silicone, silicone oil, silica gel, and paraffin, and at least one of ceramic powder, metal powder, metal oxide powder, and graphene (powder or sheet).
- the resin is one of polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, polyurethane, thermoplastic polyurethane, silicone, and low-density polyethylene.
- the rubber is one of natural rubber and synthetic rubber.
- the resin is one of ethylene acid resin, acrylic resin, organosilicon resin, and urethane resin.
- the metal powder comprises at least one of copper powder, aluminum powder, gold powder, silver powder, and iron powder.
- the ceramic powder comprises at least one of aluminum oxide powder, boron nitride powder, calcium carbonate powder, and aluminum nitride powder.
- the metal oxide powder comprises at least one of iron oxide powder, magnesium oxide powder, and calcium oxide powder.
- the covering layer has a thickness ranging from 0.02 mm to 5 mm.
- the functional filler has a thickness ranging from 0.01 mm to 6 mm.
- the above-mentioned flexible heat transfer assembly further comprises a micro vibrator attached to the covering layer.
- the above-mentioned flexible heat transfer assembly further comprises a micro pressurizing member attached to the covering layer.
- the flexible heat transfer assembly of the present invention can reduce the surface temperature of the heat-generating part and maintain its operational performance by means of the covering layer tightly attached to the heat-generating part and by means of the functional filler, in the covering layer, dissipating the heat generated by the heat-generating part. Further, the flexible heat transfer assembly of the present invention can use a micro vibrator or a micro pressurizing member to enhance the mobility of the functional filler and thus enhance the heat transfer efficiency thereof.
- FIG. 1 is a schematic view of the flexible heat transfer assembly according to the first embodiment of the present invention
- FIG. 2 is a schematic view of the flexible heat transfer assembly according to the second embodiment of the present invention.
- FIG. 3 is a schematic view of the flexible heat transfer assembly of another aspect according to the second embodiment of the present invention.
- FIG. 4 is a schematic view of the flexible heat transfer assembly of yet another aspect according to the second embodiment of the present invention.
- FIG. 5 is a schematic view of the flexible heat transfer assembly of still yet another aspect according to the second embodiment of the present invention.
- FIG. 6 is a schematic view of the flexible heat transfer assembly according to the third embodiment of the present invention.
- the flexible heat transfer assembly comprises a covering layer 100 and a functional filler 200 .
- the covering layer 100 surroundingly forms a sealed chamber 110 .
- the functional filler 200 is filled in the sealed chamber 110 .
- the covering layer 100 is made of retractable material of elasticity, toughness and recoverability.
- the covering layer 100 preferably has a thickness ranging from 0.02 mm to 5 mm.
- the material of the covering layer 100 is preferably one of rubber, silica rubber, and resin (or called plastic).
- the rubber may be one of natural rubber and synthetic rubber.
- the resin may be one of ethylene acid resin, acrylic resin, organosilicon resin, urethane resin, polyethylene terephthalate (PET), and Polycarbonate (PC), in which the ethylene acid resin may be one of polyethylene (PE) and low density polyethylene (LDPE); the acrylic resin may be, for example, polypropylene (PP); the organosilicon resin may be, for example, silicone; the urethane resin may be, for example, one of polyurethane (PU) and thermoplastic polyurethane (TPU).
- ethylene acid resin may be one of polyethylene (PE) and low density polyethylene (LDPE)
- the acrylic resin may be, for example, polypropylene (PP)
- the organosilicon resin may be, for example, silicone
- the urethane resin may be, for example, one of polyurethane (PU) and thermoplastic polyurethane (TPU).
- the functional filler 200 is a mixture comprising carriers and additives.
- the carriers may be preferably one of silicone, silicone oil, silica gel, and paraffin, or any combination thereof.
- the additives may be at least one of ceramic powder, metal powder, metal oxide powder, and graphene.
- the ceramic powder may be, for example, one of aluminum oxide (Al 2 O 3 ) powder, boron nitride (BN) powder, calcium carbonate (Ca 2 CO 3 ) powder, and aluminum nitride (AlN) powder, or any combination thereof.
- the metal powder may be, for example, one of copper powder, aluminum powder, gold powder, silver powder, and iron powder, or any combination thereof.
- the metal oxide powder may be, for example, one of iron oxide powder, magnesium oxide powder, and calcium oxide powder, or any combination thereof.
- the functional filler 200 preferably has a thickness ranging from 0.01 mm to 6 mm and
- the flexible heat transfer assembly of the present invention preferably has a total thickness ranging from 0.15 mm to 10 mm.
- the flexible heat transfer assembly comprises a covering layer 100 , a functional filler 200 , and a micro vibrator 310 .
- the covering layer 100 and the functional filler 200 are the same as those of the first embodiment described above.
- the parts of the second embodiment which are the same as those of the first embodiment will not be described again.
- the differences between the second embodiment and the first embodiment will be described below in detail.
- the micro vibrator 310 is attached to the covering layer 100 .
- the micro vibrator 310 is preferably attached to or embedded on the external surface of the covering layer 100 ; however, the present invention is not limited to this.
- the micro vibrator 310 may be attached to or embedded on the internal surface of the covering layer 100 , as shown in FIG. 3 . Further, the micro vibrator 310 may be embedded within the covering layer 100 , as shown in FIG. 4 .
- the flexible heat transfer assembly of the present invention may be provided with a plurality of micro vibrators 310 , as shown in FIG. 5 . The micro vibrator 310 can produce vibration to further enhance the mobility of the functional filler 200 and thus accelerate the heat transfer thereof.
- the flexible heat transfer assembly comprising a covering layer 100 , a functional filler 200 , and a micro pressurizing member 320 .
- the covering layer 100 and the functional filler 200 are the same as those of the first embodiment described above.
- the parts of the third embodiment which are the same as those of the first embodiment will not be described again.
- the differences between the third embodiment and the first embodiment will be described below in detail.
- the micro pressurizing member 320 is attached to the covering layer 100 .
- the micro pressurizing member 320 is preferably attached to or embedded on the external surface of the covering layer 100 ; however, the present invention is not limited to this.
- the micro pressurizing member 320 may be attached to or embedded on the internal surface of the covering layer 100 ; it also may be embedded within the covering layer 100 .
- the flexible heat transfer assembly of the present invention may be provided with a plurality of micro pressurizing members 320 which are disposed in the same way as the micro vibrators 310 described in the second embodiment.
- the micro pressurizing member 320 produces pressure difference to further enhance the mobility of the functional filler 200 and thus accelerate the heat transfer thereof.
- the flexible heat transfer assembly of the present invention can expel the air trapped in the pores, defects, and scratches and be tightly attached to the irregular surface of the heat-generating part, thereby enhance the whole heat transfer efficiency.
- the present invention can absorb, convey, insulate, and slowly dissipate the heat generated by the heat-generating part, thus effectively reducing the surface temperature of the heat-generating part and making it operate for a long time.
- the flexible heat transfer assembly of the present invention can select the functional filler material with different properties based on different requirements such that the flexible heat transfer assembly of the present invention has wider applicability.
- the covering layer of the flexible heat transfer assembly of the present invention has properties of elasticity, toughness, and recoverability; therefore, its shape can be adjusted according to different use states. Also, even when an error occurs during the assembling of the flexible heat transfer assembly of the present invention, the error can be removed and the flexible heat transfer assembly can be reworked without damage to the structure thereof, thus reducing the consumption of rework materials and the cost of rework.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
A flexible heat transfer assembly includes a covering layer (100) and a functional filler (200). The covering layer (100) surroundingly forms a sealed chamber (11), in which the material of the covering layer (100) is one of rubber, silica rubber, and resin. The functional filler (200) is filled in the sealed chamber (110). The functional filler (200) comprises at least one of silicone, silicone oil, silica gel, and paraffin, and at least one of ceramic powder, metal powder, metal oxide powder, and graphene. By means of the covering layer (100) tightly attached to a heat-generating part and by means of the heat transfer of the functional filler (200), the flexible heat transfer assembly can absorb or dissipate the heat generated by the heat-generating part.
Description
- 1. Field of the Invention
- The present invention relates to a heat-absorbing device, and in particular, to a flexible heat transfer assembly.
- 2. Description of Related Art
- The integrated circuits disposed in a general mobile electronic device (for example, a notebook computer and a smart phone) comprise active elements such as transistors. Heat is generated by theses active elements when they perform operations. As the performance requirement of the mobile electronic devices increases, more transistors have to be disposed in the integrated circuits, resulting in more and more heat generated. However, the surface of the chip is not increased accordingly and thus the heating density of the electronic device increases, causing the over-temperature problem of the heat-generating part. According to the 10° C. theory (i.e., the Arrhenius Law), a rise in temperature of the heat-generating part by 10° C. will halve the effective lifetime thereof. Therefore, the temperature control of the electronic product is considerably important.
- According to the statistical data, the damaged electronic devices caused by over-heating is over 50% of all the damaged ones. Over-temperature not only damages semiconductor devices, but also degrades the reliability and operating performance thereof. In particular, the recent development trend of electronic products has been towards a high-performance, high-speed, and compact design. Thus, the heat dissipation issue of electronic products causes a technical bottleneck of related products and becomes necessary to be considered. It is therefore necessary to look for a total solution, of package level, PCB-level, and system level, to the heat dissipation issue.
- Since the heat-generating part (e.g., CPU) and metal heat dissipator are both solid, from a microscopic viewpoint, there are lots of pores, defects, and scratches on the surfaces of them; thus air will be easily trapped therein during the assembling of the heat-generating part and the metal heat dissipator. Due to the poor heat transfer rate of the air, the efficiency of the whole heat transfer will degrade.
- Today's mobile electronic devices develop continuously into a light, thin, short, and compact design and so do their various mechanical parts. During the assembling, if the compressibility of the flexible heat-absorbing device is poor, it is possible to create an uneven exertion of forces among the mechanical parts and deform them.
- In view of this, the inventor pays special attention regarding the above existing technology to research with the application of related theory and tries to overcome the above disadvantages, which becomes the goal of the inventor's improvement.
- The main objective of the present invention is to provide a flexible heat transfer assembly. To achieve the above objective, the present invention provides a flexible heat transfer assembly comprising a covering layer and a functional filler. The covering layer surroundingly forms a sealed chamber, in which the material of the covering layer is one of rubber, silica rubber, and resin. The functional filler is filled in the sealed chamber, in which the functional filler comprises at least one of silicone, silicone oil, silica gel, and paraffin, and at least one of ceramic powder, metal powder, metal oxide powder, and graphene (powder or sheet).
- Preferably, in the above-mentioned flexible heat transfer assembly, the resin is one of polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, polyurethane, thermoplastic polyurethane, silicone, and low-density polyethylene.
- Preferably, in the above-mentioned flexible heat transfer assembly, the rubber is one of natural rubber and synthetic rubber.
- Preferably, in the above-mentioned flexible heat transfer assembly, the resin is one of ethylene acid resin, acrylic resin, organosilicon resin, and urethane resin.
- Preferably, in the above-mentioned flexible heat transfer assembly, the metal powder comprises at least one of copper powder, aluminum powder, gold powder, silver powder, and iron powder.
- Preferably, in the above-mentioned flexible heat transfer assembly, the ceramic powder comprises at least one of aluminum oxide powder, boron nitride powder, calcium carbonate powder, and aluminum nitride powder.
- Preferably, in the above-mentioned flexible heat transfer assembly, the metal oxide powder comprises at least one of iron oxide powder, magnesium oxide powder, and calcium oxide powder.
- Preferably, in the above-mentioned flexible heat transfer assembly, the covering layer has a thickness ranging from 0.02 mm to 5 mm. Preferably, in the above-mentioned flexible heat transfer assembly, the functional filler has a thickness ranging from 0.01 mm to 6 mm.
- Preferably, the above-mentioned flexible heat transfer assembly further comprises a micro vibrator attached to the covering layer.
- Preferably, the above-mentioned flexible heat transfer assembly further comprises a micro pressurizing member attached to the covering layer.
- The flexible heat transfer assembly of the present invention can reduce the surface temperature of the heat-generating part and maintain its operational performance by means of the covering layer tightly attached to the heat-generating part and by means of the functional filler, in the covering layer, dissipating the heat generated by the heat-generating part. Further, the flexible heat transfer assembly of the present invention can use a micro vibrator or a micro pressurizing member to enhance the mobility of the functional filler and thus enhance the heat transfer efficiency thereof.
-
FIG. 1 is a schematic view of the flexible heat transfer assembly according to the first embodiment of the present invention; -
FIG. 2 is a schematic view of the flexible heat transfer assembly according to the second embodiment of the present invention; -
FIG. 3 is a schematic view of the flexible heat transfer assembly of another aspect according to the second embodiment of the present invention; -
FIG. 4 is a schematic view of the flexible heat transfer assembly of yet another aspect according to the second embodiment of the present invention; -
FIG. 5 is a schematic view of the flexible heat transfer assembly of still yet another aspect according to the second embodiment of the present invention; and -
FIG. 6 is a schematic view of the flexible heat transfer assembly according to the third embodiment of the present invention. - Referring to
FIG. 1 , it is provided the flexible heat transfer assembly according to the first embodiment of the present invention. The flexible heat transfer assembly comprises acovering layer 100 and afunctional filler 200. The coveringlayer 100 surroundingly forms a sealedchamber 110. Thefunctional filler 200 is filled in the sealedchamber 110. - The covering
layer 100 is made of retractable material of elasticity, toughness and recoverability. The coveringlayer 100 preferably has a thickness ranging from 0.02 mm to 5 mm. The material of thecovering layer 100 is preferably one of rubber, silica rubber, and resin (or called plastic). The rubber may be one of natural rubber and synthetic rubber. The resin may be one of ethylene acid resin, acrylic resin, organosilicon resin, urethane resin, polyethylene terephthalate (PET), and Polycarbonate (PC), in which the ethylene acid resin may be one of polyethylene (PE) and low density polyethylene (LDPE); the acrylic resin may be, for example, polypropylene (PP); the organosilicon resin may be, for example, silicone; the urethane resin may be, for example, one of polyurethane (PU) and thermoplastic polyurethane (TPU). - The
functional filler 200 is a mixture comprising carriers and additives. The carriers may be preferably one of silicone, silicone oil, silica gel, and paraffin, or any combination thereof. The additives may be at least one of ceramic powder, metal powder, metal oxide powder, and graphene. The ceramic powder may be, for example, one of aluminum oxide (Al2O3) powder, boron nitride (BN) powder, calcium carbonate (Ca2CO3) powder, and aluminum nitride (AlN) powder, or any combination thereof. The metal powder may be, for example, one of copper powder, aluminum powder, gold powder, silver powder, and iron powder, or any combination thereof. The metal oxide powder may be, for example, one of iron oxide powder, magnesium oxide powder, and calcium oxide powder, or any combination thereof. Thefunctional filler 200 preferably has a thickness ranging from 0.01 mm to 6 mm and The flexible heat transfer assembly of the present invention preferably has a total thickness ranging from 0.15 mm to 10 mm. - Referring to
FIG. 2 , it is provided the flexible heat transfer assembly according to the second embodiment of the present invention. The flexible heat transfer assembly comprises acovering layer 100, afunctional filler 200, and amicro vibrator 310. Thecovering layer 100 and thefunctional filler 200 are the same as those of the first embodiment described above. The parts of the second embodiment which are the same as those of the first embodiment will not be described again. The differences between the second embodiment and the first embodiment will be described below in detail. Themicro vibrator 310 is attached to thecovering layer 100. In the second embodiment, themicro vibrator 310 is preferably attached to or embedded on the external surface of thecovering layer 100; however, the present invention is not limited to this. For example, themicro vibrator 310 may be attached to or embedded on the internal surface of thecovering layer 100, as shown inFIG. 3 . Further, themicro vibrator 310 may be embedded within thecovering layer 100, as shown inFIG. 4 . In addition, the flexible heat transfer assembly of the present invention may be provided with a plurality ofmicro vibrators 310, as shown inFIG. 5 . Themicro vibrator 310 can produce vibration to further enhance the mobility of thefunctional filler 200 and thus accelerate the heat transfer thereof. - Referring to
FIG. 6 , it is provided the flexible heat transfer assembly according to the third embodiment of the present invention. The flexible heat transfer assembly comprising acovering layer 100, afunctional filler 200, and amicro pressurizing member 320. Thecovering layer 100 and thefunctional filler 200 are the same as those of the first embodiment described above. The parts of the third embodiment which are the same as those of the first embodiment will not be described again. The differences between the third embodiment and the first embodiment will be described below in detail. Themicro pressurizing member 320 is attached to thecovering layer 100. In the third embodiment, the micro pressurizingmember 320 is preferably attached to or embedded on the external surface of thecovering layer 100; however, the present invention is not limited to this. For example, the micro pressurizingmember 320 may be attached to or embedded on the internal surface of thecovering layer 100; it also may be embedded within thecovering layer 100. In addition, the flexible heat transfer assembly of the present invention may be provided with a plurality of micro pressurizingmembers 320 which are disposed in the same way as themicro vibrators 310 described in the second embodiment. Themicro pressurizing member 320 produces pressure difference to further enhance the mobility of thefunctional filler 200 and thus accelerate the heat transfer thereof. - For the practical application of the flexible heat-absorbing device under compressed conditions, the flexible heat transfer assembly of the present invention can expel the air trapped in the pores, defects, and scratches and be tightly attached to the irregular surface of the heat-generating part, thereby enhance the whole heat transfer efficiency. The present invention can absorb, convey, insulate, and slowly dissipate the heat generated by the heat-generating part, thus effectively reducing the surface temperature of the heat-generating part and making it operate for a long time.
- The flexible heat transfer assembly of the present invention can select the functional filler material with different properties based on different requirements such that the flexible heat transfer assembly of the present invention has wider applicability.
- The covering layer of the flexible heat transfer assembly of the present invention has properties of elasticity, toughness, and recoverability; therefore, its shape can be adjusted according to different use states. Also, even when an error occurs during the assembling of the flexible heat transfer assembly of the present invention, the error can be removed and the flexible heat transfer assembly can be reworked without damage to the structure thereof, thus reducing the consumption of rework materials and the cost of rework.
- The embodiments described above are only preferred ones of the present invention and not to limit the scope of appending claims regarding the present invention. Therefore, all the equivalent modifications applying the spirit of the present invention should be embraced by the scope of the present invention.
Claims (11)
1. A flexible heat transfer assembly, comprising:
a covering layer (100) surroundingly forming a sealed chamber (110), wherein the material of the covering layer (100) is one of rubber, silica rubber, and resin; and
a functional filler (200) filled in the sealed chamber (110), wherein the functional filler (200) comprises at least one of silicone, silicone oil, silica gel, and paraffin, and at least one of ceramic powder, metal powder, metal oxide powder, and graphene.
2. The flexible heat transfer assembly according to claim 1 , wherein the resin is one of polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, polyurethane, thermoplastic polyurethane, silicone, and low-density polyethylene.
3. The flexible heat transfer assembly according to claim 1 , wherein the rubber is one of natural rubber and synthetic rubber.
4. The flexible heat transfer assembly according to claim 1 , wherein the resin is one of ethylene acid resin, acrylic resin, organosilicon resin, and urethane resin.
5. The flexible heat transfer assembly according to claim 1 , wherein the metal powder comprises at least one of copper powder, aluminum powder, gold powder, silver powder, and iron powder.
6. The flexible heat transfer assembly according to claim 1 , wherein the ceramic powder comprises at least one of aluminum oxide powder, boron nitride powder, calcium carbonate powder, and aluminum nitride powder.
7. The flexible heat transfer assembly according to claim 1 , wherein the metal oxide powder comprises at least one of iron oxide powder, magnesium oxide powder, and calcium oxide powder.
8. The flexible heat transfer assembly according to claim 1 , wherein the covering layer (100) has a thickness ranging from 0.02 mm to 5 mm.
9. The flexible heat transfer assembly according to claim 1 , wherein the functional filler (200) has a thickness ranging from 0.01 mm to 6 mm.
10. The flexible heat transfer assembly to claim 1 , further comprising a micro vibrator attached to the covering layer (100).
11. The flexible heat transfer assembly to claim 1 , further comprising a micro pressurizing member attached to the covering layer (100).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/084,284 US20150136359A1 (en) | 2013-11-19 | 2013-11-19 | Flexible heat transfer assembly |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/084,284 US20150136359A1 (en) | 2013-11-19 | 2013-11-19 | Flexible heat transfer assembly |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150136359A1 true US20150136359A1 (en) | 2015-05-21 |
Family
ID=53172105
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/084,284 Abandoned US20150136359A1 (en) | 2013-11-19 | 2013-11-19 | Flexible heat transfer assembly |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20150136359A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107118541A (en) * | 2017-07-01 | 2017-09-01 | 河南机电高等专科学校 | Heat dissipation shell, preparation method and transformer protection device using heat dissipation shell |
| US10183269B2 (en) | 2015-06-10 | 2019-01-22 | Corning Incorporated | Continuous flow reactor with tunable heat transfer capability |
| CN109354729A (en) * | 2018-07-24 | 2019-02-19 | 黄山市尚义橡塑制品有限公司 | Graphene enhances rubber and preparation method thereof |
| CN109673069A (en) * | 2019-01-04 | 2019-04-23 | 珠海鸿儒通汇科技有限公司 | A kind of graphene silicone rubber heating pad and preparation method thereof |
| CN113683380A (en) * | 2021-09-01 | 2021-11-23 | 深圳市动盈先进材料有限公司 | High-heat-flux-density heat dissipation material for 5G signal transmission |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4598011A (en) * | 1982-09-10 | 1986-07-01 | Bowman Jeffery B | High strength porous polytetrafluoroethylene product having a coarse microstructure |
| US5213868A (en) * | 1991-08-13 | 1993-05-25 | Chomerics, Inc. | Thermally conductive interface materials and methods of using the same |
| US5545473A (en) * | 1994-02-14 | 1996-08-13 | W. L. Gore & Associates, Inc. | Thermally conductive interface |
| US6900163B2 (en) * | 2000-09-14 | 2005-05-31 | Aos Thermal Compounds | Dry thermal interface material |
| US7176564B2 (en) * | 2003-10-25 | 2007-02-13 | Korea Institute Of Science | Heat spreader, heat sink, heat exchanger and PDP chassis base |
| US20080003649A1 (en) * | 2006-05-17 | 2008-01-03 | California Institute Of Technology | Thermal cycling system |
| US7709951B2 (en) * | 2007-03-16 | 2010-05-04 | International Business Machines Corporation | Thermal pillow |
| US20120155029A1 (en) * | 2010-12-20 | 2012-06-21 | Raytheon Company | Adaptive thermal gap pad |
| US8448693B2 (en) * | 2007-02-08 | 2013-05-28 | Lundell Manufacturing Corporation | Sealed thermal interface component |
-
2013
- 2013-11-19 US US14/084,284 patent/US20150136359A1/en not_active Abandoned
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4598011A (en) * | 1982-09-10 | 1986-07-01 | Bowman Jeffery B | High strength porous polytetrafluoroethylene product having a coarse microstructure |
| US5213868A (en) * | 1991-08-13 | 1993-05-25 | Chomerics, Inc. | Thermally conductive interface materials and methods of using the same |
| US5545473A (en) * | 1994-02-14 | 1996-08-13 | W. L. Gore & Associates, Inc. | Thermally conductive interface |
| US6900163B2 (en) * | 2000-09-14 | 2005-05-31 | Aos Thermal Compounds | Dry thermal interface material |
| US7176564B2 (en) * | 2003-10-25 | 2007-02-13 | Korea Institute Of Science | Heat spreader, heat sink, heat exchanger and PDP chassis base |
| US20080003649A1 (en) * | 2006-05-17 | 2008-01-03 | California Institute Of Technology | Thermal cycling system |
| US8448693B2 (en) * | 2007-02-08 | 2013-05-28 | Lundell Manufacturing Corporation | Sealed thermal interface component |
| US7709951B2 (en) * | 2007-03-16 | 2010-05-04 | International Business Machines Corporation | Thermal pillow |
| US20120155029A1 (en) * | 2010-12-20 | 2012-06-21 | Raytheon Company | Adaptive thermal gap pad |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10183269B2 (en) | 2015-06-10 | 2019-01-22 | Corning Incorporated | Continuous flow reactor with tunable heat transfer capability |
| CN107118541A (en) * | 2017-07-01 | 2017-09-01 | 河南机电高等专科学校 | Heat dissipation shell, preparation method and transformer protection device using heat dissipation shell |
| CN109354729A (en) * | 2018-07-24 | 2019-02-19 | 黄山市尚义橡塑制品有限公司 | Graphene enhances rubber and preparation method thereof |
| CN109673069A (en) * | 2019-01-04 | 2019-04-23 | 珠海鸿儒通汇科技有限公司 | A kind of graphene silicone rubber heating pad and preparation method thereof |
| CN113683380A (en) * | 2021-09-01 | 2021-11-23 | 深圳市动盈先进材料有限公司 | High-heat-flux-density heat dissipation material for 5G signal transmission |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20150136359A1 (en) | Flexible heat transfer assembly | |
| US10573579B2 (en) | Semiconductor package with improved heat dissipation | |
| CN109219879B (en) | Thermal interface material structure | |
| US10297523B2 (en) | Power module and method for manufacturing the same | |
| CN104716112B (en) | Three-dimensional (3D) integrated heat spreader for multi-chip package | |
| US10903135B2 (en) | Chip package structure and manufacturing method thereof | |
| US11842944B2 (en) | IC assemblies including die perimeter frames suitable for containing thermal interface materials | |
| CN107408545B (en) | Energy Storage Materials and Associated Technologies and Configurations for Thermal Management | |
| KR20150091886A (en) | Semiconductor package having a heat slug | |
| CN105097729A (en) | Multi chip package and method for manufacturing the same | |
| US20150303129A1 (en) | Thermal interface compositions and methods for making and using same | |
| KR102327142B1 (en) | Wafer Level Package | |
| KR102754053B1 (en) | Substrate with embedded active thermoelectric cooler | |
| US20060261469A1 (en) | Sealing membrane for thermal interface material | |
| CN103576810A (en) | Electronic device | |
| KR101895573B1 (en) | Composite thermal conductive element | |
| CN203438608U (en) | Enhanced graphite heat-dissipation film | |
| US10396265B2 (en) | Composite thermoelectric element | |
| KR102285332B1 (en) | Semiconductor package and semiconductor device comprising the same | |
| US12136583B2 (en) | Method of forming a chip package, method of forming a semiconductor arrangement, chip package, and semiconductor arrangement | |
| US20120152509A1 (en) | Heat sink | |
| CN105810650B (en) | Semiconductor package, method of manufacturing the same, electronic system including the same, and memory card including the same | |
| CN110211952B (en) | Semiconductor device | |
| US10734302B2 (en) | Method and apparatus of operating a compressible thermal interface | |
| JP2011514663A5 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NEWTECH ENTERPRISE LIMITED, SAMOA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KU, CHENG-HSIU;REEL/FRAME:031634/0167 Effective date: 20131023 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |