US20150099669A1 - Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods - Google Patents
Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods Download PDFInfo
- Publication number
- US20150099669A1 US20150099669A1 US14/402,478 US201314402478A US2015099669A1 US 20150099669 A1 US20150099669 A1 US 20150099669A1 US 201314402478 A US201314402478 A US 201314402478A US 2015099669 A1 US2015099669 A1 US 2015099669A1
- Authority
- US
- United States
- Prior art keywords
- glycan
- sample
- biological sample
- mass spectrometry
- maldi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 43
- 238000004949 mass spectrometry Methods 0.000 title claims abstract description 43
- 239000012491 analyte Substances 0.000 title abstract description 51
- 238000003384 imaging method Methods 0.000 title description 16
- 238000000034 method Methods 0.000 claims abstract description 118
- 239000012472 biological sample Substances 0.000 claims abstract description 46
- 150000004676 glycans Chemical class 0.000 claims description 60
- 239000000523 sample Substances 0.000 claims description 57
- 239000011159 matrix material Substances 0.000 claims description 40
- 102000003886 Glycoproteins Human genes 0.000 claims description 34
- 108090000288 Glycoproteins Proteins 0.000 claims description 34
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 29
- 201000010099 disease Diseases 0.000 claims description 26
- 206010028980 Neoplasm Diseases 0.000 claims description 22
- 201000011510 cancer Diseases 0.000 claims description 21
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 claims description 15
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 claims description 15
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 claims description 12
- 102000000447 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Human genes 0.000 claims description 11
- 108010055817 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Proteins 0.000 claims description 11
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 claims description 8
- 108010090665 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase Proteins 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 102000004190 Enzymes Human genes 0.000 claims description 6
- 108090000790 Enzymes Proteins 0.000 claims description 6
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 claims description 6
- 238000002493 microarray Methods 0.000 claims description 5
- 238000005040 ion trap Methods 0.000 claims description 4
- 208000035143 Bacterial infection Diseases 0.000 claims description 3
- 102000035195 Peptidases Human genes 0.000 claims description 3
- 108091005804 Peptidases Proteins 0.000 claims description 3
- 101000895926 Streptomyces plicatus Endo-beta-N-acetylglucosaminidase H Proteins 0.000 claims description 3
- 208000036142 Viral infection Diseases 0.000 claims description 3
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 125000005629 sialic acid group Chemical group 0.000 claims description 3
- 208000024827 Alzheimer disease Diseases 0.000 claims description 2
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 2
- 206010061218 Inflammation Diseases 0.000 claims description 2
- 208000024777 Prion disease Diseases 0.000 claims description 2
- 208000010544 human prion disease Diseases 0.000 claims description 2
- 208000026278 immune system disease Diseases 0.000 claims description 2
- 230000004054 inflammatory process Effects 0.000 claims description 2
- 230000004770 neurodegeneration Effects 0.000 claims description 2
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 2
- 201000001119 neuropathy Diseases 0.000 claims description 2
- 230000007823 neuropathy Effects 0.000 claims description 2
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 2
- 230000003612 virological effect Effects 0.000 claims description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 claims 2
- 230000006872 improvement Effects 0.000 abstract description 38
- 230000035945 sensitivity Effects 0.000 abstract description 30
- 238000012421 spiking Methods 0.000 abstract description 21
- 238000011088 calibration curve Methods 0.000 abstract description 15
- 238000004458 analytical method Methods 0.000 abstract description 12
- 230000008901 benefit Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 5
- 238000001906 matrix-assisted laser desorption--ionisation mass spectrometry Methods 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 49
- 108090000765 processed proteins & peptides Proteins 0.000 description 47
- 102000004196 processed proteins & peptides Human genes 0.000 description 29
- 150000001413 amino acids Chemical class 0.000 description 27
- 235000001014 amino acid Nutrition 0.000 description 25
- 229940024606 amino acid Drugs 0.000 description 25
- 235000018102 proteins Nutrition 0.000 description 25
- 102000004169 proteins and genes Human genes 0.000 description 25
- 108090000623 proteins and genes Proteins 0.000 description 25
- 238000002474 experimental method Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 18
- AFVLVVWMAFSXCK-UHFFFAOYSA-N α-cyano-4-hydroxycinnamic acid Chemical compound OC(=O)C(C#N)=CC1=CC=C(O)C=C1 AFVLVVWMAFSXCK-UHFFFAOYSA-N 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 14
- 238000011282 treatment Methods 0.000 description 12
- 108090001090 Lectins Proteins 0.000 description 11
- 102000004856 Lectins Human genes 0.000 description 11
- 150000001720 carbohydrates Chemical class 0.000 description 11
- 239000002523 lectin Substances 0.000 description 11
- 150000007523 nucleic acids Chemical group 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 9
- 102400000345 Angiotensin-2 Human genes 0.000 description 9
- 101800000733 Angiotensin-2 Proteins 0.000 description 9
- 229950006323 angiotensin ii Drugs 0.000 description 9
- 238000003745 diagnosis Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 238000002372 labelling Methods 0.000 description 8
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 8
- 108020004705 Codon Proteins 0.000 description 7
- 230000013595 glycosylation Effects 0.000 description 7
- 238000011065 in-situ storage Methods 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 102400000344 Angiotensin-1 Human genes 0.000 description 6
- 101800000734 Angiotensin-1 Proteins 0.000 description 6
- ORWYRWWVDCYOMK-HBZPZAIKSA-N angiotensin I Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 ORWYRWWVDCYOMK-HBZPZAIKSA-N 0.000 description 6
- 235000014633 carbohydrates Nutrition 0.000 description 6
- 238000006206 glycosylation reaction Methods 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 210000000133 brain stem Anatomy 0.000 description 5
- 210000003710 cerebral cortex Anatomy 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000001819 mass spectrum Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 206010027476 Metastases Diseases 0.000 description 4
- -1 O-phosphoserine Amino acid Chemical class 0.000 description 4
- 230000001594 aberrant effect Effects 0.000 description 4
- 239000000090 biomarker Substances 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 230000009401 metastasis Effects 0.000 description 4
- 229930182817 methionine Chemical group 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000001259 mesencephalon Anatomy 0.000 description 3
- 238000004393 prognosis Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- PCMORTLOPMLEFB-UHFFFAOYSA-N sinapic acid Chemical compound COC1=CC(C=CC(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-UHFFFAOYSA-N 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 2
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 2
- 102000015427 Angiotensins Human genes 0.000 description 2
- 108010064733 Angiotensins Proteins 0.000 description 2
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000022811 deglycosylation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 238000002157 matrix-assisted laser desorption-ionisation imaging mass spectrometry Methods 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 208000037819 metastatic cancer Diseases 0.000 description 2
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000004885 tandem mass spectrometry Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- CSCAPVBQOYQJJF-UHFFFAOYSA-N 5-amino-2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[2-[(2-amino-3-carboxypropanoyl)amino]propanoylamino]-4-carboxybutanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-carboxybutanoyl]amino]-3-methylbutanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-5-oxopentanoic acid Chemical compound C=1N=CNC=1CC(C(=O)NC(CC=1NC=NC=1)C(=O)NC(CCC(N)=O)C(O)=O)NC(=O)C(C(C)C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)CNC(=O)C(CO)NC(=O)C(CC(O)=O)NC(=O)C(CC=1NC=NC=1)NC(=O)C(CCCNC(N)=N)NC(=O)C(CC=1C=CC=CC=1)NC(=O)C(CCC(O)=O)NC(=O)C(C)NC(=O)C(N)CC(O)=O)CC1=CC=C(O)C=C1 CSCAPVBQOYQJJF-UHFFFAOYSA-N 0.000 description 1
- 101710186708 Agglutinin Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 201000003863 Dandy-Walker Syndrome Diseases 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 101710146024 Horcolin Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical group C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Chemical group CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 101710189395 Lectin Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101710179758 Mannose-specific lectin Proteins 0.000 description 1
- 101710150763 Mannose-specific lectin 1 Proteins 0.000 description 1
- 101710150745 Mannose-specific lectin 2 Proteins 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 208000007379 Muscle Hypotonia Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 102100038551 Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase Human genes 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 208000035415 Reinfection Diseases 0.000 description 1
- 240000006028 Sambucus nigra Species 0.000 description 1
- 235000003142 Sambucus nigra Nutrition 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 208000020221 Short stature Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 206010042265 Sturge-Weber Syndrome Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010046431 Urethral cancer Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 239000000910 agglutinin Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 201000009036 biliary tract cancer Diseases 0.000 description 1
- 208000020790 biliary tract neoplasm Diseases 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 208000015294 blood coagulation disease Diseases 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 208000005093 cerebellar hypoplasia Diseases 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 210000004720 cerebrum Anatomy 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002288 cocrystallisation Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000021953 cytokinesis Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000011037 discontinuous sequential dilution Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 235000008995 european elder Nutrition 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 201000008819 extrahepatic bile duct carcinoma Diseases 0.000 description 1
- 206010016165 failure to thrive Diseases 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000033581 fucosylation Effects 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- CBCIHIVRDWLAME-UHFFFAOYSA-N hexanitrodiphenylamine Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1NC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O CBCIHIVRDWLAME-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000008214 highly purified water Substances 0.000 description 1
- 238000006698 hydrazinolysis reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 230000005976 liver dysfunction Effects 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000074 matrix-assisted laser desorption--ionisation tandem time-of-flight detection Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 208000004141 microcephaly Diseases 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 150000002772 monosaccharides Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 208000004235 neutropenia Diseases 0.000 description 1
- 230000000683 nonmetastatic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000010827 pathological analysis Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 108040002068 peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase activity proteins Proteins 0.000 description 1
- 230000009984 peri-natal effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 238000010833 quantitative mass spectrometry Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 210000001202 rhombencephalon Anatomy 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- PCMORTLOPMLEFB-ONEGZZNKSA-N sinapic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-ONEGZZNKSA-N 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6842—Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6848—Methods of protein analysis involving mass spectrometry
- G01N33/6851—Methods of protein analysis involving laser desorption ionisation mass spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2400/00—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
- G01N2400/10—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- G01N2400/12—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2570/00—Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes
Definitions
- Glycans play multi-faceted roles in many biological processes and aberrant glycosylation is associated with most of the diseases that affect centuries. Glycans are post-translation modifications of proteins that are involved in cell growth, cytokinesis, differentiation, transcription regulation, signal transduction, ligand-receptor binding, interactions of cells with other cells and extracellular matrix (ECM) and bacterial and viral infection, among other functions (see FIG. 1 ). Glycan misregulations and structural changes occur in most of the diseases that affect the human.
- Concanavilin A can be used as a ligand for high-mannose glycans, Sambucus nigra agglutinin (SNA) for sialylated glycans, and Alueria aurantia lectin (AAL) for fucosylated structures.
- SNA Sambucus nigra agglutinin
- AAL Alueria aurantia lectin
- lectins provide minimal structural information about the stained epitopes, they are limited to one epitope at a time on each tissue section, they are quantitative and, compared with antibodies, have lower affinities for the glycans. Further, very few monoclonal antibodies have been developed for glycans.
- MALDI-TOF MS Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry
- the present invention provides a method for direct profiling of N-linked glycans in a biological sample, the method comprising: (a) obtaining a biological sample comprising at least one glycoprotein; (b) denaturing the at least one glycoprotein in the biological sample; (c) releasing at least one glycan from the at least one glycoprotein; (d) coating the biological sample with a matrix; (e) analyzing the at least one glycan using mass spectrometry; and wherein spatial distribution of the at least one glycan is maintained.
- the present invention provides a method for diagnosing a disease or condition in a subject, the method comprising: (a) comparing the N-linked glycan profile from a subject to an N-linked glycan profile from a normal sample or diseased sample; and (b) determining whether the subject has the disease or condition; wherein the glycan profile is determined by: (i) obtaining a biological sample comprising at least one glycoprotein; (ii) denaturing the at least one glycoprotein in the biological sample; (iii) releasing at least one glycan from the at least one glycoprotein; (iv) coating the biological sample with a matrix; (v) analyzing the at least one glycan using mass spectrometry; and wherein spatial distribution of the at least one glycan is maintained.
- the present invention provide a method for preserving and detecting sialic acid residues in a sample comprising: (a) obtaining a biological sample comprising at least one sialic acid containing glycoprotein; (b) adding p-toluidine to the sample; (c) denaturing the at least one sialic acid containing glycoprotein in the biological sample; (d) releasing at least one sialic acid containing glycan from the at least one sialic acid containing glycoprotein; (e) coating the biological sample with a matrix; (f) analyzing the at least one sialic acid containing glycan using mass spectrometry; and wherein spatial distribution of the at least one sialic acid containing glycan is maintained.
- FIG. 1 shows that glycans play multi-faceted roles in many biological processes.
- FIG. 2 shows the glycan imaging methods known in the art for FFPE tissue sections (Prior Art).
- FIG. 3 shows mass spectrometry imaging of N-linked glycans on FFPE tissue sections.
- FIG. 4 shows coronal mouse brain tissue sections are imaged with and without PNGase F printing.
- PNGase F releases the N-linked glycans from FFPE sections for MALDI-MS imaging (the brain stem comprises the interbrain, midbrain, and hindbrain; mostly the midbrain is shown in this figure).
- FIG. 5 shows ion images of fucosylated glycans on mouse brain coronal sections (CNU: cerebral nuclei; CTX: cerebral cortex; BS: brain stem).
- FIG. 6 shows glycans detected from PNGase F-printed mouse brain tissue section using MALDI-MS.
- FIG. 7 shows that labeling the sialylated N-glycans with P-toluidine protects them in MALD-MS.
- FIG. 8 shows that in situ P-toluidine labeling of sialylated glycans on FFPE tissues improves detection.
- FIG. 9 shows imaging of sialylated N-linked glycans on prostate tissue sections.
- FIG. 10 shows MALDI-MS imaging to directly profile and image linked glycans from FFPE tissue sections (top) and in situ chemical labeling of tissue sections to image FFPE tissue sections (bottom).
- FIG. 11 depicts presence of background, limited dynamic range, limit of detection, limited detection efficiency and variations cause the deviation between the realistic calibration curve from the ideal curve where the signal is proportional to the analyte concentration. Shifting the reference point to the linear dynamic range of the calibration curve will enhance the sensitivity and improve the LOD by spiking in certain exogenous concentrations of target analyte.
- the original calibration curve of the analyte of interest is used for this estimation of the predicted LODC.
- the reference point for calculation of LODC is shifted to the given exogenous concentration.
- FIG. 12 shows the correlation between the LOD, sensitivity and the standard deviation is depicted.
- the slope of the dotted line is by definition the average sensitivity over the concentration range from 0 to LOD. On the other hand, this slope equals three times the standard deviation divided by LOD. Therefore, LOD is proportional to the SD divided by the sensitivity.
- FIG. 13 shows how sensitivity and standard deviation of the measurements change with the analyte concentration.
- FIG. 15 shows experimental improvement factors for three peptides in simple background are averaged over four replicates.
- the dotted line shows the threshold of LOD improvement.
- the error-bars show the standard error of the mean.
- FIG. 16 depicts an example of the predicted improvement factor for Angiotensin II in the simple background experiment using A) CHCA and B) DHB is shown.
- the highest improvement factor is achieved at exogenous concentrations close to the LOD orig of the target peptide for both CHCA (0.67 LOD orig ) and DHB (1.46 LOD orig ) matrices. Due to the increase in the standard deviation of the measurements, the improvement factor decreases at higher exogenous concentrations.
- FIG. 17 shows experimental LOD improvement factors for three peptides in complex background using CHCA as the matrix are averaged over triplicate experiments. In 10 out of the 15 experiments, the LOD is improved. The improvement factors depend on the concentration of the exogenous analyte spiked into the sample as well as the analyte of interest. The error-bars depict the standard error of the mean.
- FIG. 18 depicts an example of predicted improvement factor for Angiotensin II in the complex background experiment.
- the highest theoretical improvement factor is achieved at exogenous concentrations close to the LOD orig of that peptide, similar to the simple background experiment.
- the curve is bell-shaped yielding an improvement factor close to 1 at lower concentrations, and decreasing at higher concentrations.
- carbohydrate is intended to include any of a class of aldehyde or ketone derivatives of polyhydric alcohols. Therefore, carbohydrates include starches, celluloses, gums and saccharides. Although, for illustration, the term “saccharide” or “glycan” is used below, this is not intended to be limiting. It is intended that the methods provided herein can be directed to any carbohydrate, and the use of a specific carbohydrate is not meant to be limiting to that carbohydrate only.
- sample encompass a variety of sample types obtained from a patient, individual, or subject and can be used in a diagnostic, prognostic or monitoring assay.
- the patient sample may be obtained from a healthy subject, a diseased patient including, for example, a patient having associated symptoms of SWS, KTWS or PWS.
- a sample obtained from a patient can be divided and only a portion may be used for diagnosis, prognosis or monitoring. Further, the sample, or a portion thereof, can be stored under conditions to maintain sample for later analysis.
- the definition specifically encompasses blood and other liquid samples of biological origin (including, but not limited to, peripheral blood, serum, plasma, urine, saliva, amniotic fluid, stool and synovial fluid), solid tissue samples such as a biopsy specimen or tissue cultures or cells derived therefrom and the progeny thereof.
- a sample comprises a skin sample.
- a sample of brain tissue is used.
- a sample comprises a blood or serum sample.
- the definition also includes samples that have been manipulated in any way after their procurement, such as by centrifugation, filtration, precipitation, dialysis, chromatography, treatment with reagents, washed, or enriched for certain cell populations.
- Samples further encompass a clinical sample, and also include cells in culture, cell supernatants, tissue samples, organs, and the like. Samples may also comprise fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks, such as blocks prepared from clinical or pathological biopsies, prepared for pathological analysis or study by immunohistochemistry.
- providing a sample” and “obtaining a biological (or patient) sample” are used interchangeably and mean to provide or obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from a patient, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues, having treatment or outcome history, can also be used.
- polypeptide “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues.
- the terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.
- amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids.
- Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, .gamma.-carboxyglutamate, and O-phosphoserine
- Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an .alpha.
- amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.
- Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- Constantly modified variants applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine.
- nucleic acid variations are “silent variations,” which are one species of conservatively modified variations.
- Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid.
- each codon in a nucleic acid except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan
- TGG which is ordinarily the only codon for tryptophan
- amino acid sequences one of ordinary skill in the art recognizes that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.
- saccharides include mono-, di-, tri- and polysaccharides (or glycans).
- Glycans can be branched or branched.
- Glycans can be found covalently linked to non-saccharide moieties, such as lipids or proteins (as a glycoconjugate). These covalent conjugates include glycoproteins, glycopeptides, peptidoglycans, proteoglycans, glycolipids and lipopolysaccharides. The use of any one of these terms also is not intended to be limiting as the description is provided for illustrative purposes.
- the glycans can also be in free form (i.e., separate from and not associated with another moiety).
- the use of the term peptide is not intended to be limiting.
- the methods provided herein are also intended to include proteins where “peptide” is recited.
- the methods are methods of diagnosis and the pattern is associated with a diseased state.
- the pattern associated with a diseased state is a pattern associated with cancer, such as prostate cancer, melanoma, bladder cancer, breast cancer, lymphoma, ovarian cancer, lung cancer, colorectal cancer or head and neck cancer.
- the pattern associated with a diseased state is a pattern associated with an immunological disorder; a neurodegenerative disease, such as a transmissible spongiform encephalopathy, Alzheimer's disease or neuropathy; inflammation; rheumatoid arthritis; cystic fibrosis; or an infection, preferably viral or bacterial infection.
- the method is a method of monitoring prognosis and the known pattern is associated with the prognosis of a disease.
- the method is a method of monitoring drug treatment and the known pattern is associated with the drug treatment.
- the methods e.g., analysis of glycome profiles
- Methods of analyzing glycans of glycoconjugates can also include cleaving the glycans from glycoconjugates using a releasing agent.
- a releasing agent can comprise any chemical or enzymatic methods or combinations thereof that are known in the art.
- An example of a chemical method for cleaving glycans from glycoconjugates is hydrazinolysis or alkali borohydrate.
- Enyzmatic methods include methods that are specific to N- or O-linked sugars. These enzymatic methods include the use of Endoglycosidase H (Endo H), Endoglycosidase F (EndoF), N-Glycanase F (PNGaseF) or combinations thereof.
- PNGaseF is used when the release of N-glycans is desired.
- PNGaseF is used for glycan release the proteins is, for example, first unfolded prior to the use of the enzyme.
- the unfolding of the protein can be accomplished with any of the denaturing agents provided above.
- Mass spectrometry imaging is a powerful tool that has been used to correlate various peptides, proteins, lipids and metabolites with their underlying histopathology in tissue sections. Taking advantage of the rapid advances in mass spectrometry, MSI can push the limits of glycomics studies. Mass spectrometry imaging offers some advantages over the conventional methods that support its use as a complementary technique to lectin histochemistry. One significant advantage is that MALDI imaging combined with tandem mass spectrometry reveals detailed structural information about the glycans in a sample. A wide range of molecular weights can be detected by mass spectrometry imaging. Also, the high mass resolution allows distinguishing two peaks with close molecular weights, which subsequently improves the detection specificity.
- MALDI imaging facilitates high-throughput analysis of tissue glycans.
- MALDI imaging can also be used for performing quantitative assays. Another significant advantage of MALDI imaging is that it has the capability of detecting an unknown compound without any a priori knowledge of the analytes. Therefore, this technique is particularly suitable for biomarker discovery research.
- Matrix-assisted laser desorption/ionization is a soft ionization mass spectrometric technique that is suitable for use in the analysis of biomolecules, such as proteins, peptides, sugars, and the like, which tend to be fragile and fragment when ionized by conventional ionization methods.
- MALDI comprises a two-step process.
- desorption is triggered by an ultraviolet (UV) laser beam.
- the matrix material absorbs the UV laser radiation, which leads to the ablation of an upper layer of the matrix material, thereby producing a hot plume.
- the hot plume contains many species: neutral and ionized matrix molecules, protonated and deprotonated matrix molecules, matrix clusters, and nanodroplets.
- the analyte molecules are ionized, e.g., protonated or deprotonated, in the hot plume.
- the matrix material comprises a crystallized molecule capable of absorbing the UV laser radiation.
- Common matrix materials include, but are not limited to, 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), CHCA, and DHB.
- a solution of the matrix material is made, either in highly purified water and an organic solvent, such as acetonitrile or ethanol.
- an organic solvent such as acetonitrile or ethanol.
- a small amount of trifluoroacetic acid (TFA) also can be added to the solution.
- the matrix solution can then be mixed with the analyte, e.g., a protein sample. This solution is then deposited onto a MALDI plate, wherein the solvents vaporize leaving only the recrystallized matrix comprising the analyte molecules embedded in the MALDI crystals.
- analyte e.g., a protein sample.
- the type of mass spectrometer typically used with MALDI is the time-of-flight (TOF) mass spectrometer, which has a large mass range.
- the mass spectrometric method comprises MALDI-TOF.
- the mass spectrometric method comprises MALDI-TOF tandem mass spectrometry.
- mass spectrometry can be combined with another appropriate method(s) as may be contemplated by one of ordinary skill in the art, for example, HPLC, or LC/MS and the like.
- the mass spectrometry comprises a MALDI-quadrupole ion trap (QIT)-TOF mass spectrometer, which, in some embodiments, can include a tandem mass spectrometer system.
- a MALDI-quadrupole ion trap (QIT)-TOF mass spectrometer which, in some embodiments, can include a tandem mass spectrometer system.
- Such mass spectrometer systems provide for the structural characterization of biomolecules, not only their mass measurement. Such systems provide multiple advantages for characterizing biomolecules including, but not limited to, time of flight resolution and accuracy independent of laser energy applied and a wide mass range of ions trapped (up to 20 kDa).
- Such systems can comprise a MALDI plate, an ion trap, a reflectron and a detector.
- the present invention provides a MSI technique that has been developed for direct profiling of N-linked glycans from formalin-fixed paraffin-embedded (FFPE) tissues.
- FFPE tissues are sectioned on indium tin oxide coated glass slides for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Deparaffinization and rehydration of the tissue sections are followed by antigen retrieval and denaturing of the proteins.
- a releasing agent such as Peptide-N-Glycosidase F (PNGase F)
- PNGase F Peptide-N-Glycosidase F
- Samples can then be spray-coated with matrix and analyzed by MALDI-MS-MS2-MSn (Shimadzu Axima Resonance in positive mode).
- the present invention provides a method for direct profiling of N-linked glycans in a biological sample, the method comprising: (a) obtaining a biological sample comprising at least one glycoprotein; (b) denaturing the at least one glycoprotein in the biological sample; (c) releasing at least one glycan from the at least one glycoprotein; (d) coating the biological sample with matrix; and (e) analyzing the at least one glycan using mass spectrometry; and wherein spatial distribution of the at least one glycan is maintained.
- the biological sample is a paraffin-embedded tissue and/or formalin-fixed tissue.
- the biological sample is rehydrated.
- the biological sample is deposited on a solid support.
- a solid support such as a glass plate or slide, or similar support
- a biological sample such as a tissue
- mass spectra are acquired for each pixel on the tissue.
- the denaturation of the glycoprotein(s) occurs by heating the biological sample and/or incubating the biological sample with a proteolytic enzyme for a sufficient period of time.
- releasing the N-linked glycan(s) on the glycoprotein(s) occurs by using a releasing agent, for example, Peptide-N-Glycosidase F (PNGase F).
- PNGase F Peptide-N-Glycosidase F
- releasing the glycan(s) occurs by using a microarray printer in combination with a releasing agent.
- a matrix is used, such as 2,5-dihydroxybenzoic acid (DHB).
- the mass spectrometry method used is MALDI-mass spectrometry.
- the present invention also provides a generic technique for improving the sensitivity and detection limit of MALDI-MS.
- This method named targeted analyte detection (TAD), selectively enhances the detection of analytes (target molecules) of interest, such as proteins, peptides, and glycans, for example.
- TAD targeted analyte detection
- a small known amount of analyte of interest is spiked into the sample, thereby elevating the concentration to levels above the noise, where the interference of the noise is relatively reduced and the sensitivity is increased.
- the added analyte acts as a carrier to suppress the matrix effect (introduced by interferences with other compounds in the sample) and enhances ion abundance of analyte of interest.
- the measured signal is thus contributed by both the endogenous and exogenous (spiked-in) analytes. Therefore, TAD uses the added standard to reveal the endogenous target analyte that was otherwise buried in the noise.
- the feasibility of TAD in improving the detection limit of MALDI-MS is presented. Additionally, the present invention also provides a systematic method for optimizing the spiking amount needed to achieve the maximum improvement in the limit of detection (LOD).
- the main advantage of TAD is that it is not limited to certain types of analytes, provided that the analyte of interest is available or can be synthesized for spiking into the unknown sample.
- this approach takes advantage of the generic sigmoidal shape of the calibration curve, which is very reproducible in a wide range of analytical instruments. Therefore, this method might be capable of improving the sensitivity in a wide range of instruments regardless of the detection technologies, including but not limited to mass spectrometers.
- LOD orig is the limit of detection in the absence of any exogenous target analyte and Signal (LOD orig ) is the total signal at this concentration.
- Signal (Background) represents the background signal mean and SD denotes the background signal standard deviation ( FIG. 11 ).
- the LOD was estimated by shifting the reference point of the background to the given exogenous spiking peptide concentration (C) used in TAD solution.
- the signal and standard deviation at any concentration were estimated by interpolating the signal and standard deviation of the calibration curve without exogenous peptide in TAD solution, respectively.
- LOD C and LOD C should then satisfy eq 2:
- the measured signal for each analyte is proportional to the amount of that analyte in the sample.
- the detection accuracy is compromised by factors such as background, detection efficiency, sample preparation and signal detection variations, and the limit of detection in mass spectrometry. Presence of background results in a nonzero signal even at zero concentration of the analyte. Suboptimal detection efficiency compromises the output signal. Analyte concentration variations introduced by analyte-matrix cocrystallization, desorption/ionization, analyzer and detector add noise to the measurements, thus limiting the threshold as well as the confidence of low abundance analyte detection.
- the practical calibration curve of MALDI-MS which is the measured mass spectral signal versus a given analyte concentration, differs from the ideal curve in crucial aspects ( FIG. 11 ).
- the sigmoidal shape of the practical calibration curve arises from these differences, whereas the signal intensity is linearly proportional to the analyte concentration in the ideal curve.
- LOD corresponds to the concentration of an analyte that produces a signal at least as large as the background mean plus three times the background standard deviation.
- the LOD can be estimated by the standard deviation of the background as well as the sensitivity, based on eq 3 ( FIG. 12 ):
- sensitivity is defined as the slope of the calibration curve.
- Eq 3 indicates that LOD is directly proportional to the standard deviation and inversely proportional to the sensitivity; therefore, lower noise level and higher sensitivity improve the LOD. This provides the opportunity that one can improve the LOD by improving the reproducibility or sensitivity.
- the methods of the present invention allow direct imaging of glycans on tissues to determine disease-specific glycosylation changes. Therefore, in some embodiments, these methods provide a method of diagnosing a disease or condition in a subject comprising: (a) comparing the N-linked glycan profile from a subject to an N-linked glycan profile from a normal sample or diseased sample; (b) determining whether the subject has the disease or condition; and wherein the glycan profile is determined using the presently disclosed methods.
- the disease or disorder is a cancer.
- the presently disclosed methods detect glycoproteins, glycoprotein biomarkers, and/or aberrant glycans by tissue glycan imaging.
- therapeutic targets can be identified by the presently disclosed methods by identifying aberrant glycans.
- diagnostic kits comprising instructions and materials that can be used to perform the presently disclosed methods also are provided.
- the glycosylation of a protein may be indicative of a normal or a disease state. Therefore, methods are provided for diagnostic purposes based on the analysis of the glycosylation of a protein or set of proteins, such as the total glycome.
- the methods provided herein can be used for the diagnosis of any disease or condition that is caused or results in changes in a particular protein glycosylation or pattern of glycosylation. These patterns can then be compared to “normal” and/or “diseased” patterns to develop a diagnosis, and treatment for a subject.
- the methods provided can be used in the diagnosis of cancer, inflammatory disease, benign prostatic hyperplasia (BPH), etc.
- the diagnosis can be carried out in a person with or thought to have a disease or condition.
- the diagnosis can also be carried out in a person thought to be at risk for a disease or condition.
- a person at risk is one that has either a genetic predisposition to have the disease or condition or is one that has been exposed to a factor that could increase his/her risk of developing the disease or condition.
- the types of cancer diagnosis which may be made, using the methods provided herein, is not necessarily limited.
- the cancer can be any cancer.
- the term “cancer” is meant any malignant growth or tumor caused by abnormal and uncontrolled cell division that may spread to other parts of the body through the lymphatic system or the blood stream.
- the cancer can be a metastatic cancer or a non-metastatic (e.g., localized) cancer.
- metastatic cancer refers to a cancer in which cells of the cancer have metastasized, e.g., the cancer is characterized by metastasis of a cancer cells.
- the metastasis can be regional metastasis or distant metastasis, as described herein.
- inventive methods can provide any amount of any level of diagnosis, staging, screening, or other patient management, including treatment or prevention of cancer in a mammal.
- treatment or prevention provided by the inventive method can include treatment or prevention of one or more conditions or symptoms of the disease, e.g., cancer, being treated or prevented.
- prevention can encompass delaying the onset of the disease, or a symptom or condition thereof.
- the present invention provides a use of a glycan profile prepared using the method disclosed herein to diagnose a disease or condition in a subject, comprising comparing the glycan profile from a subject to a glycan profile from a normal sample, or diseased sample, and determining whether the sample of the subject has the disease or condition.
- non-cancer related diseases or disorders include congential disorders of glycosylation, such as failure to thrive, mental retardation, hypotonia, hypoglycemia, cerebellar hypoplasia, liver dysfunction, coagulopathy, partial TBG deficiency, perinatal dysmorphia, microcephaly, loose wrinkled skin, skeletal anomalies, short stature, recurrent infections, thrombocytopenia, neutropenia, seizures and stroke-like episodes, and dandy-walker malformation.
- congential disorders of glycosylation such as failure to thrive, mental retardation, hypotonia, hypoglycemia, cerebellar hypoplasia, liver dysfunction, coagulopathy, partial TBG deficiency, perinatal dysmorphia, microcephaly, loose wrinkled skin, skeletal anomalies, short stature, recurrent infections, thrombocytopenia, neutropenia, seizures and stroke-like episodes, and dandy-walker malformation.
- cancers also include but are not limited to adrenal gland cancer, biliary tract cancer; bladder cancer, brain cancer; breast cancer; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; extrahepatic bile duct cancer; gastric cancer; head and neck cancer; intraepithelial neoplasms; kidney cancer; leukemia; lymphomas; liver cancer; lung cancer (e.g.
- small cell and non-small cell melanoma; multiple myeloma; neuroblastomas; oral cancer; ovarian cancer; pancreas cancer; prostate cancer; rectal cancer; sarcomas; skin cancer; small intestine cancer; testicular cancer; thyroid cancer; uterine cancer; urethral cancer and renal cancer, as well as other carcinomas and sarcomas.
- the term “about,” when referring to a value can be meant to encompass variations of, in some embodiments, ⁇ 100% in some embodiments ⁇ 50%, in some embodiments ⁇ 20%, in some embodiments ⁇ 10%, in some embodiments ⁇ 5%, in some embodiments ⁇ 1%, in some embodiments ⁇ 0.5%, and in some embodiments ⁇ 0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
- FIG. 3 shows a representative schematic of an imaging platform using the inventive methods.
- a FFPE tissue section is rehydrated, the proteins in the tissue section are denatured, and microarray printing using the release agent PNGase F is allowed to occur.
- PNGase F is the enzyme that cleaves N-linked glycans from their host proteins.
- a microarray printer can be used to apply the PNGase F on the tissue in a grid. Then, a matrix, such as 2,5-dihydroxybenzoic acid (DHB), can be sprayed over the tissue using an airbrush.
- DDB 2,5-dihydroxybenzoic acid
- the tissue can then be analyzed with a mass spectrometer (Axima Resonance MALDI QIT-TOF, Shimadzu).
- a mass spectrometer Axima Resonance MALDI QIT-TOF, Shimadzu.
- One difference between a conventional MALDI analysis and the methods of the present invention is that the tissue is raster scanned by the laser in the x and y directions and mass spectra are acquired for each pixel on the tissue. At this point, by mapping the intensity of various peaks as a function of location, ion images can be generated for each glycan structure detected in the mass spectra.
- the methods of the present invention were used to analyze mouse brain coronal sections ( FIG. 4 ).
- FIG. 4 On the left of FIG. 4 , the tissue stained with AAL lectin is depicted, and the cerebral cortex and brain stem regions are marked.
- the AAL lectin binds to the fucosylated glycans. According to this image, although fucosylated glycans are distributed throughout the brain, they seem to be higher in abundance in the cerebral cortex compared to the midbrain in the brain stem.
- the middle panels shows the MALDI images for two glycan ions that are overlaid and the structures of the glycan ions are shown below the image.
- the red signal corresponds to a glycan, which is highly fucosylated and the green signal shows the distribution of glycans with only one fructose.
- the ion images are shown for those same glycans for a tissue that is not treated with PNGase F. Therefore, the enzymatic deglycosylation results in releasing of glycans and their subsequent desorption and ionization with MALDI-MS.
- FIG. 5 depicts ion images of some of the detected fucosylated glycans and these are compared with AAL lectin staining of an adjacent tissue section. Based on the AAL staining, fucosylation occurs in the cerebrum as well as brain stem, with a relatively higher abundance in the cerebral cortex. The ion images acquired from fucosylated glycan also show a similar pattern. With the exception of a glycan of 2053 Da, other glycans are either uniformly distributed over the tissue or have higher abundance in the cerebral cortex.
- FIG. 6 shows the mass spectrum of the tissue section averaged over all tissue pixels.
- the identified glycans were compared with the functional glycomics database. Based on this comparison, approximately 72% of the mouse brain non-sialylated N-linked glycans were able to be detected. In this experiment, however, sialylated glycans were missing in this spectrum. Without wishing to be bound to any one particular theory, the missing sialylated glycans may be due to the loss of sialic acid during sample preparation or mass spectrometry analysis.
- the methods of the present invention were extended to image sialylated glycans from FFPE tissues as well ( FIG. 7 ).
- Sialic acid is a terminal sugar residue on N-linked glycans shown by a diamond in glycan schematics. This sugar has proven to be challenging to analyze because it easily gets cut off from the glycans due to harsh sample preparation conditions or during post source decay MALDI-MS analysis.
- a technique for stabilizing the sialic acid residues in MALDI analysis by labeling them with p-toluidine was developed. Using these inventive methods, the labeled glycans, along with the non-sialylated glycans, are released from glycoprotein by enzymatic deglycosylation and analyzed with mass spectrometry.
- the new sialic acid protection methods of the present invention were tested on FFPE prostate tissue sections ( FIG. 8 ).
- the mass spectrum on the upper panel shows the mass spectral peaks corresponding to sialylated glycans after in situ labeling with p-toluidine. By comparing these results with the control group, where no p-toluidine was applied, it was shown that this technique significantly improves the signal to noise ratio and detection of sialylated glycans.
- FIG. 9 shows ion images of four sialylated glycans along with their structures.
- the histostaining with SNA lectin which is used to stain sialylated glycans, showed a quite weak signal from sialylated glycans on tissue.
- the sialylated glycans even though they are low in abundance, were mostly located in the three regions marked by black arrows.
- the mass-spectrometry based detection was able to detect at least four sialylated glycans ( FIG. 9 ).
- the methods of the present invention provides release agent printing combined with MALDI mass spectrometry imaging to directly profile and image N-linked glycans from FFPE tissue sections ( FIG. 10 ).
- release agent printing combined with MALDI mass spectrometry imaging to directly profile and image N-linked glycans from FFPE tissue sections ( FIG. 10 ).
- in situ labeling of sialylated tissue glycans with p-toluidine was performed to image them on FFPE tissue sections.
- Sensitivity and standard deviation (SD) of an analyte greatly depend on the concentration of the target analyte in the sample.
- the calibration curve of Angiotensin II was generated by analyzing sequential dilutions of this peptide with the mass spectrometer.
- the sensitivity was calculated from the calibration curve by dividing the signal difference by the concentration difference for two adjacent data points at each concentration.
- the standard deviation was computed from ten normalized mass spectral signals and is denoted as SD. Due to the sigmoidal shape of the calibration curve ( FIG. 11 and FIG.
- the sensitivity i.e. the slope of this curve stays stable at its maximum value over the linear range of the assay, and decreases as the concentration falls below the LOD or above the upper linear range ( FIG. 11 and FIG. 13B ).
- the standard deviations are usually modest at lower analyte concentration and increase with analyte concentration ( FIG. 13C ).
- the coefficient of variation (CV) defined by the standard deviation divided by the signal mean also associated with the concentration of the target analyte and drops rapidly as the concentration of the analyte increases ( FIG. 13D ).
- CV coefficient of variation
- Improvement factor is defined by LOD orig divided by LOD C , where LOD orig is the LOD of the control group with no exogenous peptides spiked to the solution, and LOD C represents the LOD that was achieved by boosting the concentration by spiking the analyte of a concentration C fmol/ ⁇ L.
- the predicted improvement factor is very close to 1 at the lower end of the target analyte spiking concentrations, but it has local maxima at the midranges and decreased at higher spiking concentration.
- the predicted LOD C for Angiotensin II using CHCA and DHB matrices in the simple background experiment is plotted as a function of spiking concentration C divided by LOD orig ( FIG. 16 ).
- the optimal exogenous concentrations and improvement factors for simple background experiment averaged over four replicates.
- the optimal exogenous concentration is close to LOD orig .
- the optimal exogenous concentration is 1.26 LOD orig over all three peptides in CHCA matrix, which is lower than the optimal exogenous concentration of 1.58 LOD orig for DHB matrix.
- CHCA yields a higher predicted optimal improvement factor compared to DHB matrix.
- the estimated LOD curve for Angiotensin II in complex mixture shows similar pattern to the simple background experiment ( FIG. 18 ), with a local maximum at exogenous concentration of LOD orig .
- the optimal exogenous concentrations and the achieved improvement factors for complex background experiment are shown in Table 2.
- the optimal predicted exogenous concentrations are estimated to be close to 2 LOD orig , which is slightly higher than that of the simple background experiment.
- the predicted maximum LOD improvement factor in the complex background experiment is lower than that of the simple background experiment for the same three examined peptides.
- TAD takes advantage of the carrier effect of standard additions to reveal the signal that is buried in noise due to complexity of the sample.
- the carrier effect is a repeatedly reported phenomenon, which to the best of our knowledge has not previously been used in quantitative mass spectrometry as a technique for improving the detection.
- TAD provides a 3-fold LOD improvement in simple background, and a 2-fold LOD improvement in complex background experiments.
- This enhancement achieved through TAD might be modest compared to signal enrichment techniques such as chromatography, fractionation, or affinity enrichment; however, TAD can be applied in combination with these techniques to further improve the detection limit by 2- to 3-fold.
- further improvement of detection limit using TAD technique can be achieved by highly controlled conditions with high reproducibility. Therefore, the functionality of TAD might improve in a more controlled and reproducible experimental setting such as automated clinical assays and in targeted detection of glycans and proteins in situ by mass spectrometry as disclosed herein.
- the presently disclosed methods include direct profiling of glycans on tissues, in situ chemical labeling and/or enzymatic modifications of glycans and glycoproteins on tissue slides, quantitative analysis of tissue glycans and glycoproteins using isotopic labeling, and targeted detection of glycans and proteins in situ by mass spectrometry.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Optics & Photonics (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
The presently disclosed subject matter provides methods using mass spectrometry for direct profiling of N-linked glycans from a biological sample. In addition, the embodiments of the present invention also disclose novel methods, known as targeted analyte detection (TAD), for improving the detection limit of MALDI-MS. These methods take advantage of the carrier effect of the added standard analytes, which occurs due to the generic sigmoidal shape of the calibration curve. The functionality of TAD depends on the relative enhancement of sensitivity over the increase of the standard deviation at the analysis of target analytes with spiking in exogenous concentration. At certain ranges of exogenous concentration, the increment in the sensitivity overcomes the standard deviation, resulting in an improved LOD. Theoretically, exogenous concentrations approximately at 1 LODorig would generate the optimum LOD improvement. TAD is a cost-effective LOD improvement method, which is not limited to a certain group of analytes, or detection methods or instruments. It can be applied to enhance the detection of any analyte with different detection methods, provided that the analyte of interest can be extracted or is available in synthetic form.
Description
- This application claims the benefit of U.S. Provisional Patent Application Nos. 61/650,646, filed on May 23, 2012, and 61/681,417, filed on Aug. 9, 2012, and 61/776,534, filed Mar. 11, 2013,which are hereby incorporated by reference for all purposes as if fully set forth herein.
- This invention was made with government support under U01CA152813 awarded by the National Institutes of Health (NIH). The government has certain rights in the invention.
- Glycans play multi-faceted roles in many biological processes and aberrant glycosylation is associated with most of the diseases that affect mankind. Glycans are post-translation modifications of proteins that are involved in cell growth, cytokinesis, differentiation, transcription regulation, signal transduction, ligand-receptor binding, interactions of cells with other cells and extracellular matrix (ECM) and bacterial and viral infection, among other functions (see
FIG. 1 ). Glycan misregulations and structural changes occur in most of the diseases that affect the human. - Lectin histochemistry methods are commonly used to stain tissue glycans on formalin-fixed paraffin-embedded (FFPE) sections (see
FIG. 2 ). Some lectins have high affinities for the epitopes of certain glycans. For example, Concanavilin A (ConA) can be used as a ligand for high-mannose glycans, Sambucus nigra agglutinin (SNA) for sialylated glycans, and Alueria aurantia lectin (AAL) for fucosylated structures. Despite the impact the lectin chemistry has had on the field, it has limitations. For example, lectins provide minimal structural information about the stained epitopes, they are limited to one epitope at a time on each tissue section, they are quantitative and, compared with antibodies, have lower affinities for the glycans. Further, very few monoclonal antibodies have been developed for glycans. - Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) serves as a major technique for fast and accurate analysis of a number of molecules from complex mixtures such as cells, tissues and serum samples. Although MALDI-TOF MS has been successfully applied for detection, identification and validation of many peptides and molecules, it has proven ineffective for analyzing low abundance molecules from complex mixtures. Considering the extremely wide range of protein concentrations in plasma (i.e. from albumin at 1010 pg/mL to interleukins at 10 pg/mL), the lower-abundant proteins or peptides are dominated by the abundant serum contents and fail to be detected in a mixture. In addition, background and chemical noise (coming from desorbed matrix cluster) interfere with the MS signal and further compromise the sensitivity and detectability for low-abundance analytes. Despite the technological advances in MALDI-TOF instrumentation, the suboptimal transmission efficiency of the mass analyzer, and detection efficiency of the detector, also result in some loss of analyte, which is another factor that reduces the detection limit and sensitivity of MALDI-TOF MS with low-abundant analytes. On the other hand, the concentration of potential disease biomarkers, such as glycans lies in the lower range of concentrations in serum, particularly at the early stages of the disease where screening is crucial.
- Therefore, there still exists a need to improve methods for generating structural information of glycans in FFPE sections, as well as the need to improve the sensitivity and detection limits of MALDI-TOF MS analytical methods for glycans, peptides and other target analytes, in order to be effective for biomarker discovery research.
- In accordance with an embodiment, the present invention provides a method for direct profiling of N-linked glycans in a biological sample, the method comprising: (a) obtaining a biological sample comprising at least one glycoprotein; (b) denaturing the at least one glycoprotein in the biological sample; (c) releasing at least one glycan from the at least one glycoprotein; (d) coating the biological sample with a matrix; (e) analyzing the at least one glycan using mass spectrometry; and wherein spatial distribution of the at least one glycan is maintained.
- In accordance with another embodiment, the present invention provides a method for diagnosing a disease or condition in a subject, the method comprising: (a) comparing the N-linked glycan profile from a subject to an N-linked glycan profile from a normal sample or diseased sample; and (b) determining whether the subject has the disease or condition; wherein the glycan profile is determined by: (i) obtaining a biological sample comprising at least one glycoprotein; (ii) denaturing the at least one glycoprotein in the biological sample; (iii) releasing at least one glycan from the at least one glycoprotein; (iv) coating the biological sample with a matrix; (v) analyzing the at least one glycan using mass spectrometry; and wherein spatial distribution of the at least one glycan is maintained.
- In accordance with still another embodiment, the present invention provide a method for improving the limit of detection of one or more target analytes in a sample, the method comprising: a) obtaining a sample; b) adding to the sample a known concentration of one or more target analytes; c) applying the sample to a matrix; d) analyzing the at least one target analyte using mass spectrometry wherein the limit of detection of the one or more target analytes is calculated using the formula Signal (C+LODc)=Signal (C)+3SDc.
- In accordance with yet another embodiment, the present invention provide a method for preserving and detecting sialic acid residues in a sample comprising: (a) obtaining a biological sample comprising at least one sialic acid containing glycoprotein; (b) adding p-toluidine to the sample; (c) denaturing the at least one sialic acid containing glycoprotein in the biological sample; (d) releasing at least one sialic acid containing glycan from the at least one sialic acid containing glycoprotein; (e) coating the biological sample with a matrix; (f) analyzing the at least one sialic acid containing glycan using mass spectrometry; and wherein spatial distribution of the at least one sialic acid containing glycan is maintained.
- Certain aspects of the presently disclosed subject matter having been stated hereinabove, which are addressed in whole or in part by the presently disclosed subject matter, other aspects will become evident as the description proceeds when taken in connection with the accompanying Examples and Figures as best described herein below.
-
FIG. 1 shows that glycans play multi-faceted roles in many biological processes. -
FIG. 2 shows the glycan imaging methods known in the art for FFPE tissue sections (Prior Art). -
FIG. 3 shows mass spectrometry imaging of N-linked glycans on FFPE tissue sections. -
FIG. 4 shows coronal mouse brain tissue sections are imaged with and without PNGase F printing. PNGase F releases the N-linked glycans from FFPE sections for MALDI-MS imaging (the brain stem comprises the interbrain, midbrain, and hindbrain; mostly the midbrain is shown in this figure). -
FIG. 5 shows ion images of fucosylated glycans on mouse brain coronal sections (CNU: cerebral nuclei; CTX: cerebral cortex; BS: brain stem). -
FIG. 6 shows glycans detected from PNGase F-printed mouse brain tissue section using MALDI-MS. -
FIG. 7 shows that labeling the sialylated N-glycans with P-toluidine protects them in MALD-MS. -
FIG. 8 shows that in situ P-toluidine labeling of sialylated glycans on FFPE tissues improves detection. -
FIG. 9 shows imaging of sialylated N-linked glycans on prostate tissue sections. -
FIG. 10 shows MALDI-MS imaging to directly profile and image linked glycans from FFPE tissue sections (top) and in situ chemical labeling of tissue sections to image FFPE tissue sections (bottom). -
FIG. 11 depicts presence of background, limited dynamic range, limit of detection, limited detection efficiency and variations cause the deviation between the realistic calibration curve from the ideal curve where the signal is proportional to the analyte concentration. Shifting the reference point to the linear dynamic range of the calibration curve will enhance the sensitivity and improve the LOD by spiking in certain exogenous concentrations of target analyte. The original calibration curve of the analyte of interest is used for this estimation of the predicted LODC. The reference point for calculation of LODC is shifted to the given exogenous concentration. -
FIG. 12 shows the correlation between the LOD, sensitivity and the standard deviation is depicted. The slope of the dotted line is by definition the average sensitivity over the concentration range from 0 to LOD. On the other hand, this slope equals three times the standard deviation divided by LOD. Therefore, LOD is proportional to the SD divided by the sensitivity. -
FIG. 13 shows how sensitivity and standard deviation of the measurements change with the analyte concentration. A) Calibration curve for Angiotensin II generated using Applied Biosystems 4800 MALDI-TOF/TOF analyzer is depicted. B) Sensitivity sharply rises as the concentration increases to supra-LOD levels. C) The variation in standard deviation at low concentrations is modest compared to increments in the sensitivity. D) Coefficient of variation (CV) rapidly decreases from 40% at the background to ∥5% for higher end of the curve. The LOD is marked by the vertical dashed line. -
FIG. 14 depicts the mass spectral peak of Angiotensin I (ma=1296.685) at the reference point of LOD measurement (dotted line) and endogenous concentration X=31.25 fmol/μL (solid line) for A) control group, where C=0 and LODorig=64.5 fmol/μL and B) TAD experiment where C=50 fmol/μL and LODC=22.5 fmol/μL. A) In the control group, the solid line is hardly differentiated from the background. B) However, improving the LOD in the TAD experiment leads to significant distinction of the signal from the background at concentration X=31.25 fmol/μL. The peak intensities were normalized to the heavy isotope-peptide. -
FIG. 15 shows experimental improvement factors for three peptides in simple background are averaged over four replicates. A) When using α-cyano-4-hydroxycinnamic acid (CHCA), the LOD is improved in all of the 9 experimental pairs yielding improvement factors greater than 1. B) The LOD is improved in 8 of the 9 experimental pairs when 5-dihydroxybenzoic acid (DHB) is used as the MALDI matrix. The dotted line shows the threshold of LOD improvement. The error-bars show the standard error of the mean. -
FIG. 16 depicts an example of the predicted improvement factor for Angiotensin II in the simple background experiment using A) CHCA and B) DHB is shown. The highest improvement factor is achieved at exogenous concentrations close to the LODorig of the target peptide for both CHCA (0.67 LODorig) and DHB (1.46 LODorig) matrices. Due to the increase in the standard deviation of the measurements, the improvement factor decreases at higher exogenous concentrations. -
FIG. 17 shows experimental LOD improvement factors for three peptides in complex background using CHCA as the matrix are averaged over triplicate experiments. In 10 out of the 15 experiments, the LOD is improved. The improvement factors depend on the concentration of the exogenous analyte spiked into the sample as well as the analyte of interest. The error-bars depict the standard error of the mean. -
FIG. 18 depicts an example of predicted improvement factor for Angiotensin II in the complex background experiment. The highest theoretical improvement factor is achieved at exogenous concentrations close to the LODorig of that peptide, similar to the simple background experiment. The curve is bell-shaped yielding an improvement factor close to 1 at lower concentrations, and decreasing at higher concentrations. - Methods are provided herein which are directed to improved methods of analyzing various target analytes including, for example, proteins, peptides and carbohydrates. As used herein, the term “carbohydrate” is intended to include any of a class of aldehyde or ketone derivatives of polyhydric alcohols. Therefore, carbohydrates include starches, celluloses, gums and saccharides. Although, for illustration, the term “saccharide” or “glycan” is used below, this is not intended to be limiting. It is intended that the methods provided herein can be directed to any carbohydrate, and the use of a specific carbohydrate is not meant to be limiting to that carbohydrate only.
- The terms “sample,” “patient sample,” “biological sample,” and the like, encompass a variety of sample types obtained from a patient, individual, or subject and can be used in a diagnostic, prognostic or monitoring assay. The patient sample may be obtained from a healthy subject, a diseased patient including, for example, a patient having associated symptoms of SWS, KTWS or PWS. Moreover, a sample obtained from a patient can be divided and only a portion may be used for diagnosis, prognosis or monitoring. Further, the sample, or a portion thereof, can be stored under conditions to maintain sample for later analysis. The definition specifically encompasses blood and other liquid samples of biological origin (including, but not limited to, peripheral blood, serum, plasma, urine, saliva, amniotic fluid, stool and synovial fluid), solid tissue samples such as a biopsy specimen or tissue cultures or cells derived therefrom and the progeny thereof. In a specific embodiment, a sample comprises a skin sample. In another embodiment, a sample of brain tissue is used. In other embodiments, a sample comprises a blood or serum sample. The definition also includes samples that have been manipulated in any way after their procurement, such as by centrifugation, filtration, precipitation, dialysis, chromatography, treatment with reagents, washed, or enriched for certain cell populations. The terms further encompass a clinical sample, and also include cells in culture, cell supernatants, tissue samples, organs, and the like. Samples may also comprise fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks, such as blocks prepared from clinical or pathological biopsies, prepared for pathological analysis or study by immunohistochemistry.
- The terms “providing a sample” and “obtaining a biological (or patient) sample” are used interchangeably and mean to provide or obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from a patient, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues, having treatment or outcome history, can also be used.
- The terms “polypeptide,” “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.
- The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, .gamma.-carboxyglutamate, and O-phosphoserine Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an .alpha. carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.
- Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, often silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.
- As to amino acid sequences, one of ordinary skill in the art recognizes that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. Typical conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).
- As used herein, the term “saccharide” refers to a polymer comprising one or more monosaccharide groups. Saccharides, therefore, include mono-, di-, tri- and polysaccharides (or glycans). Glycans can be branched or branched. Glycans can be found covalently linked to non-saccharide moieties, such as lipids or proteins (as a glycoconjugate). These covalent conjugates include glycoproteins, glycopeptides, peptidoglycans, proteoglycans, glycolipids and lipopolysaccharides. The use of any one of these terms also is not intended to be limiting as the description is provided for illustrative purposes. In addition to the glycans being found as part of a glycoconjugate, the glycans can also be in free form (i.e., separate from and not associated with another moiety). The use of the term peptide is not intended to be limiting. The methods provided herein are also intended to include proteins where “peptide” is recited.
- In some embodiments, the methods are methods of diagnosis and the pattern is associated with a diseased state. In one preferred embodiment, the pattern associated with a diseased state is a pattern associated with cancer, such as prostate cancer, melanoma, bladder cancer, breast cancer, lymphoma, ovarian cancer, lung cancer, colorectal cancer or head and neck cancer. In other preferred embodiments, the pattern associated with a diseased state is a pattern associated with an immunological disorder; a neurodegenerative disease, such as a transmissible spongiform encephalopathy, Alzheimer's disease or neuropathy; inflammation; rheumatoid arthritis; cystic fibrosis; or an infection, preferably viral or bacterial infection. In other embodiments, the method is a method of monitoring prognosis and the known pattern is associated with the prognosis of a disease. In yet another embodiment, the method is a method of monitoring drug treatment and the known pattern is associated with the drug treatment. In particular, the methods (e.g., analysis of glycome profiles) are used for the selection of population-oriented drug treatments and/or in prospective studies for selection of dosing, for activity monitoring and/or for determining efficacy endpoints.
- Methods of analyzing glycans of glycoconjugates can also include cleaving the glycans from glycoconjugates using a releasing agent. A releasing agent can comprise any chemical or enzymatic methods or combinations thereof that are known in the art. An example of a chemical method for cleaving glycans from glycoconjugates is hydrazinolysis or alkali borohydrate. Enyzmatic methods include methods that are specific to N- or O-linked sugars. These enzymatic methods include the use of Endoglycosidase H (Endo H), Endoglycosidase F (EndoF), N-Glycanase F (PNGaseF) or combinations thereof. In some preferred embodiments, PNGaseF is used when the release of N-glycans is desired. When PNGaseF is used for glycan release the proteins is, for example, first unfolded prior to the use of the enzyme. The unfolding of the protein can be accomplished with any of the denaturing agents provided above.
- Mass spectrometry imaging (MSI) is a powerful tool that has been used to correlate various peptides, proteins, lipids and metabolites with their underlying histopathology in tissue sections. Taking advantage of the rapid advances in mass spectrometry, MSI can push the limits of glycomics studies. Mass spectrometry imaging offers some advantages over the conventional methods that support its use as a complementary technique to lectin histochemistry. One significant advantage is that MALDI imaging combined with tandem mass spectrometry reveals detailed structural information about the glycans in a sample. A wide range of molecular weights can be detected by mass spectrometry imaging. Also, the high mass resolution allows distinguishing two peaks with close molecular weights, which subsequently improves the detection specificity. In addition, tens or even hundreds of glycans can be detected at femtomole levels in one single image, allowing detection of low concentrations of molecules. Therefore, MALDI imaging facilitates high-throughput analysis of tissue glycans. MALDI imaging can also be used for performing quantitative assays. Another significant advantage of MALDI imaging is that it has the capability of detecting an unknown compound without any a priori knowledge of the analytes. Therefore, this technique is particularly suitable for biomarker discovery research.
- Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization mass spectrometric technique that is suitable for use in the analysis of biomolecules, such as proteins, peptides, sugars, and the like, which tend to be fragile and fragment when ionized by conventional ionization methods.
- Generally, MALDI comprises a two-step process. In the first step, desorption is triggered by an ultraviolet (UV) laser beam. The matrix material absorbs the UV laser radiation, which leads to the ablation of an upper layer of the matrix material, thereby producing a hot plume. The hot plume contains many species: neutral and ionized matrix molecules, protonated and deprotonated matrix molecules, matrix clusters, and nanodroplets. In the second step, the analyte molecules are ionized, e.g., protonated or deprotonated, in the hot plume.
- The matrix material comprises a crystallized molecule capable of absorbing the UV laser radiation. Common matrix materials include, but are not limited to, 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), CHCA, and DHB. A solution of the matrix material is made, either in highly purified water and an organic solvent, such as acetonitrile or ethanol. In some embodiments, a small amount of trifluoroacetic acid (TFA) also can be added to the solution.
- The matrix solution can then be mixed with the analyte, e.g., a protein sample. This solution is then deposited onto a MALDI plate, wherein the solvents vaporize leaving only the recrystallized matrix comprising the analyte molecules embedded in the MALDI crystals.
- The type of mass spectrometer typically used with MALDI is the time-of-flight (TOF) mass spectrometer, which has a large mass range. In accordance with one or more embodiments of the present invention, the mass spectrometric method comprises MALDI-TOF. In particular embodiments, the mass spectrometric method comprises MALDI-TOF tandem mass spectrometry. In yet another embodiment, mass spectrometry can be combined with another appropriate method(s) as may be contemplated by one of ordinary skill in the art, for example, HPLC, or LC/MS and the like.
- In accordance with one or more embodiments of the present invention, the mass spectrometry comprises a MALDI-quadrupole ion trap (QIT)-TOF mass spectrometer, which, in some embodiments, can include a tandem mass spectrometer system. Such mass spectrometer systems provide for the structural characterization of biomolecules, not only their mass measurement. Such systems provide multiple advantages for characterizing biomolecules including, but not limited to, time of flight resolution and accuracy independent of laser energy applied and a wide mass range of ions trapped (up to 20 kDa). Such systems can comprise a MALDI plate, an ion trap, a reflectron and a detector.
- In accordance with an embodiment, the present invention provides a MSI technique that has been developed for direct profiling of N-linked glycans from formalin-fixed paraffin-embedded (FFPE) tissues. FFPE tissues are sectioned on indium tin oxide coated glass slides for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Deparaffinization and rehydration of the tissue sections are followed by antigen retrieval and denaturing of the proteins. A releasing agent, such as Peptide-N-Glycosidase F (PNGase F), can be sprayed over the tissue sections to release the N-linked glycans from the proteins, while preserving their spatial distribution. Samples can then be spray-coated with matrix and analyzed by MALDI-MS-MS2-MSn (Shimadzu Axima Resonance in positive mode).
- In accordance with another embodiment, the present invention provides a method for direct profiling of N-linked glycans in a biological sample, the method comprising: (a) obtaining a biological sample comprising at least one glycoprotein; (b) denaturing the at least one glycoprotein in the biological sample; (c) releasing at least one glycan from the at least one glycoprotein; (d) coating the biological sample with matrix; and (e) analyzing the at least one glycan using mass spectrometry; and wherein spatial distribution of the at least one glycan is maintained.
- In some embodiments, the biological sample is a paraffin-embedded tissue and/or formalin-fixed tissue. In still another embodiment, the biological sample is rehydrated. In a further embodiment, the biological sample is deposited on a solid support.
- It will be understood by those of skill in the art that for spatial distribution of the glycans in the biological sample to be maintained, a solid support, such as a glass plate or slide, or similar support, can be used with sectioning. In some embodiments, a biological sample, such as a tissue, is raster scanned by a laser in the x and y directions and mass spectra are acquired for each pixel on the tissue.
- In accordance with another embodiment, the denaturation of the glycoprotein(s) occurs by heating the biological sample and/or incubating the biological sample with a proteolytic enzyme for a sufficient period of time.
- In accordance with still another embodiment, releasing the N-linked glycan(s) on the glycoprotein(s) occurs by using a releasing agent, for example, Peptide-N-Glycosidase F (PNGase F). In further embodiments, releasing the glycan(s) occurs by using a microarray printer in combination with a releasing agent.
- In still further embodiments, a matrix is used, such as 2,5-dihydroxybenzoic acid (DHB). In particular embodiments, the mass spectrometry method used is MALDI-mass spectrometry.
- In accordance with an embodiment, the present invention also provides a generic technique for improving the sensitivity and detection limit of MALDI-MS. This method, named targeted analyte detection (TAD), selectively enhances the detection of analytes (target molecules) of interest, such as proteins, peptides, and glycans, for example. In TAD, a small known amount of analyte of interest is spiked into the sample, thereby elevating the concentration to levels above the noise, where the interference of the noise is relatively reduced and the sensitivity is increased. The added analyte acts as a carrier to suppress the matrix effect (introduced by interferences with other compounds in the sample) and enhances ion abundance of analyte of interest. The measured signal is thus contributed by both the endogenous and exogenous (spiked-in) analytes. Therefore, TAD uses the added standard to reveal the endogenous target analyte that was otherwise buried in the noise.
- As disclosed herein, the feasibility of TAD in improving the detection limit of MALDI-MS is presented. Additionally, the present invention also provides a systematic method for optimizing the spiking amount needed to achieve the maximum improvement in the limit of detection (LOD). The main advantage of TAD is that it is not limited to certain types of analytes, provided that the analyte of interest is available or can be synthesized for spiking into the unknown sample. Furthermore, this approach takes advantage of the generic sigmoidal shape of the calibration curve, which is very reproducible in a wide range of analytical instruments. Therefore, this method might be capable of improving the sensitivity in a wide range of instruments regardless of the detection technologies, including but not limited to mass spectrometers.
- Estimation of LOD. A code was developed to estimate the predicted LOD. The mean and standard deviation of the measurements for the control group without TAD solution was used as the input to the code. For each target analyte, the original LOD was calculated based on the commonly used definition of LOD as shown in eq 1:
-
Signal (LODorig)=Signal (Background)+3SD, (1) - where LODorig is the limit of detection in the absence of any exogenous target analyte and Signal (LODorig) is the total signal at this concentration. Signal (Background) represents the background signal mean and SD denotes the background signal standard deviation (
FIG. 11 ). - For a given exogenous concentration of the target peptide in TAD solution, the LOD was estimated by shifting the reference point of the background to the given exogenous spiking peptide concentration (C) used in TAD solution. The signal and standard deviation at any concentration were estimated by interpolating the signal and standard deviation of the calibration curve without exogenous peptide in TAD solution, respectively. Denote the limit of detection at the spiking concentration C fmol/μL of the target analyte in the TAD solution, as LODC and LODC should then satisfy eq 2:
-
Signal (C+LODC)=Signal (C)+3SDC. (2) - It is noted that for the control set with no spiking target peptide in the TAD solution, C is set to zero (
FIG. 1 and eq 1). - Ideally, the measured signal for each analyte is proportional to the amount of that analyte in the sample. However, the detection accuracy is compromised by factors such as background, detection efficiency, sample preparation and signal detection variations, and the limit of detection in mass spectrometry. Presence of background results in a nonzero signal even at zero concentration of the analyte. Suboptimal detection efficiency compromises the output signal. Analyte concentration variations introduced by analyte-matrix cocrystallization, desorption/ionization, analyzer and detector add noise to the measurements, thus limiting the threshold as well as the confidence of low abundance analyte detection.
- Therefore, in accordance with some embodiments, the practical calibration curve of MALDI-MS, which is the measured mass spectral signal versus a given analyte concentration, differs from the ideal curve in crucial aspects (
FIG. 11 ). The sigmoidal shape of the practical calibration curve arises from these differences, whereas the signal intensity is linearly proportional to the analyte concentration in the ideal curve. LOD corresponds to the concentration of an analyte that produces a signal at least as large as the background mean plus three times the background standard deviation. Thus, the LOD can be estimated by the standard deviation of the background as well as the sensitivity, based on eq 3 (FIG. 12 ): -
LOD=3SD/Sensitivity, (3) - where sensitivity is defined as the slope of the calibration curve. Eq 3 indicates that LOD is directly proportional to the standard deviation and inversely proportional to the sensitivity; therefore, lower noise level and higher sensitivity improve the LOD. This provides the opportunity that one can improve the LOD by improving the reproducibility or sensitivity.
- In accordance with one or more embodiments, the methods of the present invention allow direct imaging of glycans on tissues to determine disease-specific glycosylation changes. Therefore, in some embodiments, these methods provide a method of diagnosing a disease or condition in a subject comprising: (a) comparing the N-linked glycan profile from a subject to an N-linked glycan profile from a normal sample or diseased sample; (b) determining whether the subject has the disease or condition; and wherein the glycan profile is determined using the presently disclosed methods. In other embodiments, the disease or disorder is a cancer.
- It will be understood by those of ordinary skill in the art that other diseases or conditions in which aberrant glycoproteins are indicative can be identified using the inventive methods provided herein.
- In accordance with one or more embodiments, the presently disclosed methods detect glycoproteins, glycoprotein biomarkers, and/or aberrant glycans by tissue glycan imaging. In other embodiments, therapeutic targets can be identified by the presently disclosed methods by identifying aberrant glycans.
- In further embodiments, diagnostic kits comprising instructions and materials that can be used to perform the presently disclosed methods also are provided.
- As stated above, the glycosylation of a protein may be indicative of a normal or a disease state. Therefore, methods are provided for diagnostic purposes based on the analysis of the glycosylation of a protein or set of proteins, such as the total glycome. The methods provided herein can be used for the diagnosis of any disease or condition that is caused or results in changes in a particular protein glycosylation or pattern of glycosylation. These patterns can then be compared to “normal” and/or “diseased” patterns to develop a diagnosis, and treatment for a subject. For example, the methods provided can be used in the diagnosis of cancer, inflammatory disease, benign prostatic hyperplasia (BPH), etc.
- The diagnosis can be carried out in a person with or thought to have a disease or condition. The diagnosis can also be carried out in a person thought to be at risk for a disease or condition. “A person at risk” is one that has either a genetic predisposition to have the disease or condition or is one that has been exposed to a factor that could increase his/her risk of developing the disease or condition.
- Detection of cancers at an early stage is crucial for its efficient treatment. Despite advances in diagnostic technologies, many cases of cancer are not diagnosed and treated until the malignant cells have invaded the surrounding tissue or metastasized throughout the body. Although current diagnostic approaches have significantly contributed to the detection of cancer, they still present problems in sensitivity and specificity.
- In accordance with one or more embodiments of the present invention, it will be understood that the types of cancer diagnosis which may be made, using the methods provided herein, is not necessarily limited. For purposes herein, the cancer can be any cancer. As used herein, the term “cancer” is meant any malignant growth or tumor caused by abnormal and uncontrolled cell division that may spread to other parts of the body through the lymphatic system or the blood stream.
- The cancer can be a metastatic cancer or a non-metastatic (e.g., localized) cancer. As used herein, the term “metastatic cancer” refers to a cancer in which cells of the cancer have metastasized, e.g., the cancer is characterized by metastasis of a cancer cells. The metastasis can be regional metastasis or distant metastasis, as described herein.
- The terms “treat,” and “prevent” as well as words stemming therefrom, as used herein, do not necessarily imply 100% or complete treatment or prevention. Rather, there are varying degrees of treatment or prevention of which one of ordinary skill in the art recognizes as having a potential benefit or therapeutic effect. In this respect, the inventive methods can provide any amount of any level of diagnosis, staging, screening, or other patient management, including treatment or prevention of cancer in a mammal. Furthermore, the treatment or prevention provided by the inventive method can include treatment or prevention of one or more conditions or symptoms of the disease, e.g., cancer, being treated or prevented. Also, for purposes herein, “prevention” can encompass delaying the onset of the disease, or a symptom or condition thereof.
- In accordance with an embodiment, the present invention provides a use of a glycan profile prepared using the method disclosed herein to diagnose a disease or condition in a subject, comprising comparing the glycan profile from a subject to a glycan profile from a normal sample, or diseased sample, and determining whether the sample of the subject has the disease or condition. Examples of non-cancer related diseases or disorders include congential disorders of glycosylation, such as failure to thrive, mental retardation, hypotonia, hypoglycemia, cerebellar hypoplasia, liver dysfunction, coagulopathy, partial TBG deficiency, perinatal dysmorphia, microcephaly, loose wrinkled skin, skeletal anomalies, short stature, recurrent infections, thrombocytopenia, neutropenia, seizures and stroke-like episodes, and dandy-walker malformation.
- In accordance with the inventive methods, the terms “cancers” or “tumors” also include but are not limited to adrenal gland cancer, biliary tract cancer; bladder cancer, brain cancer; breast cancer; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; extrahepatic bile duct cancer; gastric cancer; head and neck cancer; intraepithelial neoplasms; kidney cancer; leukemia; lymphomas; liver cancer; lung cancer (e.g. small cell and non-small cell); melanoma; multiple myeloma; neuroblastomas; oral cancer; ovarian cancer; pancreas cancer; prostate cancer; rectal cancer; sarcomas; skin cancer; small intestine cancer; testicular cancer; thyroid cancer; uterine cancer; urethral cancer and renal cancer, as well as other carcinomas and sarcomas.
- Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this presently described subject matter belongs.
- Throughout this specification and the claims, the terms “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise. Likewise, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
- For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing amounts, sizes, dimensions, proportions, shapes, formulations, parameters, percentages, parameters, quantities, characteristics, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are not and need not be exact, but may be approximate and/or larger or smaller as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art depending on the desired properties sought to be obtained by the presently disclosed subject matter. For example, the term “about,” when referring to a value can be meant to encompass variations of, in some embodiments, ±100% in some embodiments ±50%, in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
- Further, the term “about” when used in connection with one or more numbers or numerical ranges, should be understood to refer to all such numbers, including all numbers in a range and modifies that range by extending the boundaries above and below the numerical values set forth. The recitation of numerical ranges by endpoints includes all numbers, e.g., whole integers, including fractions thereof, subsumed within that range (for example, the recitation of 1 to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within that range.
- The following Examples have been included to provide guidance to one of ordinary skill in the art for practicing representative embodiments of the presently disclosed subject matter. In light of the present disclosure and the general level of skill in the art, those of skill can appreciate that the following Examples are intended to be exemplary only and that numerous changes, modifications, and alterations can be employed without departing from the scope of the presently disclosed subject matter. The synthetic descriptions and specific examples that follow are only intended for the purposes of illustration, and are not to be construed as limiting in any manner to make compounds of the disclosure by other methods.
- Mass spectrometry imaging of glycans from tissue section.
FIG. 3 shows a representative schematic of an imaging platform using the inventive methods. A FFPE tissue section is rehydrated, the proteins in the tissue section are denatured, and microarray printing using the release agent PNGase F is allowed to occur. PNGase F is the enzyme that cleaves N-linked glycans from their host proteins. To preserve the spatial distribution of the glycans, a microarray printer can be used to apply the PNGase F on the tissue in a grid. Then, a matrix, such as 2,5-dihydroxybenzoic acid (DHB), can be sprayed over the tissue using an airbrush. The tissue can then be analyzed with a mass spectrometer (Axima Resonance MALDI QIT-TOF, Shimadzu). One difference between a conventional MALDI analysis and the methods of the present invention is that the tissue is raster scanned by the laser in the x and y directions and mass spectra are acquired for each pixel on the tissue. At this point, by mapping the intensity of various peaks as a function of location, ion images can be generated for each glycan structure detected in the mass spectra. - The methods of the present invention were used to analyze mouse brain coronal sections (
FIG. 4 ). On the left ofFIG. 4 , the tissue stained with AAL lectin is depicted, and the cerebral cortex and brain stem regions are marked. The AAL lectin binds to the fucosylated glycans. According to this image, although fucosylated glycans are distributed throughout the brain, they seem to be higher in abundance in the cerebral cortex compared to the midbrain in the brain stem. The middle panels shows the MALDI images for two glycan ions that are overlaid and the structures of the glycan ions are shown below the image. The red signal corresponds to a glycan, which is highly fucosylated and the green signal shows the distribution of glycans with only one fructose. On the right ofFIG. 4 , the ion images are shown for those same glycans for a tissue that is not treated with PNGase F. Therefore, the enzymatic deglycosylation results in releasing of glycans and their subsequent desorption and ionization with MALDI-MS. -
FIG. 5 depicts ion images of some of the detected fucosylated glycans and these are compared with AAL lectin staining of an adjacent tissue section. Based on the AAL staining, fucosylation occurs in the cerebrum as well as brain stem, with a relatively higher abundance in the cerebral cortex. The ion images acquired from fucosylated glycan also show a similar pattern. With the exception of a glycan of 2053 Da, other glycans are either uniformly distributed over the tissue or have higher abundance in the cerebral cortex. -
FIG. 6 shows the mass spectrum of the tissue section averaged over all tissue pixels. The identified glycans were compared with the functional glycomics database. Based on this comparison, approximately 72% of the mouse brain non-sialylated N-linked glycans were able to be detected. In this experiment, however, sialylated glycans were missing in this spectrum. Without wishing to be bound to any one particular theory, the missing sialylated glycans may be due to the loss of sialic acid during sample preparation or mass spectrometry analysis. - In accordance with some embodiments, the methods of the present invention were extended to image sialylated glycans from FFPE tissues as well (
FIG. 7 ). Sialic acid is a terminal sugar residue on N-linked glycans shown by a diamond in glycan schematics. This sugar has proven to be challenging to analyze because it easily gets cut off from the glycans due to harsh sample preparation conditions or during post source decay MALDI-MS analysis. A technique for stabilizing the sialic acid residues in MALDI analysis by labeling them with p-toluidine was developed. Using these inventive methods, the labeled glycans, along with the non-sialylated glycans, are released from glycoprotein by enzymatic deglycosylation and analyzed with mass spectrometry. - The new sialic acid protection methods of the present invention were tested on FFPE prostate tissue sections (
FIG. 8 ). The mass spectrum on the upper panel shows the mass spectral peaks corresponding to sialylated glycans after in situ labeling with p-toluidine. By comparing these results with the control group, where no p-toluidine was applied, it was shown that this technique significantly improves the signal to noise ratio and detection of sialylated glycans. -
FIG. 9 shows ion images of four sialylated glycans along with their structures. The histostaining with SNA lectin, which is used to stain sialylated glycans, showed a quite weak signal from sialylated glycans on tissue. Referring once again toFIG. 9 , the sialylated glycans, even though they are low in abundance, were mostly located in the three regions marked by black arrows. Despite the low abundance of sialylated glycans and their weak staining in lectin histostaining images, the mass-spectrometry based detection was able to detect at least four sialylated glycans (FIG. 9 ). - The methods of the present invention provides release agent printing combined with MALDI mass spectrometry imaging to directly profile and image N-linked glycans from FFPE tissue sections (
FIG. 10 ). In addition, in situ labeling of sialylated tissue glycans with p-toluidine was performed to image them on FFPE tissue sections. - Concentration Dependent Sensitivity and SD. Sensitivity and standard deviation (SD) of an analyte greatly depend on the concentration of the target analyte in the sample. To illustrate the dependence, we calculated the sensitivity and SD versus analyte concentration using Angiotensin II as an example and the results are shown in (
FIG. 13 ). The calibration curve of Angiotensin II was generated by analyzing sequential dilutions of this peptide with the mass spectrometer. The sensitivity was calculated from the calibration curve by dividing the signal difference by the concentration difference for two adjacent data points at each concentration. The standard deviation was computed from ten normalized mass spectral signals and is denoted as SD. Due to the sigmoidal shape of the calibration curve (FIG. 11 andFIG. 13A ), the sensitivity, i.e. the slope of this curve stays stable at its maximum value over the linear range of the assay, and decreases as the concentration falls below the LOD or above the upper linear range (FIG. 11 andFIG. 13B ). The standard deviations are usually modest at lower analyte concentration and increase with analyte concentration (FIG. 13C ). Moreover, the coefficient of variation (CV) defined by the standard deviation divided by the signal mean also associated with the concentration of the target analyte and drops rapidly as the concentration of the analyte increases (FIG. 13D ). As a result, there are certain concentrations of analyte with a lower SD to sensitivity ratio than this ratio at the background. These concentrations generally lie near the LOD of the target analyte, where the sensitivity increases dramatically (FIG. 11 ,FIGS. 13A and 13B ), but SD still remains relatively low (FIG. 13C ). Considering that the LOD depends on the ratio of SD to sensitivity, the LOD can then be improved by shifting the reference point of concentration to this range of a higher slope on the calibration curve by spiking additional analytes into the sample. - Determining LODs of Target Analytes in Simple Mixture. To determine whether the LOD could be lower with the target analytes spiked in TAD solution, we analyzed the target peptides in different dilutions in control solution (which did not have any spiking target peptides added) and in various TAD solutions (which had a different amount of target peptides spiked in the solution). The mass spectral peaks of Angiotensin I is depicted in
FIG. 14 for the control and the TAD solution group. For this peptide, the measured LODorig was 64.5 fmol/μL. Therefore, the mass spectral peak of Angiotensin I (ma=1296.685), averaged over the ten measurements, is not distinguishable from the background at concentration of 31.25 fmol/μL (FIG. 14A ). By spiking the target analyte with a concentration C=50 fmol/μL, the spectral signal is boosted and the LOD reduces to 22.5 fmol/μL. Consequently, as shown inFIG. 14B , the averaged mass spectral peak of Angiotensin I at the endogenous concentration of 31.25 fmol/μL and exogenous concentration of 50 fmol/μL (X=31.25 and C=50 fmol/μL, i.e. 81.25 fmol/μL) is significantly higher than the background at exogenous concentration of 50 fmol/μL. - To determine whether this LOD improvement method and the dependence of the LOD improvement on the spiking target analyte concentration could be applicable to other analytes, three analytes, Angiotensin I, Angiotensin II, and β-Amyloid (1-15), with three different concentrations of target analytes spiked in TAD solution were tested. Nine experimental conditions (three exogenous concentrations for each of the three targeted peptides) were studied in four replicate measurements with independent sample preparation. The experiment was performed in both CHCA and DHB as the MALDI matrix. On average, in CHCA matrix, TAD successfully improved the LODs in all nine experimental conditions (
FIG. 15A ). TAD successfully improved the LODs in eight of nine experimental conditions when using DHB as matrix (FIG. 15B ). Improvement factor is defined by LODorig divided by LODC, where LODorig is the LOD of the control group with no exogenous peptides spiked to the solution, and LODC represents the LOD that was achieved by boosting the concentration by spiking the analyte of a concentration C fmol/μL. - Additionally, we estimated the LOD improvement expected at each exogenous concentration using the MALDI-MS calibration curve for each peptide. The experimental LODorig was calculated using eq 1 and the predicted LODC was estimated using
eq 2 where the LODorig and LODC are graphically depicted inFIG. 11 . For all three peptides, the predicted improvement factor is very close to 1 at the lower end of the target analyte spiking concentrations, but it has local maxima at the midranges and decreased at higher spiking concentration. For example, the predicted LODC for Angiotensin II using CHCA and DHB matrices in the simple background experiment is plotted as a function of spiking concentration C divided by LODorig (FIG. 16 ). Maximum predicted LOD improvement was achieved when the spiking peptide concentration is close to LODorig. For all three peptides, there is a local maximum on the estimated LOD curve (corresponding to an optimal LOD improvement) at a spiking concentration of the target analyte around the control LODorig. The optimal spiking concentration and the corresponding estimated LOD improvement factor for the three peptides are listed in Table 1. This quantitative method suggests that maximum improvement of the detection limit for low abundance analytes depends not only on the analyte but also on the MALDI matrix, which affect the signal to noise ratio of each analyte. Maximal improvement factor for the analyte of interest can be reached by spiking the target analyte at a concentration close to LODorig into the unknown sample for the analysis of target analytes. -
TABLE 1 The optimal exogenous concentrations and improvement factors for simple background experiment averaged over four replicates. The optimal exogenous concentration is close to LODorig. On average, the optimal exogenous concentration is 1.26 LODorig over all three peptides in CHCA matrix, which is lower than the optimal exogenous concentration of 1.58 LODorig for DHB matrix. Additionally, CHCA yields a higher predicted optimal improvement factor compared to DHB matrix. Local maximum Local maximum exogenous concentrations improvement factors Peptide Matrix (C/LODorig) (LODorig/LODC) Angiotensin CHCA 0.72 ± 0.09 3.80 ± 0.68 I DHB 1.75 ± 0.62 2.58 ± 0.92 Angiotensin CHCA 0.85 ± 0.21 3.93 ± 1.41 II DHB 1.83 ± 0.18 1.63 ± 0.22 β-Amyloid CHCA 2.21 ± 0.82 1.82 ± 0.31 (1-15) DHB 1.17 ± 0.30 4.04 ± 1.28 All three CHCA 1.26 ± 0.47 3.18 ± 0.68 peptides DHB 1.58 ± 0.21 2.75 ± 0.70 - Determining LODs of Target Analytes in Complex Mixture. To determine whether the LOD improvement observed with a solution of a single analyte using the TAD method could apply to target analytes in a complex mixture, the above three target analytes were analyzed in the mixture of serum peptides. Five spiking concentrations of each target peptide were considered and the triplicate experiments were performed for each case. Of the fifteen experimental conditions (five exogenous concentrations for each of the three target peptides), the average LOD of triplicate experiments was improved in ten targeted peptide-exogenous peptide pairs compared to the corresponding control (
FIG. 17 ). In general, highest spiking concentrations of target peptides result in low improvement factors, and in some cases fail to achieve any improvements. The estimated LOD curve for Angiotensin II in complex mixture shows similar pattern to the simple background experiment (FIG. 18 ), with a local maximum at exogenous concentration of LODorig. The optimal exogenous concentrations and the achieved improvement factors for complex background experiment are shown in Table 2. The optimal predicted exogenous concentrations are estimated to be close to 2 LODorig, which is slightly higher than that of the simple background experiment. Also, the predicted maximum LOD improvement factor in the complex background experiment is lower than that of the simple background experiment for the same three examined peptides. -
TABLE 2 The optimal exogenous concentrations and improvement factors for complex background experiment using CHCA matrix averaged over triplicate independent experiments. On average, the optimal exogenous concentration required for predicted maximum LOD improvement factor is close to 2 LODorig. Local maximum Local maximum exogenous concentrations improvement factors Peptide (C/LODorig) (LODorig/LODC) Angiotensin I 2.57 ± 0.31 3.05 ± 0.81 Angiotensin II 0.71 ± 0.31 1.85 ± 0.85 β-Amyloid 3.15 ± 2.59 1.59 ± 0.48 (1-15) All three 2.14 ± 0.74 2.16 ± 0.45 peptides - TAD takes advantage of the carrier effect of standard additions to reveal the signal that is buried in noise due to complexity of the sample. The carrier effect is a repeatedly reported phenomenon, which to the best of our knowledge has not previously been used in quantitative mass spectrometry as a technique for improving the detection. TAD provides a 3-fold LOD improvement in simple background, and a 2-fold LOD improvement in complex background experiments. This enhancement achieved through TAD might be modest compared to signal enrichment techniques such as chromatography, fractionation, or affinity enrichment; however, TAD can be applied in combination with these techniques to further improve the detection limit by 2- to 3-fold. Also, further improvement of detection limit using TAD technique can be achieved by highly controlled conditions with high reproducibility. Therefore, the functionality of TAD might improve in a more controlled and reproducible experimental setting such as automated clinical assays and in targeted detection of glycans and proteins in situ by mass spectrometry as disclosed herein.
- The presently disclosed methods include direct profiling of glycans on tissues, in situ chemical labeling and/or enzymatic modifications of glycans and glycoproteins on tissue slides, quantitative analysis of tissue glycans and glycoproteins using isotopic labeling, and targeted detection of glycans and proteins in situ by mass spectrometry.
- All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
- The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
- Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Claims (33)
1. A method for direct profiling of N-linked glycans in a biological sample, the method comprising:
(a) obtaining a biological sample comprising at least one glycoprotein;
(b) denaturing the at least one glycoprotein in the biological sample;
(c) releasing at least one glycan from the at least one glycoprotein;
(d) coating the biological sample with a matrix;
(e) analyzing the at least one glycan using mass spectrometry; and
wherein spatial distribution of the at least one glycan is maintained.
2. The method of claim 1 , wherein the biological sample comprises a paraffin-embedded tissue.
3. The method of claim 1 , wherein the biological sample comprises a formalin-fixed tissue.
4. The method of claim 2 , wherein the biological sample is rehydrated.
5. The method of claim 1 , wherein the biological sample is deposited on a solid support.
6. The method of claim 5 , wherein the solid support allows sectioning so that spatial distribution is maintained.
7. The method of claim 1 , wherein denaturing the at least one glycoprotein comprises heating the biological sample and/or incubating the biological sample with a proteolytic enzyme for a sufficient period of time.
8. The method of claim 1 , wherein releasing the at least one glycan occurs by using an enzyme selected from the group consisting of Endoglycosidase H (Endo H), Endoglycosidase F (EndoF), and N-Glycanase F (PNGaseF).
9. The method of claim 8 , wherein releasing the at least one glycan occurs by using the enzyme PNGaseF.
10. The method of claim 1 , wherein releasing the at least one glycan occurs by using a microarray printer.
11. The method of claim 1 , wherein the matrix comprises 2,5-dihydroxybenzoic acid (DHB).
12. The method of claim 1 , wherein the mass spectrometry is MALDI-mass spectrometry.
13. The method of claim 12 , wherein the MALDI-mass spectrometry comprises MALDI time-of-flight (TOF) mass spectrometry.
14. The method of claim 12 , wherein the MALDI-mass spectrometry comprises MALDI-quadrupole ion trap (QIT)-TOF mass spectrometry.
15. The method of claim 1 , the method further comprising:
b1) adding to the sample a known concentration of at least one glycoprotein;
e1) calculating the endogenous amount of the at least one glycan in the sample wherein the endogenous amount of the at least one glycan in the sample=the total amount of the at least one glycan in the sample−the amount of the at least one glycan added in b1).
16. A method for diagnosing a disease or condition in a subject, the method comprising:
(a) comparing the N-linked glycan profile from a subject to an N-linked glycan profile from a normal sample or diseased sample; and
(b) determining whether the subject has the disease or condition; wherein the glycan profile is determined by:
(i) obtaining a biological sample comprising at least one glycoprotein;
(ii) denaturing the at least one glycoprotein in the biological sample;
(iii) releasing at least one glycan from the at least one glycoprotein;
(iv) coating the biological sample with a matrix;
(v) analyzing the at least one glycan using mass spectrometry; and
wherein spatial distribution of the at least one glycan is maintained.
17. The method of claim 16 , wherein the disease or condition is cancer, an immunological disorder; a neurodegenerative disease, a transmissible spongiform encephalopathy, Alzheimer's disease, neuropathy, inflammation, rheumatoid arthritis, cystic fibrosis, or viral or bacterial infection.
18. The method of claim 16 , wherein the biological sample comprises a paraffin-embedded tissue.
19. The method of claim 16 , wherein the biological sample comprises a formalin-fixed tissue.
20. The method of claim 18 , wherein the biological sample is rehydrated.
21. The method of claim 16 , wherein the biological sample is deposited on a solid support.
22. The method of claim 21 , wherein the solid support allows sectioning so that spatial distribution is maintained.
23. The method of claim 16 , wherein denaturing the at least one glycoprotein comprises heating the biological sample and/or incubating the biological sample with a proteolytic enzyme for a sufficient period of time.
24. The method of claim 23 , wherein releasing the at least one glycan occurs by using an enzyme selected from the group consisting of Endoglycosidase H (Endo H), Endoglycosidase F (EndoF), and N-Glycanase F (PNGaseF).
25. The method of claim 24 , wherein releasing the at least one glycan occurs by using the enzyme PNGaseF.
26. The method of claim 25 , wherein releasing the at least one glycan occurs by using a microarray printer.
27. The method of claim 26 , wherein the matrix comprises 2,5-dihydroxybenzoic acid (DHB).
28. The method of claim 16 , wherein the mass spectrometry is MALDI-mass spectrometry.
29. The method of claim 28 , wherein the MALDI-mass spectrometry comprises MALDI time-of-flight (TOF) mass spectrometry.
30. The method of claim 29 , wherein the MALDI-mass spectrometry comprises MALDI-quadrupole ion trap (QIT)-TOF mass spectrometry.
31. The method of claim 16 , the method further comprising:
b1) adding to the sample a known concentration of at least one glycoprotein;
e1) calculating the endogenous amount of the at least one glycan in the sample wherein the endogenous amount of the at least one glycan in the sample=the total amount of the at least one glycan in the sample−the amount of the at least one glycan added in b1).
32. A method for improving the limit of detection of one or more target analytes in a sample, the method comprising:
a) obtaining a sample;
b) adding to the sample a known concentration of one or more target analytes;
c) applying the sample to a matrix; and
d) analyzing the one or more target analytes using mass spectrometry,
wherein the limit of detection of the one or more target analytes is calculated using the formula Signal (C+LODc)=Signal (C)+3SDc.
33. A method for preserving and detecting sialic acid residues in a sample comprising:
(a) obtaining a biological sample comprising at least one sialic acid containing glycoprotein;
(b) adding p-toluidine to the sample;
(c) denaturing the at least one sialic acid containing glycoprotein in the biological sample;
(d) releasing at least one sialic acid containing glycan from the at least one sialic acid containing glycoprotein;
(e) coating the biological sample with a matrix;
(f) analyzing the at least one sialic acid containing glycan using mass spectrometry; and
wherein spatial distribution of the at least one sialic acid containing glycan is maintained.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/402,478 US20150099669A1 (en) | 2012-05-23 | 2013-05-23 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261650646P | 2012-05-23 | 2012-05-23 | |
| US201261681417P | 2012-08-09 | 2012-08-09 | |
| US201361776534P | 2013-03-11 | 2013-03-11 | |
| PCT/US2013/042408 WO2013177385A1 (en) | 2012-05-23 | 2013-05-23 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
| US14/402,478 US20150099669A1 (en) | 2012-05-23 | 2013-05-23 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/042408 A-371-Of-International WO2013177385A1 (en) | 2012-05-23 | 2013-05-23 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/704,252 Continuation US10436793B2 (en) | 2012-05-23 | 2017-09-14 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150099669A1 true US20150099669A1 (en) | 2015-04-09 |
Family
ID=49624339
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/402,478 Abandoned US20150099669A1 (en) | 2012-05-23 | 2013-05-23 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
| US15/704,252 Active US10436793B2 (en) | 2012-05-23 | 2017-09-14 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
| US16/541,581 Active 2033-09-13 US11022613B2 (en) | 2012-05-23 | 2019-08-15 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/704,252 Active US10436793B2 (en) | 2012-05-23 | 2017-09-14 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
| US16/541,581 Active 2033-09-13 US11022613B2 (en) | 2012-05-23 | 2019-08-15 | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods |
Country Status (2)
| Country | Link |
|---|---|
| US (3) | US20150099669A1 (en) |
| WO (1) | WO2013177385A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170154759A1 (en) * | 2015-10-07 | 2017-06-01 | Protea Biosciences, Inc. | Mass spectrometry imaging of benign melanocytic nevi and malignant melanomas |
| WO2019232512A1 (en) * | 2018-06-01 | 2019-12-05 | Musc Foundatiion For Research Development | Glycan analysis of proteins and cells |
| US11205565B2 (en) * | 2018-07-27 | 2021-12-21 | University Of Wyoming | Non-intrusive laser-based technique for monitor and control of protein denaturation on surfaces |
| CN116626186A (en) * | 2023-05-04 | 2023-08-22 | 融智生物科技(青岛)有限公司 | Biological tissue reference section, biomarker detection method and application |
| US12174191B2 (en) | 2016-07-22 | 2024-12-24 | Van Andel Research Institute | Methods for detecting and for treating pancreatic cancer |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016036705A1 (en) * | 2014-09-03 | 2016-03-10 | Musc Foundation For Research Development | Glycan panels as specific tumor tissue biomarkers |
| WO2016090471A1 (en) * | 2014-12-08 | 2016-06-16 | University Health Network | System and method for enhanced mass spectrometry imaging |
| US11266383B2 (en) | 2015-09-22 | 2022-03-08 | University Health Network | System and method for optimized mass spectrometry analysis |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050118665A1 (en) * | 2003-06-09 | 2005-06-02 | Zhou Fang X. | Methods for conducting assays for enzyme activity on protein microarrays |
| US20140329274A1 (en) * | 2011-09-08 | 2014-11-06 | The Regents Of The University Of California | Metabolic flux measurement, imaging and microscopy |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1190364A2 (en) * | 1999-04-23 | 2002-03-27 | Massachusetts Institute Of Technology | System and method for polymer notation |
-
2013
- 2013-05-23 US US14/402,478 patent/US20150099669A1/en not_active Abandoned
- 2013-05-23 WO PCT/US2013/042408 patent/WO2013177385A1/en not_active Ceased
-
2017
- 2017-09-14 US US15/704,252 patent/US10436793B2/en active Active
-
2019
- 2019-08-15 US US16/541,581 patent/US11022613B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050118665A1 (en) * | 2003-06-09 | 2005-06-02 | Zhou Fang X. | Methods for conducting assays for enzyme activity on protein microarrays |
| US20140329274A1 (en) * | 2011-09-08 | 2014-11-06 | The Regents Of The University Of California | Metabolic flux measurement, imaging and microscopy |
Non-Patent Citations (2)
| Title |
|---|
| Green, E. D. et al., The Asparagine-linked Oligosaccharides on Bovine Fetuin, 1988, The Journal of Biological Chemistry, vol. 263(34), pp 18253-18268 * |
| Snovida, S. I. et al. Use of a 2,5-Dihydroxybenzoic Acid/Aniline MALDI Matrix for Improved Detection and On-Target Derivatization of Glycans: A Preliminary Report, 2006, Analytical Chemistry, vol. 78, pp 8561-8568 * |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170154759A1 (en) * | 2015-10-07 | 2017-06-01 | Protea Biosciences, Inc. | Mass spectrometry imaging of benign melanocytic nevi and malignant melanomas |
| US12174191B2 (en) | 2016-07-22 | 2024-12-24 | Van Andel Research Institute | Methods for detecting and for treating pancreatic cancer |
| EP3802624A4 (en) * | 2018-06-01 | 2022-03-23 | Musc Foundation for Research Development | GLYCAN ANALYSIS OF PROTEINS AND CELLS |
| US20210208156A1 (en) * | 2018-06-01 | 2021-07-08 | Musc Foundation For Research Development | Glycan analysis of proteins and cells |
| JP2021526654A (en) * | 2018-06-01 | 2021-10-07 | エムユーエスシー ファウンデーション フォー リサーチ ディベロップメント | Glycan analysis of proteins and cells |
| CN112654642A (en) * | 2018-06-01 | 2021-04-13 | Musc研究发展基金会 | Glycan analysis of proteins and cells |
| WO2019232512A1 (en) * | 2018-06-01 | 2019-12-05 | Musc Foundatiion For Research Development | Glycan analysis of proteins and cells |
| JP7609771B2 (en) | 2018-06-01 | 2025-01-07 | エムユーエスシー ファウンデーション フォー リサーチ ディベロップメント | Protein and Cell Glycan Analysis |
| KR102858891B1 (en) * | 2018-06-01 | 2025-09-11 | 무스크 파운데이션 포 리서치 디벨롭먼트 | Glycan analysis of proteins and cells |
| US11205565B2 (en) * | 2018-07-27 | 2021-12-21 | University Of Wyoming | Non-intrusive laser-based technique for monitor and control of protein denaturation on surfaces |
| US20220115223A1 (en) * | 2018-07-27 | 2022-04-14 | University Of Wyoming | Non-intrusive laser-based technique for monitor and control of protein denaturation on surfaces |
| US11887830B2 (en) * | 2018-07-27 | 2024-01-30 | University Of Wyoming | Non-intrusive laser-based technique for monitor and control of protein denaturation on surfaces |
| CN116626186A (en) * | 2023-05-04 | 2023-08-22 | 融智生物科技(青岛)有限公司 | Biological tissue reference section, biomarker detection method and application |
Also Published As
| Publication number | Publication date |
|---|---|
| US20180196060A1 (en) | 2018-07-12 |
| US20200003783A1 (en) | 2020-01-02 |
| US10436793B2 (en) | 2019-10-08 |
| US11022613B2 (en) | 2021-06-01 |
| WO2013177385A1 (en) | 2013-11-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11022613B2 (en) | Mass spectrometry imaging of glycans from tissue sections and improved analyte detection methods | |
| Taban et al. | Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry | |
| Gustafsson et al. | MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney | |
| Poté et al. | Imaging mass spectrometry reveals modified forms of histone H4 as new biomarkers of microvascular invasion in hepatocellular carcinomas | |
| Stahl-Zeng et al. | High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites | |
| Everest-Dass et al. | N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues | |
| Franc et al. | Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing | |
| Gallien et al. | Selected reaction monitoring applied to proteomics | |
| Windwarder et al. | Site-specific analysis of the O-glycosylation of bovine fetuin by electron-transfer dissociation mass spectrometry | |
| Schober et al. | High‐resolution matrix‐assisted laser desorption/ionization imaging of tryptic peptides from tissue | |
| Selman et al. | MALDI‐TOF‐MS analysis of sialylated glycans and glycopeptides using 4‐chloro‐α‐cyanocinnamic acid matrix | |
| MacAleese et al. | Perspectives for imaging mass spectrometry in the proteomics landscape | |
| Kuo et al. | Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles | |
| Darebna et al. | Changes in the expression of N-and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring | |
| Zhang et al. | N-linked glycan changes of serum haptoglobin β chain in liver disease patients | |
| Sokolowska et al. | Applications of mass spectrometry in proteomics | |
| US10197576B2 (en) | Mass spectrometry imaging with substance identification | |
| Lee et al. | Designation of fingerprint glycopeptides for targeted glycoproteomic analysis of serum haptoglobin: insights into gastric cancer biomarker discovery | |
| Ruhaak et al. | Applications of multiple reaction monitoring to clinical glycomics | |
| Zhang et al. | On-tissue amidation of sialic acid with aniline for sensitive imaging of sialylated N-glycans from FFPE tissue sections via MALDI mass spectrometry | |
| Kim et al. | A MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) for total N-glycan analysis | |
| Quanico et al. | Combined MALDI mass spectrometry imaging and parafilm-assisted microdissection-based LC-MS/MS workflows in the study of the brain | |
| Shipman et al. | Comprehensive N-glycan mapping using parallel reaction monitoring LC–MS/MS | |
| Andersson et al. | MALDI imaging and profiling mass spectrometry in neuroproteomics | |
| CA2701571A1 (en) | Polypeptide markers for the diagnosis of prostate cancer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |