US20150125329A1 - Progressing cavity pump/motor - Google Patents
Progressing cavity pump/motor Download PDFInfo
- Publication number
- US20150125329A1 US20150125329A1 US14/564,324 US201414564324A US2015125329A1 US 20150125329 A1 US20150125329 A1 US 20150125329A1 US 201414564324 A US201414564324 A US 201414564324A US 2015125329 A1 US2015125329 A1 US 2015125329A1
- Authority
- US
- United States
- Prior art keywords
- stator
- rotor
- grooves
- motor
- cavity pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002250 progressing effect Effects 0.000 title claims abstract description 37
- 239000012530 fluid Substances 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 abstract description 6
- 239000000463 material Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/107—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
- F04C2/1071—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
- F04C2/1073—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/10—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F01C1/101—Moineau-type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C19/00—Sealing arrangements in rotary-piston machines or engines
- F01C19/005—Structure and composition of sealing elements such as sealing strips, sealing rings and the like; Coating of these elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C13/00—Adaptations of machines or pumps for special use, e.g. for extremely high pressures
- F04C13/001—Pumps for particular liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0003—Sealing arrangements in rotary-piston machines or pumps
- F04C15/0007—Radial sealings for working fluid
- F04C15/0019—Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/107—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
- F04C2/1071—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
- F04C2/1073—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
- F04C2/1075—Construction of the stationary member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/24—Fluid mixed, e.g. two-phase fluid
Definitions
- the present invention relates to a progressing cavity pump/motor, and more particularly to a progressing cavity pump/motor suitable for high temperature applications wherein both the interior surface of the stator and the exterior surface of the rotor are formed from a substantially rigid material.
- Progressing cavity pumps are used in various applications, including downhole oilfield applications to pump fluids to the surface.
- Progressing cavity downhole motors are similar tools commonly used to convert hydraulic energy into mechanical energy, e.g., to rotate a drill bit.
- the interior surface of the stator is typically formed from an elastomeric material which acts as a contact seal with the rotor.
- the contact areas determine the perimeter of the cavities which contain the working fluid, and these cavities progress from one end of the pump/motor to the other end of the pump/motor during its operation.
- the operational temperature range intended for the pump/motor exceeds the practical maximum temperature of elastomeric materials or the corresponding adhesive.
- Materials both elastomeric and rigid, have been used for both the surface of the rotor and the stator subjected to these conditions.
- a clearance between the rotor and the stator replaces the contact seal between the two parts formed in other applications when using an elastomeric seal.
- the clearance between the rotor and stator is either designed, or worn into the rotor and/or stator during operation. Such a design can significantly reduce the efficiency due to the volume of the working fluid passed between the I.D. of the stator and the O.D. of the rotor.
- Such pump/motor designs are not favored in most applications because of their poor efficiency.
- Grooves are provided on a tip portion of the lobes and presumably increase air pressure to the combustion chamber.
- Pumps and motors according to the present invention rely upon a working fluid, which conventionally is a mixture of liquids, solids, and often some gas, to generate energy or to transfer fluids.
- a progressing cavity pump/motor includes a stator having an interior surface and two or more spiraling internal lobes.
- the rotor has an exterior surface and one or more spiraling external lobes, with the rotor cooperating with the stator to form progressing cavities between the stator and the rotor during rotation of the rotor.
- At least one of the stator interior surface and the rotor exterior surface has a plurality of spaced grooves in its surface, such that fluid flowing to a gap between the stator and the rotor is disrupted by the spaced grooves to reduce leakage between the stator and the rotor.
- FIG. 1 is a cross-sectional view of a stator and a rotor according to the present invention.
- FIG. 2 is a detailed cross-sectional view of a portion of the pump/motor shown in FIG. 1 with grooves formed in the exterior surface of the stator and a gap between the stator and the rotor.
- FIG. 3 is a cross-sectional view of a portion of a stator illustrating axially spaced grooves.
- FIG. 4 is an enlarged view of alternative grooves.
- FIG. 5 illustrates yet another groove configuration
- FIG. 6 illustrates alternative deeper and narrower grooves than shown in FIG. 5 .
- FIG. 7 illustrates a stepped grooves within the stator surface.
- FIG. 8 illustrates a portion of a stator with sets of spaced grooves.
- FIG. 9 illustrates in more detail the grooves shown in FIG. 8 .
- FIG. 10 illustrates a three-groove set and a series of spaced grooves.
- FIG. 1 illustrates spaced grooves on the rotor.
- the substantially rigid stator interior surface and rotor exterior surface in a progressing cavity pump/motor incorporate a clearance or gap between the rotor and the stator surfaces.
- This clearance allows the rotor to turn inside the stator.
- the clearance is large enough to allow small solid particles, sometimes carried in the working fluid, to pass through without binding the rotor and the stator.
- Flow resistance through the non-contact seal formed by the gap between the rotor and the stator is created by choke flow wherein the fluid particles cannot move around each other.
- the present invention significantly increases the effective flow resistance of this non-contact seal, thereby significantly decreasing fluid loss between the rotor and the stator while there is a nominal gap between the rotor and the stator.
- the seal line between the rotor and the stator is moving in a cyclical manner as the pump/motor operates.
- the velocity and direction of flow at any point on the rotor or stator surface is therefore constantly changing in a repeating pattern. Near surface flow will be substantially parallel to the stator or rotor surface, but, at locations near the seal line, the flow can impinge at angles approaching perpendicular.
- This rapid cyclical velocity offers a certain amount of resistance when the rotor and stator surfaces approach each other. This resistance is minimized, however, by the conventional smooth, contoured surface on both the rotor and the stator surfaces.
- the present invention incorporates small and preferably parallel grooves on the surface of either the rotor and/or the stator to create turbulent eddies in the near surface flow.
- This substantially increases turbulence, which results in an increase in flow resistance and thus a significant decrease in fluid leakage.
- the groove design shape, depth, spacing between grooves, and orientation determines the amount of flow resistance achieved. Eddies are created by “tripping” fluid flowing along the contoured surface as it flows across the groove, or by redirecting fluid that impinges the groove from oblique angles.
- turbulence generation may be increased with the addition of steps, walls between closely spaced grooves, and a combination of walls and steps.
- the progressing cavity pump/motor includes a stator 12 having an internal surface 14 and two or more spiraling lobes 16 .
- the rotor 18 includes an exterior surface 20 and one less lobe 22 than the stator, thereby forming progressing cavities between the rotor and the stator as the rotor rotates within the stator.
- a progressing cavity pump/motor as shown in FIG. 1 may thus be used as a pump which may be powered by a work string from the surface to pump fluids to the surface for hydrocarbon recovery, or may be used as a motor which is powered by hydraulic fluid pumped down to the motor and used to perform a mechanical function, such as rotating a shaft which then drives a drill bit.
- the vast majority of downhole motors/pumps of a progressing cavity type include a metal stator body, an elastomeric layer on the interior surface of the metal stator body, and a metal rotor which rotates and forms a contact seal with the elastomeric layer as the rotor rotates with respect to the stator.
- the same type of motor/pumps are sometimes operated, at a greatly reduced efficiency, with a clearance between the rotor and stator.
- FIG. 2 illustrates a plurality of locations 26 where the rotor surface approaches the stator surface. Each location is a part of the seal area including at least one groove in the inner surface of the stator and/or in the outer surface of the rotor, as explained further below. Some fluid will leak between the rotor and the stator. The amount depends on the viscosity and velocity of the working fluid, the size of the gap, and the number and type of grooves 30 .
- the grooves 30 provide a significant resistance to the flow moving toward and through the gap by generating disturbances which convert kinetic energy into heat, thereby significantly reducing the amount of fluid which passes through the gap and increasing the efficiency of the pump/motor.
- FIG. 3 illustrates the portion of a stator 12 with a series of rectangular-shaped elongate grooves 30 with sidewalls generally perpendicular to the groove surface.
- the grooves preferably extend through substantially the length of the stator, and also are preferably aligned with a centerline of one of the stator lobes.
- the seal location between the rotor and the stator is constantly changing, but the spaced grooves 30 as shown in FIG. 3 provide a significant disturbance to fluid flow to reduce the fluid loss and increase pump efficiency.
- FIG. 4 is an enlargement of a variation of the grooves shown in FIG. 3 , and illustrates a generally rectangular groove configuration with slanted sidewalls, so that the entrance to the groove 32 is wider than the base of the groove.
- FIG. 5 illustrates another type of groove formed in the inner surface of the stator, with this groove 34 having a generally curved or accurate cross-sectional configuration.
- the groove 36 in FIG. 6 is similar to the FIG. 5 groove, although the groove width is decreased and the groove depth is increased.
- FIG. 7 illustrates a stepped groove design, wherein one portion 37 of the groove 38 has a shallower depth than an adjacent portion 39 of the same groove 38 .
- FIG. 8 illustrates an alternative portion of a stator 12 , and again only an axially short portion of the grooves are shown for clarity.
- the grooves in FIG. 8 are provided in sets 40 , with a stator interior surface 14 spaced between each groove set.
- FIG. 9 is an enlargement of one of the groove sets 40 shown in FIG. 8 , and illustrates the groove set comprising an accurate groove 42 followed by a generally rectangular groove 44 .
- each groove set may consist of three or more grooves, as shown in FIG. 10 , wherein each groove set 50 of three grooves spaced apart by the interior surface 14 of the stator, with the groove set comprising a stepped groove 52 , a generally rectangular groove 54 , and another stepped groove 56 .
- FIG. 11 illustrates grooves 30 each similar to that shown in FIG. 3 formed on a portion of the exterior surface of a rotor 18 .
- the rotor grooves 30 may follow the contour of the rotor lobes, and may be configured according to the alternative groove designs disclosed herein. In some applications, it may be preferable to provide the grooves on the rotor rather than the stator, and in other applications the grooves may be provided on each of the rotor and the stator.
- each groove on the inner surface of the stator are elongate in that each groove has a length significantly greater than its width.
- Continuous grooves may be formed along substantially the entire length of the stator housing, or a discrete length axially extending groove may be formed, followed by a short interval of no groove, followed by a continuation discrete length axially extending groove, etc.
- Each groove may have one outwardly slanted side wall, and a “straight” side wall which is substantially perpendicular to the interior surface of the stator.
- both the side walls of the groove may be tapered outwardly, but at different angles relative to a centerline of the groove.
- Each axially extending groove which matches or follows the contour of a respective lobe on the stator or the rotor will be a substantially uniform spacing from a respective lobe centerline.
- the spacing between elongate grooves is relatively short so that the lands between the grooves (e.g., the interior surface of stator not having a groove) for a preferred embodiment may occupy from two to ten times the surface area of the grooves.
- the benefits of the invention may be realized because downhole application systems use better filtering techniques than in decades past for recovering solid particles before the fluid enters the pump/motor.
- water may be used as a working fluid when drilling out plugs in a well.
- some applications utilize a higher viscosity working fluid than was used a decade ago, and accordingly this higher viscosity fluid further benefits from the use of grooves as disclosed herein to disrupt fluid flow to the gap between the rotor and the stator.
- the pump/motor can become locked by particles wedged between the rotor and the stator if the particles passing through the pump/motor are larger than the gap. Decreasing the gap between the rotor and the stator reduces the amount of “lost” fluid which passes through the gap, but increases the likelihood of solid particles becoming wedged between the rotor and the stator.
- the addition of fluid flow disrupting grooves reduces this lost fluid while maintaining a sufficient gap between the rotor and the stator of a progressing cavity pump/motor to minimize or eliminated locking. Costs are incurred to provide such grooves in a progressing cavity pump/motor compared, for example, to providing a spaced groove surface and gap between a cylindrical shaft with a uniform diameter and a uniform diameter bore in a housing.
- the spacing between a groove and the ever changing gap location varies as the pump/motor is operated.
- providing grooves along the contoured surface of a lobe is more complicated, particularly since the grooves effectively need to be provided over substantially the entire length of the pump/motor, which may be twenty feet or more in length.
- Grooves in the rotor and the stator may be formed using machining techniques which are commonly used to form the respective lobes on the rotor and/or on the stator.
- the progressing cavity pump/motor of the present invention includes a stator with a substantially rigid interior surface in the form of spiraling internal lobes, and a rotor with a substantially rigid external surface and one or more spiraling external lobes. At the temperatures and pressures in which the pump/motor is operating, these surfaces are substantially rigid.
- substantially rigid means a surface of any material with sufficient geometric stability at its operating temperature and pressure such that the flexibility of the surface does not create or contribute to sealing or to reduced loss of the working fluid between the surfaces. This includes pliable or elastic materials which “cure”, “set”, or “age” to meet the definition of “substantially rigid” under operating conditions.
- the “lands” or spacing between the grooves allow the interior surface of the stator to act as a guide to facilitate rotation of the rotor within the stator. Accordingly, these surfaces cyclically engage at several locations along the length of the pump/motor to guide rotation of the rotor within the stator. A contact seal is not achieved apart from these specific locations. Grooves, at intervals along each of the respective lobes, are provided on the interior of the stator or on the exterior of the rotor to minimize fluid losses through the gap by generating turbulence and effectively reducing the gap width. Groove depth may vary from 0.001 inches to 0.100 inches.
- a metal stator and rotor may be formed from steel, since it is a suitable substantially rigid material, although composite materials and some thermoset materials also have this substantially rigid feature, and also provide high chemical resistance to various types of downhole fluids.
- the gap between the rotor and the stator may vary from 0.000 inches to a point of maximum cavity width. Lost fluid passing through this gap is significantly reduced by the use of grooves as disclosed herein.
- grooves in the surface of the stator or rotor reduces the loss of working fluid passing through the pump/motor, thereby increasing efficiency.
- the size of debris in the working fluid mandates a large gap between the rotor and stator, such that the efficiency of the pump/motor becomes unattractive.
- the pump/motor disclosed herein is particularly well-suited for downhole applications, e.g., in oil and gas drilling and fluid recovery operations.
- the pump/motor has significant benefits in other applications, particularly in applications involving high temperature environments and/or fluids deleterious to elastomers.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
A progressing cavity pump/motor includes a stator (12) having a metal interior surface (14) and one or more spiraling internal lobes (16). The rotor (18) has a metal exterior surface (20) and one or more spiraling external lobes (22) for cooperating with the stator to form progressing cavities between the stator and the rotor during rotation of the rotor. At least one of the stator interior surface and the rotor exterior surface include a plurality of spaced grooves (30) in the respective surface, such that fluid flowing to a gap between the stator and the rotor is disrupted by the spaced grooves to reduce fluid leakage between the stator and the rotor.
Description
- This application is a continuation application depending from and claiming priority to application Ser. No. 13/082,210 filed on Apr. 7, 2011 and having the same title.
- The present invention relates to a progressing cavity pump/motor, and more particularly to a progressing cavity pump/motor suitable for high temperature applications wherein both the interior surface of the stator and the exterior surface of the rotor are formed from a substantially rigid material.
- Progressing cavity pumps are used in various applications, including downhole oilfield applications to pump fluids to the surface. Progressing cavity downhole motors are similar tools commonly used to convert hydraulic energy into mechanical energy, e.g., to rotate a drill bit. The interior surface of the stator is typically formed from an elastomeric material which acts as a contact seal with the rotor. The contact areas determine the perimeter of the cavities which contain the working fluid, and these cavities progress from one end of the pump/motor to the other end of the pump/motor during its operation.
- In certain applications, the operational temperature range intended for the pump/motor exceeds the practical maximum temperature of elastomeric materials or the corresponding adhesive. Materials, both elastomeric and rigid, have been used for both the surface of the rotor and the stator subjected to these conditions. For rigid material applications, a clearance between the rotor and the stator replaces the contact seal between the two parts formed in other applications when using an elastomeric seal. The clearance between the rotor and stator is either designed, or worn into the rotor and/or stator during operation. Such a design can significantly reduce the efficiency due to the volume of the working fluid passed between the I.D. of the stator and the O.D. of the rotor. Such pump/motor designs are not favored in most applications because of their poor efficiency.
- Progressing cavity pump/motors are disclosed in U.S. Pat. Nos. 6,120,267, 6,491,501, 6,695,060, 7,214,042, 7,407,372, 7,553,139, and Publications US 2010/0316518 and US 2010/0322808. Such pumps conventionally contain an elastomeric layer on the inner surface of the stator for deforming during rotation of the rotor to form a contact seal. U.S. Pat. No. 7,837,451 discloses a rotor with lobes and grooves in the casing for use in pulse detonation combustors (PDC's) and engines (PDE's). Grooves are provided on a tip portion of the lobes and presumably increase air pressure to the combustion chamber. Pumps and motors according to the present invention rely upon a working fluid, which conventionally is a mixture of liquids, solids, and often some gas, to generate energy or to transfer fluids.
- The disadvantages of the prior art are overcome by the present invention, an improved pump/motor is hereinafter disclosed.
- In one embodiment, a progressing cavity pump/motor includes a stator having an interior surface and two or more spiraling internal lobes. The rotor has an exterior surface and one or more spiraling external lobes, with the rotor cooperating with the stator to form progressing cavities between the stator and the rotor during rotation of the rotor. At least one of the stator interior surface and the rotor exterior surface has a plurality of spaced grooves in its surface, such that fluid flowing to a gap between the stator and the rotor is disrupted by the spaced grooves to reduce leakage between the stator and the rotor.
- These and further features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
-
FIG. 1 is a cross-sectional view of a stator and a rotor according to the present invention. -
FIG. 2 is a detailed cross-sectional view of a portion of the pump/motor shown inFIG. 1 with grooves formed in the exterior surface of the stator and a gap between the stator and the rotor. -
FIG. 3 is a cross-sectional view of a portion of a stator illustrating axially spaced grooves. -
FIG. 4 is an enlarged view of alternative grooves. -
FIG. 5 illustrates yet another groove configuration. -
FIG. 6 illustrates alternative deeper and narrower grooves than shown inFIG. 5 . -
FIG. 7 illustrates a stepped grooves within the stator surface. -
FIG. 8 illustrates a portion of a stator with sets of spaced grooves. -
FIG. 9 illustrates in more detail the grooves shown inFIG. 8 . -
FIG. 10 illustrates a three-groove set and a series of spaced grooves. -
FIG. 1 illustrates spaced grooves on the rotor. - The substantially rigid stator interior surface and rotor exterior surface in a progressing cavity pump/motor incorporate a clearance or gap between the rotor and the stator surfaces. This clearance allows the rotor to turn inside the stator. The clearance is large enough to allow small solid particles, sometimes carried in the working fluid, to pass through without binding the rotor and the stator. Flow resistance through the non-contact seal formed by the gap between the rotor and the stator is created by choke flow wherein the fluid particles cannot move around each other. The present invention significantly increases the effective flow resistance of this non-contact seal, thereby significantly decreasing fluid loss between the rotor and the stator while there is a nominal gap between the rotor and the stator.
- Those skilled in the art appreciate that the seal line between the rotor and the stator is moving in a cyclical manner as the pump/motor operates. The velocity and direction of flow at any point on the rotor or stator surface is therefore constantly changing in a repeating pattern. Near surface flow will be substantially parallel to the stator or rotor surface, but, at locations near the seal line, the flow can impinge at angles approaching perpendicular. This rapid cyclical velocity offers a certain amount of resistance when the rotor and stator surfaces approach each other. This resistance is minimized, however, by the conventional smooth, contoured surface on both the rotor and the stator surfaces.
- The present invention incorporates small and preferably parallel grooves on the surface of either the rotor and/or the stator to create turbulent eddies in the near surface flow. This substantially increases turbulence, which results in an increase in flow resistance and thus a significant decrease in fluid leakage. The groove design (shape, depth, spacing between grooves, and orientation) determines the amount of flow resistance achieved. Eddies are created by “tripping” fluid flowing along the contoured surface as it flows across the groove, or by redirecting fluid that impinges the groove from oblique angles. As discussed hereafter, turbulence generation may be increased with the addition of steps, walls between closely spaced grooves, and a combination of walls and steps.
- Referring now to
FIG. 1 , the progressing cavity pump/motor includes astator 12 having aninternal surface 14 and two or morespiraling lobes 16. Therotor 18 includes anexterior surface 20 and oneless lobe 22 than the stator, thereby forming progressing cavities between the rotor and the stator as the rotor rotates within the stator. A progressing cavity pump/motor as shown inFIG. 1 may thus be used as a pump which may be powered by a work string from the surface to pump fluids to the surface for hydrocarbon recovery, or may be used as a motor which is powered by hydraulic fluid pumped down to the motor and used to perform a mechanical function, such as rotating a shaft which then drives a drill bit. As suggested above, the vast majority of downhole motors/pumps of a progressing cavity type include a metal stator body, an elastomeric layer on the interior surface of the metal stator body, and a metal rotor which rotates and forms a contact seal with the elastomeric layer as the rotor rotates with respect to the stator. The same type of motor/pumps are sometimes operated, at a greatly reduced efficiency, with a clearance between the rotor and stator. - The present invention is substantially different in that the primary sealing mechanism is non-contact with grooves specifically designed to increase motor/pump efficiency.
FIG. 2 illustrates a plurality oflocations 26 where the rotor surface approaches the stator surface. Each location is a part of the seal area including at least one groove in the inner surface of the stator and/or in the outer surface of the rotor, as explained further below. Some fluid will leak between the rotor and the stator. The amount depends on the viscosity and velocity of the working fluid, the size of the gap, and the number and type ofgrooves 30. Thegrooves 30 provide a significant resistance to the flow moving toward and through the gap by generating disturbances which convert kinetic energy into heat, thereby significantly reducing the amount of fluid which passes through the gap and increasing the efficiency of the pump/motor. -
FIG. 3 illustrates the portion of astator 12 with a series of rectangular-shapedelongate grooves 30 with sidewalls generally perpendicular to the groove surface. Those skilled in the art should understand that the grooves preferably extend through substantially the length of the stator, and also are preferably aligned with a centerline of one of the stator lobes. The seal location between the rotor and the stator is constantly changing, but the spacedgrooves 30 as shown inFIG. 3 provide a significant disturbance to fluid flow to reduce the fluid loss and increase pump efficiency. -
FIG. 4 is an enlargement of a variation of the grooves shown inFIG. 3 , and illustrates a generally rectangular groove configuration with slanted sidewalls, so that the entrance to thegroove 32 is wider than the base of the groove.FIG. 5 illustrates another type of groove formed in the inner surface of the stator, with thisgroove 34 having a generally curved or accurate cross-sectional configuration. Thegroove 36 inFIG. 6 is similar to theFIG. 5 groove, although the groove width is decreased and the groove depth is increased.FIG. 7 illustrates a stepped groove design, wherein oneportion 37 of thegroove 38 has a shallower depth than anadjacent portion 39 of thesame groove 38. -
FIG. 8 illustrates an alternative portion of astator 12, and again only an axially short portion of the grooves are shown for clarity. The grooves inFIG. 8 are provided insets 40, with a statorinterior surface 14 spaced between each groove set.FIG. 9 is an enlargement of one of the groove sets 40 shown inFIG. 8 , and illustrates the groove set comprising anaccurate groove 42 followed by a generallyrectangular groove 44. - In other embodiments, each groove set may consist of three or more grooves, as shown in
FIG. 10 , wherein each groove set 50 of three grooves spaced apart by theinterior surface 14 of the stator, with the groove set comprising a steppedgroove 52, a generallyrectangular groove 54, and another steppedgroove 56. -
FIG. 11 illustratesgrooves 30 each similar to that shown inFIG. 3 formed on a portion of the exterior surface of arotor 18. Therotor grooves 30 may follow the contour of the rotor lobes, and may be configured according to the alternative groove designs disclosed herein. In some applications, it may be preferable to provide the grooves on the rotor rather than the stator, and in other applications the grooves may be provided on each of the rotor and the stator. - The grooves on the inner surface of the stator are elongate in that each groove has a length significantly greater than its width. Continuous grooves may be formed along substantially the entire length of the stator housing, or a discrete length axially extending groove may be formed, followed by a short interval of no groove, followed by a continuation discrete length axially extending groove, etc. Each groove may have one outwardly slanted side wall, and a “straight” side wall which is substantially perpendicular to the interior surface of the stator. In another alternative, both the side walls of the groove may be tapered outwardly, but at different angles relative to a centerline of the groove.
- Each axially extending groove which matches or follows the contour of a respective lobe on the stator or the rotor will be a substantially uniform spacing from a respective lobe centerline. The spacing between elongate grooves is relatively short so that the lands between the grooves (e.g., the interior surface of stator not having a groove) for a preferred embodiment may occupy from two to ten times the surface area of the grooves.
- The benefits of the invention may be realized because downhole application systems use better filtering techniques than in decades past for recovering solid particles before the fluid enters the pump/motor. In some applications, for example, water may be used as a working fluid when drilling out plugs in a well. Also, some applications utilize a higher viscosity working fluid than was used a decade ago, and accordingly this higher viscosity fluid further benefits from the use of grooves as disclosed herein to disrupt fluid flow to the gap between the rotor and the stator.
- The pump/motor can become locked by particles wedged between the rotor and the stator if the particles passing through the pump/motor are larger than the gap. Decreasing the gap between the rotor and the stator reduces the amount of “lost” fluid which passes through the gap, but increases the likelihood of solid particles becoming wedged between the rotor and the stator. The addition of fluid flow disrupting grooves reduces this lost fluid while maintaining a sufficient gap between the rotor and the stator of a progressing cavity pump/motor to minimize or eliminated locking. Costs are incurred to provide such grooves in a progressing cavity pump/motor compared, for example, to providing a spaced groove surface and gap between a cylindrical shaft with a uniform diameter and a uniform diameter bore in a housing. Unlike other situations, the spacing between a groove and the ever changing gap location varies as the pump/motor is operated. Moreover, providing grooves along the contoured surface of a lobe is more complicated, particularly since the grooves effectively need to be provided over substantially the entire length of the pump/motor, which may be twenty feet or more in length. Grooves in the rotor and the stator may be formed using machining techniques which are commonly used to form the respective lobes on the rotor and/or on the stator.
- The progressing cavity pump/motor of the present invention includes a stator with a substantially rigid interior surface in the form of spiraling internal lobes, and a rotor with a substantially rigid external surface and one or more spiraling external lobes. At the temperatures and pressures in which the pump/motor is operating, these surfaces are substantially rigid. As used herein, “substantially rigid” means a surface of any material with sufficient geometric stability at its operating temperature and pressure such that the flexibility of the surface does not create or contribute to sealing or to reduced loss of the working fluid between the surfaces. This includes pliable or elastic materials which “cure”, “set”, or “age” to meet the definition of “substantially rigid” under operating conditions.
- The “lands” or spacing between the grooves allow the interior surface of the stator to act as a guide to facilitate rotation of the rotor within the stator. Accordingly, these surfaces cyclically engage at several locations along the length of the pump/motor to guide rotation of the rotor within the stator. A contact seal is not achieved apart from these specific locations. Grooves, at intervals along each of the respective lobes, are provided on the interior of the stator or on the exterior of the rotor to minimize fluid losses through the gap by generating turbulence and effectively reducing the gap width. Groove depth may vary from 0.001 inches to 0.100 inches.
- A metal stator and rotor may be formed from steel, since it is a suitable substantially rigid material, although composite materials and some thermoset materials also have this substantially rigid feature, and also provide high chemical resistance to various types of downhole fluids. The gap between the rotor and the stator may vary from 0.000 inches to a point of maximum cavity width. Lost fluid passing through this gap is significantly reduced by the use of grooves as disclosed herein.
- The addition of grooves in the surface of the stator or rotor reduces the loss of working fluid passing through the pump/motor, thereby increasing efficiency. In other applications, the size of debris in the working fluid mandates a large gap between the rotor and stator, such that the efficiency of the pump/motor becomes unattractive. By providing the grooves as disclosed herein, a sufficiently large gap may be maintained to pass sizable debris while still resulting in a pump of reasonable efficiency.
- The pump/motor disclosed herein is particularly well-suited for downhole applications, e.g., in oil and gas drilling and fluid recovery operations. The pump/motor has significant benefits in other applications, particularly in applications involving high temperature environments and/or fluids deleterious to elastomers.
- Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.
Claims (20)
1. A progressing cavity pump/motor, comprising:
a stator having an interior surface and two or more spiraling internal lobes;
a rotor having an external surface and one or more spiraling external lobes, the rotor cooperating with the stator to form progressing cavities between the stator and the rotor during rotation of the rotor; and
at least one of the stator interior surface and the rotor exterior surface having a plurality of spaced grooves in the respective surface and spaced substantially along the length of the respective stator interior surface or rotor exterior surface, such that fluid flowing through a gap between the stator and the rotor is disrupted by the spaced grooves to reduce fluid leakage between the stator and the rotor.
2. A progressing cavity pump/motor as defined in claim 1 , wherein each of the plurality of spaced grooves is substantially parallel to a centerline of the respective spiraling lobe.
3. A progressing cavity pump/motor as defined in claim 1 , wherein at least one of the plurality of spaced grooves is a stepped groove having a first portion with shallower depth than a second portion.
4. A progressing cavity pump/motor as defined in claim 1 , wherein at least one of the plurality of spaced grooves has a curvilinear cross-sectional configuration.
5. A progressing cavity pump/motor as defined in claim 1 , wherein grooves are provided in sets of two or more differently configured grooves, with a respective surface spaced between groove sets.
6. A progressing cavity pump/motor as defined in claim 1 , wherein a surface spacing between grooves or sets of grooves is from 0.1 to 1.2 inches.
7. A progressing cavity pump/motor as defined in claim 1 , wherein the plurality of spaced grooves are formed on the interior surface of the stator.
8. A progressing cavity pump/motor as defined in claim 1 , wherein each of the plurality of grooves has a groove depth from the respective surface of from 0.001 inches to 0.100 inches.
9. A progressing cavity pump/motor, comprising:
a stator formed having an interior surface and two or more spiraling internal lobes;
a rotor having an external surface and one or more spiraling external lobes, the rotor cooperating with the stator to form progressing cavities between the stator and the rotor during rotation of the rotor; and
at least one of the stator interior surface and the rotor exterior surface having a plurality of spaced grooves in the respective surface, each of the plurality of spaced grooves being substantially parallel to a centerline of the respective spiraling lobe, such that fluid flowing to a gap between the stator and the rotor is disrupted by the spaced grooves to reduce fluid leakage between the stator and the rotor.
10. A progressing cavity pump/motor as defined in claim 9 , wherein at least one of the plurality of spaced grooves is a stepped groove having a first portion with shallower depth than a second portion.
11. A progressing cavity pump/motor as defined in claim 9 , wherein at least one of the plurality of spaced grooves has a curvilinear cross-sectional configuration.
12. A progressing cavity pump/motor as defined in claim 9 , wherein each of the plurality of grooves has a groove depth from the respective surface of from 0.001 inches to 0.100 inches.
13. A progressing cavity pump/motor as defined in claim 9 , wherein a surface spacing between grooves or sets of grooves is 0.1 to 1.2 inches.
14. A progressing cavity pump/motor as defined in claim 9 , wherein the plurality of spaced grooves are formed on the interior surface of the stator.
15. A progressing cavity pump/motor as defined in claim 9 , wherein the plurality of spaced grooves are formed on the exterior surface of the rotor.
16. A stator for a progressing cavity pump/motor including a rotor having a substantially rigid external surface and one or more spiraling external lobes, the rotor cooperating with the stator to form progressing cavities between the stator and the rotor during rotation of the rotor, the stator comprising:
the stator having a substantially rigid interior surface and two or more spiraling internal lobes; and
the stator interior surface having a plurality of spaced grooves, such that fluid flowing through a gap between the stator and the rotor is disrupted by the spaced grooves to reduce fluid leakage between the stator and the rotor.
17. A stator as defined in claim 16 , wherein each of the plurality of spaced grooves is substantially parallel to a centerline of a stator spiraling lobe.
18. A stator as defined in claim 16 , wherein at least one of the plurality of spaced grooves is a stepped groove having a first portion with shallower depth than a second portion.
19. A stator as defined in claim 16 , wherein each of the plurality of grooves has a groove depth from the respective surface of from 0.001 inches to 0.100 inches.
20. A stator as defined in claim 16 , wherein at least one of the plurality of spaced grooves has a curvilinear cross-sectional configuration.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/564,324 US20150125329A1 (en) | 2011-04-07 | 2014-12-09 | Progressing cavity pump/motor |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/082,210 US8905733B2 (en) | 2011-04-07 | 2011-04-07 | Progressing cavity pump/motor |
| US14/564,324 US20150125329A1 (en) | 2011-04-07 | 2014-12-09 | Progressing cavity pump/motor |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/082,210 Continuation US8905733B2 (en) | 2011-04-07 | 2011-04-07 | Progressing cavity pump/motor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150125329A1 true US20150125329A1 (en) | 2015-05-07 |
Family
ID=46966265
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/082,210 Active 2032-09-10 US8905733B2 (en) | 2011-04-07 | 2011-04-07 | Progressing cavity pump/motor |
| US14/564,324 Abandoned US20150125329A1 (en) | 2011-04-07 | 2014-12-09 | Progressing cavity pump/motor |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/082,210 Active 2032-09-10 US8905733B2 (en) | 2011-04-07 | 2011-04-07 | Progressing cavity pump/motor |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US8905733B2 (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102013102979B4 (en) * | 2013-03-22 | 2017-03-30 | Wilhelm Kächele GmbH | Exzenterschneckenmaschine |
| US10087758B2 (en) | 2013-06-05 | 2018-10-02 | Rotoliptic Technologies Incorporated | Rotary machine |
| US10590929B2 (en) | 2015-05-04 | 2020-03-17 | Penn United Technologies, Inc. | Method of coupling stator/rotor laminates |
| USD777670S1 (en) | 2015-05-04 | 2017-01-31 | Penn United Technologies, Inc. | Stator laminate |
| BR112017023854B1 (en) | 2015-05-04 | 2022-09-27 | Penn United Technologies, Inc | STATOR LAMINATED, STATOR ASSEMBLY AND MANUFACTURING METHOD OF A STATOR ASSEMBLY |
| GB2591927A (en) | 2018-09-11 | 2021-08-11 | Rotoliptic Tech Incorporated | Helical trochoidal rotary machines |
| US11815094B2 (en) | 2020-03-10 | 2023-11-14 | Rotoliptic Technologies Incorporated | Fixed-eccentricity helical trochoidal rotary machines |
| US11802558B2 (en) | 2020-12-30 | 2023-10-31 | Rotoliptic Technologies Incorporated | Axial load in helical trochoidal rotary machines |
| CA3177204A1 (en) | 2021-01-08 | 2022-07-14 | Rotoliptic Technologies Incorporated | Rotary machines with teardrop-shaped rotors |
| US12146492B2 (en) | 2021-01-08 | 2024-11-19 | Rotoliptic Technologies Incorporated | Helical trochoidal rotary machines with improved solids handling |
| CN113653639B (en) * | 2021-08-13 | 2022-04-19 | 北京理工大学 | A non-contact adjustable rotor pump |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6102681A (en) * | 1997-10-15 | 2000-08-15 | Aps Technology | Stator especially adapted for use in a helicoidal pump/motor |
| US20090074599A1 (en) * | 2006-05-11 | 2009-03-19 | Mikael Tekneyan | Stator Casing For Eccentric Worm Pumps |
| US20090220369A1 (en) * | 2008-02-29 | 2009-09-03 | General Electric Company | Non-contact seal for positive displacement capture device |
| US20110150685A1 (en) * | 2009-12-21 | 2011-06-23 | Baker Hughes Incorporated | Stator to Housing Lock in a Progressing Cavity Pump |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6120267A (en) | 1998-04-01 | 2000-09-19 | Robbins & Myers, Inc. | Progressing cavity pump including a stator modified to improve material handling capability |
| US6491501B1 (en) | 2000-09-01 | 2002-12-10 | Moyno, Inc. | Progressing cavity pump system for transporting high-solids, high-viscosity, dewatered materials |
| US6695060B1 (en) | 2002-09-19 | 2004-02-24 | Michael J. Guidry, Jr. | Downhole pumping system |
| DE10245497C5 (en) * | 2002-09-27 | 2009-02-19 | Wilhelm Kächele GmbH Elastomertechnik | Progressive cavity pump with increased temperature range |
| US7407372B2 (en) | 2004-05-14 | 2008-08-05 | Robbins & Myers Energy Systems L.P. | Progressing cavity pump or motor |
| US7214042B2 (en) | 2004-09-23 | 2007-05-08 | Moyno, Inc. | Progressing cavity pump with dual material stator |
| DE102005042559A1 (en) * | 2005-09-08 | 2007-03-15 | Netzsch-Mohnopumpen Gmbh | stator |
| US7553139B2 (en) | 2006-10-06 | 2009-06-30 | Moyno, Inc. | Progressing cavity pump with wobble stator and magnetic drive |
| US8444901B2 (en) * | 2007-12-31 | 2013-05-21 | Schlumberger Technology Corporation | Method of fabricating a high temperature progressive cavity motor or pump component |
| US8109746B2 (en) | 2009-06-12 | 2012-02-07 | Robbins & Myers Energy Systems L.P. | Progressing cavity pump/motor |
| US8147228B2 (en) | 2009-06-22 | 2012-04-03 | Robbins & Myers Energy Systems, L.P. | Progressing cavity pump/motor |
| US8672656B2 (en) * | 2010-12-20 | 2014-03-18 | Robbins & Myers Energy Systems L.P. | Progressing cavity pump/motor |
-
2011
- 2011-04-07 US US13/082,210 patent/US8905733B2/en active Active
-
2014
- 2014-12-09 US US14/564,324 patent/US20150125329A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6102681A (en) * | 1997-10-15 | 2000-08-15 | Aps Technology | Stator especially adapted for use in a helicoidal pump/motor |
| US20090074599A1 (en) * | 2006-05-11 | 2009-03-19 | Mikael Tekneyan | Stator Casing For Eccentric Worm Pumps |
| US20090220369A1 (en) * | 2008-02-29 | 2009-09-03 | General Electric Company | Non-contact seal for positive displacement capture device |
| US20110150685A1 (en) * | 2009-12-21 | 2011-06-23 | Baker Hughes Incorporated | Stator to Housing Lock in a Progressing Cavity Pump |
Also Published As
| Publication number | Publication date |
|---|---|
| US8905733B2 (en) | 2014-12-09 |
| US20120258001A1 (en) | 2012-10-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8905733B2 (en) | Progressing cavity pump/motor | |
| CN105452667A (en) | System and apparatus for pumping a multiphase fluid | |
| US9869126B2 (en) | Variable diameter stator and rotor for progressing cavity motor | |
| CN107624140A (en) | Wall Gerotor pump is waited for wellbore applications | |
| US20110150686A1 (en) | Progressive cavity hydraulic machine | |
| KR20010031342A (en) | Downhole roller vane motor and roller vane pump | |
| CA2413374C (en) | Drilling turbine | |
| RU2017136106A (en) | DRILLING BIT WITH A SELF-CONTROLLED NOZZLE AND METHOD OF ITS APPLICATION | |
| US12173590B2 (en) | Electric submersible pump with improved gas separator performance in high viscosity applications | |
| CA2908533C (en) | Progressing cavity stator with metal plates having apertures with enlarged ends | |
| US11174872B2 (en) | Anti-spin pump diffuser | |
| EP0608316B1 (en) | Wing motor | |
| RU2362866C2 (en) | Percussion-rotary facility (versions) | |
| US20130287616A1 (en) | Progressing cavity pump/motor | |
| EP3080379B1 (en) | Nutating fluid-mechanical energy converter to power wellbore drilling | |
| RU2471076C2 (en) | Screw hydraulic machine | |
| WO2001092673A2 (en) | Fluid displacement apparatus and method | |
| CN107709778B (en) | Stator | |
| EP0457796A1 (en) | Positive displacement wing motor | |
| CN107269219A (en) | Vane type drilling speed enhancing device | |
| RU2805348C1 (en) | Gerotor hydraulic motor | |
| US6499976B1 (en) | Downhole roller vane motor | |
| RU2800620C1 (en) | Screw gerotor pump stator | |
| CN118815712A (en) | Underground single-action vane pump | |
| CN203770008U (en) | Linear projection vane turbine stator and rotor assembly and turbine motor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL OILWELL VARCO, L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUIDRY, MICHAEL J., JR.;REEL/FRAME:034893/0022 Effective date: 20150204 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |