US20150005254A1 - Methods for treating ocular inflammatory disorders - Google Patents
Methods for treating ocular inflammatory disorders Download PDFInfo
- Publication number
- US20150005254A1 US20150005254A1 US14/129,708 US201214129708A US2015005254A1 US 20150005254 A1 US20150005254 A1 US 20150005254A1 US 201214129708 A US201214129708 A US 201214129708A US 2015005254 A1 US2015005254 A1 US 2015005254A1
- Authority
- US
- United States
- Prior art keywords
- aicar
- pharmaceutically acceptable
- prodrug
- acceptable salt
- ester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 208000027866 inflammatory disease Diseases 0.000 title abstract description 12
- RTRQQBHATOEIAF-UUOKFMHZSA-N acadesine Chemical compound NC1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RTRQQBHATOEIAF-UUOKFMHZSA-N 0.000 claims abstract description 222
- 208000001344 Macular Edema Diseases 0.000 claims abstract description 11
- 206010025415 Macular oedema Diseases 0.000 claims abstract description 10
- 201000010230 macular retinal edema Diseases 0.000 claims abstract description 10
- 150000003839 salts Chemical class 0.000 claims description 27
- 239000007924 injection Substances 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 24
- 206010046851 Uveitis Diseases 0.000 claims description 22
- 229940002612 prodrug Drugs 0.000 claims description 19
- 239000000651 prodrug Substances 0.000 claims description 19
- 150000002148 esters Chemical class 0.000 claims description 17
- 230000002757 inflammatory effect Effects 0.000 claims description 9
- 201000004982 autoimmune uveitis Diseases 0.000 claims description 8
- 206010014801 endophthalmitis Diseases 0.000 claims description 7
- 208000024891 symptom Diseases 0.000 claims description 6
- 208000002177 Cataract Diseases 0.000 claims description 4
- 206010012601 diabetes mellitus Diseases 0.000 claims description 4
- 238000001356 surgical procedure Methods 0.000 claims description 4
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 claims description 3
- 208000020564 Eye injury Diseases 0.000 claims description 3
- 206010020751 Hypersensitivity Diseases 0.000 claims description 3
- 206010070863 Toxicity to various agents Diseases 0.000 claims description 3
- 206010064930 age-related macular degeneration Diseases 0.000 claims description 3
- 208000030533 eye disease Diseases 0.000 claims description 3
- 208000002780 macular degeneration Diseases 0.000 claims description 3
- 208000004644 retinal vein occlusion Diseases 0.000 claims description 3
- 230000008026 type II hypersensitivity Effects 0.000 claims description 3
- 230000028063 type III hypersensitivity Effects 0.000 claims description 3
- 230000024161 type IIb hypersensitivity Effects 0.000 claims description 3
- 230000005951 type IV hypersensitivity Effects 0.000 claims description 3
- 230000004054 inflammatory process Effects 0.000 abstract description 36
- 206010061218 Inflammation Diseases 0.000 abstract description 35
- 239000012190 activator Substances 0.000 abstract description 12
- 102000002281 Adenylate kinase Human genes 0.000 abstract description 11
- 108020000543 Adenylate kinase Proteins 0.000 abstract description 11
- 201000004569 Blindness Diseases 0.000 abstract description 6
- 230000004393 visual impairment Effects 0.000 abstract description 5
- 208000022873 Ocular disease Diseases 0.000 abstract description 2
- 208000018769 loss of vision Diseases 0.000 abstract 1
- 231100000864 loss of vision Toxicity 0.000 abstract 1
- 230000004382 visual function Effects 0.000 abstract 1
- 239000002158 endotoxin Substances 0.000 description 59
- 241000700159 Rattus Species 0.000 description 56
- 229920006008 lipopolysaccharide Polymers 0.000 description 56
- 210000004027 cell Anatomy 0.000 description 54
- 230000000694 effects Effects 0.000 description 44
- 241000699670 Mus sp. Species 0.000 description 39
- 230000014509 gene expression Effects 0.000 description 33
- 108090000623 proteins and genes Proteins 0.000 description 32
- 102000004169 proteins and genes Human genes 0.000 description 31
- -1 succinoyl Chemical group 0.000 description 31
- 238000011282 treatment Methods 0.000 description 27
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 25
- 239000002953 phosphate buffered saline Substances 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 21
- 210000001525 retina Anatomy 0.000 description 20
- 238000002474 experimental method Methods 0.000 description 19
- 239000000203 mixture Substances 0.000 description 18
- 210000001742 aqueous humor Anatomy 0.000 description 17
- 210000001165 lymph node Anatomy 0.000 description 17
- 230000002207 retinal effect Effects 0.000 description 17
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 16
- 102100040247 Tumor necrosis factor Human genes 0.000 description 16
- 108010011376 AMP-Activated Protein Kinases Proteins 0.000 description 15
- 102000014156 AMP-Activated Protein Kinases Human genes 0.000 description 15
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 15
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 15
- 210000004443 dendritic cell Anatomy 0.000 description 15
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 14
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 14
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 13
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- 102000004889 Interleukin-6 Human genes 0.000 description 12
- 108010048996 interstitial retinol-binding protein Proteins 0.000 description 12
- 210000000265 leukocyte Anatomy 0.000 description 12
- 230000035800 maturation Effects 0.000 description 12
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 11
- 102000004127 Cytokines Human genes 0.000 description 11
- 108090000695 Cytokines Proteins 0.000 description 11
- 238000002965 ELISA Methods 0.000 description 11
- 108090001005 Interleukin-6 Proteins 0.000 description 11
- 210000001744 T-lymphocyte Anatomy 0.000 description 11
- 230000003053 immunization Effects 0.000 description 11
- 102100038247 Retinol-binding protein 3 Human genes 0.000 description 10
- 238000002649 immunization Methods 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 238000003753 real-time PCR Methods 0.000 description 10
- 101150013553 CD40 gene Proteins 0.000 description 9
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 9
- 102100037850 Interferon gamma Human genes 0.000 description 9
- 108010074328 Interferon-gamma Proteins 0.000 description 9
- 108010057466 NF-kappa B Proteins 0.000 description 9
- 102000003945 NF-kappa B Human genes 0.000 description 9
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 9
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 9
- 230000016396 cytokine production Effects 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 230000008595 infiltration Effects 0.000 description 9
- 238000001764 infiltration Methods 0.000 description 9
- 239000004005 microsphere Substances 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 230000001464 adherent effect Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 7
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 230000006052 T cell proliferation Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 210000001210 retinal vessel Anatomy 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 108010062580 Concanavalin A Proteins 0.000 description 5
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 5
- 102000003814 Interleukin-10 Human genes 0.000 description 5
- 102000013462 Interleukin-12 Human genes 0.000 description 5
- 108010065805 Interleukin-12 Proteins 0.000 description 5
- 102000013691 Interleukin-17 Human genes 0.000 description 5
- 210000000447 Th1 cell Anatomy 0.000 description 5
- 210000000068 Th17 cell Anatomy 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 210000000612 antigen-presenting cell Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 210000000554 iris Anatomy 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 4
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 101000713602 Homo sapiens T-box transcription factor TBX21 Proteins 0.000 description 4
- 108090000174 Interleukin-10 Proteins 0.000 description 4
- 108050003558 Interleukin-17 Proteins 0.000 description 4
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 4
- 206010039705 Scleritis Diseases 0.000 description 4
- 102100036840 T-box transcription factor TBX21 Human genes 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 4
- 210000002159 anterior chamber Anatomy 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 229950004398 broxuridine Drugs 0.000 description 4
- 238000010804 cDNA synthesis Methods 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 230000003118 histopathologic effect Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000004968 inflammatory condition Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 239000012139 lysis buffer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 4
- 210000003289 regulatory T cell Anatomy 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000011200 topical administration Methods 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 3
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 3
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 3
- 102000004388 Interleukin-4 Human genes 0.000 description 3
- 108091008778 RORγ2 Proteins 0.000 description 3
- 201000001949 Retinal Vasculitis Diseases 0.000 description 3
- 102000005747 Transcription Factor RelA Human genes 0.000 description 3
- 108010031154 Transcription Factor RelA Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 210000003989 endothelium vascular Anatomy 0.000 description 3
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 3
- 230000004438 eyesight Effects 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 238000003633 gene expression assay Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 125000002346 iodo group Chemical class I* 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 3
- 230000009696 proliferative response Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 2
- 206010010741 Conjunctivitis Diseases 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 206010015084 Episcleritis Diseases 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 101001044384 Mus musculus Interferon gamma Proteins 0.000 description 2
- 208000003435 Optic Neuritis Diseases 0.000 description 2
- 208000007792 Orbital Pseudotumor Diseases 0.000 description 2
- 208000035452 Orbital pseudotumour Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 201000010183 Papilledema Diseases 0.000 description 2
- 206010033712 Papilloedema Diseases 0.000 description 2
- 206010038848 Retinal detachment Diseases 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000003121 adenosine kinase inhibitor Substances 0.000 description 2
- LNQVTSROQXJCDD-UHFFFAOYSA-N adenosine monophosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)C(OP(O)(O)=O)C1O LNQVTSROQXJCDD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 210000003161 choroid Anatomy 0.000 description 2
- 210000004240 ciliary body Anatomy 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000010339 dilation Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 206010023332 keratitis Diseases 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000011694 lewis rat Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 230000002934 lysing effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011330 nucleic acid test Methods 0.000 description 2
- 102000037831 nucleoside transporters Human genes 0.000 description 2
- 108091006527 nucleoside transporters Proteins 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 201000010668 orbital plasma cell granuloma Diseases 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000002831 pharmacologic agent Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000004264 retinal detachment Effects 0.000 description 2
- 238000011808 rodent model Methods 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 230000006433 tumor necrosis factor production Effects 0.000 description 2
- 231100000216 vascular lesion Toxicity 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000005862 (C1-C6)alkanoyl group Chemical group 0.000 description 1
- 125000005859 (C1-C6)alkanoyloxymethyl group Chemical group 0.000 description 1
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- 125000005860 1-((C1-C6)alkanoyloxy)ethyl group Chemical group 0.000 description 1
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 229940080296 2-naphthalenesulfonate Drugs 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- OOXNYFKPOPJIOT-UHFFFAOYSA-N 5-(3-bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-amine;dihydrochloride Chemical compound Cl.Cl.C=12C(N)=NC=NC2=NC(C=2C=NC(=CC=2)N2CCOCC2)=CC=1C1=CC=CC(Br)=C1 OOXNYFKPOPJIOT-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102100032534 Adenosine kinase Human genes 0.000 description 1
- 108010076278 Adenosine kinase Proteins 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 208000011545 Cataract-glaucoma syndrome Diseases 0.000 description 1
- 208000002691 Choroiditis Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010058202 Cystoid macular oedema Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 206010020565 Hyperaemia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 101001033265 Mus musculus Interleukin-10 Proteins 0.000 description 1
- 101000998145 Mus musculus Interleukin-17A Proteins 0.000 description 1
- 101001002703 Mus musculus Interleukin-4 Proteins 0.000 description 1
- 101001076414 Mus musculus Interleukin-6 Proteins 0.000 description 1
- 101000648740 Mus musculus Tumor necrosis factor Proteins 0.000 description 1
- RTRQQBHATOEIAF-DTUHVUQASA-N NC(=O)C1=C(N)N([C@@H]2O[C@H](CO)C(O)[C@@H]2O)C=N1 Chemical compound NC(=O)C1=C(N)N([C@@H]2O[C@H](CO)C(O)[C@@H]2O)C=N1 RTRQQBHATOEIAF-DTUHVUQASA-N 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 125000005861 N—(C1-C6)alkoxycarbonylaminomethyl group Chemical group 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 208000003971 Posterior uveitis Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 101100219913 Rattus norvegicus Ccl2 gene Proteins 0.000 description 1
- 101000599859 Rattus norvegicus Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101000648290 Rattus norvegicus Tumor necrosis factor Proteins 0.000 description 1
- 208000037111 Retinal Hemorrhage Diseases 0.000 description 1
- 206010038862 Retinal exudates Diseases 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 102000008233 Toll-Like Receptor 4 Human genes 0.000 description 1
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100035100 Transcription factor p65 Human genes 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005206 alkoxycarbonyloxymethyl group Chemical group 0.000 description 1
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000005251 aryl acyl group Chemical group 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 238000002737 cell proliferation kit Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000014564 chemokine production Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229940124570 cycloplegic agent Drugs 0.000 description 1
- 230000003500 cycloplegic effect Effects 0.000 description 1
- 201000010206 cystoid macular edema Diseases 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 150000002373 hemiacetals Chemical group 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000004377 improving vision Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000008011 inorganic excipient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000031261 interleukin-10 production Effects 0.000 description 1
- 230000024949 interleukin-17 production Effects 0.000 description 1
- 230000017307 interleukin-4 production Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000006662 intracellular pathway Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 210000003733 optic disk Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000008012 organic excipient Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical compound CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 229950010765 pivalate Drugs 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004254 retinal expression Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229960001814 trypan blue Drugs 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 125000005863 α-amino(C1-C4)alkanoyl group Chemical group 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/7056—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
Definitions
- the present invention relates generally to the field of ocular inflammatory disorders. More particularly, the invention relates to methods for treating such disorders using an AMP kinase activator, e.g., 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside (AICAR).
- AMP kinase activator e.g., 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside (AICAR).
- Uveitis is an inflammatory eye disorder of the uveal tract and contiguous structures including the vascular coat of the eye composed of the iris, ciliary body and choroid (Durrani et al. (2004) B R . J O PHTHALMOL. 88:1159-1162; Durrani et al. (2004) O PHTHALMOLOGICA 218:223-236).
- ocular inflammatory disorders include endophthalmitis (e.g., the endogenous form and the exogenous form), macular edema (e.g., macular edema that occurs as a result of age-related macular degeneration, cataract surgery, diabetes, drug toxicity, eye injury, or retinal vein occlusion), conjunctivitis, episcleritis, keratitis, optic neuritis, orbital pseudotumor, retinal vasculitis, and scleritis.
- endophthalmitis e.g., the endogenous form and the exogenous form
- macular edema e.g., macular edema that occurs as a result of age-related macular degeneration, cataract surgery, diabetes, drug toxicity, eye injury, or retinal vein occlusion
- conjunctivitis e.g., episcleritis, keratitis, optic neuritis, orbital pseudotumor, retinal vasculitis, and
- Corticosteroids are the main drugs used for its treatment but they have numerous ocular (cataract and secondary glaucoma) and non-ocular adverse effects. Prolonged systemic steroid use can also suppress musculoskeletal growth, cause impaired wound healing, and result in increased susceptibility to infections. In addition to corticosteroids, antimetabolites, cycloplegics, and biologics are also often used to control the inflammatory process. However, there are patients who do not respond or cannot tolerate these agents (Galor et al. (2008) O PHTHALMOLOGY 115:1826-1832; Imrie et al. (2007) C URR . O PIN . O PHTHALMOL. 18:481-486).
- an AMP kinase activator e.g., 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside (AICAR)
- AICAR 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside
- ocular inflammatory disorders such as macular edema, uveitis (e.g., autoimmune uveitis and uveitis associated with type II, type III, type IV, or type V hypersensitivity reactions), and endophthalmitis.
- the disclosed methods comprise administering AICAR or a pharmaceutically acceptable salt, ester, prodrug, or polymorph thereof to a subject in need thereof in an amount sufficient to ameliorate a symptom of the disorder, e.g., to reduce ocular inflammation in the affected eye or part of the eye.
- the AICAR is administered to the eye, e.g., by intraocular injection or by topical administration to the eye.
- FIGS. 1A-C depict the effect of AICAR on clinical endotoxin-induced uveitis (EIU).
- FIG. 1A is a graph showing the clinical inflammation scores of EIU in Lewis rats in the absence and presence of AICAR determined at 24 hours after lipopolysaccharide (LPS) injection.
- LPS lipopolysaccharide
- FIG. 1B provides photographs indicating that fibrin formation and posterior synechiae were seen less in AICAR-pretreated EIU rats.
- 1C provides histopathologic findings of EIU rat's eyes which received LPS with and without 50 mg/kg of AICAR pretreatment. The number of leukocytes infiltrated around the iris-ciliary body was suppressed in AICAR pretreated rats. Sections were visualized at 200 ⁇ .
- FIGS. 2A-B depict the effect of AICAR on cellular infiltration and protein leakage in the aqueous humor.
- FIG. 2A is a graph depicting the number of infiltrated cells as determined by trypan blue exclusion cell counting.
- LPS induced cellular infiltration and protein leakage in the aqueous humor were significantly suppressed by AICAR pretreatment. Data are shown as mean ⁇ SD; **p ⁇ 0.01.
- FIGS. 3A-B depict the effect of AICAR on leukocyte adhesion in retinal vessels.
- AICAR-pretreated EIU rats showed significantly fewer adherent leukocytes than PBS-treated rats.
- FIG. 3B provides photographs of flatmounted retinas from normal control rats treated with AICAR, LPS only and LPS with AICAR pretreatment. EIU rats revealed a significant number of leukocyte adhesion (arrows) compared to AICAR pretreated rats. Data are shown as mean ⁇ SD; **p ⁇ 0.01.
- FIG. 4 depicts the effect of AICAR on NF- ⁇ B activity.
- FIGS. 5A-B depict the effect of AICAR on CD14 expression.
- FIG. 5B depicts photographs showing protein levels of CD14 as determined by Western blot analysis. Data are representative of three independent experiments with similar results.
- FIGS. 6A-F depict the effect of AICAR on experimental autoimmune uveitis (EAU).
- FIG. 6B is a graph showing histopathologic score as assessed with hematoxylin and eosin (H&E) sections. Mean scores are indicated by horizontal bars.
- FIGS. 6C-F show representative fundus photographs and histopathological findings of vehicle-treated EAU mice ( FIGS.
- FIGS. 6C and E and AICAR-treated mice (200 mg/kg) mice ( FIGS. 6D and F).
- Clinical papilledema and vasculitis FIG. 6C
- histopathological cellular infiltration FIG. 6E
- Results were combined from three separate experiments.
- FIGS. 7A-B depict the effect of AICAR on retinal inflammation.
- FIGS. 8A-H depict the effect of AICAR on the development of IRBP-reactive T cells in vivo.
- Lymph node (LN) cells from control (open circles) and AICAR-treated mice (closed squares) were stimulated with IRBP ( FIG. 8A ) and anti-CD3 ( FIG. 8B ).
- Proliferative response was measured with BrdU incorporation.
- FIGS. 8C-F depict graphs showing production of IFN- ⁇ , IL-17, IL-4, and IL-10, respectively, as measured by ELISA.
- FIG. 9 depicts the effect of AICAR on the T reg population.
- the number of FoxP3 + CD25 + CD4 + T cells was analyzed by fluorescence-activated cell sorting (FACS). Data are representative of two independent experiments.
- FIGS. 10A-E depict the effect of AICAR on IRBP-reactive T cells in vitro.
- LN cells from untreated EAU mice (day 14) were cultured with or without AICAR in the presence of IRBP.
- Proliferative response ( FIG. 10A ) and production of IFN- ⁇ ( FIG. 10B ), IL-17 ( FIG. 10C ), IL-4 ( FIG. 10D ) and IL-10 ( FIG. 10E ) were measured. Data are expressed as mean ⁇ SD and representative of three independent experiments. **p ⁇ 0.01.
- FIG. 11 depicts the effect of AICAR on dendritic cell (DC) maturation in vivo.
- the number of CD11c-gated CD40, CD80, CD86 and I-A b positive cells were examined by FACS. Data are representative of two independent experiments.
- FIGS. 12A-B depict the effect of AICAR on bone marrow derived dendritic cell (BMDC) maturation Immature BMDCs were stimulated with LPS for 24 hours in the presence or absence of AICAR.
- FIG. 12A provides graphs showing the number of CD 11c-gated CD40, CD80, CD86 and I-A b positive cells as measured by FACS. Bars represent mean ⁇ SD from three independent experiments.
- FIG. 12B provides graphs showing IL-6, IL-12/23 p40 and TNF- ⁇ production as measured by ELISA. Data are expressed as mean ⁇ SD and representative of two independent experiments. *p ⁇ 0.05, **p ⁇ 0.01.
- FIG. 13 depicts western blots showing AMPK expression in WT and AMPK ⁇ 1 KO mice. Lysates of BMDC, liver and spleen were analyzed by Western blot using antibodies against AMPK ⁇ 1 and ⁇ 2. WT BMDCs only express AMPK ⁇ 1. AMPK ⁇ 1KO BMDCs do not express detectable amounts of AMPK.
- FIGS. 14A-B depict the effect of AMPK ⁇ 1 knock down and AICAR on BMDC maturation.
- BMDCs derived from AMPK ⁇ 1KO mice were stimulated with LPS with or without AICAR.
- FIG. 14A provides graphs showing the number of CD11c-gated CD40, CD80, CD86 and I-A b positive cells as measured by FACS. Bars represent mean ⁇ SD from 3 independent experiments.
- FIG. 14B depicts graphs showing IL-6, IL-12/23 p40 and TNF- ⁇ production as measured by ELISA. Data are expressed as mean ⁇ SD and representative of two independent experiments. *p ⁇ 0.05, **p ⁇ 0.01.
- FIG. 15 depicts the combined effect of AICAR and a nucleoside transporter or an adenosine kinase inhibitor on BMDC maturation.
- WT BMDCs were stimulated with LPS and 1 mM AICAR in the presence or absence of 0.1 mM IODO or 1 ⁇ M DPY.
- the number of CD11c-gated CD40, CD80, CD86 and I-A b positive cells was measured by FACS. Bars represent mean ⁇ SD from three independent experiments.
- the invention relates to methods for treating and/or preventing ocular inflammatory disorders using AMP kinase (AMPK) activators, e.g., 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside (AICAR).
- AMPK AMP kinase
- AICAR 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside
- the invention is based, at least in part, on the discovery that AMP kinase activators, e.g., AICAR, suppress ocular inflammation, e.g., uveitis-related ocular inflammation.
- AMP kinase activator or “adenosine monophosphate (AMP) kinase activator” refers to compounds that activate, increase, or stimulate AMP kinase activity.
- AMP kinase activators include 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside (AICAR) or pharmaceutically acceptable salts, esters, or polymorphs thereof, AICAR analogs and/or AICAR prodrugs.
- AICAR is an analog of AMP.
- AICAR 5-aminoimidazole-4-carboxamide-1- ⁇ -d-ribofuranoside and having the following chemical structure (I):
- the AMP kinase activator is an AICAR prodrug.
- a “prodrug” includes compounds that are transformed in vivo to yield a compound of Formula (I) or a pharmaceutically acceptable salt, ester, or polymorph of the compound. The transformation may occur by various mechanisms, such as through hydrolysis in blood.
- a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C 1 -C 6 )alkanoyloxymethyl, 1-((C 1 -C 6 )alkanoyloxy)ethyl, 1-methyl-1-((C 1 -C 6 )alkanoyloxy)ethyl (C 1 -C 6 )alkoxycarbonyloxymethyl, N—(C 1 -C 6 )alkoxycarbonylaminomethyl, succinoyl, (C 1 -C 6 )alkanoyl, ⁇ -amino(C 1 -C 4 )alkanoyl, arylacyl and ⁇ -aminoacyl, or ⁇ -aminoacyl- ⁇ -aminoacyl, where each ⁇ -aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH) 2
- a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as R-carbonyl, RO-carbonyl, NRR′-carbonyl where R and R′ are each independently (C 1 -C 10 )alkyl, (C 3 -C 7 )cycloalkyl, benzyl, or R-carbonyl is a natural ⁇ -aminoacyl or natural ⁇ -aminoacyl-natural ⁇ -aminoacyl, —C(OH)C(O)OY 1 wherein Y 1 is H, (C 1 -C 6 )alkyl or benzyl, —C(OY 2 )Y 3 wherein Y 2 is (C 1 -C 4 )alkyl and Y 3 is (C 1 -C 6 )alkyl, carboxy(C 1 -C 6 )alkyl, amino(C 1 -
- “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- the term “pharmaceutically acceptable salt” refers to any pharmaceutically acceptable salt (e.g., acid or base) of a compound of the present invention which, upon administration to a subject, is capable of providing a compound of this invention or an active metabolite or residue thereof.
- salts of the compounds of the present invention may be derived from inorganic or organic acids and bases.
- acids include, but are not limited to, hydrochloric, hydrobromic, sulfuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfonic, tartaric, acetic, citric, methanesulfonic, ethanesulfonic, formic, benzoic, malonic, naphthalene-2-sulfonic, benzenesulfonic acid, and the like.
- Other acids such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts or esters.
- bases include, but are not limited to, alkali metals (e.g., sodium) hydroxides, alkaline earth metals (e.g., magnesium), hydroxides, ammonia, and compounds of formula NW 4 + , wherein W is C 1-4 alkyl, and the like.
- salts include, but are not limited to: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate,
- salts of the compounds of the present invention are contemplated as being pharmaceutically acceptable.
- salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
- the term “therapeutically effective amount” is understood to mean the amount of an active ingredient, for example, AICAR, that is sufficient to reduce, ameliorate, or treat a symptom associated with certain ocular inflammatory disorders described herein, e.g., a symptom of the condition affecting any part of the eye or surrounding tissue.
- the compounds of the invention are administered in amounts effective at, e.g., reducing or preventing inflammation in at least part of an affect eye or the surrounding tissues, preserving vision, improving vision, and/or preventing vision loss.
- AMP kinase activators e.g., 5-aminoimidazole-4-carboxamide- ⁇ -d-ribofuranoside (AICAR) or a pharmaceutically acceptable salt thereof, an AICAR analog, and/or an AICAR prodrug.
- AICAR 5-aminoimidazole-4-carboxamide- ⁇ -d-ribofuranoside
- Ocular inflammatory conditions that may be treated with AICAR include, but are not limited to endophthalmitis (e.g., the endogenous form and the exogenous form), macular edema (e.g., macular edema that occurs as a result of age-related macular degeneration, cataract surgery, diabetes, drug toxicity, eye injury, retinal vein occlusion, or other inflammatory eye diseases), conjunctivitis, episcleritis, keratitis, optic neuritis, orbital pseudotumor, retinal vasculitis, scleritis, and uveitis (e.g., (i) uveitis associated with sepsis (e.g., LPS-induced uveitis); (ii) autoimmune uveitis (e.g., uveitis associated with lupus); or (iii) uveitis associated with type II, type III, type IV, or type V hypersensitivity reactions).
- endophthalmitis
- the AICAR may be administered after diagnosis of certain ocular inflammatory conditions described herein, at the time of diagnosing certain ocular inflammatory conditions described herein or, if the subject is determined to be a risk of developing certain ocular inflammatory conditions as described herein, the AICAR may be administered prior to diagnosis of the condition.
- the method comprises administering AICAR to the eye of a subject in which a region of eye has been affected by inflammation.
- the AICAR may be administered in an amount sufficient to give a final concentration of AICAR in the eye in the range from about 1 ⁇ M to about 2500 ⁇ M, from about 1 ⁇ M to about 2000 ⁇ M, from about 1 ⁇ M to about 1500 ⁇ M, from about 1 ⁇ M to about 1000 ⁇ M, from about 10 ⁇ M to about 900 ⁇ M, from about 100 ⁇ M to about 900 ⁇ M, from about 200 ⁇ M to about 800 ⁇ M, or from about 300 ⁇ M to about 500 ⁇ M.
- an effective amount of AICAR may be in the range of from about 0.01 mg/kg to about 500 mg/kg, optionally from about 0.01 mg/kg to about 250 mg/kg, optionally from about 0.01 mg/kg to about 200 mg/kg, optionally from about 1.0 mg/kg to about 100 mg/kg, optionally from about 1 mg/kg to about 10 mg/kg, of body weight.
- the active ingredients typically are administered orally, parenterally and/or topically at a dosage to obtain and maintain a concentration that is therapeutically effective in the eye.
- a therapeutically effective dose of AICAR prevents or reduces inflammation in at least part of an affected eye.
- the amount administered likely will depend on such variables as the type and extent of disease or indication to be treated, the overall health status of the particular patient, the relative biological efficacy of the compound delivered, the formulation of the drug, the presence and types of excipients in the formulation, and the route of administration.
- the initial dosage administered may be increased beyond the above upper level in order to rapidly achieve the desired blood-level or tissue level, or the initial dosage may be smaller than the optimum and the daily dosage may be progressively increased during the course of treatment depending on the particular situation.
- the daily dose may also be divided into multiple doses for administration, for example, two to four times per day.
- AICAR may be administered once a day, twice a day or more frequently.
- AICAR may be administered every other day, three times a week, twice a week, or once a week.
- the AICAR may be administered locally to the eye, for example, by intravitreal, intraocular, intraorbital, periorbital, subconjuctival, subretinal, subtenons or transscleral routes.
- the AICAR may be administered locally to the eye by intravitreal injection.
- local modes of administration can reduce or eliminate the incidence of potential toxic side effects that may occur.
- local administration to the eye is by topical administration.
- the AICAR may be administered systemically, e.g., by oral or parenteral routes.
- Parenteral routes include, for example, intravenous, intrarterial, intramuscular, intradermal, subcutaneous, intranasal, intraperitoneal and transdermal routes.
- Administration may be provided as a periodic bolus (for example, intravitreally or intravenously) or as continuous infusion from an internal reservoir (for example, from an implant disposed at an intra- or extra-ocular location (see, U.S. Pat. Nos. 5,443,505 and 5,766,242)) or from an external reservoir (for example, from an intravenous bag, or a contact lens slow release formulation system).
- the AICAR may be administered locally, for example, by continuous release from a sustained release drug delivery device immobilized to an inner wall of the eye or via targeted transscleral controlled release into the choroid (see, for example, PCT/US00/00207, PCT/US02/14279, Ambati et al. (2000) I NVEST .
- a variety of devices suitable for administering agents locally to the inside of the eye are known in the art. See, for example, U.S. Pat. Nos. 6,251,090, 6,299,895, 6,416,777, 6,413,540, and 6,375,972, and PCT/US00/28187.
- the formulations both for human and for veterinary medical use, typically include AICAR in association with a pharmaceutically acceptable carrier or excipient.
- the AICAR may be solubilized in a carrier, for example, a viscoelastic carrier, that is introduced locally into the eye.
- the AICAR also may be administered in a pharmaceutically acceptable carrier or vehicle so that administration does not otherwise adversely affect the recipient's electrolyte and/or volume balance.
- the carrier may comprise, for example, physiologic saline or other buffer system.
- the AICAR may be solubilized in PBS or another aqueous buffer by sonication.
- the AICAR may be solubilized using conventional solvent or solubilization systems, for example, dimethyl sulfoxide (DMSO), dimethoxyethane (DME), dimethylformamide (DMF), cyclodextran, micelles, liposomes, liposomal agents, and other solvents known in the art to aid in the solubilization and administration of hydrophobic agents.
- DMSO dimethyl sulfoxide
- DME dimethoxyethane
- DMF dimethylformamide
- cyclodextran cyclodextran
- micelles micelles
- liposomes liposomal agents
- liposomal agents and other solvents known in the art to aid in the solubilization and administration of hydrophobic agents.
- the AICAR may be solubilized in a liposome or microsphere.
- Methods for delivery of a drug or combination of drugs in liposomes and/or microspheres are well-known in the art.
- the AICAR may be formulated so as to permit release of the agent over a prolonged period of time.
- a release system can include a matrix of a biodegradable material or a material, which releases the incorporated agent by diffusion.
- the AICAR can be homogeneously or heterogeneously distributed within a release system.
- release systems may be useful in the practice of the invention, however, the choice of the appropriate system will depend upon the rate of release required by a particular drug regime. Both non-degradable and degradable release systems can be used.
- Suitable release systems include polymers and polymeric matrices, non-polymeric matrices, or inorganic and organic excipients and diluents such as, but not limited to, calcium carbonate and sugar (for example, trehalose). Release systems may be natural or synthetic. However, under certain circumstances, synthetic release systems are preferred because generally they are more reliable, more reproducible and produce more defined release profiles.
- the release system material can be selected so that inhibitors having different molecular weights are released by diffusion through or degradation of the material.
- Representative synthetic, biodegradable polymers include, for example: polyamides such as poly(amino acids) and poly(peptides); polyesters such as poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(caprolactone); poly(anhydrides); polyorthoesters; polycarbonates; and chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof.
- polyamides such as poly(amino acids) and poly(peptides)
- polyesters such as poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(caprolactone)
- poly(anhydrides) polyorthoesters
- polycarbonates and chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylation
- Representative synthetic, non-degradable polymers include, for example: polyethers such as poly(ethylene oxide), poly(ethylene glycol), and poly(tetramethylene oxide); vinyl polymers-polyacrylates and polymethacrylates such as methyl, ethyl, other alkyl, hydroxyethyl methacrylate, acrylic and methacrylic acids, and others such as poly(vinyl alcohol), poly(vinyl pyrolidone), and poly(vinyl acetate); poly(urethanes); cellulose and its derivatives such as alkyl, hydroxyalkyl, ethers, esters, nitrocellulose, and various cellulose acetates; polysiloxanes; and any chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof.
- polyethers such as poly(ethylene oxide), poly(ethylene glycol), and poly(
- the microspheres are composed of a polymer of lactic acid and glycolic acid, which are structured to form hollow spheres. These spheres can be approximately 15-30 ⁇ m in diameter and can be loaded with a variety of compounds varying in size from simple molecules to high molecular weight proteins such as antibodies. The biocompatibility of these microspheres is well established (see, Sintzel et al. (1996) E UR . J. P HARM . B IOPHARM. 42:358-372), and microspheres have been used to deliver a wide variety of pharmacological agents in numerous biological systems.
- poly(lactide-co-glycolide) microspheres are hydrolyzed by the surrounding tissues, which cause the release of the contents of the microspheres (Zhu et al. (2000) N AT . B IOTECH. 18:52-57).
- the in vivo half-life of a microsphere can be adjusted depending on the specific needs of the system.
- Formulations suitable for topical administration include liquid or semi-liquid preparations such as liniments, lotions, gels, applicants, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes; or solutions or suspensions such as drops.
- Formulations suitable for oral or parenteral administration may be in the form of discrete units such as capsules, gelatin capsules, sachets, tablets, troches, or lozenges, each containing a predetermined amount of the active agent; a powder or granular composition; a solution or a suspension in an aqueous liquid or non-aqueous liquid; or an oil-in-water emulsion or a water-in-oil emulsion.
- Formulations suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
- Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filter sterilization.
- Formulations suitable for intraarticular administration may be in the form of a sterile aqueous preparation of the drug which may be in microcrystalline form, for example, in the form of an aqueous microcrystalline suspension.
- Liposomal formulations or biodegradable polymer systems may also be used to present the drug for intraarticular administration.
- Formulations for topical administration to the skin surface can be prepared by dispersing the drug with a dermatologically acceptable carrier such as a lotion, cream, ointment or soap.
- a dermatologically acceptable carrier such as a lotion, cream, ointment or soap.
- inhalation of powder (self-propelling or spray formulations) dispensed with a spray can, a nebulizer, or an atomizer can be used.
- Such formulations can be in the form of a fine powder for pulmonary administration from a powder inhalation device or self-propelling powder-dispensing formulations.
- AICAR Treatment Suppresses Ocular Inflammation in a Rat EIU Model
- Endotoxin-induced uveitis is a rodent model of human uveitis, induced by a single systemic injection of endotoxin or lipopolysaccharide (LPS) (Rosenbaum et al., (1980) N ATURE 286:611-613). Injected animals develop acute bilateral anterior inflammation, characterized by a breakdown of the blood-ocular barrier and accumulation of inflammatory cells. EIU has been used to investigate the pathogenesis of uveitis and to evaluate the therapeutic effect of several drugs (Herbort et al. (1989) E XP . E YE R ES. 48:693-705; Avunduk et al. (2004) E XP .
- AICAR and PBS for placebo treatment were delivered via intraperitoneal injection of AICAR (50 mg/kg or 100 mg/kg body weight; Sigma) diluted in 150 ⁇ l PBS or equal volume of PBS at 6 hours before and at the same time as LPS injection.
- AICAR normal rats treated with AICAR 6 hours before examination
- LPS EIU rats treated with PBS
- LPS+AICAR EIU rats treated with AICAR.
- Two additional groups of rats were used to study the effects of AICAR (50 mg/kg) given either at the same time as LPS injection or at 6 hours after LPS injection.
- EIU rats were euthanized 24 hours after LPS injection.
- the eyes were enucleated immediately and stored in 10% formalin solution.
- the eyes were then embedded in paraffin, and 10 ⁇ m sagittal sections were cut and stained with hematoxylin and eosin.
- the anterior chamber and posterior chamber around the iris-ciliary body complex were examined with light microscopy.
- Aqueous humor was collected by anterior chamber puncture with a 30-gauge needle 24 hours after LPS injection.
- 1 ⁇ l of aqueous humor was diluted with an equal amount of Trypan-blue solution, and the cells were counted with a hematocytometer under a light microscope.
- a separate sample of aqueous humor was centrifuged at 2500 rpm for 5 minutes at 4° C. and the total protein concentration was measured by Lowry methods using a Bio-Rad protein assay kit (Hercules, Calif.). Aqueous samples were stored on ice until used; cell counts and total protein concentrations were measured on the day of sample collection.
- FIGS. 2A-B depict the anti-inflammatory effect of AICAR on cellular infiltration and protein concentration in the aqueous humor.
- Inflammation in the posterior segment of the eye is seen in EIU with the adherence of recruited leukocytes to the retinal vascular endothelium (Koizumi et al. (2003) I NVEST . O PHTHALMOL . V IS . S CI. 44:2184-2191).
- Leukocyte adhesion to the retinal vessels was evaluated at 24 hours after EIU induction by using the Concanavalin A (Con A) lectin staining technique (Smith et al. (1994) I NVEST . O PHTHALMOL . V IS . S CI. 35:101-111). After deep anesthesia, the chest cavities of rats were opened, and a 20-gauge perfusion cannula was introduced into the aorta.
- Rats were then perfused with 20 ml of PBS to remove erythrocytes and nonadherent leukocytes, followed by 20 ml of fluorescein-isothiocyanate (FITC)-coupled Con A (Vector Laboratories, Burlington, Calif.) in PBS for staining the vascular endothelium and firmly adherent leukocytes. Subsequently, residual unbound Con A was removed with 20 ml of PBS. The eyes were subsequently enucleated and the retinas were carefully flatmounted. The flatmounts were imaged using an epifluorescence microscope (DM RXA; Leica) and the total number of Con A-stained adherent leukocytes per retina was counted.
- DM RXA epifluorescence microscope
- EIU-associated leukocyte adhesion to retinal vascular endothelium was reduced with AICAR pretreatment ( FIGS. 3A and 3B ).
- bBSA biotinylated bovine serum albumin
- the eyes were enucleated and retinas were carefully removed and placed in cold PBS.
- the retinas were then placed in 500 ⁇ l of lysis buffer containing protease inhibitor (Complete Protease Inhibitor Cocktail Tablets, Roche Diagnostics Corp, Indianapolis, Ind.), sonicated, and centrifuged at 13,000 rpm for 10 minutes. Supernatant was collected, and bBSA concentration was measured by enzyme-linked immunosorbent assay (ELISA). The degree of vascular leakage was estimated by measuring the protein concentration in each retina.
- protease inhibitor Complete Protease Inhibitor Cocktail Tablets, Roche Diagnostics Corp, Indianapolis, Ind.
- NF- ⁇ B P65 protein levels translocated into the nuclei of retinal cell extracts were examined 3 hours after LPS injection.
- pooled retinas from six normal rats, nine EIU PBS-treated rats, and nine EIU AICAR-treated rats were analyzed.
- Retinas were homogenized and nuclear extracts were prepared with ProteoJet Cytoplasmic and Nuclear Protein Extraction Kit (Fermentas inc, Burlington, Canada).
- NF- ⁇ B concentration was calculated and corrected for protein concentration.
- Cytokine and chemokine levels in the serum, aqueous humor, and retina were assessed using the rat CCL2/MCP-1 kit (Invitrogen, Camarillo, Calif.), the rat TNF- ⁇ kit (R&D system, Minneapolis, Minn.) and the rat ICAM-1 kit (R&D systems) by ELISA.
- AICAR Since AICAR was administered systemically, its suppressing effects on intraocular inflammation could have been mediated locally or systemically.
- Leukocyte adhesion to the retinal vessel is a well documented finding in EIU and expression of adhesion molecules such as ICAM-1 play a pivotal role in the pathogenesis of this finding (Yang et al. (2005) B LOOD 106:584-592). It has been previously noted that ICAM-1 is expressed on vascular endothelial cell of the iris and the ciliary body and that an antibody to ICAM-1 reduces ocular inflammation (Becker et al. (2001) I NVEST . O PHTHALMOL . V IS . S CI. 42:2563-2566). As seen in Example 3, the number of adherent leukocytes in retinal vessels of EIU rats was reduced by AICAR pretreatment.
- AICAR could be effective for the posterior segment manifestation of inflammation, such as cystoid macular edema, which is a significant cause of vision loss in human uveitis.
- CD14 is a co-receptor for LPS and expressed mainly on monocytes, macrophages and neutrophils, and its association with Toll-like receptor 4 leads to activation of transcriptional factors, including NF- ⁇ B (Takeda et al. (2003) A NNU . R EV . I MMUNOL. 21:335-376).
- NF- ⁇ B transcriptional factors
- suppression of CD14 expression has a potent therapeutic effect on reducing LPS-induced inflammation including EIU (Sanchez-Lemus et al. (2009) A M . J. P HYSIOL . R EGUL . I NTEGR . C OMP . P HYSIOL. 296:R1376-1384; Poulaki et al. (2007) F ASEB . J. 21:2113-2123).
- AICAR treatment on CD14 mRNA and protein expression were assessed by real time PCR and Western Blot, respectively.
- PBMC samples peripheral blood mononuclear cell (PBMC) samples were collected at three hours after LPS injection, and PBMC samples were isolated by density gradient centrifugation with Histopaque 1083 (Sigma). The red blood cells were lysed with Red Blood Cell Lysing Buffer (Sigma).
- PBMCs pooled PBMCs from three rats were homogenized with lysis buffer (Roche Diagnostics Corp) and centrifuged at 13,000 rpm for 10 minutes at 4° C. Thirty ⁇ g of protein per sample was electrophoresed in a 4-20% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Invitrogen) and electroblotted to polyvinylidene fluoride membrane (Millipore).
- SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- the membranes were incubated with a rabbit polyclonal antibody against CD14 (1:200, Santa Cruz Biotechnology) or GAPDH antibody (1:1000, Cell Signaling, Danvers, Mass.) at room temperature for one hour.
- the membranes were washed three times (five minutes each time) with TBS/Tween (TBST) and incubated for 30 minutes at room temperature with horseradish peroxidase-labeled anti-rabbit secondary antibody (1:20,000; Jackson ImmunoResearch, West Grove, Pa.).
- the membranes were then washed three times (five min each time) in TBST, and the proteins were visualized by ECL plus (GE Healthcare).
- RNA of PBMC was harvested from cells using the RNeasy kit (Qiagen, Valencia, Calif.), and complementary DNA (cDNA) was generated with the OligodT primer (Invitrogen) and Superscript II (Invitrogen) according to the manufacturer's instructions.
- Real-time PCR was carried out using the following TaqMan gene expression assays (Applied Biosystems): CD14 (Rn00572656_g1) and actin (Rn00667869_m1). Quantitative expression data were acquired and analyzed with a Step One Plus real-time PCR system (Applied Biosystems).
- protein expression of CD14 was increased in EIU rats but decreased in AICAR-pretreated rats.
- EAU experimental autoimmune uveitis
- EAU is a rodent model of human autoimmune uveitis and has been used for studying the mechanism of autoimmune uveitis and for developing therapeutic strategies (Luger et al. (2008) S EMIN . I MMUNOPATHOL. 30:135-143).
- EAU is induced by immunizing mice with retinal antigens such as interphotoreceptor retinoid-binding protein (IRBP) (Rizzo et al. (1996) J. I MMUNOL. 156:1654-1660; Sanui et al. (1989) J. E XP . M ED. 169:1947-1960).
- IRBP interphotoreceptor retinoid-binding protein
- mice Female C57BL/6 (WT) mice ranging from 6-8 weeks old (Charles River, Wilmington, Mass.) were used for these studies.
- mice were immunized subcutaneously with 200 ⁇ g of human interphotoreceptor retinoid-binding protein (hIRBP) 1-20 (GPTHLFQPSLVLDMAKVLLD) (SEQ ID NO:1) (Biomatik, Wilmington, Del.) emulsified in CFA (1:1 v/v) containing 2.5 mg/ml M. tuberculosis (Difco, Detroit, Mich.).
- hIRBP human interphotoreceptor retinoid-binding protein
- CFA 1:1 v/v
- M. tuberculosis Difco, Detroit, Mich.
- PTX Bordetella pertussis toxin
- AICAR 100 or 200 mg/kg body weight, Toronto Research Chemicals, Ontario, Canada
- PBS phosphate-buffered saline
- Clinical scoring of EAU was performed by funduscopic examination in a masked fashion as previously described (Pouvreau et al. (1998) J. N EUROIMMUNOL. 86:171-181). On day 21 after immunization, vascular dilation, white focal vascular lesions, white linear vascular lesions, retinal hemorrhage and retinal detachment were evaluated and the severity of EAU was graded on scale of 0-4 as described by Thurau et al. (1997) C LIN . E XP . I MMUNOL. 109:370-376. For histological assessment, eyes were enucleated on day 21 and immediately frozen in optimal cutting temperature compound (Sakura Finetek, Torrance, Calif.).
- RNA and protein levels of various inflammatory cytokines were assessed.
- Total RNA from the retina was harvested using the RNeasy kit (Qiagen, Valencia, Calif.).
- Complementary DNA cDNA
- OligodT primer OligodT primer
- Superscript II Invitrogen
- Real-time PCR was carried out using the following TaqMan gene expression assays (Applied Biosystems, Foster City, Calif.): IL-6 (Mm99999064_m1), IFN- ⁇ (Mm01168134_m1), TNF (Mm99999068_m1), and actin (Mm00607939_s1).
- Quantitative expression data were acquired and analyzed with a Step One Plus real-time PCR system (Applied Biosystems).
- cytokine analysis 8 to 10 retinas were removed 21 days after immunization and placed into 500 ⁇ l of lysis buffer (Complete Protease Inhibitor Cocktail Tablets, Roche Diagnostics Corp, Indianapolis, Ind.) containing protease inhibitor. After sonication, the lysate was centrifuged at 13,000 rpm for 10 minutes at 4° C. and supernatant was collected. Cytokine levels were measured by ELISA using the Quantikine mouse IFN- ⁇ , IL-6 and TNF- ⁇ kits (R&D system, Minneapolis, Minn.). The amount of cytokine present was normalized to total protein concentration in each retina.
- EAU i.e., control mice showed elevated levels of TNF- ⁇ , IL-6 and IFN- ⁇ mRNA when compared to wildtype (i.e., na ⁇ ve) mice.
- AICAR treatment significantly reduced the levels of TNF- ⁇ , IL-6 and IFN- ⁇ mRNA.
- FIG. 7B AICAR treatment also suppressed the protein levels of IL-6 when compared to naive and control mice.
- AICAR Suppresses Proliferation and Cytokine Production by Lymph Node (LN) Cells
- Th1 and Th17 cells are considered to play a major role in the initiation and maintenance of intraocular inflammation (Yoshimura et al. (2008) I NT . I MMUNOL. 20:209-214; Amadi-Obi et al. (2007) N AT . M ED. 13:711-718).
- Th1 and Th17 cells respond to retinal antigen resulting in intraocular inflammation, posterior uveitis, disc edema, retinal exudates, vasculitis, and retinal detachment (Luger et al. (2008) S EMIN . I MMUNOPATHOL. 30:135-143; Caspi (2008) I MMUNOL .
- CD4 T cell-enriched fractions were prepared using CD4 Microbeads (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany), and purity of the suspensions was determined by staining with anti-CD4 antibody (GK1.5, Biolegend, San Diego, Calif.) and flow cytometry. All experimental samples of CD4 T cell-enriched fractions were at least 95% CD4-positive.
- LN cells were resuspended at 5 ⁇ 10 5 cells per 200 ⁇ l of medium in 96-well flat-bottom plates. Cells were incubated for 72 hours and proliferation during the last 12 hours was measured by using a bromodeoxyuridine (BrdU) cell proliferation assay kit (Millipore, Billerica, Mass.). Supernatant in the culture medium was collected at 48 hours and cytokine production in the supernatant was measured by ELISA using the Quantikine mouse IFN- ⁇ , IL-4, IL-10 and IL-17 kits (R&D system, Minneapolis, Minn.).
- PrdU bromodeoxyuridine
- T-bet Mm00450960_m1
- ROR ⁇ t Mm01261022_m1
- Quantitative expression data were acquired and analyzed with a Step One Plus real-time PCR system (Applied Biosystems).
- AICAR In order to assess the in vivo effect of AICAR on the development of IRBP-reactive T cells, LN cells from control and AICAR-treated mice were stimulated with either IRBP or a non-specific T cell stimulator, anti-CD3. Proliferative response was measured with BrdU incorporation. As shown in FIG. 8A , AICAR treatment suppressed antigen-specific T cell proliferation in a dose-dependent manner when compared to untreated mice. In comparison, when the cells were treated with anti-CD3, there was no difference in T cell proliferation between the AICAR treated and control mice ( FIG. 8B ).
- AICAR significantly suppressed the production of IFN- ⁇ , IL-17, and IL-10 by LN cells. Further, AICAR treatment also suppressed the expressions of T-bet and RoR ⁇ t, which are transcription factors for Th1 and Th17 cells ( FIGS. 8G and H, respectively).
- Th2 response was not detected during the inflammatory stage and could not be induced by in vitro treatment with AICAR.
- AICAR suppressed the production of IL-10, which is a regulatory cytokine produced by Type-1 T regulatory (Tr1) cell (Pot et al. (2011) S EMIN . I MMUNOL. 23:202-208) and Treg cells.
- AICAR regulatory T cell population in the EAU mice was also directly assessed. Specifically, LN cells from five mice were harvested at 21 days after immunization and stained with a mouse regulatory T cell staining kit #2 (eBioscience) according to manufacturer's instructions. CD4 + CD25 + Foxp3 + Treg populations were subsequently detected by flow cytometry. As shown in FIG. 9 , the CD4 + CD25 + Foxp3 + Treg population was not significantly different between control and AICAR-treated mice. These results suggest that AICAR may mediate its effects independent of any effects on Th2, Tr1 and Treg cells.
- LN cells from untreated EAU mice were cultured with IRBP peptide in the presence of AICAR ( FIG. 10 ). Specifically, LN cells were resuspended at 5 ⁇ 10 5 cells per 200 ⁇ l of medium in 96-well flat-bottom plates. Triplicate samples of cells were stimulated with or without IRBP at the indicated concentrations. AICAR was added at the indicated concentrations. Cell proliferation and cytokine production were measured as previously described in Example 10.
- AICAR suppressed inflammation and T cell proliferation as well as cytokine production during the effector phase of EAU, it is contemplated that AICAR may be effective in treating ongoing human uveitis.
- AICAR may impair the interaction between T cells and antigen presenting cells (APCs), more specifically, dendritic cells (DCs) which are known as professional APCs.
- APCs antigen presenting cells
- DCs dendritic cells
- AMPK negatively regulates DC maturation by affecting their energy production pathway
- co-stimulatory signals are involved in the course of EAU and blockade of these signals ameliorates intraocular inflammation (Bagenstose et al. (2005) J. I MMUNOL. 175:124-130; Namba et al. (2000) J. I MMUNOL. 165:2962-2969; Fukai et al.
- naive CD4 T cells interacts with antigen presenting cells (APC) which express co-stimulatory molecules (second signals) such as CD40, CD80 and CD86 in addition to MHC molecules (first signals) (Jenkins (1994) I MMUNITY 1:443-446; Janeway et al. (1994) C ELL 76:275-285).
- APC antigen presenting cells
- splenic DCs were isolated from EAU mice and analyzed for co-stimulatory molecule expression. Specifically, spleen cells from 4 to 5 EAU mice were pooled at twelve days after immunization and incubated with the following monoclonal antibodies: anti-CD11c (N418), CD40 (3/23), CD80 (16-10A1), CD86 (GL-1), I-A b (AF6-120.1) (Biolegend). Spleen cells were gated on the basis of forward and side scatter profile and propidium iodide or DAPI exclusion. Samples of 1 ⁇ 10 6 cells were analyzed by LSR (Becton Dickinson, Franklin Lakes, N.J.).
- BMDCs were generated as previously described (Wang et al. (2005) I MMUNOL . L ETT. 98:123-130). Briefly, bone marrow was flushed from the femurs and tibias of naive mice (6 to 8-week-old WT or AMPK ⁇ 1 KO mice). The red blood cells were lysed using Red Blood Cell Lysing Buffer (Sigma).
- AMPK ⁇ 1 KO mice were provided as previously described (Jorgensen et al. (2004) J. B IOL . C HEM. 279:1070-1079).
- AICAR is a cell permeable activator of AMP-activated protein kinase (AMPK), which is a Serine/Threonine kinase that senses cellular energy status. Once inside the cell, AICAR is phosphorylated by adenosine kinase to the monophosphorylated form (ZMP), which mimics AMP and activates AMPK. AMPK is also implicated in the inflammatory response. Activation of AMPK changes macrophage function to an anti-inflammatory phenotype (Sag et al. (2008) J. I MMUNOL. 181:8633-8641) and inhibits dendritic cell (DC) maturation (Krawczyk et al. (2010) B LOOD 155:4742-4749), which is essential to induce lymphocyte activation.
- AMPK AMP-activated protein kinase
- AMPK is a heterotrimeric complex and the catalytic subunits of AMPK ⁇ consists of ⁇ 1 and ⁇ 2 and regulatory ⁇ and ⁇ subunits (Hardy et al. (2003) FEBS L ETT. 546:113-120). Western blot analysis was performed to determine the AMPK ⁇ 1 and AMPK ⁇ 2 expression in mice.
- lysate from BMDC liver and spleen of WT and AMPK ⁇ 1 KO mice were electrophoresed in a 4-20% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Invitrogen) and electroblotted to polyvinylidene fluoride membrane (Millipore). After blocking with blocking buffer (Thermo scientific, Rockford, Ill.), the membranes were incubated with a rabbit polyclonal antibody against AMPK ⁇ 1, AMPK ⁇ 2 (1:1000, Abcam, Cambridge, Mass.) or GAPDH antibody (1:1000, Cell Signaling, Danvers, Mass.).
- SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- the membranes were washed three times (5 minutes each time) with TBS/tween (TBST) and incubated for 30 minutes at room temperature with horseradish peroxidase-labeled anti-rabbit secondary antibody (1:20,000; Jackson ImmunoResearch, West Grove, Pa.). The membranes were washed again three times (5 minutes each time) in TBST, and the proteins were visualized by ECL plus (GE Healthcare, Piscataway, N.J.). As shown in FIG. 13 , BMDCs expressed only the AMPK ⁇ 1 subunit.
- AICAR suppressed the maturation of AMPK ⁇ 1 KO BMDCs. Specifically, AICAR significantly suppressed the expression of CD40, CD80, CD86 and I-A b in AMPK ⁇ 1 KO BMDCs after LPS stimulation ( FIG. 14A ). Further, AICAR also suppressed the production of IL-6, TNF- ⁇ and IL12/23 p40 in AMPK ⁇ 1 KO BMDCs after LPS stimulation ( FIG. 14B ).
- IODO adenosine kinase inhibitor
- DPY nucleoside transporter
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Ophthalmology & Optometry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Provided are methods for treating ocular inflammatory disorders, including macular edema, using an AMP kinase activator, e.g., 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR). The method reduces inflammation, thereby minimizing the loss of vision or visual function associated with these ocular disorders.
Description
- This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/501,586, filed Jun. 27, 2011, and U.S. Provisional Patent Application No. 61/597,258, filed Feb. 10, 2012, the contents of each of which are hereby incorporated by reference in their entirety.
- The present invention relates generally to the field of ocular inflammatory disorders. More particularly, the invention relates to methods for treating such disorders using an AMP kinase activator, e.g., 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR).
- There are a variety of ocular inflammatory disorders, which, if untreated, may lead to partial or even complete vision loss. One prominent ocular inflammatory disorder is uveitis, which is estimated to be responsible for approximately 10% of the blindness in the United States. Uveitis is an inflammatory eye disorder of the uveal tract and contiguous structures including the vascular coat of the eye composed of the iris, ciliary body and choroid (Durrani et al. (2004) B
R . J OPHTHALMOL. 88:1159-1162; Durrani et al. (2004) OPHTHALMOLOGICA 218:223-236). Other examples of ocular inflammatory disorders include endophthalmitis (e.g., the endogenous form and the exogenous form), macular edema (e.g., macular edema that occurs as a result of age-related macular degeneration, cataract surgery, diabetes, drug toxicity, eye injury, or retinal vein occlusion), conjunctivitis, episcleritis, keratitis, optic neuritis, orbital pseudotumor, retinal vasculitis, and scleritis. Each of these disorders, if left untreated, can cause permanent vision loss. - Available treatments for uveitis and other ocular inflammatory disorders are limited. Corticosteroids are the main drugs used for its treatment but they have numerous ocular (cataract and secondary glaucoma) and non-ocular adverse effects. Prolonged systemic steroid use can also suppress musculoskeletal growth, cause impaired wound healing, and result in increased susceptibility to infections. In addition to corticosteroids, antimetabolites, cycloplegics, and biologics are also often used to control the inflammatory process. However, there are patients who do not respond or cannot tolerate these agents (Galor et al. (2008) O
PHTHALMOLOGY 115:1826-1832; Imrie et al. (2007) CURR . OPIN . OPHTHALMOL. 18:481-486). - Thus, there is still an ongoing need for methods of preventing the onset of ocular inflammatory disorders, and once established, the treatment of such disorders.
- The invention is based, in part, on the discovery that an AMP kinase activator, e.g., 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) can be used to prevent and/or treat ocular inflammatory disorders, such as macular edema, uveitis (e.g., autoimmune uveitis and uveitis associated with type II, type III, type IV, or type V hypersensitivity reactions), and endophthalmitis. The disclosed methods comprise administering AICAR or a pharmaceutically acceptable salt, ester, prodrug, or polymorph thereof to a subject in need thereof in an amount sufficient to ameliorate a symptom of the disorder, e.g., to reduce ocular inflammation in the affected eye or part of the eye. In exemplary embodiments, the AICAR is administered to the eye, e.g., by intraocular injection or by topical administration to the eye.
- The foregoing aspects and embodiments of the invention may be more fully understood by reference to the following figures, detailed description and claims.
- The objects and features of the invention may be more fully understood by reference to the drawings described herein.
-
FIGS. 1A-C depict the effect of AICAR on clinical endotoxin-induced uveitis (EIU).FIG. 1A is a graph showing the clinical inflammation scores of EIU in Lewis rats in the absence and presence of AICAR determined at 24 hours after lipopolysaccharide (LPS) injection. (Normal: n=6, EIU: n=15, LPS+AICAR 50 mg/kg: n=15, LPS+AICAR 100 mg/kg: n=12). Data are shown as mean±SD; *p<0.05 and ***p<0.001.FIG. 1B provides photographs indicating that fibrin formation and posterior synechiae were seen less in AICAR-pretreated EIU rats.FIG. 1C provides histopathologic findings of EIU rat's eyes which received LPS with and without 50 mg/kg of AICAR pretreatment. The number of leukocytes infiltrated around the iris-ciliary body was suppressed in AICAR pretreated rats. Sections were visualized at 200×. -
FIGS. 2A-B depict the effect of AICAR on cellular infiltration and protein leakage in the aqueous humor.FIG. 2A is a graph depicting the number of infiltrated cells as determined by trypan blue exclusion cell counting.FIG. 2B is a graph depicting the total protein concentration in the aqueous humor (Normal: n=7, AICAR: n=6, LPS: n=11, LPS with AICAR: n=11). LPS induced cellular infiltration and protein leakage in the aqueous humor were significantly suppressed by AICAR pretreatment. Data are shown as mean±SD; **p<0.01. -
FIGS. 3A-B depict the effect of AICAR on leukocyte adhesion in retinal vessels.FIG. 3A is a graph showing the number of retinal adherent leukocytes (Normal: n=5, AICAR: n=6, LPS: n=8, LPS with AICAR: n=11). AICAR-pretreated EIU rats showed significantly fewer adherent leukocytes than PBS-treated rats.FIG. 3B provides photographs of flatmounted retinas from normal control rats treated with AICAR, LPS only and LPS with AICAR pretreatment. EIU rats revealed a significant number of leukocyte adhesion (arrows) compared to AICAR pretreated rats. Data are shown as mean±SD; **p<0.01. -
FIG. 4 depicts the effect of AICAR on NF-κB activity. NF-κB P65 levels in the retinal nuclear extract from normal control (n=6), LPS (n=9), LPS+AICAR (n=9) were determined by ELISA. Data are shown as mean±SD; *p<0.05, **p<0.01. -
FIGS. 5A-B depict the effect of AICAR on CD14 expression.FIG. 5A is a graph showing CD14 mRNA expression as measured by ELISA (Normal: n=6, AICAR: n=6, LPS: n=9, LPS with AICAR: n=9). Data are shown as mean±SD; *p<0.05 and **p<0.01.FIG. 5B depicts photographs showing protein levels of CD14 as determined by Western blot analysis. Data are representative of three independent experiments with similar results. -
FIGS. 6A-F depict the effect of AICAR on experimental autoimmune uveitis (EAU).FIG. 6A is a graph showing EAU clinical score as assessed by funduscopic examination at 21 days after immunization. (Controls: open circles, n=17;AICAR 100 mg/kg: closed circles, n=10;AICAR 200 mg/kg: closed triangles, n=15).FIG. 6B is a graph showing histopathologic score as assessed with hematoxylin and eosin (H&E) sections. Mean scores are indicated by horizontal bars.FIGS. 6C-F show representative fundus photographs and histopathological findings of vehicle-treated EAU mice (FIGS. 6C and E) and AICAR-treated (200 mg/kg) mice (FIGS. 6D and F). Clinical papilledema and vasculitis (FIG. 6C ) as well as histopathological cellular infiltration, papilledema and retinal folds (FIG. 6E ) were seen in vehicle-treated EAU mice. Data are shown as mean±SD; ***p<0.001. Results were combined from three separate experiments. -
FIGS. 7A-B depict the effect of AICAR on retinal inflammation.FIG. 7A provides graphs showing TNF-α, IL-6 and IFN-γ gene expression in the retina as measured by real-time PCR. Relative expression was normalized to beta-actin (naïve wildtype mice: n=3, control untreated EAU mice: n=5, AICAR treated EAU mice: n=5).FIG. 7B provides graphs showing TNF-α, IL-6 and IFN-γ protein levels in the retina as assessed by ELISA (control: n=10, AICAR: n=10). Data are shown as mean±SD and is representative of two to three independent experiments. *p<0.05, **p<0.01. N.D.=not detectable. -
FIGS. 8A-H depict the effect of AICAR on the development of IRBP-reactive T cells in vivo. Lymph node (LN) cells from control (open circles) and AICAR-treated mice (closed squares) were stimulated with IRBP (FIG. 8A ) and anti-CD3 (FIG. 8B ). Proliferative response was measured with BrdU incorporation.FIGS. 8C-F depict graphs showing production of IFN-γ, IL-17, IL-4, and IL-10, respectively, as measured by ELISA.FIGS. 8G and 8H depict graphs showing T-bet and RORγt mRNA expression, respectively, in CD4 T cells, as measured by real-time PCR. Relative expression was normalized to beta-actin (n=6 to 8). Data are expressed as mean±SD and representative of two to three independent experiments. *p<0.05, **p<0.01. -
FIG. 9 depicts the effect of AICAR on the Treg population. LN cells from controls and AICAR-treated mice were collected at 21 days after immunization (n=5). The number of FoxP3+CD25+CD4+ T cells was analyzed by fluorescence-activated cell sorting (FACS). Data are representative of two independent experiments. -
FIGS. 10A-E depict the effect of AICAR on IRBP-reactive T cells in vitro. LN cells from untreated EAU mice (day 14) were cultured with or without AICAR in the presence of IRBP. Proliferative response (FIG. 10A ) and production of IFN-γ (FIG. 10B ), IL-17 (FIG. 10C ), IL-4 (FIG. 10D ) and IL-10 (FIG. 10E ) were measured. Data are expressed as mean±SD and representative of three independent experiments. **p<0.01. -
FIG. 11 depicts the effect of AICAR on dendritic cell (DC) maturation in vivo. Spleen cells from naive, control EAU and AICAR-treated EAU mice (n=4 to 5 for each group) were separated. The number of CD11c-gated CD40, CD80, CD86 and I-Ab positive cells were examined by FACS. Data are representative of two independent experiments. -
FIGS. 12A-B depict the effect of AICAR on bone marrow derived dendritic cell (BMDC) maturation Immature BMDCs were stimulated with LPS for 24 hours in the presence or absence of AICAR.FIG. 12A provides graphs showing the number of CD 11c-gated CD40, CD80, CD86 and I-Ab positive cells as measured by FACS. Bars represent mean±SD from three independent experiments.FIG. 12B provides graphs showing IL-6, IL-12/23 p40 and TNF-α production as measured by ELISA. Data are expressed as mean±SD and representative of two independent experiments. *p<0.05, **p<0.01. -
FIG. 13 depicts western blots showing AMPK expression in WT and AMPKα1 KO mice. Lysates of BMDC, liver and spleen were analyzed by Western blot using antibodies against AMPKα1 and α2. WT BMDCs only express AMPKα1. AMPKα1KO BMDCs do not express detectable amounts of AMPK. -
FIGS. 14A-B depict the effect of AMPKα1 knock down and AICAR on BMDC maturation. BMDCs derived from AMPKα1KO mice were stimulated with LPS with or without AICAR.FIG. 14A provides graphs showing the number of CD11c-gated CD40, CD80, CD86 and I-Ab positive cells as measured by FACS. Bars represent mean±SD from 3 independent experiments.FIG. 14B depicts graphs showing IL-6, IL-12/23 p40 and TNF-α production as measured by ELISA. Data are expressed as mean±SD and representative of two independent experiments. *p<0.05, **p<0.01. -
FIG. 15 depicts the combined effect of AICAR and a nucleoside transporter or an adenosine kinase inhibitor on BMDC maturation. WT BMDCs were stimulated with LPS and 1 mM AICAR in the presence or absence of 0.1 mM IODO or 1 μM DPY. The number of CD11c-gated CD40, CD80, CD86 and I-Ab positive cells was measured by FACS. Bars represent mean±SD from three independent experiments. - The invention relates to methods for treating and/or preventing ocular inflammatory disorders using AMP kinase (AMPK) activators, e.g., 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR). The invention is based, at least in part, on the discovery that AMP kinase activators, e.g., AICAR, suppress ocular inflammation, e.g., uveitis-related ocular inflammation.
- For convenience, certain terms in the specification, examples, and appended claims are collected in this section.
- As used herein, “AMP kinase activator” or “adenosine monophosphate (AMP) kinase activator” refers to compounds that activate, increase, or stimulate AMP kinase activity. AMP kinase activators include 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or pharmaceutically acceptable salts, esters, or polymorphs thereof, AICAR analogs and/or AICAR prodrugs. For example, AICAR is an analog of AMP.
- One exemplary AMP kinase activator is AICAR or a pharmaceutically acceptable salt thereof. As used herein, “AICAR” means 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside and having the following chemical structure (I):
- including pharmaceutically acceptable salts, solvates, solvates of a pharmaceutically acceptable salt, esters, or polymorphs thereof. See, for example, U.S. Pat. No. 4,575,498.
- In another embodiment, the AMP kinase activator is an AICAR prodrug. A “prodrug” includes compounds that are transformed in vivo to yield a compound of Formula (I) or a pharmaceutically acceptable salt, ester, or polymorph of the compound. The transformation may occur by various mechanisms, such as through hydrolysis in blood. For example, where the compound of Formula (I) contains an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C1-C6)alkanoyloxymethyl, 1-((C1-C6)alkanoyloxy)ethyl, 1-methyl-1-((C1-C6)alkanoyloxy)ethyl (C1-C6)alkoxycarbonyloxymethyl, N—(C1-C6)alkoxycarbonylaminomethyl, succinoyl, (C1-C6)alkanoyl, α-amino(C1-C4)alkanoyl, arylacyl and α-aminoacyl, or α-aminoacyl-α-aminoacyl, where each α-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, —P(O)(O(C1-C6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate). Further, for example, where the compound of Formula (I) incorporates an amine functional group, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as R-carbonyl, RO-carbonyl, NRR′-carbonyl where R and R′ are each independently (C1-C10)alkyl, (C3-C7)cycloalkyl, benzyl, or R-carbonyl is a natural α-aminoacyl or natural α-aminoacyl-natural α-aminoacyl, —C(OH)C(O)OY1 wherein Y1 is H, (C1-C6)alkyl or benzyl, —C(OY2)Y3 wherein Y2 is (C1-C4)alkyl and Y3 is (C1-C6)alkyl, carboxy(C1-C6)alkyl, amino(C1-C4)alkyl or mono-N— or di-N,N—(C1-C6)alkylaminoalkyl, —C(Y4)Y5 wherein Y4 is H or methyl and Y5 is mono-N— or di-N,N—(C1-C6)alkylamino, morpholino, piperidin-1-yl or pyrrolidin-1-yl. Exemplary AICAR prodrugs include the generic and/or specific compounds listed in U.S. Pat. No. 5,082,829, which is incorporated herein by reference in its entirety.
- It is also contemplated herein that generic and/or specific compounds listed in U.S. Pat. No. 5,777,100 and PCT Publication No. WO01/93873, which are incorporated herein by reference in their entirety, may be used in the methods described herein.
- As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- As used herein, the term “pharmaceutically acceptable salt” refers to any pharmaceutically acceptable salt (e.g., acid or base) of a compound of the present invention which, upon administration to a subject, is capable of providing a compound of this invention or an active metabolite or residue thereof. As is known to those of skill in the art, “salts” of the compounds of the present invention may be derived from inorganic or organic acids and bases. Examples of acids include, but are not limited to, hydrochloric, hydrobromic, sulfuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfonic, tartaric, acetic, citric, methanesulfonic, ethanesulfonic, formic, benzoic, malonic, naphthalene-2-sulfonic, benzenesulfonic acid, and the like. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts or esters.
- Examples of bases include, but are not limited to, alkali metals (e.g., sodium) hydroxides, alkaline earth metals (e.g., magnesium), hydroxides, ammonia, and compounds of formula NW4 +, wherein W is C1-4 alkyl, and the like.
- Examples of salts include, but are not limited to: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, undecanoate, and the like. Other examples of salts include anions of the compounds of the present invention compounded with a suitable cation such as Na+, NH4 +, and NW4 + (wherein W is a C1-4 alkyl group), and the like.
- For therapeutic use, salts of the compounds of the present invention are contemplated as being pharmaceutically acceptable. However, salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
- As used herein, the term “therapeutically effective amount” is understood to mean the amount of an active ingredient, for example, AICAR, that is sufficient to reduce, ameliorate, or treat a symptom associated with certain ocular inflammatory disorders described herein, e.g., a symptom of the condition affecting any part of the eye or surrounding tissue. The compounds of the invention are administered in amounts effective at, e.g., reducing or preventing inflammation in at least part of an affect eye or the surrounding tissues, preserving vision, improving vision, and/or preventing vision loss.
- Disclosed herein is a method of treating ocular inflammatory disorders using AMP kinase activators, e.g., 5-aminoimidazole-4-carboxamide-β-d-ribofuranoside (AICAR) or a pharmaceutically acceptable salt thereof, an AICAR analog, and/or an AICAR prodrug. Ocular inflammatory conditions that may be treated with AICAR include, but are not limited to endophthalmitis (e.g., the endogenous form and the exogenous form), macular edema (e.g., macular edema that occurs as a result of age-related macular degeneration, cataract surgery, diabetes, drug toxicity, eye injury, retinal vein occlusion, or other inflammatory eye diseases), conjunctivitis, episcleritis, keratitis, optic neuritis, orbital pseudotumor, retinal vasculitis, scleritis, and uveitis (e.g., (i) uveitis associated with sepsis (e.g., LPS-induced uveitis); (ii) autoimmune uveitis (e.g., uveitis associated with lupus); or (iii) uveitis associated with type II, type III, type IV, or type V hypersensitivity reactions).
- It is contemplated herein that the AICAR may be administered after diagnosis of certain ocular inflammatory conditions described herein, at the time of diagnosing certain ocular inflammatory conditions described herein or, if the subject is determined to be a risk of developing certain ocular inflammatory conditions as described herein, the AICAR may be administered prior to diagnosis of the condition.
- In certain embodiments, the method comprises administering AICAR to the eye of a subject in which a region of eye has been affected by inflammation. The AICAR may be administered in an amount sufficient to give a final concentration of AICAR in the eye in the range from about 1 μM to about 2500 μM, from about 1 μM to about 2000 μM, from about 1 μM to about 1500 μM, from about 1 μM to about 1000 μM, from about 10 μM to about 900 μM, from about 100 μM to about 900 μM, from about 200 μM to about 800 μM, or from about 300 μM to about 500 μM.
- In view of the fact that the volume of the eye in a given subject is known (for example, typical human eye contains 4 to 6 mL of fluid (humor)) it is within the skill in the art to calculate the dosage of the AICAR to be administered to give the therapeutically effective concentrations noted above. In other embodiments, an effective amount of AICAR may be in the range of from about 0.01 mg/kg to about 500 mg/kg, optionally from about 0.01 mg/kg to about 250 mg/kg, optionally from about 0.01 mg/kg to about 200 mg/kg, optionally from about 1.0 mg/kg to about 100 mg/kg, optionally from about 1 mg/kg to about 10 mg/kg, of body weight.
- In therapeutic uses for treating ocular disorders, the active ingredients typically are administered orally, parenterally and/or topically at a dosage to obtain and maintain a concentration that is therapeutically effective in the eye. In certain circumstances, a therapeutically effective dose of AICAR prevents or reduces inflammation in at least part of an affected eye. The amount administered likely will depend on such variables as the type and extent of disease or indication to be treated, the overall health status of the particular patient, the relative biological efficacy of the compound delivered, the formulation of the drug, the presence and types of excipients in the formulation, and the route of administration. Also, it is to be understood that the initial dosage administered may be increased beyond the above upper level in order to rapidly achieve the desired blood-level or tissue level, or the initial dosage may be smaller than the optimum and the daily dosage may be progressively increased during the course of treatment depending on the particular situation. If desired, the daily dose may also be divided into multiple doses for administration, for example, two to four times per day. For example, AICAR may be administered once a day, twice a day or more frequently. In other embodiments, AICAR may be administered every other day, three times a week, twice a week, or once a week.
- In an exemplary embodiment, the AICAR may be administered locally to the eye, for example, by intravitreal, intraocular, intraorbital, periorbital, subconjuctival, subretinal, subtenons or transscleral routes. In an exemplary embodiment, the AICAR may be administered locally to the eye by intravitreal injection. Without wishing to be bound by theory, local modes of administration can reduce or eliminate the incidence of potential toxic side effects that may occur. In another embodiment, local administration to the eye is by topical administration.
- Alternatively, the AICAR may be administered systemically, e.g., by oral or parenteral routes. Parenteral routes include, for example, intravenous, intrarterial, intramuscular, intradermal, subcutaneous, intranasal, intraperitoneal and transdermal routes.
- Administration may be provided as a periodic bolus (for example, intravitreally or intravenously) or as continuous infusion from an internal reservoir (for example, from an implant disposed at an intra- or extra-ocular location (see, U.S. Pat. Nos. 5,443,505 and 5,766,242)) or from an external reservoir (for example, from an intravenous bag, or a contact lens slow release formulation system). The AICAR may be administered locally, for example, by continuous release from a sustained release drug delivery device immobilized to an inner wall of the eye or via targeted transscleral controlled release into the choroid (see, for example, PCT/US00/00207, PCT/US02/14279, Ambati et al. (2000) I
NVEST . OPHTHALMOL . VIS . SCI. 41:1181-1185, and Ambati et al. (2000) INVEST . OPHTHALMOL . VIS . SCI. 41:1186-1191). A variety of devices suitable for administering agents locally to the inside of the eye are known in the art. See, for example, U.S. Pat. Nos. 6,251,090, 6,299,895, 6,416,777, 6,413,540, and 6,375,972, and PCT/US00/28187. - The formulations, both for human and for veterinary medical use, typically include AICAR in association with a pharmaceutically acceptable carrier or excipient.
- The AICAR may be solubilized in a carrier, for example, a viscoelastic carrier, that is introduced locally into the eye. The AICAR also may be administered in a pharmaceutically acceptable carrier or vehicle so that administration does not otherwise adversely affect the recipient's electrolyte and/or volume balance. The carrier may comprise, for example, physiologic saline or other buffer system. In exemplary embodiments, the AICAR may be solubilized in PBS or another aqueous buffer by sonication. Alternatively, the AICAR may be solubilized using conventional solvent or solubilization systems, for example, dimethyl sulfoxide (DMSO), dimethoxyethane (DME), dimethylformamide (DMF), cyclodextran, micelles, liposomes, liposomal agents, and other solvents known in the art to aid in the solubilization and administration of hydrophobic agents.
- In other embodiments, the AICAR may be solubilized in a liposome or microsphere. Methods for delivery of a drug or combination of drugs in liposomes and/or microspheres are well-known in the art.
- In addition, it is contemplated that the AICAR may be formulated so as to permit release of the agent over a prolonged period of time. A release system can include a matrix of a biodegradable material or a material, which releases the incorporated agent by diffusion. The AICAR can be homogeneously or heterogeneously distributed within a release system. A variety of release systems may be useful in the practice of the invention, however, the choice of the appropriate system will depend upon the rate of release required by a particular drug regime. Both non-degradable and degradable release systems can be used. Suitable release systems include polymers and polymeric matrices, non-polymeric matrices, or inorganic and organic excipients and diluents such as, but not limited to, calcium carbonate and sugar (for example, trehalose). Release systems may be natural or synthetic. However, under certain circumstances, synthetic release systems are preferred because generally they are more reliable, more reproducible and produce more defined release profiles. The release system material can be selected so that inhibitors having different molecular weights are released by diffusion through or degradation of the material.
- Representative synthetic, biodegradable polymers include, for example: polyamides such as poly(amino acids) and poly(peptides); polyesters such as poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(caprolactone); poly(anhydrides); polyorthoesters; polycarbonates; and chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof. Representative synthetic, non-degradable polymers include, for example: polyethers such as poly(ethylene oxide), poly(ethylene glycol), and poly(tetramethylene oxide); vinyl polymers-polyacrylates and polymethacrylates such as methyl, ethyl, other alkyl, hydroxyethyl methacrylate, acrylic and methacrylic acids, and others such as poly(vinyl alcohol), poly(vinyl pyrolidone), and poly(vinyl acetate); poly(urethanes); cellulose and its derivatives such as alkyl, hydroxyalkyl, ethers, esters, nitrocellulose, and various cellulose acetates; polysiloxanes; and any chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof.
- One of the primary vehicles currently being developed for the delivery of ocular pharmacological agents is the poly(lactide-co-glycolide) microsphere for intraocular injection. The microspheres are composed of a polymer of lactic acid and glycolic acid, which are structured to form hollow spheres. These spheres can be approximately 15-30 μm in diameter and can be loaded with a variety of compounds varying in size from simple molecules to high molecular weight proteins such as antibodies. The biocompatibility of these microspheres is well established (see, Sintzel et al. (1996) E
UR . J. PHARM . BIOPHARM. 42:358-372), and microspheres have been used to deliver a wide variety of pharmacological agents in numerous biological systems. After injection, poly(lactide-co-glycolide) microspheres are hydrolyzed by the surrounding tissues, which cause the release of the contents of the microspheres (Zhu et al. (2000) NAT . BIOTECH. 18:52-57). As will be appreciated, the in vivo half-life of a microsphere can be adjusted depending on the specific needs of the system. - Formulations suitable for topical administration, including eye treatment, include liquid or semi-liquid preparations such as liniments, lotions, gels, applicants, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes; or solutions or suspensions such as drops.
- Formulations suitable for oral or parenteral administration may be in the form of discrete units such as capsules, gelatin capsules, sachets, tablets, troches, or lozenges, each containing a predetermined amount of the active agent; a powder or granular composition; a solution or a suspension in an aqueous liquid or non-aqueous liquid; or an oil-in-water emulsion or a water-in-oil emulsion. Formulations suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filter sterilization. Formulations suitable for intraarticular administration may be in the form of a sterile aqueous preparation of the drug which may be in microcrystalline form, for example, in the form of an aqueous microcrystalline suspension. Liposomal formulations or biodegradable polymer systems may also be used to present the drug for intraarticular administration. Formulations for topical administration to the skin surface can be prepared by dispersing the drug with a dermatologically acceptable carrier such as a lotion, cream, ointment or soap. For intranasal or inhalation treatments, inhalation of powder (self-propelling or spray formulations) dispensed with a spray can, a nebulizer, or an atomizer can be used. Such formulations can be in the form of a fine powder for pulmonary administration from a powder inhalation device or self-propelling powder-dispensing formulations.
- The invention is further illustrated by the following examples, which are provided for illustrative purposes only, and should not be construed as limiting the scope or content of the invention in any way.
- In the examples described herein, all animal experiments adhered to the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research, and protocols were approved by the Animal Care Committee of the Massachusetts Eye and Ear Infirmary.
- All results were expressed as mean±SD. EIU and EAU scores were compared by the Mann-Whitney test. Continuous variables from the other experiment were analyzed with the unpaired student's t test. Differences were considered significant at P<0.05.
- Endotoxin-induced uveitis (EIU) is a rodent model of human uveitis, induced by a single systemic injection of endotoxin or lipopolysaccharide (LPS) (Rosenbaum et al., (1980) N
ATURE 286:611-613). Injected animals develop acute bilateral anterior inflammation, characterized by a breakdown of the blood-ocular barrier and accumulation of inflammatory cells. EIU has been used to investigate the pathogenesis of uveitis and to evaluate the therapeutic effect of several drugs (Herbort et al. (1989) EXP . EYE RES. 48:693-705; Avunduk et al. (2004) EXP . EYE RES. 79:357-365; Chang et al. (2006) BR . J. OPHTHALMOL. 90:103-108; Wakefield et al. (2010) BR . J. OPHTHALMOL. 94:271-274). The effect of AICAR on ocular inflammation associated with uveitis was assessed using the EIU rat model. - Male Lewis rats ranging from 6-8 weeks old (Charles River, Wilmington, Mass.) were used for these studies. To study the effects of AICAR pretreatment, AICAR and PBS (for placebo treatment) were delivered via intraperitoneal injection of AICAR (50 mg/kg or 100 mg/kg body weight; Sigma) diluted in 150 μl PBS or equal volume of PBS at 6 hours before and at the same time as LPS injection. Four experimental groups of rats were compared: (1) Normal: no treatment (2) AICAR: normal rats treated with
AICAR 6 hours before examination; (3) LPS: EIU rats treated with PBS; (4) LPS+AICAR: EIU rats treated with AICAR. Two additional groups of rats were used to study the effects of AICAR (50 mg/kg) given either at the same time as LPS injection or at 6 hours after LPS injection. - Clinical scoring of EIU was performed as previously described (Pouvreau et al. (1998) J. N
EUROIMMUNOL. 86:171-181). Slit lamp examination was conducted 24 hours after LPS injection in a masked fashion. The severity of EIU was graded from 0 to 4 by a masked investigator, using the following scale: 0=no inflammatory reaction; 1=discrete inflammation of the iris and conjunctival vessels; 2=dilation of the iris and conjunctival vessels with moderate flare in the anterior chamber; 3=hyperemia in iris associated with Tyndall effect in the anterior chamber; and 4=same clinical signs as 3 plus the presence of fibrin or synechiae. - For histopathologic evaluations, EIU rats were euthanized 24 hours after LPS injection. The eyes were enucleated immediately and stored in 10% formalin solution. The eyes were then embedded in paraffin, and 10 μm sagittal sections were cut and stained with hematoxylin and eosin. For histopathologic evaluation, the anterior chamber and posterior chamber around the iris-ciliary body complex were examined with light microscopy.
- As depicted in
FIG. 1A , clinical inflammation scores were significantly reduced in EIU rats pretreated with AICAR at either the 50 mg/kg dosage (2.2±0.75, n=15) or at the 100 mg/kg dosage (2.7±1.4, n=12) when compared with PBS-treated EIU rats (3.6±0.7, n=15) (p=0.00008 and 0.045, respectively). No inflammation was detected in age-matched normal rats that received AICAR alone (n=6). Further, fibrin formation and posterior synechiae were rarely seen in AICAR-pretreated EIU animals when compared to PBS-treated EIU rats or normal rats that received AICAR alone (FIG. 1B ). Histopathological findings also revealed severe leukocyte infiltration in EIU rats compared to rats pretreated with AICAR (FIG. 1C ). - The effects of a single dose of AICAR administered at the time of LPS injection or at 6 hours after LPS injection were also studied. With these alternative timing regimens, there was no suppression of inflammation compared with controls. EIU clinical scores were 3.7±0.5 (n=6) and 3.9±0.2 (n=6), respectively. Since pretreatment with AICAR at the 100 mg/kg dosage was not more effective in reducing inflammation than the 50 mg/kg dosage (no statistically significant difference, p=0.347), the remainder of the experiments were conducted with the 50 mg/kg dose.
- Together, these data indicate that AICAR administration suppresses ocular inflammation in the rat EIU model as measured by slit lamp assessment and histopathology.
- Aqueous humor was collected by anterior chamber puncture with a 30-
gauge needle 24 hours after LPS injection. For cell counting, 1 μl of aqueous humor was diluted with an equal amount of Trypan-blue solution, and the cells were counted with a hematocytometer under a light microscope. A separate sample of aqueous humor was centrifuged at 2500 rpm for 5 minutes at 4° C. and the total protein concentration was measured by Lowry methods using a Bio-Rad protein assay kit (Hercules, Calif.). Aqueous samples were stored on ice until used; cell counts and total protein concentrations were measured on the day of sample collection. -
FIGS. 2A-B depict the anti-inflammatory effect of AICAR on cellular infiltration and protein concentration in the aqueous humor. LPS injection induced severe cell infiltration into the aqueous humor (22.0×105 cells/ml, range 2.5-53.0 cells/ml, n=11), whereas the number of infiltrating cells was reduced with AICAR pretreatment (1.4×105 cells/ml, range 0-4.5 cells/ml, n=11, p=0.001). There was also an increase in total protein concentration in the aqueous humor of EIU rats (18.3 mg/ml, range 8.2-37.8 cells/ml, n=11), which was inhibited in AICAR-pretreated EIU rats (7.9 mg/ml, range 0-17.8 cells/ml, n=11, p=0.006). Normal control rats (n=6) and AICAR-only-treated rats (n=6) did not show any significant infiltration of cells nor a significant increase in protein levels in the aqueous humor. - These data indicate that AICAR treatment reduces cell infiltration into the aqueous humor.
- Inflammation in the posterior segment of the eye is seen in EIU with the adherence of recruited leukocytes to the retinal vascular endothelium (Koizumi et al. (2003) I
NVEST . OPHTHALMOL . VIS . SCI. 44:2184-2191). Leukocyte adhesion to the retinal vessels was evaluated at 24 hours after EIU induction by using the Concanavalin A (Con A) lectin staining technique (Smith et al. (1994) INVEST . OPHTHALMOL . VIS . SCI. 35:101-111). After deep anesthesia, the chest cavities of rats were opened, and a 20-gauge perfusion cannula was introduced into the aorta. Rats were then perfused with 20 ml of PBS to remove erythrocytes and nonadherent leukocytes, followed by 20 ml of fluorescein-isothiocyanate (FITC)-coupled Con A (Vector Laboratories, Burlington, Calif.) in PBS for staining the vascular endothelium and firmly adherent leukocytes. Subsequently, residual unbound Con A was removed with 20 ml of PBS. The eyes were subsequently enucleated and the retinas were carefully flatmounted. The flatmounts were imaged using an epifluorescence microscope (DM RXA; Leica) and the total number of Con A-stained adherent leukocytes per retina was counted. - EIU-associated leukocyte adhesion to retinal vascular endothelium was reduced with AICAR pretreatment (
FIGS. 3A and 3B ). Normal control rats (n=5) and AICAR-only-treated rats (n=6) showed few adherent leukocytes. In contrast, EIU rats revealed significant numbers of adherent leukocytes at 24 hours after LPS injection (1163±244 cells, n=8). AICAR pretreatment of EIU rats resulted in significant suppression of leukocyte adhesion (576±249 cells, n=11, p=0.001). - Protein leakage from retinal vessels was assessed with a biotinylated bovine serum albumin (bBSA) assay as previously described (Trichonas et al. (2010) I
NVEST . OPHTHALMOL . VIS . SCI. 51:1677-1682). At 23 hours after LPS injection, rats were anesthetized and 0.14 ml of 43.7 mg/ml bBSA (Santa-Cruz Biotechnology, Santa Cruz, Calif.) was injected through the femoral vein. After one hour, the chest cavities of rats were opened, and the rats were perfused with lactated Ringer's solution via the left ventricle for 6 minutes. Subsequently, the eyes were enucleated and retinas were carefully removed and placed in cold PBS. The retinas were then placed in 500 μl of lysis buffer containing protease inhibitor (Complete Protease Inhibitor Cocktail Tablets, Roche Diagnostics Corp, Indianapolis, Ind.), sonicated, and centrifuged at 13,000 rpm for 10 minutes. Supernatant was collected, and bBSA concentration was measured by enzyme-linked immunosorbent assay (ELISA). The degree of vascular leakage was estimated by measuring the protein concentration in each retina. - EIU rats had a higher amount of protein leakage from the retinal vessels as measured with bBSA assay (30.5±21.2 ng/mg total retinal protein, n=8) when compared to AICAR-pretreated EIU rats (11.2±7.2 ng/mg total retinal protein, n=8, p=0.03).
- To investigate the LPS-induced signal transduction pathway, NF-κB P65 protein levels translocated into the nuclei of retinal cell extracts were examined 3 hours after LPS injection. For the measurement of NF-κB activity, pooled retinas from six normal rats, nine EIU PBS-treated rats, and nine EIU AICAR-treated rats were analyzed. Retinas were homogenized and nuclear extracts were prepared with ProteoJet Cytoplasmic and Nuclear Protein Extraction Kit (Fermentas inc, Burlington, Canada). The amount of NF-κB in the nuclear extracts was analyzed by measuring the p65 protein levels with a NF-κB detection kit (p65 Transcription Factor Assay kit; Active Motif, Carlsbad, Calif.). NF-κB concentration was calculated and corrected for protein concentration.
- As shown in
FIG. 4 , protein levels in the nuclear extracts were significantly elevated in PBS-treated EIU rats (27.3±11.0 ng/mg total protein, n=9) compared to control rats (8.3±8.6 ng/mg total protein, n=6, p=0.004), whereas AICAR pretreatment significantly suppressed the upregulation (18.2±3.9 ng/mg total protein, n=9, p=0.03). - Stimulation by various signals, including exposure to LPS, lead to NF-κB activation and its movement into the nucleus where it triggers transcription of various pro-inflammatory genes including MCP-1, TNF-α and ICAM-1 (Baeuerle et al., (1994) A
NNU REV IMMUNOL, 12:141-179; Baldwin et al., (1996) ANNU REV IMMUNOL, 14:649-683). In the retinal samples, LPS-induced NF-κB translocation to nuclei was significantly reduced in AICAR-pretreated rats. These results suggest that the subsequent diminished expression of inflammatory mediators in the eye could be the result of inhibition of NF-κB activity. - Under deep anesthesia, experimental rats were sacrificed and the retinas were carefully removed 24 hours after LPS injection, placed into 200 μl of lysis buffer and then sonicated. The lysate was centrifuged at 13,000 rpm for 10 minutes at 4° C. and supernatant was isolated. Three hours after LPS injection, blood samples were collected from the heart and subsequently centrifuged at 3000 rpm for 30 minutes at 4° C., and serum samples were separated. Cytokine and chemokine levels in the serum, aqueous humor, and retina were assessed using the rat CCL2/MCP-1 kit (Invitrogen, Camarillo, Calif.), the rat TNF-α kit (R&D system, Minneapolis, Minn.) and the rat ICAM-1 kit (R&D systems) by ELISA.
- Protein expression of CCL2/MCP-1, TNF-α and ICAM-1 in the aqueous humor (n=12) and retina (n=14) were measured (Table 1). When compared to PBS-treated EIU rats, AICAR-pretreated EIU rats had significantly lower aqueous humor levels of CCL2/MCP-1 (p=0.005), TNF-α (p=0.002) and ICAM-1 (p=0.04). Similarly, expression of CCL2/MCP-1 and ICAM-1 in the retina was suppressed in the AICAR-pretreated group as compared to the PBS-treated group (p=0.004 and p=0.02, respectively). TNF-α protein was not detected in any retina.
- Since AICAR was administered systemically, its suppressing effects on intraocular inflammation could have been mediated locally or systemically. To investigate the systemic effects of AICAR during EIU development, the serum cytokine levels at 3 hours after LPS injection (n=11) were also measured. Both CCL2/MCP-1 and ICAM-1 levels were suppressed in AICAR-pretreated EIU rats compared with PBS-treated rats (CCL2/MCP-1: 0.4±0.2 ng/ml vs 6.8±0.5 ng/ml, p=0.002 and ICAM-1: 21.6±5.0 ng/ml vs 28.7±8.1 ng/ml, p=0.02).
-
TABLE 1 Cytokine and chemokine production in aqueous humor, retina and serum LPS LPS + AICAR p value Aqueous humor (n = 12) MCP-1 (ng/ml) 4.4 ± 3.9 0.8 ± 1.0 0.005 TNF-α (pg/ml) 277.8 ± 123.9 92.5 ± 140.5 0.002 ICAM-1 (ng/ml) 8.7 ± 4.4 4.4 ± 3.3 0.037 Retina (n = 14, pg/total retinal protein) MCP-1 18.7 ± 11.3 8.8 ± 2.9 0.004 TNF-α N.D. N.D. ICAM-1 316.4 ± 132.3 202.9 ± 113.4 0.021 Serum (n = 11) MCP-1 (ng/ml) 6.8 ± 0.5 0.4 ± 0.2 0.002 TNF-α (pg/ml) 147.2 ± 337.1 57.8 ± 143.1 0.475 ICAM-1 (ng/ml) 28.7 ± 8.1 21.6 ± 5.0 0.023 N.D. = not detectable - Leukocyte adhesion to the retinal vessel is a well documented finding in EIU and expression of adhesion molecules such as ICAM-1 play a pivotal role in the pathogenesis of this finding (Yang et al. (2005) B
LOOD 106:584-592). It has been previously noted that ICAM-1 is expressed on vascular endothelial cell of the iris and the ciliary body and that an antibody to ICAM-1 reduces ocular inflammation (Becker et al. (2001) INVEST . OPHTHALMOL . VIS . SCI. 42:2563-2566). As seen in Example 3, the number of adherent leukocytes in retinal vessels of EIU rats was reduced by AICAR pretreatment. It is contemplated that this may be explained at least in part by the observed reduction in retinal expression of ICAM-1 and MCP-1, which is also involved in leukocyte recruitment. Moreover, as seen in Example 4, retinal vascular impermeability was well maintained in the AICAR-pretreated rats. This can also be at least partially attributed to the reduced expression of inflammatory mediators observed in this study. These results suggest that AICAR could be effective for the posterior segment manifestation of inflammation, such as cystoid macular edema, which is a significant cause of vision loss in human uveitis. - CD14 is a co-receptor for LPS and expressed mainly on monocytes, macrophages and neutrophils, and its association with Toll-
like receptor 4 leads to activation of transcriptional factors, including NF-κB (Takeda et al. (2003) ANNU . REV . IMMUNOL. 21:335-376). There have been reports that suppression of CD14 expression has a potent therapeutic effect on reducing LPS-induced inflammation including EIU (Sanchez-Lemus et al. (2009) AM . J. PHYSIOL . REGUL . INTEGR . COMP . PHYSIOL. 296:R1376-1384; Poulaki et al. (2007) FASEB . J. 21:2113-2123). Thus, the effects of AICAR treatment on CD14 mRNA and protein expression were assessed by real time PCR and Western Blot, respectively. - For preparation of peripheral blood mononuclear cell (PBMC) samples, blood samples were collected at three hours after LPS injection, and PBMC samples were isolated by density gradient centrifugation with Histopaque 1083 (Sigma). The red blood cells were lysed with Red Blood Cell Lysing Buffer (Sigma).
- For Western blot analysis, pooled PBMCs from three rats were homogenized with lysis buffer (Roche Diagnostics Corp) and centrifuged at 13,000 rpm for 10 minutes at 4° C. Thirty μg of protein per sample was electrophoresed in a 4-20% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Invitrogen) and electroblotted to polyvinylidene fluoride membrane (Millipore). After blocking with 5% skim milk, the membranes were incubated with a rabbit polyclonal antibody against CD14 (1:200, Santa Cruz Biotechnology) or GAPDH antibody (1:1000, Cell Signaling, Danvers, Mass.) at room temperature for one hour. The membranes were washed three times (five minutes each time) with TBS/Tween (TBST) and incubated for 30 minutes at room temperature with horseradish peroxidase-labeled anti-rabbit secondary antibody (1:20,000; Jackson ImmunoResearch, West Grove, Pa.). The membranes were then washed three times (five min each time) in TBST, and the proteins were visualized by ECL plus (GE Healthcare).
- For measurement of CD14 mRNA expression by real time PCR, total RNA of PBMC was harvested from cells using the RNeasy kit (Qiagen, Valencia, Calif.), and complementary DNA (cDNA) was generated with the OligodT primer (Invitrogen) and Superscript II (Invitrogen) according to the manufacturer's instructions. Real-time PCR was carried out using the following TaqMan gene expression assays (Applied Biosystems): CD14 (Rn00572656_g1) and actin (Rn00667869_m1). Quantitative expression data were acquired and analyzed with a Step One Plus real-time PCR system (Applied Biosystems).
- As depicted in
FIGS. 5A and 5B , at three hours after LPS injection, CD14 mRNA expression in PBMCs from EIU rats was significantly increased (3.8±0.7, n=9) compared to normal rats (0.7±0.3, n=6, p=0.009). AICAR pretreatment significantly suppressed CD14 mRNA levels (1.7±1.0, n=9, p=0.03). Similarly, protein expression of CD14 was increased in EIU rats but decreased in AICAR-pretreated rats. - Collectively, these results demonstrate that both protein and mRNA expression of CD14 were increased after LPS stimulation and pretreatment with AICAR significantly suppressed these elevations. It has been reported that LPS stimulation decreases AMPK activity in macrophages and increases their production of inflammatory cytokines, while AICAR may upregulate AMPK activity and suppress cytokine production. It is contemplated that one of the treatment effects of AICAR is to decrease LPS susceptibility by suppressing CD14 expression.
- The ability of AICAR to suppress autoimmune-mediated intraocular inflammation was investigated in a model of experimental autoimmune uveitis (EAU). EAU is a rodent model of human autoimmune uveitis and has been used for studying the mechanism of autoimmune uveitis and for developing therapeutic strategies (Luger et al. (2008) S
EMIN . IMMUNOPATHOL. 30:135-143). In this model, EAU is induced by immunizing mice with retinal antigens such as interphotoreceptor retinoid-binding protein (IRBP) (Rizzo et al. (1996) J. IMMUNOL. 156:1654-1660; Sanui et al. (1989) J. EXP . MED. 169:1947-1960). - Female C57BL/6 (WT) mice ranging from 6-8 weeks old (Charles River, Wilmington, Mass.) were used for these studies.
- To induce EAU, WT mice were immunized subcutaneously with 200 μg of human interphotoreceptor retinoid-binding protein (hIRBP) 1-20 (GPTHLFQPSLVLDMAKVLLD) (SEQ ID NO:1) (Biomatik, Wilmington, Del.) emulsified in CFA (1:1 v/v) containing 2.5 mg/ml M. tuberculosis (Difco, Detroit, Mich.). As an additional adjuvant, 0.1 g of purified Bordetella pertussis toxin (PTX, Sigma, St. Louis, Mo.) was also injected intraperitoneally. To study the effect of AICAR on EAU, AICAR (100 or 200 mg/kg body weight, Toronto Research Chemicals, Ontario, Canada) was diluted in 0.15 ml phosphate-buffered saline (PBS) and administered daily via intraperitoneal injection from
day 0 to 21 after immunization. Control animals were injected with PBS. - Clinical scoring of EAU was performed by funduscopic examination in a masked fashion as previously described (Pouvreau et al. (1998) J. N
EUROIMMUNOL. 86:171-181). On day 21 after immunization, vascular dilation, white focal vascular lesions, white linear vascular lesions, retinal hemorrhage and retinal detachment were evaluated and the severity of EAU was graded on scale of 0-4 as described by Thurau et al. (1997) CLIN . EXP . IMMUNOL. 109:370-376. For histological assessment, eyes were enucleated on day 21 and immediately frozen in optimal cutting temperature compound (Sakura Finetek, Torrance, Calif.). Ten μm-thick sections were cut near the optic nerve head, air-dried, and fixed in 4% paraformaldehyde and stained with hematoxylin and eosin. The severity of EAU in each eye was scored on a scale of 0-4 based on the number, type, and size of lesions as previously described (Caspri et al. (1988) J. IMMUNOL. 140:1490-1495). - As depicted in
FIGS. 6A , C and D, fundus examination showed that AICAR treatment suppressed clinical inflammation in a dose-dependent manner. More specifically, mean clinical scores were significantly reduced in mice treated with 200 mg/kg of AICAR (1.32±0.95, n=15, p=0.0002) when compared with the control animals (2.6±0.70, n=17). Histological examination also confirmed the ability of AICAR to suppress ocular inflammation. As shown inFIGS. 6B , E and F, mean pathologic scores were reduced in mice treated with 200 mg/kg of AICAR (0.53±0.73, p=0.0008) when compared to control mice (1.65±0.68, p=0.0008). Since 200 mg/kg of AICAR showed the most robust results compared to controls, all other experiments using the EAU model were conducted with this dose. - Altogether, these data indicate that AICAR administration has an anti-inflammatory effect on EAU as demonstrated by clinical and histological findings.
- To investigate the effect of AICAR on retinal inflammation, the mRNA and protein levels of various inflammatory cytokines were assessed. Total RNA from the retina was harvested using the RNeasy kit (Qiagen, Valencia, Calif.). Complementary DNA (cDNA) was generated with OligodT primer (Invitrogen, Camarillo, Calif.) and Superscript II (Invitrogen) according to manufacturer's instructions. Real-time PCR was carried out using the following TaqMan gene expression assays (Applied Biosystems, Foster City, Calif.): IL-6 (Mm99999064_m1), IFN-γ (Mm01168134_m1), TNF (Mm99999068_m1), and actin (Mm00607939_s1). Quantitative expression data were acquired and analyzed with a Step One Plus real-time PCR system (Applied Biosystems).
- For the retinal cytokine analysis, 8 to 10 retinas were removed 21 days after immunization and placed into 500 μl of lysis buffer (Complete Protease Inhibitor Cocktail Tablets, Roche Diagnostics Corp, Indianapolis, Ind.) containing protease inhibitor. After sonication, the lysate was centrifuged at 13,000 rpm for 10 minutes at 4° C. and supernatant was collected. Cytokine levels were measured by ELISA using the Quantikine mouse IFN-γ, IL-6 and TNF-α kits (R&D system, Minneapolis, Minn.). The amount of cytokine present was normalized to total protein concentration in each retina.
- As shown in
FIG. 7A , EAU (i.e., control) mice showed elevated levels of TNF-α, IL-6 and IFN-γ mRNA when compared to wildtype (i.e., naïve) mice. AICAR treatment significantly reduced the levels of TNF-α, IL-6 and IFN-γ mRNA. As shown inFIG. 7B , AICAR treatment also suppressed the protein levels of IL-6 when compared to naive and control mice. Together these data indicate that AICAR suppresses intraocular inflammatory cytokine production and retinal inflammation. - In the EAU model, activated and sensitized Th1 and Th17 cells are considered to play a major role in the initiation and maintenance of intraocular inflammation (Yoshimura et al. (2008) I
NT . IMMUNOL. 20:209-214; Amadi-Obi et al. (2007) NAT . MED. 13:711-718). Specifically, Th1 and Th17 cells respond to retinal antigen resulting in intraocular inflammation, posterior uveitis, disc edema, retinal exudates, vasculitis, and retinal detachment (Luger et al. (2008) SEMIN . IMMUNOPATHOL. 30:135-143; Caspi (2008) IMMUNOL . RES. 42:41-50). Thus, to determine the mechanism by which AICAR suppresses intraocular inflammation and uveitis, the effect of AICAR on T cell response was investigated. More specifically, IRBP-specific T cell responses and cytokine profiles were examined in lymph node (LN) cells. - To extract LN cells, draining lymph nodes from 6 to 8 mice were isolated at sixteen days after immunization and pooled. Single cell suspensions were made using a cell strainer (BD, Franklin Lakes, N.J.). CD4 T cell-enriched fractions were prepared using CD4 Microbeads (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany), and purity of the suspensions was determined by staining with anti-CD4 antibody (GK1.5, Biolegend, San Diego, Calif.) and flow cytometry. All experimental samples of CD4 T cell-enriched fractions were at least 95% CD4-positive.
- To measure cell proliferation, LN cells were resuspended at 5×105 cells per 200 μl of medium in 96-well flat-bottom plates. Cells were incubated for 72 hours and proliferation during the last 12 hours was measured by using a bromodeoxyuridine (BrdU) cell proliferation assay kit (Millipore, Billerica, Mass.). Supernatant in the culture medium was collected at 48 hours and cytokine production in the supernatant was measured by ELISA using the Quantikine mouse IFN-γ, IL-4, IL-10 and IL-17 kits (R&D system, Minneapolis, Minn.).
- To measure the expression of T-bet and RORγt, real-time PCR was carried out as described above using the following TaqMan gene expression assays: T-bet (Mm00450960_m1) and RORγt (Mm01261022_m1). Quantitative expression data were acquired and analyzed with a Step One Plus real-time PCR system (Applied Biosystems).
- In order to assess the in vivo effect of AICAR on the development of IRBP-reactive T cells, LN cells from control and AICAR-treated mice were stimulated with either IRBP or a non-specific T cell stimulator, anti-CD3. Proliferative response was measured with BrdU incorporation. As shown in
FIG. 8A , AICAR treatment suppressed antigen-specific T cell proliferation in a dose-dependent manner when compared to untreated mice. In comparison, when the cells were treated with anti-CD3, there was no difference in T cell proliferation between the AICAR treated and control mice (FIG. 8B ). - As shown in
FIGS. 8C-F , AICAR significantly suppressed the production of IFN-γ, IL-17, and IL-10 by LN cells. Further, AICAR treatment also suppressed the expressions of T-bet and RoRγt, which are transcription factors for Th1 and Th17 cells (FIGS. 8G and H, respectively). - Together, these results suggest that AICAR suppresses Th1 and Th17 cell proliferation and cytokine production.
- In the EAU model, it was previously demonstrated that a shift towards a Th2 response and an increase in the Treg population and in regulatory cytokine production occur as a result of Th1 and Th17 cell suppression (Sun et al. (2010) I
NVEST . OPTHALMOL . VIS . SCI. 51:383-389; Keino et al. (2007) BR . J. OPTHALMOL. 91:105-110). It has been further reported that the Th2 response is related to the resolution of EAU (Takeuchi et al. (2001) JPN . J. OPTHALMOL. 45:463-469) and that this response increases in AICAR-treated experimental autoimmune encephalomyelitis mice during the late phase (Nath et al. (2005) J. IMMUNOL. 175:566-574). - In the current EAU model, a Th2 response was not detected during the inflammatory stage and could not be induced by in vitro treatment with AICAR. Further, as was shown in Example 10, AICAR suppressed the production of IL-10, which is a regulatory cytokine produced by Type-1 T regulatory (Tr1) cell (Pot et al. (2011) S
EMIN . IMMUNOL. 23:202-208) and Treg cells. - The effect of AICAR on the regulatory T (Treg) cell population in the EAU mice was also directly assessed. Specifically, LN cells from five mice were harvested at 21 days after immunization and stained with a mouse regulatory T cell staining kit #2 (eBioscience) according to manufacturer's instructions. CD4+CD25+Foxp3+ Treg populations were subsequently detected by flow cytometry. As shown in
FIG. 9 , the CD4+CD25+Foxp3+ Treg population was not significantly different between control and AICAR-treated mice. These results suggest that AICAR may mediate its effects independent of any effects on Th2, Tr1 and Treg cells. - To examine whether AICAR might have an effect on the effector phase of EAU, AICAR or PBS were administered from
day 8 to 21 after immunization. Both clinical and histopathological findings revealed that AICAR treatment administered during the effector phase significantly suppressed EAU (mean clinical score: 2.44±0.56 in controls vs. 1.50±0.86 in AICAR-treated mice, p=0.031; mean pathologic score: 1.03±0.75 in controls vs. 0.13±0.27 in AICAR-treated mice, p=0.004, n=8). - To assess the effect of AICAR on already developed IRBP-specific T cells, LN cells from untreated EAU mice were cultured with IRBP peptide in the presence of AICAR (
FIG. 10 ). Specifically, LN cells were resuspended at 5×105 cells per 200 μl of medium in 96-well flat-bottom plates. Triplicate samples of cells were stimulated with or without IRBP at the indicated concentrations. AICAR was added at the indicated concentrations. Cell proliferation and cytokine production were measured as previously described in Example 10. - As shown in
FIG. 10 , in vitro treatment with AICAR suppressed T cell proliferation and IFN-γ, IL-17 and IL-10 production. IL-4 production was not significantly induced. - Given that AICAR suppressed inflammation and T cell proliferation as well as cytokine production during the effector phase of EAU, it is contemplated that AICAR may be effective in treating ongoing human uveitis.
- It is contemplated that AICAR may impair the interaction between T cells and antigen presenting cells (APCs), more specifically, dendritic cells (DCs) which are known as professional APCs. It has been reported that AMPK negatively regulates DC maturation by affecting their energy production pathway (Krawczyk et al. (2010) B
LOOD 115:4742-4749). Further, it is know that co-stimulatory signals are involved in the course of EAU and blockade of these signals ameliorates intraocular inflammation (Bagenstose et al. (2005) J. IMMUNOL. 175:124-130; Namba et al. (2000) J. IMMUNOL. 165:2962-2969; Fukai et al. (1999) GRAEFES . ARCH . CLIN . EXP. OPTHALMOL. 237:928-933). For antigen specific T cell proliferation, naive CD4 T cells interacts with antigen presenting cells (APC) which express co-stimulatory molecules (second signals) such as CD40, CD80 and CD86 in addition to MHC molecules (first signals) (Jenkins (1994) IMMUNITY 1:443-446; Janeway et al. (1994) CELL 76:275-285). - To investigate whether DC maturation was affected by AICAR, splenic DCs were isolated from EAU mice and analyzed for co-stimulatory molecule expression. Specifically, spleen cells from 4 to 5 EAU mice were pooled at twelve days after immunization and incubated with the following monoclonal antibodies: anti-CD11c (N418), CD40 (3/23), CD80 (16-10A1), CD86 (GL-1), I-Ab (AF6-120.1) (Biolegend). Spleen cells were gated on the basis of forward and side scatter profile and propidium iodide or DAPI exclusion. Samples of 1×106 cells were analyzed by LSR (Becton Dickinson, Franklin Lakes, N.J.).
- As indicated in
FIG. 11 , the expression of CD80 and I-Ab was elevated whereas CD40 and CD86 were not changed after IRBP immunization. There was no difference between the AICAR-treated and non-treated groups, which may be due to the heterogeneity of the DC population in vivo. Thus, experiments using in vitro cultured bone marrow-derived DCs (BMDCS) were performed to examine the potential role of AICAR on DC maturation. - BMDCs were generated as previously described (Wang et al. (2005) I
MMUNOL . LETT. 98:123-130). Briefly, bone marrow was flushed from the femurs and tibias of naive mice (6 to 8-week-old WT or AMPKα1 KO mice). The red blood cells were lysed using Red Blood Cell Lysing Buffer (Sigma). Approximately 2×106 cells were cultured in complete medium (RPMI 1640 medium containing 10% FBS, 50 mM 2-ME, 10 mM HEPES [pH 7.4], 2 mM glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin) including 10 ng/ml GM-CSF (Pepro Tech, London, England). Fresh media was added to the cells onday 4 of culture, and nonadherent cells and loosely adherent cells were collected as immature DCs on day 7. Immature DCs were stimulated with 100 ng/ml LPS (Salmonella typhimurium; Sigma) for 24 hours to obtain mature DCs. In some experiments, AICAR was added to the culture. As shown inFIG. 12A , the expressions of CD40, CD80, CD86 and I-Ab were markedly elevated after stimulation of BMDCs with LPS. AICAR significantly suppressed these elevations in a dose-dependent manner. - After LPS stimulation for 24 hours, supernatant of the BMDC culture was collected and IL-6, TNF-α and IL12/23 p40 concentrations were measured (R&D system). As indicated in
FIG. 12B , AICAR significantly suppressed the production of IL-6, IL-12/23 p40 and TNF-α in BMDCs. - Altogether, these data suggest that at least part of the effect of AICAR in EAU is mediated through its effect on DC maturation and subsequent T cell proliferation and differentiation.
- In these experiments, AMPKα1 KO mice were provided as previously described (Jorgensen et al. (2004) J. B
IOL . CHEM. 279:1070-1079). - AICAR is a cell permeable activator of AMP-activated protein kinase (AMPK), which is a Serine/Threonine kinase that senses cellular energy status. Once inside the cell, AICAR is phosphorylated by adenosine kinase to the monophosphorylated form (ZMP), which mimics AMP and activates AMPK. AMPK is also implicated in the inflammatory response. Activation of AMPK changes macrophage function to an anti-inflammatory phenotype (Sag et al. (2008) J. I
MMUNOL. 181:8633-8641) and inhibits dendritic cell (DC) maturation (Krawczyk et al. (2010) BLOOD 155:4742-4749), which is essential to induce lymphocyte activation. - AMPK is a heterotrimeric complex and the catalytic subunits of AMPKα consists of α1 and α2 and regulatory β and γ subunits (Hardy et al. (2003) FEBS L
ETT. 546:113-120). Western blot analysis was performed to determine the AMPKα1 and AMPKα2 expression in mice. Specifically, 20 μg of lysate from BMDC, liver and spleen of WT and AMPKα1 KO mice were electrophoresed in a 4-20% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Invitrogen) and electroblotted to polyvinylidene fluoride membrane (Millipore). After blocking with blocking buffer (Thermo scientific, Rockford, Ill.), the membranes were incubated with a rabbit polyclonal antibody against AMPKα1, AMPKα2 (1:1000, Abcam, Cambridge, Mass.) or GAPDH antibody (1:1000, Cell Signaling, Danvers, Mass.). The membranes were washed three times (5 minutes each time) with TBS/tween (TBST) and incubated for 30 minutes at room temperature with horseradish peroxidase-labeled anti-rabbit secondary antibody (1:20,000; Jackson ImmunoResearch, West Grove, Pa.). The membranes were washed again three times (5 minutes each time) in TBST, and the proteins were visualized by ECL plus (GE Healthcare, Piscataway, N.J.). As shown inFIG. 13 , BMDCs expressed only the AMPKα1 subunit. - Since BMDCs expressed only AMPKα1, BMDCs were extracted from AMPKα1 KO mouse and used to determine the role of AMPK in the anti-inflammatory effects of AICAR. As shown in
FIGS. 14A and B, AICAR suppressed the maturation of AMPKα1 KO BMDCs. Specifically, AICAR significantly suppressed the expression of CD40, CD80, CD86 and I-Ab in AMPKα1 KO BMDCs after LPS stimulation (FIG. 14A ). Further, AICAR also suppressed the production of IL-6, TNF-α and IL12/23 p40 in AMPKα1 KO BMDCs after LPS stimulation (FIG. 14B ). - To further study AICAR's suppressive effect, an adenosine kinase inhibitor (IODO) was used to inhibit AICAR conversion to ZMP. In addition, an inhibitor of nucleoside transporter (DPY) was used to block AICAR translocation into cells. As demonstrated in
FIG. 15 , IODO did not affect the downregulation of co-stimulatory molecule expression by AICAR, suggesting that AICAR suppresses DC maturation mainly through an AMPK-independent pathway. However, DPY reversed the AICAR-mediated suppression of co-stimulatory molecule expression, indicating that the effects of AICAR are mediated via intracellular pathways. - The entire disclosure of each of the patent documents and scientific articles cited herein are incorporated by reference in their entirety for all purposes.
- The invention can be embodied in other specific forms with departing from the essential characteristics thereof. The foregoing embodiments therefore are to be considered illustrative rather than limiting on the invention described herein. The scope of the invention is indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Claims (15)
1. A method of treating macular edema in a subject in need thereof, the method comprising:
administering AICAR or a pharmaceutically acceptable salt, ester or prodrug thereof to the subject in an amount sufficient to ameliorate a symptom of the macular edema.
2. The method of claim 1 , wherein the macular edema occurs as a result of age-related macular degeneration, cataract surgery, diabetes, drug toxicity, eye injury, retinal vein occlusion, or other inflammatory eye diseases.
3. The method of claim 1 , wherein the macular edema occurs as a result of cataract surgery or diabetes.
4. A method of treating autoimmune uveitis or uveitis associated with type II, type III, type IV, or type V hypersensitivity reactions in a subject in need thereof, the method comprising:
administering AICAR or a pharmaceutically acceptable salt, ester or prodrug thereof to the subject in an amount sufficient to ameliorate a symptom of the uveitis.
5. A method of treating endophthalmitis in a subject in need thereof, the method comprising:
administering 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or a pharmaceutically acceptable salt, ester or prodrug thereof to the subject in an amount sufficient to ameliorate a symptom of the endophthalmitis.
6. The method of claim 5 , wherein the endophthalmitis is the exogenous form.
7. The method of claim 5 , wherein the endophthalmitis is the endogenous form.
8. The method of claim 1 , wherein from about 0.01 mg/kg to about 500 mg/kg of AICAR or a pharmaceutically acceptable salt, ester or prodrug thereof is administered.
9. The method of claim 1 , wherein from about 0.01 mg/kg to about 200 mg/kg of AICAR or a pharmaceutically acceptable salt, ester or prodrug thereof is administered.
10. The method of claim 1 , wherein about 0.5 mg/kg to about 100 mg/kg of AICAR or a pharmaceutically acceptable salt, ester or prodrug thereof is administered.
11. The method of claim 1 , wherein about 1 mg/kg to about 10 mg/kg of AICAR or a pharmaceutically acceptable salt, ester or prodrug thereof is administered.
12. The method of claim 1 , wherein the AICAR or the pharmaceutically acceptable salt, ester or prodrug thereof is administered to the eye.
13. The method of claim 1 , wherein the AICAR or the pharmaceutically acceptable salt, ester or prodrug thereof is administered by intraocular injection.
14. The method of claim 1 , wherein the AICAR or the pharmaceutically acceptable salt, ester or prodrug thereof is administered intravitreally.
15. The method of claim 1 , wherein the AICAR or the pharmaceutically acceptable salt, ester or prodrug thereof is administered systemically.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/129,708 US20150005254A1 (en) | 2011-06-27 | 2012-06-27 | Methods for treating ocular inflammatory disorders |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161501586P | 2011-06-27 | 2011-06-27 | |
| US201261597258P | 2012-02-10 | 2012-02-10 | |
| PCT/US2012/044409 WO2013003467A2 (en) | 2011-06-27 | 2012-06-27 | Methods for treating ocular inflammatory disorders |
| US14/129,708 US20150005254A1 (en) | 2011-06-27 | 2012-06-27 | Methods for treating ocular inflammatory disorders |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/044409 A-371-Of-International WO2013003467A2 (en) | 2011-06-27 | 2012-06-27 | Methods for treating ocular inflammatory disorders |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/624,172 Continuation US10842806B2 (en) | 2011-06-27 | 2017-06-15 | Methods for treating ocular inflammatory disorders |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150005254A1 true US20150005254A1 (en) | 2015-01-01 |
Family
ID=46640089
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/129,708 Abandoned US20150005254A1 (en) | 2011-06-27 | 2012-06-27 | Methods for treating ocular inflammatory disorders |
| US15/624,172 Active 2033-01-03 US10842806B2 (en) | 2011-06-27 | 2017-06-15 | Methods for treating ocular inflammatory disorders |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/624,172 Active 2033-01-03 US10842806B2 (en) | 2011-06-27 | 2017-06-15 | Methods for treating ocular inflammatory disorders |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20150005254A1 (en) |
| WO (1) | WO2013003467A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10842806B2 (en) | 2011-06-27 | 2020-11-24 | Massachusetts Eye And Ear Infirmary | Methods for treating ocular inflammatory disorders |
| US11834469B2 (en) * | 2018-08-06 | 2023-12-05 | Skylark Bioscience Llc | AMP-activated protein kinase activating compounds and uses thereof |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015103480A1 (en) | 2014-01-02 | 2015-07-09 | Massachusetts Eye & Ear Infirmary | Treating ocular neovascularization |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4575498A (en) | 1983-07-21 | 1986-03-11 | Duke University | Method for restoring depleted purine nucleotide pools |
| US5082829A (en) | 1989-01-24 | 1992-01-21 | Gensia Pharmaceuticals | AICA riboside prodrugs |
| US5777100A (en) | 1990-08-10 | 1998-07-07 | Gensia Inc. | AICA riboside analogs |
| US5443505A (en) | 1993-11-15 | 1995-08-22 | Oculex Pharmaceuticals, Inc. | Biocompatible ocular implants |
| US5725493A (en) | 1994-12-12 | 1998-03-10 | Avery; Robert Logan | Intravitreal medicine delivery |
| US6299895B1 (en) | 1997-03-24 | 2001-10-09 | Neurotech S.A. | Device and method for treating ophthalmic diseases |
| JP2002534139A (en) | 1999-01-05 | 2002-10-15 | マサチューセッツ・アイ・アンド・イア・インファーマリー | Transscleral sustained release drug targeted delivery to retina and choroid |
| US6416777B1 (en) | 1999-10-21 | 2002-07-09 | Alcon Universal Ltd. | Ophthalmic drug delivery device |
| TR200201047T2 (en) | 1999-10-21 | 2002-07-22 | Alcon, Inc. | Medication delivery means. |
| US6375972B1 (en) | 2000-04-26 | 2002-04-23 | Control Delivery Systems, Inc. | Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof |
| AU2001268236A1 (en) | 2000-06-06 | 2001-12-17 | Trustees Of Boston University | Use of aicar and related compounds |
| EP1387671A1 (en) | 2001-05-03 | 2004-02-11 | MASSACHUSETTS EYE & EAR INFIRMARY | Implantable drug delivery device and use thereof |
| US20070270350A1 (en) | 2003-12-23 | 2007-11-22 | Musc Foundation For Research Development | Methods and Compositions for the Prevention and Treatment of Inflammatory Diseases or Conditions |
| JP2009502954A (en) * | 2005-07-27 | 2009-01-29 | ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド | Small molecules to correct protein misfolding and uses thereof |
| JP2010514804A (en) | 2006-12-29 | 2010-05-06 | ザ・ソーク・インスティチュート・フォー・バイオロジカル・スタディーズ | Ways to increase athletic performance |
| WO2010073011A2 (en) * | 2008-12-23 | 2010-07-01 | Betagenon Ab | Compounds useful as medicaments |
| US20150005254A1 (en) | 2011-06-27 | 2015-01-01 | Massachusetts Eye And Ear Infirmary | Methods for treating ocular inflammatory disorders |
-
2012
- 2012-06-27 US US14/129,708 patent/US20150005254A1/en not_active Abandoned
- 2012-06-27 WO PCT/US2012/044409 patent/WO2013003467A2/en not_active Ceased
-
2017
- 2017-06-15 US US15/624,172 patent/US10842806B2/en active Active
Non-Patent Citations (3)
| Title |
|---|
| Banker, G.S. et al, "Modern Pharmaceutics, 3ed.", Marcel Dekker, New York, 1996, page 596. * |
| Suzuki et al., Investigative Ophthalmology & Visual Science, April 2011, vol 52, pp 2943. * |
| Wolff, Manfred E. "Burger's Medicinal Chemistry, 5ed, Part I", John Wiley & Sons, 1995, pages 975-977. * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10842806B2 (en) | 2011-06-27 | 2020-11-24 | Massachusetts Eye And Ear Infirmary | Methods for treating ocular inflammatory disorders |
| US11834469B2 (en) * | 2018-08-06 | 2023-12-05 | Skylark Bioscience Llc | AMP-activated protein kinase activating compounds and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2013003467A2 (en) | 2013-01-03 |
| US10842806B2 (en) | 2020-11-24 |
| WO2013003467A3 (en) | 2013-02-28 |
| US20180036329A1 (en) | 2018-02-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7083802B2 (en) | Treatment of ocular disease | |
| US9724357B2 (en) | Methods for preserving photoreceptor cell viability following retinal detachment | |
| RU2582609C2 (en) | Compounds for treating/preventing inflammatory ophthalmic diseases | |
| Adams et al. | Glaucoma-next generation therapeutics: impossible to possible | |
| Ratay et al. | Modern therapeutic approaches for noninfectious ocular diseases involving inflammation | |
| US10143703B2 (en) | Treating ocular neovascularization | |
| JP7382437B2 (en) | Demethylation to treat eye diseases | |
| US10842806B2 (en) | Methods for treating ocular inflammatory disorders | |
| JP2016117781A (en) | METHOD OF ACTIVATING REGULATORY T CELLS WITH α-2B ADRENERGIC RECEPTOR AGONISTS | |
| JP2018521126A (en) | Pharmaceutical composition comprising an integrin α4 antagonist for use in treating an ocular inflammatory condition | |
| Sadrai et al. | Effect of topical azithromycin on corneal innate immune responses | |
| WO2007097961A1 (en) | Use of azurocidin inhibitors in prevention and treatment of ocular vascular leakage | |
| US12440538B2 (en) | Treatment for ocular fibrosis | |
| US20210046002A1 (en) | Amelioration of autoimmune uveitis through blockade of csf1r | |
| US20190247302A1 (en) | Materials and methods for treating ophthalmic inflammation | |
| KR20250042183A (en) | Dry eye treatment agent containing DNA oligonucleotides that selectively bind to IFN-γ | |
| CN117279653A (en) | Compounds used to treat eye diseases and conditions | |
| Mokbel et al. | Rho-Kinase Inhibitors as a novel medication for Glaucoma Treatment–A Review of the literature | |
| RU2804300C2 (en) | Demethylation for treatment of eye disease | |
| TW202523286A (en) | Rifamycin ophthalmic composition and use thereof | |
| Golmohammadi et al. | A comprehensive review of the effects of tacrolimus (FK-506) on dry eye disease (DED): Focus on inflammation | |
| Ratay | Treg Recruitment/Induction for the Prevention of Anexperimental Inflammatory Model of Dry Eye Disease |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MASSACHUSETTS EYE AND EAR INFIRMARY, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAVVAS, DEMETRIOS G.;REEL/FRAME:034165/0254 Effective date: 20140808 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |