US20150090601A1 - Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection - Google Patents
Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection Download PDFInfo
- Publication number
- US20150090601A1 US20150090601A1 US14/042,419 US201314042419A US2015090601A1 US 20150090601 A1 US20150090601 A1 US 20150090601A1 US 201314042419 A US201314042419 A US 201314042419A US 2015090601 A1 US2015090601 A1 US 2015090601A1
- Authority
- US
- United States
- Prior art keywords
- glucose
- gpe
- aunp
- cathodized
- gold nanoparticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 153
- 239000008103 glucose Substances 0.000 title claims abstract description 153
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000010931 gold Substances 0.000 title claims abstract description 43
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 39
- 239000010439 graphite Substances 0.000 title claims abstract description 39
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 33
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 22
- 238000001514 detection method Methods 0.000 title abstract description 23
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 36
- 230000003647 oxidation Effects 0.000 claims abstract description 35
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 51
- 239000000243 solution Substances 0.000 claims description 25
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 18
- 239000012491 analyte Substances 0.000 claims description 13
- 229960005070 ascorbic acid Drugs 0.000 claims description 9
- 239000002211 L-ascorbic acid Substances 0.000 claims description 8
- 235000000069 L-ascorbic acid Nutrition 0.000 claims description 8
- 239000003637 basic solution Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910003803 Gold(III) chloride Inorganic materials 0.000 claims description 5
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical compound Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims 8
- 230000005587 bubbling Effects 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 26
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 abstract description 25
- 229930006000 Sucrose Natural products 0.000 abstract description 25
- 239000005720 sucrose Substances 0.000 abstract description 25
- 229930091371 Fructose Natural products 0.000 abstract description 22
- 239000005715 Fructose Substances 0.000 abstract description 22
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 abstract description 22
- 239000011780 sodium chloride Substances 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 10
- 229960001031 glucose Drugs 0.000 description 125
- 229960002737 fructose Drugs 0.000 description 22
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229960004793 sucrose Drugs 0.000 description 4
- LKDRXBCSQODPBY-VRPWFDPXSA-N D-fructopyranose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-VRPWFDPXSA-N 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- -1 gold nanoparticle-modified graphite Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910018916 CoOOH Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- LKDRXBCSQODPBY-ZXXMMSQZSA-N alpha-D-fructopyranose Chemical compound OC[C@]1(O)OC[C@@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-ZXXMMSQZSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical class [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- BSYLOTSXNQZYFW-UHFFFAOYSA-K trichlorogold;hydrate Chemical compound O.Cl[Au](Cl)Cl BSYLOTSXNQZYFW-UHFFFAOYSA-K 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 238000001075 voltammogram Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3277—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Definitions
- the present invention relates to glucose sensors, and particularly to an enzyme-free cathodized gold nanoparticle graphite pencil electrode (GPE) based glucose sensor and methods for glucose detection.
- GPE cathodized gold nanoparticle graphite pencil electrode
- Glucose is an important molecule for human, plant and other living organisms.
- the presence of lower or higher concentration of dissolved glucose in blood outside of the normal range (4.4-6.6 mM) is the symptom of diseases “Diabetes mellitus”.
- knowing the exact glucose level in blood is crucial for diagnosis and management of Diabetes mellitus.
- glucose is used in several industries such as textile, pharmaceuticals, food industries including beverages, renewable and sustainable fuel cells, and the like. Therefore, a simple, disposable, cheap, selective and sensitive glucose sensor is required for continuous glucose monitoring.
- electrochemical glucose sensors are classified as either (i) enzyme base glucose sensor or (ii) nonenzymatic glucose sensor. Expensive enzyme and complicated enzyme immobilization methods are required for fabrication of enzyme based electrochemical glucose sensors.
- H 2 O 2 is produced in the enzyme base glucose sensor from glucose and the produced H 2 O 2 is oxidized on the electrode surface to generate a signal for the glucose. Practically, for oxidation of H 2 O 2 there is typically required a potential which is high enough to oxidize interference (e.g. fructose, sucrose, ascorbic acid, dopamine uric acid etc.) in the real sample.
- a nonenzymatic glucose sensor depends on a direct glucose oxidation signal on the electrode surface and their selectivity depends on the oxidation potential of glucose. Nanoparticles of both transition and noble metals have been used to enhance the electrocatalytic properties of a substrate electrode toward glucose oxidation.
- Au NPs gold nanoparticles
- Au NPs gold nanoparticles-modified amine-functioned mesoporous silica films on glassy carbon electrode (GCE)
- Glucose can be partially oxidized at a bulk Au electrode or a nano gold electrode at lower potential which is required to eliminate the interferences effect for detecting glucose in a real sample.
- the signal of partial oxidation of glucose in alkaline medium at Au electrode is lower than that of full oxidation at high potential. It is known that the high signal is required to obtain low detection limit in an electrochemical sensor, and that the cathodization of an Au nanomaterial based electrode before recording an electrochemical signal can enhance the electrochemical signal of the analyte.
- the reasons of limited use of Au electrode for routine analysis of glucose are high price of gold, complex preparation method of nano gold or nano gold-modified electrode and low signal at low potential.
- the graphite pencil electrode is an attractive electrode material because it is cheap, available, possesses an easy to make renewable surface, and is relatively stable.
- graphite typically shows poor electrocatalytic properties toward many electroactive molecules. The poor electrocatalytic properties of GPE should be improved to obtain a lower detection limit in electrochemical sensors.
- Embodiments of a cathodized gold nanoparticle graphite pencil electrode provide a highly sensitive enzymeless electrochemical glucose sensor that is based on the cathodized gold nanoparticle-modified graphite pencil electrode (AuNP-GPE).
- AuNP-GPE cathodized gold nanoparticle graphite pencil electrode
- an AuNP-GPE provide for the fabrication of a nonenzymatic highly selective and relatively sensitive, cheap and disposable glucose sensor.
- the AuNP-GPE after cathodization at an optimum condition shows relatively a high selectivity, a low detection limit (12 micromolar ( ⁇ M)) and a wide dynamic range (0.05-5 millimolar (mM)) toward glucose sensing.
- the glucose oxidation peak current at around ⁇ 0.27 V is typically much lower which should be enhanced to obtain a low detection limit.
- embodiments of an AuNP-GPE have been cathodized under relatively optimum condition ( ⁇ 1.0 V for 30 seconds (s)) in the same glucose solution before recording cyclic voltammetry (CV).
- This cathodization of an AuNP-GPE enhances the glucose signal and can allow a detection limit of 12 ⁇ M of glucose, for example.
- FIG. 1A is a Field Emission Scanning Electron Microscope (FE-SEM) image at 2 ⁇ m for a known bare graphite pencil electrode (GPE).
- FE-SEM Field Emission Scanning Electron Microscope
- FIG. 1B is a FE-SEM image at 2 ⁇ m for an AuNP-GPE electrode according to the present invention.
- FIG. 1C is a FE-SEM image at 200 nm for a known bare GPE.
- FIG. 1D is a FE-SEM image at 200 nm for an AuNP-GPE according to the present invention.
- FIG. 2A is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 millivolts/second (mV/s) in the absence of glucose according to the present invention.
- FIG. 2B is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 mV/s in the presence of glucose according to the present invention.
- FIG. 2C is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 mV/s in the presence of fructose according to the present invention.
- FIG. 2D is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 mV/s in the presence of sucrose according to the present invention.
- FIG. 3A is a plot of CVs in the absence of glucose at a bare GPE, before versus after cathodization. Scan rate: 100 mV/s.
- FIG. 3B is a plot of CVs in the presence of glucose at a bare GPE before versus after cathodization. Scan rate: 100 mV/s.
- FIG. 3C is a plot of CVs in the absence of glucose at an AuNP-GPE, before versus after cathodization, at a scan rate of 100 mV/s.
- FIG. 3D is a plot of CVs in the presence of glucose at an AuNP-GPE, before versus after cathodization. Scan rate: 100 mV/s.
- FIG. 4A is a plot of anodic sweeps of CVs in the presence of glucose at an AuNP-GPE after cathodization at different potentials. Scan rate: 100 mV/s.
- FIG. 4B is a plot of peak current versus cathodization potential of FIG. 4A .
- FIG. 5A is a plot of anodic sweeps of CVs in the presence of glucose at an AuNP-GPE after cathodization at different times.
- FIG. 5B is a plot of peak current versus cathodization time of FIG. 5A .
- FIG. 6A is a plot of anodic sweeps of CVs at different scan rates in the presence of glucose at a cathodized AuNP-GPE.
- FIG. 6B is a plot of peak current versus scan rate of FIG. 6A .
- FIG. 7A is a plot of anodic sweeps of CVs in the presence of various concentrations of glucose at a cathodized AuNP-GPE.
- FIG. 7B is the corresponding calibration curve of FIG. 7A .
- FIG. 8A is a plot of anodic sweeps of CVs of fructose in the absence and presence of glucose at a cathodized AuNP-GPE.
- FIG. 8B is a plot of anodic sweeps of CVs of sucrose in the absence and presence of glucose at a cathodized AuNP-GPE.
- FIG. 8C is a plot of anodic sweeps of CVs of sodium chloride in the absence and presence of glucose at a cathodized AuNP-GPE.
- Embodiments of a cathodized gold nanoparticle graphite pencil electrode (AuNP-GPE) 10 b (shown in FIGS. 1B and 1D in the micrographs 100 b and 100 d , respectively) provides a relatively highly sensitive enzymeless electrochemical glucose sensor based on a cathodized gold nanoparticle-modified graphite pencil electrode (AuNP-GPE).
- AuNP-GPE cathodized gold nanoparticle graphite pencil electrode
- the glucose oxidation peak current at around ⁇ 0.27 V is much lower which should be enhanced to obtain a low detection limit.
- the embodiments of an AuNP-GPE have been cathodized under a relatively optimum condition ( ⁇ 1.0 V for 30 s) in the same glucose solution before performing and recording cyclic voltammetry (CV). This cathodization enhances the glucose signal and allows for a glucose detection limit of 12 ⁇ M, for example.
- a Jedo mechanical pencil (Korea) was used as a holder for both bare and AuNP-modified graphite pencil leads. Electrical contact with the lead was achieved by soldering a copper wire to the metallic part that holds the lead in place inside the pencil to provide an electrically conductive holder.
- the pencil lead was fixed vertically with 15 mm of the pencil lead extruded outside, and 10 mm of the lead immersed in the solution. Such length corresponds to a geometric electrode area of 15.90 mm 2 .
- CH Instruments Inc. instrumentation was used for the electrochemical work in relation to embodiments of an AuNP-GPE.
- the electrochemical cell contained a bare GPE or an AuNP-GPE as a working electrode, a Pt wire counter electrode and Ag/AgCl (Sat. KCl) reference electrode. Before recording each voltammogram, argon gas was bubbled for 30 minutes (min) to remove oxygen from the solution. The FE-SEM images were recorded using TESCAN LYRA 3 at Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals (KFUPM), Kingdom of Saudi Arabia.
- the prepared AuNP-GPE was then cathodized by placing the AuNP-GPE in a glucose analyte solution and applying ⁇ 1.0 volt to the AuNP-GPE for approximately 30 seconds to provide a cathodized AuNP-GPE.
- the prepared AuNP-GPE can also be cathodized by placing the AuNP-GPE in a basic solution, such as in a 0.1 molar (M) NaOH, at ⁇ 1.0 V for 30 seconds.
- FIGS. 1A and 1B illustrate 2 ⁇ m scanning electron microscope (SEM) images 100 a and 100 b of the bare GPE 10 a and the AuNP-GPE 10 b , respectively. Comparing between the SEM images of 100 a and 100 b , the effect of the presence of AuNP is easily visible.
- the diameter of the AuNP is in the range of 20-85 nanometers (nm), for example.
- the low magnification view of the AuNP-GPE 10 b indicates that the AuNPs are relatively evenly dispersed on the surface of the GPE.
- Higher resolution images 100 c and 100 d of the bare GPE 10 a vs. the AuNP-GPE 10 b at 200 nm are shown in FIGS. 1C and 1D , respectively.
- FIGS. 2A to 2D With respect to electrocatalytic oxidation of glucose, fructose and sucrose, in FIGS. 2A to 2D , CVs in a 0.1 M NaOH in the absence ( FIG. 2A ) and presence ( FIG. 2B ) of 1 mM D-(+) glucose, and in the presence of D-( ⁇ ) fructose ( FIG. 2C ), and in the presence of sucrose ( FIG. 2D ) at a bare GPE (“a” plots in FIGS. 2A to 2D ) and at an AuNP-GPE (“b” plots in FIGS. 2A to 2D ), and at a scan rate of 100 mV/s are illustrated. Plot 200 a of FIG. 2A and plot 200 b of FIG.
- 2B are the CVs in 0.1 M NaOH at a bare GPE and at an AuNP-GPE.
- AuNP-GPE started to oxidize around at ⁇ 0.1 V in an anodic sweep and the oxidized Au is subsequently reduced at a cathodic sweep with a reduction peak at around +0.12 V, for example.
- the results of the mechanism in relation to embodiments of an AuNP-GPE indicate a glucose oxidation peak appears in an anodic sweep at around ⁇ 0.27 (E pa1 ), and +0.27 V (E pa2 )) or in a cathodic sweep around at +0.12V (E pc ).
- the oxidation peak of fructose (the “b” line plot in FIG. 2C ) or sucrose (the “b” line plot in FIG. 2D ) at an AuNP-GPE is in an anodic sweep around at +0.29 V and is in a cathodic sweep around at +0.15V.
- the glucose oxidation peak at ⁇ 0.27 V is relatively desirable to detect the glucose without any significant interference from fructose and sucrose with a minimum background current which is typically desired to get a low detection limit.
- the glucose oxidation peak current at E pa1 is relatively much lower than that obtained at E pa2 or E pc .
- a high peak current at E pa1 is generally desired for obtaining a low detection limit with a relatively high selectivity.
- FIGS. 3A to 3D CVs in 0.1 M NaOH in the absence ( FIG. 3A and FIG. 3C ) and presence ( FIG. 3B and FIG. 3D ) of a 1 mM D-(+) glucose at a bare GPE ( FIG. 3A and FIG. 3B ) and at an AuNP-GPE ( FIG. 3C and FIG. 3D ) at a scan rate of 100 mV/s are illustrated.
- the CVs in FIGS. 3A-3D were recorded before (plots “a”) and after (plots “b”) cathodization of the electrodes at ⁇ 1.0 V for 60 s.
- the signal of glucose electrooxidation has been enhanced significantly at an AuNP-GPE after cathodization (the “b” plot line of plot 300 d in FIG. 3D ) compared to that of before cathodization (the “b” plot line of FIG. 2B and the “a” plot line of FIG. 3D ), for example.
- FIG. 4A anodic sweeps of CVs in a 0.1 M NaOH containing 1 mM D-(+) glucose at an AuNP-GPE, after cathodization for 60 s at different potentials of (a)-0.2 V, (b) ⁇ 0.6 V, (c) ⁇ 0.8 V, (d) ⁇ 1.0 V and (e) ⁇ 1.2 V, and a scan rate of 100 mV/s are illustrated; and FIG. 4B illustrates the corresponding plot of peak current vs. cathodization potential. Plot 400 a of FIG.
- FIG. 4A illustrates an anodic sweep of CVs of 1 mM glucose which were obtained at an AuNP-GPE after cathodization at different potentials for 60 seconds in the same glucose solution.
- Plot 400 b of FIG. 4B illustrates the corresponding plot of peak current versus cathodization potential. This plot indicates that ⁇ 1.0 V is a desirable cathodization potential for achieving a relatively highest signal of glucose, for example.
- FIG. 5A anodic sweeps of CVs in a 0.1 M NaOH containing 1 mM D-(+) glucose at an AuNP-GPE after cathodization at ⁇ 1.0 V for different times of (a) 5 s, (b) 15 s, (c) 30 s, (d) 45 s and (e) 60 s, at a scan rate of 100 mV/s are illustrated; and FIG. 5B illustrates the corresponding plot of peak current versus cathodization time. Plot 500 a of FIG.
- 5A indicates an anodic sweep of CVs of 1 mM glucose which were obtained at AuNP-GPE after cathodization at ⁇ 1.0 V for the different times “a” through “e” in the same glucose solution.
- the plot of peak current versus cathodization time indicates that the relatively highest signal was obtained at an AuNP-GPE after cathodization at ⁇ 1.0 V for 30 seconds. As a result, ⁇ 1.0 V and 30 seconds were selected for cathodization of an AuNP-GPE in further experiments.
- the reproducibility of the embodiments of glucose sensing methods using embodiments of a cathodized AuNP-GPE was verified by recording the CVs at a scan rate of 300 mV/s in a 0.1 M NaOH containing 1 mM glucose at a series of modified AuNP-GPE electrode surfaces after pretreatment at ⁇ 1.0 V for 30 seconds.
- the intraday experiments showed a peak current of 49.128 ⁇ 4.7190 ⁇ A (mean ⁇ standard deviation) with a relative standard deviation of 9.6%, whereas the interday experiments showed a peak current of 49.357 ⁇ 4.652 ⁇ A with a relative standard deviation of 9.43%.
- the results indicate that embodiments of a glucose sensing method using embodiments of a cathodized AuNP-GPE are reproducible.
- an AuNP-GPE was cathodized in a 0.1 M NaOH containing 1 mM glucose solution, followed by recording the CV of glucose oxidation in the same solution.
- the AuNP-GPE was also cathodized only in 0.1 M NaOH at ⁇ 1.0 V for 30 seconds. Afterward, 1 mM equivalent amount of glucose solution was added to the 0.1 M NaOH. A comparison of the results indicates that a substantially same level of the glucose oxidation signal was obtained for both cases.
- the concentration dependence calibration curve (plot 700 b of FIG. 7B ) was constructed from the signal after subtracting the mean of the zero glucose response.
- the calibration plot shows that the glucose oxidation signals increase linearly with increasing concentration of glucose in a range between 0.05 mM to 5 mM.
- a further increase of the concentration to more than 5 mM results in the signal showing a non linear behavior with concentration.
- the calculated limit of detection at 3 ⁇ was 12 ⁇ M glucose, for example. This limit of detection is comparable for a glucose sensor based on the Au nanomaterial-modified carbon electrode, for example.
- Fructose, sucrose and NaCl coexist with glucose in many samples including food and drugs.
- the fructose, glucose and NaCl can potentially interfere with the glucose oxidation signal. Therefore, the effects of the presence of a 1 mM fructose or sucrose or NaCl on oxidation of 1 mM glucose at embodiments of an AuNP-GPE after cathodization in the respective glucose solution at ⁇ 1.0 V for 30 seconds were studied.
- FIGS. 8A to 8C anodic sweeps of CVs in a 0.1 M NaOH containing 0.1 mM D-( ⁇ ) fructose ( FIG.
- the CV data shows that fructose, sucrose and NaCl typically cannot generate any signal in the tested potential windows, whereas a 1 mM glucose in the absence (plot “g” of FIG. 7A ) or presence of 1 mM fructose (plot “b” of FIG. 8A ) or sucrose (plot “b” of FIG. 8B ) or NaCl (plot “b” of FIG. 8C ) can generate similar glucose oxidation signals.
- the results indicate that embodiments of a method using embodiments of an AuNP-GPE are valid for the detection of glucose in the presence of fructose, sucrose and NaCl without any substantial inference.
- Embodiments of a cathodized AuNP-GPE provide a sensitive, selective, relatively inexpensive and disposable glucose sensor based on a cathodized AuNP-GPE.
- the cathodized AuNP-GPE shows relatively superior electrocatalytic properties toward electroxidation of glucose compared to an uncathodized AuNP-GPE or a bare GPE.
- the selectivity of the glucose sensor was obtained by selecting the appropriate potential windows of a CV.
- a limit of detection of the embodiments of the AuNP-GPE sensor is 12 ⁇ M of glucose, for example.
- embodiments of a method using embodiments of a cathodized AuNP-GPE based on cathodization of a relatively simply prepared AuNP-GPE can be suitable for analytical determination of glucose in various fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nanotechnology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to glucose sensors, and particularly to an enzyme-free cathodized gold nanoparticle graphite pencil electrode (GPE) based glucose sensor and methods for glucose detection.
- 2. Description of the Related Art
- Glucose is an important molecule for human, plant and other living organisms. However, the presence of lower or higher concentration of dissolved glucose in blood outside of the normal range (4.4-6.6 mM) is the symptom of diseases “Diabetes mellitus”. As a result, knowing the exact glucose level in blood is crucial for diagnosis and management of Diabetes mellitus. Moreover, glucose is used in several industries such as textile, pharmaceuticals, food industries including beverages, renewable and sustainable fuel cells, and the like. Therefore, a simple, disposable, cheap, selective and sensitive glucose sensor is required for continuous glucose monitoring.
- Among the common analytical methods, the electrochemical method has been widely appreciated due to its simplicity, portability, selectivity and sensitivity. Generally, electrochemical glucose sensors are classified as either (i) enzyme base glucose sensor or (ii) nonenzymatic glucose sensor. Expensive enzyme and complicated enzyme immobilization methods are required for fabrication of enzyme based electrochemical glucose sensors. Moreover, H2O2 is produced in the enzyme base glucose sensor from glucose and the produced H2O2 is oxidized on the electrode surface to generate a signal for the glucose. Practically, for oxidation of H2O2 there is typically required a potential which is high enough to oxidize interference (e.g. fructose, sucrose, ascorbic acid, dopamine uric acid etc.) in the real sample.
- To overcome those problems, a plethora of nonenzymatic glucose sensors have been developed. A nonenzymatic glucose sensor depends on a direct glucose oxidation signal on the electrode surface and their selectivity depends on the oxidation potential of glucose. Nanoparticles of both transition and noble metals have been used to enhance the electrocatalytic properties of a substrate electrode toward glucose oxidation. For example, gold nanowire array electrode, gold nanoparticles (Au NPs)-modified amine-functioned mesoporous silica films on glassy carbon electrode (GCE), CoOOH nanosheet-modified cobalt electrode, bimetallic Pt—M (M=Ru and Sn) NPs on carbon nanotube (CNT)-modified GCE, Pt/Ni—Co nanowires, Pd NPs on graphene oxide, Au NPs on polypyrrole nanofibers-modified GCE, copper NPs on CNT-modified GCE, Au NP-modified nitrogen-doped diamond-like carbon electrodes, AuNP/carbon nanotubes/ionic liquid nanocomposite, and Au NP-modified indium tin oxide were used to direct oxidation of glucose.
- Glucose can be partially oxidized at a bulk Au electrode or a nano gold electrode at lower potential which is required to eliminate the interferences effect for detecting glucose in a real sample. However, the signal of partial oxidation of glucose in alkaline medium at Au electrode is lower than that of full oxidation at high potential. It is known that the high signal is required to obtain low detection limit in an electrochemical sensor, and that the cathodization of an Au nanomaterial based electrode before recording an electrochemical signal can enhance the electrochemical signal of the analyte. The reasons of limited use of Au electrode for routine analysis of glucose are high price of gold, complex preparation method of nano gold or nano gold-modified electrode and low signal at low potential.
- Moreover, the graphite pencil electrode (GPE) is an attractive electrode material because it is cheap, available, possesses an easy to make renewable surface, and is relatively stable. However, graphite typically shows poor electrocatalytic properties toward many electroactive molecules. The poor electrocatalytic properties of GPE should be improved to obtain a lower detection limit in electrochemical sensors.
- Thus, a cathodized gold nanoparticle graphite pencil electrode addressing the aforementioned problems is desired.
- Embodiments of a cathodized gold nanoparticle graphite pencil electrode (AuNP-GPE) provide a highly sensitive enzymeless electrochemical glucose sensor that is based on the cathodized gold nanoparticle-modified graphite pencil electrode (AuNP-GPE). By combining the advantages of AuNP, GPE and cathodization, embodiments of an AuNP-GPE provide for the fabrication of a nonenzymatic highly selective and relatively sensitive, cheap and disposable glucose sensor. The AuNP-GPE after cathodization at an optimum condition shows relatively a high selectivity, a low detection limit (12 micromolar (μM)) and a wide dynamic range (0.05-5 millimolar (mM)) toward glucose sensing. The cyclic voltammetry (CV) experiments show that embodiments of an AuNP-GPE can oxidize glucose partially at low potential (around −0.27 volts (V)), whereas the bare GPE generally cannot oxidize glucose in the entire tested potential windows, and that fructose and sucrose generally cannot be oxidized at <0.1 V at an AuNP-GPE. As a result, the glucose oxidation peak at around −0.27 V is relatively suitable enough for selective detection of glucose in the presence of fructose and sucrose.
- However, the glucose oxidation peak current at around −0.27 V is typically much lower which should be enhanced to obtain a low detection limit. To increase the oxidation peak current of glucose at around −0.27 V, embodiments of an AuNP-GPE have been cathodized under relatively optimum condition (−1.0 V for 30 seconds (s)) in the same glucose solution before recording cyclic voltammetry (CV). This cathodization of an AuNP-GPE enhances the glucose signal and can allow a detection limit of 12 μM of glucose, for example. The dynamic range of embodiments of a glucose sensor using embodiments of a cathodized AuNP-GPE are typically in the range between 0.05 to 5.0 mM of glucose with relatively good linearity (R2=0.999). Also, no significant interference effect was observed for the sensing of glucose in the presence of fructose, sucrose and NaCl.
- These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
-
FIG. 1A is a Field Emission Scanning Electron Microscope (FE-SEM) image at 2 μm for a known bare graphite pencil electrode (GPE). -
FIG. 1B is a FE-SEM image at 2 μm for an AuNP-GPE electrode according to the present invention. -
FIG. 1C is a FE-SEM image at 200 nm for a known bare GPE. -
FIG. 1D is a FE-SEM image at 200 nm for an AuNP-GPE according to the present invention. -
FIG. 2A is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 millivolts/second (mV/s) in the absence of glucose according to the present invention. -
FIG. 2B is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 mV/s in the presence of glucose according to the present invention. -
FIG. 2C is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 mV/s in the presence of fructose according to the present invention. -
FIG. 2D is a CV plot of a bare GPE versus an AuNP-GPE at a scan rate of 100 mV/s in the presence of sucrose according to the present invention. -
FIG. 3A is a plot of CVs in the absence of glucose at a bare GPE, before versus after cathodization. Scan rate: 100 mV/s. -
FIG. 3B is a plot of CVs in the presence of glucose at a bare GPE before versus after cathodization. Scan rate: 100 mV/s. -
FIG. 3C is a plot of CVs in the absence of glucose at an AuNP-GPE, before versus after cathodization, at a scan rate of 100 mV/s. -
FIG. 3D is a plot of CVs in the presence of glucose at an AuNP-GPE, before versus after cathodization. Scan rate: 100 mV/s. -
FIG. 4A is a plot of anodic sweeps of CVs in the presence of glucose at an AuNP-GPE after cathodization at different potentials. Scan rate: 100 mV/s. -
FIG. 4B is a plot of peak current versus cathodization potential ofFIG. 4A . -
FIG. 5A is a plot of anodic sweeps of CVs in the presence of glucose at an AuNP-GPE after cathodization at different times. -
FIG. 5B is a plot of peak current versus cathodization time ofFIG. 5A . -
FIG. 6A is a plot of anodic sweeps of CVs at different scan rates in the presence of glucose at a cathodized AuNP-GPE. -
FIG. 6B is a plot of peak current versus scan rate ofFIG. 6A . -
FIG. 7A is a plot of anodic sweeps of CVs in the presence of various concentrations of glucose at a cathodized AuNP-GPE. -
FIG. 7B is the corresponding calibration curve ofFIG. 7A . -
FIG. 8A is a plot of anodic sweeps of CVs of fructose in the absence and presence of glucose at a cathodized AuNP-GPE. -
FIG. 8B is a plot of anodic sweeps of CVs of sucrose in the absence and presence of glucose at a cathodized AuNP-GPE. -
FIG. 8C is a plot of anodic sweeps of CVs of sodium chloride in the absence and presence of glucose at a cathodized AuNP-GPE. - Unless otherwise indicated, similar reference characters denote corresponding features consistently throughout the attached drawings.
- Embodiments of a cathodized gold nanoparticle graphite pencil electrode (AuNP-GPE) 10 b (shown in
FIGS. 1B and 1D in the 100 b and 100 d, respectively) provides a relatively highly sensitive enzymeless electrochemical glucose sensor based on a cathodized gold nanoparticle-modified graphite pencil electrode (AuNP-GPE). Performing the cyclic voltammetry (CV) experiments show that embodiments of an AuNP-GPE can oxidize glucose partially at a relatively low potential (around −0.27 V), whereas themicrographs bare GPE 10 a (shown inFIGS. 1A and 1C in the 100 a and 100 c, respectively) typically cannot oxidize glucose in the entire tested potential windows. Besides, fructose and sucrose generally cannot be oxidized at <0.1 V at an AuNP-GPE. As a result, the glucose oxidation peak at around −0.27 V is generally suitable enough for selective detection of glucose in the presence of fructose and sucrose, for example.micrographs - However, the glucose oxidation peak current at around −0.27 V is much lower which should be enhanced to obtain a low detection limit. To increase the oxidation peak current of glucose at around −0.27 V, the embodiments of an AuNP-GPE have been cathodized under a relatively optimum condition (−1.0 V for 30 s) in the same glucose solution before performing and recording cyclic voltammetry (CV). This cathodization enhances the glucose signal and allows for a glucose detection limit of 12 μM, for example. The dynamic range of the sensor is in the range between 0.05 to 5.0 mM of glucose with a relatively good linearity (R2=0.999). Also, no significant interference effect was observed for sensing of glucose in the presence of fructose, sucrose and NaCl, for example.
- With respect to reagents used in relation to preparation of embodiments of an AuNP-GPE, Gold(III) chloride hydrate, D-(+) Glucose, D-(−) Fructose, Sucrose, L-ascorbic acid (AA), Sodium chloride and Sodium hydroxide were received from Sigma Aldrich. As to an example of graphite used in relation to preparation of embodiments of an AuNP-GPE, hi-polymer graphite graphite pencil HB (grade) black leads were obtained from Pentel Co. LTD. (Japan). All leads had a total length of 60 millimeters (mm) and a diameter of 0.5 mm, and were used as received. All solutions were prepared with deionized water of a resistivity of 18.6 megaohms/centimeter (MΩ/cm), which was obtained directly from PURELAB® Ultra Laboratory Water Purification System.
- A Jedo mechanical pencil (Korea) was used as a holder for both bare and AuNP-modified graphite pencil leads. Electrical contact with the lead was achieved by soldering a copper wire to the metallic part that holds the lead in place inside the pencil to provide an electrically conductive holder. The pencil lead was fixed vertically with 15 mm of the pencil lead extruded outside, and 10 mm of the lead immersed in the solution. Such length corresponds to a geometric electrode area of 15.90 mm2. CH Instruments Inc. instrumentation was used for the electrochemical work in relation to embodiments of an AuNP-GPE. The electrochemical cell contained a bare GPE or an AuNP-GPE as a working electrode, a Pt wire counter electrode and Ag/AgCl (Sat. KCl) reference electrode. Before recording each voltammogram, argon gas was bubbled for 30 minutes (min) to remove oxygen from the solution. The FE-SEM images were recorded using
TESCAN LYRA 3 at Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals (KFUPM), Kingdom of Saudi Arabia. - With respect to embodiments of preparation methods of an AuNP-GPE, briefly, initially equal volumes (1.5 milliliters (ml) of each aqueous solutions) of 1.65 mM AA and 1.0 mM Gold(III) chloride were mixed using a pipette at room temperature (RT) in a 3.0 ml test tube to form gold nanoparticles (AuNPs). A bare GPE was immersed into that test tube, which was placed into a water bath preheated to 75° centigrade (C) and kept for 15 min to obtain the AuNP-GPE. Afterward, the AuNP-GPE was removed and washed by gentle dipping two times in deionized water, then dried at 60° C. for 5 min prior to use. The prepared AuNP-GPE was then cathodized by placing the AuNP-GPE in a glucose analyte solution and applying −1.0 volt to the AuNP-GPE for approximately 30 seconds to provide a cathodized AuNP-GPE. Also, the prepared AuNP-GPE can also be cathodized by placing the AuNP-GPE in a basic solution, such as in a 0.1 molar (M) NaOH, at −1.0 V for 30 seconds.
-
FIGS. 1A and 1B illustrate 2 μm scanning electron microscope (SEM) 100 a and 100 b of theimages bare GPE 10 a and the AuNP-GPE 10 b, respectively. Comparing between the SEM images of 100 a and 100 b, the effect of the presence of AuNP is easily visible. The diameter of the AuNP is in the range of 20-85 nanometers (nm), for example. The low magnification view of the AuNP-GPE 10 b indicates that the AuNPs are relatively evenly dispersed on the surface of the GPE. 100 c and 100 d of theHigher resolution images bare GPE 10 a vs. the AuNP-GPE 10 b at 200 nm are shown inFIGS. 1C and 1D , respectively. - With respect to electrocatalytic oxidation of glucose, fructose and sucrose, in
FIGS. 2A to 2D , CVs in a 0.1 M NaOH in the absence (FIG. 2A ) and presence (FIG. 2B ) of 1 mM D-(+) glucose, and in the presence of D-(−) fructose (FIG. 2C ), and in the presence of sucrose (FIG. 2D ) at a bare GPE (“a” plots inFIGS. 2A to 2D ) and at an AuNP-GPE (“b” plots inFIGS. 2A to 2D ), and at a scan rate of 100 mV/s are illustrated. Plot 200 a ofFIG. 2A and plot 200 b ofFIG. 2B are the CVs in 0.1 M NaOH at a bare GPE and at an AuNP-GPE. In comparison to the CV of bare GPE, it is clear that AuNP-GPE started to oxidize around at −0.1 V in an anodic sweep and the oxidized Au is subsequently reduced at a cathodic sweep with a reduction peak at around +0.12 V, for example. Interestingly, there is relatively no large difference in the background current of an AuNP-GPE and a bare GPE in anodic sweep at <−0.1 V. Therefore, the detection of glucose at <−0.1 V is generally good to obtain a low detection limit, for example. By comparing the “a” line plot ofplots 200 a-200 d inFIGS. 2A through 2D , respectively, it is clear that a bare GPE cannot typically oxidize glucose, fructose, and sucrose in the test potential windows. Moreover, the “b” line plot ofplot 200 b inFIG. 2B presents the CV of glucose at an AuNP-GPE. From the comparison between the “b” line plot ofFIGS. 2A and 2B , it is evident that two peaks at an anodic sweep and one peak at a cathodic sweep appeared for glucose oxidation. This typical glucose electrooxidation behavior in alkaline solution is similar with that at a bulk gold electrode. - While the mechanism of the glucose oxidation is relatively complex, the results of the mechanism in relation to embodiments of an AuNP-GPE, indicate a glucose oxidation peak appears in an anodic sweep at around −0.27 (Epa1), and +0.27 V (Epa2)) or in a cathodic sweep around at +0.12V (Epc). Besides, the oxidation peak of fructose (the “b” line plot in
FIG. 2C ) or sucrose (the “b” line plot inFIG. 2D ) at an AuNP-GPE is in an anodic sweep around at +0.29 V and is in a cathodic sweep around at +0.15V. From the above discussion, it can be determined that in embodiments of an AuNP-GPE, the glucose oxidation peak at −0.27 V is relatively desirable to detect the glucose without any significant interference from fructose and sucrose with a minimum background current which is typically desired to get a low detection limit. However, the glucose oxidation peak current at Epa1 is relatively much lower than that obtained at Epa2 or Epc. Also, a high peak current at Epa1 is generally desired for obtaining a low detection limit with a relatively high selectivity. - Referring to
FIGS. 3A to 3D , CVs in 0.1 M NaOH in the absence (FIG. 3A andFIG. 3C ) and presence (FIG. 3B andFIG. 3D ) of a 1 mM D-(+) glucose at a bare GPE (FIG. 3A andFIG. 3B ) and at an AuNP-GPE (FIG. 3C andFIG. 3D ) at a scan rate of 100 mV/s are illustrated. The CVs inFIGS. 3A-3D were recorded before (plots “a”) and after (plots “b”) cathodization of the electrodes at −1.0 V for 60 s. Regarding glucose oxidation signal enhancement by cathodization of AuNP-GPE in relation to embodiments of an AuNP-GPE, initially, the cathodization effect on background current of a bare GPE, as shown inplot 300 a ofFIG. 3A and an AuNP-GPE, as shown inplot 300 c ofFIG. 3C was checked. By comparing the “a” plot line and the “b” plot line ofplot 300 a inFIG. 3A , it is observed that there was no significant change in a background current before and after cathodization of a bare GPE. Similarly, no significant change is found in a background current of a cathodized (“b” plot line ofplot 300 c inFIG. 3C ) and uncathodized (“a” plot line ofplot 300 c inFIG. 3C ) AuNP-GPE. - As evident from the “b” CV plots of
FIGS. 3A and 3C , the background current of a cathodized bare GPE and of a cathodized AuNP-GPE is similar. Also, a cathodized and an uncathodized bare GPE typically cannot oxidize glucose at negative potential, which is confirmed by comparing the “b” plot lines ofFIGS. 3A and 3B . ComparingFIGS. 3C and 3D and the “b” plot line ofFIG. 2B shows that glucose can be oxidized on uncathodized or cathodized AuNP-GPE at around −0.27 V. However, the signal of glucose electrooxidation has been enhanced significantly at an AuNP-GPE after cathodization (the “b” plot line ofplot 300 d inFIG. 3D ) compared to that of before cathodization (the “b” plot line ofFIG. 2B and the “a” plot line ofFIG. 3D ), for example. - With respect to optimization of cathodization parameters for glucose oxidation, to obtain a highest signal of glucose, the cathodization potential and time were optimized. Referring to
FIG. 4A , anodic sweeps of CVs in a 0.1 M NaOH containing 1 mM D-(+) glucose at an AuNP-GPE, after cathodization for 60 s at different potentials of (a)-0.2 V, (b) −0.6 V, (c) −0.8 V, (d) −1.0 V and (e) −1.2 V, and a scan rate of 100 mV/s are illustrated; andFIG. 4B illustrates the corresponding plot of peak current vs. cathodization potential. Plot 400 a ofFIG. 4A illustrates an anodic sweep of CVs of 1 mM glucose which were obtained at an AuNP-GPE after cathodization at different potentials for 60 seconds in the same glucose solution. Plot 400 b ofFIG. 4B illustrates the corresponding plot of peak current versus cathodization potential. This plot indicates that −1.0 V is a desirable cathodization potential for achieving a relatively highest signal of glucose, for example. - Referring to
FIG. 5A , anodic sweeps of CVs in a 0.1 M NaOH containing 1 mM D-(+) glucose at an AuNP-GPE after cathodization at −1.0 V for different times of (a) 5 s, (b) 15 s, (c) 30 s, (d) 45 s and (e) 60 s, at a scan rate of 100 mV/s are illustrated; andFIG. 5B illustrates the corresponding plot of peak current versus cathodization time. Plot 500 a ofFIG. 5A indicates an anodic sweep of CVs of 1 mM glucose which were obtained at AuNP-GPE after cathodization at −1.0 V for the different times “a” through “e” in the same glucose solution. The plot of peak current versus cathodization time (plot 500 b ofFIG. 5B ) indicates that the relatively highest signal was obtained at an AuNP-GPE after cathodization at −1.0 V for 30 seconds. As a result, −1.0 V and 30 seconds were selected for cathodization of an AuNP-GPE in further experiments. - Referring to
FIG. 6A , anodic sweeps of CVs in a 0.1 M NaOH containing 1 mM D-(+) glucose at an AuNP-GPE after cathodization at −1.0 V for 30 s at scan rates of (a) 10 mV/s, (b) 50 mV/s, (c) 100 mV/s, (d) 150 mV/s, (e) 200 mV/s, (f) 250 mV/s, (g) 300 mV/s, (h) 350 mV/s and (i) 400 mV/s are illustrated; andFIG. 6B illustrates the corresponding plot of peak current versus scan rate. Regarding the effect of scan rate on glucose oxidation in relation to embodiments of an AuNP-GPE, the relationship between peak current and scan rate can be described as to the electrochemical mechanism. Therefore, anodic sweeps of CVs of 1 mM glucose at a cathodized AuNP-GPE were recorded at different scan rates from 10-400 mV/s (plot 600 a ofFIG. 6A , at the scan rates “a” through “i”). Plot 600 b ofFIG. 6B shows the corresponding plot of peak current vs. scan rate. This plot shows that peak current has been linearly increased with increasing the scan rate. The plot follows the linear equations Ip (μA)=0.13ν (V/s)+15.92; R2=0.988. This indicates that the electrode process was controlled by adsorption rather than diffusion, for example. - The reproducibility of the embodiments of glucose sensing methods using embodiments of a cathodized AuNP-GPE was verified by recording the CVs at a scan rate of 300 mV/s in a 0.1 M NaOH containing 1 mM glucose at a series of modified AuNP-GPE electrode surfaces after pretreatment at −1.0 V for 30 seconds. The intraday experiments showed a peak current of 49.128±4.7190 μA (mean±standard deviation) with a relative standard deviation of 9.6%, whereas the interday experiments showed a peak current of 49.357±4.652 μA with a relative standard deviation of 9.43%. The results indicate that embodiments of a glucose sensing method using embodiments of a cathodized AuNP-GPE are reproducible.
- Regarding the effect of presence or absence of glucose during cathodization, an AuNP-GPE was cathodized in a 0.1 M NaOH containing 1 mM glucose solution, followed by recording the CV of glucose oxidation in the same solution. However, to compare the effect of glucose toward the glucose oxidation reaction if the electrode is cathodized in the absence of an analyte, the AuNP-GPE was also cathodized only in 0.1 M NaOH at −1.0 V for 30 seconds. Afterward, 1 mM equivalent amount of glucose solution was added to the 0.1 M NaOH. A comparison of the results indicates that a substantially same level of the glucose oxidation signal was obtained for both cases. These phenomena indicate that cathodization of an AuNP-GPE changes the electrocatlytic properties for the enhancing of the glucose oxidation signal, rather than the accumulation of glucose during the negative potential treatment.
- Referring to
FIG. 7A , anodic sweeps of CVs in a 0.1 M NaOH containing different mM concentrations of D-(+) glucose at an AuNP-GPE after cathodization at −1.0 V for 30 s, at (a) 0.0 mM, (b) 0.05 mM, (c) 0.1 mM, (d) 0.25 mM, (e) 0.50 mM, (f) 0.75 mM, (g) 1.0 mM, (h) 2.0 mM and (i) 3.0 mM D-(+) glucose at a scan rate of 300 mV/s are illustrated; andFIG. 7B illustrates the corresponding calibration curve. With respect to voltammetric determination of glucose the glucose concentration-dependent CVs (plot 700 a ofFIG. 7A at the concentrations “a” through “i”) were recorded at an AuNP-GPE after cathodization in the respective glucose solution at −1.0 V for 30 seconds to determine the limit of detection. - The concentration dependence calibration curve (plot 700 b of
FIG. 7B ) was constructed from the signal after subtracting the mean of the zero glucose response. The calibration plot shows that the glucose oxidation signals increase linearly with increasing concentration of glucose in a range between 0.05 mM to 5 mM. The calibration plot follows the linear regression equations, Ip=52.613 [glucose]+0.2066; R2=0.999. However, a further increase of the concentration to more than 5 mM results in the signal showing a non linear behavior with concentration. The calculated limit of detection at 3σ was 12 μM glucose, for example. This limit of detection is comparable for a glucose sensor based on the Au nanomaterial-modified carbon electrode, for example. - Fructose, sucrose and NaCl coexist with glucose in many samples including food and drugs. The fructose, glucose and NaCl can potentially interfere with the glucose oxidation signal. Therefore, the effects of the presence of a 1 mM fructose or sucrose or NaCl on oxidation of 1 mM glucose at embodiments of an AuNP-GPE after cathodization in the respective glucose solution at −1.0 V for 30 seconds were studied. Referring to
FIGS. 8A to 8C , anodic sweeps of CVs in a 0.1 M NaOH containing 0.1 mM D-(−) fructose (FIG. 8A ) in the absence (plot “a”) and presence (plot “b”) of a 1 mM D-(+) glucose, a 0.1 mM sucrose (FIG. 8B ) in the absence (plot “a”) and presence (plot “b”) of a 1 mM D-(+) glucose, a 1 mM NaCl (FIG. 8C ) in the absence (plot “a”) and presence (plot “b”) of a 1 mM D-(+) glucose at an AuNP-GPE after cathodization at −1.0 V for 30 s and at a scan rate of 300 mV/s are illustrated. - The “a” plot line shown in
800 a, 800 b, and 800 c ofplots FIGS. 8A , 8B and 8C, respectively, depicts the anodic sweeps of CVs of 1 mM fructose, sucrose and NaCl, respectively. The CV data shows that fructose, sucrose and NaCl typically cannot generate any signal in the tested potential windows, whereas a 1 mM glucose in the absence (plot “g” ofFIG. 7A ) or presence of 1 mM fructose (plot “b” ofFIG. 8A ) or sucrose (plot “b” ofFIG. 8B ) or NaCl (plot “b” ofFIG. 8C ) can generate similar glucose oxidation signals. The results indicate that embodiments of a method using embodiments of an AuNP-GPE are valid for the detection of glucose in the presence of fructose, sucrose and NaCl without any substantial inference. - Embodiments of a cathodized AuNP-GPE provide a sensitive, selective, relatively inexpensive and disposable glucose sensor based on a cathodized AuNP-GPE. The cathodized AuNP-GPE shows relatively superior electrocatalytic properties toward electroxidation of glucose compared to an uncathodized AuNP-GPE or a bare GPE. The selectivity of the glucose sensor was obtained by selecting the appropriate potential windows of a CV. A limit of detection of the embodiments of the AuNP-GPE sensor is 12 μM of glucose, for example. For a significantly low detection limit, greater analytical selectivity and sensitivity and relatively low cost, embodiments of a method using embodiments of a cathodized AuNP-GPE based on cathodization of a relatively simply prepared AuNP-GPE can be suitable for analytical determination of glucose in various fields.
- It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Claims (18)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/042,419 US20150090601A1 (en) | 2013-09-30 | 2013-09-30 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
| US14/720,066 US20150330933A1 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
| US14/719,940 US9851325B2 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/042,419 US20150090601A1 (en) | 2013-09-30 | 2013-09-30 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/720,066 Division US20150330933A1 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
| US14/719,940 Division US9851325B2 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150090601A1 true US20150090601A1 (en) | 2015-04-02 |
Family
ID=52739021
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/042,419 Abandoned US20150090601A1 (en) | 2013-09-30 | 2013-09-30 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
| US14/719,940 Expired - Fee Related US9851325B2 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
| US14/720,066 Abandoned US20150330933A1 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/719,940 Expired - Fee Related US9851325B2 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
| US14/720,066 Abandoned US20150330933A1 (en) | 2013-09-30 | 2015-05-22 | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US20150090601A1 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CZ306721B6 (en) * | 2015-11-25 | 2017-05-24 | Masarykova Univerzita | An electrochemical sensor and a working electrode of the electrochemical sensor |
| CN107024525A (en) * | 2016-01-29 | 2017-08-08 | 薛富盛 | Without ferment glucose detection chip |
| US20180052134A1 (en) * | 2016-08-22 | 2018-02-22 | King Fahd University Of Petroleum And Minerals | Graphite electrode comprising electrochemically reduced graphene oxide and methods thereof |
| CN107737944A (en) * | 2017-09-05 | 2018-02-27 | 杨蕾 | A kind of preparation method of golden nanometer particle graphene quantum dot chiral dimer |
| US10040948B1 (en) | 2017-11-21 | 2018-08-07 | Uxn Co., Ltd. | Method of making a colloid and nanoporous layer |
| WO2018220423A1 (en) | 2017-05-30 | 2018-12-06 | Ecole Polytechnique Federale De Lausanne (Epfl) | Fouling-resistant pencil graphite electrode |
| KR20200110746A (en) * | 2017-12-15 | 2020-09-25 | 주식회사 유엑스엔 | Nanoporous structure and inactive element glucose sensing device and system |
| CN113030212A (en) * | 2019-12-24 | 2021-06-25 | 大连大学 | Method for rapidly analyzing and detecting glucose |
| US11474067B2 (en) | 2018-11-07 | 2022-10-18 | King Fahd University Of Petroleum And Minerals | Detection of serum methionine and glucose by graphite pencil electrode |
| CN115236152A (en) * | 2022-07-08 | 2022-10-25 | 湖南大学 | Method for simultaneously detecting lead and arsenic, detection electrode, electrochemical sensor and preparation |
| CN116087299A (en) * | 2022-11-25 | 2023-05-09 | 珠海格力电器股份有限公司 | Gel electrode and method for detecting glucose and fructose content based on gel electrode |
| CN116626122A (en) * | 2023-05-29 | 2023-08-22 | 重庆理工大学 | Sensor and method for detecting chemical oxygen demand in water body |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106290517B (en) * | 2016-08-15 | 2018-11-02 | 中驭(北京)生物工程有限公司 | A kind of glucose of high sensitivity is without enzyme sensor electrode material and preparation method thereof |
| CN108844910B (en) * | 2018-06-13 | 2020-12-04 | 南昌大学 | As(V) dual-mode detection method based on the peroxidase-like properties of CoOOH nanosheets |
| CN110804750B (en) * | 2018-08-06 | 2022-01-11 | 南京理工大学 | Electrochemical preparation method of oriented carbon nano tube embedded with copper nano particles |
| CN108982605B (en) * | 2018-08-10 | 2020-06-16 | 山东大学 | Copper-ion-rich material-labeled endotoxin aptamer sensor and method for detecting endotoxin by using same |
| TWI671524B (en) | 2018-10-01 | 2019-09-11 | 財團法人工業技術研究院 | Liquid sensing apparatus and method of manufacturing the same |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8083926B2 (en) | 2006-04-19 | 2011-12-27 | Chen Ellen T | Nanopore structured electrochemical biosensors |
| TW200912308A (en) | 2007-05-21 | 2009-03-16 | Delta Electronics Inc | Biosensor and composition thereof |
-
2013
- 2013-09-30 US US14/042,419 patent/US20150090601A1/en not_active Abandoned
-
2015
- 2015-05-22 US US14/719,940 patent/US9851325B2/en not_active Expired - Fee Related
- 2015-05-22 US US14/720,066 patent/US20150330933A1/en not_active Abandoned
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CZ306721B6 (en) * | 2015-11-25 | 2017-05-24 | Masarykova Univerzita | An electrochemical sensor and a working electrode of the electrochemical sensor |
| CN107024525A (en) * | 2016-01-29 | 2017-08-08 | 薛富盛 | Without ferment glucose detection chip |
| US10156539B2 (en) * | 2016-08-22 | 2018-12-18 | King Fahd University Of Petroleum And Minerals | Graphite electrode comprising electrochemically reduced graphene oxide and methods thereof |
| US20180052134A1 (en) * | 2016-08-22 | 2018-02-22 | King Fahd University Of Petroleum And Minerals | Graphite electrode comprising electrochemically reduced graphene oxide and methods thereof |
| US10495597B2 (en) | 2016-08-22 | 2019-12-03 | King Fahd University Of Petroleum And Minerals | Method for detecting uric acid |
| US10495596B2 (en) | 2016-08-22 | 2019-12-03 | King Fahd University Of Petroleum And Minerals | Reduced graphene oxide-based graphite electrode |
| WO2018220423A1 (en) | 2017-05-30 | 2018-12-06 | Ecole Polytechnique Federale De Lausanne (Epfl) | Fouling-resistant pencil graphite electrode |
| CN107737944A (en) * | 2017-09-05 | 2018-02-27 | 杨蕾 | A kind of preparation method of golden nanometer particle graphene quantum dot chiral dimer |
| US10330628B2 (en) * | 2017-11-21 | 2019-06-25 | Uxn Co., Ltd. | Glucose-sensing electrode and device with nanoporous layer |
| US10327684B2 (en) * | 2017-11-21 | 2019-06-25 | Uxn Co., Ltd. | Glucose sensor apparatus addressing interference of ascorbic acid and acetaminophen |
| US11717199B2 (en) | 2017-11-21 | 2023-08-08 | Uxn Co., Ltd. | Method of making nanoparticle colloid and nanoporous layer |
| US10130290B1 (en) * | 2017-11-21 | 2018-11-20 | Uxn Co., Ltd. | Non-enzymatic glucose-sensing device with nanoporous structure and conditioning of the nanoporous structure |
| US10107776B1 (en) * | 2017-11-21 | 2018-10-23 | Uxn Co., Ltd. | Glucose-sensing device with maltose blocking layer |
| US10687746B2 (en) | 2017-11-21 | 2020-06-23 | Uxn Co., Ltd. | Method of making nanoparticle colloid and nanoporous layer |
| US10040948B1 (en) | 2017-11-21 | 2018-08-07 | Uxn Co., Ltd. | Method of making a colloid and nanoporous layer |
| US12440131B2 (en) | 2017-11-21 | 2025-10-14 | Uxn Co., Ltd. | Glucose sensor apparatus addressing interference of ascorbic acid and acetaminophen |
| US11134873B2 (en) | 2017-11-21 | 2021-10-05 | UXN Co. Ltd. | Glucose-sensing device with maltose blocking layer |
| US11166655B2 (en) | 2017-11-21 | 2021-11-09 | Uxn Co., Ltd. | Non-enzymatic glucose-sensing device with nanoporous structure and conditioning of the nanoporous structure |
| US11278224B2 (en) | 2017-11-21 | 2022-03-22 | Uxn Co., Ltd. | Method of making nanoparticle colloid and nanoporous layer |
| US11751781B2 (en) | 2017-11-21 | 2023-09-12 | Uxn Co., Ltd. | Glucose-sensing electrode and device with nanoporous layer |
| US11744493B2 (en) | 2017-11-21 | 2023-09-05 | Uxn Co., Ltd. | Glucose sensor apparatus addressing interference of ascorbic acid and acetaminophen |
| KR20200110746A (en) * | 2017-12-15 | 2020-09-25 | 주식회사 유엑스엔 | Nanoporous structure and inactive element glucose sensing device and system |
| KR102608737B1 (en) | 2017-12-15 | 2023-12-01 | 주식회사 유엑스엔 | Nanoporous structure and enzyme-free glucose sensing device and system |
| KR20230169385A (en) * | 2017-12-15 | 2023-12-15 | 주식회사 유엑스엔 | Colloid with a nanoporous structure and device and system for non-enzymatic glucose-sensing |
| KR102755066B1 (en) | 2017-12-15 | 2025-01-21 | 주식회사 유엑스엔 | Colloid with a nanoporous structure and device and system for non-enzymatic glucose-sensing |
| US11474067B2 (en) | 2018-11-07 | 2022-10-18 | King Fahd University Of Petroleum And Minerals | Detection of serum methionine and glucose by graphite pencil electrode |
| US12181435B2 (en) | 2018-11-07 | 2024-12-31 | King Fahd University Of Petroleum And Minerals | Methionine concentration measurement method |
| CN113030212A (en) * | 2019-12-24 | 2021-06-25 | 大连大学 | Method for rapidly analyzing and detecting glucose |
| CN115236152A (en) * | 2022-07-08 | 2022-10-25 | 湖南大学 | Method for simultaneously detecting lead and arsenic, detection electrode, electrochemical sensor and preparation |
| CN116087299A (en) * | 2022-11-25 | 2023-05-09 | 珠海格力电器股份有限公司 | Gel electrode and method for detecting glucose and fructose content based on gel electrode |
| CN116626122A (en) * | 2023-05-29 | 2023-08-22 | 重庆理工大学 | Sensor and method for detecting chemical oxygen demand in water body |
Also Published As
| Publication number | Publication date |
|---|---|
| US20150253278A1 (en) | 2015-09-10 |
| US20150330933A1 (en) | 2015-11-19 |
| US9851325B2 (en) | 2017-12-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9851325B2 (en) | Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection | |
| Motia et al. | Synthesis and characterization of a highly sensitive and selective electrochemical sensor based on molecularly imprinted polymer with gold nanoparticles modified screen-printed electrode for glycerol determination in wastewater | |
| Lin et al. | A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles | |
| Goyal et al. | Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene‐C60 coated gold electrode | |
| Zhong et al. | A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode | |
| Alothman et al. | Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode | |
| Lu et al. | A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy | |
| Ghanbari et al. | ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid | |
| Rezaei et al. | Electrochemical sensing of uric acid using a ZnO/graphene nanocomposite modified graphite screen printed electrode | |
| Heydari et al. | Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: an ultra-sensitive hydrazine sensor | |
| Pourbeyram et al. | Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles | |
| Ayaz et al. | A novel enzyme-free FI-amperometric glucose biosensor at Cu nanoparticles modified graphite pencil electrode | |
| Tarahomi et al. | A novel disposable sensor based on gold digital versatile disc chip modified with graphene oxide decorated with Ag nanoparticles/β-cyclodextrin for voltammetric measurement of naproxen | |
| Yang et al. | Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose | |
| Rafiee et al. | Impedimetric and stripping voltammetric determination of methamphetamine at gold nanoparticles-multiwalled carbon nanotubes modified screen printed electrode | |
| Ghanbari et al. | Simultaneous electrochemical detection of uric acid and xanthine based on electrodeposited B, N co-doped reduced graphene oxide, gold nanoparticles and electropolymerized poly (L-cysteine) gradually modified electrode platform | |
| Mukdasai et al. | A highly sensitive electrochemical determination of norepinephrine using l-cysteine self-assembled monolayers over gold nanoparticles/multi-walled carbon nanotubes electrode in the presence of sodium dodecyl sulfate | |
| Hočevar et al. | Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles | |
| Kawde et al. | Cathodized gold nanoparticle‐modified graphite pencil electrode for non‐enzymatic sensitive voltammetric detection of glucose | |
| Wu et al. | An ultrasensitive electrochemical biosensing platform for fructose and xylitol based on boronic acid-diol recognition | |
| Karaboduk | Electrochemical Determination of Ascorbic Acid Based on AgNPs/PVP‐Modified Glassy Carbon Electrode | |
| Manivel et al. | Enhanced electrocatalytic activity of Ni‐CNT nanocomposites for simultaneous determination of epinephrine and dopamine | |
| Assaf et al. | Green synthesis of CaO nanoparticles conjugated with l-methionine polymer film to modify carbon paste electrode for the sensitive detection of levofloxacin antibiotic | |
| Pour et al. | A sensitive sensor based on molecularly imprinted polypyrrole on reduced graphene oxide modified glassy carbon electrode for nevirapine analysis | |
| Taei et al. | Simultaneous electrochemical determination of ascorbic acid, epinephrine, and uric acid using a polymer film-modified electrode based on Au nanoparticles/poly (3, 3′, 5, 5′-tetrabromo-m-cresolsulfonphthalein) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, SA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWDE, ABDEL-NASSER METWALLY ALY, DR.;AZIZ, MD. ABDUL, DR.;REEL/FRAME:031312/0905 Effective date: 20130915 Owner name: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, SA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWDE, ABDEL-NASSER METWALLY ALY, DR.;AZIZ, MD. ABDUL, DR.;REEL/FRAME:031312/0905 Effective date: 20130915 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |