US20150094292A1 - Topical compositions containing nitro fatty acids - Google Patents
Topical compositions containing nitro fatty acids Download PDFInfo
- Publication number
- US20150094292A1 US20150094292A1 US14/562,845 US201414562845A US2015094292A1 US 20150094292 A1 US20150094292 A1 US 20150094292A1 US 201414562845 A US201414562845 A US 201414562845A US 2015094292 A1 US2015094292 A1 US 2015094292A1
- Authority
- US
- United States
- Prior art keywords
- acid
- fatty acids
- vitamin
- activated
- fatty acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000194 fatty acid Substances 0.000 title claims abstract description 278
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 271
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 271
- 239000000203 mixture Substances 0.000 title claims abstract description 124
- 230000000699 topical effect Effects 0.000 title claims abstract description 22
- -1 nitro fatty acids Chemical class 0.000 title claims description 117
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 227
- 238000000034 method Methods 0.000 claims abstract description 54
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 72
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 37
- 235000019165 vitamin E Nutrition 0.000 claims description 37
- 239000011709 vitamin E Substances 0.000 claims description 37
- 229930003427 Vitamin E Natural products 0.000 claims description 36
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims description 36
- 229920001223 polyethylene glycol Polymers 0.000 claims description 36
- 229940046009 vitamin E Drugs 0.000 claims description 36
- 206010061218 Inflammation Diseases 0.000 claims description 27
- 230000004054 inflammatory process Effects 0.000 claims description 27
- 238000011282 treatment Methods 0.000 claims description 23
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 claims description 18
- 235000013734 beta-carotene Nutrition 0.000 claims description 18
- 239000011648 beta-carotene Substances 0.000 claims description 18
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 claims description 18
- 229960002747 betacarotene Drugs 0.000 claims description 18
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 claims description 18
- 235000011187 glycerol Nutrition 0.000 claims description 16
- 201000004624 Dermatitis Diseases 0.000 claims description 14
- 239000004615 ingredient Substances 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 12
- 229920001451 polypropylene glycol Polymers 0.000 claims description 10
- CQOAKBVRRVHWKV-SAPNQHFASA-N (9E)-9-nitrooctadecenoic acid Chemical compound CCCCCCCC\C=C([N+]([O-])=O)/CCCCCCCC(O)=O CQOAKBVRRVHWKV-SAPNQHFASA-N 0.000 claims description 8
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 claims description 8
- XIUNPAFIOWRAIO-HZJYTTRNSA-N (9z,12z)-2-nitrooctadeca-9,12-dienoic acid Chemical group CCCCC\C=C/C\C=C/CCCCCCC(C(O)=O)[N+]([O-])=O XIUNPAFIOWRAIO-HZJYTTRNSA-N 0.000 claims description 7
- 231100000360 alopecia Toxicity 0.000 claims description 7
- 229930003802 tocotrienol Natural products 0.000 claims description 7
- 239000011731 tocotrienol Substances 0.000 claims description 7
- 235000019148 tocotrienols Nutrition 0.000 claims description 7
- 201000004384 Alopecia Diseases 0.000 claims description 6
- 201000004681 Psoriasis Diseases 0.000 claims description 6
- 125000005456 glyceride group Chemical group 0.000 claims description 6
- 230000037380 skin damage Effects 0.000 claims description 6
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 claims description 5
- 208000002874 Acne Vulgaris Diseases 0.000 claims description 5
- 241001303601 Rosacea Species 0.000 claims description 5
- OEWBEINAQKIQLZ-CMRBMDBWSA-N [(2s)-2-[(2r)-3,4-bis(2-hexyldecanoyloxy)-5-oxo-2h-furan-2-yl]-2-(2-hexyldecanoyloxy)ethyl] 2-hexyldecanoate Chemical compound CCCCCCCCC(CCCCCC)C(=O)OC[C@H](OC(=O)C(CCCCCC)CCCCCCCC)[C@H]1OC(=O)C(OC(=O)C(CCCCCC)CCCCCCCC)=C1OC(=O)C(CCCCCC)CCCCCCCC OEWBEINAQKIQLZ-CMRBMDBWSA-N 0.000 claims description 5
- 206010000496 acne Diseases 0.000 claims description 5
- 208000010668 atopic eczema Diseases 0.000 claims description 5
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol group Chemical group [C@@H]1(CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)[C@H](C)CCCC(C)C HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 5
- 201000004700 rosacea Diseases 0.000 claims description 5
- 150000003612 tocotrienol derivatives Chemical class 0.000 claims description 5
- 229940068778 tocotrienols Drugs 0.000 claims description 5
- KGULFLCOPRYBEV-KTKRTIGZSA-N 2-[2-[2-[(z)-octadec-9-enoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCOCCOCCO KGULFLCOPRYBEV-KTKRTIGZSA-N 0.000 claims description 4
- 206010048222 Xerosis Diseases 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 4
- 235000021342 arachidonic acid Nutrition 0.000 claims description 4
- 229940114079 arachidonic acid Drugs 0.000 claims description 4
- 229940105990 diglycerin Drugs 0.000 claims description 4
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000542 fatty acid esters of ascorbic acid Substances 0.000 claims description 4
- 235000019136 lipoic acid Nutrition 0.000 claims description 4
- 229940075643 oleth-3 Drugs 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 230000002265 prevention Effects 0.000 claims description 4
- 229960002663 thioctic acid Drugs 0.000 claims description 4
- SNPLKNRPJHDVJA-ZETCQYMHSA-N D-panthenol Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCCO SNPLKNRPJHDVJA-ZETCQYMHSA-N 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- 206010039792 Seborrhoea Diseases 0.000 claims description 3
- 229920006037 cross link polymer Polymers 0.000 claims description 3
- 229940101267 panthenol Drugs 0.000 claims description 3
- 235000020957 pantothenol Nutrition 0.000 claims description 3
- 239000011619 pantothenol Substances 0.000 claims description 3
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 3
- 208000008742 seborrheic dermatitis Diseases 0.000 claims description 3
- 229940119168 tetrahexyldecyl ascorbate Drugs 0.000 claims description 3
- YHHHHJCAVQSFMJ-FNORWQNLSA-N (3e)-deca-1,3-diene Chemical compound CCCCCC\C=C\C=C YHHHHJCAVQSFMJ-FNORWQNLSA-N 0.000 claims description 2
- NABZWXMKKKJWGB-UHFFFAOYSA-N 2-hydroxydodecyl propanoate Chemical compound CCCCCCCCCCC(O)COC(=O)CC NABZWXMKKKJWGB-UHFFFAOYSA-N 0.000 claims description 2
- GJJVAFUKOBZPCB-UHFFFAOYSA-N 2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-UHFFFAOYSA-N 0.000 claims description 2
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 claims description 2
- QCZAWDGAVJMPTA-RNFRBKRXSA-N ClC1=CC=CC(=N1)C1=NC(=NC(=N1)N[C@@H](C(F)(F)F)C)N[C@@H](C(F)(F)F)C Chemical compound ClC1=CC=CC(=N1)C1=NC(=NC(=N1)N[C@@H](C(F)(F)F)C)N[C@@H](C(F)(F)F)C QCZAWDGAVJMPTA-RNFRBKRXSA-N 0.000 claims description 2
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 claims description 2
- ZDQWESQEGGJUCH-UHFFFAOYSA-N Diisopropyl adipate Chemical compound CC(C)OC(=O)CCCCC(=O)OC(C)C ZDQWESQEGGJUCH-UHFFFAOYSA-N 0.000 claims description 2
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 claims description 2
- 229940088638 glycereth-7 Drugs 0.000 claims description 2
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 claims description 2
- 231100000241 scar Toxicity 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 claims 1
- 230000003902 lesion Effects 0.000 claims 1
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 22
- 201000010099 disease Diseases 0.000 abstract description 14
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 58
- 235000015872 dietary supplement Nutrition 0.000 description 54
- 239000003795 chemical substances by application Substances 0.000 description 50
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 47
- 235000021436 nutraceutical agent Nutrition 0.000 description 47
- 239000002417 nutraceutical Substances 0.000 description 46
- 150000001875 compounds Chemical class 0.000 description 45
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 44
- 239000000284 extract Substances 0.000 description 44
- 125000006575 electron-withdrawing group Chemical group 0.000 description 39
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 35
- 239000002904 solvent Substances 0.000 description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 34
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 32
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 31
- 229910052799 carbon Inorganic materials 0.000 description 29
- 235000019154 vitamin C Nutrition 0.000 description 28
- 239000011718 vitamin C Substances 0.000 description 28
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 27
- 229930003268 Vitamin C Natural products 0.000 description 27
- 239000004359 castor oil Substances 0.000 description 27
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 26
- 239000002202 Polyethylene glycol Substances 0.000 description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 25
- 235000019438 castor oil Nutrition 0.000 description 25
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 25
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 25
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 25
- 229940012843 omega-3 fatty acid Drugs 0.000 description 25
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 24
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 24
- 241000209140 Triticum Species 0.000 description 24
- 235000021307 Triticum Nutrition 0.000 description 24
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 24
- 239000003963 antioxidant agent Substances 0.000 description 23
- 235000006708 antioxidants Nutrition 0.000 description 23
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 23
- 229940088594 vitamin Drugs 0.000 description 23
- 229930003231 vitamin Natural products 0.000 description 23
- 235000013343 vitamin Nutrition 0.000 description 23
- 239000011782 vitamin Substances 0.000 description 23
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 22
- 150000003722 vitamin derivatives Chemical class 0.000 description 22
- 240000004371 Panax ginseng Species 0.000 description 21
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 21
- 235000003140 Panax quinquefolius Nutrition 0.000 description 21
- 235000008434 ginseng Nutrition 0.000 description 21
- 244000133098 Echinacea angustifolia Species 0.000 description 20
- 241000735432 Hydrastis canadensis Species 0.000 description 20
- 244000126014 Valeriana officinalis Species 0.000 description 20
- 235000013832 Valeriana officinalis Nutrition 0.000 description 20
- 235000014134 echinacea Nutrition 0.000 description 20
- 239000012530 fluid Substances 0.000 description 20
- 235000005679 goldenseal Nutrition 0.000 description 20
- 239000006014 omega-3 oil Substances 0.000 description 20
- 235000016788 valerian Nutrition 0.000 description 20
- 244000194101 Ginkgo biloba Species 0.000 description 19
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 description 19
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000005642 Oleic acid Substances 0.000 description 18
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 17
- 240000007594 Oryza sativa Species 0.000 description 17
- 235000007164 Oryza sativa Nutrition 0.000 description 17
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 17
- 239000012141 concentrate Substances 0.000 description 17
- 229960004232 linoleic acid Drugs 0.000 description 17
- 235000021313 oleic acid Nutrition 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 235000009566 rice Nutrition 0.000 description 17
- 239000011669 selenium Substances 0.000 description 17
- 229910052711 selenium Inorganic materials 0.000 description 17
- 235000011649 selenium Nutrition 0.000 description 17
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 16
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 16
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 16
- 241000218671 Ephedra Species 0.000 description 16
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 16
- 235000008504 concentrate Nutrition 0.000 description 16
- 229940090949 docosahexaenoic acid Drugs 0.000 description 16
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 16
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 16
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 235000019155 vitamin A Nutrition 0.000 description 16
- 239000011719 vitamin A Substances 0.000 description 16
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 239000001653 FEMA 3120 Substances 0.000 description 15
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 15
- 235000004552 Yucca aloifolia Nutrition 0.000 description 15
- 235000012044 Yucca brevifolia Nutrition 0.000 description 15
- 235000017049 Yucca glauca Nutrition 0.000 description 15
- 240000005780 Yucca gloriosa Species 0.000 description 15
- 239000002253 acid Substances 0.000 description 15
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 15
- 235000020688 green tea extract Nutrition 0.000 description 15
- 229940045997 vitamin a Drugs 0.000 description 15
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 14
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 14
- 239000003085 diluting agent Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 229940094952 green tea extract Drugs 0.000 description 14
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 14
- 239000003921 oil Substances 0.000 description 14
- 235000019198 oils Nutrition 0.000 description 14
- 235000020665 omega-6 fatty acid Nutrition 0.000 description 14
- 210000003491 skin Anatomy 0.000 description 14
- JZRWCGZRTZMZEH-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 150000002148 esters Chemical class 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- 229940098330 gamma linoleic acid Drugs 0.000 description 13
- 235000002532 grape seed extract Nutrition 0.000 description 13
- 239000000546 pharmaceutical excipient Substances 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 13
- 235000013871 bee wax Nutrition 0.000 description 12
- 239000012166 beeswax Substances 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 229940026314 red yeast rice Drugs 0.000 description 12
- 239000003981 vehicle Substances 0.000 description 12
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 11
- 229930003316 Vitamin D Natural products 0.000 description 11
- 150000002301 glucosamine derivatives Chemical class 0.000 description 11
- 230000002209 hydrophobic effect Effects 0.000 description 11
- 150000002632 lipids Chemical class 0.000 description 11
- 229940016409 methylsulfonylmethane Drugs 0.000 description 11
- 238000006396 nitration reaction Methods 0.000 description 11
- 235000021315 omega 9 monounsaturated fatty acids Nutrition 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 11
- 239000003755 preservative agent Substances 0.000 description 11
- 229940091258 selenium supplement Drugs 0.000 description 11
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- 235000015112 vegetable and seed oil Nutrition 0.000 description 11
- 239000008158 vegetable oil Substances 0.000 description 11
- 235000019166 vitamin D Nutrition 0.000 description 11
- 239000011710 vitamin D Substances 0.000 description 11
- 150000003710 vitamin D derivatives Chemical class 0.000 description 11
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 11
- 235000005282 vitamin D3 Nutrition 0.000 description 11
- 239000011647 vitamin D3 Substances 0.000 description 11
- 229940046008 vitamin d Drugs 0.000 description 11
- 229940021056 vitamin d3 Drugs 0.000 description 11
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 10
- 229930182558 Sterol Natural products 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- FDJOLVPMNUYSCM-WZHZPDAFSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+3].N#[C-].N([C@@H]([C@]1(C)[N-]\C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C(\C)/C1=N/C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C\C1=N\C([C@H](C1(C)C)CCC(N)=O)=C/1C)[C@@H]2CC(N)=O)=C\1[C@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H](N2C3=CC(C)=C(C)C=C3N=C2)O[C@@H]1CO FDJOLVPMNUYSCM-WZHZPDAFSA-L 0.000 description 10
- 239000002480 mineral oil Substances 0.000 description 10
- 229940033080 omega-6 fatty acid Drugs 0.000 description 10
- 229920006395 saturated elastomer Polymers 0.000 description 10
- 150000003432 sterols Chemical class 0.000 description 10
- 235000003702 sterols Nutrition 0.000 description 10
- 235000019774 Rice Bran oil Nutrition 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 230000006378 damage Effects 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 229960002969 oleic acid Drugs 0.000 description 9
- 239000004006 olive oil Substances 0.000 description 9
- 235000008390 olive oil Nutrition 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 239000008165 rice bran oil Substances 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 9
- 102000002737 Heme Oxygenase-1 Human genes 0.000 description 8
- 108010018924 Heme Oxygenase-1 Proteins 0.000 description 8
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 8
- 235000021314 Palmitic acid Nutrition 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 239000007884 disintegrant Substances 0.000 description 8
- 208000035475 disorder Diseases 0.000 description 8
- 239000003995 emulsifying agent Substances 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 229960000304 folic acid Drugs 0.000 description 8
- 235000019152 folic acid Nutrition 0.000 description 8
- 239000011724 folic acid Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 description 8
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 8
- 235000019161 pantothenic acid Nutrition 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 description 7
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 description 7
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 7
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 7
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- 244000228451 Stevia rebaudiana Species 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229960002685 biotin Drugs 0.000 description 7
- 235000020958 biotin Nutrition 0.000 description 7
- 239000011616 biotin Substances 0.000 description 7
- 235000021324 borage oil Nutrition 0.000 description 7
- 239000010474 borage seed oil Substances 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 235000017471 coenzyme Q10 Nutrition 0.000 description 7
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 7
- 229940110767 coenzyme Q10 Drugs 0.000 description 7
- 239000003086 colorant Substances 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 239000003906 humectant Substances 0.000 description 7
- 230000000302 ischemic effect Effects 0.000 description 7
- 239000000944 linseed oil Substances 0.000 description 7
- 235000021388 linseed oil Nutrition 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 7
- 235000010446 mineral oil Nutrition 0.000 description 7
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 7
- 229960003512 nicotinic acid Drugs 0.000 description 7
- 235000001968 nicotinic acid Nutrition 0.000 description 7
- 239000011664 nicotinic acid Substances 0.000 description 7
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 7
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 7
- 229940098695 palmitic acid Drugs 0.000 description 7
- 229940055726 pantothenic acid Drugs 0.000 description 7
- 239000011713 pantothenic acid Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 235000019192 riboflavin Nutrition 0.000 description 7
- 229960002477 riboflavin Drugs 0.000 description 7
- 239000002151 riboflavin Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 235000019157 thiamine Nutrition 0.000 description 7
- 239000011721 thiamine Substances 0.000 description 7
- 230000002792 vascular Effects 0.000 description 7
- DUFDUPSCPPNMMS-HZJYTTRNSA-N (9z,12z)-2-oxooctadeca-9,12-dienoic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCC(=O)C(O)=O DUFDUPSCPPNMMS-HZJYTTRNSA-N 0.000 description 6
- WKTKDZWFEFQGKA-KTKRTIGZSA-N (z)-2-oxooctadec-9-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCC(=O)C(O)=O WKTKDZWFEFQGKA-KTKRTIGZSA-N 0.000 description 6
- MQFYRUGXOJAUQK-UHFFFAOYSA-N 2-[2-[2-(2-octadecanoyloxyethoxy)ethoxy]ethoxy]ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCCCCCCCCCCCCC MQFYRUGXOJAUQK-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 6
- 229930003270 Vitamin B Natural products 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 230000005754 cellular signaling Effects 0.000 description 6
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 210000001508 eye Anatomy 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000006210 lotion Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002674 ointment Substances 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- 235000019156 vitamin B Nutrition 0.000 description 6
- 239000011720 vitamin B Substances 0.000 description 6
- WRADPCFZZWXOTI-BMRADRMJSA-N (9E)-10-nitrooctadecenoic acid Chemical compound CCCCCCCC\C([N+]([O-])=O)=C/CCCCCCCC(O)=O WRADPCFZZWXOTI-BMRADRMJSA-N 0.000 description 5
- 244000068988 Glycine max Species 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 5
- 102000008015 Hemeproteins Human genes 0.000 description 5
- 108010089792 Hemeproteins Proteins 0.000 description 5
- 235000021355 Stearic acid Nutrition 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 235000011054 acetic acid Nutrition 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 239000002738 chelating agent Substances 0.000 description 5
- 150000005690 diesters Chemical class 0.000 description 5
- 150000002191 fatty alcohols Chemical class 0.000 description 5
- 235000021323 fish oil Nutrition 0.000 description 5
- 229940087603 grape seed extract Drugs 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 235000010445 lecithin Nutrition 0.000 description 5
- 239000000787 lecithin Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 210000000440 neutrophil Anatomy 0.000 description 5
- 150000002889 oleic acids Chemical class 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 230000000144 pharmacologic effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 235000010356 sorbitol Nutrition 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- 239000012049 topical pharmaceutical composition Substances 0.000 description 5
- 239000001717 vitis vinifera seed extract Substances 0.000 description 5
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- 239000005711 Benzoic acid Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 4
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 4
- 102000007330 LDL Lipoproteins Human genes 0.000 description 4
- 108010007622 LDL Lipoproteins Proteins 0.000 description 4
- 239000004909 Moisturizer Substances 0.000 description 4
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 4
- 206010040047 Sepsis Diseases 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 4
- 206010052779 Transplant rejections Diseases 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 150000004347 all-trans-retinol derivatives Chemical class 0.000 description 4
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 4
- 235000010233 benzoic acid Nutrition 0.000 description 4
- 230000036772 blood pressure Effects 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 235000001465 calcium Nutrition 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000010638 cranberry seed oil Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 238000007046 ethoxylation reaction Methods 0.000 description 4
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000028709 inflammatory response Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 230000002530 ischemic preconditioning effect Effects 0.000 description 4
- 230000001333 moisturizer Effects 0.000 description 4
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 239000008389 polyethoxylated castor oil Substances 0.000 description 4
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 239000008159 sesame oil Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 229940032147 starch Drugs 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 239000011975 tartaric acid Substances 0.000 description 4
- 235000002906 tartaric acid Nutrition 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical group O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- MEJYDZQQVZJMPP-ULAWRXDQSA-N (3s,3ar,6r,6ar)-3,6-dimethoxy-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan Chemical compound CO[C@H]1CO[C@@H]2[C@H](OC)CO[C@@H]21 MEJYDZQQVZJMPP-ULAWRXDQSA-N 0.000 description 3
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical class CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 3
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 208000009304 Acute Kidney Injury Diseases 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 102000004895 Lipoproteins Human genes 0.000 description 3
- 108090001030 Lipoproteins Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 229920000881 Modified starch Polymers 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 3
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 3
- 206010030113 Oedema Diseases 0.000 description 3
- 229920002685 Polyoxyl 35CastorOil Polymers 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 206010063562 Radiation skin injury Diseases 0.000 description 3
- 208000033626 Renal failure acute Diseases 0.000 description 3
- 229910006069 SO3H Inorganic materials 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 208000038016 acute inflammation Diseases 0.000 description 3
- 230000006022 acute inflammation Effects 0.000 description 3
- 201000011040 acute kidney failure Diseases 0.000 description 3
- 208000012998 acute renal failure Diseases 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 239000003416 antiarrhythmic agent Substances 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- MNFORVFSTILPAW-UHFFFAOYSA-N azetidin-2-one Chemical compound O=C1CCN1 MNFORVFSTILPAW-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 229960000541 cetyl alcohol Drugs 0.000 description 3
- 229960001231 choline Drugs 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 235000019325 ethyl cellulose Nutrition 0.000 description 3
- 229920001249 ethyl cellulose Polymers 0.000 description 3
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 3
- 229940093471 ethyl oleate Drugs 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 235000011087 fumaric acid Nutrition 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- 229940093915 gynecological organic acid Drugs 0.000 description 3
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 108020001756 ligand binding domains Proteins 0.000 description 3
- 229960004488 linolenic acid Drugs 0.000 description 3
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 3
- 229960003511 macrogol Drugs 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 239000001630 malic acid Substances 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002552 multiple reaction monitoring Methods 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 230000009935 nitrosation Effects 0.000 description 3
- 238000007034 nitrosation reaction Methods 0.000 description 3
- 102000006255 nuclear receptors Human genes 0.000 description 3
- 108020004017 nuclear receptors Proteins 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 229940124531 pharmaceutical excipient Drugs 0.000 description 3
- 229940113115 polyethylene glycol 200 Drugs 0.000 description 3
- 229940068886 polyethylene glycol 300 Drugs 0.000 description 3
- 229940057847 polyethylene glycol 600 Drugs 0.000 description 3
- 229940094543 polyethylene glycol 900 Drugs 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- 229940107700 pyruvic acid Drugs 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 235000021003 saturated fats Nutrition 0.000 description 3
- 150000004671 saturated fatty acids Chemical class 0.000 description 3
- 235000011803 sesame oil Nutrition 0.000 description 3
- 229920003109 sodium starch glycolate Polymers 0.000 description 3
- 239000008109 sodium starch glycolate Substances 0.000 description 3
- 229940079832 sodium starch glycolate Drugs 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 229940031439 squalene Drugs 0.000 description 3
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- 150000003712 vitamin E derivatives Chemical class 0.000 description 3
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 2
- FPJHWYCPAOPVIV-VOZMEZHOSA-N (2R,3S,4R,5R,6R)-6-[(2R,3R,4R,5R,6R)-5-acetamido-2-(hydroxymethyl)-6-methoxy-3-sulfooxyoxan-4-yl]oxy-4,5-dihydroxy-3-methoxyoxane-2-carboxylic acid Chemical compound CO[C@@H]1O[C@H](CO)[C@H](OS(O)(=O)=O)[C@H](O[C@@H]2O[C@H]([C@@H](OC)[C@H](O)[C@H]2O)C(O)=O)[C@H]1NC(C)=O FPJHWYCPAOPVIV-VOZMEZHOSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 2
- HSINOMROUCMIEA-FGVHQWLLSA-N (2s,4r)-4-[(3r,5s,6r,7r,8s,9s,10s,13r,14s,17r)-6-ethyl-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylpentanoic acid Chemical compound C([C@@]12C)C[C@@H](O)C[C@H]1[C@@H](CC)[C@@H](O)[C@@H]1[C@@H]2CC[C@]2(C)[C@@H]([C@H](C)C[C@H](C)C(O)=O)CC[C@H]21 HSINOMROUCMIEA-FGVHQWLLSA-N 0.000 description 2
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- IQXJCCZJOIKIAD-UHFFFAOYSA-N 1-(2-methoxyethoxy)hexadecane Chemical compound CCCCCCCCCCCCCCCCOCCOC IQXJCCZJOIKIAD-UHFFFAOYSA-N 0.000 description 2
- OVYMWJFNQQOJBU-UHFFFAOYSA-N 1-octanoyloxypropan-2-yl octanoate Chemical compound CCCCCCCC(=O)OCC(C)OC(=O)CCCCCCC OVYMWJFNQQOJBU-UHFFFAOYSA-N 0.000 description 2
- 229940114069 12-hydroxystearate Drugs 0.000 description 2
- JLMCSRBKPAQLNJ-UHFFFAOYSA-N 12-oxoicosa-2,4,6,8,10-pentaenoic acid Chemical compound CCCCCCCCC(=O)C=CC=CC=CC=CC=CC(O)=O JLMCSRBKPAQLNJ-UHFFFAOYSA-N 0.000 description 2
- LDZCXCJFBZWJHL-UHFFFAOYSA-N 14-oxodocosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC(=O)C=CC=CC=CC=CC=CC=CC(O)=O LDZCXCJFBZWJHL-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 2
- NFIHXTUNNGIYRF-UHFFFAOYSA-N 2-decanoyloxypropyl decanoate Chemical compound CCCCCCCCCC(=O)OCC(C)OC(=O)CCCCCCCCC NFIHXTUNNGIYRF-UHFFFAOYSA-N 0.000 description 2
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical class CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 2
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 2
- GRLNCVAGEKEOLG-UHFFFAOYSA-N 2-nitrodocosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCCC=CC=CC=CC=CC=CC=C(C(O)=O)[N+]([O-])=O GRLNCVAGEKEOLG-UHFFFAOYSA-N 0.000 description 2
- GVVJPOUKMAQXHZ-UHFFFAOYSA-N 2-nitroicosa-2,4,6,8,10-pentaenoic acid Chemical compound CCCCCCCCCC=CC=CC=CC=CC=C(C(O)=O)[N+]([O-])=O GVVJPOUKMAQXHZ-UHFFFAOYSA-N 0.000 description 2
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 229920001287 Chondroitin sulfate Polymers 0.000 description 2
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102100030497 Cytochrome c Human genes 0.000 description 2
- 108010075031 Cytochromes c Proteins 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 229920000045 Dermatan sulfate Polymers 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000288 Keratan sulfate Polymers 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 208000019693 Lung disease Diseases 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 102100038610 Myeloperoxidase Human genes 0.000 description 2
- 108090000235 Myeloperoxidases Proteins 0.000 description 2
- 102100030856 Myoglobin Human genes 0.000 description 2
- 108010062374 Myoglobin Proteins 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 102100031701 Nuclear factor erythroid 2-related factor 2 Human genes 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 2
- 239000004353 Polyethylene glycol 8000 Substances 0.000 description 2
- 229920002675 Polyoxyl Polymers 0.000 description 2
- 229920002701 Polyoxyl 40 Stearate Polymers 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 2
- 241000220010 Rhode Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 2
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 2
- 208000002847 Surgical Wound Diseases 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 2
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 2
- 241001135917 Vitellaria paradoxa Species 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 2
- 0 [1*]C(CC(=O)O)=C([2*])CC.[1*]C(CC(=O)O)=C([2*])CC Chemical compound [1*]C(CC(=O)O)=C([2*])CC.[1*]C(CC(=O)O)=C([2*])CC 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 229940069521 aloe extract Drugs 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 239000003911 antiadherent Substances 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- 239000003613 bile acid Substances 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 229950009789 cetomacrogol 1000 Drugs 0.000 description 2
- 229940085262 cetyl dimethicone Drugs 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 2
- 229960002023 chloroprocaine Drugs 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 230000006020 chronic inflammation Effects 0.000 description 2
- 229930016911 cinnamic acid Natural products 0.000 description 2
- 235000013985 cinnamic acid Nutrition 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000004633 cognitive health Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000002153 concerted effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 229940043237 diethanolamine Drugs 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 239000008387 emulsifying waxe Substances 0.000 description 2
- RGXWDWUGBIJHDO-UHFFFAOYSA-N ethyl decanoate Chemical compound CCCCCCCCCC(=O)OCC RGXWDWUGBIJHDO-UHFFFAOYSA-N 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 229940012017 ethylenediamine Drugs 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 229940013317 fish oils Drugs 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 229960002442 glucosamine Drugs 0.000 description 2
- 235000003969 glutathione Nutrition 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 229960005150 glycerol Drugs 0.000 description 2
- 150000002314 glycerols Chemical class 0.000 description 2
- 229940075507 glyceryl monostearate Drugs 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 210000005003 heart tissue Anatomy 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004968 inflammatory condition Effects 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 235000020778 linoleic acid Nutrition 0.000 description 2
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229960002510 mandelic acid Drugs 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 229960003194 meglumine Drugs 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000001455 metallic ions Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000000324 neuroprotective effect Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 235000021354 omega 7 monounsaturated fatty acids Nutrition 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 229940100460 peg-100 stearate Drugs 0.000 description 2
- 229940077414 peg-12 stearate Drugs 0.000 description 2
- 229940032067 peg-20 stearate Drugs 0.000 description 2
- 229940119517 peg-6 stearate Drugs 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229940100474 polyethylene glycol 1450 Drugs 0.000 description 2
- 229940093429 polyethylene glycol 6000 Drugs 0.000 description 2
- 229940085678 polyethylene glycol 8000 Drugs 0.000 description 2
- 235000019446 polyethylene glycol 8000 Nutrition 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229940099429 polyoxyl 40 stearate Drugs 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 2
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 2
- 229960004919 procaine Drugs 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 230000010410 reperfusion Effects 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229940057910 shea butter Drugs 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 229950006451 sorbitan laurate Drugs 0.000 description 2
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 2
- 229950004959 sorbitan oleate Drugs 0.000 description 2
- 229950003429 sorbitan palmitate Drugs 0.000 description 2
- 229950011392 sorbitan stearate Drugs 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000002511 suppository base Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- MHXBHWLGRWOABW-UHFFFAOYSA-N tetradecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC MHXBHWLGRWOABW-UHFFFAOYSA-N 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000001069 triethyl citrate Substances 0.000 description 2
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 2
- 235000013769 triethyl citrate Nutrition 0.000 description 2
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 229940045860 white wax Drugs 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- WJTCHBVEUFDSIK-NWDGAFQWSA-N (2r,5s)-1-benzyl-2,5-dimethylpiperazine Chemical compound C[C@@H]1CN[C@@H](C)CN1CC1=CC=CC=C1 WJTCHBVEUFDSIK-NWDGAFQWSA-N 0.000 description 1
- RUHCWQAFCGVQJX-RVWHZBQESA-N (3s,8s,9s,10r,13r,14s,17r)-3-hydroxy-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-1-one Chemical compound C1C=C2C[C@H](O)CC(=O)[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 RUHCWQAFCGVQJX-RVWHZBQESA-N 0.000 description 1
- QYIXCDOBOSTCEI-QCYZZNICSA-N (5alpha)-cholestan-3beta-ol Chemical compound C([C@@H]1CC2)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CCCC(C)C)[C@@]2(C)CC1 QYIXCDOBOSTCEI-QCYZZNICSA-N 0.000 description 1
- YUFFSWGQGVEMMI-JLNKQSITSA-N (7Z,10Z,13Z,16Z,19Z)-docosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCCCC(O)=O YUFFSWGQGVEMMI-JLNKQSITSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- JXNPEDYJTDQORS-HZJYTTRNSA-N (9Z,12Z)-octadecadien-1-ol Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCO JXNPEDYJTDQORS-HZJYTTRNSA-N 0.000 description 1
- IKYKEVDKGZYRMQ-PDBXOOCHSA-N (9Z,12Z,15Z)-octadecatrien-1-ol Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCCO IKYKEVDKGZYRMQ-PDBXOOCHSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical group OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- OOWQBDFWEXAXPB-IBGZPJMESA-N 1-O-hexadecyl-sn-glycerol Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](O)CO OOWQBDFWEXAXPB-IBGZPJMESA-N 0.000 description 1
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- VHRUMKCAEVRUBK-GODQJPCRSA-N 15-deoxy-Delta(12,14)-prostaglandin J2 Chemical compound CCCCC\C=C\C=C1/[C@@H](C\C=C/CCCC(O)=O)C=CC1=O VHRUMKCAEVRUBK-GODQJPCRSA-N 0.000 description 1
- ILCOCZBHMDEIAI-UHFFFAOYSA-N 2-(2-octadecoxyethoxy)ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCO ILCOCZBHMDEIAI-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical class CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- PPPFYBPQAPISCT-UHFFFAOYSA-N 2-hydroxypropyl acetate Chemical compound CC(O)COC(C)=O PPPFYBPQAPISCT-UHFFFAOYSA-N 0.000 description 1
- GHHURQMJLARIDK-UHFFFAOYSA-N 2-hydroxypropyl octanoate Chemical compound CCCCCCCC(=O)OCC(C)O GHHURQMJLARIDK-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- ICIDSZQHPUZUHC-UHFFFAOYSA-N 2-octadecoxyethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCO ICIDSZQHPUZUHC-UHFFFAOYSA-N 0.000 description 1
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 description 1
- NRWMBHYHFFGEEC-MDZDMXLPSA-N 3-[(e)-octadec-9-enoxy]propane-1,2-diol Chemical compound CCCCCCCC\C=C\CCCCCCCCOCC(O)CO NRWMBHYHFFGEEC-MDZDMXLPSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- HBTAOSGHCXUEKI-UHFFFAOYSA-N 4-chloro-n,n-dimethyl-3-nitrobenzenesulfonamide Chemical compound CN(C)S(=O)(=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 HBTAOSGHCXUEKI-UHFFFAOYSA-N 0.000 description 1
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 101100248253 Arabidopsis thaliana RH40 gene Proteins 0.000 description 1
- 206010060965 Arterial stenosis Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- LITUBCVUXPBCGA-WMZHIEFXSA-N Ascorbyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O LITUBCVUXPBCGA-WMZHIEFXSA-N 0.000 description 1
- 239000004261 Ascorbyl stearate Substances 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- GWZYPXHJIZCRAJ-UHFFFAOYSA-N Biliverdin Natural products CC1=C(C=C)C(=C/C2=NC(=Cc3[nH]c(C=C/4NC(=O)C(=C4C)C=C)c(C)c3CCC(=O)O)C(=C2C)CCC(=O)O)NC1=O GWZYPXHJIZCRAJ-UHFFFAOYSA-N 0.000 description 1
- RCNSAJSGRJSBKK-NSQVQWHSSA-N Biliverdin IX Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(\C=C/2C(=C(C)C(=C/C=3C(=C(C=C)C(=O)N=3)C)/N\2)CCC(O)=O)N1 RCNSAJSGRJSBKK-NSQVQWHSSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- 241000555825 Clupeidae Species 0.000 description 1
- 102000008169 Co-Repressor Proteins Human genes 0.000 description 1
- 108010060434 Co-Repressor Proteins Proteins 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 description 1
- 235000021294 Docosapentaenoic acid Nutrition 0.000 description 1
- 102100029108 Elongation factor 1-alpha 2 Human genes 0.000 description 1
- 206010048554 Endothelial dysfunction Diseases 0.000 description 1
- 244000024675 Eruca sativa Species 0.000 description 1
- 235000014755 Eruca sativa Nutrition 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 241000239366 Euphausiacea Species 0.000 description 1
- OPGOLNDOMSBSCW-CLNHMMGSSA-N Fursultiamine hydrochloride Chemical compound Cl.C1CCOC1CSSC(\CCO)=C(/C)N(C=O)CC1=CN=C(C)N=C1N OPGOLNDOMSBSCW-CLNHMMGSSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 240000001972 Gardenia jasminoides Species 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 239000004348 Glyceryl diacetate Substances 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 240000000950 Hippophae rhamnoides Species 0.000 description 1
- 235000003145 Hippophae rhamnoides Nutrition 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000841231 Homo sapiens Elongation factor 1-alpha 2 Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101000979342 Homo sapiens Nuclear factor NF-kappa-B p105 subunit Proteins 0.000 description 1
- 101000588302 Homo sapiens Nuclear factor erythroid 2-related factor 2 Proteins 0.000 description 1
- 101000741790 Homo sapiens Peroxisome proliferator-activated receptor gamma Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 description 1
- 208000009388 Job Syndrome Diseases 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- NAACPBBQTFFYQB-UHFFFAOYSA-N Linolsaeure-cholesterylester Natural products C12CCC3(C)C(C(C)CCCC(C)C)CCC3C2CC=C2C1(C)CCC(OC(=O)CCCCCCCC=CCC=CCCCCC)C2 NAACPBBQTFFYQB-UHFFFAOYSA-N 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 208000004852 Lung Injury Diseases 0.000 description 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 229910002089 NOx Inorganic materials 0.000 description 1
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 1
- 101710114687 Nuclear factor erythroid 2-related factor 2 Proteins 0.000 description 1
- 229910004679 ONO2 Inorganic materials 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 102000023984 PPAR alpha Human genes 0.000 description 1
- 108010015181 PPAR delta Proteins 0.000 description 1
- 108010016731 PPAR gamma Proteins 0.000 description 1
- 102000000536 PPAR gamma Human genes 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 241000269908 Platichthys flesus Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- 229920002564 Polyethylene Glycol 3500 Polymers 0.000 description 1
- 229920002596 Polyethylene Glycol 900 Polymers 0.000 description 1
- 229920002690 Polyoxyl 40 HydrogenatedCastorOil Polymers 0.000 description 1
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 1
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 206010072045 Radiation alopecia Diseases 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 206010038687 Respiratory distress Diseases 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 241000276448 Salvelinus namaycush Species 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- FBPFZTCFMRRESA-NQAPHZHOSA-N Sorbitol Chemical compound OCC(O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-NQAPHZHOSA-N 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 1
- 206010042496 Sunburn Diseases 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- 241000269841 Thunnus albacares Species 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 206010054094 Tumour necrosis Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- DWKSHXDVQRZSII-SUMWQHHRSA-N [(2s)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O DWKSHXDVQRZSII-SUMWQHHRSA-N 0.000 description 1
- MSKSZMDNKAEBSG-HNAYVOBHSA-N [(2s)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethyl] tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O MSKSZMDNKAEBSG-HNAYVOBHSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- QYIXCDOBOSTCEI-UHFFFAOYSA-N alpha-cholestanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 QYIXCDOBOSTCEI-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000006851 antioxidant defense Effects 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 235000019276 ascorbyl stearate Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 229940116224 behenate Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960004217 benzyl alcohol Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- QBUVFDKTZJNUPP-UHFFFAOYSA-N biliverdin-IXalpha Natural products N1C(=O)C(C)=C(C=C)C1=CC1=C(C)C(CCC(O)=O)=C(C=C2C(=C(C)C(C=C3C(=C(C=C)C(=O)N3)C)=N2)CCC(O)=O)N1 QBUVFDKTZJNUPP-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 235000013736 caramel Nutrition 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 229950008138 carmellose Drugs 0.000 description 1
- 150000001746 carotenes Chemical class 0.000 description 1
- 235000005473 carotenes Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- OOWQBDFWEXAXPB-UHFFFAOYSA-N chimyl alcohol Natural products CCCCCCCCCCCCCCCCOCC(O)CO OOWQBDFWEXAXPB-UHFFFAOYSA-N 0.000 description 1
- NAACPBBQTFFYQB-XNTGVSEISA-N cholesteryl octadeca-9,12-dienoate Chemical compound C([C@@H]12)C[C@]3(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OC(=O)CCCCCCCC=CCC=CCCCCC)C1 NAACPBBQTFFYQB-XNTGVSEISA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 230000003930 cognitive ability Effects 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- DTPCFIHYWYONMD-UHFFFAOYSA-N decaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO DTPCFIHYWYONMD-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940099371 diacetylated monoglycerides Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical class OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- 229940031578 diisopropyl adipate Drugs 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- OMBRFUXPXNIUCZ-UHFFFAOYSA-N dioxidonitrogen(1+) Chemical compound O=[N+]=O OMBRFUXPXNIUCZ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 208000009190 disseminated intravascular coagulation Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- LLRANSBEYQZKFY-UHFFFAOYSA-N dodecanoic acid;propane-1,2-diol Chemical class CC(O)CO.CCCCCCCCCCCC(O)=O LLRANSBEYQZKFY-UHFFFAOYSA-N 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000008694 endothelial dysfunction Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 208000010227 enterocolitis Diseases 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- FMMOOAYVCKXGMF-MURFETPASA-N ethyl linoleate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC FMMOOAYVCKXGMF-MURFETPASA-N 0.000 description 1
- 229940031016 ethyl linoleate Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 208000024756 faint Diseases 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 229940125753 fibrate Drugs 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000007983 food acid Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940049654 glyceryl behenate Drugs 0.000 description 1
- 235000019443 glyceryl diacetate Nutrition 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000033687 granuloma formation Effects 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000036074 healthy skin Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 208000018578 heart valve disease Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 238000006897 homolysis reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-N hydroperoxyl Chemical compound O[O] OUUQCZGPVNCOIJ-UHFFFAOYSA-N 0.000 description 1
- 239000012051 hydrophobic carrier Substances 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 206010051040 hyper-IgE syndrome Diseases 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003960 inflammatory cascade Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000008798 inflammatory stress Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 208000037906 ischaemic injury Diseases 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 230000037231 joint health Effects 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- FMMOOAYVCKXGMF-UHFFFAOYSA-N linoleic acid ethyl ester Natural products CCCCCC=CCC=CCCCCCCCC(=O)OCC FMMOOAYVCKXGMF-UHFFFAOYSA-N 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- JXNPEDYJTDQORS-UHFFFAOYSA-N linoleyl alcohol Natural products CCCCCC=CCC=CCCCCCCCCO JXNPEDYJTDQORS-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229940057917 medium chain triglycerides Drugs 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 210000003584 mesangial cell Anatomy 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 235000021084 monounsaturated fats Nutrition 0.000 description 1
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- SFDJOSRHYKHMOK-UHFFFAOYSA-N nitramide Chemical compound N[N+]([O-])=O SFDJOSRHYKHMOK-UHFFFAOYSA-N 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- KSZMOTXUZYNGAZ-UHFFFAOYSA-N nitrosoperoxycarbonic acid Chemical compound OC(=O)OON=O KSZMOTXUZYNGAZ-UHFFFAOYSA-N 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- YYZUSRORWSJGET-UHFFFAOYSA-N octanoic acid ethyl ester Natural products CCCCCCCC(=O)OCC YYZUSRORWSJGET-UHFFFAOYSA-N 0.000 description 1
- FSVSNKCOMJVGLM-UHFFFAOYSA-N octanoic acid;propane-1,2-diol Chemical class CC(O)CO.CCCCCCCC(O)=O FSVSNKCOMJVGLM-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 150000002943 palmitic acids Chemical class 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 108091008725 peroxisome proliferator-activated receptors alpha Proteins 0.000 description 1
- CMFNMSMUKZHDEY-UHFFFAOYSA-N peroxynitrous acid Chemical compound OON=O CMFNMSMUKZHDEY-UHFFFAOYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- CGIHFIDULQUVJG-UHFFFAOYSA-N phytantriol Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)(O)C(O)CO CGIHFIDULQUVJG-UHFFFAOYSA-N 0.000 description 1
- CGIHFIDULQUVJG-VNTMZGSJSA-N phytantriol Natural products CC(C)CCC[C@H](C)CCC[C@H](C)CCC[C@@](C)(O)[C@H](O)CO CGIHFIDULQUVJG-VNTMZGSJSA-N 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229960001109 policosanol Drugs 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 235000021085 polyunsaturated fats Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 239000010491 poppyseed oil Substances 0.000 description 1
- 235000010408 potassium alginate Nutrition 0.000 description 1
- 239000000737 potassium alginate Substances 0.000 description 1
- MZYRDLHIWXQJCQ-YZOKENDUSA-L potassium alginate Chemical compound [K+].[K+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O MZYRDLHIWXQJCQ-YZOKENDUSA-L 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 125000000075 primary alcohol group Chemical group 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- 229940116422 propylene glycol dicaprate Drugs 0.000 description 1
- UQOQENZZLBSFKO-POPPZSFYSA-N prostaglandin J2 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](C\C=C/CCCC(O)=O)C=CC1=O UQOQENZZLBSFKO-POPPZSFYSA-N 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000006697 redox regulation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000019254 respiratory burst Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- NRWMBHYHFFGEEC-UHFFFAOYSA-N selachyl alcohol Natural products CCCCCCCCC=CCCCCCCCCOCC(O)CO NRWMBHYHFFGEEC-UHFFFAOYSA-N 0.000 description 1
- 229940065287 selenium compound Drugs 0.000 description 1
- 150000003343 selenium compounds Chemical class 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 230000009759 skin aging Effects 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229940098760 steareth-2 Drugs 0.000 description 1
- 229940100459 steareth-20 Drugs 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- JIWBIWFOSCKQMA-UHFFFAOYSA-N stearidonic acid Natural products CCC=CCC=CCC=CCC=CCCCCC(O)=O JIWBIWFOSCKQMA-UHFFFAOYSA-N 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 206010042772 syncope Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- 230000030968 tissue homeostasis Effects 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 150000003611 tocopherol derivatives Chemical class 0.000 description 1
- 125000002640 tocopherol group Chemical class 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000004218 vascular function Effects 0.000 description 1
- 230000000304 vasodilatating effect Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 150000003700 vitamin C derivatives Chemical class 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 150000003782 β-tocotrienols Chemical class 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/575—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
- A23L33/12—Fatty acids or derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/15—Vitamins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23P—SHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
- A23P10/00—Shaping or working of foodstuffs characterised by the products
- A23P10/30—Encapsulation of particles, e.g. foodstuff additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/201—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
- A61K31/355—Tocopherols, e.g. vitamin E
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/11—Encapsulated compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/36—Carboxylic acids; Salts or anhydrides thereof
- A61K8/361—Carboxylic acids having more than seven carbon atoms in an unbroken chain; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/92—Oral administration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- Embodiments of the invention presented herein are directed to nutritional or dietary supplements, topical formulations, such as salves and lotions, and other nutraceutical compositions that include one or more activated fatty acids such as for example, nitro fatty acids.
- the nutraceutical supplements and topical formulations may include one or more nutraceutical other than nitro fatty acids such as rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, and echinacea.
- nutraceutical other than nitro fatty acids such as rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, and echinacea.
- the activated fatty acids may be isolated from a natural source such as fish oil and may be derived from omega-3 fatty acids, linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid or a derivative or combination thereof.
- the nutraceuticals may further include non-nitrated fatty acids.
- the nutraceutical may include a dermatalogically acceptable vehicle, and in certain embodiments other nutraceuticals such as, for example, hyaluronic acid, chondroitin sulphate, collagen glucosamine, keratan sulphate, dermatan sulphate, vitamin C, green tea extract, shea butter, grape-seed extract, aloe extract, or mixtures thereof.
- nutraceuticals such as, for example, hyaluronic acid, chondroitin sulphate, collagen glucosamine, keratan sulphate, dermatan sulphate, vitamin C, green tea extract, shea butter, grape-seed extract, aloe extract, or mixtures thereof.
- Some embodiments of the invention are directed to the selection, formulation, and use of compounds which act with a protective response to prevent and attenuate inflammation to provide a therapeutic effect in their control of the pathological inflammation processes, and are also important in providing useful biochemical tools for mechanistic investigation of the enzymes involved.
- Some embodiments of the invention are directed to the topical use of nitroalkene compositions, including particularly, nitrilinoleic acid, nitrooleic acid, nitrated species of arachidonic acid and nitrated cholesteryl linoleate, as lipi signaling mediatos to reduce inflammation and inflammation mediated skin conditions.
- nitroalkene compositions including particularly, nitrilinoleic acid, nitrooleic acid, nitrated species of arachidonic acid and nitrated cholesteryl linoleate, as lipi signaling mediatos to reduce inflammation and inflammation mediated skin conditions.
- Some embodiments of the invention provide therapeutically effective topical compositions of nitroalkene and carrier to prevent, treat, or otherwise improve the skin conditions through topical application.
- Some embodiments of the invention provide methods for preventing and/or treating skin damage that comprise applying a composition containing nitroalkene in a dermatologically acceptable carrier to skin.
- topical methods of use of nitroalkenes to prevent or treat rosacea, eczema, psoriasis, xerosis, dermatitis, seborrhea, acne, alopecia, other types of skin inflammation, skin aging, and scarring are disclosed.
- the amount of nitroalkene necessary to treat skin or prevent skin damage is not fixed per se and is necessarily dependent upon the amount and identity of any adjunct ingredients in the preparation.
- the composition comprises about 0.025% to about 70% by weight nitroalkene in a dermatologically acceptable polymer polyether and/or phosphatidycholine carrier.
- at least one or a mixture of lipoic acid, fatty acid ester of ascorbic acid may be added to the composition.
- the method for preventing and/or treating skin damage comprises applying a composition containing about 0.025% to about 70% by weight of nitroalkene in a dermatologically acceptable carrier.
- a dermatologically acceptable carrier for preventing and/or treating skin damage.
- at least one or a mixture of lipoic acid or fatty acid ester of ascorbic acid may be added to the composition.
- Some embodiments are directed to a dietary supplement including a fatty acid component enriched for one or more activated fatty acids fatty acids and a nutraceutically acceptable excipient.
- the activated fatty acid may be derived from an omega-3 fatty acid, an omega-6 fatty acid, an omega-9 fatty acid, and combinations thereof.
- the activated fatty acid may be a nitro-fatty acid or a keto-fatty acid
- the activated fatty acid may be nitro-linoleic acid, nitro- ⁇ -linoleic acid, nitro- ⁇ -linoleic acid, nitro-oleic acid, nitro-eicosapentaenoic acid, nitro-docosahexaenoic acid, keto-linoleic acid, keto- ⁇ -linoleic acid, keto- ⁇ -linoleic acid, keto-oleic acid, keto-eicosapentaenoic acid, keto-docosahexaenoic acid or a derivative or combination thereof.
- the dietary supplement may also include one or more of linoleic acid, ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof.
- EPA eicosapentaenoic acid
- DHA docosahexaenoic acid
- the dietary supplement may further include one or more nutraceutical selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, ⁇ -carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- nutraceutical selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C,
- the dietary supplement may include a first fatty acid component enriched for one or more activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in some embodiments, the dietary supplement may further include vitamin E or a derivative thereof.
- the dietary supplement may include one or more secondary agent including but not limited to vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, ⁇ -carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- secondary agent including but not limited to vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C
- the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system.
- the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and (3-carotene, and such a dietary supplement may be formulated to promote healthy eyes.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote general health.
- the one or more nitro fatty acids may make up about 10% by weight to about 95% by weight.
- the pharmaceutical compositions may include one or more nutraceutical other than nitro fatty acids such as, for example, rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, and echinacea.
- nutraceutical other than nitro fatty acids such as, for example, rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko bilob
- the activated fatty acid may be derived from an omega-3 fatty acids, omega-6 fatty acids, omega-9 fatty acids, ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid or a derivative or combination thereof, and may contain non-activated fatty acids.
- compositions may be topical compositions, and in some embodiments, the compositions may further include other agents such as solubilizers, stabilizers, colorants, plasticizers diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, antioxidants, preservatives or combinations thereof.
- agents such as solubilizers, stabilizers, colorants, plasticizers diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, antioxidants, preservatives or combinations thereof.
- the composition may further include one or more secondary agents such as, for example, antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, LDL catabolism activators, PPAR antagonists or agonists, antiarrhythmic agent, NSAIDs and nutraceutical equivalents thereof.
- secondary agents such as, for example, antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, LDL catabolism activators, PPAR antagonists or agonists, antiarrhythmic agent, NSAIDs and nutraceutical equivalents thereof.
- the dietary supplement may include a first fatty acid component enriched for one or more activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in particular embodiments, the dietary supplement may further include vitamin E or a derivative thereof.
- the dietary supplement may further include one or more secondary agent selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, ⁇ -carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- secondary agent selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin
- the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system.
- the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and ⁇ -carotene, and such a dietary supplement may be formulated to promote healthy eyes.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote general health.
- Embodiments of the invention also include methods for preparing a nitro-fatty acid by isolating nitro fatty acids from fish oil.
- Other methods for preparing a nitro fatty acid include the steps of contacting an existing unsaturated fatty acid with a nitro containing compound; and reacting an existing unsaturated fatty acid with a nitro containing compound to form a nitro fatty acid.
- Still other methods for preparing activated fatty acids include the steps of contacting an unsaturated fatty acid with a mercuric salt and a selenium compound; contacting an intermediate resulting from step 1 with an electron withdrawing group donating reagent; reacting the intermediate resulting from step 2 with an oxidizing agent.
- Yet other methods for preparing nitro fatty acids include the steps of combining a first component at least comprising an aliphatic hydrocarbon having an electron withdrawing group at one end and a second component at least comprising aliphatic hydrocarbon chain having an aldehyde at one end in the presence of a base to faun a first intermediate; generating an alkene from the first intermediate.
- FIG. 1 is a graph showing stability of 10-nitro oleic acid in olive oil over a period of 19 days at 22° C., 37° C. and 50° C. Stability is plotted as a percentage of the starting concentration of 10-nitro oleic acid.
- Nitric oxide is an endogenously generated, lipophilic signaling molecule that has been implicated in the maintenance of vascular homeostasis, modulation of oxygen radical reactions, inflammatory cell function, post-translational protein modification and regulation of gene expression.
- nitric oxide-derived species display separate and unique pharmacological properties, specifically can mediate oxidation and nitration of biomolecules such as, for example, unsaturated fatty acids.
- nitric oxide may react with superoxide (O 2 ⁇ ) to yield peroxynitrite (ONOO ⁇ ) and its conjugate acid, peroxynitritrous acid (ONOOH), the latter of which may undergo homolytic scission to form nitrogen dioxide (.NO 2 ) and hydroxyl radical (.OH).
- O 2 ⁇ superoxide
- ONOO ⁇ peroxynitrite
- ONOOH peroxynitritrous acid
- biological conditions may favor the reaction of ONOO ⁇ with CO 2 which yields nitrosoperoxycarbonate (ONOOCO 2 ⁇ ), which rapidly yields .NO 2 and carbonate (.CO 3 ⁇ ) radicals via homolysis or rearrangement to NO 3 ⁇ and CO 2 .
- neutrophil myeloperoxidase and heme proteins such as myoglobin and cytochrome c catalyze H 2 O 2 -dependent oxidation of nitrite (NO 2 ⁇ ) to .NO 2 , resulting in biomolecule oxidation and nitration that is influenced by the spatial distribution of catalytic heme proteins.
- the reaction of .NO with O 2 can also produce products that can be substrates or reactants for nitrosation and nitration.
- the small molecular radius, uncharged nature and lipophilicity of .NO and O 2 facilitate concentration of these species in biological membranes in a process referred to as the “molecular lens” effect.
- Nitration of fatty acids by .NO 2 can occur through several methods. For example, during both basal cell signaling and tissue inflammatory conditions, .NO 2 can react with membrane and lipoprotein lipids. In both in vivo and in vitro systems, .NO 2 has been shown to initiate radical chain auto-oxidation of polyunsaturated fatty acids via hydrogen abstraction from the bis-allylic carbon to form nitrous acid and a resonance-stabilized bis-allylic radical. Depending on the radical environment, the lipid radical species can react with molecular oxygen to form a peroxyl radical, which can react further to form lipid hydroperoxides then oxidized lipids.
- lipid radicals can react to an even greater extent with .NO 2 to generate multiple nitration products including singly nitrated, nitrohydroxy- and dinitro-fatty acid adducts.
- These products can be generated via hydrogen abstraction, direct addition of .NO 2 across the double bond, or both, and in some cases, such reactions may be followed by further reactions of the intermediate products that are formed.
- Hydrogen abstraction causes a rearrangement of the double bonds to form a conjugated diene; however, the addition of .NO 2 maintains a methylene-interrupted diene configuration to yield singly nitrated polyunsaturated fatty acids.
- This arrangement is similar to nitration products generated by the nitronium ion (NO 2 + ), which can be produced by ONOO ⁇ reaction with heme proteins or via secondary products of CO 2 reaction with ONOO ⁇ .
- the reaction of polyunsaturated fatty acids with acidified nitrite (HNO 2 ) can generate a complex mixture of products similar to those formed by direct reaction with .NO 2 , including the formation of singly nitrated products that maintain the bis-allylic bond arrangement.
- the acidification of NO 2 ⁇ can create a labile species, HNO 2 , which is in equilibrium with secondary products, including N 2 O 3 , .NO and .NO 2 , all of which can participate in nitration reactions.
- the relevance of this pathway as a mechanism of fatty acid nitration is exemplified by physiological and pathological conditions wherein NO 2 ⁇ is exposed to low pH (e.g., ⁇ pH 4.0). This may conceivably occur in the gastric compartment, following endosomal or phagolysosomal acidification or in tissues following-post ischemic reperfusion.
- Nitrated linoleic acid has been shown to display robust cell signaling activities that are generally anti-inflammatory in nature.
- Synthetic LNO 2 can inhibit human platelet function via cAMP-dependent mechanisms and inhibits neutrophil O 2 ⁇ generation, calcium influx, elastase release, CD11b expression and degranulation via non-cAMP, non-cGMP-dependent mechanisms.
- LNO 2 may also induce vessel relaxation in part via cGMP-dependent mechanisms.
- these data derived from a synthetic fatty acid infer that nitro derivatives of fatty acids (NO 2 -FA) represent a novel class of lipid-derived signaling mediators.
- NO 2 -FA nitro derivatives of fatty acids
- arachidonic acid The metabolism of arachidonic acid is a key element of inflammation.
- acute inflammation there is typically a respiratory burst of neutrophil activity that initiates cascades involving a change in the oxidation state of the cell.
- Alteration in the redox state of the cell activates transcription factors such as NF ⁇ B as well as API, which then causes production of proinflammatory mediators.
- mediators such as Tumor necrosis factorA (TF ⁇ ) and various interleukins, cause a burst of other cytokines.
- TF ⁇ Tumor necrosis factorA
- Arachadonic acid is released, which is oxidized to biologically active mediators.
- eicosanoids e.g. prostaglandins, leukotrines, and hyroxyeicosatetraenoic acid (HETE) are produced, which cause erythma, edema, and free radical production.
- HETE hyroxyeicosatetraenoic acid
- Acute inflammation is often characterized by the generation of excited oxygen species, e.g. superoxide anion, which damages the lipid-rich membranes and activate the chemical mediators of the proinflammation and inflammation cascades.
- excited oxygen species e.g. superoxide anion
- These oxygenated species tend to concentrate in hydrophobic regions. Both in or near these hydrophobic compartments, .NO and NOx undergo a rich spectrum of reactions with oxygen species, transition metals, thiols, lipids, and a variety of organic radicals. These multifaceted reactions yield reactive species that transduce .NO signaling and modulate tissue inflammatory responses.
- Heme oxygenase 1 plays a central role in vascular inflammatory signaling and mediates a protective response to inflammatory stresses such as atherosclerosis, acute renal failure, vascular restenosis, transplant rejection, and sepsis. Heme oxygenase 1 catalyzes the degradation of heme to biliverdin, iron, and CO, the last of which has been shown to display diverse, adaptive biological properties, including anti-inflammatory, anti-apoptotic, and vasodilatory actions. During inflammation, HO-1 gene expression is up-regulated, with induction typically occurring transcriptionally.
- Neutrophil myeloperoxidase and heme proteins such as myoglobin and cytochrome c catalyze H 2 O 2 -dependent oxidation of nitrite (NO 2 ) to NO 2 , resulting in biomolecule oxidation and nitration that is influenced by the spatial distribution of catalytic heme proteins. These and other products are capable of concerted oxidation, nitrosation and nitration of target molecules.
- the body contains an endogenous antioxidant defense system made up of antioxidants such as vitamins C and E, glutathione, and enzymes, e.g., superoxide dismutase.
- antioxidants such as vitamins C and E, glutathione, and enzymes, e.g., superoxide dismutase.
- enzymes e.g., superoxide dismutase.
- the endogenous antioxidant systems are overwhelmed, and free radical damage takes place.
- the cell membrane continually receives damage from reactive oxygen species and other free radicals, resulting in cross-linkage or cleavage or proteins and lipoproteins, and oxidation of membrane lipids and lipoproteins.
- Damage to the cell membrane can result in myriad changes including loss of cell permeability, increased intercellular ionic concentration, and decreased cellular capacity to excrete or detoxify waste products.
- intercellular ionic concentration of potassium increases, colloid density increases and m-RNA and protein synthesis are hampered, resulting in decreased cellular repair. Some cells become so dehydrated they cannot function at all.
- the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.
- administering when used in conjunction with a therapeutic means to administer a therapeutic directly into or onto a target tissue or to administer a therapeutic to a patient, whereby the therapeutic positively impacts the tissue to which it is targeted.
- administering when used in conjunction with a nitrated lipid can include, but is not limited to, providing a nitrated lipid to a subject systemically by, for example, intravenous injection, whereby the therapeutic reaches the target tissue.
- administering when used in conjunction with a nitrated lipid can include, but is not limited to, providing a nitrated lipid to a subject systemically by, for example, intravenous injection, whereby the therapeutic reaches the target tissue.
- administering a composition may be accomplished by, for example, injection, oral administration, topical administration, or by these methods in combination with other known techniques. Such combination techniques include heating, radiation, ultrasound and the use of delivery agents.
- animal as used herein includes, but is not limited to, humans and non-human vertebrates such as wild, domestic and farm animals.
- improves is used to convey that the present invention changes either the characteristics and/or the physical attributes of the tissue to which it is being provided, applied or administered.
- improves may also be used in conjunction with a diseased state such that when a diseased state is “improved” the symptoms or physical characteristics associated with the diseased state are diminished, reduced or eliminated.
- inhibitor includes the administration of a compound of the present invention to prevent the onset of the symptoms, alleviating the symptoms, or eliminating the disease, condition or disorder.
- pharmaceutically acceptable it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
- Nutraceutical as used herein generally refer to natural, bioactive chemical compounds that provide physiological benefits, including, disease prevention and health promotion which may be used to supplement the diet. Nutraceuticals can be either purified or concentrated by using bioengineering methods and can be enhanced through genetic methods, which contain elevated levels of natural substances. Examples of nutraceuticals include isolated nutrients and herbal products and generally contain at least one of the following ingredients: a vitamin, a mineral, an herb or other botanical, an amino acid, a metabolite, constituent, extract, or combination of these ingredients. Common examples of nutraceuticals include beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, and echinacea. The nutraceuticals described herein may be useful for maintenance and support of, for example, healthy joints, skin, and eye and brain function.
- terapéutica means an agent utilized to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient.
- embodiments of the present invention are directed to the treatment of inflammation, obesity-related diseases, metabolic diseases, cardiovascular diseases, cerebrovascular and neurodegenerative diseases, cancer or the aberrant proliferation of cells.
- a “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to inhibit, block, or reverse the activation, migration, or proliferation of cells.
- the activity contemplated by the present methods includes both medical therapeutic and/or prophylactic treatment, as appropriate.
- the specific dose of a compound administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration, and the condition being treated.
- a therapeutically effective amount of compound of this invention is typically an amount such that when it is administered in a physiologically tolerable excipient composition, it is sufficient to achieve an effective systemic concentration or local concentration in the tissue.
- beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder or disease; stabilization (i.e., not worsening) of the state of the condition, disorder or disease; delay in onset or slowing of the progression of the condition, disorder or disease; amelioration of the condition, disorder or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder or disease.
- Treatment includes eliciting a clinically significant response without excessive levels of side effects. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment.
- the term “enriched” shall mean that the composition or portion of the composition includes a concentration of the identified component that is greater than the amount of the component naturally occurring in the composition.
- a composition enriched for activated fatty acids may include greater than at least 50 nM activated fatty acids.
- a composition that is enriched for activated fatty acids may be at least 0.05% by weight activated fatty acid, at least 0.1% by weight activated fatty acid, at least 0.15% by weight activated fatty acid, at least 0.25% by weight activated fatty acid, at least 0.5% by weight activated fatty acid, at least 1.0% by weight activated fatty acid, at least 2% by weight activated fatty acid, and so on.
- tissue refers to any aggregation of similarly specialized cells which are united in the performance of a particular function.
- Embodiments of the invention presented herein are generally directed to activated fatty acids and, in particular, activated unsaturated fatty acids.
- an “activated fatty acid” refers to a fatty acid having at least one electron withdrawing group covalently bound to a carbon of the saturated or unsaturated aliphatic chain of a fatty acid.
- Such activated fatty acids may be substituted by any number of electron withdrawing groups at any number of positions on the hydrocarbon chain, and an electron withdrawing group may be positioned in either cis or trans configuration at a double bond or in either R or S absolute stereochemistry at an sp 3 chiral/stereogenic center.
- an activated fatty acid may have one electron withdrawing group, and in another, an activated fatty acid may be substituted with multiple electron withdrawing groups at multiple positions along the hydrocarbon chain.
- the activated fatty acids of the invention may have an electron withdrawing group positioned at any carbon along the aliphatic hydrocarbon chain between the carboxy terminal carbon to the terminal methyl ( ⁇ ), in some embodiments, the electron withdrawing group may be positioned within about 1 carbon from the carboxy terminal carbon and within about 1 carbon from the terminal methyl.
- the electron withdrawing group may be positioned within about 3 carbons of either the carboxy terminal carbon and/or the methyl terminal carbon, and in still others embodiments, the electron withdrawing group may be positioned within 5 carbons of either of the carboxy terminal carbon and/or the methyl terminal carbon.
- the electron withdrawing group may be positioned on a carbon directly attached to a double bond of the activated fatty acid forming an “electron withdrawing vinyl” group.
- the electron withdrawing group of such vinyl groups may be on either side of the double bond.
- Fatty acids encompassed by embodiments of the invention may have one or more than one electron withdrawing vinyl groups at any carbon on the aliphatic hydrocarbon chain, and there are several ways that an unsaturated fatty acid can have one electron-withdrawing group.
- an activated oleic acid which is an 18 carbon, ⁇ -6 fatty acid with one double bond (denoted “18:1”) between the 6 th (C-13) and 7 th (C-12) carbons, may have an electron withdrawing group at either C-13 or C-12.
- an activated linoleic acid which is an 18 carbon, ⁇ -6 fatty acid with two double bonds (denoted “18:2”) between the 6 th (C-13) and 7 th (C-12) carbons and the 9 th (C-10) and 10 th (C-9) carbons, may have an electron withdrawing group at C-9 or C-10 or C-12 or C-13.
- other polyunsaturated fatty acids with 3, 4, 5, 6 or more double bonds, can have one electron withdrawing at either position on any of the double bond carbons, including all possible permutations of positions and electron-withdrawing groups.
- a mono or polyunsaturated fatty acid may have two electron-withdrawing groups, and there are several ways that an unsaturated fatty acid can have two electron-withdrawing groups.
- an activated oleic acid ocatadecac-9-enoic acid which is an 18 carbon, ⁇ -6 fatty acid with one double bond (denoted “18:1”) between the 6 th (C-13) and 7 th (C-12) carbons, may have an electron withdrawing group at both C-13 and C-12.
- an activated linoleic acid which is an 18 carbon, ⁇ -6 fatty acid with two double bonds (denoted “18:2”) between the 6 th (C-13) and 7 th (C-12) carbons and the 9 th (C-10) and 10 th (C-9) carbons, may have an electron withdrawing group at any two of the positions C-9, C-10, C-12 or C-13, with the following possible permutations: C-9 and C-10, C-9 and C-12, C-9 and C-13, C-10 and C-12, C-10 and C-13, or C-12 and C-13.
- other polyunsaturated fatty acids with 3, 4, 5, 6 or more double bonds, can have two electron withdrawing at two of the positions on any of the double bond carbons, including all possible permutations of positions and electron-withdrawing groups.
- the term “electron-withdrawing group” is recognized in the art and denotes the tendency of a substituent to attract valence electrons from neighboring atoms, i.e., the substituent is electronegative with respect to neighboring atoms.
- a quantification of the level of electron-withdrawing capability is given by the Hammett sigma (a) constant (see, e.g., J. March, Advanced Organic Chemistry, McGraw Hill Book Company, New York, (1977 edition) pp. 251-259).
- the Hammett constant values are generally negative for electron donating groups and positive for electron withdrawing groups.
- the Hammet constant for para substituted NH 2 ( ⁇ [P]) is about ⁇ 0.7 and the ⁇ [P] for a nitro group is about 0.8.
- electron-withdrawing groups may include, but are not limited to, aldehyde (—COH) acyl (—COR), carbonyl (—CO), carboxylic acid (—COOH), ester (—COOR), halides (—Cl, —F, —Br, etc.), fluoromethyl cyano (—CN), sulfonyl (—SO n ), sulfone (—SO 2 R), sulfonic acid (—SO 3 H), 1°, 2° and 3° ammonium (—NR 3 + ), and nitro (—NO 2 ).
- the electron withdrawing group may be a strong electron withdrawing group having a ⁇ of at least about 0.2, and in certain embodiments, the electron withdrawing group may form a dipole.
- the electron withdrawing group may be a nitro, ammonium or sulfonyl.
- the activated fatty acids of the invention may be additionally substituted by non-electron withdrawing groups or electron donating groups including, for example, alcohol (—OH), reverse ester (—OOCR), alkyl, alkenyl, alkynyl, 1° and 2° amines (—NR 2 ), nitrate (—ONO 2 ), nitrito (—ONO) and the like.
- the fatty acids of various embodiments may be any unsaturated and polyunsaturated fatty acid known in the art.
- the term “fatty acid” describes aliphatic monocarboxylic acids.
- Various embodiments include nitrated fatty acid having an aliphatic hydrocarbon chain identical or similar to identified, naturally occurring fatty acids.
- aliphatic hydrocarbon chains of known naturally occurring fatty acids are generally unbranched and contain an even number of from about 4 to about 24 carbons.
- Embodiments of the invention encompass such naturally occurring fatty acids as well as non-naturally occurring fatty acids which may contain an odd number of carbons and/or a non-naturally occurring linker.
- Some embodiments of the invention include fatty acids having from 8 to 23 carbons, and others include fatty acids having from 12 to 18 carbons in the aliphatic hydrocarbon chain. In still other embodiments, fatty acids may have greater than 24 carbons in the aliphatic hydrocarbon chain.
- the fatty acids of the invention may also be branched at one or more location along the hydrocarbon chain, and in various embodiments, each branch may include an aliphatic hydrocarbon chain of from 1 to 24 carbons, 2 to 20 carbons or 4 to 18 carbons.
- the aliphatic hydrocarbon chain of fatty acids of various embodiments may be unsaturated or polyunsaturated.
- the term “unsaturated” refers to a fatty acid having a aliphatic hydrocarbon chain that includes at least one double bond and/or substituent.
- a “saturated” hydrocarbon chain does not include any double bonds or substituents.
- each carbon of the hydrocarbon chain is ‘saturated’ and has the maximum number of hydrogens.
- the double bonds of the unsaturated or polyunsaturated fatty acids of various embodiments may be at any location along the aliphatic hydrocarbon chain and may be in either cis or trans configuration.
- cis refers to a double bond in which carbons adjacent to the double bond are on the same side and the term “trans” refers to a double bond in which carbons adjacent to the double bond are on opposite sides.
- cis is the same as Z
- trans is the same as E but sometimes the IUPAC rules for naming compounds will give the opposite of this, which is the typical case in nitroalkenes.
- a nitroalkene can have the two carbon groups “cis” but the two groups that take priority for the naming of compounds (a nitro group on one carbon of the alkene and a carbon group on the other carbon of the alkene) are on opposite sides and thus are E.
- the nitroalkene analog of a “cis” double bond is actually an E nitroalkene.
- the nitroalkene analog of a “trans” double bond is actually a Z nitroalkene.
- double bonds in cis configuration along the carbon chain may induce a bend in the hydrocarbon chain.
- Double bonds in “trans,” configuration along the carbon chain (trans carbon chain but Z nitroalkene) may not cause the hydrocarbon chain to bend.
- unsaturated and polyunsaturated fatty acids have been identified and are known to be naturally occurring. Such unsaturated or polyunsaturated naturally occurring fatty acids, generally, include an even number of carbons in their aliphatic hydrocarbon chain.
- a naturally occurring unsaturated or polyunsaturated fatty acid may have, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and so on carbons and may include omega ( ⁇ -3, ⁇ -5, ⁇ -6, ⁇ -7, ⁇ -9 fatty acids and the like. Any such fatty acid may be useful in embodiments of the invention.
- the symbol ‘ ⁇ ’ is used to refer to the terminal methyl carbon of the aliphatic hydrocarbon chain.
- the placement of the double bond of the ⁇ -X fatty acid is the carbon-carbon bond X number of carbons from the ⁇ carbon.
- an ⁇ -6 fatty acid has a double bond between the 6 th and 7 th carbons counting backward from the ⁇ carbon and an ⁇ -3 fatty acid has a double bond between the 3 rd and 4 th carbons counting backward from the ⁇ carbon.
- nitrated ⁇ -3 fatty acids including, but not limited to, linolenic acid, alpha-linolenic acid, eicosapentanoic acid, docosapentaenoic acid, docosahexanoic acid and stearidonic acid; nitrated ⁇ -5 fatty acids including, but not limited to, myristoleic acid; nitrated ⁇ -6 fatty acids including, but not limited to, linoleic acid, gamma-linoleic acid, dihomo-gamma-linoleic acid and arachidonic acid; nitrated ⁇ -7 fatty acids including, but not limited to, palmitoleic acid; and nitrated ⁇ -9 fatty acids including, but not limited to, oleic acid and erucic acid.
- fatty acids of the invention may also be referred to using IUPAC nomenclature in which the placement of the double bond is determined by counting from the carbon of the carboxylic acid, and ‘C—X’ denotes the carbon in aliphatic hydrocarbons using IUPAC nomenclature wherein X is the number of the carbon counting from the carboxylic acid.
- Embodiments of the invention also include synthetic equivalents to naturally occurring fatty acids and derivatives thereof.
- the fatty acids utilized in embodiments of the invention may be omega-3 fatty acids.
- omega-3 fatty acids or “ ⁇ -3 fatty acids” may include natural or synthetic omega-3 fatty acids, or pharmaceutically acceptable esters, derivatives, conjugates (see, e.g., U.S. Publication No. 2004/0254357 to Zaloga et al. and U.S. Pat. No. 6,245,811 to Horrobin et al., each of which is hereby incorporated by reference in its entirety), precursors or salts thereof and mixtures thereof.
- ⁇ -3 fatty acid oils include but are not limited to ⁇ -3 polyunsaturated, long-chain fatty acids such as a eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and ⁇ -linolenic acid; esters of ⁇ -3 fatty acids with glycerol such as mono-, di- and triglycerides; and esters of the ⁇ -3 fatty acids and a primary, secondary or tertiary alcohol such as fatty acid methyl esters and fatty acid ethyl esters.
- EPA eicosapentaenoic acid
- DHA docosahexaenoic acid
- ⁇ -linolenic acid esters of ⁇ -3 fatty acids with glycerol such as mono-, di- and triglycerides
- esters of the ⁇ -3 fatty acids and a primary, secondary or tertiary alcohol such as fatty acid methyl esters and
- the ⁇ -3 fatty acid oils may be long-chain fatty acids such as EPA or DHA, triglycerides thereof, ethyl esters thereof and mixtures thereof.
- the ⁇ -3 fatty acids or their esters, derivatives, conjugates, precursors, salts and mixtures thereof can be used either in their pure form or as a component of an oil, such as fish oil, preferably purified fish oil concentrates.
- oils are known and useful as sources for ⁇ -3, ⁇ -6, and ⁇ -9 fatty acids, and any such oil may be used in embodiments of the invention.
- oils derived from herring, sardines, mackerel, lake trout, flounder, albacore tuna, krill, and salmon are useful sources of ⁇ -3, ⁇ -6, and ⁇ -9 fatty acids.
- ⁇ -3 fatty acids suitable for use in the invention may include, but are not limited to, Incromega F2250, F2628, E2251, F2573, TG2162, TG2779, TG2928, TG3525 and E5015 (Croda International PLC, Oxford, England), and EPAX6000FA, EPAX5000TG, EPAX4510TG, EPAX2050TG, K85TG, K85EE, K80EE and EPAX7010EE (Pronova Biocare a.s., 1327 Lysaker, Norway).
- the ⁇ -3 fatty acids may be a mixture of several ⁇ -3 fatty acids such as OMACORTM omega-3 fatty acids which are combinations of EPA and DHA ⁇ -3 fatty acids, and are described in U.S. Pat. Nos. 5,502,077, 5,656,667 and 5,698,594, which are hereby incorporated by reference in their entireties.
- OMACORTM omega-3 fatty acids which are combinations of EPA and DHA ⁇ -3 fatty acids
- ⁇ -3, ⁇ -6, and ⁇ -9 fatty acids are known and useful as sources for ⁇ -3, ⁇ -6, and ⁇ -9 fatty acids, and any such oil may be used in embodiments of the invention.
- olive oil, peanut oil, grape seed oil, sea buckthorn oil, sesame oil, and f poppyseed oil are useful sources of ⁇ -3, ⁇ -6, and ⁇ -9 fatty acids, and in particular ⁇ -9 fatty acids, such as, oleic acid.http://en.wikipedia.org/wiki/Oleic_acid-cite_note-pmid17093176-2#cite_note-pmid17093176-2
- non-naturally occurring fatty acids which may have an odd number of carbons such as, for example, 5, 7, 9, 11, 13, 15, 17, 19, 20, 21 and so on.
- the one or more double bonds associated with non-naturally occurring fatty acids may be at any position along the aliphatic hydrocarbon chain, and the double bonds may be in either cis or trans configuration.
- the non-naturally occurring fatty acids may include one or more linker groups which interrupt the aliphatic hydrocarbon chain.
- activated fatty acids may have one or more non-carbon-carbon linkage such as, for example, ester, ether, vinyl ether, amino, imine and the like at any position within the aliphatic hydrocarbon chain.
- embodiments of the invention include compounds of general formulae I and II:
- R 1 and R 2 are independently selected from —H and any electron withdrawing groups including, but not limited to —COH, —COR, —CO, —COOH, —COOR, —Cl, —F, —Br, —I, —CF 3 , —CN, —SO 3 ⁇ , —SO 2 R, —SO 3 H, —NH 3 + , —NH 2 R + , —NHR 2 + , —NR 3 + and —NO 2 ⁇ wherein at least one of R 1 and R 2 is an electron withdrawing group and m and n are, independently, 1-20.
- Some embodiments include compounds of general formula III:
- R 1 , R 2 , m and n are as described above, R 3 and R 4 are, independently, selected from —H, —COH, —COR, —CO, —COOH, —COOR, —Cl, —F, —Br, —I, —CF 3 , —CN, —SO 3 ⁇ , —SO 2 R, —SO 3 H, —NH 2 R + , —NHR 2 + , —NR 3 + and —NO 2 ⁇ , k and p are, independently, 0 to 5 and x and y are independently, 0 to 3, and wherein each double bond is in either cis or trans configuration. In still other embodiments, any carbon associated with m, n, k or p may be substituted.
- the activated fatty acids described above may be prepared as a pharmaceutically acceptable formulation.
- pharmaceutically acceptable is used herein to mean that the compound is appropriate for use in a pharmaceutical product.
- pharmaceutically acceptable cations include metallic ions and organic ions. More preferred metallic ions include, but are not limited to, appropriate alkali metal salts, alkaline earth metal salts and other physiological acceptable metal ions. Exemplary ions include aluminum, calcium, lithium, magnesium, potassium, sodium and zinc in their usual valences.
- Preferred organic ions include protonated tertiary amines and quaternary ammonium cations, including in part, trimethylamine, diethylamine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine.
- Exemplary pharmaceutically acceptable acids include, without limitation, hydrochloric acid, hydroiodic acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, formic acid, tartaric acid, maleic acid, malic acid, citric acid, isocitric acid, succinic acid, lactic acid, gluconic acid, glucuronic acid, pyruvic acid, oxalacetic acid, fumaric acid, propionic acid, aspartic acid, glutamic acid, benzoic acid, and the like.
- Isomeric and tautomeric forms of activated fatty acids of the invention as well as pharmaceutically acceptable salts of these compounds are also encompassed by the invention.
- Exemplary pharmaceutically acceptable salts are prepared from formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, stearic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, cyclohexylaminosulfonic, algenic, beta.-hydroxybutyric, galactaric and galactu
- Suitable pharmaceutically acceptable base addition salts used in connection with the activated fatty acids of the invention include metallic ion salts and organic ion salts.
- Exemplary metallic ion salts include, but are not limited to, appropriate alkali metal (group Ia) salts, alkaline earth metal (group IIa) salts and other physiological acceptable metal ions.
- Such salts can be made from the ions of aluminum, calcium, lithium, magnesium, potassium, sodium and zinc.
- Preferred organic salts can be made from tertiary amines and quaternary ammonium salts, including in part, trimethylamine, diethylamine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of the above salts can be prepared by those skilled in the art by conventional means from the corresponding compound of the present invention.
- Activated fatty acids as described in various embodiments of the invention above may be administered to individuals to treat, ameliorate and/or prevent a number both acute and chronic inflammatory and metabolic conditions.
- activated fatty acids may be used to treat acute conditions including general inflammation, arterial stenosis, organ transplant rejection and burns, and chronic conditions such as, chronic lung injury and respiratory distress, diabetes, hypertension, obesity, rheumatoid arthritis, neurodegenerative disorders and various skin disorders.
- activated fatty acids may be used to treat any condition having symptoms including chronic or acute inflammation, such as, for example, arthritis, lupus, Lyme's disease, gout, sepsis, hyperthermia, ulcers, enterocolitis, osteoporosis, viral or bacterial infections, cytomegalovirus, periodontal disease, glomerulonephritis, sarcoidosis, lung disease, lung inflammation, fibrosis of the lung, asthma, acquired respiratory distress syndrome, tobacco induced lung disease, granuloma formation, fibrosis of the liver, graft vs.
- chronic or acute inflammation such as, for example, arthritis, lupus, Lyme's disease, gout, sepsis, hyperthermia, ulcers, enterocolitis, osteoporosis, viral or bacterial infections, cytomegalovirus, periodontal disease, glomerulonephritis, sarcoidosis, lung disease, lung inflammation, fibrosis of the lung, asthma,
- CABG coronary artery bypass graft
- acute and chronic leukemia B lymphocyte leukemia, neoplastic diseases, arteriosclerosis, atherosclerosis, myocardial inflammation, psoriasis, immunodeficiency, disseminated intravascular coagulation, systemic sclerosis, amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, encephalomyelitis, edema, inflammatory bowel disease, hyper IgE syndrome, cancer metastasis or growth, adoptive immune therapy, reperfusion syndrome, radiation burns, alopecia and the like.
- CABG coronary artery bypass graft
- an activated fatty acid may be administered to treat hypertension by lowering blood pressure to normal levels without reducing the blood pressure of the individual below normal levels even if the activated fatty acid is over-administered.
- the activated fatty acids of the invention may provide treatment of an individual without the negative affects associated with over-administration or over-treatment using traditional medications.
- activated fatty acids may be useful for ischemic preconditioning or protecting the heart from ischemic injury due to vessel spasm or blockage.
- nitrated fatty acids produced by mitochondria in cells under ischemic conditions cause a number of physiological changes within the cell that increases cell survival under ischemic conditions.
- similar ischemic preconditioning or protection may be achieved allowing for improved survival of, for example, cardiac tissue under ischemic conditions or organs being preserved for optimizing viability and function upon transplantation.
- nutraceuticals including activated fatty acids may be provided to individuals at risk of heart disease, heart attack, heart failure, vascular blockage, arrhythmia, atrial fibrillation, heart valve diseases, cardiomyopathy, and the like to both reduce or alleviate the symptoms of such maladies and to increase the likelihood of survival in the event of, for example, a heart attack, arrhythmia, or arterial fibrillation or to more generally improve heart or circulatory system function.
- activated fatty acid administration may be useful for activating a number of other factors important for cell signaling.
- activated fatty acids may be administered to induce gene expression and tissue activity of heme oxygenase-1 (HO-1) which has been shown to mediate adaptive and protective responses during inflammation, and activation of an adaptive or protective inflammatory response mediated by HO may be useful in treating inflammatory diseases such as, but not limited to, atheroscelrosis, acute renal failure, vascular restinosis, transplant rejection, and sepsis.
- HO-1 heme oxygenase-1
- activated fatty acids may be useful for treating general inflammation resulting from surgery, injury or infection.
- the nutraceuticals of the invention can be administered in any conventional manner by any route where they are active. Administration can be systemic or local. For example, administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, ocular, intravaginally, or inhalation. In certain embodiments, the administration may be parenteral. In some embodiments, the nutraceutical may be prepared in the presence or absence of stabilizing additives that favors extended systemic uptake, tissue half-life and intracellular delivery.
- modes of administration for the compounds of the present invention can be injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly).
- an injectable formulation including an activated fatty acid may be deposited to a site of injury or inflammation, such as, for example, the site of a surgical incision or a site of inflammation due to arthroscopy, angioplasty, stent placement, by-pass surgery and so on.
- activated fatty acids When administered, activated fatty acids may interact with a number of cellular receptors and/or proteins that mediate inflammation, either by inhibiting or stimulating their activity thereby inhibiting or reducing inflammation.
- activated fatty acids may modulate important signaling activities including, for example, neurotransmission, gene expression, vascular function and inflammatory responses, and chemical properties of activated fatty acids that may facilitate these activities include, but are not limited to, the strong, reversible electrophilic nature of the ⁇ carbon adjacent to the electron withdrawing vinyl group, an ability to undergo Nef-like acid base reactions to release NO, an ability to partition into both hydrophobic and hydrophilic compartments, and a strong affinity for G-protein coupled receptors and nuclear receptors.
- activated fatty acids may be administered to mediate cell signaling via multiple G-protein coupled receptors and nuclear receptors such as, but not limited to, peroxisome proliferator-activated receptors (PPAR) including PPAR ⁇ , PPAR ⁇ , and PPAR ⁇ .
- PPAR peroxisome proliferator-activated receptors
- PPAR is a nuclear receptor that is expressed throughout an organism, including in monocytes/macrophages, neutrophils, endothelial cells, adipocytes, epithelial cells, hepatocytes, mesangial cells, vascular smooth muscle cells, neuronal cells and when “activated” induces transcription of a number of target genes.
- Activation of PPAR has been shown to play various roles in regulating tissue homeostasis including, for example, increasing insulin sensitivity, suppress chronic inflammatory processes, reduce circulating free fatty acid levels, correct endothelial dysfunction, reduce fatty streak formation, delay plaque formation, limit blood vessel wall thickening and enhance plaque stabilization and regression.
- the activated fatty acids embodied herein may perform each of these functions associated with PPAR activation.
- activated fatty acids may perform these functions without significantly altering normal cellular process.
- an activated fatty acid may be administered to treat hypertension by lowering blood pressure to normal levels without reducing the blood pressure of the individual below normal levels even if the activated fatty acid is over-administered.
- the activated fatty acids of the invention may provide treatment of an individual without the negative affects associated with over-administration or over-treatment using traditional medications.
- Activation of PPAR has been shown to be induced by a locking reaction in which a critical thiol in a highly conserved cysteine (Cys 285 of human PPAR ⁇ ) which is located in a ligand binding domain of PPAR. Partial activation of PPAR has been shown to occur when relatively high concentrations of known thiol reactive compounds, such as 15-deoxy- ⁇ 12,14 -prostaglandin J 2 (15-d PGJ 2 ), are administered.
- activated fatty acids may bind to PPAR covalently at the reactive thiol in the ligand binding domain of PPAR.
- activated fatty acids may induce a conformational change in PPAR.
- activated fatty acid binding may result in the C-terminus of the ligand binding domain ( ⁇ -helix 12) to adopt an active conformation that may promote a beneficial pattern of co-repressor release and co-activator recruitment.
- activated fatty acids may enhance PPAR activation and transcription of PPAR regulated genes beyond that of known PPAR activating compounds.
- activated fatty acid administration may be useful for activating a number of other factors important for cell signaling.
- activated fatty acids may be administered to induce gene expression and tissue activity of heme oxygenase-1 (HO-1) which has been shown to mediate adaptive and protective responses during inflammation, and activation of an adaptive or protective inflammatory response mediated by HO may be useful in treating inflammatory diseases such as, but not limited to, atheroscelrosis, acute renal failure, vascular restinosis, transplant rejection, and sepsis.
- HO-1 heme oxygenase-1
- activated fatty acids may induce a reversible post-translational modification of proteins, such as, for example, glutathione (GSH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by covalently binding to catalytic cysteines on such proteins.
- GSH glutathione
- GPDH glyceraldehyde-3-phosphate dehydrogenase
- the covalent modification of these proteins by activated fatty acids may increase the hydrophobicity of these proteins inducing translocation of to membranes and suggests a role for redox regulation of enzyme function, cell signaling and protein trafficking.
- activated fatty acids may be administered to repress NF- ⁇ B dependent gene expression and endothelial tumor necrosis factor- ⁇ induced expression of vascular cell adhesion molecules in monocytes and macrophages which results in inhibition of rolling and adhesion during inflammation.
- activated fatty acids may be useful for treating general inflammation resulting from surgery, injury or infection.
- activated fatty acids may be administered to limit tissue inflammatory injury and inhibit the proliferation of vascular smooth muscle cells by increasing cellular levels of nuclear factor erythroid 2-related factor-2 (Nrf-2) which may be useful in the treatment of a number of vascular diseases.
- activated fatty acids may be useful for ischemic preconditioning.
- nitrated fatty acids produced by mitochondria in cells under ischemic conditions cause a number of physiological changes within the cell that increases cell survival under ischemic conditions.
- activated fatty acids By providing activated fatty acids to an individual, similar ischemic preconditioning may be achieved allowing for improved survival of, for example, cardiac tissue under ischemic conditions or organs being preserved for optimizing viability and function upon transplantation.
- the activated fatty acids of the invention can be administered in any conventional manner by any route where they are active.
- Administration can be systemic or local.
- administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, or ocular routes, or intravaginally, by inhalation, by depot injections, or by implants.
- the administration may be parenteral or intravenous, all in the presence or absence of stabilizing additives that favor extended systemic uptake, tissue half-life and intracellular delivery.
- modes of administration for the compounds of the present invention can be injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly).
- an injectable formulation including an activated fatty acid may be deposited to a site of injury or inflammation, such as, for example, the site of a surgical incision or a site of inflammation due to arthroscopy, angioplasty, stent placement, by-pass surgery and so on.
- the compounds of the invention may be applied locally as a salve or lotion applied directly to an area of inflammation.
- a lotion or salve including activated fatty acids of the invention may be prepared and applied to a burn, radiation burn, site of dermal disorder, edema, arthritic joint or the like.
- Such salves and lotions may include a topical formulation of one or more activated fatty acid in a dermatologically acceptable vehicle, and in particular embodiments, the topical formulation may as a nutraceutical salve or lotion which may contain for example, hyaluronic acid, chondroitin sulphate, collagen glucosamine, keratan sulphate, dermatan sulphate, vitamin C, green tea extract, shea butter, grape-seed extract, aloe extract, or mixtures thereof.
- a nutraceutical salve or lotion which may contain for example, hyaluronic acid, chondroitin sulphate, collagen glucosamine, keratan sulphate, dermatan sulphate, vitamin C, green tea extract, shea butter, grape-seed extract, aloe extract, or mixtures thereof.
- Various embodiments, of the invention are also directed to method for administering activated fatty acids.
- Specific modes of administration may vary and may depend on the indication.
- the selection of the specific route of administration and the dose regimen may be adjusted or titrated by the clinician according to methods known to the clinician in order to obtain the optimal clinical response.
- the amount of compound to be administered is that amount which is therapeutically effective.
- the dosage to be administered will depend on the characteristics of the subject being treated, e.g., the particular animal treated, age, weight, health, types of concurrent treatment, if any, and frequency of treatments, and can be easily determined by one of skill in the art (e.g., by the clinician).
- dosages may be determined with guidance, for example, from Goodman & Goldman's The Pharmacological Basis of Therapeutics, Ninth Edition (1996), Appendix II, pp. 1707-1711 or from Goodman & Goldman's The Pharmacological Basis of Therapeutics, Tenth Edition (2001), Appendix II, pp. 475-493 both of which are hereby incorporated by reference in their entireties.
- guidance may be obtained from art-recognized dosage amounts as described, for example, by J. E. Karp, et al., Blood, 97(11):3361-3369 (2001) and A. A. Adjei, et al., Cancer Research, 60:1871-1877 (2000) hereby incorporated by reference in its entirety.
- an effective amount of an activated fatty acid delivered during each administration cycle may range from about 10 mg/m 2 /day to about 1000 mg/m 2 /day. In some embodiments, an effective amount may be about 20 mg/m 2 /day to about 700 mg/m 2 /day, and in others, an effective amount may be about 30 mg/m 2 /day to about 600 mg/m 2 /day. In particular embodiments, an effective amount may be about 50 mg/m 2 /day, about 400 mg/m 2 /day, about 500 mg/m 2 /day, or about 600 mg/m 2 /day. In yet other embodiments, an effective amount of an activated fatty acid may vary as treatment progresses.
- a dosage regimen may be increased or decreased as treatment proceeds through administration cycles, or the daily dosage may increase or decrease throughout administration.
- greater than 1000 mg/m 2 /day may be administered because even high doses of activated fatty acid are generally tolerable to the patient and may not produce undesired physiological effects.
- activated fatty acids administered may include up to at least 40% by weight, at least 50% by weight, at least 60% by weight at least 70% by weight, at least 80% by weight, at least 90% by weight or at least 100% by weight of one or more species of activated fatty acid.
- a single species of activated ⁇ -3 fatty acid may make up at least 50%, at least 60% by weight, at least 70% by weight, at least 80% of the total activated fatty acid administered, and in other embodiments, a single species of activated omega-3 fatty acids may make up about 5 to about 100% by weight, about 25 to about 75% by weight, or about 40 to about 55% by weight of the fatty acids administered.
- the ratio of activated fatty acid to non-activated may be from about 99:1 to about 1:99, about 99:1 to about 90:10, about 90:10 to about 80:20, about 80:20 to about 70:30, about 70:30 to about 60:40, about 60:40 to about 50:50, about 50:50 to about 40:60, about 40:60 to about 30:70, about 30:70 to about 20:80, about 20:80 to about 10:90, about 10:90 to about 1:99 about 1:4 to about 4:1, about 1:3 to about 3:1 or about 1:2 to about 2:1.
- activated fatty acids administered may include up to at least 0.01%, 0.025%, 0.05%, 0.1%, 0.5%, 1.0%, 10.0%, 20.0% and 30.0% by weight of one or more species of activated fatty acid.
- the activated omega-3 fatty acids may be prepared from one of EPA or DHA or a combination of EPA and DHA.
- the composition administered may include about 5 to about 100% by weight, about 25 to about 75% by weight, or about 30 to about 60% by weight activated EPA and/or activated DHA, and any remainder may be made up of non-activated EPA and/or DHA.
- the activated EPA and activated DHA may be present in a weight ratio of EPA:DHA of from 99:1 to 1:99, 1:4 to 4:1, 1:3 to 3:1 or 1:2 to 2:1.
- the weight ratio of activated:non-activated may be from 99:1 to 1:99, 99:1 to 90:10, 90:10 to 80:20, 80:20 to 70:30, 70:30 to 60:40, 60:40 to 50:50, 50:50 to 40:60, 40:60 to 30:70, 30:70 to 20:80, 20:80 to 10:90, 10:90 to 1:99, 1:4 to 4:1, 1:3 to 3:1 or 1:2 to 2:1.
- the percentage by weight may be based on the free acid or ester forms, although it is preferably based on the ethyl ester form of the ⁇ -3 fatty acids even if other forms are utilized in accordance with the present invention.
- the activated fatty acid may be prepared from a different base fatty acid than the non-activated fatty acids with which it is combined.
- the activated fatty acid may be an activated linoleic acid, an activated oleic acid, or combinations thereof, and these activated fatty acids may be combined with non-activated EPA and/or DHA.
- the ratio of activated linoleic acid and/or activated oleic acid to non-activated EPA and/or DHA may be from about 99:1 to 1:99, 99:1 to 90:10, 90:10 to 80:20, 80:20 to 70:30, 70:30 to 60:40, 60:40 to 50:50, 50:50 to 40:60, 40:60 to 30:70, 30:70 to 20:80, 20:80 to 10:90, 10:90 to 1:99, 1:4 to 4:1, 1:3 to 3:1, 1:2 to 2:1, or 1:1.
- activated linoleic acid or oleic acid may be combined with EPA and DMA, and each of the three components may be provided in a ratio of from about 1:1:1, 2:1:1, 1:2:1, 1:1:2, 2:2:1, 1:2:2, 3:1:1, and the like.
- the dosage regimen as described above may be combined with a secondary form of treatment or a secondary agent.
- activated fatty acids such as those described above may be combined with antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, LDL catabolism activators, PPAR antagonists or agonsits, antiarrhythmic agent, NSAIDs and the like, and combinations thereof.
- the activated fatty acids of the invention may be mixed with one or more nutraceutical equivalents to any of the agents described above.
- the activated fatty acids of the invention may be mixed with a nutraceutical statin equivalent such as, for example, from rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof and the like.
- one or more nutraceutical including, but not limited to, glucosamine derivatives, methylsulfonylmethane, yucca concentrates, grape seed extracts, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, echinacea, and the like may be combined with activated fatty acids.
- Embodiments further include nutraceuticals including the nutraceutical equivalents to any of the agents described above and one or more activated fatty acids.
- the nutraceuticals may include one or more activated fatty acid in combination with one or more other nutraceutical compound or one or more other secondary agent.
- Nutraceuticals containing various combinations of ingredients are well known in the art, and any known nutraceutical may be combined with one or more activated fatty acids to produce a combination nutraceutical.
- activated fatty acids may be combined with vitamins including vitamins A, B, including vitamin B-1, B-2, B-6, B-12, C, D including vitamin D3, and E, and the like and derivatives thereof, minerals such as selenium and the like, plant extracts such as ⁇ -carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, and the like, nutraceutical oils such as flaxseed oil, borage seed oil, and other know nutraceutical components such as coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and
- one or more additional ingredients may be provided to produce a nutraceutical for treating or preventing specific diseases or indication.
- activated fatty acids may be combined with other nutraceutically active components that can act as antioxidants such as vitamin C, vitamin E, vitamin D, selenium and the like to create a nutraceutical for treating aging and cancer.
- a nutraceutical for treating or preventing diseases of the eye may be prepared by combining activated fatty acids with, for example, vitamin A and/or ⁇ -carotene, and in still other embodiments, a nutraceutical with neuroprotective activities or that enhances cognitive abilities may be prepared by combining activated fatty acids with, for example, ginko biloba.
- nutraceuticals for treating or preventing heart or circulatory diseases may be prepared by combining activated fatty acids with policosanol, guggulipids, rice bran extract, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, wheat germ, wheat germ extract, beeswax, red yeast rice extract, and or other nutraceuticals known to exhibit statin-like activity.
- components with various activities may be combined.
- a nutraceutical with neuroprotective activities may include one or more antioxidants such as vitamin C, vitamin E, or selenium along with ginko biloba, since it is well known that antioxidants are also effective neuroprotectants.
- vitamin E may be provided to any nutraceutical described herein to stabilize the activated fatty acids and increase the shelf life of the nutraceutical.
- Nutraceuticals having fatty acids and one or more additional nutraceutically active components may be combined in a single dose formulation by known methods.
- lipophilic additional nutraceutically active components may be combined with the activated fatty acids directly.
- the activated fatty acid may be separated from a non-lipophilic additional nutraceutically active component by, for example, preparing separate cores that are combined into a single capsule or incorporating the non-lipophilic additional nutraceutically active component into one or more coating layers.
- the activated fatty acid may be administered in a separate dosage unit from the secondary agent such that each treatment is provided separately.
- the activated fatty acid may be provided in the same dosage unit as one or more secondary agent.
- the activated fatty acid may be combined with the one or more secondary agent in a range of about 1:1000 to about 1000:1 by weight or about 200:1 to about 200:1 by weight.
- the activated fatty acid may be present in an amount from about 1 mg to about 3000 mg or from about 10 mg to about 2000 mg, and the one or more secondary agents may be present in an amount from about 1 mg to about 1000 mg, about 5 mg to about 500 mg, and about 5 mg to about 100 mg.
- a single dosage unit may include about 500 mg to about 2000 mg or about 1000 mg of one or more activated ⁇ -3 fatty acids, and about 1 mg to about 150 mg or about 5 mg to about 100 mg of a statin compound, about 1 mg to about 300 mg or 10 to about 100 mg of a fibrate compound or a combination thereof.
- the activated fatty acids of various embodiments may be prepared by any method known in the art.
- the activated fatty acids may be derived from natural sources such as, for example, fish oils which may contain activated fatty acids, and in particular, nitro-fatty acids, that can be isolated, purified or concentrated form the fish oil.
- an activated fatty acid may be prepared by contacting an naturally occurring unsaturated fatty acids with one or more nitro containing compounds or nitrogenating agents. Such naturally occurring activated fatty acids may be useful in the production of nutraceuticals.
- activated fatty acids may be prepared by combining an unsaturated fatty acid with a nitrogenating agent such as ammonia or primary amines, molecular oxygen and an oxidation catalyst as described in U.S. Pat. No. 4,599,430, which is hereby incorporated by reference in its entirety.
- a nitrogenating agent such as ammonia or primary amines, molecular oxygen and an oxidation catalyst as described in U.S. Pat. No. 4,599,430, which is hereby incorporated by reference in its entirety.
- Embodiments of the invention also include topical compositions containing activated fatty acids and, in some embodiments, one or more secondary agents and/or non-activated fatty acids.
- the topical composition may include one or more activated fatty.
- the one or more activated fatty acids may comprise about 10% by weight to about 95% by weight of the total composition.
- activated fatty acids comprise about 0.01% to about 10% by weight of one or more species of activated fatty acid.
- activated fatty acids comprise about 95% to about 100% by weight of one or more species of activated fatty acid.
- topical compositions of the invention can contain additional ingredients commonly found in skin care compositions and cosmetics, such as for example, tinting agents, emollients, skin conditioning agents, emulsifying agents, humectants, preservatives, antioxidants, perfumes, chelating agents etc., that are compatible with other components of the composition.
- additional ingredients commonly found in skin care compositions and cosmetics, such as for example, tinting agents, emollients, skin conditioning agents, emulsifying agents, humectants, preservatives, antioxidants, perfumes, chelating agents etc.
- a nitroalkene topical composition desirably includes a substantial antioxidant and preservative system.
- the antioxidant system is OxynexTM AP, OynexTM LM, or OxynexTM K.
- the preferred embodiments use fatty acids of Vitamin C, specifically ascorbyl palmitate, as a significant component of the antioxidant system.
- Antioxidants are typically present in an amount ranging from about 0.025% to about 5.00% by weight of the composition, include, but are not limited to, butylated hydroxy toluene (BHT); vitamin C and/or vitamin C derivatives, such as fatty acid esters of ascorbic acid, particularly asocorbyl palmitate; butylated hydroanisole (BHA); phenyl-a-naphthylamine; hydroquinone; propyl gallate; nordihydroquiaretic acid; vitamin E and/or derivatives of vitamin E, including tocotrienol and/or tocotrienol derivatives; calcium pantothenates; green tea extracts; mixed polyphenols; and mixtures of any of these.
- BHT butylated hydroxy toluene
- vitamin C and/or vitamin C derivatives such as fatty acid esters of ascorbic acid, particularly asocorbyl palmitate
- BHA butylated hydroanisole
- Emollients typically present in amounts ranging from about 0.01% to 5% of the total composition include, but are not limited to, fatty esters, fatty alcohols, mineral oils, polyether siloxane copolymers, and mixtures thereof.
- Humectants may be present in amounts ranging from about 0.1% to about 5% by weight of the total composition. Non-polar humectants are preferred.
- Emulsifiers typically present in amounts from about 1% to about 10% by weight of the composition, include, but are not limited to, stearic acid, cetyl alcohol, stearyl alcohol, steareth 2, steareth 20, acrylates/C 10-30 alkyl acrylate crosspolymers, and mixtures thereof.
- Chelating agents typically present in amounts ranging from about 0.01% to about 2% by weight, include, but are not limited to, ethylenediamine tetraacetic acid (EDTA) and derivatives and salts thereof, dihydroxyethyl glycine, tartaric acid, and mixtures thereof.
- EDTA ethylenediamine tetraacetic acid
- Some embodiments of this invention contain at least one other adjunct ingredient in addition to nitroalkene(s).
- Fat-soluble fatty acid esters of ascorbic acid (vitamin C) are employed as an adjunct ingredient as well as an antioxidant in some embodiments.
- the more oxidation-resistant saturated fatty acid esters of ascorbic acid are preferred, including, but not limited to, ascorbyl laurate, ascorbyl myristate, ascorbyl palmitate, ascorbyl stearate, and ascorbyl behenate.
- Ascorbyl palmitate is used in one preferred embodiment.
- Other possible adjunct ingredients include, but are not limited to one or more of: amino acids, lipoic acid; or tocotrienols and tocotrienol derivatives and vitamin E compositions enriched with tocotrienols or tocotrienol derivatives
- the one or more activated fatty acids may be mixed with one or more stabilizers such as, for example, antioxidants, vitamin E, vitamin C, (3-carotene, wheat germ oil and the like, and in some embodiments, the one or more activated fatty acid contained in the composition may be combined with one or more solubilizers such as, for example, surfactants, hydrophilic or hydrophobic solvents, oils or combinations thereof.
- stabilizers such as, for example, antioxidants, vitamin E, vitamin C, (3-carotene, wheat germ oil and the like
- solubilizers such as, for example, surfactants, hydrophilic or hydrophobic solvents, oils or combinations thereof.
- a solubilizer may be vitamin E or a vitamin E derivative such as, but not limited to, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ 1-, ⁇ 2- and ⁇ -tocopherols, their dI, d and I forms and their structural analogues, such as tocotrienols; the corresponding derivatives, esters, produced with organic acids; and mixtures thereof.
- vitamin E derivative solubilizers may include tocopherols, tocotrienols and tocopherol derivatives with organic acids such as acetic acid, propionic acid, bile acid, lactic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, polyethylene glycol succinate and salicylic acid.
- organic acids such as acetic acid, propionic acid, bile acid, lactic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, polyethylene glycol succinate and salicylic acid.
- monohydric alcohol including, for example, ethanol, isopropanol, t-butanol, a fatty alcohol, phenol, cresol, benzyl alcohol or a cycloalkyl alcohol, or monohydric alcohol esters of organic acids such as, for example, acetic acid, propionic acid, butyric acid, a fatty acid of 6-22 carbon atoms, bile acid, lactic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid and salicylic acid may be used as solubilizers.
- organic acids such as, for example, acetic acid, propionic acid, butyric acid, a fatty acid of 6-22 carbon atoms, bile acid, lactic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succin
- solubilizers in this group may include trialkyl citrates such as triethyl citrate, acetyltriethyl citrate, tributyl citrate, acetyltributyl citrate and mixtures thereof; lower alcohol fatty acid esters such as ethyl oleate, ethyl linoleate, ethyl caprylate, ethyl caprate, isopropyl myristate, isopropyl palmitate and mixtures thereof and lactones ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -butyrolactone, isomers thereof and mixtures thereof.
- trialkyl citrates such as triethyl citrate, acetyltriethyl citrate, tributyl citrate, acetyltributyl citrate and mixtures thereof
- lower alcohol fatty acid esters such as ethyl oleate, ethyl lin
- the solubilizer may be a nitrogen-containing solvent such as, for example, dimethylformamide, dimethylacetamide, N-alkylpyrrolidone, N-hydroxyalkylpyrrolidone, N-alkylpiperidone, N-alkylcaprolactam and mixtures thereof wherein alkyl may be a C 1-12 branched or straight chain alkyl.
- nitrogen-containing solvents may include N-methyl 2-pyrrolidone, N-ethyl 2-pyrrolidone or a mixture thereof.
- the nitrogen-containing solvent may be in the form of a polymer such as polyvinylpyrrolidone.
- solubilizers may include phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, lecithins, lysolecithins, lysophosphatidylcholine, polyethylene glycolated phospholipids/liysophospholipids, lecithins/lysolecithins and mixtures thereof.
- phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, lecithins, lysolecithins, lysophosphatidylcholine, polyethylene glycolated phospholipids/liysophospholipids, lecithins/lysolecithins and mixtures thereof.
- glycerol acetates and acetylated glycerol fatty acid esters and glycerol fatty acid esters may be used as solubilizers.
- glycerol acetates may include acetin, diacetin, triacetin and mixtures thereof.
- Acetylated glycerol fatty acid esters may include acetylated monoglycerides, acetylated diglycerides and mixtures thereof with a fatty acid component that may be about 6 to about 22 carbon atoms.
- Glycerol fatty acid ester may be a monoglyceride, diglyceride, triglyceride, medium chain monoglycerides with fatty acids having about 6-12 carbons, medium chain diglycerides with fatty acids having about 6-12 carbons, medium chain triglycerides with fatty acids having about 6-12 carbons and mixtures thereof.
- propylene glycol esters may include, for example, propylene carbonate, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol fatty acid esters, acetylated propylene glycol fatty acid esters and mixtures thereof.
- propylene glycol fatty acid esters may be a propylene glycol fatty acid monoester, propylene glycol fatty acid diester or mixture thereof.
- propylene glycol ester may be propylene glycol monocaprylate, propylene glycol dicaprylate, propylene glycol dicaprate, propylene glycol dicaprylate/dicaprate and mixtures thereof.
- Ethylene glycol esters may include monoethylene glycol monoacetates, diethylene glycol esters, polyethylene glycol esters, ethylene glycol monoacetates, ethylene glycol diacetates, ethylene glycol fatty acid monoesters, ethylene glycol fatty acid diesters, polyethylene glycol fatty acid monoesters, polyethylene glycol fatty acid diesters and mixtures thereof.
- the fatty acid may have about 6 to about 22 carbon atoms.
- Hydrophilic solvents may also be utilized as solubilizers include, for example, alcohols, for example, water miscible alcohols, such as, ethanol or glycerol; glycols such as 1,2-propylene glycol; polyols such as a polyalkylene glycol, for example, polyethylene glycol.
- hydrophilic solvents may include N-alkylpyrolidones such as N-methylpyrolidone, triethylcitrate, dimethylisosorbide, caprylic acid or propylene carbonate.
- the topical compositions are based on a carrier in which the nitroalkene is soluble per se or is effectively solublized (e.g. as an emulsion or microemulsion).
- the carrier is dermatologically acceptable in the sense of not bringing about any adverse effect on the skin areas to which it is applied.
- the carrier preferably is appropriately selected for topical application, and forms a film or layer on the skin to which it is applied so as to localize the application.
- the nitroalkene is applied in admixture with the dermatologically acceptable carrier or vehicle (e.g. as a lotion, cream, gel, ointment, soap, stick, or the like) to as to facilitate topical application and provide therapeutic effects.
- Non-polar and hydrophobic carriers are required for the compositions of the invention.
- Aqueous solvents and other polar solvents should be avoided because nitroalkenes are unstable in such solvents.
- Carriers may include polyethylene glycol, including PEG-1000, PEG-200, PEG-400; PEG-600; Labrasol® (a lipid-based self-emulsifying excipient mainly composed of PEG esters and glycerides with medium acyl chains); glycerin; polypropylene glycol; Stabileze® 06 (a PVM/MA Decadiene Crosspolymer); hydrogenated polyisobutane/polyethane; Permethyl® 99A (isododecane); BV-OSC (tetrahexyldecyl ascorbate); VC-IP (tetrahexyldecyl ascorbate); Vitamin E; beta carotene; disopropyl adipate; 2-ethylhexyl pen
- a phosphatidycholine based carrier is another possible embodiment.
- Phosphatidylcholine commonly called lecithin, is a mixture of diglycerides of stearic, palmitic, and oleic acids, linked to the choline ester of phosphoric acid. It can be isolated from eggs, soybeans, and other biological materials, chemically synthesized, or obtained commercially from many sources.
- the activated fatty acid and/or one or more secondary agents of the invention may be formulated with one or more additional non-pharmaceutically active ingredients including, but not limited to, solubilizers, antioxidants, chelating agents, buffers, emulsifiers, thickening agents, dispersants, and preservatives.
- additional non-pharmaceutically active ingredients including, but not limited to, solubilizers, antioxidants, chelating agents, buffers, emulsifiers, thickening agents, dispersants, and preservatives.
- Embodiments may also include film forming materials and/or binders and/or other conventional additives such as lubricants, fillers, antiadherents, antioxidants, buffers, solubilizers, dyes, chelating agents, disintegrants, and/or absorption enhancers.
- lubricants such as lubricants, fillers, antiadherents, antioxidants, buffers, solubilizers, dyes, chelating agents, disintegrants, and/or absorption enhancers.
- Surfactants may act as both solubilizers and absorption enhancers.
- coatings may be formulated for immediate release, delayed or enteric release, or sustained release in accordance with methods well known in the art. Conventional coating techniques are described, e.g., in Remington's Pharmaceutical Sciences, 18th Ed. (1990), hereby incorporated by reference.
- a topical composition may also include one or more preservatives, coloring and opacifying agents, or combinations thereof.
- Suitable preservatives and colorants are known in the art and include, for example, benzoic acid, para-oxybenzoate, caramel colorant, gardenia colorant, carotene colorant, tar colorant and the like.
- the secondary agent may be provided as a homogenous solution or a heterologous suspension in a pharmaceutically acceptable solvent.
- pharmaceutically acceptable solvents may be an aqueous or organic solvent such as, for example, methanol, ethanol, isopropranol, ethylene glycol, acetone, or mixtures thereof.
- pharmaceutically acceptable solvents may include, but are not limited to, polypropylene glycol; polypropylene glycol; polyethylene glycol, for example, polyethylene glycol 600, polyethylene glycol 900, polyethylene glycol 540, polyethylene glycol 1450, polyethylene glycol 6000, polyethylene glycol 8000, and the like; pharmaceutically acceptable alcohols that are liquids at about room temperature, for example, propylene glycol, ethanol, 2-(2-ethoxyethoxy)ethanol, benzyl alcohol, glycerol, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400 and the like; polyoxyethylene castor oil derivatives, for example, polyoxyethyleneglycerol triricinoleate or polyoxyl 35 castor oil, polyoxyethyleneglycerol oxystearate, RH 40 (polyethyleneglycol 40 hydrogenated castor oil) or RH 60 (polyethyleneglycol 60 hydrogenated castor oil), and the like; saturated polyglycolized glycerides;
- compositions containing the compounds of the invention and a suitable carrier can be in various forms including, but not limited to, solids, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, and dry powders including an effective amount of an activated fatty acid of the invention.
- active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, antioxidants, preservatives and the like.
- the compounds of the present invention can be formulated for parenteral or intravenous administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
- the compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- acceptable vehicles and solvents that may be employed in a formulation are water, Ringer's solution, and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- fatty acids diluents such as oleic acid find use in the preparation of injectables.
- Additional fatty acids diluents that may be useful in embodiments of the invention include, for example, one or more of stearic acid, metallic stearate, sodium stearyl fumarate, fatty acid, fatty alcohol, fatty acid ester, glyceryl behenate, mineral oil, vegetable oil, paraffin, leucine, silica, silicic acid, talc, propylene glycol fatty acid ester, polyethoxylated castor oil, polyethylene glycol, polypropylene glycol, polyalkylene glycol, polyoxyethylene-glycerol fatty ester, polyoxyethylene fatty alcohol ether, polyethoxylated sterol, polyethoxylated castor oil, polyethoxylated vegetable oil, and the like.
- the fatty acid diluent may be a mixture of fatty acids.
- the fatty acid may be a fatty acid ester, a sugar ester of fatty acid, a glyceride of fatty acid, or an ethoxylated fatty acid ester
- the fatty acid diluent may be a fatty alcohol such as, for example, stearyl alcohol, lauryl alcohol, palmityl alcohol, palmitolyl acid, cetyl alcohol, capryl alcohol, caprylyl alcohol, oleyl alcohol, linolenyl alcohol, arachidonic alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol, and linoleyl alcohol and the like and mixtures thereof.
- activated fatty acid prepared as described above which are formulated as a solid dosage form for oral administration including capsules, tablets, pills, powders, and granules.
- the active compound may be admixed with one or more inert diluent such as sucrose, lactose, or starch.
- Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
- the dosage forms may also comprise buffering agents and can additionally be prepared with enteric coatings.
- Preparation of an activated fatty acid in solid dosage form may vary.
- a liquid or gelatin formulation of the activated fatty acid may be prepared by combining the activated fatty acid with one or more fatty acid diluent, such as those described above, and adding a thickening agent to the liquid mixture to form a gelatin.
- the gelatin may then be encapsulated in unit dosage form to form a capsule.
- an oily preparation of an activated fatty acid prepared as described above may be lyophilized to for a solid that may be mixed with one or more pharmaceutically acceptable excipient, carrier or diluent to form a tablet, and in yet another embodiment, the activated fatty acid of an oily preparation may be crystallized to from a solid which may be combined with a pharmaceutically acceptable excipient, carrier or diluent to form a tablet.
- liquid dosage forms which may be useful for oral administration of activated fatty acids include liquid dosage forms.
- a liquid dosage may include a pharmaceutically acceptable emulsion, solution, suspension, syrup, and elixir containing inert diluents commonly used in the art, such as water.
- Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
- activated fatty acids of the invention can be formulated as a depot preparation.
- Such long acting formulations can be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection. Depot injections can be administered at about 1 to about 6 months or longer intervals.
- the compounds can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- Suitable diluents for formulations include, but are not limited to those described below:
- Vegetable oil refers to a compound, or mixture of compounds, formed from ethoxylation of vegetable oil, wherein at least one chain of polyethylene glycol is covalently bound to the vegetable oil.
- the fatty acids have between about twelve carbons to about eighteen carbons.
- the amount of ethoxylation can vary from about 2 to about 200, about 5 to 100, about 10 to about 80, about 20 to about 60, or about 12 to about 18 of ethylene glycol repeat units.
- the vegetable oil may be hydrogenated or unhydrogenated.
- Suitable vegetable oils include, but are not limited to castor oil, hydrogenated castor oil, sesame oil, corn oil, peanut oil, olive oil, sunflower oil, safflower oil, soybean oil, benzyl benzoate, sesame oil, cottonseed oil, and palm oil.
- Suitable vegetable oils include commercially available synthetic oils such as, but not limited to, MiglyolTM 810 and 812 (available from Dynamit Nobel Chemicals, Sweden) NeobeeTM M5 (available from Drew Chemical Corp.), AlofineTM (available from Jarchem Industries), the LubritabTM series (available from JRS Pharma), the SterotexTM (available from Abitec Corp.), SoftisanTM 154 (available from Sasol), CroduretTM (available from Croda), FancolTM (available from the Fanning Corp.), CutinaTM HR (available from Cognis), SimulsolTM (available from CJ Petrow), EmConTM CO (available from Amisol Co.), LipvolTM CO, SES, and HS-K (available from Lipo), and SterotexTM HM (available from Abitec Corp.).
- synthetic oils such as, but not limited to, MiglyolTM 810 and 812 (available from Dynamit Nobel Chemicals, Sweden) NeobeeTM M5 (available from Drew Chemical Corp.), AlofineTM (available
- Suitable vegetable oils including sesame, castor, corn, and cottonseed oils, include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients , (2006), 5th ed., which is incorporated herein by reference in its entirety.
- Suitable polyethoxylated vegetable oils include but are not limited to, CremaphorTM EL or RH series (available from BASF), EmulphorTM EL-719 (available from Stepan products), and EmulphorTM EL-620P (available from GAF).
- Mineral oils refers to both unrefined and refined (light) mineral oil. Suitable mineral oils include, but are not limited to, the AvatechTM grades (available from Avatar Corp.), DrakeolTM grades (available from Penreco), SiriusTM grades (available from Shell), and the CitationTM grades (available from Avater Corp.).
- Castor oils refers to a compound formed from the ethoxylation of castor oil, wherein at least one chain of polyethylene glycol is covalently bound to the castor oil.
- the castor oil may be hydrogenated or unhydrogenated.
- Synonyms for polyethoxylated castor oil include, but are not limited to polyoxyl castor oil, hydrogenated polyoxyl castor oil, microgolglyceroli ricinoleas, macrogolglyceroli hydroxystearas, polyoxyl 35 castor oil, and polyoxyl 40 hydrogenated castor oil.
- Suitable polyethoxylated castor oils include, but are not limited to, the NikkolTM HCO series (available from Nikko Chemicals Co.
- Nikkol HCO-30, HC-40, HC-50, and HC-60 polyethylene glycol-30 hydrogenated castor oil, polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-50 hydrogenated castor oil, and polyethylene glycol-60 hydrogenated castor oil
- EmulphorTM EL-719 castor oil 40 mole-ethoxylate, available from Stepan Products
- CremophoreTM series available from BASF
- Cremophore RH40, RH60, and EL35 polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-60 hydrogenated castor oil, and polyethylene glycol-35 hydrogenated castor oil, respectively
- Emulgin®RO and HRE series available from Cognis PharmaLine.
- Other suitable polyoxyethylene castor oil derivatives include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients , (2006), 5th ed., which is incorporated herein by reference in its entirety.
- Sterol refers to a compound, or mixture of compounds, derived from the ethoxylation of sterol molecule. Suitable polyethoxylated sterols include, but are not limited to, PEG-24 cholesterol ether, SolulanTM C-24 (available from Amerchol); PEG-30 cholestanol, NikkolTM DHC (available from Nikko); Phytosterol, GENEROLTM series (available from Henkel); PEG-25 phyto sterol, NikkolTM BPSH-25 (available from Nikko); PEG-5 soya sterol, NikkolTM BPS-5 (available from Nikko); PEG-10 soya sterol, NikkolTM BPS-10 (available from Nikko); PEG-20 soya sterol, NikkolTM BPS-20 (available from Nikko); and PEG-30 soya sterol, NikkolTM BPS-30 (available from Nikko). As used herein, the term “PEG”
- Polyethylene glycol As used herein, the term “polyethylene glycol” or “PEG” refers to a polymer containing ethylene glycol monomer units of formula —O—CH2-CH2-. Suitable polyethylene glycols may have a free hydroxyl group at each end of the polymer molecule, or may have one or more hydroxyl groups etherified with a lower alkyl, e.g., a methyl group. Also suitable are derivatives of polyethylene glycols having esterifiable carboxy groups. Polyethylene glycols useful in the present invention can be polymers of any chain length or molecular weight, and can include branching. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 9000.
- the average molecular weight of the polyethylene glycol is from about 200 to about 5000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 900. In some embodiments, the average molecular weight of the polyethylene glycol is about 400.
- Suitable polyethylene glycols include, but are not limited to polyethylene glycol-200, polyethylene glycol-300, polyethylene glycol-400, polyethylene glycol-600, and polyethylene glycol-900. The number following the dash in the name refers to the average molecular weight of the polymer. In some embodiments, the polyethylene glycol is polyethylene glycol-400.
- Suitable polyethylene glycols include, but are not limited to the CarbowaxTM and CarbowaxTM Sentry series (available from Dow), the LipoxolTM series (available from Brenntag), the LutrolTM series (available from BASF), and the PluriolTM series (available from BASF).
- Propylene glycol fatty acid ester refers to a monoether or diester, or mixtures thereof, formed between propylene glycol or polypropylene glycol and a fatty acid.
- Fatty acids that are useful for deriving propylene glycol fatty alcohol ethers include, but are not limited to, those defined herein.
- the monoester or diester is derived from propylene glycol.
- the monoester or diester has about 1 to about 200 oxypropylene units.
- the polypropylene glycol portion of the molecule has about 2 to about 100 oxypropylene units.
- the monoester or diester has about 4 to about 50 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 30 oxypropylene units.
- Suitable propylene glycol fatty acid esters include, but are not limited to, propylene glycol laurates: LauroglycolTM FCC and 90 (available from Gattefosse); propylene glycol caprylates: CapryolTM PGMC and 90 (available from Gatefosse); and propylene glycol dicaprylocaprates: LabrafacTM PG (available from Gatefosse).
- Stearoyl macrogol glyceride refers to a polyglycolized glyceride synthesized predominately from stearic acid or from compounds derived predominately from stearic acid, although other fatty acids or compounds derived from other fatty acids may used in the synthesis as well.
- Suitable stearoyl macrogol glycerides include, but are not limited to, Gelucire® 50/13 (available from Gattefosse).
- the diluent component comprises one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide, or a metal aluminosilicate.
- excipients or carriers for use in solid and/or liquid dosage faints include, but are not limited to:
- Sorbitol Suitable sorbitols include, but are not limited to, PharmSorbidex E420 (available from Cargill), Liponic 70-NC and 76-NC (available from Lipo Chemical), Neosorb (available from Roquette), Partech SI (available from Merck), and Sorbogem (available from SPI Polyols).
- Starch, sodium starch glycolate, and pregelatinized starch include, but are not limited to, those described in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients , (2006), 5th ed., which is incorporated herein by reference in its entirety.
- the disintegrant may include one or more of croscarmellose sodium, carmellose calcium, crospovidone, alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floc, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate, a metal carbonate, sodium bicarbonate, calcium citrate, or calcium phosphate.
- croscarmellose sodium, carmellose calcium, crospovidone alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floc, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate,
- Still further embodiments of the invention include activated fatty acids administered in combination with other active such as, for example, adjuvants, protease inhibitors, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.
- active such as, for example, adjuvants, protease inhibitors, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.
- Some embodiments are directed to a dietary supplement including a fatty acid component enriched for one or more activated fatty acids fatty acids and a nutraceutically acceptable excipient.
- the activated fatty acid may be derived from an omega-3 fatty acid, an omega-6 fatty acid, an omega-9 fatty acid, and combinations thereof.
- the activated fatty acid may be a nitro-fatty acid or a keto-fatty acid
- the activated fatty acid may be nitro-linoleic acid, nitro- ⁇ -linoleic acid, nitro- ⁇ -linoleic acid, nitro-oleic acid, nitro-eicosapentaenoic acid, nitro-docosahexaenoic acid, keto-linoleic acid, keto- ⁇ -linoleic acid, keto- ⁇ -linoleic acid, keto-oleic acid, keto-eicosapentaenoic acid, keto-docosahexaenoic acid or a derivative or combination thereof.
- the dietary supplement may also include one or more of linoleic acid, ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof DHA and/or nitratel DHA are preferable for cognitive disorders.
- linoleic acid ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof DHA and/or nitratel DHA are preferable for cognitive disorders.
- the dietary supplement may further include one or more nutraceutical selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, ⁇ -carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- nutraceutical selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C,
- the dietary supplement may include a first fatty acid component enriched for one or more: activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in some embodiments, the dietary supplement may further include vitamin E or a derivative thereof.
- activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid
- a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, ⁇ -linoleic acid
- the dietary supplement may include one or more secondary agent including but not limited to vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, (3-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- secondary agent including but not limited to vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C,
- the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system.
- the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and ⁇ -carotene, and such a dietary supplement may be formulated to promote healthy eyes.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote cognitive health or formulated as a neuroprotectant.
- At least one of the one or more secondary agent may include one or more agents selected from solubilizers, stabilizers, colorants, plasticizers diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, antioxidants, or preservatives or a combination thereof.
- compositions be formulated to include about 10 mg to about 500 mg of one or more activated fatty acid and from about 10 mg to about 100 mg of vitamin C. In other embodiments, such compositions may be formulated to include about 10 mg to about 500 mg of one or more activated fatty acid and from about 2 mg to about 50 mg of vitamin E.
- compositions of various embodiments may further include one or more film forming materials and/or binders and/or other conventional additives such as lubricants, fillers, antiadherents, antioxidants, buffers, solubilizers, dyes, chelating agents, disintegrants, and/or absorption enhancers.
- lubricants such as lubricants, fillers, antiadherents, antioxidants, buffers, solubilizers, dyes, chelating agents, disintegrants, and/or absorption enhancers.
- surfactants may act as both solubilizers and absorption enhancers.
- coatings may be formulated for immediate release, delayed or enteric release, or sustained release in accordance with methods well known in the art. Conventional coating techniques are described, e.g., in Remington's Pharmaceutical Sciences, 18th Ed. (1990), hereby incorporated by reference.
- Additional coatings to be employed in accordance with the invention may include, but are not limited to, for example, one or more immediate release coatings, protective coatings, enteric or delayed release coatings, sustained release coatings, barrier coatings, and combinations thereof.
- an immediate release coating may be used to improve product elegance as well as for a moisture barrier, and taste and odor masking. Rapid breakdown of the film in gastric media is important, leading to effective disintegration and dissolution.
- the compositions may include at least one or more secondary agent.
- at least one polymer such as, but not limited to cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, polyvinylpyrrolidone/vinyl acetate copolymer, ethyl cellulose aqueous dispersions and combinations thereof, preferably hydroxpropyl cellulose, ethyl cellulose, and mixtures thereof, may be added to the composition at a ratio of polymer to secondary agent of from about 1:20 to about 20:1 by weight or about 1:5 to about 10:1 by weight.
- the amount of secondary agent may be from about 1:2 to about 5:1 or from about 1:1 to about 4:1, and in embodiments where the amount of secondary agent is about 15 mg or more, the amount of polymer may be from about 1:4 to about 4:1 or about 1:3 to about 2:1.
- the secondary agent may be provided as a homogenous solution or a heterologous suspension in a pharmaceutically acceptable solvent.
- a pharmaceutically acceptable solvent may be an aqueous or organic solvent such as, for example, methanol, ethanol, isopropranol, ethylene glycol, acetone, or mixtures thereof.
- pharmaceutically acceptable solvents may include, but are not limited to, polypropylene glycol; polypropylene glycol; polyethylene glycol, for example, polyethylene glycol 600, polyethylene glycol 900, polyethylene glycol 540, polyethylene glycol 1450, polyethylene glycol 6000, polyethylene glycol 8000, and the like; pharmaceutically acceptable alcohols that are liquids at about room temperature, for example, propylene glycol, ethanol, 2-(2-ethoxyethoxy)ethanol, benzyl alcohol, glycerol, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400 and the like; polyoxyethylene castor oil derivatives, for example, polyoxyethyleneglycerol triricinoleate or polyoxyl 35 castor oil, polyoxyethyleneglycerol oxystearate, RH 40 (polyethyleneglycol 40 hydrogenated castor oil) or RH 60 (polyethyleneglycol 60 hydrogenated castor oil), and the like; saturated polyglycolized glycerides;
- compositions containing the compounds of the invention and a suitable carrier can be in various forms including, but not limited to, solids, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, and dry powders including an effective amount of an activated fatty acid of the invention.
- active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, antioxidants, preservatives and the like.
- the dietary supplement may include a first fatty acid component enriched for one or more activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, ⁇ -linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in particular embodiments, the dietary supplement may further include vitamin E or a derivative thereof.
- the dietary supplement may further include one or more secondary agent selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, ⁇ -carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- secondary agent selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin
- the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system.
- the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and ⁇ -carotene, and such a dietary supplement may be formulated to promote healthy eyes.
- the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote cognitive health or formulated as a neuroprotectant.
- compositions including one or more nitro fatty acids .
- the one or more nitro fatty acids may make up about 10% by weight to about 95% by weight of the total composition.
- the compositions may include one or more additional secondary components such as, for example, rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, green tea extract, and echinacea.
- additional secondary components such as, for example, rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra,
- the activated fatty acid may be derived from an omega-3 fatty acids, omega-6 fatty acids, omega-9 fatty acids, linoleic acid, ⁇ -linoleic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid or a derivative or combination thereof, and may contain non-activated fatty acids.
- the core, at least one of the one or more coating layers, or a combination thereof may further include one or more secondary agents such as, for example, antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, low-density lipoprotein (LDL) catabolism activators, peroxisome proliferator-activated receptor (PPAR) antagonists or agonists, antiarrhythmic agent, non-steroidal anti-inflammatory drugs (NSAIDs) and nutraceutical equivalents thereof.
- secondary agents such as, for example, antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, low-density lipoprotein (LDL) catabolism activators, peroxisome proliferator-activated receptor (PPAR) antagonists or agonists, antiarrhythmic agent, non-steroidal anti-inflammatory drugs (NSAIDs) and nutraceutical equivalents thereof.
- nutraceutical compositions may be prepared as described above including the ingredients listed in Table 1.
- nutraceutical compositions may be prepared as described above including the ingredients listed in Table 2.
- Topical compositions may be prepared including:
- Topical emulsion compositions may be prepared including:
- 0.01% w/w OA NO 2 15.00% w/w Ethoxylated glycerin, 5.00% w/w Glycerin, 0.10% w/w NaCl, 1.00% w/w BV-OSC, 35.00% Mineral oil, 2.00% w/w Dow Corning® Fluid 244 (methylsiloxane fluid), 5.00% w/w Abil WE-09 (Polygrycerol-4 isostearate and cetyl dimethicone cpolyol and hexyl laureate), 1.00% w/w Cranberry seed oil, 0.01% w/w Oxynex AP and PEG-400 q.s. to 100% w/w.
- Topical compositions and emulsions can be applied to areas of the skin such as the face at established intervals resulting in a gradual improvement in the skin areas with each successive application.
- Topical compositions of the present invention are expected to be particularly useful in the prevention and treatment of conditions including: rosacea, eczema, psoriasis, xerosis, dermatitis (contact and atopic), sebhorrea, thermal and radiation burns (including sunburn), acne, alopecia, aging-induced skin tissue degeneration, scars, and other conditions associated with skin inflammation.
- compositions of the present invention will also be useful in the treatment and prevention of alopecia, where skin inflammation is frequently present.
- methanol-soluble substances were extracted from olive oil by applying 6 volumes of methanol per volume of oil and vortexing for a minute. The triglyceride containing fraction was obtained and the extraction was repeated. The remaining triglycerides were dried under vacuum to eliminate remaining organic solvents. Once dry, a concentrated solution of nitrated oleic acid (dissolved in a small volume of ethanol) was added to reach a final concentration of 750 ⁇ M. Method of detection.
- fatty acids were extracted from the triglyceride matrix using a 4:1 ratio of methanol:triglyceride, diluted to a final concentration of 100 nM and quantified using liquid chromatography coupled to mass spectrometry.
- the sample (10 ⁇ l) was injected using an automated Shimadzu autosampler and HPLC pumps (SIL20 System), and chromatographically separated using a C18 reverse phase column (2 mm Mercury cartridge columns, Phenomenex).
- the nitrated oleic acid was detected using the multiple reaction monitoring (MRM) process in the negative ion mode performed on a 4000 QTRAP triple quadrupole (Applied Biosystems).
- MRM multiple reaction monitoring
- the selected MRM corresponded to the formation of the product ion nitrite from the nitrated oleic acid, having a specific transition of 324.3/46.
- the HPLC method was based on solvent A (H2O 2O with 0.1% Acetic Acid) and B (Acetonitrile with 0.1% Acetic Acid). A gradient was developed starting at 35% B over 6 min to reach 100% B. The column was then washed at 100% B for 2 minutes and re-equilibrated at initial conditions for 3 minutes. The flow rate was established at 750 ⁇ l/min. The peak areas were integrated using Analyst 1.5.1 software (Applied Biosystems) and external standard curves were performed for quantification purposes.
- FIG. 1 shows stability of 10-nitro oleic acid in olive oil over a period of 19 days at 22° C., 37° C. and 50° C. Stability is plotted as a percentage of the starting concentration of 10-nitro oleic acid. 10-nitro oleic acid is shown to be stable in olive at a range of temperatures for periods of up to 20 days. After 135 days, stability was found to be decreased by about 15% in samples incubated at 22° C., 37° C.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Dermatology (AREA)
- Birds (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Activated fatty acids, topical compositions including activated fatty acids and methods for using activated fatty acids to treat a variety of diseases.
Description
- This application is a continuation of U.S. patent application Ser. No. 13/174,206, filed on Jun. 30, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 12/651,079, filed on Dec. 31, 2009, which claims the benefit of U.S. Provisional Application No. 61/141,844, filed on Dec. 31, 2008.
- Embodiments of the invention presented herein are directed to nutritional or dietary supplements, topical formulations, such as salves and lotions, and other nutraceutical compositions that include one or more activated fatty acids such as for example, nitro fatty acids.
- In some embodiments, the nutraceutical supplements and topical formulations may include one or more nutraceutical other than nitro fatty acids such as rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, and echinacea. The activated fatty acids may be isolated from a natural source such as fish oil and may be derived from omega-3 fatty acids, linoleic acid, α-linoleic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid or a derivative or combination thereof. In particular embodiment, the nutraceuticals may further include non-nitrated fatty acids.
- For topical formulations the nutraceutical may include a dermatalogically acceptable vehicle, and in certain embodiments other nutraceuticals such as, for example, hyaluronic acid, chondroitin sulphate, collagen glucosamine, keratan sulphate, dermatan sulphate, vitamin C, green tea extract, shea butter, grape-seed extract, aloe extract, or mixtures thereof.
- Some embodiments of the invention are directed to the selection, formulation, and use of compounds which act with a protective response to prevent and attenuate inflammation to provide a therapeutic effect in their control of the pathological inflammation processes, and are also important in providing useful biochemical tools for mechanistic investigation of the enzymes involved.
- Some embodiments of the invention are directed to the topical use of nitroalkene compositions, including particularly, nitrilinoleic acid, nitrooleic acid, nitrated species of arachidonic acid and nitrated cholesteryl linoleate, as lipi signaling mediatos to reduce inflammation and inflammation mediated skin conditions.
- Some embodiments of the invention provide therapeutically effective topical compositions of nitroalkene and carrier to prevent, treat, or otherwise improve the skin conditions through topical application.
- Some embodiments of the invention provide methods for preventing and/or treating skin damage that comprise applying a composition containing nitroalkene in a dermatologically acceptable carrier to skin.
- In accordance with the present invention, topical methods of use of nitroalkenes to prevent or treat rosacea, eczema, psoriasis, xerosis, dermatitis, seborrhea, acne, alopecia, other types of skin inflammation, skin aging, and scarring are disclosed.
- The amount of nitroalkene necessary to treat skin or prevent skin damage is not fixed per se and is necessarily dependent upon the amount and identity of any adjunct ingredients in the preparation. In some typical embodiments of the invention, the composition comprises about 0.025% to about 70% by weight nitroalkene in a dermatologically acceptable polymer polyether and/or phosphatidycholine carrier. Optionally, at least one or a mixture of lipoic acid, fatty acid ester of ascorbic acid may be added to the composition.
- In some typical embodiments of the invention, the method for preventing and/or treating skin damage comprises applying a composition containing about 0.025% to about 70% by weight of nitroalkene in a dermatologically acceptable carrier. Optionally, at least one or a mixture of lipoic acid or fatty acid ester of ascorbic acid may be added to the composition.
- Some embodiments are directed to a dietary supplement including a fatty acid component enriched for one or more activated fatty acids fatty acids and a nutraceutically acceptable excipient. In some embodiments, the activated fatty acid may be derived from an omega-3 fatty acid, an omega-6 fatty acid, an omega-9 fatty acid, and combinations thereof. In other embodiments, the activated fatty acid may be a nitro-fatty acid or a keto-fatty acid, and in particular embodiments, the activated fatty acid may be nitro-linoleic acid, nitro-α-linoleic acid, nitro-γ-linoleic acid, nitro-oleic acid, nitro-eicosapentaenoic acid, nitro-docosahexaenoic acid, keto-linoleic acid, keto-γ-linoleic acid, keto-α-linoleic acid, keto-oleic acid, keto-eicosapentaenoic acid, keto-docosahexaenoic acid or a derivative or combination thereof. In still other embodiments, the dietary supplement may also include one or more of linoleic acid, α-linoleic acid, γ-linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof. In some embodiment, the dietary supplement may further include one or more nutraceutical selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, β-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- In particular embodiments, the dietary supplement may include a first fatty acid component enriched for one or more activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, γ-linoleic acid, α-linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in some embodiments, the dietary supplement may further include vitamin E or a derivative thereof. In other embodiments, the dietary supplement may include one or more secondary agent including but not limited to vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, β-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof. In some embodiments, the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system. In other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation. In still other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and (3-carotene, and such a dietary supplement may be formulated to promote healthy eyes. In yet other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote general health.
- Various embodiments of the invention are also directed to pharmaceutical composition. In such embodiments, the one or more nitro fatty acids may make up about 10% by weight to about 95% by weight. As above, the pharmaceutical compositions may include one or more nutraceutical other than nitro fatty acids such as, for example, rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, and echinacea. The activated fatty acid may be derived from an omega-3 fatty acids, omega-6 fatty acids, omega-9 fatty acids, α-linoleic acid, γ-linoleic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid or a derivative or combination thereof, and may contain non-activated fatty acids. Such pharmaceutical compositions may be topical compositions, and in some embodiments, the compositions may further include other agents such as solubilizers, stabilizers, colorants, plasticizers diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, antioxidants, preservatives or combinations thereof. In still other embodiments, the composition, may further include one or more secondary agents such as, for example, antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, LDL catabolism activators, PPAR antagonists or agonists, antiarrhythmic agent, NSAIDs and nutraceutical equivalents thereof.
- Further embodiments are directed to methods for improving the health of an individual by administering to the individual a dietary supplement including a fatty acid component enriched for one or more activated fatty acids fatty acids, and a nutraceutically acceptable excipient. In some embodiments, the dietary supplement may include a first fatty acid component enriched for one or more activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, α-linoleic acid, γ-linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in particular embodiments, the dietary supplement may further include vitamin E or a derivative thereof. In some embodiments, the dietary supplement may further include one or more secondary agent selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, β-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof. In some embodiments, the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system. In other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation. In still other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and β-carotene, and such a dietary supplement may be formulated to promote healthy eyes. In yet other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote general health.
- Embodiments of the invention also include methods for preparing a nitro-fatty acid by isolating nitro fatty acids from fish oil. Other methods for preparing a nitro fatty acid include the steps of contacting an existing unsaturated fatty acid with a nitro containing compound; and reacting an existing unsaturated fatty acid with a nitro containing compound to form a nitro fatty acid. Still other methods for preparing activated fatty acids include the steps of contacting an unsaturated fatty acid with a mercuric salt and a selenium compound; contacting an intermediate resulting from step 1 with an electron withdrawing group donating reagent; reacting the intermediate resulting from step 2 with an oxidizing agent. Yet other methods for preparing nitro fatty acids include the steps of combining a first component at least comprising an aliphatic hydrocarbon having an electron withdrawing group at one end and a second component at least comprising aliphatic hydrocarbon chain having an aldehyde at one end in the presence of a base to faun a first intermediate; generating an alkene from the first intermediate.
-
FIG. 1 is a graph showing stability of 10-nitro oleic acid in olive oil over a period of 19 days at 22° C., 37° C. and 50° C. Stability is plotted as a percentage of the starting concentration of 10-nitro oleic acid. - Nitric oxide (NO) is an endogenously generated, lipophilic signaling molecule that has been implicated in the maintenance of vascular homeostasis, modulation of oxygen radical reactions, inflammatory cell function, post-translational protein modification and regulation of gene expression. In addition, nitric oxide-derived species display separate and unique pharmacological properties, specifically can mediate oxidation and nitration of biomolecules such as, for example, unsaturated fatty acids.
- Various reactions yield products capable of concerted oxidation, nitrosation and nitration of target molecules. For example, nitric oxide may react with superoxide (O2 −) to yield peroxynitrite (ONOO−) and its conjugate acid, peroxynitritrous acid (ONOOH), the latter of which may undergo homolytic scission to form nitrogen dioxide (.NO2) and hydroxyl radical (.OH). In some instances, biological conditions may favor the reaction of ONOO− with CO2 which yields nitrosoperoxycarbonate (ONOOCO2 −), which rapidly yields .NO2 and carbonate (.CO3 −) radicals via homolysis or rearrangement to NO3 − and CO2. During inflammation, neutrophil myeloperoxidase and heme proteins such as myoglobin and cytochrome c catalyze H2O2-dependent oxidation of nitrite (NO2 −) to .NO2, resulting in biomolecule oxidation and nitration that is influenced by the spatial distribution of catalytic heme proteins. The reaction of .NO with O2 can also produce products that can be substrates or reactants for nitrosation and nitration. For example, the small molecular radius, uncharged nature and lipophilicity of .NO and O2 facilitate concentration of these species in biological membranes in a process referred to as the “molecular lens” effect. The increase in concentration induced by .NO and O2 solvation in hydrophobic cell compartments accelerates the normally slow reaction of .NO with O2 to yield N2O3 and N2O4. Finally, environmental sources also yield .NO2 as a product of photochemical air pollution and tobacco smoke.
- Nitration of fatty acids by .NO2 can occur through several methods. For example, during both basal cell signaling and tissue inflammatory conditions, .NO2 can react with membrane and lipoprotein lipids. In both in vivo and in vitro systems, .NO2 has been shown to initiate radical chain auto-oxidation of polyunsaturated fatty acids via hydrogen abstraction from the bis-allylic carbon to form nitrous acid and a resonance-stabilized bis-allylic radical. Depending on the radical environment, the lipid radical species can react with molecular oxygen to form a peroxyl radical, which can react further to form lipid hydroperoxides then oxidized lipids. During inflammation or ischemia, when O2 levels are lower, lipid radicals can react to an even greater extent with .NO2 to generate multiple nitration products including singly nitrated, nitrohydroxy- and dinitro-fatty acid adducts. These products can be generated via hydrogen abstraction, direct addition of .NO2 across the double bond, or both, and in some cases, such reactions may be followed by further reactions of the intermediate products that are formed. Hydrogen abstraction causes a rearrangement of the double bonds to form a conjugated diene; however, the addition of .NO2 maintains a methylene-interrupted diene configuration to yield singly nitrated polyunsaturated fatty acids. This arrangement is similar to nitration products generated by the nitronium ion (NO2 +), which can be produced by ONOO− reaction with heme proteins or via secondary products of CO2 reaction with ONOO−.
- The reaction of polyunsaturated fatty acids with acidified nitrite (HNO2) can generate a complex mixture of products similar to those formed by direct reaction with .NO2, including the formation of singly nitrated products that maintain the bis-allylic bond arrangement. The acidification of NO2 − can create a labile species, HNO2, which is in equilibrium with secondary products, including N2O3, .NO and .NO2, all of which can participate in nitration reactions. The relevance of this pathway as a mechanism of fatty acid nitration is exemplified by physiological and pathological conditions wherein NO2 − is exposed to low pH (e.g., <pH 4.0). This may conceivably occur in the gastric compartment, following endosomal or phagolysosomal acidification or in tissues following-post ischemic reperfusion.
- Nitrated linoleic acid (LNO2) has been shown to display robust cell signaling activities that are generally anti-inflammatory in nature. Synthetic LNO2 can inhibit human platelet function via cAMP-dependent mechanisms and inhibits neutrophil O2 − generation, calcium influx, elastase release, CD11b expression and degranulation via non-cAMP, non-cGMP-dependent mechanisms. LNO2 may also induce vessel relaxation in part via cGMP-dependent mechanisms. In aggregate, these data, derived from a synthetic fatty acid infer that nitro derivatives of fatty acids (NO2-FA) represent a novel class of lipid-derived signaling mediators. To date, a gap in the clinical detection and structural characterization of nitrated fatty acids has limited defining NO2-FA derivatives as biologically-relevant lipid signaling mediators that converge .NO and oxygenated lipid signaling pathways.
- The metabolism of arachidonic acid is a key element of inflammation. In acute inflammation, there is typically a respiratory burst of neutrophil activity that initiates cascades involving a change in the oxidation state of the cell. Alteration in the redox state of the cell activates transcription factors such as NFκB as well as API, which then causes production of proinflammatory mediators. These mediators, such as Tumor necrosis factorA (TFα) and various interleukins, cause a burst of other cytokines. Arachadonic acid is released, which is oxidized to biologically active mediators. When arachadonic acid is oxidized via the cyclooxygenase or lipoxygenase pathways, eicosanoids e.g. prostaglandins, leukotrines, and hyroxyeicosatetraenoic acid (HETE) are produced, which cause erythma, edema, and free radical production.
- Acute inflammation is often characterized by the generation of excited oxygen species, e.g. superoxide anion, which damages the lipid-rich membranes and activate the chemical mediators of the proinflammation and inflammation cascades. These oxygenated species tend to concentrate in hydrophobic regions. Both in or near these hydrophobic compartments, .NO and NOx undergo a rich spectrum of reactions with oxygen species, transition metals, thiols, lipids, and a variety of organic radicals. These multifaceted reactions yield reactive species that transduce .NO signaling and modulate tissue inflammatory responses.
- During inflammation, adaptive and protective responses are elicited by vascular and other tissues to protect the host from its own mechanisms directed at destroying invading pathogens. Heme oxygenase 1 (HO-1) plays a central role in vascular inflammatory signaling and mediates a protective response to inflammatory stresses such as atherosclerosis, acute renal failure, vascular restenosis, transplant rejection, and sepsis. Heme oxygenase 1 catalyzes the degradation of heme to biliverdin, iron, and CO, the last of which has been shown to display diverse, adaptive biological properties, including anti-inflammatory, anti-apoptotic, and vasodilatory actions. During inflammation, HO-1 gene expression is up-regulated, with induction typically occurring transcriptionally. Neutrophil myeloperoxidase and heme proteins such as myoglobin and cytochrome c catalyze H2O2-dependent oxidation of nitrite (NO2) to NO2, resulting in biomolecule oxidation and nitration that is influenced by the spatial distribution of catalytic heme proteins. These and other products are capable of concerted oxidation, nitrosation and nitration of target molecules.
- The body contains an endogenous antioxidant defense system made up of antioxidants such as vitamins C and E, glutathione, and enzymes, e.g., superoxide dismutase. When metabolism increases or the body is subjected to other stress such as infection, extreme exercise, radiation (ionizing and non-ionizing), or chemicals, the endogenous antioxidant systems are overwhelmed, and free radical damage takes place. Over the years, the cell membrane continually receives damage from reactive oxygen species and other free radicals, resulting in cross-linkage or cleavage or proteins and lipoproteins, and oxidation of membrane lipids and lipoproteins. Damage to the cell membrane can result in myriad changes including loss of cell permeability, increased intercellular ionic concentration, and decreased cellular capacity to excrete or detoxify waste products. As the intercellular ionic concentration of potassium increases, colloid density increases and m-RNA and protein synthesis are hampered, resulting in decreased cellular repair. Some cells become so dehydrated they cannot function at all.
- It would be desirable to have topical treatments for rosacea, eczema, acne, alopecia, psoriasis and inflammatory conditions in general using compositions which disrupt the inflammatory cascades describes above.
- Before the present compositions and methods are described, it is to be understood that this invention is not limited to the particular processes, compositions, or methodologies described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
- It must also be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “cell” is a reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth.
- As used herein, the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.
- “Administering” when used in conjunction with a therapeutic means to administer a therapeutic directly into or onto a target tissue or to administer a therapeutic to a patient, whereby the therapeutic positively impacts the tissue to which it is targeted. Thus, as used herein, the term “administering”, when used in conjunction with a nitrated lipid can include, but is not limited to, providing a nitrated lipid to a subject systemically by, for example, intravenous injection, whereby the therapeutic reaches the target tissue. “Administering” a composition may be accomplished by, for example, injection, oral administration, topical administration, or by these methods in combination with other known techniques. Such combination techniques include heating, radiation, ultrasound and the use of delivery agents.
- The term “animal” as used herein includes, but is not limited to, humans and non-human vertebrates such as wild, domestic and farm animals.
- The term “improves” is used to convey that the present invention changes either the characteristics and/or the physical attributes of the tissue to which it is being provided, applied or administered. The term “improves” may also be used in conjunction with a diseased state such that when a diseased state is “improved” the symptoms or physical characteristics associated with the diseased state are diminished, reduced or eliminated.
- The term “inhibiting” includes the administration of a compound of the present invention to prevent the onset of the symptoms, alleviating the symptoms, or eliminating the disease, condition or disorder.
- By “pharmaceutically acceptable”, it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
- “Nutraceutical” as used herein generally refer to natural, bioactive chemical compounds that provide physiological benefits, including, disease prevention and health promotion which may be used to supplement the diet. Nutraceuticals can be either purified or concentrated by using bioengineering methods and can be enhanced through genetic methods, which contain elevated levels of natural substances. Examples of nutraceuticals include isolated nutrients and herbal products and generally contain at least one of the following ingredients: a vitamin, a mineral, an herb or other botanical, an amino acid, a metabolite, constituent, extract, or combination of these ingredients. Common examples of nutraceuticals include beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, and echinacea. The nutraceuticals described herein may be useful for maintenance and support of, for example, healthy joints, skin, and eye and brain function.
- As used herein, the term “therapeutic” means an agent utilized to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient. In part, embodiments of the present invention are directed to the treatment of inflammation, obesity-related diseases, metabolic diseases, cardiovascular diseases, cerebrovascular and neurodegenerative diseases, cancer or the aberrant proliferation of cells.
- A “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to inhibit, block, or reverse the activation, migration, or proliferation of cells. The activity contemplated by the present methods includes both medical therapeutic and/or prophylactic treatment, as appropriate. The specific dose of a compound administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration, and the condition being treated. However, it will be understood that the effective amount administered will be determined by the physician in the light of the relevant circumstances including the condition to be treated, the choice of compound to be administered, and the chosen route of administration, and therefore, the above dosage ranges are not intended to limit the scope of the invention in any way. A therapeutically effective amount of compound of this invention is typically an amount such that when it is administered in a physiologically tolerable excipient composition, it is sufficient to achieve an effective systemic concentration or local concentration in the tissue.
- The terms “treat,” “treated,” or “treating” as used herein refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder or disease, or to obtain beneficial or desired clinical results. For the purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder or disease; stabilization (i.e., not worsening) of the state of the condition, disorder or disease; delay in onset or slowing of the progression of the condition, disorder or disease; amelioration of the condition, disorder or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder or disease. Treatment includes eliciting a clinically significant response without excessive levels of side effects. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment.
- As used herein and in the attached claims, the term “enriched” shall mean that the composition or portion of the composition includes a concentration of the identified component that is greater than the amount of the component naturally occurring in the composition. For example, with reference to activated fatty acids a composition enriched for activated fatty acids may include greater than at least 50 nM activated fatty acids. Therefore, a composition that is enriched for activated fatty acids may be at least 0.05% by weight activated fatty acid, at least 0.1% by weight activated fatty acid, at least 0.15% by weight activated fatty acid, at least 0.25% by weight activated fatty acid, at least 0.5% by weight activated fatty acid, at least 1.0% by weight activated fatty acid, at least 2% by weight activated fatty acid, and so on.
- Generally speaking, the term “tissue” refers to any aggregation of similarly specialized cells which are united in the performance of a particular function.
- Embodiments of the invention presented herein are generally directed to activated fatty acids and, in particular, activated unsaturated fatty acids. As used herein an “activated fatty acid” refers to a fatty acid having at least one electron withdrawing group covalently bound to a carbon of the saturated or unsaturated aliphatic chain of a fatty acid. Such activated fatty acids may be substituted by any number of electron withdrawing groups at any number of positions on the hydrocarbon chain, and an electron withdrawing group may be positioned in either cis or trans configuration at a double bond or in either R or S absolute stereochemistry at an sp3 chiral/stereogenic center. For example, in one embodiment, an activated fatty acid may have one electron withdrawing group, and in another, an activated fatty acid may be substituted with multiple electron withdrawing groups at multiple positions along the hydrocarbon chain. While the activated fatty acids of the invention may have an electron withdrawing group positioned at any carbon along the aliphatic hydrocarbon chain between the carboxy terminal carbon to the terminal methyl (ω), in some embodiments, the electron withdrawing group may be positioned within about 1 carbon from the carboxy terminal carbon and within about 1 carbon from the terminal methyl. In other embodiments, the electron withdrawing group may be positioned within about 3 carbons of either the carboxy terminal carbon and/or the methyl terminal carbon, and in still others embodiments, the electron withdrawing group may be positioned within 5 carbons of either of the carboxy terminal carbon and/or the methyl terminal carbon.
- In certain embodiments, the electron withdrawing group may be positioned on a carbon directly attached to a double bond of the activated fatty acid forming an “electron withdrawing vinyl” group. The electron withdrawing group of such vinyl groups may be on either side of the double bond. Fatty acids encompassed by embodiments of the invention may have one or more than one electron withdrawing vinyl groups at any carbon on the aliphatic hydrocarbon chain, and there are several ways that an unsaturated fatty acid can have one electron-withdrawing group. In one embodiment, an activated oleic acid (ocatadecac-9-enoic acid) which is an 18 carbon, ω-6 fatty acid with one double bond (denoted “18:1”) between the 6th (C-13) and 7th (C-12) carbons, may have an electron withdrawing group at either C-13 or C-12. In another exemplary embodiment, an activated linoleic acid (octadeac-9,12-dienoic acid), which is an 18 carbon, ω-6 fatty acid with two double bonds (denoted “18:2”) between the 6th (C-13) and 7th (C-12) carbons and the 9th (C-10) and 10th (C-9) carbons, may have an electron withdrawing group at C-9 or C-10 or C-12 or C-13. Similarly, other polyunsaturated fatty acids, with 3, 4, 5, 6 or more double bonds, can have one electron withdrawing at either position on any of the double bond carbons, including all possible permutations of positions and electron-withdrawing groups.
- In other embodiments, a mono or polyunsaturated fatty acid may have two electron-withdrawing groups, and there are several ways that an unsaturated fatty acid can have two electron-withdrawing groups. For example, in one embodiment, an activated oleic acid (ocatadecac-9-enoic acid) which is an 18 carbon, ω-6 fatty acid with one double bond (denoted “18:1”) between the 6th (C-13) and 7th (C-12) carbons, may have an electron withdrawing group at both C-13 and C-12. In another exemplary embodiment, an activated linoleic acid (octadeac-9,12-dienoic acid), which is an 18 carbon, ω-6 fatty acid with two double bonds (denoted “18:2”) between the 6th (C-13) and 7th (C-12) carbons and the 9th (C-10) and 10th (C-9) carbons, may have an electron withdrawing group at any two of the positions C-9, C-10, C-12 or C-13, with the following possible permutations: C-9 and C-10, C-9 and C-12, C-9 and C-13, C-10 and C-12, C-10 and C-13, or C-12 and C-13. Similarly, other polyunsaturated fatty acids, with 3, 4, 5, 6 or more double bonds, can have two electron withdrawing at two of the positions on any of the double bond carbons, including all possible permutations of positions and electron-withdrawing groups.
- In analogy to the preceding descriptions of compounds with one electron-withdrawing group or two electron-withdrawing groups, it is also possible to have three, four, five or more electron withdrawing groups. Following the same logic above, in the preceding descriptions of compounds with one electron-withdrawing group or two electron-withdrawing groups, polyunsaturated fatty acids, with 3, 4, 5, 6 or more double bonds, can have multiple electron withdrawing (three, four, five or more, as available positions for substitution permit) at any of the positions on any of the double bond carbons, including all possible permutations of positions and electron-withdrawing groups.
- The term “electron-withdrawing group” is recognized in the art and denotes the tendency of a substituent to attract valence electrons from neighboring atoms, i.e., the substituent is electronegative with respect to neighboring atoms. A quantification of the level of electron-withdrawing capability is given by the Hammett sigma (a) constant (see, e.g., J. March, Advanced Organic Chemistry, McGraw Hill Book Company, New York, (1977 edition) pp. 251-259). The Hammett constant values are generally negative for electron donating groups and positive for electron withdrawing groups. For example the Hammet constant for para substituted NH2 (σ [P]) is about −0.7 and the σ [P] for a nitro group is about 0.8.
- Embodiments of the invention encompass any known electron withdrawing group. For example, electron-withdrawing groups may include, but are not limited to, aldehyde (—COH) acyl (—COR), carbonyl (—CO), carboxylic acid (—COOH), ester (—COOR), halides (—Cl, —F, —Br, etc.), fluoromethyl cyano (—CN), sulfonyl (—SOn), sulfone (—SO2R), sulfonic acid (—SO3H), 1°, 2° and 3° ammonium (—NR3 +), and nitro (—NO2). In some embodiments, the electron withdrawing group may be a strong electron withdrawing group having a σ of at least about 0.2, and in certain embodiments, the electron withdrawing group may form a dipole. For example, in particular embodiments, the electron withdrawing group may be a nitro, ammonium or sulfonyl. In other embodiments, the activated fatty acids of the invention may be additionally substituted by non-electron withdrawing groups or electron donating groups including, for example, alcohol (—OH), reverse ester (—OOCR), alkyl, alkenyl, alkynyl, 1° and 2° amines (—NR2), nitrate (—ONO2), nitrito (—ONO) and the like.
- The fatty acids of various embodiments may be any unsaturated and polyunsaturated fatty acid known in the art. The term “fatty acid” describes aliphatic monocarboxylic acids. Various embodiments include nitrated fatty acid having an aliphatic hydrocarbon chain identical or similar to identified, naturally occurring fatty acids. For example, aliphatic hydrocarbon chains of known naturally occurring fatty acids are generally unbranched and contain an even number of from about 4 to about 24 carbons. Embodiments of the invention encompass such naturally occurring fatty acids as well as non-naturally occurring fatty acids which may contain an odd number of carbons and/or a non-naturally occurring linker. Some embodiments of the invention include fatty acids having from 8 to 23 carbons, and others include fatty acids having from 12 to 18 carbons in the aliphatic hydrocarbon chain. In still other embodiments, fatty acids may have greater than 24 carbons in the aliphatic hydrocarbon chain. The fatty acids of the invention may also be branched at one or more location along the hydrocarbon chain, and in various embodiments, each branch may include an aliphatic hydrocarbon chain of from 1 to 24 carbons, 2 to 20 carbons or 4 to 18 carbons.
- The aliphatic hydrocarbon chain of fatty acids of various embodiments may be unsaturated or polyunsaturated. The term “unsaturated” refers to a fatty acid having a aliphatic hydrocarbon chain that includes at least one double bond and/or substituent. In contrast, a “saturated” hydrocarbon chain does not include any double bonds or substituents. Thus, each carbon of the hydrocarbon chain is ‘saturated’ and has the maximum number of hydrogens. “Polyunsaturated,” generally, refers to fatty acids having hydrocarbon chains with more than one double bond. The double bonds of the unsaturated or polyunsaturated fatty acids of various embodiments may be at any location along the aliphatic hydrocarbon chain and may be in either cis or trans configuration. The term “cis,” refers to a double bond in which carbons adjacent to the double bond are on the same side and the term “trans” refers to a double bond in which carbons adjacent to the double bond are on opposite sides. Typically “cis” is the same as Z, and “trans” is the same as E but sometimes the IUPAC rules for naming compounds will give the opposite of this, which is the typical case in nitroalkenes. For example, a nitroalkene can have the two carbon groups “cis” but the two groups that take priority for the naming of compounds (a nitro group on one carbon of the alkene and a carbon group on the other carbon of the alkene) are on opposite sides and thus are E. Therefore the nitroalkene analog of a “cis” double bond is actually an E nitroalkene. Similarly, the nitroalkene analog of a “trans” double bond is actually a Z nitroalkene. Without wishing to be bound by theory, double bonds in cis configuration along the carbon chain (cis carbon chain but E nitroalkene) may induce a bend in the hydrocarbon chain. Double bonds in “trans,” configuration along the carbon chain (trans carbon chain but Z nitroalkene) may not cause the hydrocarbon chain to bend.
- Many unsaturated and polyunsaturated fatty acids have been identified and are known to be naturally occurring. Such unsaturated or polyunsaturated naturally occurring fatty acids, generally, include an even number of carbons in their aliphatic hydrocarbon chain. For example, a naturally occurring unsaturated or polyunsaturated fatty acid may have, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and so on carbons and may include omega (ω-3, ω-5, ω-6, ω-7, ω-9 fatty acids and the like. Any such fatty acid may be useful in embodiments of the invention. The symbol ‘ω’ is used to refer to the terminal methyl carbon of the aliphatic hydrocarbon chain. The placement of the double bond of the ω-X fatty acid is the carbon-carbon bond X number of carbons from the ω carbon. For example, an ω-6 fatty acid has a double bond between the 6th and 7th carbons counting backward from the ω carbon and an ω-3 fatty acid has a double bond between the 3rd and 4th carbons counting backward from the ω carbon. Various embodiments of the invention include nitrated ω-3 fatty acids, including, but not limited to, linolenic acid, alpha-linolenic acid, eicosapentanoic acid, docosapentaenoic acid, docosahexanoic acid and stearidonic acid; nitrated ω-5 fatty acids including, but not limited to, myristoleic acid; nitrated ω-6 fatty acids including, but not limited to, linoleic acid, gamma-linoleic acid, dihomo-gamma-linoleic acid and arachidonic acid; nitrated ω-7 fatty acids including, but not limited to, palmitoleic acid; and nitrated ω-9 fatty acids including, but not limited to, oleic acid and erucic acid. Of course, the fatty acids of the invention may also be referred to using IUPAC nomenclature in which the placement of the double bond is determined by counting from the carbon of the carboxylic acid, and ‘C—X’ denotes the carbon in aliphatic hydrocarbons using IUPAC nomenclature wherein X is the number of the carbon counting from the carboxylic acid. Embodiments of the invention also include synthetic equivalents to naturally occurring fatty acids and derivatives thereof.
- In particular embodiments, the fatty acids utilized in embodiments of the invention may be omega-3 fatty acids. As used herein, the term “omega-3 fatty acids” or “ω-3 fatty acids” may include natural or synthetic omega-3 fatty acids, or pharmaceutically acceptable esters, derivatives, conjugates (see, e.g., U.S. Publication No. 2004/0254357 to Zaloga et al. and U.S. Pat. No. 6,245,811 to Horrobin et al., each of which is hereby incorporated by reference in its entirety), precursors or salts thereof and mixtures thereof. Examples of ω-3 fatty acid oils include but are not limited to ω-3 polyunsaturated, long-chain fatty acids such as a eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and α-linolenic acid; esters of ω-3 fatty acids with glycerol such as mono-, di- and triglycerides; and esters of the ω-3 fatty acids and a primary, secondary or tertiary alcohol such as fatty acid methyl esters and fatty acid ethyl esters. In certain embodiments, the ω-3 fatty acid oils may be long-chain fatty acids such as EPA or DHA, triglycerides thereof, ethyl esters thereof and mixtures thereof. The ω-3 fatty acids or their esters, derivatives, conjugates, precursors, salts and mixtures thereof can be used either in their pure form or as a component of an oil, such as fish oil, preferably purified fish oil concentrates.
- Various fish oils are known and useful as sources for ω-3, ω-6, and ω-9 fatty acids, and any such oil may be used in embodiments of the invention. For example, oils derived from herring, sardines, mackerel, lake trout, flounder, albacore tuna, krill, and salmon are useful sources of ω-3, ω-6, and ω-9 fatty acids.
- Commercially available ω-3 fatty acids suitable for use in the invention may include, but are not limited to, Incromega F2250, F2628, E2251, F2573, TG2162, TG2779, TG2928, TG3525 and E5015 (Croda International PLC, Yorkshire, England), and EPAX6000FA, EPAX5000TG, EPAX4510TG, EPAX2050TG, K85TG, K85EE, K80EE and EPAX7010EE (Pronova Biocare a.s., 1327 Lysaker, Norway). In certain embodiments, the ω-3 fatty acids may be a mixture of several ω-3 fatty acids such as OMACOR™ omega-3 fatty acids which are combinations of EPA and DHA ω-3 fatty acids, and are described in U.S. Pat. Nos. 5,502,077, 5,656,667 and 5,698,594, which are hereby incorporated by reference in their entireties.
- Similarly various plant oils are known and useful as sources for ω-3, ω-6, and ω-9 fatty acids, and any such oil may be used in embodiments of the invention. For example, olive oil, peanut oil, grape seed oil, sea buckthorn oil, sesame oil, and f poppyseed oil are useful sources of ω-3, ω-6, and ω-9 fatty acids, and in particular ω-9 fatty acids, such as, oleic acid.http://en.wikipedia.org/wiki/Oleic_acid-cite_note-pmid17093176-2#cite_note-pmid17093176-2
- Other embodiments of the invention include unsaturated or polyunsaturated non-naturally occurring fatty acids which may have an odd number of carbons such as, for example, 5, 7, 9, 11, 13, 15, 17, 19, 20, 21 and so on. As in naturally occurring fatty acids, the one or more double bonds associated with non-naturally occurring fatty acids may be at any position along the aliphatic hydrocarbon chain, and the double bonds may be in either cis or trans configuration. In yet other embodiments, the non-naturally occurring fatty acids may include one or more linker groups which interrupt the aliphatic hydrocarbon chain. For example, in some embodiments, activated fatty acids may have one or more non-carbon-carbon linkage such as, for example, ester, ether, vinyl ether, amino, imine and the like at any position within the aliphatic hydrocarbon chain.
- For example, embodiments of the invention include compounds of general formulae I and II:
- wherein R1 and R2 are independently selected from —H and any electron withdrawing groups including, but not limited to —COH, —COR, —CO, —COOH, —COOR, —Cl, —F, —Br, —I, —CF3, —CN, —SO3 −, —SO2R, —SO3H, —NH3 +, —NH2R+, —NHR2 +, —NR3 + and —NO2 − wherein at least one of R1 and R2 is an electron withdrawing group and m and n are, independently, 1-20. Some embodiments include compounds of general formula III:
- wherein R1, R2, m and n are as described above, R3 and R4 are, independently, selected from —H, —COH, —COR, —CO, —COOH, —COOR, —Cl, —F, —Br, —I, —CF3, —CN, —SO3 −, —SO2R, —SO3H, —NH2R+, —NHR2 +, —NR3 + and —NO2 −, k and p are, independently, 0 to 5 and x and y are independently, 0 to 3, and wherein each double bond is in either cis or trans configuration. In still other embodiments, any carbon associated with m, n, k or p may be substituted.
- The activated fatty acids described above may be prepared as a pharmaceutically acceptable formulation. The term “pharmaceutically acceptable” is used herein to mean that the compound is appropriate for use in a pharmaceutical product. For example, pharmaceutically acceptable cations include metallic ions and organic ions. More preferred metallic ions include, but are not limited to, appropriate alkali metal salts, alkaline earth metal salts and other physiological acceptable metal ions. Exemplary ions include aluminum, calcium, lithium, magnesium, potassium, sodium and zinc in their usual valences. Preferred organic ions include protonated tertiary amines and quaternary ammonium cations, including in part, trimethylamine, diethylamine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Exemplary pharmaceutically acceptable acids include, without limitation, hydrochloric acid, hydroiodic acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, formic acid, tartaric acid, maleic acid, malic acid, citric acid, isocitric acid, succinic acid, lactic acid, gluconic acid, glucuronic acid, pyruvic acid, oxalacetic acid, fumaric acid, propionic acid, aspartic acid, glutamic acid, benzoic acid, and the like.
- Isomeric and tautomeric forms of activated fatty acids of the invention as well as pharmaceutically acceptable salts of these compounds are also encompassed by the invention. Exemplary pharmaceutically acceptable salts are prepared from formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, stearic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, cyclohexylaminosulfonic, algenic, beta.-hydroxybutyric, galactaric and galacturonic acids.
- Suitable pharmaceutically acceptable base addition salts used in connection with the activated fatty acids of the invention include metallic ion salts and organic ion salts. Exemplary metallic ion salts include, but are not limited to, appropriate alkali metal (group Ia) salts, alkaline earth metal (group IIa) salts and other physiological acceptable metal ions. Such salts can be made from the ions of aluminum, calcium, lithium, magnesium, potassium, sodium and zinc. Preferred organic salts can be made from tertiary amines and quaternary ammonium salts, including in part, trimethylamine, diethylamine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of the above salts can be prepared by those skilled in the art by conventional means from the corresponding compound of the present invention.
- Activated fatty acids as described in various embodiments of the invention above, may be administered to individuals to treat, ameliorate and/or prevent a number both acute and chronic inflammatory and metabolic conditions. In particular embodiments, activated fatty acids may be used to treat acute conditions including general inflammation, arterial stenosis, organ transplant rejection and burns, and chronic conditions such as, chronic lung injury and respiratory distress, diabetes, hypertension, obesity, rheumatoid arthritis, neurodegenerative disorders and various skin disorders. However, in other embodiments, activated fatty acids may be used to treat any condition having symptoms including chronic or acute inflammation, such as, for example, arthritis, lupus, Lyme's disease, gout, sepsis, hyperthermia, ulcers, enterocolitis, osteoporosis, viral or bacterial infections, cytomegalovirus, periodontal disease, glomerulonephritis, sarcoidosis, lung disease, lung inflammation, fibrosis of the lung, asthma, acquired respiratory distress syndrome, tobacco induced lung disease, granuloma formation, fibrosis of the liver, graft vs. host disease, postsurgical inflammation, coronary artery bypass graft (CABG), acute and chronic leukemia, B lymphocyte leukemia, neoplastic diseases, arteriosclerosis, atherosclerosis, myocardial inflammation, psoriasis, immunodeficiency, disseminated intravascular coagulation, systemic sclerosis, amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, encephalomyelitis, edema, inflammatory bowel disease, hyper IgE syndrome, cancer metastasis or growth, adoptive immune therapy, reperfusion syndrome, radiation burns, alopecia and the like.
- For example, in one embodiment, an activated fatty acid may be administered to treat hypertension by lowering blood pressure to normal levels without reducing the blood pressure of the individual below normal levels even if the activated fatty acid is over-administered. Thus, without wishing to be bound by theory, the activated fatty acids of the invention may provide treatment of an individual without the negative affects associated with over-administration or over-treatment using traditional medications.
- In a still further embodiment, activated fatty acids may be useful for ischemic preconditioning or protecting the heart from ischemic injury due to vessel spasm or blockage. For example, nitrated fatty acids produced by mitochondria in cells under ischemic conditions cause a number of physiological changes within the cell that increases cell survival under ischemic conditions. By providing activated fatty acids to an individual, similar ischemic preconditioning or protection may be achieved allowing for improved survival of, for example, cardiac tissue under ischemic conditions or organs being preserved for optimizing viability and function upon transplantation. In particular embodiments, nutraceuticals including activated fatty acids may be provided to individuals at risk of heart disease, heart attack, heart failure, vascular blockage, arrhythmia, atrial fibrillation, heart valve diseases, cardiomyopathy, and the like to both reduce or alleviate the symptoms of such maladies and to increase the likelihood of survival in the event of, for example, a heart attack, arrhythmia, or arterial fibrillation or to more generally improve heart or circulatory system function.
- In addition, activated fatty acid administration may be useful for activating a number of other factors important for cell signaling. For example, in one embodiment, activated fatty acids may be administered to induce gene expression and tissue activity of heme oxygenase-1 (HO-1) which has been shown to mediate adaptive and protective responses during inflammation, and activation of an adaptive or protective inflammatory response mediated by HO may be useful in treating inflammatory diseases such as, but not limited to, atheroscelrosis, acute renal failure, vascular restinosis, transplant rejection, and sepsis. Thus, activated fatty acids may be useful for treating general inflammation resulting from surgery, injury or infection.
- The nutraceuticals of the invention can be administered in any conventional manner by any route where they are active. Administration can be systemic or local. For example, administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, ocular, intravaginally, or inhalation. In certain embodiments, the administration may be parenteral. In some embodiments, the nutraceutical may be prepared in the presence or absence of stabilizing additives that favors extended systemic uptake, tissue half-life and intracellular delivery. Thus, modes of administration for the compounds of the present invention (either alone or in combination with other pharmaceuticals) can be injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly). In some embodiments, an injectable formulation including an activated fatty acid may be deposited to a site of injury or inflammation, such as, for example, the site of a surgical incision or a site of inflammation due to arthroscopy, angioplasty, stent placement, by-pass surgery and so on.
- When administered, activated fatty acids may interact with a number of cellular receptors and/or proteins that mediate inflammation, either by inhibiting or stimulating their activity thereby inhibiting or reducing inflammation. Without wishing to be bound by theory, activated fatty acids may modulate important signaling activities including, for example, neurotransmission, gene expression, vascular function and inflammatory responses, and chemical properties of activated fatty acids that may facilitate these activities include, but are not limited to, the strong, reversible electrophilic nature of the β carbon adjacent to the electron withdrawing vinyl group, an ability to undergo Nef-like acid base reactions to release NO, an ability to partition into both hydrophobic and hydrophilic compartments, and a strong affinity for G-protein coupled receptors and nuclear receptors.
- For example, in one embodiment, activated fatty acids may be administered to mediate cell signaling via multiple G-protein coupled receptors and nuclear receptors such as, but not limited to, peroxisome proliferator-activated receptors (PPAR) including PPARα, PPARγ, and PPARδ. PPAR is a nuclear receptor that is expressed throughout an organism, including in monocytes/macrophages, neutrophils, endothelial cells, adipocytes, epithelial cells, hepatocytes, mesangial cells, vascular smooth muscle cells, neuronal cells and when “activated” induces transcription of a number of target genes. Activation of PPAR has been shown to play various roles in regulating tissue homeostasis including, for example, increasing insulin sensitivity, suppress chronic inflammatory processes, reduce circulating free fatty acid levels, correct endothelial dysfunction, reduce fatty streak formation, delay plaque formation, limit blood vessel wall thickening and enhance plaque stabilization and regression. The activated fatty acids embodied herein may perform each of these functions associated with PPAR activation.
- Moreover, activated fatty acids may perform these functions without significantly altering normal cellular process. For example, in one embodiment, an activated fatty acid may be administered to treat hypertension by lowering blood pressure to normal levels without reducing the blood pressure of the individual below normal levels even if the activated fatty acid is over-administered. Thus, without wishing to be bound by theory, the activated fatty acids of the invention may provide treatment of an individual without the negative affects associated with over-administration or over-treatment using traditional medications.
- Activation of PPAR has been shown to be induced by a locking reaction in which a critical thiol in a highly conserved cysteine (Cys 285 of human PPARγ) which is located in a ligand binding domain of PPAR. Partial activation of PPAR has been shown to occur when relatively high concentrations of known thiol reactive compounds, such as 15-deoxy-Δ12,14-prostaglandin J2 (15-d PGJ2), are administered. Without wishing to be bound by theory, activated fatty acids may bind to PPAR covalently at the reactive thiol in the ligand binding domain of PPAR. Moreover, activated fatty acids may induce a conformational change in PPAR. More specifically, activated fatty acid binding may result in the C-terminus of the ligand binding domain (α-helix 12) to adopt an active conformation that may promote a beneficial pattern of co-repressor release and co-activator recruitment. Thus, activated fatty acids may enhance PPAR activation and transcription of PPAR regulated genes beyond that of known PPAR activating compounds.
- In addition to activation of PPAR, activated fatty acid administration may be useful for activating a number of other factors important for cell signaling. For example, in one embodiment, activated fatty acids may be administered to induce gene expression and tissue activity of heme oxygenase-1 (HO-1) which has been shown to mediate adaptive and protective responses during inflammation, and activation of an adaptive or protective inflammatory response mediated by HO may be useful in treating inflammatory diseases such as, but not limited to, atheroscelrosis, acute renal failure, vascular restinosis, transplant rejection, and sepsis. In another embodiment, activated fatty acids may induce a reversible post-translational modification of proteins, such as, for example, glutathione (GSH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by covalently binding to catalytic cysteines on such proteins. Without wishing to be bound by theory, the covalent modification of these proteins by activated fatty acids may increase the hydrophobicity of these proteins inducing translocation of to membranes and suggests a role for redox regulation of enzyme function, cell signaling and protein trafficking. In yet another embodiment, activated fatty acids may be administered to repress NF-κB dependent gene expression and endothelial tumor necrosis factor-α induced expression of vascular cell adhesion molecules in monocytes and macrophages which results in inhibition of rolling and adhesion during inflammation. Thus, activated fatty acids may be useful for treating general inflammation resulting from surgery, injury or infection. In a further embodiment, activated fatty acids may be administered to limit tissue inflammatory injury and inhibit the proliferation of vascular smooth muscle cells by increasing cellular levels of nuclear factor erythroid 2-related factor-2 (Nrf-2) which may be useful in the treatment of a number of vascular diseases. In a still further embodiment, activated fatty acids may be useful for ischemic preconditioning. For example, nitrated fatty acids produced by mitochondria in cells under ischemic conditions cause a number of physiological changes within the cell that increases cell survival under ischemic conditions. By providing activated fatty acids to an individual, similar ischemic preconditioning may be achieved allowing for improved survival of, for example, cardiac tissue under ischemic conditions or organs being preserved for optimizing viability and function upon transplantation.
- The activated fatty acids of the invention can be administered in any conventional manner by any route where they are active. Administration can be systemic or local. For example, administration can be, but is not limited to, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, buccal, or ocular routes, or intravaginally, by inhalation, by depot injections, or by implants. In certain embodiments, the administration may be parenteral or intravenous, all in the presence or absence of stabilizing additives that favor extended systemic uptake, tissue half-life and intracellular delivery. Thus, modes of administration for the compounds of the present invention (either alone or in combination with other pharmaceuticals) can be injectable (including short-acting, depot, implant and pellet forms injected subcutaneously or intramuscularly). In some embodiments, an injectable formulation including an activated fatty acid may be deposited to a site of injury or inflammation, such as, for example, the site of a surgical incision or a site of inflammation due to arthroscopy, angioplasty, stent placement, by-pass surgery and so on.
- In certain other embodiments, the compounds of the invention may be applied locally as a salve or lotion applied directly to an area of inflammation. For example, in some embodiments, a lotion or salve including activated fatty acids of the invention may be prepared and applied to a burn, radiation burn, site of dermal disorder, edema, arthritic joint or the like. Such salves and lotions, may include a topical formulation of one or more activated fatty acid in a dermatologically acceptable vehicle, and in particular embodiments, the topical formulation may as a nutraceutical salve or lotion which may contain for example, hyaluronic acid, chondroitin sulphate, collagen glucosamine, keratan sulphate, dermatan sulphate, vitamin C, green tea extract, shea butter, grape-seed extract, aloe extract, or mixtures thereof.
- Various embodiments, of the invention are also directed to method for administering activated fatty acids. Specific modes of administration may vary and may depend on the indication. The selection of the specific route of administration and the dose regimen may be adjusted or titrated by the clinician according to methods known to the clinician in order to obtain the optimal clinical response. The amount of compound to be administered is that amount which is therapeutically effective. The dosage to be administered will depend on the characteristics of the subject being treated, e.g., the particular animal treated, age, weight, health, types of concurrent treatment, if any, and frequency of treatments, and can be easily determined by one of skill in the art (e.g., by the clinician). Those skilled in the art will appreciate that dosages may be determined with guidance, for example, from Goodman & Goldman's The Pharmacological Basis of Therapeutics, Ninth Edition (1996), Appendix II, pp. 1707-1711 or from Goodman & Goldman's The Pharmacological Basis of Therapeutics, Tenth Edition (2001), Appendix II, pp. 475-493 both of which are hereby incorporated by reference in their entireties. With respect to conventional prenylation enzyme inhibitors, guidance may be obtained from art-recognized dosage amounts as described, for example, by J. E. Karp, et al., Blood, 97(11):3361-3369 (2001) and A. A. Adjei, et al., Cancer Research, 60:1871-1877 (2000) hereby incorporated by reference in its entirety.
- In various embodiments, an effective amount of an activated fatty acid delivered during each administration cycle may range from about 10 mg/m2/day to about 1000 mg/m2/day. In some embodiments, an effective amount may be about 20 mg/m2/day to about 700 mg/m2/day, and in others, an effective amount may be about 30 mg/m2/day to about 600 mg/m2/day. In particular embodiments, an effective amount may be about 50 mg/m2/day, about 400 mg/m2/day, about 500 mg/m2/day, or about 600 mg/m2/day. In yet other embodiments, an effective amount of an activated fatty acid may vary as treatment progresses. For example, a dosage regimen may be increased or decreased as treatment proceeds through administration cycles, or the daily dosage may increase or decrease throughout administration. In additional embodiments, greater than 1000 mg/m2/day may be administered because even high doses of activated fatty acid are generally tolerable to the patient and may not produce undesired physiological effects.
- In some embodiments, activated fatty acids administered may include up to at least 40% by weight, at least 50% by weight, at least 60% by weight at least 70% by weight, at least 80% by weight, at least 90% by weight or at least 100% by weight of one or more species of activated fatty acid. In particular embodiments, a single species of activated ω-3 fatty acid may make up at least 50%, at least 60% by weight, at least 70% by weight, at least 80% of the total activated fatty acid administered, and in other embodiments, a single species of activated omega-3 fatty acids may make up about 5 to about 100% by weight, about 25 to about 75% by weight, or about 40 to about 55% by weight of the fatty acids administered. In particular embodiments, the ratio of activated fatty acid to non-activated may be from about 99:1 to about 1:99, about 99:1 to about 90:10, about 90:10 to about 80:20, about 80:20 to about 70:30, about 70:30 to about 60:40, about 60:40 to about 50:50, about 50:50 to about 40:60, about 40:60 to about 30:70, about 30:70 to about 20:80, about 20:80 to about 10:90, about 10:90 to about 1:99 about 1:4 to about 4:1, about 1:3 to about 3:1 or about 1:2 to about 2:1.
- In yet other embodiments activated fatty acids administered may include up to at least 0.01%, 0.025%, 0.05%, 0.1%, 0.5%, 1.0%, 10.0%, 20.0% and 30.0% by weight of one or more species of activated fatty acid.
- For example, in some embodiments, the activated omega-3 fatty acids may be prepared from one of EPA or DHA or a combination of EPA and DHA. The composition administered may include about 5 to about 100% by weight, about 25 to about 75% by weight, or about 30 to about 60% by weight activated EPA and/or activated DHA, and any remainder may be made up of non-activated EPA and/or DHA. In compositions containing both activated EPA and activated DHA, the activated EPA and activated DHA may be present in a weight ratio of EPA:DHA of from 99:1 to 1:99, 1:4 to 4:1, 1:3 to 3:1 or 1:2 to 2:1. In compositions containing activated EPA and/or activated DHA as well as non-activated EPA and/or DHA, the weight ratio of activated:non-activated may be from 99:1 to 1:99, 99:1 to 90:10, 90:10 to 80:20, 80:20 to 70:30, 70:30 to 60:40, 60:40 to 50:50, 50:50 to 40:60, 40:60 to 30:70, 30:70 to 20:80, 20:80 to 10:90, 10:90 to 1:99, 1:4 to 4:1, 1:3 to 3:1 or 1:2 to 2:1. In the embodiments described above, the percentage by weight may be based on the free acid or ester forms, although it is preferably based on the ethyl ester form of the ω-3 fatty acids even if other forms are utilized in accordance with the present invention.
- In still other embodiments, the activated fatty acid may be prepared from a different base fatty acid than the non-activated fatty acids with which it is combined. For example, in some embodiments, the activated fatty acid may be an activated linoleic acid, an activated oleic acid, or combinations thereof, and these activated fatty acids may be combined with non-activated EPA and/or DHA. In such embodiments, the ratio of activated linoleic acid and/or activated oleic acid to non-activated EPA and/or DHA may be from about 99:1 to 1:99, 99:1 to 90:10, 90:10 to 80:20, 80:20 to 70:30, 70:30 to 60:40, 60:40 to 50:50, 50:50 to 40:60, 40:60 to 30:70, 30:70 to 20:80, 20:80 to 10:90, 10:90 to 1:99, 1:4 to 4:1, 1:3 to 3:1, 1:2 to 2:1, or 1:1. In particular embodiments, activated linoleic acid or oleic acid may be combined with EPA and DMA, and each of the three components may be provided in a ratio of from about 1:1:1, 2:1:1, 1:2:1, 1:1:2, 2:2:1, 1:2:2, 3:1:1, and the like.
- In some embodiments, the dosage regimen as described above may be combined with a secondary form of treatment or a secondary agent. For example, activated fatty acids such as those described above may be combined with antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, LDL catabolism activators, PPAR antagonists or agonsits, antiarrhythmic agent, NSAIDs and the like, and combinations thereof.
- In particular embodiments, the activated fatty acids of the invention may be mixed with one or more nutraceutical equivalents to any of the agents described above. For example, in some embodiments, the activated fatty acids of the invention may be mixed with a nutraceutical statin equivalent such as, for example, from rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof and the like. In other embodiments, one or more nutraceutical including, but not limited to, glucosamine derivatives, methylsulfonylmethane, yucca concentrates, grape seed extracts, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, echinacea, and the like may be combined with activated fatty acids.
- Embodiments further include nutraceuticals including the nutraceutical equivalents to any of the agents described above and one or more activated fatty acids. Thus, in certain embodiments, the nutraceuticals may include one or more activated fatty acid in combination with one or more other nutraceutical compound or one or more other secondary agent. Nutraceuticals containing various combinations of ingredients are well known in the art, and any known nutraceutical may be combined with one or more activated fatty acids to produce a combination nutraceutical. For example, in various embodiments, activated fatty acids may be combined with vitamins including vitamins A, B, including vitamin B-1, B-2, B-6, B-12, C, D including vitamin D3, and E, and the like and derivatives thereof, minerals such as selenium and the like, plant extracts such as β-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, and the like, nutraceutical oils such as flaxseed oil, borage seed oil, and other know nutraceutical components such as coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and the like. Thus, without wishing to be bound by theory, nearly any nutraceutical can be incorporated into the activated fatty acid containing nutraceuticals described herein.
- In particular embodiments, one or more additional ingredients may be provided to produce a nutraceutical for treating or preventing specific diseases or indication. For example, in some embodiments, activated fatty acids may be combined with other nutraceutically active components that can act as antioxidants such as vitamin C, vitamin E, vitamin D, selenium and the like to create a nutraceutical for treating aging and cancer. In other embodiments, a nutraceutical for treating or preventing diseases of the eye may be prepared by combining activated fatty acids with, for example, vitamin A and/or β-carotene, and in still other embodiments, a nutraceutical with neuroprotective activities or that enhances cognitive abilities may be prepared by combining activated fatty acids with, for example, ginko biloba. In yet other embodiments, nutraceuticals for treating or preventing heart or circulatory diseases may be prepared by combining activated fatty acids with policosanol, guggulipids, rice bran extract, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, wheat germ, wheat germ extract, beeswax, red yeast rice extract, and or other nutraceuticals known to exhibit statin-like activity. In further embodiments, components with various activities may be combined. For example, a nutraceutical with neuroprotective activities may include one or more antioxidants such as vitamin C, vitamin E, or selenium along with ginko biloba, since it is well known that antioxidants are also effective neuroprotectants. In yet other embodiments, vitamin E may be provided to any nutraceutical described herein to stabilize the activated fatty acids and increase the shelf life of the nutraceutical.
- Nutraceuticals having fatty acids and one or more additional nutraceutically active components may be combined in a single dose formulation by known methods. For example, in some embodiments, lipophilic additional nutraceutically active components may be combined with the activated fatty acids directly. In other embodiments, the activated fatty acid may be separated from a non-lipophilic additional nutraceutically active component by, for example, preparing separate cores that are combined into a single capsule or incorporating the non-lipophilic additional nutraceutically active component into one or more coating layers.
- In embodiments in which activated fatty acid are combined with a secondary form of treatment, the activated fatty acid may be administered in a separate dosage unit from the secondary agent such that each treatment is provided separately. In other embodiments, the activated fatty acid may be provided in the same dosage unit as one or more secondary agent. In such embodiments, the activated fatty acid may be combined with the one or more secondary agent in a range of about 1:1000 to about 1000:1 by weight or about 200:1 to about 200:1 by weight. For example, in some embodiments, the activated fatty acid may be present in an amount from about 1 mg to about 3000 mg or from about 10 mg to about 2000 mg, and the one or more secondary agents may be present in an amount from about 1 mg to about 1000 mg, about 5 mg to about 500 mg, and about 5 mg to about 100 mg.
- In certain embodiments, a single dosage unit may include about 500 mg to about 2000 mg or about 1000 mg of one or more activated ω-3 fatty acids, and about 1 mg to about 150 mg or about 5 mg to about 100 mg of a statin compound, about 1 mg to about 300 mg or 10 to about 100 mg of a fibrate compound or a combination thereof.
- The activated fatty acids of various embodiments may be prepared by any method known in the art. For example, in particular embodiments, the activated fatty acids may be derived from natural sources such as, for example, fish oils which may contain activated fatty acids, and in particular, nitro-fatty acids, that can be isolated, purified or concentrated form the fish oil. In other embodiments, an activated fatty acid may be prepared by contacting an naturally occurring unsaturated fatty acids with one or more nitro containing compounds or nitrogenating agents. Such naturally occurring activated fatty acids may be useful in the production of nutraceuticals.
- In other embodiments, the method may be carried out in the presence of one or more cofactors and/or catalysts. For example, in certain embodiments, activated fatty acids may be prepared by combining an unsaturated fatty acid with a nitrogenating agent such as ammonia or primary amines, molecular oxygen and an oxidation catalyst as described in U.S. Pat. No. 4,599,430, which is hereby incorporated by reference in its entirety.
- Methods for preparing activated fatty acids are incorporated by reference from US applications U.S. 61/141,844 and US2010/01669218 A1.
- Embodiments of the invention also include topical compositions containing activated fatty acids and, in some embodiments, one or more secondary agents and/or non-activated fatty acids. For example, in some embodiments, the topical composition may include one or more activated fatty. In such embodiments, the one or more activated fatty acids may comprise about 10% by weight to about 95% by weight of the total composition. In other embodiments activated fatty acids comprise about 0.01% to about 10% by weight of one or more species of activated fatty acid. In yet other embodiments activated fatty acids comprise about 95% to about 100% by weight of one or more species of activated fatty acid.
- In some embodiments, topical compositions of the invention can contain additional ingredients commonly found in skin care compositions and cosmetics, such as for example, tinting agents, emollients, skin conditioning agents, emulsifying agents, humectants, preservatives, antioxidants, perfumes, chelating agents etc., that are compatible with other components of the composition.
- As nitroalkenes are very reactive molecules a nitroalkene topical composition desirably includes a substantial antioxidant and preservative system. In one preferred embodiment, the antioxidant system is Oxynex™ AP, Oynex™ LM, or Oxynex™ K. The preferred embodiments use fatty acids of Vitamin C, specifically ascorbyl palmitate, as a significant component of the antioxidant system. Antioxidants are typically present in an amount ranging from about 0.025% to about 5.00% by weight of the composition, include, but are not limited to, butylated hydroxy toluene (BHT); vitamin C and/or vitamin C derivatives, such as fatty acid esters of ascorbic acid, particularly asocorbyl palmitate; butylated hydroanisole (BHA); phenyl-a-naphthylamine; hydroquinone; propyl gallate; nordihydroquiaretic acid; vitamin E and/or derivatives of vitamin E, including tocotrienol and/or tocotrienol derivatives; calcium pantothenates; green tea extracts; mixed polyphenols; and mixtures of any of these. As mentioned above, particularly preferred antioxidants are those that provide additional benefits to the skin such as ascorbyl palmitate. Preservatives are typically present in an amount ranging from about 0.5% to about 2.0% by weight percent, based on the total composition.
- Emollients, typically present in amounts ranging from about 0.01% to 5% of the total composition include, but are not limited to, fatty esters, fatty alcohols, mineral oils, polyether siloxane copolymers, and mixtures thereof. Humectants may be present in amounts ranging from about 0.1% to about 5% by weight of the total composition. Non-polar humectants are preferred. Emulsifiers, typically present in amounts from about 1% to about 10% by weight of the composition, include, but are not limited to, stearic acid, cetyl alcohol, stearyl alcohol, steareth 2,
steareth 20, acrylates/C 10-30 alkyl acrylate crosspolymers, and mixtures thereof. Chelating agents, typically present in amounts ranging from about 0.01% to about 2% by weight, include, but are not limited to, ethylenediamine tetraacetic acid (EDTA) and derivatives and salts thereof, dihydroxyethyl glycine, tartaric acid, and mixtures thereof. - Some embodiments of this invention contain at least one other adjunct ingredient in addition to nitroalkene(s). Fat-soluble fatty acid esters of ascorbic acid (vitamin C) are employed as an adjunct ingredient as well as an antioxidant in some embodiments. The more oxidation-resistant saturated fatty acid esters of ascorbic acid are preferred, including, but not limited to, ascorbyl laurate, ascorbyl myristate, ascorbyl palmitate, ascorbyl stearate, and ascorbyl behenate. Ascorbyl palmitate is used in one preferred embodiment. Other possible adjunct ingredients include, but are not limited to one or more of: amino acids, lipoic acid; or tocotrienols and tocotrienol derivatives and vitamin E compositions enriched with tocotrienols or tocotrienol derivatives
- Additional ingredients and methods disclosed in U.S. Pat. Nos. 4,775,530, 5,376,361, 5,409,693, 5,545,398, 5,574,063, 5,643,586, 5,709,868, 5,879,690, 5,965,618, 6,051,244, 6,162,419, and 6,191,121 are hereby incorporated by reference to the extent that they support the present specification.
- In particular embodiments, the one or more activated fatty acids may be mixed with one or more stabilizers such as, for example, antioxidants, vitamin E, vitamin C, (3-carotene, wheat germ oil and the like, and in some embodiments, the one or more activated fatty acid contained in the composition may be combined with one or more solubilizers such as, for example, surfactants, hydrophilic or hydrophobic solvents, oils or combinations thereof.
- For example, in some embodiments a solubilizer may be vitamin E or a vitamin E derivative such as, but not limited to, α-, β-, γ-, δ-, ζ1-, ζ2- and ε-tocopherols, their dI, d and I forms and their structural analogues, such as tocotrienols; the corresponding derivatives, esters, produced with organic acids; and mixtures thereof. In particular embodiments, vitamin E derivative solubilizers may include tocopherols, tocotrienols and tocopherol derivatives with organic acids such as acetic acid, propionic acid, bile acid, lactic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, polyethylene glycol succinate and salicylic acid.
- In other embodiments, monohydric alcohol including, for example, ethanol, isopropanol, t-butanol, a fatty alcohol, phenol, cresol, benzyl alcohol or a cycloalkyl alcohol, or monohydric alcohol esters of organic acids such as, for example, acetic acid, propionic acid, butyric acid, a fatty acid of 6-22 carbon atoms, bile acid, lactic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid and salicylic acid may be used as solubilizers. In certain embodiments, solubilizers in this group may include trialkyl citrates such as triethyl citrate, acetyltriethyl citrate, tributyl citrate, acetyltributyl citrate and mixtures thereof; lower alcohol fatty acid esters such as ethyl oleate, ethyl linoleate, ethyl caprylate, ethyl caprate, isopropyl myristate, isopropyl palmitate and mixtures thereof and lactones ε-caprolactone, δ-valerolactone, β-butyrolactone, isomers thereof and mixtures thereof.
- In still other embodiments, the solubilizer may be a nitrogen-containing solvent such as, for example, dimethylformamide, dimethylacetamide, N-alkylpyrrolidone, N-hydroxyalkylpyrrolidone, N-alkylpiperidone, N-alkylcaprolactam and mixtures thereof wherein alkyl may be a C1-12 branched or straight chain alkyl. In particular embodiments, nitrogen-containing solvents may include N-methyl 2-pyrrolidone, N-ethyl 2-pyrrolidone or a mixture thereof. Alternatively, the nitrogen-containing solvent may be in the form of a polymer such as polyvinylpyrrolidone.
- In yet other embodiments, solubilizers may include phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, lecithins, lysolecithins, lysophosphatidylcholine, polyethylene glycolated phospholipids/liysophospholipids, lecithins/lysolecithins and mixtures thereof.
- In still other embodiments, glycerol acetates and acetylated glycerol fatty acid esters and glycerol fatty acid esters may be used as solubilizers. In such embodiments, glycerol acetates may include acetin, diacetin, triacetin and mixtures thereof. Acetylated glycerol fatty acid esters may include acetylated monoglycerides, acetylated diglycerides and mixtures thereof with a fatty acid component that may be about 6 to about 22 carbon atoms. Glycerol fatty acid ester may be a monoglyceride, diglyceride, triglyceride, medium chain monoglycerides with fatty acids having about 6-12 carbons, medium chain diglycerides with fatty acids having about 6-12 carbons, medium chain triglycerides with fatty acids having about 6-12 carbons and mixtures thereof.
- Further embodiments include solubilizers that may be a propylene glycol esters or ethylene glycol esters. In such embodiments, propylene glycol esters may include, for example, propylene carbonate, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol fatty acid esters, acetylated propylene glycol fatty acid esters and mixtures thereof. Alternatively, propylene glycol fatty acid esters may be a propylene glycol fatty acid monoester, propylene glycol fatty acid diester or mixture thereof. In certain embodiments, propylene glycol ester may be propylene glycol monocaprylate, propylene glycol dicaprylate, propylene glycol dicaprate, propylene glycol dicaprylate/dicaprate and mixtures thereof. Ethylene glycol esters may include monoethylene glycol monoacetates, diethylene glycol esters, polyethylene glycol esters, ethylene glycol monoacetates, ethylene glycol diacetates, ethylene glycol fatty acid monoesters, ethylene glycol fatty acid diesters, polyethylene glycol fatty acid monoesters, polyethylene glycol fatty acid diesters and mixtures thereof. In such embodiments, the fatty acid may have about 6 to about 22 carbon atoms.
- Hydrophilic solvents may also be utilized as solubilizers include, for example, alcohols, for example, water miscible alcohols, such as, ethanol or glycerol; glycols such as 1,2-propylene glycol; polyols such as a polyalkylene glycol, for example, polyethylene glycol. Alternatively, hydrophilic solvents may include N-alkylpyrolidones such as N-methylpyrolidone, triethylcitrate, dimethylisosorbide, caprylic acid or propylene carbonate.
- The topical compositions are based on a carrier in which the nitroalkene is soluble per se or is effectively solublized (e.g. as an emulsion or microemulsion). The carrier is dermatologically acceptable in the sense of not bringing about any adverse effect on the skin areas to which it is applied. The carrier preferably is appropriately selected for topical application, and forms a film or layer on the skin to which it is applied so as to localize the application. The nitroalkene is applied in admixture with the dermatologically acceptable carrier or vehicle (e.g. as a lotion, cream, gel, ointment, soap, stick, or the like) to as to facilitate topical application and provide therapeutic effects.
- Non-polar and hydrophobic carriers are required for the compositions of the invention. Aqueous solvents and other polar solvents should be avoided because nitroalkenes are unstable in such solvents. Carriers may include polyethylene glycol, including PEG-1000, PEG-200, PEG-400; PEG-600; Labrasol® (a lipid-based self-emulsifying excipient mainly composed of PEG esters and glycerides with medium acyl chains); glycerin; polypropylene glycol; Stabileze® 06 (a PVM/MA Decadiene Crosspolymer); hydrogenated polyisobutane/polyethane; Permethyl® 99A (isododecane); BV-OSC (tetrahexyldecyl ascorbate); VC-IP (tetrahexyldecyl ascorbate); Vitamin E; beta carotene; disopropyl adipate; 2-ethylhexyl pentate; oleth-3; Ceraphyl® 31 (Propanoic acid 2-hydroxy-dodecyl ester); Ceraphyl® 41 (Propanoic acid, 2-hydroxy-, C12-15-alkyl esters); Glycereth-4; Glycereth-7; diglycerin; panthenol; and phytantriaol. Carrier formulations based principally on polymer polyethers such as polyethylene glycol and polypropylene glycol are a preferred embodiment.
- A phosphatidycholine based carrier is another possible embodiment. Phosphatidylcholine, commonly called lecithin, is a mixture of diglycerides of stearic, palmitic, and oleic acids, linked to the choline ester of phosphoric acid. It can be isolated from eggs, soybeans, and other biological materials, chemically synthesized, or obtained commercially from many sources. Carrier formulations as disclosed in U.S. Pat. No. 7,182,956, the disclosure of which is hereby incorporated by reference, including polyenylphosphatidycholine enriched phosphatidycholine and polyglycol mixtures, are particularly preferred.
- Additionally, in various embodiments, the activated fatty acid and/or one or more secondary agents of the invention may be formulated with one or more additional non-pharmaceutically active ingredients including, but not limited to, solubilizers, antioxidants, chelating agents, buffers, emulsifiers, thickening agents, dispersants, and preservatives.
- Embodiments may also include film forming materials and/or binders and/or other conventional additives such as lubricants, fillers, antiadherents, antioxidants, buffers, solubilizers, dyes, chelating agents, disintegrants, and/or absorption enhancers. Surfactants may act as both solubilizers and absorption enhancers. Additionally, coatings may be formulated for immediate release, delayed or enteric release, or sustained release in accordance with methods well known in the art. Conventional coating techniques are described, e.g., in Remington's Pharmaceutical Sciences, 18th Ed. (1990), hereby incorporated by reference.
- In some embodiments, a topical composition may also include one or more preservatives, coloring and opacifying agents, or combinations thereof. Suitable preservatives and colorants are known in the art and include, for example, benzoic acid, para-oxybenzoate, caramel colorant, gardenia colorant, carotene colorant, tar colorant and the like.
- In embodiments in which one or more secondary agents are applied in a composition, the secondary agent may be provided as a homogenous solution or a heterologous suspension in a pharmaceutically acceptable solvent. Such pharmaceutically acceptable solvents may be an aqueous or organic solvent such as, for example, methanol, ethanol, isopropranol, ethylene glycol, acetone, or mixtures thereof. In other embodiments, pharmaceutically acceptable solvents may include, but are not limited to, polypropylene glycol; polypropylene glycol; polyethylene glycol, for example, polyethylene glycol 600, polyethylene glycol 900, polyethylene glycol 540, polyethylene glycol 1450, polyethylene glycol 6000, polyethylene glycol 8000, and the like; pharmaceutically acceptable alcohols that are liquids at about room temperature, for example, propylene glycol, ethanol, 2-(2-ethoxyethoxy)ethanol, benzyl alcohol, glycerol, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400 and the like; polyoxyethylene castor oil derivatives, for example, polyoxyethyleneglycerol triricinoleate or polyoxyl 35 castor oil, polyoxyethyleneglycerol oxystearate, RH 40 (polyethyleneglycol 40 hydrogenated castor oil) or RH 60 (polyethyleneglycol 60 hydrogenated castor oil), and the like; saturated polyglycolized glycerides; polyoxyethylene alkyl ethers, for example, cetomacrogol 1000 and the like; polyoxyethylene stearates, for example, PEG-6 stearate, PEG-8 stearate, polyoxyl 40 stearate NF, polyoxyethyl 50 stearate NF, PEG-12 stearate, PEG-20 stearate, PEG-100 stearate, PEG-12 distearate, PEG-32 distearate, PEG-150 distearate and the like; ethyl oleate, isopropyl palmitate, isopropyl myristate and the like; dimethyl isosorbide; N-methylpyrrolidinone; paraffin; cholesterol; lecithin; suppository bases; pharmaceutically acceptable waxes, for example, carnauba wax, yellow wax, white wax, microcrystalline wax, emulsifying wax and the like; pharmaceutically acceptable silicon fluids; soribitan fatty acid esters such as sorbitan laurate, sorbitan oleate, sorbitan palmitate, sorbitan stearate and the like; pharmaceutically acceptable saturated fats or pharmaceutically acceptable saturated oils, for example, hydrogenated castor oil (glyceryl-tris-12-hydroxystearate), cetyl esters wax (a mixture of primarily C14-C18 saturated esters of C14-C18 saturated fatty acids having a melting range of about 43-47° C.), glyceryl monostearate and the like.
- Other pharmaceutical formulations containing the compounds of the invention and a suitable carrier can be in various forms including, but not limited to, solids, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, and dry powders including an effective amount of an activated fatty acid of the invention. It is also known in the art that the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, antioxidants, preservatives and the like. The means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics, Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's, The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) both of which are hereby incorporated by reference in their entireties can be consulted.
- The compounds of the present invention can be formulated for parenteral or intravenous administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- Among the acceptable vehicles and solvents that may be employed in a formulation are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids diluents such as oleic acid find use in the preparation of injectables. Additional fatty acids diluents that may be useful in embodiments of the invention include, for example, one or more of stearic acid, metallic stearate, sodium stearyl fumarate, fatty acid, fatty alcohol, fatty acid ester, glyceryl behenate, mineral oil, vegetable oil, paraffin, leucine, silica, silicic acid, talc, propylene glycol fatty acid ester, polyethoxylated castor oil, polyethylene glycol, polypropylene glycol, polyalkylene glycol, polyoxyethylene-glycerol fatty ester, polyoxyethylene fatty alcohol ether, polyethoxylated sterol, polyethoxylated castor oil, polyethoxylated vegetable oil, and the like. In some embodiments, the fatty acid diluent may be a mixture of fatty acids. In some embodiments, the fatty acid may be a fatty acid ester, a sugar ester of fatty acid, a glyceride of fatty acid, or an ethoxylated fatty acid ester, and in other embodiments, the fatty acid diluent may be a fatty alcohol such as, for example, stearyl alcohol, lauryl alcohol, palmityl alcohol, palmitolyl acid, cetyl alcohol, capryl alcohol, caprylyl alcohol, oleyl alcohol, linolenyl alcohol, arachidonic alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol, and linoleyl alcohol and the like and mixtures thereof.
- Other embodiments of the invention include activated fatty acid prepared as described above which are formulated as a solid dosage form for oral administration including capsules, tablets, pills, powders, and granules. In such embodiments, the active compound may be admixed with one or more inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents and can additionally be prepared with enteric coatings.
- Preparation of an activated fatty acid in solid dosage form may vary. For example, in one embodiment, a liquid or gelatin formulation of the activated fatty acid may be prepared by combining the activated fatty acid with one or more fatty acid diluent, such as those described above, and adding a thickening agent to the liquid mixture to form a gelatin. The gelatin may then be encapsulated in unit dosage form to form a capsule. In another exemplary embodiment, an oily preparation of an activated fatty acid prepared as described above may be lyophilized to for a solid that may be mixed with one or more pharmaceutically acceptable excipient, carrier or diluent to form a tablet, and in yet another embodiment, the activated fatty acid of an oily preparation may be crystallized to from a solid which may be combined with a pharmaceutically acceptable excipient, carrier or diluent to form a tablet.
- Further embodiments which may be useful for oral administration of activated fatty acids include liquid dosage forms. In such embodiments, a liquid dosage may include a pharmaceutically acceptable emulsion, solution, suspension, syrup, and elixir containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
- In still further embodiments, activated fatty acids of the invention can be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection. Depot injections can be administered at about 1 to about 6 months or longer intervals. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- Other suitable diluents for formulations include, but are not limited to those described below:
- Vegetable oil: As used herein, the term “vegetable oil” refers to a compound, or mixture of compounds, formed from ethoxylation of vegetable oil, wherein at least one chain of polyethylene glycol is covalently bound to the vegetable oil. In some embodiments, the fatty acids have between about twelve carbons to about eighteen carbons. In some embodiments, the amount of ethoxylation can vary from about 2 to about 200, about 5 to 100, about 10 to about 80, about 20 to about 60, or about 12 to about 18 of ethylene glycol repeat units. The vegetable oil may be hydrogenated or unhydrogenated. Suitable vegetable oils include, but are not limited to castor oil, hydrogenated castor oil, sesame oil, corn oil, peanut oil, olive oil, sunflower oil, safflower oil, soybean oil, benzyl benzoate, sesame oil, cottonseed oil, and palm oil. Other suitable vegetable oils include commercially available synthetic oils such as, but not limited to, Miglyol™ 810 and 812 (available from Dynamit Nobel Chemicals, Sweden) Neobee™ M5 (available from Drew Chemical Corp.), Alofine™ (available from Jarchem Industries), the Lubritab™ series (available from JRS Pharma), the Sterotex™ (available from Abitec Corp.), Softisan™ 154 (available from Sasol), Croduret™ (available from Croda), Fancol™ (available from the Fanning Corp.), Cutina™ HR (available from Cognis), Simulsol™ (available from CJ Petrow), EmCon™ CO (available from Amisol Co.), Lipvol™ CO, SES, and HS-K (available from Lipo), and Sterotex™ HM (available from Abitec Corp.). Other suitable vegetable oils, including sesame, castor, corn, and cottonseed oils, include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety. Suitable polyethoxylated vegetable oils, include but are not limited to, Cremaphor™ EL or RH series (available from BASF), Emulphor™ EL-719 (available from Stepan products), and Emulphor™ EL-620P (available from GAF).
- Mineral oils: As used herein, the term “mineral oil” refers to both unrefined and refined (light) mineral oil. Suitable mineral oils include, but are not limited to, the Avatech™ grades (available from Avatar Corp.), Drakeol™ grades (available from Penreco), Sirius™ grades (available from Shell), and the Citation™ grades (available from Avater Corp.).
- Castor oils: As used herein, the term “castor oil”, refers to a compound formed from the ethoxylation of castor oil, wherein at least one chain of polyethylene glycol is covalently bound to the castor oil. The castor oil may be hydrogenated or unhydrogenated. Synonyms for polyethoxylated castor oil include, but are not limited to polyoxyl castor oil, hydrogenated polyoxyl castor oil, microgolglyceroli ricinoleas, macrogolglyceroli hydroxystearas, polyoxyl 35 castor oil, and
polyoxyl 40 hydrogenated castor oil. Suitable polyethoxylated castor oils include, but are not limited to, the Nikkol™ HCO series (available from Nikko Chemicals Co. Ltd.), such as Nikkol HCO-30, HC-40, HC-50, and HC-60 (polyethylene glycol-30 hydrogenated castor oil, polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-50 hydrogenated castor oil, and polyethylene glycol-60 hydrogenated castor oil, Emulphor™ EL-719 (castor oil 40 mole-ethoxylate, available from Stepan Products), the Cremophore™ series (available from BASF), which includes Cremophore RH40, RH60, and EL35 (polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-60 hydrogenated castor oil, and polyethylene glycol-35 hydrogenated castor oil, respectively), and the Emulgin®RO and HRE series (available from Cognis PharmaLine). Other suitable polyoxyethylene castor oil derivatives include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety. - Sterol: As used herein, the term “sterol” refers to a compound, or mixture of compounds, derived from the ethoxylation of sterol molecule. Suitable polyethoxylated sterols include, but are not limited to, PEG-24 cholesterol ether, Solulan™ C-24 (available from Amerchol); PEG-30 cholestanol, Nikkol™ DHC (available from Nikko); Phytosterol, GENEROL™ series (available from Henkel); PEG-25 phyto sterol, Nikkol™ BPSH-25 (available from Nikko); PEG-5 soya sterol, Nikkol™ BPS-5 (available from Nikko); PEG-10 soya sterol, Nikkol™ BPS-10 (available from Nikko); PEG-20 soya sterol, Nikkol™ BPS-20 (available from Nikko); and PEG-30 soya sterol, Nikkol™ BPS-30 (available from Nikko). As used herein, the term “PEG” refers to polyethylene glycol.
- Polyethylene glycol: As used herein, the term “polyethylene glycol” or “PEG” refers to a polymer containing ethylene glycol monomer units of formula —O—CH2-CH2-. Suitable polyethylene glycols may have a free hydroxyl group at each end of the polymer molecule, or may have one or more hydroxyl groups etherified with a lower alkyl, e.g., a methyl group. Also suitable are derivatives of polyethylene glycols having esterifiable carboxy groups. Polyethylene glycols useful in the present invention can be polymers of any chain length or molecular weight, and can include branching. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 9000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 5000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 900. In some embodiments, the average molecular weight of the polyethylene glycol is about 400. Suitable polyethylene glycols include, but are not limited to polyethylene glycol-200, polyethylene glycol-300, polyethylene glycol-400, polyethylene glycol-600, and polyethylene glycol-900. The number following the dash in the name refers to the average molecular weight of the polymer. In some embodiments, the polyethylene glycol is polyethylene glycol-400. Suitable polyethylene glycols include, but are not limited to the Carbowax™ and Carbowax™ Sentry series (available from Dow), the Lipoxol™ series (available from Brenntag), the Lutrol™ series (available from BASF), and the Pluriol™ series (available from BASF).
- Propylene glycol fatty acid ester: As used herein, the term “propylene glycol fatty acid ester” refers to a monoether or diester, or mixtures thereof, formed between propylene glycol or polypropylene glycol and a fatty acid. Fatty acids that are useful for deriving propylene glycol fatty alcohol ethers include, but are not limited to, those defined herein. In some embodiments, the monoester or diester is derived from propylene glycol. In some embodiments, the monoester or diester has about 1 to about 200 oxypropylene units. In some embodiments, the polypropylene glycol portion of the molecule has about 2 to about 100 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 50 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 30 oxypropylene units. Suitable propylene glycol fatty acid esters include, but are not limited to, propylene glycol laurates: Lauroglycol™ FCC and 90 (available from Gattefosse); propylene glycol caprylates: Capryol™ PGMC and 90 (available from Gatefosse); and propylene glycol dicaprylocaprates: Labrafac™ PG (available from Gatefosse).
- Stearoyl macrogol glyceride: Stearoyl macrogol glyceride refers to a polyglycolized glyceride synthesized predominately from stearic acid or from compounds derived predominately from stearic acid, although other fatty acids or compounds derived from other fatty acids may used in the synthesis as well. Suitable stearoyl macrogol glycerides include, but are not limited to, Gelucire® 50/13 (available from Gattefosse).
- In some embodiments, the diluent component comprises one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide, or a metal aluminosilicate.
- Exemplary excipients or carriers for use in solid and/or liquid dosage faints include, but are not limited to:
- Sorbitol: Suitable sorbitols include, but are not limited to, PharmSorbidex E420 (available from Cargill), Liponic 70-NC and 76-NC (available from Lipo Chemical), Neosorb (available from Roquette), Partech SI (available from Merck), and Sorbogem (available from SPI Polyols).
- Starch, sodium starch glycolate, and pregelatinized starch include, but are not limited to, those described in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.
- Disintegrant: The disintegrant may include one or more of croscarmellose sodium, carmellose calcium, crospovidone, alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floc, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate, a metal carbonate, sodium bicarbonate, calcium citrate, or calcium phosphate.
- Still further embodiments of the invention include activated fatty acids administered in combination with other active such as, for example, adjuvants, protease inhibitors, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.
- Some embodiments are directed to a dietary supplement including a fatty acid component enriched for one or more activated fatty acids fatty acids and a nutraceutically acceptable excipient. In some embodiments, the activated fatty acid may be derived from an omega-3 fatty acid, an omega-6 fatty acid, an omega-9 fatty acid, and combinations thereof. In other embodiments, the activated fatty acid may be a nitro-fatty acid or a keto-fatty acid, and in particular embodiments, the activated fatty acid may be nitro-linoleic acid, nitro-α-linoleic acid, nitro-γ-linoleic acid, nitro-oleic acid, nitro-eicosapentaenoic acid, nitro-docosahexaenoic acid, keto-linoleic acid, keto-α-linoleic acid, keto-γ-linoleic acid, keto-oleic acid, keto-eicosapentaenoic acid, keto-docosahexaenoic acid or a derivative or combination thereof. In still other embodiments, the dietary supplement may also include one or more of linoleic acid, α-linoleic acid, γ-linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof DHA and/or nitratel DHA are preferable for cognitive disorders. In some embodiment, the dietary supplement may further include one or more nutraceutical selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, β-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof.
- In particular embodiments, the dietary supplement may include a first fatty acid component enriched for one or more: activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, α-linoleic acid, γ-linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in some embodiments, the dietary supplement may further include vitamin E or a derivative thereof. In other embodiments, the dietary supplement may include one or more secondary agent including but not limited to vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, (3-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof. In some embodiments, the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system. In other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation. In still other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and β-carotene, and such a dietary supplement may be formulated to promote healthy eyes. In yet other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote cognitive health or formulated as a neuroprotectant.
- In further embodiments, at least one of the one or more secondary agent may include one or more agents selected from solubilizers, stabilizers, colorants, plasticizers diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, antioxidants, or preservatives or a combination thereof.
- In certain embodiments, compositions be formulated to include about 10 mg to about 500 mg of one or more activated fatty acid and from about 10 mg to about 100 mg of vitamin C. In other embodiments, such compositions may be formulated to include about 10 mg to about 500 mg of one or more activated fatty acid and from about 2 mg to about 50 mg of vitamin E.
- The compositions of various embodiments may further include one or more film forming materials and/or binders and/or other conventional additives such as lubricants, fillers, antiadherents, antioxidants, buffers, solubilizers, dyes, chelating agents, disintegrants, and/or absorption enhancers. Surfactants may act as both solubilizers and absorption enhancers. Additionally, coatings may be formulated for immediate release, delayed or enteric release, or sustained release in accordance with methods well known in the art. Conventional coating techniques are described, e.g., in Remington's Pharmaceutical Sciences, 18th Ed. (1990), hereby incorporated by reference. Additional coatings to be employed in accordance with the invention may include, but are not limited to, for example, one or more immediate release coatings, protective coatings, enteric or delayed release coatings, sustained release coatings, barrier coatings, and combinations thereof. In some embodiments, an immediate release coating may be used to improve product elegance as well as for a moisture barrier, and taste and odor masking. Rapid breakdown of the film in gastric media is important, leading to effective disintegration and dissolution.
- In some embodiments, the compositions may include at least one or more secondary agent. For example, in some embodiments, at least one polymer, such as, but not limited to cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, polyvinylpyrrolidone/vinyl acetate copolymer, ethyl cellulose aqueous dispersions and combinations thereof, preferably hydroxpropyl cellulose, ethyl cellulose, and mixtures thereof, may be added to the composition at a ratio of polymer to secondary agent of from about 1:20 to about 20:1 by weight or about 1:5 to about 10:1 by weight. In particular, where the amount of secondary agent is less than about 15 mg, the amount of polymer may be from about 1:2 to about 5:1 or from about 1:1 to about 4:1, and in embodiments where the amount of secondary agent is about 15 mg or more, the amount of polymer may be from about 1:4 to about 4:1 or about 1:3 to about 2:1.
- In embodiments in which one or more secondary agents are included in the composition, the secondary agent may be provided as a homogenous solution or a heterologous suspension in a pharmaceutically acceptable solvent. Such pharmaceutically acceptable solvents may be an aqueous or organic solvent such as, for example, methanol, ethanol, isopropranol, ethylene glycol, acetone, or mixtures thereof. In other embodiments, pharmaceutically acceptable solvents may include, but are not limited to, polypropylene glycol; polypropylene glycol; polyethylene glycol, for example, polyethylene glycol 600, polyethylene glycol 900, polyethylene glycol 540, polyethylene glycol 1450, polyethylene glycol 6000, polyethylene glycol 8000, and the like; pharmaceutically acceptable alcohols that are liquids at about room temperature, for example, propylene glycol, ethanol, 2-(2-ethoxyethoxy)ethanol, benzyl alcohol, glycerol, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400 and the like; polyoxyethylene castor oil derivatives, for example, polyoxyethyleneglycerol triricinoleate or polyoxyl 35 castor oil, polyoxyethyleneglycerol oxystearate, RH 40 (polyethyleneglycol 40 hydrogenated castor oil) or RH 60 (polyethyleneglycol 60 hydrogenated castor oil), and the like; saturated polyglycolized glycerides; polyoxyethylene alkyl ethers, for example, cetomacrogol 1000 and the like; polyoxyethylene stearates, for example, PEG-6 stearate, PEG-8 stearate, polyoxyl 40 stearate NF, polyoxyethyl 50 stearate NF, PEG-12 stearate, PEG-20 stearate, PEG-100 stearate, PEG-12 distearate, PEG-32 distearate, PEG-150 distearate and the like; ethyl oleate, isopropyl palmitate, isopropyl myristate and the like; dimethyl isosorbide; N-methylpyrrolidinone; paraffin; cholesterol; lecithin; suppository bases; pharmaceutically acceptable waxes, for example, carnauba wax, yellow wax, white wax, microcrystalline wax, emulsifying wax and the like; pharmaceutically acceptable silicon fluids; soribitan fatty acid esters such as sorbitan laurate, sorbitan oleate, sorbitan palmitate, sorbitan stearate and the like; pharmaceutically acceptable saturated fats or pharmaceutically acceptable saturated oils, for example, hydrogenated castor oil (glyceryl-tris-12-hydroxystearate), cetyl esters wax (a mixture of primarily C14-C18 saturated esters of C14-C18 saturated fatty acids having a melting range of about 43-47° C.), glyceryl monostearate and the like.
- Other pharmaceutical formulations containing the compounds of the invention and a suitable carrier can be in various forms including, but not limited to, solids, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, and dry powders including an effective amount of an activated fatty acid of the invention. It is also known in the art that the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, antioxidants, preservatives and the like. The means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics, Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's, The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) both of which are hereby incorporated by reference in their entireties can be consulted.
- Further embodiments are directed to methods for improving the health of an individual by administering to the individual a dietary supplement including a fatty acid component enriched for one or more activated fatty acids fatty acids, and a nutraceutically acceptable excipient. In some embodiments, the dietary supplement may include a first fatty acid component enriched for one or more activated fatty acid selected from nitro-linoleic acid, keto-linoleic acid, nitro-oleic acid, and keto-oleic acid and a second fatty acid component having one or more non-activated fatty acid selected from linoleic acid, α-linoleic acid, γ-linoleic acid, oleic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or derivatives thereof, and in particular embodiments, the dietary supplement may further include vitamin E or a derivative thereof. In some embodiments, the dietary supplement may further include one or more secondary agent selected from vitamin A, vitamin B, vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, β-carotene, ginko biloba, goldenseal, valerian, ginseng, echinacea, grape seed extracts, ephedra, yucca concentrates, green tea extract, rice bran extract, wheat germ, wheat germ extract, beeswax, red yeast rice extract, stevia leaf extract, flaxseed oil, borage seed oil, coenzyme Q10, glucosamine derivatives, methylsulfonylmethane, pantothenic acid, biotin, thiamin, riboflavin, niacin, folic acid, palmitic acid, and derivatives thereof. In some embodiments, the dietary supplement may include one or more secondary agent selected from policosanols, guggulipds, rice bran extract, wheat germ, wheat germ extract, beeswax, and red yeast rice extract, and such a dietary supplement may be formulated to promote a healthy heart and circulatory system. In other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin B-1, vitamin B-2, vitamin B-6, vitamin B-12, vitamin C, vitamin D, vitamin D3, vitamin E, selenium, goldenseal, valerian, ginseng, and echinacea and such a dietary supplement may be formulated to promote healthy cell proliferation. In still other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, and β-carotene, and such a dietary supplement may be formulated to promote healthy eyes. In yet other embodiments, the dietary supplement may include one or more secondary agent selected from vitamin A, vitamin C, vitamin E, selenium, ginko biloba, goldenseal, valerian, ginseng, echinacea, ephedra, green tea extract, and yucca concentrate, and such a dietary supplement may be formulated to promote cognitive health or formulated as a neuroprotectant.
- Various embodiments of the invention are also directed to compositions including one or more nitro fatty acids . In such embodiments, the one or more nitro fatty acids may make up about 10% by weight to about 95% by weight of the total composition. As above, the compositions may include one or more additional secondary components such as, for example, rice bran oil, enzyme-treated stabilized rice bran, a solubilized fraction of rice bran oil, and derivatives thereof, glucosamine derivatives, methylsulfonylmethane, yucca concentrate, grape seed extract, beta-carotene, ephedra, ginko biloba, goldenseal, valerian, ginseng, green tea extract, and echinacea. The activated fatty acid may be derived from an omega-3 fatty acids, omega-6 fatty acids, omega-9 fatty acids, linoleic acid, α-linoleic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid or a derivative or combination thereof, and may contain non-activated fatty acids.
- In still other embodiments, the core, at least one of the one or more coating layers, or a combination thereof may further include one or more secondary agents such as, for example, antioxidants, statins, squalene synthesis inhibitors, azetidinone-based compounds, low-density lipoprotein (LDL) catabolism activators, peroxisome proliferator-activated receptor (PPAR) antagonists or agonists, antiarrhythmic agent, non-steroidal anti-inflammatory drugs (NSAIDs) and nutraceutical equivalents thereof.
- This invention and embodiments illustrating the method and materials used may be further understood by reference to the following non-limiting examples.
- Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible. Therefore the spirit and scope of the appended claims should not be limited to the description and the preferred versions contained within this specification. Various aspects of the present invention will be illustrated with reference to the following non-limiting examples.
- Exemplary nutraceutical compositions may be prepared as described above including the ingredients listed in Table 1.
-
Compound Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9 EPA 10 0 200 100 0 0 0 100 100 DHA2 400 400 200 300 180 360 14 100 100 NO- OLA 30 200 100 0 0 0 0 0 400 NO-LNA4 200 0 100 200 120 240 200 400 0 Vitamin E 3.0 3.0 3.0 3.0 2.3 0 0 3.0 3.0 Flavoring 1.0 1.0 2.0 1.0 1.0 1EPA—eicosapentaenoic acid 2DHA—docosahexaenoic acid 3OLA—oleic acid 4LNA—linoleic acid - Exemplary nutraceutical compositions may be prepared as described above including the ingredients listed in Table 2.
-
Compound Ex. 10 Ex. 12 Ex. 13 Ex. 14 Ex. 15 Ex. 16 Ex. 17 Ex. 18 Ex. 19 Ex. 20 EPA1 200 200 200 200 200 200 200 200 200 200 DHA2 200 200 200 200 200 200 200 200 200 200 NO- OLA 3100 100 100 100 100 100 100 100 100 100 NO- LNA 4100 100 100 100 100 100 100 100 100 100 Vitamin E 3 3 3 3 0 0 0 0 0 0 Vitamin B12 20 20 0 0 20 20 0 0 0 20 Folic Acid 0 0.8 0 0 0 0.8 0 0 0 0.8 Ginko Biloba 0 0 400 0 0 0 400 0 400 400 Ginseng 0 0 0 200 0 0 0 200 200 200 Flavoring 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1EPA—eicosapentaenoic acid 2DHA—docosahexaenoic acid 3OLA—oleic acid 4LNA—linoleic acid - Topical compositions may be prepared including:
- 0.01% w/w LNO2, 0.01% w/w OA NO2, 2.00 w/w % PEG-400, 2.00% w/w Labrasol, 1.00% w/w Oleth-3, 1.00% w/w Diglycerin, 0.01% w/w Oxynex AP and PEG-200 q.s. to 100% w/w.
- 0.025% w/w LNO2, 0.01% w/w OA NO2, 5.00 w/w % PEG-400, 2.00% w/w Propylene glycol, 1.00% w/w BV-OSC, 1.00% w/w VC-IP, 0.25% w/w Beta carotene, 5.00% w/w Diisopropyl adipate 0.01% w/w Oxynex AP and PEG-200 q.s. to 100% w/w.
- 0.02% w/w LNO2, 0.10% w/w Phytantriol, 0.1% w/w Panthenol, 10.00% w/w, 10.00% w/
w Glycereth 4, 5.00% w/w Ceraphyl® 41, 1.00% w/w Oleth 3 0.01% w/w Oxynex AP and Diglycerin q.s. to 100% w/w. - Topical emulsion compositions may be prepared including:
- 0.01% w/w LNO2, 15.00% w/w Ethoxylated glycerin, 5.00% w/w Glycerin, 0.10% w/w NaCl, 1.00% w/w BV-OSC, 35.00% Mineral oil, 2.00% w/w Dow Corning® Fluid 244 (methylsiloxane fluid), 5.00% w/w Abil WE-09 (Polygrycerol-4 isostearate and cetyl dimethicone cpolyol and hexyl laureate), 1.00% w/w Cranberry seed oil, 0.01% w/w Oxynex AP and PEG-400 q.s. to 100% w/w.
- 0.01% w/w OA NO2, 15.00% w/w Ethoxylated glycerin, 5.00% w/w Glycerin, 0.10% w/w NaCl, 1.00% w/w BV-OSC, 35.00% Mineral oil, 2.00% w/w Dow Corning® Fluid 244 (methylsiloxane fluid), 5.00% w/w Abil WE-09 (Polygrycerol-4 isostearate and cetyl dimethicone cpolyol and hexyl laureate), 1.00% w/w Cranberry seed oil, 0.01% w/w Oxynex AP and PEG-400 q.s. to 100% w/w.
- 0.025% w/w LNO2, 5.00% w/w Glycerin, 0.10% w/w NaCl, 1.00% w/w BV-OSC, 35.00% Mineral oil, 2.00% w/w Dow Corning® Fluid 244 (methylsiloxane fluid), 1.00% w/w Cranberry seed oil, 0.01% w/w Oxynex AP and PEG-400 q.s. to 100% w/w.
- 0.025% w/w OA NO2, 5.00% w/w Glycerin, 0.10% w/w NaCl, 1.00% w/w BV-OSC, 35.00% Mineral oil, 2.00% w/w Dow Corning® Fluid 244 (methylsiloxane fluid), 1.00% w/w Cranberry seed oil, 0.01% w/w Oxynex AP and PEG-400 q.s. to 100% w/w.
- 0.01% w/w LNO2, 5.00% w/w Glycerin, 0.10% w/w NaCl, 15.00% w/w Dow Corning® Fluid 245 (cyclopentasilxane fluid), 9.00% w/w Dow Corning® Fluid 3225 C (silicone surfactant in dimethylsiloxane), 1.50% w/w Tween 2, 0.01% w/w Oxynex AP and PEG-400 q.s. to 100% w/w.
- 0.01% w/w OA NO2, 5.00% w/w Glycerin, 0.10% w/w NaCl, 15.00% w/w Dow Corning® Fluid 245 (cyclopentasilxane fluid), 9.00% w/w Dow Corning® Fluid 3225 C (silicone surfactant in dimethylsiloxane), 1.50% w/w Tween 2, 0.01% w/w Oxynex AP and PEG-400 q.s. to 100% w/w.
- Topical compositions and emulsions can be applied to areas of the skin such as the face at established intervals resulting in a gradual improvement in the skin areas with each successive application.
- Topically applied compositions are absorbed by the skin and can inhibit inflammation. Therefore, topical compositions of the present invention are expected to be particularly useful in the prevention and treatment of conditions including: rosacea, eczema, psoriasis, xerosis, dermatitis (contact and atopic), sebhorrea, thermal and radiation burns (including sunburn), acne, alopecia, aging-induced skin tissue degeneration, scars, and other conditions associated with skin inflammation.
- It is expected that the compositions of the present invention will also be useful in the treatment and prevention of alopecia, where skin inflammation is frequently present.
- Stability experiments were conducted using Bertolli extra light olive oil. Methanol soluble impurities were extracted twice. 750 uM OA-NO2 dissolved in methanol was added to the olive oil and incubated for 19 days at 22° C., 37° C. and 50° C. Olive oil is highly hydrophobic and liposomes have been previously shown to stabilize nitrated linoleic acid. The composition of Olive oil used was as follows: total fat: 14 g, saturated fat: 9%, polyunsaturated fat: 9%, Monounsaturated Fat: 45%
- First, methanol-soluble substances were extracted from olive oil by applying 6 volumes of methanol per volume of oil and vortexing for a minute. The triglyceride containing fraction was obtained and the extraction was repeated. The remaining triglycerides were dried under vacuum to eliminate remaining organic solvents. Once dry, a concentrated solution of nitrated oleic acid (dissolved in a small volume of ethanol) was added to reach a final concentration of 750 μM. Method of detection.
- Samples were then stored in the dark at 22° C., 37° C. and 50° C. A bracketing study for humidity was performed in which the samples at 22° C. and 37° C. were subjected to humidity conditions normally found in the Midewestern United States while the samples at 50° C. were subjected to water-saturated air in an enclosed water bath at 50° C.
- At the different time points, aliquot by triplicate were obtained, fatty acids were extracted from the triglyceride matrix using a 4:1 ratio of methanol:triglyceride, diluted to a final concentration of 100 nM and quantified using liquid chromatography coupled to mass spectrometry. The sample (10 μl) was injected using an automated Shimadzu autosampler and HPLC pumps (SIL20 System), and chromatographically separated using a C18 reverse phase column (2 mm Mercury cartridge columns, Phenomenex). The nitrated oleic acid was detected using the multiple reaction monitoring (MRM) process in the negative ion mode performed on a 4000 QTRAP triple quadrupole (Applied Biosystems). The selected MRM corresponded to the formation of the product ion nitrite from the nitrated oleic acid, having a specific transition of 324.3/46. The HPLC method was based on solvent A (H2O 2O with 0.1% Acetic Acid) and B (Acetonitrile with 0.1% Acetic Acid). A gradient was developed starting at 35% B over 6 min to reach 100% B. The column was then washed at 100% B for 2 minutes and re-equilibrated at initial conditions for 3 minutes. The flow rate was established at 750 μl/min. The peak areas were integrated using Analyst 1.5.1 software (Applied Biosystems) and external standard curves were performed for quantification purposes.
-
FIG. 1 shows stability of 10-nitro oleic acid in olive oil over a period of 19 days at 22° C., 37° C. and 50° C. Stability is plotted as a percentage of the starting concentration of 10-nitro oleic acid. 10-nitro oleic acid is shown to be stable in olive at a range of temperatures for periods of up to 20 days. After 135 days, stability was found to be decreased by about 15% in samples incubated at 22° C., 37° C.
Claims (14)
1. A topical composition comprising:
at least one activated fatty acid; and
dermatologically acceptable vehicle.
2. A method comprising applying the topical composition of claim 1 to the skin of a patient in need of treatment.
3. The method of claim 2 , further comprising treating inflammation in the skin of a patient in need of treatment.
4. A composition for the prevention of skin damage comprising: an effective amount of a nitroalkene in a dermatologically acceptable non-polar carrier.
5. A method for the prevention and treatment of skin damage comprising: topically applying a composition containing an effective amount of a nitroalkene in a dermatologically acceptable non-polar carrier to damaged skin tissue.
6. The method of claim 5 , wherein the nitroalkene is nitro-linoleic acid, nitro-oleic acid, nitrated arachidonic acid, or nitrated cholesteryl lineolate.
7. The method of claim 5 , wherein the nitroalkene is present in a weight percentage which is within one of the following ranges:
0.01%-0.025%;
0.025%-0.05%;
0.05%-0.10%;
0.10%-0.50%;
0.50%-1.0%;
0.025%-0.50%;
0.025%-1.0%;
1.0%-2.0%;
2.0%-5.0%;
5.0%-10.00%
1.0%-5.0%;
1.0%40.0%;
10.0%-20.0%;
20.0%-30.0%;
30.0%-40.0%;
40.0%-50.0%;
50.0%-60.0%;
60.0%-70.0%;
70.0%-80.0%;
80.0%-90.0%;
90.0%-98.0%;
10.0%-30.0%;
20.0%-40.0%;
30.0%-60.0%;
40.0%-70.0%;
50.0%-80.0%;
10.0%-50.0%;
10.0%-98.0%;
50.0%-70.0%;
50.0%-98.0%; or
70.0%-98.0%.
8. The method of claim 5 , wherein the non-polar carrier comprises one or more of: polyethylene glycols, glycerides, glycerin; polypropylene glycol; PVM/MA decadiene crosspolymer; hydrogenated polyisobutane/polyethane; isododecane; tetrahexyldecyl ascorbate; Vitamin E; beta carotene; disopropyl adipate; 2-ethylhexyl pentate; oleth-3; propanoic acid 2-hydroxy-dodecyl ester; propanoic acid, 2-hydroxy-, C12-15-alkyl esters; glycereth-4; glycereth-7; diglycerin; panthenol; and phytantriaol.
9. The method of claim 8 , wherein the non-polar carrier comprises one or more polyethylene glycols.
10. The method of claim 8 , wherein the skin inflammation is one or more of: acne, aging skin, alopecia, dermatitis, xerosis, eczema, rosacea, seborrhea, and psoriasis.
11. The method of claim 5 , wherein the non-polar carrier comprises a polymer polyether.
12. The method of claim 5 , wherein the carrier further comprises a phosphatidylcholine.
13. The method of claim 5 , wherein said composition further comprises one or more additional ingredients selected from the group consisting of: fatty acid esters of ascorbic acid, lipoic acid, and tocotrienols and tocotrienol derivatives and vitamin E compositions enriched with tocotrienol or tocotrienol derivatives.
14. The method of claim 5 , wherein the skin damage is one or more of: cut, abrasion, burn, blemish, cutaneous scar tissue, lesion, acne, aging skin, alopecia, dermatitis, xerosis, eczema, rosacea, seborrhea, and psoriasis; or skin inflammation.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/562,845 US20150094292A1 (en) | 2008-12-31 | 2014-12-08 | Topical compositions containing nitro fatty acids |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14184408P | 2008-12-31 | 2008-12-31 | |
| US12/651,079 US8933255B2 (en) | 2008-12-31 | 2009-12-31 | Nutraceuticals containing nitro fatty acids |
| US13/174,206 US8937194B2 (en) | 2008-12-31 | 2011-06-30 | Topical compositions containing nitro fatty acids |
| US14/562,845 US20150094292A1 (en) | 2008-12-31 | 2014-12-08 | Topical compositions containing nitro fatty acids |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/174,206 Continuation US8937194B2 (en) | 2008-12-31 | 2011-06-30 | Topical compositions containing nitro fatty acids |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150094292A1 true US20150094292A1 (en) | 2015-04-02 |
Family
ID=44788379
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/174,206 Expired - Fee Related US8937194B2 (en) | 2008-12-31 | 2011-06-30 | Topical compositions containing nitro fatty acids |
| US14/562,845 Abandoned US20150094292A1 (en) | 2008-12-31 | 2014-12-08 | Topical compositions containing nitro fatty acids |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/174,206 Expired - Fee Related US8937194B2 (en) | 2008-12-31 | 2011-06-30 | Topical compositions containing nitro fatty acids |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US8937194B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10596214B2 (en) | 2016-10-04 | 2020-03-24 | Mary Kay Inc. | Methods and compositions for treating striae distensae |
| US12496323B2 (en) | 2024-01-18 | 2025-12-16 | Mary Kay Inc. | Methods and compositions for treating striae distensae |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8324277B2 (en) | 2007-08-01 | 2012-12-04 | University of Pittsburgh—of the Commonwealth System of Higher Education | Nitrated-fatty acids modulation of type II diabetes |
| CN102083787A (en) | 2008-05-01 | 2011-06-01 | 康普雷克萨公司 | Vinyl substituted fatty acids |
| US20140024713A1 (en) | 2008-06-19 | 2014-01-23 | University Of Utah Research Foundation | Use of nitrated lipids for treatment of side effects of toxic medical therapies |
| WO2009155439A2 (en) | 2008-06-19 | 2009-12-23 | University Of Utah Research Foundation | Use of nitrated lipids for treatment of side effects of toxic medical therapies |
| US8937194B2 (en) * | 2008-12-31 | 2015-01-20 | Nitromega Corp. | Topical compositions containing nitro fatty acids |
| JP2013500966A (en) | 2009-07-31 | 2013-01-10 | ユニバーシティー オブ ピッツバーグ − オブ ザ コモンウェルス システム オブ ハイヤー エデュケーション | Fatty acids as anti-inflammatory agents |
| US8686167B2 (en) | 2009-10-02 | 2014-04-01 | Complexa, Inc. | Heteroatom containing substituted fatty acids |
| EP2590643A4 (en) * | 2010-06-28 | 2014-01-01 | Complexa Inc | Multi-component pharmaceuticals for treating diabetes |
| WO2013028501A1 (en) | 2011-08-19 | 2013-02-28 | The University Of Utah Research Foundation | Combination therapy with nitrated lipids and inhibitors of the renin-angiotensin-aldosterone system |
| US20140271844A1 (en) * | 2013-03-15 | 2014-09-18 | Nitromega Corp. | Compositions containing nitro fatty acids |
| CN105431159B (en) | 2013-05-14 | 2020-12-01 | 马斯公司 | Joint care composition |
| IL227890A0 (en) * | 2013-08-08 | 2014-01-30 | Galderm Therapeutics Ltd | Anti-aging compositions comprising bile acid and fatty acid conjugates |
| CA2920457A1 (en) * | 2013-08-08 | 2015-02-12 | Galderm Therapeutics Ltd. | Anti-acne compositions comprising bile acid-fatty acid conjugates |
| GB201414910D0 (en) * | 2014-05-23 | 2014-10-08 | Mars Inc | Composition |
| BR112018000254A2 (en) | 2015-07-07 | 2018-09-04 | H Lundbeck As | pde9 inhibitors with imidazotriazinone main chain and imidazopyrazinone main chain for the treatment of peripheral diseases |
| IL258476B2 (en) * | 2015-10-02 | 2023-04-01 | Complexa Inc | Prevention, treatment and reversal of disease using therapeutically effective amounts of activated fatty acids |
| ES2638195B1 (en) * | 2016-04-18 | 2018-08-02 | Bioiberica, S.A. | SKIN COMPOSITIONS |
| HUE065709T2 (en) | 2018-05-25 | 2024-06-28 | Cardurion Pharmaceuticals Inc | Monohydrate and crystalline forms of 6-[(3s,4s)-4-methyl-1- (pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-3-tetrahydropyran-4-yl- 7h-imid azo [1,5- a] pyrazin-8-one |
| MA53501A (en) | 2018-08-31 | 2021-07-07 | Imara Inc | PDE9 INHIBITORS FOR THE TREATMENT OF SICKLE CELL DISEASE |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001082878A1 (en) * | 2000-05-02 | 2001-11-08 | Perricone Nicholas V | Treatment of skin damage using acetyl carnitine and phosphatidylcholine and/or ascorbyl fatty acid esters |
| US20070232579A1 (en) * | 2004-04-28 | 2007-10-04 | Uab Research Foundation, The | Nitrated Lipids and Methods of Making and Using Thereof |
| US8937194B2 (en) * | 2008-12-31 | 2015-01-20 | Nitromega Corp. | Topical compositions containing nitro fatty acids |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5443844A (en) * | 1992-12-03 | 1995-08-22 | Mcdaniel; William R. | Linoleic acid preparations for topical treatment of acne vulgaris |
| AUPQ291499A0 (en) * | 1999-09-17 | 1999-10-07 | Women's And Children's Hospital Adelaide | Novel nitro and sulphur containing compounds |
-
2011
- 2011-06-30 US US13/174,206 patent/US8937194B2/en not_active Expired - Fee Related
-
2014
- 2014-12-08 US US14/562,845 patent/US20150094292A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001082878A1 (en) * | 2000-05-02 | 2001-11-08 | Perricone Nicholas V | Treatment of skin damage using acetyl carnitine and phosphatidylcholine and/or ascorbyl fatty acid esters |
| US20070232579A1 (en) * | 2004-04-28 | 2007-10-04 | Uab Research Foundation, The | Nitrated Lipids and Methods of Making and Using Thereof |
| US8937194B2 (en) * | 2008-12-31 | 2015-01-20 | Nitromega Corp. | Topical compositions containing nitro fatty acids |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10596214B2 (en) | 2016-10-04 | 2020-03-24 | Mary Kay Inc. | Methods and compositions for treating striae distensae |
| US11344595B2 (en) | 2016-10-04 | 2022-05-31 | Mary Kay Inc. | Methods and compositions for treating striae distensae |
| US11911429B2 (en) | 2016-10-04 | 2024-02-27 | Mary Kay Inc. | Methods and compositions for treating striae distensae |
| US12496323B2 (en) | 2024-01-18 | 2025-12-16 | Mary Kay Inc. | Methods and compositions for treating striae distensae |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110256247A1 (en) | 2011-10-20 |
| US8937194B2 (en) | 2015-01-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8937194B2 (en) | Topical compositions containing nitro fatty acids | |
| US8933255B2 (en) | Nutraceuticals containing nitro fatty acids | |
| US20140271844A1 (en) | Compositions containing nitro fatty acids | |
| US8563609B2 (en) | Nitro fatty acids - neuroprotection and/or inhibition of cognitive decline | |
| US20160081962A1 (en) | Nutritional or dietary supplements containing fatty acids and nitrite | |
| WO2013003689A2 (en) | Compositions containing nitro fatty acids | |
| CA2630262A1 (en) | The use of isothiocyanates compounds in treating prostatic diseases and skin cancer | |
| US20230321022A1 (en) | Reversibly protected thiolated electrophilic fatty acids as prodrugs | |
| JP2013534930A (en) | Multi-component formulation for the treatment of diabetes | |
| ES2889874T3 (en) | Treatment of optic neuropathy and reduction of steroid-induced oxidative stress with stabilized polyunsaturated substances | |
| US20190282528A1 (en) | Novel reversible nitroxide derivatives of nitroalkenes that mediate nitrosating and alkylating reactions | |
| US20160256508A1 (en) | Compositions containing nitro fatty acids | |
| AU2013219235B2 (en) | Nutraceuticals containing nitro fatty acids |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NITROMEGA CORP., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MILLER, RAYMOND A.;REEL/FRAME:034513/0628 Effective date: 20141211 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: COMPLEXA, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NITROMEGA CORP.;REEL/FRAME:043082/0238 Effective date: 20170714 |