US20140378471A1 - Substituted oxindole derivatives and their use as vasopressin receptor ligands - Google Patents
Substituted oxindole derivatives and their use as vasopressin receptor ligands Download PDFInfo
- Publication number
- US20140378471A1 US20140378471A1 US14/481,847 US201414481847A US2014378471A1 US 20140378471 A1 US20140378471 A1 US 20140378471A1 US 201414481847 A US201414481847 A US 201414481847A US 2014378471 A1 US2014378471 A1 US 2014378471A1
- Authority
- US
- United States
- Prior art keywords
- methoxy
- ethoxypyridin
- cyano
- dihydro
- indol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 125000004095 oxindolyl group Chemical class N1(C(CC2=CC=CC=C12)=O)* 0.000 title abstract description 11
- 102000004136 Vasopressin Receptors Human genes 0.000 title description 18
- 108090000643 Vasopressin Receptors Proteins 0.000 title description 18
- 239000003446 ligand Substances 0.000 title description 8
- 238000011282 treatment Methods 0.000 claims abstract description 89
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 59
- 238000011321 prophylaxis Methods 0.000 claims abstract description 46
- 239000003814 drug Substances 0.000 claims abstract description 42
- 201000010099 disease Diseases 0.000 claims abstract description 35
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 claims abstract description 22
- 230000001419 dependent effect Effects 0.000 claims abstract description 21
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 claims abstract description 19
- 108010004977 Vasopressins Proteins 0.000 claims abstract description 19
- 102000002852 Vasopressins Human genes 0.000 claims abstract description 19
- 229960003726 vasopressin Drugs 0.000 claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims description 210
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 114
- 150000003839 salts Chemical class 0.000 claims description 107
- 229940002612 prodrug Drugs 0.000 claims description 102
- 239000000651 prodrug Substances 0.000 claims description 102
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 57
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 52
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 51
- 239000001257 hydrogen Substances 0.000 claims description 41
- 229910052739 hydrogen Inorganic materials 0.000 claims description 41
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 41
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 39
- 208000035475 disorder Diseases 0.000 claims description 24
- 230000003287 optical effect Effects 0.000 claims description 20
- 208000019901 Anxiety disease Diseases 0.000 claims description 17
- 208000028017 Psychotic disease Diseases 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 208000019022 Mood disease Diseases 0.000 claims description 12
- 229940079593 drug Drugs 0.000 claims description 12
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 12
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 9
- 206010047163 Vasospasm Diseases 0.000 claims description 8
- 206010047700 Vomiting Diseases 0.000 claims description 8
- 230000001404 mediated effect Effects 0.000 claims description 8
- 208000024891 symptom Diseases 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 239000012458 free base Substances 0.000 claims description 7
- 208000019116 sleep disease Diseases 0.000 claims description 7
- 208000024827 Alzheimer disease Diseases 0.000 claims description 6
- 208000014311 Cushing syndrome Diseases 0.000 claims description 6
- 208000020401 Depressive disease Diseases 0.000 claims description 6
- 206010027175 memory impairment Diseases 0.000 claims description 6
- 201000009395 primary hyperaldosteronism Diseases 0.000 claims description 6
- 206010019280 Heart failures Diseases 0.000 claims description 5
- 206010020772 Hypertension Diseases 0.000 claims description 5
- 241000124008 Mammalia Species 0.000 claims description 5
- 230000010287 polarization Effects 0.000 claims description 5
- 206010002388 Angina unstable Diseases 0.000 claims description 4
- 206010003225 Arteriospasm coronary Diseases 0.000 claims description 4
- 208000008967 Enuresis Diseases 0.000 claims description 4
- 206010060800 Hot flush Diseases 0.000 claims description 4
- 208000019025 Hypokalemia Diseases 0.000 claims description 4
- 206010021036 Hyponatraemia Diseases 0.000 claims description 4
- 206010053198 Inappropriate antidiuretic hormone secretion Diseases 0.000 claims description 4
- 206010021639 Incontinence Diseases 0.000 claims description 4
- 206010022489 Insulin Resistance Diseases 0.000 claims description 4
- 206010022714 Intestinal ulcer Diseases 0.000 claims description 4
- 206010028851 Necrosis Diseases 0.000 claims description 4
- 206010030113 Oedema Diseases 0.000 claims description 4
- 208000007107 Stomach Ulcer Diseases 0.000 claims description 4
- 208000037175 Travel-Related Illness Diseases 0.000 claims description 4
- 208000007814 Unstable Angina Diseases 0.000 claims description 4
- 208000015294 blood coagulation disease Diseases 0.000 claims description 4
- 238000002512 chemotherapy Methods 0.000 claims description 4
- 238000007887 coronary angioplasty Methods 0.000 claims description 4
- 206010012601 diabetes mellitus Diseases 0.000 claims description 4
- 230000004064 dysfunction Effects 0.000 claims description 4
- 230000002496 gastric effect Effects 0.000 claims description 4
- 201000005917 gastric ulcer Diseases 0.000 claims description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 4
- 201000008284 inappropriate ADH syndrome Diseases 0.000 claims description 4
- 201000004332 intermediate coronary syndrome Diseases 0.000 claims description 4
- 208000028867 ischemia Diseases 0.000 claims description 4
- 230000027939 micturition Effects 0.000 claims description 4
- 201000003152 motion sickness Diseases 0.000 claims description 4
- 208000010125 myocardial infarction Diseases 0.000 claims description 4
- 230000017074 necrotic cell death Effects 0.000 claims description 4
- 208000005346 nocturnal enuresis Diseases 0.000 claims description 4
- 208000024896 potassium deficiency disease Diseases 0.000 claims description 4
- 208000002815 pulmonary hypertension Diseases 0.000 claims description 4
- 210000005227 renal system Anatomy 0.000 claims description 4
- 201000000980 schizophrenia Diseases 0.000 claims description 4
- 230000001331 thermoregulatory effect Effects 0.000 claims description 4
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 4
- 230000001457 vasomotor Effects 0.000 claims description 4
- 230000009261 transgenic effect Effects 0.000 claims description 2
- -1 alkyl radicals Chemical class 0.000 description 303
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical group O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 217
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 103
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 72
- IVXQBCUBSIPQGU-UHFFFAOYSA-N piperazine-1-carboxamide Chemical compound NC(=O)N1CCNCC1 IVXQBCUBSIPQGU-UHFFFAOYSA-N 0.000 description 54
- 125000004204 2-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 45
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 45
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 43
- 239000000243 solution Substances 0.000 description 42
- 239000000203 mixture Substances 0.000 description 39
- 238000006243 chemical reaction Methods 0.000 description 38
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N DMSO Substances CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 37
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 37
- JSPCTNUQYWIIOT-UHFFFAOYSA-N piperidine-1-carboxamide Chemical compound NC(=O)N1CCCCC1 JSPCTNUQYWIIOT-UHFFFAOYSA-N 0.000 description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 34
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 33
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 30
- 239000000126 substance Substances 0.000 description 30
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 27
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 26
- 239000002904 solvent Substances 0.000 description 26
- 238000012360 testing method Methods 0.000 description 25
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 22
- 239000011541 reaction mixture Substances 0.000 description 21
- 102000005962 receptors Human genes 0.000 description 21
- 108020003175 receptors Proteins 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 20
- 230000002829 reductive effect Effects 0.000 description 20
- 238000011534 incubation Methods 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 230000027455 binding Effects 0.000 description 18
- 239000000872 buffer Substances 0.000 description 18
- 239000012074 organic phase Substances 0.000 description 18
- 239000012071 phase Substances 0.000 description 18
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 14
- 125000000814 indol-3-yl group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C([*])C2=C1[H] 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 13
- 235000019341 magnesium sulphate Nutrition 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- 230000002503 metabolic effect Effects 0.000 description 12
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 12
- 239000000741 silica gel Substances 0.000 description 12
- 229910002027 silica gel Inorganic materials 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 11
- 239000003480 eluent Substances 0.000 description 11
- HZSMEKNTJYZZBB-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O HZSMEKNTJYZZBB-UHFFFAOYSA-N 0.000 description 11
- 230000035882 stress Effects 0.000 description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 11
- 238000004809 thin layer chromatography Methods 0.000 description 11
- 239000008346 aqueous phase Substances 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000007983 Tris buffer Substances 0.000 description 9
- 0 [1*]C1=NC=C([2*])C=C1C1(CC(=O)N2CCC(C3CCN([7*])CC3)CC2)C(=O)N(S(=O)(=O)C2=C([5*])C=C([6*])C=C2)C2=CC([4*])=C([3*])C=C21 Chemical compound [1*]C1=NC=C([2*])C=C1C1(CC(=O)N2CCC(C3CCN([7*])CC3)CC2)C(=O)N(S(=O)(=O)C2=C([5*])C=C([6*])C=C2)C2=CC([4*])=C([3*])C=C21 0.000 description 9
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- 210000001853 liver microsome Anatomy 0.000 description 9
- 229910001629 magnesium chloride Inorganic materials 0.000 description 9
- LSKKHBTWHPBGLH-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(CC)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O LSKKHBTWHPBGLH-UHFFFAOYSA-N 0.000 description 9
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 9
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 9
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- PWRRNUBJUFGZCE-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O PWRRNUBJUFGZCE-UHFFFAOYSA-N 0.000 description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000003228 microsomal effect Effects 0.000 description 7
- 238000000159 protein binding assay Methods 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000004440 column chromatography Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- VIDMIOKASRFRJC-UHFFFAOYSA-N phenyl n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]carbamate Chemical compound CCOC1=NC=CC=C1C1(NC(=O)OC=2C=CC=CC=2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O VIDMIOKASRFRJC-UHFFFAOYSA-N 0.000 description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- JOXMSOKQNJLNEN-UHFFFAOYSA-N 1-ethyl-4-piperidin-4-ylpiperazine Chemical compound C1CN(CC)CCN1C1CCNCC1 JOXMSOKQNJLNEN-UHFFFAOYSA-N 0.000 description 5
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 5
- 229960000583 acetic acid Drugs 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 5
- 229960001723 oxytocin Drugs 0.000 description 5
- 238000002953 preparative HPLC Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- HBORMJBGPGQHSF-UHFFFAOYSA-N 1-(benzenesulfonyl)-3h-indol-2-one Chemical class O=C1CC2=CC=CC=C2N1S(=O)(=O)C1=CC=CC=C1 HBORMJBGPGQHSF-UHFFFAOYSA-N 0.000 description 4
- XDKWHPZBJBQSNK-UHFFFAOYSA-N 3-amino-3-(2-ethoxypyridin-3-yl)-2-oxo-1h-indole-5-carbonitrile Chemical compound CCOC1=NC=CC=C1C1(N)C2=CC(C#N)=CC=C2NC1=O XDKWHPZBJBQSNK-UHFFFAOYSA-N 0.000 description 4
- SGZFJWQQBHYNNF-UHFFFAOYSA-N 3-hydroxyindolin-2-one Chemical class C1=CC=C2C(O)C(=O)NC2=C1 SGZFJWQQBHYNNF-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 230000005595 deprotonation Effects 0.000 description 4
- 238000010537 deprotonation reaction Methods 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 230000009871 nonspecific binding Effects 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- AHWALFGBDFAJAI-UHFFFAOYSA-N phenyl carbonochloridate Chemical compound ClC(=O)OC1=CC=CC=C1 AHWALFGBDFAJAI-UHFFFAOYSA-N 0.000 description 4
- 239000008057 potassium phosphate buffer Substances 0.000 description 4
- 239000002287 radioligand Substances 0.000 description 4
- 238000001525 receptor binding assay Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- 239000012312 sodium hydride Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- PKWGCPYRKMUKSZ-UHFFFAOYSA-N 3-(2-ethoxypyridin-3-yl)-3-hydroxy-2-oxo-1h-indole-5-carbonitrile Chemical compound CCOC1=NC=CC=C1C1(O)C2=CC(C#N)=CC=C2NC1=O PKWGCPYRKMUKSZ-UHFFFAOYSA-N 0.000 description 3
- UQQVDTZGRDVQQW-UHFFFAOYSA-N 3-(2-ethoxypyridin-3-yl)-3-hydroxy-5-iodo-1h-indol-2-one Chemical compound CCOC1=NC=CC=C1C1(O)C2=CC(I)=CC=C2NC1=O UQQVDTZGRDVQQW-UHFFFAOYSA-N 0.000 description 3
- ROTGHZRDRWGSFW-UHFFFAOYSA-N 3-amino-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindole-5-carbonitrile Chemical compound CCOC1=NC=CC=C1C1(N)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O ROTGHZRDRWGSFW-UHFFFAOYSA-N 0.000 description 3
- NDIGBZNGPMRULQ-UHFFFAOYSA-N 3-chloro-3-(2-ethoxypyridin-3-yl)-2-oxo-1h-indole-5-carbonitrile Chemical compound CCOC1=NC=CC=C1C1(Cl)C2=CC(C#N)=CC=C2NC1=O NDIGBZNGPMRULQ-UHFFFAOYSA-N 0.000 description 3
- 102000004506 Blood Proteins Human genes 0.000 description 3
- 108010017384 Blood Proteins Proteins 0.000 description 3
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 3
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- 101800000989 Oxytocin Proteins 0.000 description 3
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 3
- 102100031951 Oxytocin-neurophysin 1 Human genes 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000003841 chloride salts Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007903 gelatin capsule Substances 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 3
- DDLIGBOFAVUZHB-UHFFFAOYSA-N midazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F DDLIGBOFAVUZHB-UHFFFAOYSA-N 0.000 description 3
- 229960003793 midazolam Drugs 0.000 description 3
- UTVGTLXXCXVHMU-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCNCC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O UTVGTLXXCXVHMU-UHFFFAOYSA-N 0.000 description 3
- JWADLEVCAHEFJV-UHFFFAOYSA-N n-[5-cyano-3-(2-ethoxypyridin-3-yl)-1-(4-methoxyphenyl)sulfonyl-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C=CC(OC)=CC=2)C1=O JWADLEVCAHEFJV-UHFFFAOYSA-N 0.000 description 3
- GJTYNQSTAHOYKS-UHFFFAOYSA-N n-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1h-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCN(C)CC2)C2=CC(C#N)=CC=C2NC1=O GJTYNQSTAHOYKS-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 238000006268 reductive amination reaction Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- MECZVXZKBAUTAO-UHFFFAOYSA-N tert-butyl 4-(4-ethylpiperazin-1-yl)piperidine-1-carboxylate Chemical compound C1CN(CC)CCN1C1CCN(C(=O)OC(C)(C)C)CC1 MECZVXZKBAUTAO-UHFFFAOYSA-N 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 238000003828 vacuum filtration Methods 0.000 description 3
- OHUMKYGINIODOY-UHFFFAOYSA-N 1-(1-methylpiperidin-4-yl)piperazine Chemical compound C1CN(C)CCC1N1CCNCC1 OHUMKYGINIODOY-UHFFFAOYSA-N 0.000 description 2
- OEUGDMOJQQLVAZ-UHFFFAOYSA-N 5-Iodoisatin Chemical compound IC1=CC=C2NC(=O)C(=O)C2=C1 OEUGDMOJQQLVAZ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000007818 Grignard reagent Substances 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- 102100028139 Oxytocin receptor Human genes 0.000 description 2
- 108090000876 Oxytocin receptors Proteins 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 2
- GGAUEGOKJGPREL-UHFFFAOYSA-N [C-]#[N+]C1=CC=C2C(=C1)C(NC(=O)N1CCN(C3CCN(C)CC3)CC1)(C1=CC=CN=C1OCC)C(=O)N2S(=O)(=O)C1=C(OC)C=C(OC)C=C1 Chemical compound [C-]#[N+]C1=CC=C2C(=C1)C(NC(=O)N1CCN(C3CCN(C)CC3)CC1)(C1=CC=CN=C1OCC)C(=O)N2S(=O)(=O)C1=C(OC)C=C(OC)C=C1 GGAUEGOKJGPREL-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 201000010064 diabetes insipidus Diseases 0.000 description 2
- BABWHSBPEIVBBZ-UHFFFAOYSA-N diazete Chemical compound C1=CN=N1 BABWHSBPEIVBBZ-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- IXTMWRCNAAVVAI-UHFFFAOYSA-N dofetilide Chemical compound C=1C=C(NS(C)(=O)=O)C=CC=1CCN(C)CCOC1=CC=C(NS(C)(=O)=O)C=C1 IXTMWRCNAAVVAI-UHFFFAOYSA-N 0.000 description 2
- 229960002994 dofetilide Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 230000004179 hypothalamic–pituitary–adrenal axis Effects 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- JYGFTBXVXVMTGB-UHFFFAOYSA-N indolin-2-one Chemical group C1=CC=C2NC(=O)CC2=C1 JYGFTBXVXVMTGB-UHFFFAOYSA-N 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- RXKNBKJVJUZJJL-UHFFFAOYSA-N n-[1-(benzenesulfonyl)-5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(CC)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C=CC=CC=2)C1=O RXKNBKJVJUZJJL-UHFFFAOYSA-N 0.000 description 2
- CRDYNOSXKISNEO-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(1-ethylpiperidin-4-yl)piperidine-1-carboxamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)C2CCN(CC)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O CRDYNOSXKISNEO-UHFFFAOYSA-N 0.000 description 2
- IYKDVJYBXSIJJR-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperidine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)C2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O IYKDVJYBXSIJJR-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- RMAORVGITSVCLP-UHFFFAOYSA-N phenyl 5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-3-(phenoxycarbonylamino)indole-1-carboxylate Chemical compound CCOC1=NC=CC=C1C1(NC(=O)OC=2C=CC=CC=2)C2=CC(C#N)=CC=C2N(C(=O)OC=2C=CC=CC=2)C1=O RMAORVGITSVCLP-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 208000019899 phobic disease Diseases 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 125000003003 spiro group Chemical group 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- PNYNPRKQKRFBTK-UHFFFAOYSA-N tert-butyl 4-[1-[[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]carbamoyl]piperidin-4-yl]piperazine-1-carboxylate Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(CC2)C(=O)OC(C)(C)C)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O PNYNPRKQKRFBTK-UHFFFAOYSA-N 0.000 description 2
- ROUYFJUVMYHXFJ-UHFFFAOYSA-N tert-butyl 4-oxopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=O)CC1 ROUYFJUVMYHXFJ-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000002110 toxicologic effect Effects 0.000 description 2
- 231100000027 toxicology Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- XSEYRQNLQSOUKK-UHFFFAOYSA-N (2-ethoxyphenyl)urea Chemical class CCOC1=CC=CC=C1NC(N)=O XSEYRQNLQSOUKK-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- WGCYRFWNGRMRJA-UHFFFAOYSA-N 1-ethylpiperazine Chemical compound CCN1CCNCC1 WGCYRFWNGRMRJA-UHFFFAOYSA-N 0.000 description 1
- MRYYJGQKVGZGSB-UHFFFAOYSA-N 1-methyl-4-piperidin-4-ylpiperazine Chemical compound C1CN(C)CCN1C1CCNCC1 MRYYJGQKVGZGSB-UHFFFAOYSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- AYGZKRRIULCJKC-UHFFFAOYSA-N 2,4-dimethoxybenzenesulfonyl chloride Chemical compound COC1=CC=C(S(Cl)(=O)=O)C(OC)=C1 AYGZKRRIULCJKC-UHFFFAOYSA-N 0.000 description 1
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical compound C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 1
- DQAKVAVLSWUCAX-UHFFFAOYSA-N 2-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-methoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxylic acid Chemical compound COC1=CC(OC)=CC=C1S(=O)(=O)N1C2=CC=C(C#N)C=C2C(C2N(CCN(C2)C2CCN(C)CC2)C(O)=O)(C=2C(=NC=CC=2)OC)C1=O DQAKVAVLSWUCAX-UHFFFAOYSA-N 0.000 description 1
- QOCXFQFGXYWCHJ-UHFFFAOYSA-N 2-ethoxy-3-iodopyridine Chemical compound CCOC1=NC=CC=C1I QOCXFQFGXYWCHJ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DTJVECUKADWGMO-UHFFFAOYSA-N 4-methoxybenzenesulfonyl chloride Chemical compound COC1=CC=C(S(Cl)(=O)=O)C=C1 DTJVECUKADWGMO-UHFFFAOYSA-N 0.000 description 1
- QRBPRQMGRTXWBZ-UHFFFAOYSA-N 5-iodo-1h-indole-2,3-dione;sodium Chemical compound [Na].IC1=CC=C2NC(=O)C(=O)C2=C1 QRBPRQMGRTXWBZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- CKDWPUIZGOQOOM-UHFFFAOYSA-N Carbamyl chloride Chemical class NC(Cl)=O CKDWPUIZGOQOOM-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 108010074922 Cytochrome P-450 CYP1A2 Proteins 0.000 description 1
- 102000008144 Cytochrome P-450 CYP1A2 Human genes 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 208000009011 Cytochrome P-450 CYP3A Inhibitors Diseases 0.000 description 1
- 206010012374 Depressed mood Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000011688 Generalised anxiety disease Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000986765 Homo sapiens Oxytocin receptor Proteins 0.000 description 1
- 101000954157 Homo sapiens Vasopressin V1a receptor Proteins 0.000 description 1
- 101000954141 Homo sapiens Vasopressin V1b receptor Proteins 0.000 description 1
- 101000807859 Homo sapiens Vasopressin V2 receptor Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- PCKPVGOLPKLUHR-UHFFFAOYSA-N OH-Indolxyl Natural products C1=CC=C2C(O)=CNC2=C1 PCKPVGOLPKLUHR-UHFFFAOYSA-N 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 206010041250 Social phobia Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000018452 Torsade de pointes Diseases 0.000 description 1
- 208000002363 Torsades de Pointes Diseases 0.000 description 1
- 102000017937 Vasopressin/oxytocin receptor Human genes 0.000 description 1
- 108060003373 Vasopressin/oxytocin receptor Proteins 0.000 description 1
- RDQHAAVUUMLSCZ-UHFFFAOYSA-N [5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-methoxypyridin-3-yl)-2-oxoindol-3-yl] 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate Chemical compound COC1=CC(OC)=CC=C1S(=O)(=O)N1C2=CC=C(C#N)C=C2C(OC(=O)N2CCN(CC2)C2CCN(C)CC2)(C=2C(=NC=CC=2)OC)C1=O RDQHAAVUUMLSCZ-UHFFFAOYSA-N 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000037328 acute stress Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CBHOOMGKXCMKIR-UHFFFAOYSA-N azane;methanol Chemical compound N.OC CBHOOMGKXCMKIR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000003793 centrosome Anatomy 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- AOGYCOYQMAVAFD-UHFFFAOYSA-N chlorocarbonic acid Chemical class OC(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-N 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010579 first pass effect Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 208000029364 generalized anxiety disease Diseases 0.000 description 1
- 235000015201 grapefruit juice Nutrition 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000046595 human AVPR2 Human genes 0.000 description 1
- 102000052321 human OXTR Human genes 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- FRIJBUGBVQZNTB-UHFFFAOYSA-M magnesium;ethane;bromide Chemical compound [Mg+2].[Br-].[CH2-]C FRIJBUGBVQZNTB-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- ZXPFDPPGIVKZHU-UHFFFAOYSA-N n-[1-(benzenesulfonyl)-5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C=CC=CC=2)C1=O ZXPFDPPGIVKZHU-UHFFFAOYSA-N 0.000 description 1
- GIZDGZJXJUVNOU-UHFFFAOYSA-N n-[1-(benzenesulfonyl)-5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C=CC=CC=2)C1=O GIZDGZJXJUVNOU-UHFFFAOYSA-N 0.000 description 1
- JNZXJEMYQKPTOY-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxyphenyl)-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide Chemical compound CCOC1=CC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O JNZXJEMYQKPTOY-UHFFFAOYSA-N 0.000 description 1
- QPHVQXCXVJZJIY-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxyphenyl)-2-oxoindol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide Chemical compound CCOC1=CC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O QPHVQXCXVJZJIY-UHFFFAOYSA-N 0.000 description 1
- QXJVDJYXTGWEHW-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC1=NC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCN(CC)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O QXJVDJYXTGWEHW-UHFFFAOYSA-N 0.000 description 1
- ZBHRPUTUPKYYOF-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide Chemical compound C1CN(CCC)CCN1C1CCN(C(=O)NC2(C3=CC(=CC=C3N(C2=O)S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C#N)C=2C(=NC=CC=2)OCC)CC1 ZBHRPUTUPKYYOF-UHFFFAOYSA-N 0.000 description 1
- QAKXVEYNJCWSGC-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-piperidin-1-ium-4-ylpiperidine-1-carboxamide;chloride Chemical compound [Cl-].CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)C2CC[NH2+]CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O QAKXVEYNJCWSGC-UHFFFAOYSA-N 0.000 description 1
- TZZHOPFWMLCLGD-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F.CCOC1=NC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCNCC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O TZZHOPFWMLCLGD-UHFFFAOYSA-N 0.000 description 1
- ZTGBLEOZMZNOBW-UHFFFAOYSA-N n-[5-cyano-1-(2,4-dimethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-piperidin-4-ylpiperidine-1-carboxamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F.CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)C2CCNCC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC(OC)=CC=2)OC)C1=O ZTGBLEOZMZNOBW-UHFFFAOYSA-N 0.000 description 1
- HJVOIFSRLHUYJV-UHFFFAOYSA-N n-[5-cyano-1-(2-ethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC1=CC=CC=C1S(=O)(=O)N1C2=CC=C(C#N)C=C2C(NC(=O)N2CCN(CC2)C2CCN(C)CC2)(C=2C(=NC=CC=2)OCC)C1=O HJVOIFSRLHUYJV-UHFFFAOYSA-N 0.000 description 1
- NEVPCRRYYQGJSD-UHFFFAOYSA-N n-[5-cyano-1-(2-ethoxyphenyl)sulfonyl-3-(2-ethoxypyridin-3-yl)-2-oxoindol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC1=CC=CC=C1S(=O)(=O)N1C2=CC=C(C#N)C=C2C(NC(=O)N2CCC(CC2)N2CCN(C)CC2)(C=2C(=NC=CC=2)OCC)C1=O NEVPCRRYYQGJSD-UHFFFAOYSA-N 0.000 description 1
- NEYFKSQFNCZOKE-UHFFFAOYSA-N n-[5-cyano-3-(2-ethoxypyridin-3-yl)-1-(2-methoxyphenyl)sulfonyl-2-oxoindol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCN(CC2)C2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC=CC=2)OC)C1=O NEYFKSQFNCZOKE-UHFFFAOYSA-N 0.000 description 1
- VGOBZTNKSVEKEC-UHFFFAOYSA-N n-[5-cyano-3-(2-ethoxypyridin-3-yl)-1-(2-methoxyphenyl)sulfonyl-2-oxoindol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide Chemical compound CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C(=CC=CC=2)OC)C1=O VGOBZTNKSVEKEC-UHFFFAOYSA-N 0.000 description 1
- VBHPQLARGRVHBV-UHFFFAOYSA-N n-[5-cyano-3-(2-ethoxypyridin-3-yl)-1-(4-methoxyphenyl)sulfonyl-2-oxoindol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC1=NC=CC=C1C1(NC(=O)N2CCC(CC2)N2CCN(C)CC2)C2=CC(C#N)=CC=C2N(S(=O)(=O)C=2C=CC(OC)=CC=2)C1=O VBHPQLARGRVHBV-UHFFFAOYSA-N 0.000 description 1
- 125000006252 n-propylcarbonyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 208000019906 panic disease Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 208000028173 post-traumatic stress disease Diseases 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 208000012672 seasonal affective disease Diseases 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 125000006253 t-butylcarbonyl group Chemical group [H]C([H])([H])C(C(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- IMFPSYLOYADSFR-UHFFFAOYSA-N tert-butyl 4-piperidin-4-ylpiperazine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCN1C1CCNCC1 IMFPSYLOYADSFR-UHFFFAOYSA-N 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- GTLDTDOJJJZVBW-UHFFFAOYSA-N zinc cyanide Chemical compound [Zn+2].N#[C-].N#[C-] GTLDTDOJJJZVBW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/444—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4545—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/08—Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
Definitions
- the present invention relates to novel substituted oxindole derivatives, to medicaments comprising them and to their use for treating diseases.
- Vasopressin is an endogenous hormone which exerts widely diverse effects on organs and tissues. It is suspected that the vasopressin system is involved in various pathological states such as, for example, heart failure and high blood pressure. At present three receptors (V1a, V1b or V3 and V2) via which vasopressin mediates its numerous effects are known. Antagonists of these receptors are therefore being investigated as possible novel therapeutic approaches to the treatment of diseases (M. Thibonnier, Exp. Opin. Invest. Drugs 1998, 7(5), 729-740).
- the present application describes novel substituted oxindoles carrying an arylsulphonyl group in position 1.
- 1-Phenylsulphonyl-1,3-dihydro-2H-indol-2-ones have previously been described as ligands of vasopressin receptors.
- WO 93/15051, WO95/18105, WO 98/25901, WO 01/55130, WO 01/55134, WO 01/64668 and WO 01/98295 describe derivatives derived from the oxindole skeleton and having arylsulphonyl groups in position 1. These compounds differ essentially in the substitution in position 3.
- WO 93/15051 and WO 98/25901 describe 1-phenylsulphonyl-1,3-dihydro-2H-indol-2-ones in which the oxindole structure is substituted in position 3 by two alkyl radicals which may also together form a cycloalkyl radical (spiro linkage) as ligands of vasopressin receptors.
- the spiro ring may comprise heteroatoms, such as oxygen and nitrogen (optionally with substituents).
- WO 95/18105 describes 1-phenylsulphonyl-1,3-dihydro-2H-indol-2-ones having a nitrogen atom in position 3 as ligands of vasopressin receptors.
- radicals which are selected from the group consisting of alkyl, cycloalkyl, phenyl and benzyl are attached in position 3 (in each case optionally with substituents).
- WO 03/008407 describes 1-phenylsulphonyloxindoles in which pyridylpiperazines are attached via an oxycarbonyl group to the oxindole in position 3.
- WO 2005/030755 describes as Example 108, the carbamate compound 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylic acid 5-cyano-1-(2,4-dimethoxy-phenylsulphonyl)-3-(2-methoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl ester (according to IUPAC nomenclature: 5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-methoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl-4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate).
- WO 06/005609 describes the 2-ethoxyphenyl urea compounds N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide (as Example 119) and N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide (as Example 128).
- vasopressin V1b receptor binding affinity to the vasopressin V1b receptor
- further properties may be advantageous in the treatment and/or prophylaxis of vasopressin-dependent disorders, such as, for example:
- a selectivity for the vasopressin V1b receptor over the vasopressin V1a receptor i.e. the quotient of the binding affinity to the V1a receptor (Ki(V1a) (determined in the unit “nanomolar (nM)”) and the binding affinity to the V1b receptor (Ki(V1b)) (determined in the unit “nanomolar (nM)”).
- Ki(V1a)/Ki(V1b) the greater the V1b selectivity
- a selectivity for the vasopressin V1b receptor over the vasopressin V2 receptor i.e.
- cytochrom P450 (CYP) is the name for a superfamily of haem proteins having enzymatic activity (oxidases).
- CYP 1A2 CYP 1A2
- CYP 2C9 CYP 2D6
- CYP 3A4 CYP 1A2
- CYP 3A4 inhibitors for example grapefruit juice, cimetidine, erythromycin
- medicaments which are degraded via this enzyme system and which thus compete for the same binding site at the enzyme
- their degradation may be slowed down, and actions and side-effects of the medicament administered may be enhanced in an unwanted manner
- suitable solubility in water in mg/ml
- suitable pharmacokinetics temporary profile of the concentration of the compound according to the invention in the plasma or in tissues, for example brain).
- Pharmacokinetics may be described by the following parameters: half-life, distribution volume, plasma clearance, AUC (“area under the curve”, area under the concentration-time curve), oral bioavailability, the brain/plasma ratio; 8.) a certain proportion of the active substance is present attached to plasma proteins (drug/plasma protein binding (PPB) value); 9.) no or only minor blockage of the hERG channel: compounds which block the hERG channel may prolong the QT interval, thus leading to serious irregularities of pulse (for example “torsade de pointes”).
- PPB drug/plasma protein binding
- Diaz et al. Journal of Pharmacological and Toxicological Methods, 50 (2004), 187-199
- the blockage of the hERG channel may be measured by electrophysical experiments using cells transfected with the hERG channel, by “whole-cell patch clamping” (G. J. Diaz et al., Journal of Pharmacological and Toxicological Methods, 50 (2004), 187-199).
- the substance according to the invention should have one or more of the advantages 1.) to 9.) mentioned above, in particular a suitable selectivity for the V1b receptor over the V1a receptor.
- the present invention relates to compounds of the general formula (I) (also “compounds (I)” below), including the tautomeric forms thereof, and the pharmaceutically acceptable salts of the compounds (I) and the prodrugs of the compounds (I).
- a preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy
- R2 is hydrogen
- R3 is cyano
- R4 is hydrogen
- R5 is hydrogen or methoxy, in particular methoxy
- R6 is hydrogen or methoxy, in particular methoxy
- R7 is hydrogen, methyl, ethyl, n-propyl or isopropyl
- X1 is —NH—
- X2 is N or CH
- X3 is N or CH
- a particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy
- R2 is hydrogen
- R3 is cyano
- R4 is hydrogen
- R5 is hydrogen or methoxy, in particular methoxy
- R6 is hydrogen or methoxy, in particular methoxy, in particular methyl or ethyl
- R7 is hydrogen, methyl or ethyl
- X1 is —NH—
- X2 is N
- X3 is CH
- a further particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy
- R2 is hydrogen
- R3 is cyano
- R4 is hydrogen
- R5 is hydrogen or methoxy, in particular methoxy
- R6 is hydrogen or methoxy, in particular methoxy
- R7 is hydrogen, methyl or ethyl, in particular methyl or ethyl;
- X1 is —NH—
- X2 is CH
- X3 is N
- a further particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy
- R2 is hydrogen
- R3 is cyano
- R4 is hydrogen
- R5 is hydrogen or methoxy, in particular methoxy
- R6 is hydrogen or methoxy, in particular methoxy
- R7 is hydrogen, methyl or ethyl, in particular methyl or ethyl;
- X1 is —NH—
- X2 is CH
- X3 is CH
- a further particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy
- R2 is hydrogen
- R3 is cyano
- R4 is hydrogen
- R5 is methoxy
- R6 is methoxy
- R7 is methyl or ethyl
- X1 is —NH—
- X2 is CH and X3 is N;
- X2 is N and X3 is CH;
- Examples of preferred embodiments of the present invention are compounds according to the general formula (I), and the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof, in which
- R1 is ethoxy
- R2 is hydrogen
- R3 is cyano
- R4 is hydrogen
- X1 is NH
- the present invention relates to the following compound of the formula Ia (which corresponds to compound Example 1 of table 1)
- the present invention also relates to the compound Example 7 of table 1 and also to the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- the present invention also relates to the compound Example 31 of table 1 and also to the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- the present invention also relates to the compound Example 37 of table 1 and also to the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- the compounds (I) or (Ia) of the invention have a centre of chirality in position 3 of the 2-oxindole ring.
- the compounds according to the invention of the general formula (I) or (Ia) may therefore be present as a 1:1 mixture of enantiomers (racemate), or as a non-racemic mixture of enantiomers in which one of the two enantiomers, i.e.
- either the (laevorotatory) enantiomer which turns the plane of polarization of linear polarized light to the left (( ⁇ )-enantiomer below), or the (dextrorotatory) enantiomer which turns the plane of polarization of linear polarized light to the right ((+)-enantiomer below), is enriched, or as essentially enantiomerically pure compounds (enantiomeric excess ee >90%), i.e. as essentially enantiomerically pure ( ⁇ )-enantiomer or (+)-enantiomer.
- the compounds are present as essentially enantiomerically pure compounds. Particular preference is given to compounds which are essentially enantiomerically pure (ee >90%).
- the invention therefore provides the pure enantiomers as well as their mixtures, for example, mixtures in which one enantiomer is present in enriched form, but also the racemates.
- the invention also provides the pharmaceutically acceptable salts, the tautomers and the prodrugs of the pure enantiomers of (I) or (Ia), and the enantiomer mixtures in the form of the pharmaceutically acceptable salts, the tautomers and the prodrugs of (I) or (Ia).
- Preferred embodiments of the invention are compounds of the general formula (I) or (Ia), as defined above, which are characterized in that they are present in optically active form and that they are in each case the enantiomer, which rotates the plane of polarization of polarized light to the left, (i.e. the laevorotatory enantiomer) of the compound of the general formula (I) in question in the form of the free base, or a pharmaceutically acceptable salt, a tautomeric form or a prodrug thereof.
- the laevorotatory enantiomers of the compounds (I) or (Ia) are also referred to as ( ⁇ )-enantiomers.
- Preferred embodiments of the invention are those compounds of the general formula (I) or (Ia), as defined above, which are characterized in that they are present in optically active form, where the absolute configuration of the chiral C-3 ring carbon atom of these compounds corresponds to the absolute configuration at C-3 of the ( ⁇ )-enantiomer of the compound of the formula (Ia) in the form of the free base.
- This configuration is also referred to below as the “preferred configuration”.
- X-Ray structure analyses have shown that the ( ⁇ )-enantiomer of the compounds of the formula (Ia) has S configuration with respect to the centre of asymmetry at the carbon atom of position 3 of the oxindole ring.
- preferred embodiments of the invention are compounds of the general formula (I) or (Ia) as defined above, which are characterized in that they are present in optically inactive form, that is to say in the form of the racemate, or in the form of a pharmaceutically acceptable salt, a tautomeric form or a prodrug of the racemate.
- a further subject-matter of the present invention relates to medicaments comprising at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above.
- a further subject-matter of the present invention relates to compounds of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for use as a medicament.
- a further subject-matter of the present invention relates to the compounds of the formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for use in therapy or prophylaxis of a disease, in particular a vasopressin-dependent disease or a disease mentioned herein.
- a further subject-matter of the present invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of at least one vasopressin-dependent disease and/or for the manufacture of a medicament for the treatment and/or a prophylaxis of at least one vasopressin-dependent disease.
- Vasopressin-dependent diseases are those in which the progression of the disease depends at least in part on vasopressin, i.e. diseases where the vasopressin level, which may contribute directly or indirectly to the disease picture, is elevated.
- the present invention also relates to the use of the compounds (I) or (Ia) according to the invention and/or a pharmaceutically acceptable salt or a prodrug thereof for the treatment and/or prophylaxis of diseases in which the progression of the disease depends at least in part on vasopressin, i.e. diseases where the vasopressin level, which may contribute directly or indirectly to the disease picture, is elevated.
- the present invention also relates to the use of the compounds (I) or (Ia) according to the invention and/or a pharmaceutically acceptable salt or a prodrug thereof for preparing a medicament for the treatment and/or prophylaxis of such a disease.
- the present invention relates in particular to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of diabetes, in particular diabetes insipidus, insulin resistance, nocturnal enuresis, incontinence, diseases in which blood coagulation disorders occur, and/or for delaying micturition and the use thereof for the manufacture of a medicament for the treatment and/or prophylaxis of at least one of said diseases.
- diabetes in particular diabetes insipidus, insulin resistance, nocturnal enuresis, incontinence, diseases in which blood coagulation disorders occur, and/or for delaying micturition and the use thereof for the manufacture of a medicament for the treatment and/or prophylaxis of at least one of said diseases.
- the present invention relates in particular to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of hypertension, pulmonary hypertension, heart failure, myocardial infarction, coronary spasm, unstable angina, PTCA (percutaneous transluminal coronary angioplasty), ischemias of the heart, disorders of the renal system, edemas, renal vasospasm, necrosis of the renal cortex, hyponatremia, hypokalemia, Schwartz-Bartter syndrome, disorders of the gastrointestinal tract, gastritic vasospasm, hepatocirrhosis, gastric and intestinal ulcer, emesis, emesis occurring during chemotherapy, and travel sickness, and the use thereof for the manufacture of a medicament for the treatment and/or prophylaxis of at least one of said diseases.
- PTCA percutaneous
- the compounds (I) or (Ia) of the invention, their salts, their tautomers and their prodrugs can also be used for the treatment of various vasopressin-dependent complaints which exhibit central nervous causes or alterations in the HPA axis (hypothalamic pituitary adrenal axis), for example for affective disorders such as depressive disorders and bipolar disorders. These include for example dythymic disorders, phobias, post-traumatic stress disorders, general anxiety disorders, panic disorders, seasonal depressions and sleep disorders.
- the compounds (I) or (Ia) of the invention, their salts, their tautomers and their prodrugs can likewise be employed for treatment in cases of anxiety disorders and stress-dependent anxiety disorders such as, for example, generalized anxiety disorders, phobias, post-traumatic anxiety disorders, panic anxiety disorders, obsessive-compulsive anxiety disorders, acute stress-dependent anxiety disorders and social phobia.
- the compounds of the invention can further be employed also for the treatment of memory impairments, Alzheimer's disease, psychoses, psychotic disorders, sleep disorders and/or Cushing's syndrome, and all stress-dependent diseases.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of affective disorders and/or for the manufacture of a medicament for the treatment of affective disorders.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of anxiety disorders and/or stress-dependent anxiety disorders and/or for the manufacture of a medicament for the treatment of anxiety disorders and/or stress-dependent anxiety disorders.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of memory impairments and/or Alzheimer's disease and/or for the manufacture of a medicament for the treatment of memory impairments and/or Alzheimer's disease.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of psychoses and/or psychotic disorders and/or for the manufacture of a medicament for the treatment of psychoses and/or psychotic disorders.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of Cushing's syndrome or other stress-dependent diseases and/or for the manufacture of a medicament for the treatment of Cushing's syndrome or other stress-dependent diseases.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of sleep disorders and/or for the manufacture of a medicament for the treatment of sleep disorders.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of depressive disorders and/or for the manufacture of a medicament for the treatment of depressive disorders.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of childhood onset mood disorders and/or for the manufacture of a medicament for the treatment of childhood onset mood disorders.
- the term “childhood onset mood disorders” is understood to mean mood disorders and depressions which begin as early as childhood.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of vasomotor symptoms and/or thermoregulatory dysfunctions, such as, for example, the “hot flush” symptom.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of drug dependencies, medicament dependencies and/or dependencies mediated by other factors, for the treatment and/or prophylaxis of stress caused by the withdrawal of one or more factors mediating the dependency and/or for the treatment and/or prophylaxis of stress-induced relapses into the drug dependencies, medicament dependencies and/or dependencies mediated by other factors.
- a further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of schizophrenia and/or psychosis.
- a further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of diabetes, in particular diabetes insipidus, insulin resistance, nocturnal enuresis, incontinence, diseases in which blood coagulation disorders occur, and for delaying micturition in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of hypertension, pulmonary hypertension, heart failure, myocardial infarction, coronary spasm, unstable angina, PTCA (percutaneous transluminal coronary angioplasty), ischemias of the heart, disorders of the renal system, edemas, renal vasospasm, necrosis of the renal cortex, hyponatremia, hypokalemia, Schwartz-Bartter syndrome, disorders of the gastrointestinal tract, gastritic vasospasm, hepatocirrhosis, gastric and intestinal ulcer, emesis, emesis occurring during chemotherapy, and travel sickness in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- PTCA percutaneous transluminal coronary angioplasty
- a further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of affective disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment of anxiety disorders and/or stress-dependent anxiety disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment of memory impairments and/or Alzheimer's disease in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment of psychoses and/or psychotic disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment of Cushing's syndrome in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment of sleep disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment of depressive disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of vasomotor symptoms and/or thermoregulatory dysfunctions, such as, for example, the “hot flush” symptom, in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of drug dependencies, medicament dependencies and/or dependencies mediated by other factors, for the treatment and/or prophylaxis of stress caused by the withdrawal of one or more factors mediating the dependency and/or for the treatment and/or prophylaxis of stress-induced relapses in the drug dependencies, medicament dependencies and/or dependencies mediated by other factors, in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of schizophrenia and/or psychosis in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- a further subject-matter of the invention relates to a method as defined above, which is characterized in that the patient is a mammal, preferably a human or a nonhuman mammal or a nonhuman transgenic mammal.
- a further preferred embodiment relates to compounds of the general formula (I) or (Ia), their tautomers, their prodrugs thereof and their pharmaceutically acceptable salts as described above, which are characterized in that they are selective for the vasopressin receptor subtype V1b over at least one of the closely related vasopressin/oxytocin receptor subtypes (for example vasopressin V1a, vasopressin V2 and/or oxytocin).
- a further preferred embodiment relates to compounds of the general formula (I) or (Ia), their tautomers, their prodrugs thereof and their pharmaceutically acceptable salts as described above, which are characterized in that they have improved metabolic stability.
- the metabolic stability of a compound can be determined, for example, by incubating a solution of this compound with liver microsomes from particular species (for example rat, dog or human) and determining the half-life of the compound under these conditions (RS Obach, Curr Opin Drug Discov Devel. 2001, 4, 36-44). It is possible to conclude from an observed larger half-life that the metabolic stability of the compound is improved.
- the stability in the presence of human liver microsomes is of particular interest since it makes it possible to predict the metabolic degradation of the compound in the human liver. Compounds with increased metabolic stability (determined in the liver microsome test) are therefore probably also degraded more slowly in the liver.
- the slower metabolic degradation in the liver can lead to higher and/or longer-lasting concentrations (effective levels) of the compound in the body, so that the elimination half-life of the compounds according to the invention is increased.
- Increased and/or longer-lasting effective levels may lead to a better efficacy of the compound in the treatment or prophylaxis of various vasopressin-dependent diseases.
- An improved metabolic stability may additionally lead to an increased bioavailability after oral administration, because the compound is subjected, after being absorbed in the intestine, to less metabolic degradation in the liver (so-called first pass effect).
- An increased oral bioavailability may, because the concentration (effective level) of the compound is increased, lead to a better efficacy of the compound after oral administration.
- a further preferred embodiment relates to compounds of the general formula (I) as described above, characterized in that, in patients or relevant animal models allowing prognostic statements on therapeutic application, they have improved pharmacological activity compared to the oxindole compounds known from the prior art.
- the invention relates in particular to compounds of the general formula (I) which are selected from the group consisting of the examples, listed below, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 and 90, and also to their tautomeric forms, their prodrugs and in particular their physiologically acceptable salts, and their non-salt forms such as hydrates and/or solvates. Particular preference is given to providing the
- the invention in particular also relates to the ( ⁇ )-enantiomers of the Examples 1 to 90 in accordance with the general formula (I) selected from the compounds of the examples, listed below, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B, 9B, 10B, 11B, 12B, 13B, 14B, 15B, 16B, 17B, 18B, 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, 27B, 28B, 29B, 30B, 31B, 32B, 33B, 34B, 35B, 36B, 37B, 38B, 39B, 40B, 41B, 42B, 43B, 44B, 45B, 46B, 47B, 48B, 49B, 50B, 51B, 52B, 53B, 54B, 55B, 56B, 57B, 58B, 59B, 60B, 61B, 62B, 63B, 64B, 65B, 66B, 67B,
- prodrugs is to be understood as meaning those compounds which are metabolized in vivo to the compounds according to the invention. Typical examples of prodrugs are described in C. G. Wermeth (Ed.): The Practice of Medicinal Chemistry, Academic Press, San Diego, 1996, pages 671-715. They include, for example, phosphates, carbamates or amino acids, esters and others.
- suitable prodrugs of the compounds of the formula are compounds of the formula I, where the nitrogen atom that carries R7 is part of an amide/peptide group, i.e. the nitrogen carries a acyl group such as C1-C4-alkylcarbonyl e.g.
- Suitable prodrugs olso include alkylcarbonyloxyalkylcarbamate, wherein the radical R7 in formula I is a moiety of the formula —C( ⁇ O)—O—CHR a —O—C( ⁇ O)—R b wherein R a and R b are independently of each other are selected from C 1 -C 4 -alkyl.
- Such carbamates have been generally described by J. Alexander, R. Cargill, S. R. Michelson, H. Schwam, J. Medicinal Chem. 1988, 31(2), 318-322. These groups are cleaved under metabolic conditions to yield a compound of the formula I, wherein R7 is hydrogen.
- the invention furthermore relates to the pharmaceutically acceptable salts of compounds of the formula I, which are also referred to as physiologically acceptable salts.
- the salts are generally obtainable by reacting the free base of the compounds (I) according to the invention with a suitable acid.
- suitable acids are listed, for example, in “Fort Whitneye der Arzneistoffforschung” [Advances in Drug Research], 1966, Birkhäuser Verlag, Vol. 10, pp. 224-285. They include, for example, hydrochloric acid, citric acid, tartaric acid, lactic acid, phosphoric acid, methanesulphonic acid, acetic acid, formic acid, maleic acid and fumaric acid.
- the compounds of the invention are effective after administration by various routes.
- the administration can, for example, be carried out intravenously, intramuscularly, subcutaneously, topically, intratracheally, intranasally, transdermally, vaginally, rectally, sublingually, buccally or orally and is frequently carried out intravenously, intramuscularly or in particular orally.
- the present invention also relates to pharmaceutical compositions which comprise a compound (I) of the invention, and/or a tautomer, and/or a pharmaceutically acceptable salt and/or a prodrug thereof and suitable pharmaceutical carriers (drug carriers).
- suitable pharmaceutical carriers drug carriers.
- the amount of compound I in the pharmaceutical composition may depend on the formulation type of the composition and may be e.g. in the range from 0.0001 mg/g to 1 g/g in particular from 0.001 mg/g to 0.5 g/g of the composition.
- These drug carriers are chosen according to the pharmaceutical form and the desired mode of administration.
- the compounds of the invention of the general formula (I) or, where appropriate, suitable salts of these compounds can be used to manufacture pharmaceutical compositions for oral, sublingual, buccal, subcutaneous, intramuscular, intravenous, topical, intratracheal, intranasal, transdermal, vaginal or rectal administration and be administered to animals or humans in unit dose forms mixed with conventional pharmaceutical carriers for the prophylaxis or treatment of the above disorders or diseases.
- Suitable uniform administration forms comprise forms for oral administration, such as tablets, gelatin capsules, powders, granules, solutions or suspensions for oral intake, forms for sublingual, buccal, intratracheal or intranasal administration, aerosols, implants, forms of subcutaneous, intramuscular or intravenous administration and forms of rectal administration.
- the compounds of the invention can be used in creams, ointments or lotions for topical administration.
- the dose of the active compound can vary between 0.01 and 50 mg per kg of body weight and per day.
- Each unit dose may comprise from 0.05 to 5000 mg, preferably 1 to 1000 mg, of the active compound in combination with a pharmaceutical carrier. This unit dose can be administered 1 to 5 times a day so that a daily dose of from 0.5 to 25 000 mg, preferably 1 to 5000 mg, is administered.
- the active compound is mixed with a pharmaceutical carrier such as gelatin, starch, lactose, magnesium stearate, talc, silicon dioxide or the like.
- the tablets can be coated with sucrose, a cellulose derivative or another suitable substance or be treated otherwise in order to display a prolonged or delayed activity and in order to release a predetermined amount of the active compound continuously.
- a preparation in the form of gelatin capsules is obtained by mixing the active compound with an extender and taking up the resulting mixture in soft or hard gelatin capsules.
- a preparation in the form of a syrup or elixir or for administration in the form of drops may comprise active compounds together with a sweetener which is preferably calorie-free, methylparaben or propylparaben as antiseptics, a flavouring and a suitable colouring.
- a sweetener which is preferably calorie-free, methylparaben or propylparaben as antiseptics, a flavouring and a suitable colouring.
- the water-dispersible powders or granules may comprise the active compounds mixed with dispersants, wetting agents or suspending agents, such as polyvinylpyrrolidones, and sweeteners or taste improvers.
- Rectal or vaginal administration is achieved by the use of suppositories which are prepared with binders which melt at the rectal temperature, for example cocoa butter or polyethylene glycols.
- Parenteral administration is effected by using aqueous suspensions, isotonic salt solutions or sterile and injectable solutions which comprise pharmacologically suitable dispersants and/or wetting agents, for example propylene glycol or polyethylene glycol.
- the active compound can also be formulated as microcapsules or centrosomes, if suitable with one or more carriers or additives.
- compositions of the invention may comprise further active compounds which may be beneficial for the treatment of the impairments or disorders indicated above.
- the present invention therefore further relates to pharmaceutical compositions which comprise a plurality of active compounds, where at least one of these is a compound (I) according to the invention, a tautomer, a salt or a prodrug thereof.
- the preparation of the oxindoles according to the invention can be carried out by different routes as illustrated in synthesis schemes 1 and 2.
- the variables have the same meanings as in the general formula (I).
- the 3-hydroxy-1,3-dihydroindol-2-ones IV can be obtained by adding metallated heterocycles III to the 3-keto group of the isatins II.
- the metallated heterocycles such as, for example, the corresponding Grignard (Mg) or organyllithium compound, can be obtained in a customary manner from halogen or hydrocarbon compounds. Exemplary procedures can be found in Houben-Weyl, Methoden der Organischen Chemie [Methods of organic chemistry], Vol. 13, 1-2, Chap. Mg and Li compounds.
- the isatins II are either commercially available or were prepared in analogy to methods described in the literature (Advances in Heterocyclic Chemistry, A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1975, 18, 2-58; J. Brazil. Chem. Soc. 12, 273-324, 2001).
- Suitable for use as Pd(0) salts are, for example, transition metal complexes prepared in situ from PdCl 2 or PdOAc 2 by addition of phosphines, such as tris(orthotolyl)phosphine. It is also possible to use commercial palladium complexes, such as, for example, the catalyst tetrakis(triphenylphosphine)palladium(0) and/or added phosphine ligands.
- the 3-hydroxyoxindoles IV can be converted into the compounds V which carry a leaving group LG′ in position 3, where the leaving group LG′ may be a customary leaving group, such as, for example, halide, mesylate or tosylate.
- a base such as, for example, triethylamine.
- the compounds V are subsequently reacted with amines, such as, for example, ammonia, which gives the analogous amines VI after the substitution reactions.
- Compounds such as VI can then, after deprotonation with a strong base, such as, for example, potassium tert-butoxide or sodium hydride, in DMF, be converted into the product VIII by treatment with sulphonyl chlorides VII.
- a strong base such as, for example, potassium tert-butoxide or sodium hydride
- sulphonyl chlorides VII used are either commercially available or can be prepared in a manner analogous to known processes (see, for example, J. Med. Chem. 40, 1149 (1997)).
- the compounds VIII are converted into compounds IX by reaction with reagents for derivatizing amino groups, such as, for example chloroformates, isocyanates or carbamoyl chlorides, generally using customary methods (see J. March, Advanced Organic Chemistry, 1992, 4th edition., Wiley, New York, pages 417-421; 499; 903).
- LG as leaving group may be OPhenyl in the compound IX, which is obtained by reacting VIII with phenyl chloroformate in the presence of a base, such as, for example, pyridine.
- amines X are either commercially available or can be prepared by methods known from the literature.
- a further alternative of preparing the amine X is the reaction of amines with aldehydes or ketones in the presence of reducing agents, such as, for example, sodium cyanoborohydride or sodium acetoxyborohydride, in the sense of a reductive amination (J. March, Advanced Organic Chemistry, 1992, 4th edition., Wiley, New York, pages 411; 898).
- reducing agents such as, for example, sodium cyanoborohydride or sodium acetoxyborohydride
- the order of the synthesis steps for preparing the compounds I according to the invention may be rearranged, analogously to synthesis scheme 1 above.
- the amino group in the compound VI is derivatized using, for example, phenyl chloroformate, giving the compounds XIa and/or XIb.
- the urea derivatives XII are generated which can be converted in the subsequent reaction under otherwise customary conditions by deprotonation of compounds XII using a strong base, such as, for example, sodium hydride or potassium tert-butoxide, and subsequent treatment with sulphonyl chlorides VII in DMF into the compounds I according to the invention.
- a strong base such as, for example, sodium hydride or potassium tert-butoxide
- the compounds according to the invention can be prepared via various synthesis routes.
- the solution of the pyridine Grignard reagents was then, over a period of 5-10 minutes, added to the solution, cooled in an ice-bath, of the 5-iodoisatin sodium salt, the temperature fluctuating between 5 and 18° C.
- the ice-bath was removed, and the reaction mixture was stirred at room temperature for another 2 hours.
- Excess saturated ammonium chloride solution was added, followed by ethyl acetate, and the mixture was stirred for another 5 minutes.
- the aqueous phase was removed and extracted with ethyl acetate (2 ⁇ ).
- the combined organic phases were washed with water (2 ⁇ ), and the solvent was removed under reduced pressure.
- N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide was obtained in yields of >50%.
- the reaction mixture was diluted with dichloromethane, and after addition of water, the solid went back into solution.
- the phases were separated and the aqueous phase was again extracted with dichloromethane (1 ⁇ ).
- the combined organic phases were washed initially with water (3 ⁇ ) and then with saturated sodium chloride solution (1 ⁇ ).
- the compounds according to Examples 2 to 4 and 6 to 30 can be prepared in a manner analogous to the preparation procedures according to Example 1 and/or Example 5 using the appropriate starting materials.
- the compounds according to Examples 32 to 36 can be prepared in a manner analogous to the preparation procedures according to Example 1, 5 and/or 31 using the appropriate starting materials.
- the compounds according to Examples 38 to 90 can be prepared in a manner analogous to the preparation procedures according to Examples 1, 5, 31, 37, 55, 61 and/or 67 using the appropriate starting materials.
- the alcoholic solvent residues were removed, and the residue was taken up in dichloromethane and, using 1 N aqueous sodium hydroxide solution, adjusted by extraction to pH 9.
- the organic phase was separated from the aqueous phase, and the aqueous phase was reextracted with dichloromethane (2 ⁇ ).
- the combined organic phase was dried over magnesium sulphate, and the solvent was removed under reduced pressure.
- the residue was crystallized from diethyl ether.
- the residue can also be purified either by conventional column chromatography on a normal phase (NP-SiO 2 cartridge, Chromabond) using dichloromethane/methanol as mobile phases or by preparative HPLC (RP, mobile phases acetonitrile/water, 0.01% TFA).
- the compounds according to Examples 25 to 30 and 56 to 60 and 85 to 90 can also be prepared in a manner analogous to the preparation procedures according to Examples 1, 5, 31, 37 and/or 55 using the appropriate starting materials.
- the substituent R7 can, according to synthesis scheme 1 or 2, also be introduced subsequently by reductive amination, which is to be illustrated in an exemplary manner using Examples 61 and 67:
- reaction mixture was initially diluted with 30 ml of dichloromethane and then extracted with saturated sodium bicarbonate solution (3 ⁇ ). The combined organic phases were dried over magnesium sulphate and filtered, and the solvent was evaporated under reduced pressure. What was isolated were 75 mg of crude product which was purified by a preparative HPLC on a Chromolith column (RP-18e, from Merck, mobile phases acetonitrile/water, 0.01% acetic acid).
- Example 1 In an exemplary manner, using Example 1, the separation of the racemates into its enantiomers (Example 1A and 1B) by separation on a preparative chiral column is shown:
- Example 1A The enantiomer which eluted first, having a positive optical rotation (Example 1A), could be isolated in a yield of 19 mg (0.03 mmol, 19%) and the enantiomer which followed, having a negative optical rotation (Example 1B), could be isolated in a yield of 8 mg (0.01 mmol, 8%).
- EXAMPLE 37 N-[5-Cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide (EXAMPLE 37) was separated on a chiral preparative column (Chiralcell OD, flow rate 55 ml/min) using n-heptane/ethanol (700:300) as eluent. The enantiomer which eluted first had a positive optical rotation (Example 37A), and the enantiomer which followed had a negative optical rotation (Example 37B).
- the enantiomers A and B can also be prepared using enantiomerically pure precursors and intermediates, for example analogously to synthesis schemes 1 or 2, preferably via synthesis scheme 1.
- the separation of the racemic mixture into the (+)-enantiomers and ( ⁇ )-enantiomers can be carried out by chiral preparative chromatography, preferably via the corresponding amine building block VI.
- the amines of the general formula X can be prepared according to synthesis scheme 1 or 2 by reductive amination. Hereinbelow, this is shown using the preparation of the amine compound 1-ethyl-4-piperidin-4-ylpiperazine as an example:
- the dichloromethane was distilled off on a rotary evaporator, and another 200 ml of methanol and 30 ml of the 5-6 M HCl solution in isopropanol were added. After one hour of stirring under reflux, a white suspension formed with strong evolution of gas. Subsequently, a low-viscosity suspension was formed, which was cooled to room temperature. The precipitate was filtered off with suction and washed with methanol and diethyl ether. After drying, 36 g (117 mmol, 87%) of 1-ethyl-4-piperidin-4-ylpiperazine were isolated as chloride salt.
- test substances were dissolved in a concentration of 10 ⁇ 2 M in DMSO and further diluted to 5 ⁇ 10 ⁇ 4 M to 5 ⁇ 10 ⁇ 9 M in DMSO. This series of DMSO predilutions was diluted 1:10 with assay buffer. The substance concentration was again diluted 1:5 in the assay mixture (2% DMSO in the mixture).
- CHO-K1 cells with stably expressed human vasopressin V1b receptor were harvested and homogenized in 50 mM Tris-HCl and in the presence of protease inhibitors (Roche complete Mini #1836170) with a Polytron homogenizer at a medium setting for 2 ⁇ 10 seconds and subsequently centrifuged at 40 000 ⁇ g for 1 h. The membrane pellet was again homogenized and centrifuged as described and then taken up in 50 mM Tris-HCl, pH 7.4, homogenized and stored in aliquots frozen in liquid nitrogen at ⁇ 190° C.
- protease inhibitors Roche complete Mini #1836170
- the binding assay was carried out by a method based on that of Tahara et al. (Tahara A et al., Brit. J. Pharmacol. 125, 1463-1470 (1998)).
- the incubation buffer was: 50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4.
- membranes 50 ⁇ g/ml protein in incubation buffer
- CHO-K1 cells with stably expressed human V1b receptors cell line hV1b — 3H2_CHO
- 1.5 nM 3 H-AVP 8-Arg-vasopressin, PerkinElmer #18479
- incubation buffer 50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4
- total binding or additionally with increasing concentrations of test substance (displacement experiment).
- the nonspecific binding was determined with 1 ⁇ M AVP (Bachem # H1780). All determinations were carried out as triplicate determinations.
- the binding parameters were calculated by nonlinear regression in SAS.
- the algorithms of the program operate in analogy to the LIGAND analysis program (Munson PJ and Rodbard D, Analytical Biochem. 107, 220-239 (1980)).
- the Kd of 3 H-AVP for the recombinant human V1b receptors is 0.4 nM and was used to determine the Ki value.
- test substances were dissolved in a concentration of 10 ⁇ 2 M in DMSO. These DMSO solutions were further diluted in incubation buffer (50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4).
- CHO-K1 cells with stably expressed human vasopressin V1a receptor were harvested and homogenized in 50 mM Tris-HCl and in the presence of protease inhibitors (Roche complete Mini #1836170) with a Polytron homogenizer at a medium setting for 2 ⁇ 10 seconds and subsequently centrifuged at 40 000 ⁇ g for 1 h. The membrane pellet was again homogenized and centrifuged as described and then taken up in 50 mM Tris-HCl, pH 7.4, homogenized and stored in aliquots frozen in liquid nitrogen at ⁇ 190° C.
- protease inhibitors Roche complete Mini #1836170
- the binding assay was carried out by a method based on that of Tahara et al. (Tahara A et al., Brit. J. Pharmacol. 125, 1463-1470 (1998)).
- the incubation buffer was: 50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4.
- membranes (20 ⁇ g/ml protein in incubation buffer) from CHO-K1 cells with stably expressed human V1a receptors (cell line hV1a — 5_CHO) were incubated with 0.04 nM 125 I-AVP (8-Arg-vasopressin, NEX 128) in incubation buffer (50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4) (total binding) or additionally with increasing concentrations of test substance (displacement experiment). The nonspecific binding was determined with 1 ⁇ M AVP (Bachem # H1780). Triplicate determinations were carried out.
- the binding parameters were calculated by nonlinear regression in SAS.
- the algorithms of the program operate in analogy to the LIGAND analysis program (Munson PJ and Rodbard D, Analytical Biochem. 107, 220-239 (1980)).
- the Kd of 125 I-AVP for the recombinant hV1a receptors was determined in saturation experiments.
- a Kd of 1.33 nM was used to determine the Ki value.
- test substances were dissolved in a concentration of 10 ⁇ 2 M in DMSO. This DMSO solution was further diluted in incubation buffer (50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4).
- CHO-K1 cells with stably expressed human vasopressin V2 receptor (clone 23) were harvested and homogenized in 50 mM Tris-HCl and in the presence of protease inhibitors (Roche complete Mini #1836170) with a Polytron homogenizer at a medium setting for 2 ⁇ 10 seconds and subsequently centrifuged at 40 000 ⁇ g for 1 h. The membrane pellet was again homogenized and centrifuged as described and then taken up in 50 mM Tris-HCl, pH 7.4, homogenized and stored in aliquots frozen in liquid nitrogen at ⁇ 190° C.
- the binding assay was carried out by a method based on that of Tahara et al. (Tahara A et al., Brit. J. Pharmacol. 125, 1463-1470 (1998)).
- the incubation buffer was: 50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4.
- membranes 50 ⁇ g/ml protein in incubation buffer
- CHO-K1 cells with stably expressed human V2 receptors cell line hV2 — 23_CHO
- 1-2 nM 3 H-AVP 8-Arg-vasopressin, PerkinElmer #18479
- incubation buffer 50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4
- total binding 50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4
- the nonspecific binding was determined with 1 ⁇ M AVP (Bachem # H1780). Triplicate determinations were carried out.
- the binding parameters were calculated by nonlinear regression in SAS.
- the algorithms of the program operate in analogy to the LIGAND analysis program (Munson PJ and Rodbard D, Analytical Biochem. 107, 220-239 (1980)).
- the Kd of 3 H-AVP for the recombinant hV2 receptors is 2.4 nM and was used to determine the Ki value.
- the test reveals that compounds of the present invention generally have selectivity towards the V1b receptor in comparison with V2 receptor, which, expressed as K i (h-V2)/K i (h-V1b) values generally exceed 10 and are frequently at least 15, in particular at least 25 and especially at least 50.
- the substances were dissolved in a concentration of 10 ⁇ 2 M in DMSO and diluted with incubation buffer (50 mM Tris, 10 mM MgCl 2 , 0.1% BSA, pH 7.4).
- Confluent HEK-293 cells with transiently expressing recombinant human oxytocin receptors were centrifuged at 750 ⁇ g and at room temperature for 5 minutes. The residue was taken up in ice-cold lysis buffer (50 mM Tris-HCl, 10% glycerol, pH 7.4 and Roche Complete Protease Inhibitor) and subjected to an osmotic shock at 4° C. for 20 minutes. The lyzed cells were then centrifuged at 750 ⁇ g and at 4° C. for 20 minutes, the residue was taken up in incubation buffer, and aliquots of 10 7 cells/ml were prepared. The aliquots were frozen at ⁇ 80° C. until used.
- ice-cold lysis buffer 50 mM Tris-HCl, 10% glycerol, pH 7.4 and Roche Complete Protease Inhibitor
- the binding parameters were calculated by nonlinear regression analysis (SAS), in analogy to the LIGAND program of Munson and Rodbard (Analytical Biochem 1980; 107: 220-239).
- SAS nonlinear regression analysis
- the Kd of 3 H-oxytocin for the recombinant hOT receptors is 7.6 nM and was used to determine the Ki value.
- the metabolic stability of the compounds of the invention was determined in the following assay.
- test substances are incubated in a concentration of 0.5 ⁇ M as follows:
- test substance 0.5 ⁇ M test substance is preincubated together with liver microsomes of various species (rat, human or other species) (0.25 mg of microsomal protein/ml) in 0.05M potassium phosphate buffer pH 7.4 in microtitre plates at 37° C. for 5 min.
- the reaction is started by adding NADPH (1 mg/ml). 50 ⁇ l aliquots are taken after 0, 5, 10, 15, 20 and 30 min, and the reaction is stopped immediately with the same volume of acetonitrile and cooled down. The samples are frozen until analyzed. Using MSMS, the remaining concentration of undegraded test substance is determined.
- the half-life (T1/2) is determined, where the half-life of the test substance can be calculated, assuming first order kinetics, from the decrease in the concentration of the compound with time.
- 150 ⁇ l of rat or human plasma, with 1 or 10 ⁇ M of test substance added, is pipetted onto one side of the 96-well dialysis chambers, 150 ⁇ l of PPS buffer are pipetted onto the other side.
- the chambers are separated by a dialysis membrane having a cut-off of 6-8000 dalton.
- the 96-well dialysis chambers are covered and gently shaken overnight.
- 0.4 mg/ml of human liver microsomes are preincubated for 10 minutes with the test substances to be tested (0-20 ⁇ M), the CYP specific substrates, in 0.05 M potassium phosphate buffer pH 7.4 at 37° C.
- the Cyp-specific substrate for CYP 2C9 is luciferin H, that for CYP 3A4 is luciferin BE.
- the reaction is started by addition of NADPH. After 30 min of incubation at RT, the luciferin detection reagent is added, and the resulting luminescence signal is measured (modified according to literature reference: Promega, Technical Bulletin P450-GLOTM Assays).
- test consists of 2 parts.
- microsomal protein human liver microsomes
- 50 mM potassium phosphate buffer 50 mM potassium phosphate buffer
- the reaction is started using NADPH.
- 4 ⁇ M of midazolam (final concentration) are added, and the mixture is incubated for a further 10 min.
- 75 ⁇ l of the reaction solution are removed and quenched with 150 ⁇ l of acetonitrile solution.
- microsomal protein human liver microsomes
- 4 ⁇ M midazolam final concentration
- 0-10 ⁇ M or 50 ⁇ M
- test substance 0.05 mg/ml of microsomal protein (human liver microsomes), 4 ⁇ M midazolam (final concentration) and 0-10 ⁇ M (or 50 ⁇ M) of test substance are preincubated in 50 mM potassium phosphate buffer for 5 min.
- the reaction is started using NADPH. After 10 min, 75 ⁇ l of the reaction solution are removed and quenched with 150 ⁇ l of acetonitrile solution. The samples are frozen until analyzed by MSMS (modified according to literature references:
- the solubility in water of the compounds according to the invention can be determined, for example, according to the so-called “shake flask” method (according to ASTM International: E 1148-02 , Standard test methods for measurement of aqueous solubility, Book of Standards Volume 11.05.).
- a buffer solution having a certain pH for example phosphate buffer pH 7.4
- the resulting mixture is shaken or stirred until the steady state has been reached (typically 24 or 48 hours, sometimes even up to 7 days).
- the undissolved solid is then removed by filtration or centrifugation, and the concentration of the dissolved compound is determined by UV spectroscopy or high-pressure liquid chromatography (HPLC) using an appropriate calibration curve.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Diabetes (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Psychiatry (AREA)
- Cardiology (AREA)
- Urology & Nephrology (AREA)
- Heart & Thoracic Surgery (AREA)
- Obesity (AREA)
- Hospice & Palliative Care (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Anesthesiology (AREA)
- Addiction (AREA)
- Pain & Pain Management (AREA)
- Otolaryngology (AREA)
- Gastroenterology & Hepatology (AREA)
- Vascular Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Indole Compounds (AREA)
Abstract
Description
- The present invention relates to novel substituted oxindole derivatives, to medicaments comprising them and to their use for treating diseases.
- Vasopressin is an endogenous hormone which exerts widely diverse effects on organs and tissues. It is suspected that the vasopressin system is involved in various pathological states such as, for example, heart failure and high blood pressure. At present three receptors (V1a, V1b or V3 and V2) via which vasopressin mediates its numerous effects are known. Antagonists of these receptors are therefore being investigated as possible novel therapeutic approaches to the treatment of diseases (M. Thibonnier, Exp. Opin. Invest. Drugs 1998, 7(5), 729-740).
- The present application describes novel substituted oxindoles carrying an arylsulphonyl group in position 1. 1-Phenylsulphonyl-1,3-dihydro-2H-indol-2-ones have previously been described as ligands of vasopressin receptors. WO 93/15051, WO95/18105, WO 98/25901, WO 01/55130, WO 01/55134, WO 01/64668 and WO 01/98295 describe derivatives derived from the oxindole skeleton and having arylsulphonyl groups in position 1. These compounds differ essentially in the substitution in position 3.
- In particular, WO 93/15051 and WO 98/25901 describe 1-phenylsulphonyl-1,3-dihydro-2H-indol-2-ones in which the oxindole structure is substituted in position 3 by two alkyl radicals which may also together form a cycloalkyl radical (spiro linkage) as ligands of vasopressin receptors. Alternatively, the spiro ring may comprise heteroatoms, such as oxygen and nitrogen (optionally with substituents).
- WO 95/18105 describes 1-phenylsulphonyl-1,3-dihydro-2H-indol-2-ones having a nitrogen atom in position 3 as ligands of vasopressin receptors. In addition, radicals which are selected from the group consisting of alkyl, cycloalkyl, phenyl and benzyl are attached in position 3 (in each case optionally with substituents).
- WO 03/008407 describes 1-phenylsulphonyloxindoles in which pyridylpiperazines are attached via an oxycarbonyl group to the oxindole in position 3.
- WO 2005/030755 describes as Example 108, the carbamate compound 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylic acid 5-cyano-1-(2,4-dimethoxy-phenylsulphonyl)-3-(2-methoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl ester (according to IUPAC nomenclature: 5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-methoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl-4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate).
- WO 06/005609 describes the 2-ethoxyphenyl urea compounds N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide (as Example 119) and N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide (as Example 128).
- In addition to the binding affinity to the vasopressin V1b receptor, further properties may be advantageous in the treatment and/or prophylaxis of vasopressin-dependent disorders, such as, for example:
- 1.) a selectivity for the vasopressin V1b receptor over the vasopressin V1a receptor, i.e. the quotient of the binding affinity to the V1a receptor (Ki(V1a) (determined in the unit “nanomolar (nM)”) and the binding affinity to the V1b receptor (Ki(V1b)) (determined in the unit “nanomolar (nM)”). The greater the quotient Ki(V1a)/Ki(V1b), the greater the V1b selectivity;
2.) a selectivity for the vasopressin V1b receptor over the vasopressin V2 receptor, i.e. the quotient of the binding affinity to the V2 receptor (Ki(V2) (determined in the unit “nanomolar (nM)”) and the binding affinity to the V1b receptor (Ki(V1b)) (determined in the unit “nanomolar (nM)”). The greater the quotient Ki(V2)/Ki(V1b), the greater the V1b selectivity;
3.) a selectivity for the vasopressin V1b receptor over the oxytocin OT receptor, i.e. the quotient of the binding affinity to the OT receptor (Ki(OT) (determined in the unit “nanomolar (nM)”) and the binding affinity to the V1b receptor (Ki(V1b)) (determined in the unit “nanomolar (nM)”). The greater the quotient Ki(OT)/Ki(V1b), the greater the V1b selectivity;
4.) the metabolic stability, determined, for example, using the half-life determined in vitro in liver microsomes of various species (for example rat or human);
5.) only minor, if any, inhibition of cytochrom P450 (CYP) enzymes:cytochrom P450 (CYP) is the name for a superfamily of haem proteins having enzymatic activity (oxidases). They are also of particular importance for the degradation (metabolism) of foreign substances, such as pharmaceutics or xenobiotics, in mammalian organisms. The most important representatives of the types and subtypes of CYP in the human organism are: CYP 1A2, CYP 2C9, CYP 2D6 and CYP 3A4. When CYP 3A4 inhibitors (for example grapefruit juice, cimetidine, erythromycin) and medicaments which are degraded via this enzyme system and which thus compete for the same binding site at the enzyme are administered simultaneously, their degradation may be slowed down, and actions and side-effects of the medicament administered may be enhanced in an unwanted manner;
6.) suitable solubility in water (in mg/ml);
7.) suitable pharmacokinetics (temporal profile of the concentration of the compound according to the invention in the plasma or in tissues, for example brain). Pharmacokinetics may be described by the following parameters: half-life, distribution volume, plasma clearance, AUC (“area under the curve”, area under the concentration-time curve), oral bioavailability, the brain/plasma ratio;
8.) a certain proportion of the active substance is present attached to plasma proteins (drug/plasma protein binding (PPB) value);
9.) no or only minor blockage of the hERG channel: compounds which block the hERG channel may prolong the QT interval, thus leading to serious irregularities of pulse (for example “torsade de pointes”). Using a displacement assay described in the literature with radioactively labelled dofetilide (G. J. Diaz et al., Journal of Pharmacological and Toxicological Methods, 50 (2004), 187-199), it is possible to determine the potential of compounds of blocking the hERG channels. The lower the IC50 in this “dofetilide assay”, the more likely a potent hERG blockage. In addition, the blockage of the hERG channel may be measured by electrophysical experiments using cells transfected with the hERG channel, by “whole-cell patch clamping” (G. J. Diaz et al., Journal of Pharmacological and Toxicological Methods, 50 (2004), 187-199). - It is an object of the present invention to provide a compound with high and selective activity, preferably in particular for the vasopressin V1b receptor, for the treatment or prophylaxis of various vasopressin-dependent diseases. In addition, the substance according to the invention should have one or more of the advantages 1.) to 9.) mentioned above, in particular a suitable selectivity for the V1b receptor over the V1a receptor.
- This object is achieved by compounds of the general formula (I)
- in which
-
- R1 is ethoxy;
- R2 is hydrogen;
- R3 is cyano;
- R4 is hydrogen;
- R5 is hydrogen, methoxy or ethoxy;
- R6 is hydrogen or methoxy;
- R7 is hydrogen, methyl, ethyl, n-propyl or isopropyl;
- X1 is —NH—;
- X2 is N or CH;
- X3 is N or CH;
where X2 and X3 are not simultaneously N (that is to say are a nitrogen atom); and by the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- Accordingly, the present invention relates to compounds of the general formula (I) (also “compounds (I)” below), including the tautomeric forms thereof, and the pharmaceutically acceptable salts of the compounds (I) and the prodrugs of the compounds (I).
- A preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy;
R2 is hydrogen;
R3 is cyano;
R4 is hydrogen;
R5 is hydrogen or methoxy, in particular methoxy;
R6 is hydrogen or methoxy, in particular methoxy;
R7 is hydrogen, methyl, ethyl, n-propyl or isopropyl; - where X2 and X3 are not simultaneously a nitrogen atom;
and the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof. - A particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy;
R2 is hydrogen;
R3 is cyano;
R4 is hydrogen;
R5 is hydrogen or methoxy, in particular methoxy;
R6 is hydrogen or methoxy, in particular methoxy, in particular methyl or ethyl;
R7 is hydrogen, methyl or ethyl; - and the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- A further particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy;
R2 is hydrogen;
R3 is cyano;
R4 is hydrogen;
R5 is hydrogen or methoxy, in particular methoxy;
R6 is hydrogen or methoxy, in particular methoxy;
R7 is hydrogen, methyl or ethyl, in particular methyl or ethyl; - and the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- A further particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy;
R2 is hydrogen;
R3 is cyano;
R4 is hydrogen;
R5 is hydrogen or methoxy, in particular methoxy;
R6 is hydrogen or methoxy, in particular methoxy;
R7 is hydrogen, methyl or ethyl, in particular methyl or ethyl; - and the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- A further particularly preferred subject-matter of the invention are compounds of the general formula (I) in which
- R1 is ethoxy;
R2 is hydrogen;
R3 is cyano;
R4 is hydrogen;
R5 is methoxy;
R6 is methoxy;
R7 is methyl or ethyl; - and the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- Examples of preferred embodiments of the present invention are compounds according to the general formula (I), and the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof, in which
- R1 is ethoxy,
R2 is hydrogen,
R3 is cyano,
R4 is hydrogen, - and in which the radicals X2, X3, R5, R6 and R7 have in each case the meanings listed in one of the rows of Table 1 below.
-
TABLE 1 Example No. X2 X3 R5 R6 R7 1 N CH methoxy methoxy methyl 2 N CH methoxy H methyl 3 N CH ethoxy H methyl 4 N CH H H methyl 5 N CH H methoxy methyl 6 N CH ethoxy methoxy methyl 7 N CH methoxy methoxy ethyl 8 N CH methoxy H ethyl 9 N CH ethoxy H ethyl 10 N CH H H ethyl 11 N CH H methoxy ethyl 12 N CH ethoxy methoxy ethyl 13 N CH methoxy methoxy n-propyl 14 N CH methoxy H n-propyl 15 N CH ethoxy H n-propyl 16 N CH H H n-propyl 17 N CH H methoxy n-propyl 18 N CH ethoxy methoxy n-propyl 19 N CH methoxy methoxy isopropyl 20 N CH methoxy H isopropyl 21 N CH ethoxy H isopropyl 22 N CH H H isopropyl 23 N CH H methoxy isopropyl 24 N CH ethoxy methoxy isopropyl 25 N CH methoxy methoxy H 26 N CH methoxy H H 27 N CH ethoxy H H 28 N CH H H H 29 N CH H methoxy H 30 N CH ethoxy methoxy H 31 CH N methoxy methoxy methyl 32 CH N methoxy H methyl 33 CH N ethoxy H methyl 34 CH N H H methyl 35 CH N H methoxy methyl 36 CH N ethoxy methoxy methyl 37 CH N methoxy methoxy ethyl 38 CH N methoxy H ethyl 39 CH N ethoxy H ethyl 40 CH N H H ethyl 41 CH N H methoxy ethyl 42 CH N ethoxy methoxy ethyl 43 CH N methoxy methoxy n-propyl 44 CH N methoxy H n-propyl 45 CH N ethoxy H n-propyl 46 CH N H H n-propyl 47 CH N H methoxy n-propyl 48 CH N ethoxy methoxy n-propyl 49 CH N methoxy methoxy isopropyl 50 CH N methoxy H isopropyl 51 CH N ethoxy H isopropyl 52 CH N H H isopropyl 53 CH N H methoxy isopropyl 54 CH N ethoxy methoxy isopropyl 55 CH N methoxy methoxy H 56 CH N methoxy H H 57 CH N ethoxy H H 58 CH N H H H 59 CH N H methoxy H 60 CH N ethoxy methoxy H 61 CH CH methoxy methoxy methyl 62 CH CH methoxy H methyl 63 CH CH ethoxy H methyl 64 CH CH H H methyl 65 CH CH H methoxy methyl 66 CH CH ethoxy methoxy methyl 67 CH CH methoxy methoxy ethyl 68 CH CH methoxy H ethyl 69 CH CH ethoxy H ethyl 70 CH CH H H ethyl 71 CH CH H methoxy ethyl 72 CH CH ethoxy methoxy ethyl 73 CH CH methoxy methoxy n-propyl 74 CH CH methoxy H n-propyl 75 CH CH ethoxy H n-propyl 76 CH CH H H n-propyl 77 CH CH H methoxy n-propyl 78 CH CH ethoxy methoxy n-propyl 79 CH CH methoxy methoxy isopropyl 80 CH CH methoxy H isopropyl 81 CH CH ethoxy H isopropyl 82 CH CH H H isopropyl 83 CH CH H methoxy isopropyl 84 CH CH ethoxy methoxy isopropyl 85 CH CH methoxy methoxy H 86 CH CH methoxy H H 87 CH CH ethoxy H H 88 CH CH H H H 89 CH CH H methoxy H 90 CH CH ethoxy methoxy H - In particular, the present invention relates to the following compound of the formula Ia (which corresponds to compound Example 1 of table 1)
- and also the pharmaceutically acceptable salts, tautomeric forms, and prodrugs of Ia.
- In particular, the present invention also relates to the compound Example 7 of table 1 and also to the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- In particular, the present invention also relates to the compound Example 31 of table 1 and also to the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- In particular, the present invention also relates to the compound Example 37 of table 1 and also to the pharmaceutically acceptable salts, tautomeric forms, and prodrugs thereof.
- The compounds (I) or (Ia) of the invention have a centre of chirality in position 3 of the 2-oxindole ring. The compounds according to the invention of the general formula (I) or (Ia) may therefore be present as a 1:1 mixture of enantiomers (racemate), or as a non-racemic mixture of enantiomers in which one of the two enantiomers, i.e. either the (laevorotatory) enantiomer which turns the plane of polarization of linear polarized light to the left ((−)-enantiomer below), or the (dextrorotatory) enantiomer which turns the plane of polarization of linear polarized light to the right ((+)-enantiomer below), is enriched, or as essentially enantiomerically pure compounds (enantiomeric excess ee >90%), i.e. as essentially enantiomerically pure (−)-enantiomer or (+)-enantiomer. Preferably, the compounds are present as essentially enantiomerically pure compounds. Particular preference is given to compounds which are essentially enantiomerically pure (ee >90%).
- The invention therefore provides the pure enantiomers as well as their mixtures, for example, mixtures in which one enantiomer is present in enriched form, but also the racemates. The invention also provides the pharmaceutically acceptable salts, the tautomers and the prodrugs of the pure enantiomers of (I) or (Ia), and the enantiomer mixtures in the form of the pharmaceutically acceptable salts, the tautomers and the prodrugs of (I) or (Ia).
- Preferred embodiments of the invention are compounds of the general formula (I) or (Ia), as defined above, which are characterized in that they are present in optically active form and that they are in each case the enantiomer, which rotates the plane of polarization of polarized light to the left, (i.e. the laevorotatory enantiomer) of the compound of the general formula (I) in question in the form of the free base, or a pharmaceutically acceptable salt, a tautomeric form or a prodrug thereof. Below, the laevorotatory enantiomers of the compounds (I) or (Ia) are also referred to as (−)-enantiomers.
- Preferred embodiments of the invention are those compounds of the general formula (I) or (Ia), as defined above, which are characterized in that they are present in optically active form, where the absolute configuration of the chiral C-3 ring carbon atom of these compounds corresponds to the absolute configuration at C-3 of the (−)-enantiomer of the compound of the formula (Ia) in the form of the free base. This configuration is also referred to below as the “preferred configuration”. X-Ray structure analyses have shown that the (−)-enantiomer of the compounds of the formula (Ia) has S configuration with respect to the centre of asymmetry at the carbon atom of position 3 of the oxindole ring.
- According to the invention, preference is given to compounds of the general formula (I) or (Ia), tautomers thereof, pharmaceutically acceptable salts thereof and prodrugs thereof, as defined above, in which the corresponding (−)-enantiomer is present in an optical purity (enantiomeric excess, ee) of greater than 50%.
- According to the invention, preference is given to compounds of the general formula (I) or (Ia), tautomers thereof, pharmaceutically acceptable salts thereof and prodrugs thereof, as defined above, in which the enantiomer having the preferred absolute configuration at the C-3 ring carbon atom is present in an optical purity (enantiomeric excess, ee) of greater than 50%.
- According to the invention, preference is given to compounds of the general formula (I) or (Ia), tautomers thereof, pharmaceutically acceptable salts thereof and prodrugs thereof, as defined above, in which the corresponding (−)-enantiomer is present in an optical purity (enantiomeric excess, ee) of greater than 90%.
- According to the invention, preference is given to compounds of the general formula (I) or (Ia), tautomers thereof, pharmaceutically acceptable salts thereof and prodrugs thereof, as defined above, in which the enantiomer having the preferred absolute configuration at the C-3 ring carbon atom is present in an optical purity (enantiomeric excess, ee) of greater than 90%.
- Likewise preferred embodiments of the invention are compounds of the general formula (I) or (Ia) as defined above, which are characterized in that they are present in optically inactive form, that is to say in the form of the racemate, or in the form of a pharmaceutically acceptable salt, a tautomeric form or a prodrug of the racemate.
- A further subject-matter of the present invention relates to medicaments comprising at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above.
- A further subject-matter of the present invention relates to compounds of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for use as a medicament.
- A further subject-matter of the present invention relates to the compounds of the formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for use in therapy or prophylaxis of a disease, in particular a vasopressin-dependent disease or a disease mentioned herein.
- A further subject-matter of the present invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of at least one vasopressin-dependent disease and/or for the manufacture of a medicament for the treatment and/or a prophylaxis of at least one vasopressin-dependent disease. Vasopressin-dependent diseases are those in which the progression of the disease depends at least in part on vasopressin, i.e. diseases where the vasopressin level, which may contribute directly or indirectly to the disease picture, is elevated.
- The present invention also relates to the use of the compounds (I) or (Ia) according to the invention and/or a pharmaceutically acceptable salt or a prodrug thereof for the treatment and/or prophylaxis of diseases in which the progression of the disease depends at least in part on vasopressin, i.e. diseases where the vasopressin level, which may contribute directly or indirectly to the disease picture, is elevated. The present invention also relates to the use of the compounds (I) or (Ia) according to the invention and/or a pharmaceutically acceptable salt or a prodrug thereof for preparing a medicament for the treatment and/or prophylaxis of such a disease.
- The present invention relates in particular to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of diabetes, in particular diabetes insipidus, insulin resistance, nocturnal enuresis, incontinence, diseases in which blood coagulation disorders occur, and/or for delaying micturition and the use thereof for the manufacture of a medicament for the treatment and/or prophylaxis of at least one of said diseases.
- The present invention relates in particular to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of hypertension, pulmonary hypertension, heart failure, myocardial infarction, coronary spasm, unstable angina, PTCA (percutaneous transluminal coronary angioplasty), ischemias of the heart, disorders of the renal system, edemas, renal vasospasm, necrosis of the renal cortex, hyponatremia, hypokalemia, Schwartz-Bartter syndrome, disorders of the gastrointestinal tract, gastritic vasospasm, hepatocirrhosis, gastric and intestinal ulcer, emesis, emesis occurring during chemotherapy, and travel sickness, and the use thereof for the manufacture of a medicament for the treatment and/or prophylaxis of at least one of said diseases.
- The compounds (I) or (Ia) of the invention, their salts, their tautomers and their prodrugs can also be used for the treatment of various vasopressin-dependent complaints which exhibit central nervous causes or alterations in the HPA axis (hypothalamic pituitary adrenal axis), for example for affective disorders such as depressive disorders and bipolar disorders. These include for example dythymic disorders, phobias, post-traumatic stress disorders, general anxiety disorders, panic disorders, seasonal depressions and sleep disorders.
- The compounds (I) or (Ia) of the invention, their salts, their tautomers and their prodrugs can likewise be employed for treatment in cases of anxiety disorders and stress-dependent anxiety disorders such as, for example, generalized anxiety disorders, phobias, post-traumatic anxiety disorders, panic anxiety disorders, obsessive-compulsive anxiety disorders, acute stress-dependent anxiety disorders and social phobia. The compounds of the invention can further be employed also for the treatment of memory impairments, Alzheimer's disease, psychoses, psychotic disorders, sleep disorders and/or Cushing's syndrome, and all stress-dependent diseases.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of affective disorders and/or for the manufacture of a medicament for the treatment of affective disorders.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of anxiety disorders and/or stress-dependent anxiety disorders and/or for the manufacture of a medicament for the treatment of anxiety disorders and/or stress-dependent anxiety disorders.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of memory impairments and/or Alzheimer's disease and/or for the manufacture of a medicament for the treatment of memory impairments and/or Alzheimer's disease.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of psychoses and/or psychotic disorders and/or for the manufacture of a medicament for the treatment of psychoses and/or psychotic disorders.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of Cushing's syndrome or other stress-dependent diseases and/or for the manufacture of a medicament for the treatment of Cushing's syndrome or other stress-dependent diseases.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of sleep disorders and/or for the manufacture of a medicament for the treatment of sleep disorders.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of depressive disorders and/or for the manufacture of a medicament for the treatment of depressive disorders.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of childhood onset mood disorders and/or for the manufacture of a medicament for the treatment of childhood onset mood disorders. The term “childhood onset mood disorders” is understood to mean mood disorders and depressions which begin as early as childhood.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment of vasomotor symptoms and/or thermoregulatory dysfunctions, such as, for example, the “hot flush” symptom.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of drug dependencies, medicament dependencies and/or dependencies mediated by other factors, for the treatment and/or prophylaxis of stress caused by the withdrawal of one or more factors mediating the dependency and/or for the treatment and/or prophylaxis of stress-induced relapses into the drug dependencies, medicament dependencies and/or dependencies mediated by other factors.
- A further subject-matter of the invention relates to the use of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof as defined above for the treatment and/or prophylaxis of schizophrenia and/or psychosis.
- A further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of diabetes, in particular diabetes insipidus, insulin resistance, nocturnal enuresis, incontinence, diseases in which blood coagulation disorders occur, and for delaying micturition in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of hypertension, pulmonary hypertension, heart failure, myocardial infarction, coronary spasm, unstable angina, PTCA (percutaneous transluminal coronary angioplasty), ischemias of the heart, disorders of the renal system, edemas, renal vasospasm, necrosis of the renal cortex, hyponatremia, hypokalemia, Schwartz-Bartter syndrome, disorders of the gastrointestinal tract, gastritic vasospasm, hepatocirrhosis, gastric and intestinal ulcer, emesis, emesis occurring during chemotherapy, and travel sickness in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of affective disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment of anxiety disorders and/or stress-dependent anxiety disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment of memory impairments and/or Alzheimer's disease in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment of psychoses and/or psychotic disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment of Cushing's syndrome in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment of sleep disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment of depressive disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of vasomotor symptoms and/or thermoregulatory dysfunctions, such as, for example, the “hot flush” symptom, in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of drug dependencies, medicament dependencies and/or dependencies mediated by other factors, for the treatment and/or prophylaxis of stress caused by the withdrawal of one or more factors mediating the dependency and/or for the treatment and/or prophylaxis of stress-induced relapses in the drug dependencies, medicament dependencies and/or dependencies mediated by other factors, in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method for the treatment and/or prophylaxis of schizophrenia and/or psychosis in a patient, characterized in that an effective amount of at least one compound of the general formula (I) or (Ia) and/or a pharmaceutically acceptable salt or a prodrug thereof is administered to the patient.
- A further subject-matter of the invention relates to a method as defined above, which is characterized in that the patient is a mammal, preferably a human or a nonhuman mammal or a nonhuman transgenic mammal.
- The compounds of the general formula (I) or (Ia), their pharmaceutically acceptable salts and prodrugs as defined above can be prepared by a skilled worker with knowledge of the technical teaching of the invention in implementation and/or in analogous implementation of process steps known per se.
- A further preferred embodiment relates to compounds of the general formula (I) or (Ia), their tautomers, their prodrugs thereof and their pharmaceutically acceptable salts as described above, which are characterized in that they are selective for the vasopressin receptor subtype V1b over at least one of the closely related vasopressin/oxytocin receptor subtypes (for example vasopressin V1a, vasopressin V2 and/or oxytocin).
- A further preferred embodiment relates to compounds of the general formula (I) or (Ia), their tautomers, their prodrugs thereof and their pharmaceutically acceptable salts as described above, which are characterized in that they have improved metabolic stability.
- The metabolic stability of a compound can be determined, for example, by incubating a solution of this compound with liver microsomes from particular species (for example rat, dog or human) and determining the half-life of the compound under these conditions (RS Obach, Curr Opin Drug Discov Devel. 2001, 4, 36-44). It is possible to conclude from an observed larger half-life that the metabolic stability of the compound is improved. The stability in the presence of human liver microsomes is of particular interest since it makes it possible to predict the metabolic degradation of the compound in the human liver. Compounds with increased metabolic stability (determined in the liver microsome test) are therefore probably also degraded more slowly in the liver. The slower metabolic degradation in the liver can lead to higher and/or longer-lasting concentrations (effective levels) of the compound in the body, so that the elimination half-life of the compounds according to the invention is increased. Increased and/or longer-lasting effective levels may lead to a better efficacy of the compound in the treatment or prophylaxis of various vasopressin-dependent diseases. An improved metabolic stability may additionally lead to an increased bioavailability after oral administration, because the compound is subjected, after being absorbed in the intestine, to less metabolic degradation in the liver (so-called first pass effect). An increased oral bioavailability may, because the concentration (effective level) of the compound is increased, lead to a better efficacy of the compound after oral administration.
- A further preferred embodiment relates to compounds of the general formula (I) as described above, characterized in that, in patients or relevant animal models allowing prognostic statements on therapeutic application, they have improved pharmacological activity compared to the oxindole compounds known from the prior art.
- Each of the stated preferred definitions of a variable may be combined with any definitions of the remaining variables.
- The invention relates in particular to compounds of the general formula (I) which are selected from the group consisting of the examples, listed below, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 and 90, and also to their tautomeric forms, their prodrugs and in particular their physiologically acceptable salts, and their non-salt forms such as hydrates and/or solvates. Particular preference is given to providing the abovementioned compounds in the form of the free base or in the form of acid addition salts.
- The invention in particular also relates to the (−)-enantiomers of the Examples 1 to 90 in accordance with the general formula (I) selected from the compounds of the examples, listed below, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B, 9B, 10B, 11B, 12B, 13B, 14B, 15B, 16B, 17B, 18B, 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, 27B, 28B, 29B, 30B, 31B, 32B, 33B, 34B, 35B, 36B, 37B, 38B, 39B, 40B, 41B, 42B, 43B, 44B, 45B, 46B, 47B, 48B, 49B, 50B, 51B, 52B, 53B, 54B, 55B, 56B, 57B, 58B, 59B, 60B, 61B, 62B, 63B, 64B, 65B, 66B, 67B, 68B, 69B, 70B, 71B, 72B, 73B, 74B, 75B, 76B, 77B, 78B, 79B, 80B, 81B, 82B, 83B, 84B, 85B, 86B, 87B, 88B, 89B and 90B, and also to tautomeric forms, prodrugs and in particular physiologically acceptable salts, and non-salt forms such as hydrates and/or solvates of compounds of the formula (I). Particular preference is given to providing the abovementioned compounds in the form of the free base or in the form of acid addition salts.
- The term “prodrugs” is to be understood as meaning those compounds which are metabolized in vivo to the compounds according to the invention. Typical examples of prodrugs are described in C. G. Wermeth (Ed.): The Practice of Medicinal Chemistry, Academic Press, San Diego, 1996, pages 671-715. They include, for example, phosphates, carbamates or amino acids, esters and others. In the present invention suitable prodrugs of the compounds of the formula are compounds of the formula I, where the nitrogen atom that carries R7 is part of an amide/peptide group, i.e. the nitrogen carries a acyl group such as C1-C4-alkylcarbonyl e.g. acetyl, propionyl, n-butyryl (n-propylcarbonyl), isobutyryl, n-butylcarbonyl oder tert-butylcarbonyl (pivaloyl), benzoyl, CO bound radical derived from an amino acid such as a CO bound radical derived from glycine, alanine, serine, phenylalanine etc. Suitable prodrugs olso include alkylcarbonyloxyalkylcarbamate, wherein the radical R7 in formula I is a moiety of the formula —C(═O)—O—CHRa—O—C(═O)—Rb wherein Ra and Rb are independently of each other are selected from C1-C4-alkyl. Such carbamates have been generally described by J. Alexander, R. Cargill, S. R. Michelson, H. Schwam, J. Medicinal Chem. 1988, 31(2), 318-322. These groups are cleaved under metabolic conditions to yield a compound of the formula I, wherein R7 is hydrogen.
- The invention furthermore relates to the pharmaceutically acceptable salts of compounds of the formula I, which are also referred to as physiologically acceptable salts. The salts are generally obtainable by reacting the free base of the compounds (I) according to the invention with a suitable acid. Suitable acids are listed, for example, in “Fortschritte der Arzneimittelforschung” [Advances in Drug Research], 1966, Birkhäuser Verlag, Vol. 10, pp. 224-285. They include, for example, hydrochloric acid, citric acid, tartaric acid, lactic acid, phosphoric acid, methanesulphonic acid, acetic acid, formic acid, maleic acid and fumaric acid.
- The compounds of the invention are effective after administration by various routes. The administration can, for example, be carried out intravenously, intramuscularly, subcutaneously, topically, intratracheally, intranasally, transdermally, vaginally, rectally, sublingually, buccally or orally and is frequently carried out intravenously, intramuscularly or in particular orally.
- The present invention also relates to pharmaceutical compositions which comprise a compound (I) of the invention, and/or a tautomer, and/or a pharmaceutically acceptable salt and/or a prodrug thereof and suitable pharmaceutical carriers (drug carriers). The amount of compound I in the pharmaceutical composition may depend on the formulation type of the composition and may be e.g. in the range from 0.0001 mg/g to 1 g/g in particular from 0.001 mg/g to 0.5 g/g of the composition.
- These drug carriers are chosen according to the pharmaceutical form and the desired mode of administration.
- The compounds of the invention of the general formula (I) or, where appropriate, suitable salts of these compounds can be used to manufacture pharmaceutical compositions for oral, sublingual, buccal, subcutaneous, intramuscular, intravenous, topical, intratracheal, intranasal, transdermal, vaginal or rectal administration and be administered to animals or humans in unit dose forms mixed with conventional pharmaceutical carriers for the prophylaxis or treatment of the above disorders or diseases.
- Suitable uniform administration forms (unit dose forms) comprise forms for oral administration, such as tablets, gelatin capsules, powders, granules, solutions or suspensions for oral intake, forms for sublingual, buccal, intratracheal or intranasal administration, aerosols, implants, forms of subcutaneous, intramuscular or intravenous administration and forms of rectal administration.
- The compounds of the invention can be used in creams, ointments or lotions for topical administration.
- In order to achieve the desired prophylactic or therapeutic effect, the dose of the active compound can vary between 0.01 and 50 mg per kg of body weight and per day.
- Each unit dose may comprise from 0.05 to 5000 mg, preferably 1 to 1000 mg, of the active compound in combination with a pharmaceutical carrier. This unit dose can be administered 1 to 5 times a day so that a daily dose of from 0.5 to 25 000 mg, preferably 1 to 5000 mg, is administered.
- If a solid composition in the form of tablets is prepared, the active compound is mixed with a pharmaceutical carrier such as gelatin, starch, lactose, magnesium stearate, talc, silicon dioxide or the like.
- The tablets can be coated with sucrose, a cellulose derivative or another suitable substance or be treated otherwise in order to display a prolonged or delayed activity and in order to release a predetermined amount of the active compound continuously.
- A preparation in the form of gelatin capsules is obtained by mixing the active compound with an extender and taking up the resulting mixture in soft or hard gelatin capsules.
- A preparation in the form of a syrup or elixir or for administration in the form of drops may comprise active compounds together with a sweetener which is preferably calorie-free, methylparaben or propylparaben as antiseptics, a flavouring and a suitable colouring.
- The water-dispersible powders or granules may comprise the active compounds mixed with dispersants, wetting agents or suspending agents, such as polyvinylpyrrolidones, and sweeteners or taste improvers.
- Rectal or vaginal administration is achieved by the use of suppositories which are prepared with binders which melt at the rectal temperature, for example cocoa butter or polyethylene glycols. Parenteral administration is effected by using aqueous suspensions, isotonic salt solutions or sterile and injectable solutions which comprise pharmacologically suitable dispersants and/or wetting agents, for example propylene glycol or polyethylene glycol.
- The active compound can also be formulated as microcapsules or centrosomes, if suitable with one or more carriers or additives.
- In addition to the compounds of the general formula (I), or their pharmaceutically acceptable salts or prodrugs, the compositions of the invention may comprise further active compounds which may be beneficial for the treatment of the impairments or disorders indicated above.
- The present invention therefore further relates to pharmaceutical compositions which comprise a plurality of active compounds, where at least one of these is a compound (I) according to the invention, a tautomer, a salt or a prodrug thereof.
- Examples of synthetic routes for preparing the oxindole derivatives of the invention are described below.
- The preparation of the oxindoles according to the invention can be carried out by different routes as illustrated in synthesis schemes 1 and 2. In these synthesis schemes, the variables have the same meanings as in the general formula (I).
- The 3-hydroxy-1,3-dihydroindol-2-ones IV can be obtained by adding metallated heterocycles III to the 3-keto group of the isatins II. The metallated heterocycles, such as, for example, the corresponding Grignard (Mg) or organyllithium compound, can be obtained in a customary manner from halogen or hydrocarbon compounds. Exemplary procedures can be found in Houben-Weyl, Methoden der Organischen Chemie [Methods of organic chemistry], Vol. 13, 1-2, Chap. Mg and Li compounds. The isatins II are either commercially available or were prepared in analogy to methods described in the literature (Advances in Heterocyclic Chemistry, A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1975, 18, 2-58; J. Brazil. Chem. Soc. 12, 273-324, 2001).
- Using KCN or Zn(CN)2 with Pd(0) catalysis in solvents such as dimethylformamide or tetrahydrofuran, if appropriate also with addition of bases such as K2CO3 or other carbonates and amines, it is possible to convert, at elevated temperature, the 3-hydroxyoxindoles IV which, in the 6-membered aromatic ring contain, for example as radical R3 or R4, an iodine substituent, into the analogous cyano-containing 3-hydroxyoxindoles IV. Suitable for use as Pd(0) salts are, for example, transition metal complexes prepared in situ from PdCl2 or PdOAc2 by addition of phosphines, such as tris(orthotolyl)phosphine. It is also possible to use commercial palladium complexes, such as, for example, the catalyst tetrakis(triphenylphosphine)palladium(0) and/or added phosphine ligands.
- The 3-hydroxyoxindoles IV can be converted into the compounds V which carry a leaving group LG′ in position 3, where the leaving group LG′ may be a customary leaving group, such as, for example, halide, mesylate or tosylate. The intermediate V where, for example, LG′=chlorine, can be prepared by treating the alcohol IV with thionyl chloride in the presence of a base, such as, for example, pyridine. Alternatively, it is possible to obtain alcohols IV by conversion into the mesylate using methanesulphonyl chloride in the presence of a base, such as, for example, triethylamine. The compounds V are subsequently reacted with amines, such as, for example, ammonia, which gives the analogous amines VI after the substitution reactions. Compounds such as VI can then, after deprotonation with a strong base, such as, for example, potassium tert-butoxide or sodium hydride, in DMF, be converted into the product VIII by treatment with sulphonyl chlorides VII. The sulphonyl chlorides VII used are either commercially available or can be prepared in a manner analogous to known processes (see, for example, J. Med. Chem. 40, 1149 (1997)).
- The compounds VIII are converted into compounds IX by reaction with reagents for derivatizing amino groups, such as, for example chloroformates, isocyanates or carbamoyl chlorides, generally using customary methods (see J. March, Advanced Organic Chemistry, 1992, 4th edition., Wiley, New York, pages 417-421; 499; 903). For example, LG as leaving group may be OPhenyl in the compound IX, which is obtained by reacting VIII with phenyl chloroformate in the presence of a base, such as, for example, pyridine.
- The subsequent reaction with amines X, if appropriate at elevated temperature and with addition of auxiliary bases, such as, for example, triethylamine or diisopropylethylamine, gives the compounds according to the invention of the general formula (I). The amines X are either commercially available or can be prepared by methods known from the literature.
- A further alternative of preparing the amine X is the reaction of amines with aldehydes or ketones in the presence of reducing agents, such as, for example, sodium cyanoborohydride or sodium acetoxyborohydride, in the sense of a reductive amination (J. March, Advanced Organic Chemistry, 1992, 4th edition., Wiley, New York, pages 411; 898).
- As described in synthesis scheme 2, the order of the synthesis steps for preparing the compounds I according to the invention may be rearranged, analogously to synthesis scheme 1 above. Thus, initially, the amino group in the compound VI is derivatized using, for example, phenyl chloroformate, giving the compounds XIa and/or XIb. With excess amine X or else with the aid of an auxiliary base, the urea derivatives XII are generated which can be converted in the subsequent reaction under otherwise customary conditions by deprotonation of compounds XII using a strong base, such as, for example, sodium hydride or potassium tert-butoxide, and subsequent treatment with sulphonyl chlorides VII in DMF into the compounds I according to the invention.
- Below, the invention is illustrated in more detail using examples, the examples not being intended to be limiting.
- The compounds according to the invention can be prepared via various synthesis routes.
- The procedures mentioned, as described accordingly in synthesis schemes 1 and 2, are only described in greater detail by way of example on the basis of the examples mentioned, without being exclusively limited to the synthesis routes 1 or 2 or analogous procedures mentioned.
- With ice-bath cooling, 20.86 g (76.40 mmol) of 5-iodoisatin were stirred in 400 ml of anhydrous tetrahydrofuran (THF), and 3.22 g (80.50 mmol, 60% w/w) of sodium hydride were added a little at a time, the temperature being kept between 0-10° C. With ice-bath cooling, the suspension was stirred for one hour, during which the pyridine Grignard reagent was prepared. At room temperature, 20 g (80.30 mmol) of the 2-ethoxy-3-iodopyridine were dissolved in 400 ml of anhydrous THF, and over a period of 5-10 minutes 95.6 ml (1M solution in THF, 95.60 mmol) of ethylmagnesium bromide were added to this solution with cooling, at a temperature between 22 and 15° C. The solution was stirred for 20 minutes, during which time the colour changed from colourless to slightly yellowish.
- The solution of the pyridine Grignard reagents was then, over a period of 5-10 minutes, added to the solution, cooled in an ice-bath, of the 5-iodoisatin sodium salt, the temperature fluctuating between 5 and 18° C. After the addition of the Grignard reagent had ended, the ice-bath was removed, and the reaction mixture was stirred at room temperature for another 2 hours. Excess saturated ammonium chloride solution was added, followed by ethyl acetate, and the mixture was stirred for another 5 minutes. The aqueous phase was removed and extracted with ethyl acetate (2×). The combined organic phases were washed with water (2×), and the solvent was removed under reduced pressure. Initially, unreacted 5-iodoisatin precipitated from the still dilute solution and was removed, and after further concentration the product, too, crystallized out. The suspension was stored in a refrigerator at 5° C. for two hours and the slightly yellowish solid was then filtered off and washed with a little ethyl acetate. The desired 3-(2-ethoxypyridin-3-yl)-3-hydroxy-5-iodo-1,3-dihydro-2H-indol-2-one (17.1 g, 43.16 mmol, 57%) was isolated after drying at 40° C.
- ESI-MS [M+H+]=397.05 calculated for C15H13IN2O3=396.19
- Under an atmosphere of nitrogen, 7.1 g (17.92 mmol) of 3-(2-ethoxypyridin-3-yl)-3-hydroxy-5-iodo-1,3-dihydro-2H-indol-2-one were stirred in 100 ml of anhydrous THF at room temperature. 2.1 g (17.92 mmol) of zinc cyanide were added, followed by 0.51 g (0.45 mmol) of tetrakis(triphenylphosphine)palladium(0). The reaction mixture was transferred directly into a preheated oil bath at a temperature of 100° C. The mixture was stirred at 100° C. (oil bath temperature), and after 30 minutes, another 0.51 g (0.45 mmol) of the catalyst was added. In total, the mixture was stirred for 2 hours. The reaction mixture was cooled to room temperature, and an excess of water was added. The mixture was extracted with ethyl acetate (3×), and the combined organic phases were washed with water (3×). The solvent was evaporated to dryness under reduced pressure, and the residue was slurried with small volumes of ethyl acetate. A slightly yellowish solid was removed by filtration, washed with ethyl acetate and dried in a vacuum drying cabinet. It was possible to isolate 3.7 g (12.44 mmol, 69.4%) of the desired product 5-cyano-3-hydroxy-3-(2-ethoxypyridin-3-yl)-1,3-dihydroindol-2-one.
- ESI-MS [M+H+]=296.05 calculated for C16H13N3O3=295.30
- Under an atmosphere of nitrogen, 6.00 g (20.32 mmol) of the 5-cyano-3-hydroxy-3-(2-ethoxypyridin-3-yl)-1,3-dihydroindol-2-one were suspended in 60 ml of anhydrous dichloromethane (dried over molecular sieve). 2.30 ml (28.45 mmol) of pyridine were then added. The reaction mixture was cooled to a temperature of 0° C., and 2.06 ml (28.45 mmol) of neat thionyl chloride were then added dropwise (exothermic reaction). The mixture was stirred at room temperature for one hour. The formation of a yellow suspension was observed. The course of the reaction was monitored by thin-layer chromatography (TLC) (silica gel, dichloromethane/methanol in a ratio of 95:5). The reaction mixture was carefully poured into ice-water. After 15 minutes of stirring, the organic phase was removed. The aqueous phase was extracted with dichloromethane (2 x). All organic phases were combined, dried over magnesium sulphate and filtered, and the solvent was removed under reduced pressure. The product gave 5.70 g (18.17 mmol, 89%) of 3-chloro-3-(2-ethoxypyridin-3-yl)-2-oxoindoline-5-carbonitrile as an amorphous solid which was used without further purification for the next reaction.
- ESI-MS [M+H+]=314.1 calculated for C16H12ClN3O2=313.75
- 5.70 g (18.17 mmol) of 3-chloro-3-(2-ethoxypyridin-3-yl)-2-oxoindoline-5-carbonitrile were dissolved in 50 ml of dichloromethane. Under an atmosphere of nitrogen, 14 ml (98.11 mmol) of a 7 N methanolic ammonia solution were slowly added dropwise to the cooled reaction solution. The colour of the solution changed to light-yellow, and the solution was stirred at room temperature overnight, during which time the product slowly crystallized out. The course of the reaction was monitored by TLC (silica gel, dichloromethane/methanol in a ratio of 9:1). The solvent was removed under reduced pressure, and the residue was once more taken up and dissolved in dichloromethane. The mixture was then extracted with water. The phases were separated, and a greasy phase which had formed between the phases was added to the aqueous phase. The aqueous phase was extracted with ethyl acetate until the greasy phase had gone into solution. All organic phases obtained were combined, and the solvent was removed under reduced pressure. The residue was triturated with diethyl ether, resulting in the formation of a solid substance which was filtered off and dried in a vacuum drying cabinet at moderate temperature (35° C.). This gave 4.54 g (15.43 mmol, 85%) of the 3-amino-3-(2-ethoxypyridin-3-yl)-2-oxoindoline-5-carbonitrile as a solid.
- ESI-MS [M+H+]=295.3 calculated for C16H14N4O2=294.32
- 3.54 g (12.03 mmol) of 3-amino-3-(2-ethoxypyridin-3-yl)-2-oxoindoline-5-carbonitrile were dissolved in 80 ml of anhydrous dimethylformamide (dried over molecular sieve). Under an atmosphere of nitrogen and with cooling using an ice-bath, 1.49 g (13.23 mmol) of potassium tert-butoxide were added a little at a time. The colour of the reaction mixture changed, and the brown solution was stirred at 0° C. for another hour to ensure that the deprotonation proceeded to completion. At low temperature, 3.16 g (13.23 mmol) 2,4-dimethoxybenzenesulphonyl chloride were added, and the mixture was stirred at 0° C. for another two hours. The course of the reaction was monitored by TLC (silica gel, dichloromethane/methanol in a ratio of 9:1). The reaction mixture was poured into ice-water and then extracted with ethyl acetate. The organic phase was washed with saturated sodium chloride solution and dried over magnesium sulphate, and the solvent was evaporated. The residue was suspended in diethyl ether and stirred until the product precipitated as a solid and could be removed by filtration. After removal of the solvent, the mother liquor was once more treated with diethyl ether (2×) until finally, after drying, 4.67 g (9.44 mmol, 79%) of the desired 3-amino-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxoindoline-5-carbonitrile were obtained as a solid substance.
- ESI-MS [M+H+]=495.15 calculated for C24H22N4O6S=494.53
- 4.67 g (9.44 mmol) of 3-amino-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxoindoline-5-carbonitrile were dissolved in 120 ml of pyridine and cooled to 0° C. using an ice-bath. 1.30 ml (10.39 mmol) of neat phenyl chloroformate were added, and the reaction mixture was stirred at 0° C. for 2 hours. The course of the reaction was monitored by TLC (silica gel, dichloromethane/methanol in a ratio of 95:5). The solvent and especially pyridine were removed under reduced pressure, and the residue was diluted with water and extracted with ethyl acetate (3×). The combined organic phases were washed with saturated sodium chloride solution, dried over magnesium sulphate and filtered, and the solvent was removed under reduced pressure. Traces of pyridine were removed by repeated addition of toluene and evaporation on a rotary evaporator. Diethyl ether was added to the isolated residue, and a solid crystallized overnight giving 5.62 g (9.14 mmol, 97%) of the desired product phenyl [5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indole-3-yl]carbamate.
- ESI-MS [M+H+]=615.15 calculated for O31H26N4O8S=614.64
- 1.00 g (1.63 mmol) of phenyl [5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]carbamate, 596 mg (3.25 mmol) of 1-(1-methylpiperidin-4-yl)piperazine and 8 ml of dried THF were combined and the mixture was stirred at room temperature for 24 hours. The end of the reaction was detected with the aid of analytical HPLC (RP, eluents acetonitrile/water, 0.01% TFA). The solvent was removed, and the residue was purified by preparative HPLC using dichloromethane and 6% methanol as eluents on a Chromolith column (normal phase, from Merck). After repeated column chromatography, it was possible to isolate 230 mg (0.33 mmol, 21%) of the N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide. Alternatively, work-up and purification after the reaction had ended could be carried out as follows: the solvent was removed. The crude material was dissolved in ethyl acetate and extracted with 1 N HCl. The impurities were detected in the organic phase, the product being in the acidic aqueous phase. Accordingly, the aqueous phase was neutralized with 2 N NaOH solution and extracted with ethyl acetate. After drying over magnesium sulphate, filtration and removal of the ethyl acetate under reduced pressure, the product could be crystallized with diethyl ether. The N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide was obtained in yields of >50%.
- ESI-MS [M+H+]=704.2 calculated for C35H41N7O7S=703.82
- 1H-NMR ([D6]-DMSO, 400 MHz) δ [ppm]=8.12 (d, 1H, J=4.8 Hz), 7.88 (d, 1H, J=8.8 Hz), 7.87 (d, 1H, J=8.7 Hz), 7.81 (d, 1H, J=8.5 Hz), 7.72 (d, 1H, J=7.6 Hz), 7.67 (s, 1H), 7.64 (s, 1H), 7.02 (dd, 1H, J=5.0 Hz, J=7.5 Hz), 6.69 (d, 1H, J=8.9 Hz), 6.65 (s, 1H), 4.15 (m, 2H), 3.85 (s, 3H), 3.44 (s, 3H), 3.20 (m, 4H), 2.76 (m, 2H, J=11.1 Hz), 2.34 (m, 4H), 2.11 (m, 4H), 1.81 (m, 2H, J=11.3 Hz), 1.64 (m, 2H, J=10.7 Hz), 1.37 (m, 2H), 1.06 (t, 1H, J=7.0 Hz).
- 2.78 g (9.43 mmol) of 3-amino-3-(2-ethoxypyridin-3-yl)-2-oxoindoline-5-carbonitrile (prepared according to Example 1, process steps 1a) to 1c)) were suspended in 25 ml of dichloromethane and cooled with an ice-bath to 0° C. 7.63 ml (94.34 mmol) of pyridine were added, and 2.37 ml (18.87 mmol) of phenyl chloroformate were then added slowly dropwise such that the temperature did not exceed 5-10° C. With thawing of the ice-bath, the reaction was stirred at room temperature overnight, and a lightly coloured solid precipitated out. The reaction mixture was diluted with dichloromethane, and after addition of water, the solid went back into solution. The phases were separated and the aqueous phase was again extracted with dichloromethane (1×). The combined organic phases were washed initially with water (3×) and then with saturated sodium chloride solution (1×). After drying over magnesium sulphate, filtration and evaporation of the solvent under reduced pressure, the residue was subjected to incipient dissolution in diethyl ether, and 10 times the amount of pentane was added. A white precipitate formed, and this was filtered off with suction, washed with pentane and dried in a vacuum drying cabinet at 40° C. After fractional crystallization, a total of 4.46 g (8.35 mmol, 89%) of phenyl 5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-3-[(phenyloxycarbonyl)amino]indoline-1-carboxylate were isolated.
- ESI-MS [M+H+]=535.15 calculated for C30H22N4O6=534.53
- 760 mg (1.42 mmol) of phenyl 5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-3-[(phenoxy-carbonyl)amino]indoline-1-carboxylate were initially charged in 5 ml of THF, and 1.42 g (5.69 mmol) of 1-(1-methylpiperidin-4-yl)piperazine were added undiluted at room temperature. The reaction mixture was stirred overnight, and the reaction was checked by TLC (silica gel, dichloromethane/methanol 15:5) to determine the progress of the reaction. The reaction was diluted with ethyl acetate and washed with water (1×) and saturated sodium chloride solution (1×). The organic phase was dried over magnesium sulphate and filtered, and the solvent was removed under reduced pressure. The residue was taken up in a little diethyl ether, and 6 times the amount of cyclohexane was added. A colourless solid comprising 615 mg (1.22 mmol, 86%) of pure N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide precipitated out.
- ESI-MS [M+H+]=504.25 calculated for C27H33N7O3=503.61
- 80.0 mg (0.16 mmol) of N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide were dissolved in dimethylformamide, and 7.63 mg (0.19 mmol, 60% w/w) of sodium hydride were added at 0° C. For the deprotonation of the 1,3-dihydro-2H-indol-2-on derivative, the mixture was stirred for 10 minutes, and 39.4 mg (0.19 mmol) of 4-methoxybenzenesulphonyl chloride were then added. The mixture was then allowed to warm to room temperature and stirred for 30 minutes. The progress of the reaction was monitored by TLC (silica gel, dichloromethane/methanol 1:1). Saturated sodium bicarbonate solution and ethyl acetate were added to the reaction mixture, and the phases were then separated. The aqueous phase was reextracted with ethyl acetate (1×). The combined organic phase was washed with water (1×) and saturated sodium chloride solution (1×), dried over magnesium sulphate and filtered, and the solvent was removed under reduced pressure. The residue was purified by preparative MPLC (ISCO Companion, 4 g NP cartridge) using the mobile phases dichloromethane/methanol (5-20%). What was isolated were 27.3 mg (0.04 mmol, 23% yield, 90% purity) of N-[5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide.
- ESI-MS [M+H+]=674.2 calculated for C34H39N7O6S=673.80
- Alternative purification methods to the crystallization of the crude mixtures include the conventional column chromatography on a normal phase (NP-SiO2 cartridge, Chromabond) using the mobile phases dichloromethane/methanol and the preparative HPLC (RP, mobile phase acetonitrile/water, 0.01% TFA or 0.01% acetic acid).
- The compounds according to Examples 2 to 4 and 6 to 30 can be prepared in a manner analogous to the preparation procedures according to Example 1 and/or Example 5 using the appropriate starting materials.
- ESI-MS [M+H+]=674.05 calculated for C34H39N7O6S=673.80
- ESI-MS [M+H+]=688.3 calculated for C35H41N7O6S=687.82
- ESI-MS [M+H+]=644.2 calculated for C33H37N7O5S=643.77
- 100 mg (0.16 mmol) of the phenyl [5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]carbamate (prepared according to Example 1, process steps 1a) to 1f)) were initially charged in 8 ml of anhydrous tetrahydrofuran (dried over molecular sieve), and 44.7 mg (0.24 mmol) of 1-methyl-4-(piperidin-4-yl)piperazine were added. The reaction mixture was stirred at room temperature overnight. The course of the reaction was monitored by TLC (silica gel, dichloromethane/methanol in a ratio of 9:1) and LCMS (RP, acetonitrile/water as eluents and 0.01% TFA). The solvent was removed under reduced pressure, and the residue was taken up in dichloromethane and extracted with 2 N sodium hydroxide solution (1×). The combined organic phases were dried over magnesium sulphate and filtered, and the solvent was removed under reduced pressure. The crude mixture was purified twice by column chromatography (5 g NP-SiO2 cartridge Chromabond) using dichloro-methane/methanol in a ratio of 99:1 to 80:20 as eluent. What was isolated were 53.8 mg (0.08 mmol, 47%) of pure N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide.
- ESI-MS [M+H+]=704.25 calculated for C35H41N7O7S=703.82
- 1H-NMR ([D6]-DMSO, 400 MHz) δ [ppm]=8.13 (dd, 1H, J=1.4 Hz, J=4.8 Hz), 7.88 (d, 1H, J=8.5 Hz), 7.87 (d, 1H, J=8.8 Hz), 7.81 (dd, 1H, J=1.6 Hz, J=8.6 Hz), 7.71 (dd, 1H, J=1.4 Hz, J=7.6 Hz), 7.68 (d, 1H, J=1.3 Hz), 7.65 (s, 1H), 7.02 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.68 (d, 1H, J=8.9 Hz), 6.65 (s, 1H), 4.17 (m, 2H), 3.85 (s, 3H), 3.80 (m, 2H), 3.44 (s, 3H), 2.62 (m, 2H), 2.41-2.12 (m, 9H), 2.12 (s, 3H), 1.61 (m, 2H), 1.16 (m, 2H), 1.09 (t, 3H, J=7.0 Hz).
- The compounds according to Examples 32 to 36 can be prepared in a manner analogous to the preparation procedures according to Example 1, 5 and/or 31 using the appropriate starting materials.
- ESI-MS [M+H+]=674.8 calculated for C34H39N7O6S=673.80
- ESI-MS [M+H+]=688.2 calculated for C35H41N7O6S=687.82
- ESI-MS [M+H+]=644.7 calculated for C33H37N7O5S=643.77
- ESI-MS [M+H+]=674.2 calculated for C34H39N7O6S=673.80
- 100 mg (0.16 mmol) of the phenyl [5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]carbamate (prepared according to Example 1, process steps 1a) to 1f)), dissolved in 8 ml of anhydrous tetrahydrofuran (dried over molecular sieve) were initially charged. 74.9 mg (0.24 mmol) of 1-ethyl-4-piperidin-4-ylpiperazine and 0.07 ml of triethylamine were added together to the reaction mixture, which was then stirred at room temperature overnight. To accelerate the reaction and to achieve complete conversion, the mixture was again heated to 50° C. The course of the reaction was monitored by TLC (silica gel, dichloromethane/methanol in a ratio of 9:1) and LCMS (RP, acetonitrile/water as eluents and 0.01% TFA). The solvent was removed under reduced pressure, and the residue was taken up in dichloromethane and extracted with 2 N sodium hydroxide solution (1×). The combined organic phases were dried over magnesium sulphate and filtered, and the solvent was removed under reduced pressure. The crude mixture was purified initially by column chromatography of silica gel (column 20×200 mm) using dichloromethane and 2% methanol as eluents. The combined, still slightly contaminated product fractions were purified again by preparative HPLC on a Chromolith column (normal phase, from Merck) using the eluents dichloromethane and methanol (gradient 0-10% by volume of methanol over 15 min.). This gave 20 mg (0.03 mmol, 17%) of the desired N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide.
- ESI-MS [M+H+]=718.25 calculated for C36H43N7O7S=717.85
- 1H-NMR ([D6]-DMSO, 400 MHz) δ [ppm]=8.13 (dd, 1H, J=1.2 Hz, J=4.6 Hz), 7.88 (d, 1H, J=8.2 Hz), 7.87 (d, 1H, J=8.7 Hz), 7.81 (dd, 1H, J=1.4 Hz, J=8.6 Hz), 7.72 (dd, 1H, J=1.3 Hz, J=7.6 Hz), 7.68 (d, 1H, J=1.1 Hz), 7.66 (s, 1H), 7.02 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.68 (dd, 1H, J=2.0 Hz, J=8.8 Hz), 6.65 (d, 1H, J=2.2 Hz), 4.17 (m, 2H), 3.85 (s, 3H), 3.81 (m, 2H), 3.44 (s, 3H), 2.62 (m, 2H), 2.43-2.29 (m, 11H), 1.61 (m, 2H), 1.15 (m, 2H), 1.09 (t, 3H, J=7.0 Hz), 0.97 (t, 3H, J=7.1 Hz).
- The compounds according to Examples 38 to 90 can be prepared in a manner analogous to the preparation procedures according to Examples 1, 5, 31, 37, 55, 61 and/or 67 using the appropriate starting materials.
- ESI-MS [M+H+]=658.25 calculated for C34H39N7O5S=657.79
- ESI-MS [M+H+]=732.3 calculated for C37H45N7O7S=731.88
- 100 mg (0.16 mmol) of phenyl [5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]carbamate (prepared according to Example 1, process steps 1a) to 1f)) were initially charged in 8 ml of anhydrous tetrahydrofuran (dried over molecular sieve), and 65.8 mg (0.24 mmol) of tert-butyl 4-piperidin-4-ylpiperazine-1-carboxylate were added. The mixture was then stirred at room temperature overnight. The progress of the reaction was monitored by TLC (silica gel, CH2Cl2/MeOH 9:1) and LCMS (RP, mobile phases acetonitrile/water and 0.01% TFA). The solvent was removed under reduced pressure, and the residue was taken up in dichloromethane and extracted with 2 N aqueous sodium hydroxide solution (1×). The combined organic phases were dried over magnesium sulphate and filtered, and the solvent was removed under reduced pressure. The crude mixture was purified by column chromatography (5 g NP-SiO2 cartridge, Chromabond) using dichloromethane/methanol in a ratio of 98:2 as mobile phase. This gave 55.3 mg (0.07 mmol, 43%) of the desired product, which was directly used in the next reaction step for Boc deprotection.
- ESI-MS [M+H+]=790.30 calculated for C39H47N7O9S=789.91
- 55.3 mg (0.07 mmol) of tert-butyl 4-[1-({[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3,-dihydro-1H-indol-3-yl]amino}carbonyl)piperidin-4-yl]piperazine-1-carboxylate were initially charged in 4 ml of methanol, and 1.0 ml of 5-6 M hydrochloric acid in isopropanol was added. The mixture was stirred at room temperature. The progress of the reaction was monitored by TLC (silica gel, CH2Cl2/MeOH 9:1). After complete conversion, the alcoholic solvent residues were removed, and the residue was taken up in dichloromethane and, using 1 N aqueous sodium hydroxide solution, adjusted by extraction to pH 9. The organic phase was separated from the aqueous phase, and the aqueous phase was reextracted with dichloromethane (2×). The combined organic phase was dried over magnesium sulphate, and the solvent was removed under reduced pressure. The residue was crystallized from diethyl ether. Alternatively, the residue can also be purified either by conventional column chromatography on a normal phase (NP-SiO2 cartridge, Chromabond) using dichloromethane/methanol as mobile phases or by preparative HPLC (RP, mobile phases acetonitrile/water, 0.01% TFA). After crystallization, 15.9 mg (0.023 mmol, 33%) of N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide were isolated.
- ESI-MS [M+H+]=690.45 calculated for C34H39N7O7S=689.80
- The compounds according to Examples 25 to 30 and 56 to 60 and 85 to 90 can also be prepared in a manner analogous to the preparation procedures according to Examples 1, 5, 31, 37 and/or 55 using the appropriate starting materials.
- ESI-MS [M+H+]=690.15 calculated for C34H39N7O7S=689.80
- ESI-MS [M+H+]=689.25 calculated for C35H40N6O7S=688.81
- In the compounds (I) according to the invention, the substituent R7 can, according to synthesis scheme 1 or 2, also be introduced subsequently by reductive amination, which is to be illustrated in an exemplary manner using Examples 61 and 67:
- 100 mg (0.138 mmol) of 4-[1-({[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]amino}carbonyl)piperidin-4-yl]piperidinium chloride (corresponds to the chloride salt of Example 85) (prepared according to Example 1, process steps 1a) to 1f) and Example 55, process steps 55a) to 55b)) were initially introduced in 10 ml of dichloromethane. 20 μl (0.207 mmol) of aqueous formaldehyde solution (37% strength) were added, and the reaction mixture was stirred for 5 minutes. The solution became slightly turbid. 98 mg (0.69 mmol) of sodium sulphate and 20 μl (0.279 mmol) of glacial acetic acid were added, and the mixture was stirred for 1.5 h. 48.7 mg (0.207 mmol) of the hydrogenation reagent sodium acetoxyborohydride were introduced a little at a time, and after 15 minutes the reaction mixture became clear and then soon turbid again. The mixture was stirred at room temperature overnight and warmed to 40° C. for another hour. The reaction mixture was initially diluted with 30 ml of dichloromethane and then extracted with saturated sodium bicarbonate solution (3×). The combined organic phases were dried over magnesium sulphate and filtered, and the solvent was evaporated under reduced pressure. What was isolated were 75 mg of crude product which was purified by a preparative HPLC on a Chromolith column (RP-18e, from Merck, mobile phases acetonitrile/water, 0.01% acetic acid). What was isolated were 5 mg (0.007 mmol, 5%) of the desired N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide (proportionally present as acetate salt).
- ESI-MS [M+H+]=703.2 calculated for C36H42N6O7S=702.83
- ESI-MS [M+H+]=717.30 calculated for C37H44N6O7S=716.86
- RACEMATE RESOLUTION of the racemic compounds according to EXAMPLES 1 to 90:
- In an exemplary manner, using Example 1, the separation of the racemates into its enantiomers (Example 1A and 1B) by separation on a preparative chiral column is shown:
- 100 mg (0.14 mmol) of the racemic N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide (EXAMPLE 1) were separated on a chiral preparative column (Chiralcell OD, flow rate 55 ml/min) using n-heptane/ethanol (700:300) as eluent. The enantiomer which eluted first, having a positive optical rotation (Example 1A), could be isolated in a yield of 19 mg (0.03 mmol, 19%) and the enantiomer which followed, having a negative optical rotation (Example 1B), could be isolated in a yield of 8 mg (0.01 mmol, 8%).
- ESI-MS [M+H+]=704.25 calculated for C35H41N7O7S=703.82
- HPLC (Chiralcel OD 0.46 cm×25 cm; n-heptane/ethanol 7:3) Rf=9.04 min Optical rotation α (22° C., 589 nm, CHCl3, 1 mg/ml)=dextrorotatory
- 1H-NMR ([D6]-DMSO, 500 MHz) δ [ppm]=8.13 (dd, 1H, J=1.6 Hz, J=4.9 Hz), 7.89 (d, 1H, J=8.9 Hz), 7.88 (d, 1H, J=8.6 Hz), 7.82 (dd, 1H, J=1.7 Hz, J=8.6 Hz), 7.72 (dd, 1H, J=1.5 Hz, J=7.7 Hz), 7.68 (d, 1H, J=1.6 Hz), 7.65 (s, 1H), 7.02 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.69 (dd, 1H, J=2.2 Hz, J=8.9 Hz), 6.66 (d, 1H, J=2.1 Hz), 4.17 (m, 2H), 3.86 (s, 3H), 3.45 (s, 3H), 3.21 (m, 4H), 2.77 (m, 2H, J=11.0 Hz), 2.34 (m, 4H), 2.12 (m, 4H), 1.82 (m, 2H, J=10.9 Hz), 1.64 (m, 2H, J=10.8 Hz), 1.37 (m, 2H), 1.08 (t, 3H, J=7.0 Hz).
- ESI-MS [M+H+]=704.25 calculated for C35H41N7O7S=703.82 HPLC (Chiralcel OD 0.46 cm×25 cm; n-heptane/ethanol 7:3) Rf=25.73 min Optical rotation α (22° C., 589 nm, CHCl3, 1 mg/ml)=laevorotatory
- 1H-NMR ([D6]-DMSO, 500 MHz) δ [ppm]=8.13 (dd, 1H, J=1.2 Hz, J=4.7 Hz), 7.88 (d, 1H, J=8.9 Hz), 7.87 (d, 1H, J=8.5 Hz), 7.81 (dd, 1H, J=1.5 Hz, J=8.5 Hz), 7.72 (dd, 1H, J=1.1 Hz, J=7.6 Hz), 7.68 (s, 1H), 7.64 (s, 1H), 7.01 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.69 (dd, 1H, J=1.9 Hz, J=9.0 Hz), 6.66 (d, 1H, J=1.9 Hz), 4.16 (m, 2H), 3.85 (s, 3H), 3.45 (s, 3H), 3.20 (m, 4H), 2.77 (m, 2H, J=11.5 Hz), 2.34 (m, 4H), 2.12 (m, 4H), 1.82 (m, 2H, J=11.3 Hz), 1.64 (m, 2H, J=11.5 Hz), 1.37 (m, 2H), 1.07 (t, 3H, J=7.0 Hz).
- N-[5-Cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide (EXAMPLE 31) was separated on a chiral preparative column (Chiralcell OD, flow rate 55 ml/min) using n-heptane/ethanol (700:300) as eluent. The enantiomer which eluted first has a positive optical rotation (Example 31A), and the enantiomer which followed had a negative optical rotation (Example 31B).
- ESI-MS [M+H+]=704.80 calculated for C35H41N7O7S=703.82
- HPLC (Chiralcel OD 0.46 cm×25 cm; n-heptane/ethanol 7:3) Rf=9.60 min Optical rotation α (22° C., 589 nm, CHCl3, 1 mg/ml)=dextrorotatory
- 1H-NMR ([D6]-DMSO, 500 MHz) δ [ppm]=8.12 (dd, 1H, J=1.6 Hz, J=4.8 Hz), 7.87 (d, 1H, J=8.5 Hz), 7.86 (d, 1H, J=8.8 Hz), 7.81 (dd, 1H, J=1.7 Hz, J=8.6 Hz), 7.73 (dd, 1H, J=1.5 Hz, J=7.7 Hz), 7.69 (s, 1H), 7.67 (d, 1H, J=1.5 Hz), 7.02 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.67 (dd, 1H, J=2.2 Hz, J=8.9 Hz), 6.65 (d, 1H, J=2.1 Hz), 4.14 (m, 2H), 3.83 (s, 3H), 3.80 (m, 2H), 3.42 (s, 3H), 2.60 (m, 2H), 2.39-2.10 (m, 9H), 2.10 (s, 3H), 1.60 (m, 2H), 1.12 (m, 2H), 1.06 (t, 3H, J=7.0 Hz).
- ESI-MS [M+H+]=704.80 calculated for C35H41N7O7S=703.82 HPLC (Chiralcel OD 0.46 cm×25 cm; n-heptane/ethanol 7:3) Rf=34.31 min Optical rotation α (22° C., 589 nm, CHCl3, 1 mg/ml)=laevorotatory
- 1H-NMR ([D6]-DMSO, 500 MHz) δ [ppm]=8.12 (dd, 1H, J=1.6 Hz, J=4.9 Hz), 7.86 (d, 1H, J=8.7 Hz), 7.85 (d, 1H, J=8.8 Hz), 7.81 (dd, 1H, J=1.6 Hz, J=8.6 Hz), 7.72 (dd, 1H, J=1.4 Hz, J=7.6 Hz), 7.69 (s, 1H), 7.67 (d, 1H, J=1.6 Hz), 7.02 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.67 (dd, 1H, J=2.2 Hz, J=8.9 Hz), 6.64 (d, 1H, J=2.0 Hz), 4.13 (m, 2H), 3.83 (s, 3H), 3.80 (m, 2H), 3.42 (s, 3H), 2.60 (m, 2H), 2.42-2.10 (m, 9H), 2.10 (s, 3H), 1.60 (m, 2H), 1.12 (m, 2H), 1.06 (t, 3H, J=7.0 Hz).
- N-[5-Cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide (EXAMPLE 37) was separated on a chiral preparative column (Chiralcell OD, flow rate 55 ml/min) using n-heptane/ethanol (700:300) as eluent. The enantiomer which eluted first had a positive optical rotation (Example 37A), and the enantiomer which followed had a negative optical rotation (Example 37B).
- ESI-MS [M+H+]=718.30 calculated for C36H43F3N7O7S=717.85
- HPLC (Chiralcel OD 0.46 cm×25 cm; n-heptane/ethanol 7:3) Rf=7.29 min Optical rotation α (22° C., 589 nm, CHCl3, 1 mg/ml)=dextrorotatory
- 1H-NMR ([D6]-DMSO, 500 MHz) δ [ppm]=8.13 (dd, 1H, J=1.7 Hz, J=4.9 Hz), 7.89 (d, 1H, J=8.6 Hz), 7.88 (d, 1H, J=8.8 Hz), 7.82 (dd, 1H, J=1.8 Hz, J=8.6 Hz), 7.72 (dd, 1H, J=1.7 Hz, J=7.7 Hz), 7.69 (d, 1H, J=1.7 Hz), 7.67 (s, 1H), 7.02 (dd, 1H, J=4.9 Hz, J=7.7 Hz), 6.69 (dd, 1H, J=2.2 Hz, J=8.9 Hz), 6.66 (d, 1H, J=2.2 Hz), 4.18 (m, 2H), 3.85 (s, 3H), 3.81 (m, 2H), 3.44 (s, 3H), 2.62 (m, 2H), 2.42-2.24 (m, 11H), 1.62 (m, 2H), 1.15 (m, 2H), 1.09 (t, 3H, J=7.1 Hz), 0.96 (t, 3H, J=7.2 Hz).
- HPLC (Chiralcel OD 0.46 cm×25 cm; n-heptane/ethanol 7:3) Rf=12.41 min Optical rotation α (22° C., 589 nm, CHCl3, 1 mg/ml)=laevorotatory
- 1H-NMR ([D6]-DMSO, 500 MHz) δ [ppm]=8.12 (dd, 1H, J=1.6 Hz, J=4.9 Hz), 7.88 (d, 1H, J=8.5 Hz), 7.87 (d, 1H, J=8.8 Hz), 7.80 (dd, 1H, J=1.7 Hz, J=8.6 Hz), 7.71 (dd, 1H, J=1.5 Hz, J=7.7 Hz), 7.68 (d, 1H, J=1.5 Hz), 7.66 (s, 1H), 7.00 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.67 (dd, 1H, J=2.2 Hz, J=8.9 Hz), 6.65 (d, 1H, J=2.1 Hz), 4.16 (m, 2H), 3.84 (s, 3H), 3.80 (m, 2H), 3.44 (s, 3H), 2.61 (m, 2H), 2.41-2.23 (m, 11H), 1.60 (m, 2H), 1.14 (m, 2H), 1.08 (t, 3H, J=7.1 Hz), 0.95 (t, 3H, J=7.2 Hz).
- In a manner analogous to the racemate resolutions of the racemic compounds 1, 31 and 37, it is possible to carry out the separation of the racemates 2 to 30, 32 to 36 and 38 to 90 give the corresponding (+)-enantiomers 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12A, 13A, 14A, 15A, 16A, 17A, 18A, 19A, 20A, 21A, 22A, 23A, 24A, 25A, 26A, 27A, 28A, 29A, 30A and 32A, 33A, 34A, 35A and 38A, 39A, 40A, 41A, 42A, 43A, 44A, 45A, 46A, 47A, 48A, 49A, 50A, 51A, 52A, 53A, 54A, 55A, 56A, 57A, 58A, 59A, 60A, 61A, 62A, 63A, 64A, 65A, 66A, 67A, 68A, 69A, 70A, 71A, 72A, 73A, 74A, 75A, 76A, 77A, 78A, 79A, 80A, 81A, 82A, 83A, 84A, 85A, 86A, 87A, 88A, 89A and 90A and the corresponding (−)-enantiomers 2B, 3B, 4B, 5B, 6B, 7B, 8B, 9B, 10B, 11B, 12B, 13B, 14B, 15B, 16B, 17B, 18B, 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, 27B, 28B, 29B, 30B and 32B, 33B, 34B, 35B and 38B, 39B, 40B, 41B, 42B, 43B, 44B, 45B, 46B, 47B, 48B, 49B, 50B, 51B, 52B, 53B, 54B, 55B, 56B, 57B, 58B, 59B, 60B, 61B, 62B, 63B, 64B, 65B, 66B, 67B, 68B, 69B, 70B, 71B, 72B, 73B, 74B, 75B, 76B, 77B, 78B, 79B, 80B, 81B, 82B, 83B, 84B, 85B, 86B, 87B, 88B, 89B and 90B.
- The enantiomers A and B can also be prepared using enantiomerically pure precursors and intermediates, for example analogously to synthesis schemes 1 or 2, preferably via synthesis scheme 1. The separation of the racemic mixture into the (+)-enantiomers and (−)-enantiomers can be carried out by chiral preparative chromatography, preferably via the corresponding amine building block VI.
- ESI-MS [M+H+]=718.25 calculated for C36H43N7O7S=717.85
- ESI-MS [M+H+]=658.25 calculated for C34H39N7O5S=657.79
- ESI-MS [M+H+]=703.30 calculated for C36H42N6O7S=702.83
- 1H-NMR ([D6]-DMSO, 500 MHz) δ [ppm]=9.26 (1H, protonation of TFA), 8.12 (dd, 1H, J=1.7 Hz, J=4.9 Hz), 7.87 (dd, 2H, J=1.3 Hz, J=8.7 Hz), 7.80 (dd, 1H, J=1.8 Hz, J=8.5 Hz), 7.80 (m, 2H), 7.66 (s, 1H), 7.00 (dd, 1H, J=4.9 Hz, J=7.6 Hz), 6.68 (dd, 1H, J=2.2 Hz, J=8.9 Hz), 6.65 (d, 1H, J=2.1 Hz), 4.16 (m, 2H), 3.85 (s, 6H), 3.44-3.41 (m, 5H), 2.85 (m, 2H), 2.73 (m, 2H), 2.57 (m, 2H), 1.81 (m, 2H), 1.55 (m, 2H), 1.34-1.22 (m, 4H), 1.08 (t, 3H, J=7.0 Hz), 0.92 (m, 2H).
- ESI-MS [M+H+]=717.35 calculated for C37H44N6O7S=716.86
- The amines of the general formula X can be prepared according to synthesis scheme 1 or 2 by reductive amination. Hereinbelow, this is shown using the preparation of the amine compound 1-ethyl-4-piperidin-4-ylpiperazine as an example:
- With ice-cooling, 29.2 g (256 mmol) of N-ethylpiperazine and 50.0 g (256 mmol) of tert-butyl 4-oxopiperidine-1-carboxylate (corresponds to 1-Boc-4-piperidone) were initially charged in 800 ml of ethanol and 15.4 g (256 mmol) of glacial acetic acid were added. A little at a time, 16.1 g (256 mmol) of sodium acetoxyborohydride was then added to the cooled reaction mixture. Initially, a slight evolution of gas and, after ⅔ of the reducing agent had been added, foaming could be observed. The reaction mixture was stirred at room temperature overnight. For work-up, 200 ml of 2 N aqueous sodium hydroxide solution were added with cooling to the reaction solution, the solvent ethanol was distilled off and the reaction mixture which remained was diluted with water. The mixture was extracted with diethyl ether (2×) and washed with saturated sodium chloride solution (1×), the combined organic phases were dried over magnesium sulphate and filtered and the solvent was removed under reduced pressure. The desired product was obtained as a yellow oil which was subsequently chromatographed on a 4 I Nutsche filter filled with silica gel, using dichloromethane and 10% methanol as eluents. This gave a total of 40 g (135 mmol, 53%) of tert-butyl 4-(4-ethylpiperazin-1-yl)piperidine-1-carboxylate.
- To remove the protective groups, 40 g (135 mmol) of the tert-butyl 4-(4-ethylpiperazin-1-yl)piperidine-1-carboxylate were initially charged in 200 ml of methanol and 1.8 l of dichloromethane, and 100 ml 5-6 M HCl solution in isopropanol were added. The solution became a suspension, and a slight evolution of gas could be observed. The reaction mixture was stirred at 40° C. (water bath temperature) for one hour and at room temperature over the weekend. For complete deprotection to the desired product, another 50 ml of the 5-6 M HCl solution in isopropanol were added, and the mixture was stirred at 40° C. The dichloromethane was distilled off on a rotary evaporator, and another 200 ml of methanol and 30 ml of the 5-6 M HCl solution in isopropanol were added. After one hour of stirring under reflux, a white suspension formed with strong evolution of gas. Subsequently, a low-viscosity suspension was formed, which was cooled to room temperature. The precipitate was filtered off with suction and washed with methanol and diethyl ether. After drying, 36 g (117 mmol, 87%) of 1-ethyl-4-piperidin-4-ylpiperazine were isolated as chloride salt.
- 1H-NMR (D2O, 400 MHz) δ [ppm]=3.74-3.47 (m, 11H), 3.28 (q, 2H, J=7.3 Hz), 3.06 (dt, 2H, J=2.2 Hz, J=13.2 Hz), 2.38 (m, 2H, J=13.6 Hz), 1.89 (dq, 2H, J=4.1 Hz, J=13.3 Hz), 1.30 (t, 3H, J=7.3 Hz).
- The chemical structures of the compounds according to Examples 1 to 90 (racemate) and the corresponding dextrorotatory (+)-enantiomers (Examples Nos. 1 to 90 with the appended letter “A” such as, for example, 1A, 2A, etc. . . . ) and the corresponding laevorotatory (−)-enantiomers (Example Nos. 1 to 90 with the appended letter “B”, such as, for example, 1B, 2B, etc. . . . ) are shown in Table 2 below:
-
TABLE 2 Compounds of the general formula (Ib) where the radicals R5, R6, R7, X2 and X3 have the meanings mentioned below (in each case per row): Exp. IUPAC Name No. X2 X3 R5 R6 R7 (according to ACD-Labs Version 8.00 release product version 8.05) 1 N CH methoxy methoxy methyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 1A N CH methoxy methoxy methyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 1B N CH methoxy methoxy methyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 2 N CH methoxy H methyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 2A N CH methoxy H methyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 2B N CH methoxy H methyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 3 N CH ethoxy H methyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 3A N CH ethoxy H methyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 3B N CH ethoxy H methyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 4 N CH H H methyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 4A N CH H H methyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 4B N CH H H methyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 5 N CH H methoxy methyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 5A N CH H methoxy methyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 5B N CH H methoxy methyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 6 N CH ethoxy methoxy methyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 6A N CH ethoxy methoxy methyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 6B N CH ethoxy methoxy methyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-methylpiperidin-4-yl)piperazine-1-carboxamide 7 N CH methoxy methoxy ethyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 7A N CH methoxy methoxy ethyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 7B N CH methoxy methoxy ethyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 8 N CH methoxy H ethyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 8A N CH methoxy H ethyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 8B N CH methoxy H ethyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 9 N CH ethoxy H ethyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 9A N CH ethoxy H ethyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 9B N CH ethoxy H ethyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 10 N CH H H ethyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 10A N CH H H ethyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 10B N CH H H ethyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 11 N CH H methoxy ethyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 11A N CH H methoxy ethyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 11B N CH H methoxy ethyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 12 N CH ethoxy methoxy ethyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 12A N CH ethoxy methoxy ethyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 12B N CH ethoxy methoxy ethyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-ethylpiperidin-4-yl)piperazine-1-carboxamide 13 N CH methoxy methoxy n- (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 13A N CH methoxy methoxy n- (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 13B N CH methoxy methoxy n- (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 14 N CH methoxy H n- (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 14A N CH methoxy H n- (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 14B N CH methoxy H n- (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 15 N CH ethoxy H n- (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 15A N CH ethoxy H n- (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 15B N CH ethoxy H n- (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 16 N CH H H n- (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 16A N CH H H n- (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 16B N CH H H n- (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 17 N CH H methoxy n- (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 17A N CH H methoxy n- (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 17B N CH H methoxy n- (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 18 N CH ethoxy methoxy n- (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- propyl 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 18A N CH ethoxy methoxy n- (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- propyl 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 18B N CH ethoxy methoxy n- (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- propyl oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-propylpiperidin-4-yl)piperazine-1-carboxamide 19 N CH methoxy methoxy isopropyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 19A N CH methoxy methoxy isopropyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 19B N CH methoxy methoxy isopropyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 20 N CH methoxy H isopropyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 20A N CH methoxy H isopropyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 20B N CH methoxy H isopropyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 21 N CH ethoxy H isopropyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 21A N CH ethoxy H isopropyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 21B N CH ethoxy H isopropyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 22 N CH H H isopropyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 22A N CH H H isopropyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 22B N CH H H isopropyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 23 N CH H methoxy isopropyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 23A N CH H methoxy isopropyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 23B N CH H methoxy isopropyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 24 N CH ethoxy methoxy isopropyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 24A N CH ethoxy methoxy isopropyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 24B N CH ethoxy methoxy isopropyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-(1-isopropylpiperidin-4-yl)piperazine-1-carboxamide 25 N CH methoxy methoxy H (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 25A N CH methoxy methoxy H (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 25B N CH methoxy methoxy H (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 26 N CH methoxy H H (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperidin-4-ylpiperazine-1-carboxamide 26A N CH methoxy H H (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperidin-4-ylpiperazine-1-carboxamide 26B N CH methoxy H H (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperidin-4-ylpiperazine-1-carboxamide 27 N CH ethoxy H H (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 27A N CH ethoxy H H (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 27B N CH ethoxy H H (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 28 N CH H H H (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 28A N CH H H H (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 28B N CH H H H (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 29 N CH H methoxy H (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperidin-4-ylpiperazine-1-carboxamide 29A N CH H methoxy H (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperidin-4-ylpiperazine-1-carboxamide 29B N CH H methoxy H (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperidin-4-ylpiperazine-1-carboxamide 30 N CH ethoxy methoxy H (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 30A N CH ethoxy methoxy H (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 30B N CH ethoxy methoxy H (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-piperidin-4-ylpiperazine-1-carboxamide 31 CH N methoxy methoxy methyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 31A CH N methoxy methoxy methyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 31B CH N methoxy methoxy methyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 32 CH N methoxy H methyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 32A CH N methoxy H methyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 32B CH N methoxy H methyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 33 CH N ethoxy H methyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 33A CH N ethoxy H methyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 33B CH N ethoxy H methyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 34 CH N H H methyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 34A CH N H H methyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 34B CH N H H methyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 35 CH N H methoxy methyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 35A CH N H methoxy methyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 35B CH N H methoxy methyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 36 CH N ethoxy methoxy methyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 36A CH N ethoxy methoxy methyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 36B CH N ethoxy methoxy methyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-methylpiperazin-1-yl)piperidine-1-carboxamide 37 CH N methoxy methoxy ethyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 37A CH N methoxy methoxy ethyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 37B CH N methoxy methoxy ethyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 38 CH N methoxy H ethyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 38A CH N methoxy H ethyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 38B CH N methoxy H ethyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 39 CH N ethoxy H ethyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 39A CH N ethoxy H ethyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 39B CH N ethoxy H ethyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 40 CH N H H ethyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 40A CH N H H ethyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 40B CH N H H ethyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 41 CH N H methoxy ethyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 41A CH N H methoxy ethyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 41B CH N H methoxy ethyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 42 CH N ethoxy methoxy ethyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 42A CH N ethoxy methoxy ethyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 42B CH N ethoxy methoxy ethyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-ethylpiperazin-1-yl)piperidine-1-carboxamide 43 CH N methoxy methoxy n- (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 43A CH N methoxy methoxy n- (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 43B CH N methoxy methoxy n- (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 44 CH N methoxy H n- (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 44A CH N methoxy H n- (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 44B CH N methoxy H n- (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 45 CH N ethoxy H n- (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 45A CH N ethoxy H n- (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 45B CH N ethoxy H n- (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 46 CH N H H n- (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 46A CH N H H n- (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 46B CH N H H n- (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 47 CH N H methoxy n- (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 47A CH N H methoxy n- (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 47B CH N H methoxy n- (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 48 CH N ethoxy methoxy n- (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- propyl 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 48A CH N ethoxy methoxy n- (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- propyl 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 48B CH N ethoxy methoxy n- (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- propyl oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-propylpiperazin-1-yl)piperidine-1-carboxamide 49 CH N methoxy methoxy isopropyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 49A CH N methoxy methoxy isopropyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 49B CH N methoxy methoxy isopropyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 50 CH N methoxy H isopropyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 50A CH N methoxy H isopropyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 50B CH N methoxy H isopropyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 51 CH N ethoxy H isopropyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 51A CH N ethoxy H isopropyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 51B CH N ethoxy H isopropyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 52 CH N H H isopropyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 52A CH N H H isopropyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 52B CH N H H isopropyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 53 CH N H methoxy isopropyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 53A CH N H methoxy isopropyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 53B CH N H methoxy isopropyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 54 CH N ethoxy methoxy isopropyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 54A CH N ethoxy methoxy isopropyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 54B CH N ethoxy methoxy isopropyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-(4-isopropylpiperazin-1-yl)piperidine-1-carboxamide 55 CH N methoxy methoxy H (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 55A CH N methoxy methoxy H (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 55B CH N methoxy methoxy H (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 56 CH N methoxy H H (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperazin-1-ylpiperidine-1-carboxamide 56A CH N methoxy H H (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperazin-1-ylpiperidine-1-carboxamide 56B CH N methoxy H H (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperazin-1-ylpiperidine-1-carboxamide 57 CH N ethoxy H H (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 57A CH N ethoxy H H (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 57B CH N ethoxy H H (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 58 CH N H H H (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 58A CH N H H H (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 58B CH N H H H (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 59 CH N H methoxy H (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperazin-1-ylpiperidine-1-carboxamide 59A CH N H methoxy H (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperazin-1-ylpiperidine-1-carboxamide 59B CH N H methoxy H (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4-piperazin-1-ylpiperidine-1-carboxamide 60 CH N ethoxy methoxy H (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 60A CH N ethoxy methoxy H (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 60B CH N ethoxy methoxy H (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4-piperazin-1-ylpiperidine-1-carboxamide 61 CH CH methoxy methoxy methyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 61A CH CH methoxy methoxy methyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 61B CH CH methoxy methoxy methyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 62 CH CH methoxy H methyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-methyl-4,4′-bipiperidine-1-carboxamide 62A CH CH methoxy H methyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-methyl-4,4′-bipiperidine-1-carboxamide 62B CH CH methoxy H methyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-methyl-4,4′-bipiperidine-1-carboxamide 63 CH CH ethoxy H methyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 63A CH CH ethoxy H methyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 63B CH CH ethoxy H methyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 64 CH CH H H methyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 64A CH CH H H methyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 64B CH CH H H methyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 65 CH CH H methoxy methyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-methyl-4,4′-bipiperidine-1-carboxamide 65A CH CH H methoxy methyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-methyl-4,4′-bipiperidine-1-carboxamide 65B CH CH H methoxy methyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-methyl-4,4′-bipiperidine-1-carboxamide 66 CH CH ethoxy methoxy methyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 66A CH CH ethoxy methoxy methyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 66B CH CH ethoxy methoxy methyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-1′-methyl-4,4′-bipiperidine-1-carboxamide 67 CH CH methoxy methoxy ethyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 67A CH CH methoxy methoxy ethyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 67B CH CH methoxy methoxy ethyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 68 CH CH methoxy H ethyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-ethyl-4,4′-bipiperidine-1-carboxamide 68A CH CH methoxy H ethyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-ethyl-4,4′-bipiperidine-1-carboxamide 68B CH CH methoxy H ethyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-ethyl-4,4′-bipiperidine-1-carboxamide 69 CH CH ethoxy H ethyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 69A CH CH ethoxy H ethyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 69B CH CH ethoxy H ethyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 70 CH CH H H ethyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 70A CH CH H H ethyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 70B CH CH H H ethyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 71 CH CH H methoxy ethyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-ethyl-4,4′-bipiperidine-1-carboxamide 71A CH CH H methoxy ethyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-ethyl-4,4′-bipiperidine-1-carboxamide 71B CH CH H methoxy ethyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-ethyl-4,4′-bipiperidine-1-carboxamide 72 CH CH ethoxy methoxy ethyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 72A CH CH ethoxy methoxy ethyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 72B CH CH ethoxy methoxy ethyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-1′-ethyl-4,4′-bipiperidine-1-carboxamide 73 CH CH methoxy methoxy n- (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 73A CH CH methoxy methoxy n- (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 73B CH CH methoxy methoxy n- (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- propyl 2,3-dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 74 CH CH methoxy H n- (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-1′-propyl-4,4′-bipiperidine-1-carboxamide 74A CH CH methoxy H n- (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-1′-propyl-4,4′-bipiperidine-1-carboxamide 74B CH CH methoxy H n- (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-1′-propyl-4,4′-bipiperidine-1-carboxamide 75 CH CH ethoxy H n- (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 75A CH CH ethoxy H n- (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 75B CH CH ethoxy H n- (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- propyl dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 76 CH CH H H n- (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 76A CH CH H H n- (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 76B CH CH H H n- (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- propyl indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 77 CH CH H methoxy n- (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-1′-propyl-4,4′-bipiperidine-1-carboxamide 77A CH CH H methoxy n- (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-1′-propyl-4,4′-bipiperidine-1-carboxamide 77B CH CH H methoxy n- (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- propyl dihydro-1H-indol-3-yl}-1′-propyl-4,4′-bipiperidine-1-carboxamide 78 CH CH ethoxy methoxy n- (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- propyl 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 78A CH CH ethoxy methoxy n- (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- propyl 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 78B CH CH ethoxy methoxy n- (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- propyl oxo-2,3-dihydro-1H-indol-3-yl]-1′-propyl-4,4′-bipiperidine-1-carboxamide 79 CH CH methoxy methoxy isopropyl (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 79A CH CH methoxy methoxy isopropyl (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 79B CH CH methoxy methoxy isopropyl (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 80 CH CH methoxy H isopropyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 80A CH CH methoxy H isopropyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 80B CH CH methoxy H isopropyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 81 CH CH ethoxy H isopropyl (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 81A CH CH ethoxy H isopropyl (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 81B CH CH ethoxy H isopropyl (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 82 CH CH H H isopropyl (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 82A CH CH H H isopropyl (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 82B CH CH H H isopropyl (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 83 CH CH H methoxy isopropyl (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 83A CH CH H methoxy isopropyl (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 83B CH CH H methoxy isopropyl (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 84 CH CH ethoxy methoxy isopropyl (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 84A CH CH ethoxy methoxy isopropyl (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 84B CH CH ethoxy methoxy isopropyl (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-1′-isopropyl-4,4′-bipiperidine-1-carboxamide 85 CH CH methoxy methoxy H (±)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 85A CH CH methoxy methoxy H (+)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 85B CH CH methoxy methoxy H (−)-N-[5-cyano-1-[(2,4-dimethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo- 2,3-dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 86 CH CH methoxy H H (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4,4′-bipiperidine-1-carboxamide 86A CH CH methoxy H H (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4,4′-bipiperidine-1-carboxamide 86B CH CH methoxy H H (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(2-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4,4′-bipiperidine-1-carboxamide 87 CH CH ethoxy H H (±)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 87A CH CH ethoxy H H (+)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 87B CH CH ethoxy H H (−)-N-[5-cyano-1-[(2-ethoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2-oxo-2,3- dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 88 CH CH H H H (±)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4,4′-bipiperidine-1-carboxamide 88A CH CH H H H (+)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4,4′-bipiperidine-1-carboxamide 88B CH CH H H H (−)-N-[5-cyano-3-(2-ethoxypyridin-3-yl)-2-oxo-1-(phenylsulphonyl)-2,3-dihydro-1H- indol-3-yl]-4,4′-bipiperidine-1-carboxamide 89 CH CH H methoxy H (±)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4,4′-bipiperidine-1-carboxamide 89A CH CH H methoxy H (+)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4,4′-bipiperidine-1-carboxamide 89B CH CH H methoxy H (−)-N-{5-cyano-3-(2-ethoxypyridin-3-yl)-1-[(4-methoxyphenyl)sulphonyl]-2-oxo-2,3- dihydro-1H-indol-3-yl}-4,4′-bipiperidine-1-carboxamide 90 CH CH ethoxy methoxy H (±)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 90A CH CH ethoxy methoxy H (+)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)- 2-oxo-2,3-dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide 90B CH CH ethoxy methoxy H (−)-N-[5-cyano-1-[(2-ethoxy-4-methoxyphenyl)sulphonyl]-3-(2-ethoxypyridin-3-yl)-2- oxo-2,3-dihydro-1H-indol-3-yl]-4,4′-bipiperidine-1-carboxamide - The test substances were dissolved in a concentration of 10−2 M in DMSO and further diluted to 5×10−4 M to 5×10−9 M in DMSO. This series of DMSO predilutions was diluted 1:10 with assay buffer. The substance concentration was again diluted 1:5 in the assay mixture (2% DMSO in the mixture).
- CHO-K1 cells with stably expressed human vasopressin V1b receptor (clone 3H2) were harvested and homogenized in 50 mM Tris-HCl and in the presence of protease inhibitors (Roche complete Mini #1836170) with a Polytron homogenizer at a medium setting for 2×10 seconds and subsequently centrifuged at 40 000×g for 1 h. The membrane pellet was again homogenized and centrifuged as described and then taken up in 50 mM Tris-HCl, pH 7.4, homogenized and stored in aliquots frozen in liquid nitrogen at −190° C.
- The binding assay was carried out by a method based on that of Tahara et al. (Tahara A et al., Brit. J. Pharmacol. 125, 1463-1470 (1998)). The incubation buffer was: 50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4.
- In the assay mixture (250 μl), membranes (50 μg/ml protein in incubation buffer) from CHO-K1 cells with stably expressed human V1b receptors (cell line hV1b—3H2_CHO) were incubated with 1.5 nM 3H-AVP (8-Arg-vasopressin, PerkinElmer #18479) in incubation buffer (50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4) (total binding) or additionally with increasing concentrations of test substance (displacement experiment). The nonspecific binding was determined with 1 μM AVP (Bachem # H1780). All determinations were carried out as triplicate determinations. After incubation (60 minutes at room temperature), the free radioligand was removed by vacuum filtration (Skatron cell harvester 7000) through Wathman GF/B glass fibre filter mats, and the filters were transferred into scintillation vials. The liquid scintillation measurement took place in a Tricarb model 2000 or 2200CA instrument (Packard). Conversion of the measured cpm into dpm was carried out with the aid of a standard quench series.
- The binding parameters were calculated by nonlinear regression in SAS. The algorithms of the program operate in analogy to the LIGAND analysis program (Munson PJ and Rodbard D, Analytical Biochem. 107, 220-239 (1980)). The Kd of 3H-AVP for the recombinant human V1b receptors is 0.4 nM and was used to determine the Ki value.
- The test reveals that compounds of the present invention generally have high affinities towards the V1b receptor which, expressed as Ki(h-V1b) values, are generally below 150 nM, in particular at most 50 nM and especially at most 10 nM. The results are given in table 3
- The test substances were dissolved in a concentration of 10−2 M in DMSO. These DMSO solutions were further diluted in incubation buffer (50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4).
- CHO-K1 cells with stably expressed human vasopressin V1a receptor (clone 5) were harvested and homogenized in 50 mM Tris-HCl and in the presence of protease inhibitors (Roche complete Mini #1836170) with a Polytron homogenizer at a medium setting for 2×10 seconds and subsequently centrifuged at 40 000×g for 1 h. The membrane pellet was again homogenized and centrifuged as described and then taken up in 50 mM Tris-HCl, pH 7.4, homogenized and stored in aliquots frozen in liquid nitrogen at −190° C.
- The binding assay was carried out by a method based on that of Tahara et al. (Tahara A et al., Brit. J. Pharmacol. 125, 1463-1470 (1998)).
- The incubation buffer was: 50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4.
- In the assay mixture (250 μl), membranes (20 μg/ml protein in incubation buffer) from CHO-K1 cells with stably expressed human V1a receptors (cell line hV1a—5_CHO) were incubated with 0.04 nM 125I-AVP (8-Arg-vasopressin, NEX 128) in incubation buffer (50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4) (total binding) or additionally with increasing concentrations of test substance (displacement experiment). The nonspecific binding was determined with 1 μM AVP (Bachem # H1780). Triplicate determinations were carried out.
- After incubation (60 minutes at room temperature), the free radioligand was removed by vacuum filtration (Skatron cell harvester 7000) through Wathman GF/B glass fibre filter mats, and the filters were transferred into scintillation vials.
- The liquid scintillation measurement took place in a Tricarb model 2000 or 2200CA instrument (Packard). Conversion of the measured cpm into dpm was carried out with the aid of a standard quench series.
- The binding parameters were calculated by nonlinear regression in SAS. The algorithms of the program operate in analogy to the LIGAND analysis program (Munson PJ and Rodbard D, Analytical Biochem. 107, 220-239 (1980)). The Kd of 125I-AVP for the recombinant hV1a receptors was determined in saturation experiments. A Kd of 1.33 nM was used to determine the Ki value.
- The test reveals that compounds of the present invention generally have selectivity towards the V1b receptor in comparison with V1a receptor, which, expressed as Ki(h-V1a)/Ki(h-V1b) values generally exceed 10 and are frequently at least 15, in particular at least 50 and especially at least 100. The results are given in table 3.
- The test substances were dissolved in a concentration of 10−2 M in DMSO. This DMSO solution was further diluted in incubation buffer (50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4).
- CHO-K1 cells with stably expressed human vasopressin V2 receptor (clone 23) were harvested and homogenized in 50 mM Tris-HCl and in the presence of protease inhibitors (Roche complete Mini #1836170) with a Polytron homogenizer at a medium setting for 2×10 seconds and subsequently centrifuged at 40 000×g for 1 h. The membrane pellet was again homogenized and centrifuged as described and then taken up in 50 mM Tris-HCl, pH 7.4, homogenized and stored in aliquots frozen in liquid nitrogen at −190° C.
- The binding assay was carried out by a method based on that of Tahara et al. (Tahara A et al., Brit. J. Pharmacol. 125, 1463-1470 (1998)).
- The incubation buffer was: 50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4.
- In the assay mixture (250 μl), membranes (50 μg/ml protein in incubation buffer) from CHO-K1 cells with stably expressed human V2 receptors (cell line hV2—23_CHO) were incubated with 1-2 nM 3H-AVP (8-Arg-vasopressin, PerkinElmer #18479) in incubation buffer (50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4) (total binding) or additionally with increasing concentrations of test substance (displacement experiment). The nonspecific binding was determined with 1 μM AVP (Bachem # H1780). Triplicate determinations were carried out.
- After incubation (60 minutes at room temperature), the free radioligand was removed by vacuum filtration (Skatron cell harvester 7000) through Wathman GF/B glass fibre filter mats, and the filters were transferred into scintillation vials.
- The liquid scintillation measurement took place in a Tricarb model 2000 or 2200CA instrument (Packard). Conversion of the measured cpm into dpm was carried out with the aid of a standard quench series.
- The binding parameters were calculated by nonlinear regression in SAS. The algorithms of the program operate in analogy to the LIGAND analysis program (Munson PJ and Rodbard D, Analytical Biochem. 107, 220-239 (1980)). The Kd of 3H-AVP for the recombinant hV2 receptors is 2.4 nM and was used to determine the Ki value.
- The test reveals that compounds of the present invention generally have selectivity towards the V1b receptor in comparison with V2 receptor, which, expressed as Ki(h-V2)/Ki(h-V1b) values generally exceed 10 and are frequently at least 15, in particular at least 25 and especially at least 50.
- The substances were dissolved in a concentration of 10−2 M in DMSO and diluted with incubation buffer (50 mM Tris, 10 mM MgCl2, 0.1% BSA, pH 7.4).
- Confluent HEK-293 cells with transiently expressing recombinant human oxytocin receptors were centrifuged at 750×g and at room temperature for 5 minutes. The residue was taken up in ice-cold lysis buffer (50 mM Tris-HCl, 10% glycerol, pH 7.4 and Roche Complete Protease Inhibitor) and subjected to an osmotic shock at 4° C. for 20 minutes. The lyzed cells were then centrifuged at 750×g and at 4° C. for 20 minutes, the residue was taken up in incubation buffer, and aliquots of 107 cells/ml were prepared. The aliquots were frozen at −80° C. until used.
- On the day of the experiment, the cells were thawed, diluted with incubation buffer and homogenized using a Multipette Combitip (Eppendorf, Hamburg). The reaction mixture of 0.250 ml was composed of 2 to 5×104 recombinant cells, 3-4 nM 3H-oxytocin (PerkinElmer, NET 858) in the presence of test substance (inhibition plot) or only incubation buffer (total binding). The nonspecific binding was determined with 10−6 M oxytocin (Bachem AG, H2510). Determinations in triplicate were set up. Bound and free radioligand were separated by filtration under vacuum with Whatman GF/B glass fibre filters using a Skatron cell harvester 7000. The bound radioactivity was determined by liquid scintillation measurement in a Tricarb beta counter, model 2000 or 2200CA (Packard).
- The binding parameters were calculated by nonlinear regression analysis (SAS), in analogy to the LIGAND program of Munson and Rodbard (Analytical Biochem 1980; 107: 220-239). The Kd of 3H-oxytocin for the recombinant hOT receptors is 7.6 nM and was used to determine the Ki value.
- The test reveals that compounds of the present invention generally have selectivity towards the V1b receptor in comparison with Oxytocin receptor, which, expressed as Ki(h-OT)/Ki(h-V1b) values generally exceed 10 and are frequently at least 15, in particular at least 25 and especially at least 50. The results are given in table 3.
-
TABLE 3 Ki(h-V1b)* Example [nM] Ki(h-V1a)/Ki(h-V1b)* Ki(h-OT)/Ki(h-V1b)* 1 +++ +++ +++ 1B +++ +++ +++ 2 ++ +++ +++ 3 ++ +++ +++ 4 ++ ++ ++ 7B +++ +++ +++ 25 +++ +++ ++ 31 +++ +++ +++ 31B +++ +++ +++ 32 ++ + +++ 35 +++ + ++ 37 +++ +++ +++ 37B +++ +++ +++ 40 +++ ++ +++ 40B +++ + +++ 43 +++ +++ +++ 55 +++ +++ ++ 61 +++ +++ +++ 61B +++ +++ +++ 67 +++ +++ +++ 67B +++ +++ +++ 85 +++ +++ ++ Ki(h-V1b) Ki(h-V1a)/Ki(h-V1b) Ki(h-OT)/Ki(h-V1b) + >50-150 nM 15-50 15-25 ++ 10-50 nM >50-100 >25-50 +++ <10 nM >100 >50 - The metabolic stability of the compounds of the invention was determined in the following assay.
- The test substances are incubated in a concentration of 0.5 μM as follows:
- 0.5 μM test substance is preincubated together with liver microsomes of various species (rat, human or other species) (0.25 mg of microsomal protein/ml) in 0.05M potassium phosphate buffer pH 7.4 in microtitre plates at 37° C. for 5 min. The reaction is started by adding NADPH (1 mg/ml). 50 μl aliquots are taken after 0, 5, 10, 15, 20 and 30 min, and the reaction is stopped immediately with the same volume of acetonitrile and cooled down. The samples are frozen until analyzed. Using MSMS, the remaining concentration of undegraded test substance is determined. From the increase of the test substance signal/time unit curve, the half-life (T1/2) is determined, where the half-life of the test substance can be calculated, assuming first order kinetics, from the decrease in the concentration of the compound with time. The microsomal clearance (mCi) is calculated as mCl=In2/T1/2/(content of microsomal protein in mg/ml)×1000 [ml/min/mg] (modified according to the literature references: Di, The Society for Biomoleculaur Screening, 2003, 453-462; Obach, DMD, 1999 vol 27. N 11, 1350-1359).
- The test reveals that compounds of the present invention generally have a high metabolic stability, which result in human microsomal clearance values of generally at most 220 μl min−1 mg−1, frequently 120 μl min−1 mg−1 and in particular at most 60 μl min−1 mg−1. The results are given in table 4.
-
TABLE 4 Human Mikrosomal Clearance Example [μl min−1 mg−1] 1 +++ 1B +++ 4 +++ 5 +++ 7B +++ 25 +++ 31 ++ 31B +++ 34 +++ 35 ++ 37 ++ 37B +++ 40 ++ 40B ++ 55 ++ 61B +++ 85 ++ Human Mikrosomal Clearance + >120-220 μl min−1 mg−1 ++ 60-120 μl min−1 mg−1 +++ <60 μl min−1 mg−1 - 150 μl of rat or human plasma, with 1 or 10 μM of test substance added, is pipetted onto one side of the 96-well dialysis chambers, 150 μl of PPS buffer are pipetted onto the other side. The chambers are separated by a dialysis membrane having a cut-off of 6-8000 dalton.
- The 96-well dialysis chambers are covered and gently shaken overnight.
- The next morning, 10 μl of plasma are removed and diluted with 90 μl of PPS buffer, and the protein is precipitated using 200 μl of acetonitrile. The precipitated protein is removed by centrifugation, and 100 μl of the supernatant are used for MSMS analysis. From the buffer side, 100 μl are removed for MSMS analysis. See also the following literature reference: Banker, Journal of Pharmaceutical Sciences Vol. 92, 5, 967-974, 2003.
- 0.4 mg/ml of human liver microsomes are preincubated for 10 minutes with the test substances to be tested (0-20 μM), the CYP specific substrates, in 0.05 M potassium phosphate buffer pH 7.4 at 37° C. The Cyp-specific substrate for CYP 2C9 is luciferin H, that for CYP 3A4 is luciferin BE. The reaction is started by addition of NADPH. After 30 min of incubation at RT, the luciferin detection reagent is added, and the resulting luminescence signal is measured (modified according to literature reference: Promega, Technical Bulletin P450-GLO™ Assays).
- The test consists of 2 parts. In the first part, the test substance is preincubated with the liver microsomes (with NADPH)=preincubation, followed by addition of the substrate; in the second part, substrate and test substance are added simultaneously=coincubation.
- 0.05 mg/ml of microsomal protein (human liver microsomes) are preincubated with 0-10 μM (or 50 μM) of test substance in 50 mM potassium phosphate buffer for 5 min. The reaction is started using NADPH. After 30 min, 4 μM of midazolam (final concentration) are added, and the mixture is incubated for a further 10 min. After 10 min, 75 μl of the reaction solution are removed and quenched with 150 μl of acetonitrile solution.
- 0.05 mg/ml of microsomal protein (human liver microsomes), 4 μM midazolam (final concentration) and 0-10 μM (or 50 μM) of test substance are preincubated in 50 mM potassium phosphate buffer for 5 min. The reaction is started using NADPH. After 10 min, 75 μl of the reaction solution are removed and quenched with 150 μl of acetonitrile solution. The samples are frozen until analyzed by MSMS (modified according to literature references:
- Obdach, Journal of Pharmacology & Experimental Therapeutics, Vol 316, 1, 336-348, 2006; Walsky, Drug Metabolism and Disposition Vol 32, 6, 647-660, 2004).
Method for Determining the Solubility in Water (in mg/ml) - The solubility in water of the compounds according to the invention can be determined, for example, according to the so-called “shake flask” method (according to ASTM International: E 1148-02, Standard test methods for measurement of aqueous solubility, Book of Standards Volume 11.05.). Here, an excess of the solid compound is added to a buffer solution having a certain pH (for example phosphate buffer pH 7.4) and the resulting mixture is shaken or stirred until the steady state has been reached (typically 24 or 48 hours, sometimes even up to 7 days). The undissolved solid is then removed by filtration or centrifugation, and the concentration of the dissolved compound is determined by UV spectroscopy or high-pressure liquid chromatography (HPLC) using an appropriate calibration curve.
Claims (51)
1. Compounds of the general formula (I)
in which
R1 is ethoxy;
R2 is hydrogen;
R3 is cyano;
R4 is hydrogen;
R5 is hydrogen, methoxy or ethoxy;
R6 is hydrogen or methoxy;
R7 is hydrogen, methyl, ethyl, n-propyl or isopropyl;
X1 is —NH—;
X2 is N or CH;
X3 is N or CH;
where X2 and X3 are not simultaneously N;
and the pharmaceutically acceptable salts, tautomeric forms and prodrugs thereof.
2. Compounds according to claim 1 , in which R5 is hydrogen or methoxy.
3. Compounds according to claim 1 , in which R7 is hydrogen, methyl or ethyl.
4. Compounds according to any of claims 1 to 3 , in which
R5 is hydrogen or methoxy;
R7 is hydrogen, methyl or ethyl;
X1 is —NH—;
X2 is N; and
X3 is CH.
5. Compounds according to any of claims 1 to 3 , in which
R5 is hydrogen or methoxy;
R7 is hydrogen, methyl or ethyl;
X1 is —NH—;
X2 is CH; and
X3 is N.
6. Compounds according to any of claims 1 to 3 , in which
R5 is methoxy;
R6 is methoxy
R7 is methyl or ethyl;
X1 is —NH—;
X2 is CH and X3 is Nor
X2 is N and X3 is CH.
7. Compounds according to any of claims 1 to 3 , in which
R5 is methoxy;
R6 is methoxy;
R7 is methyl;
X1 is —NH—;
X2 is N; and
X3 is CH.
8. Compounds according to any of claims 1 to 3 , in which
R5 is methoxy;
R6 is methoxy;
R7 is methyl;
X1 is —NH—;
X2 is CH; and
X3 is N.
9. Compounds according to any of claims 1 to 3 , in which
R5 is methoxy;
R6 is methoxy;
R7 is ethyl;
X1 is —NH—;
X2 is CH; and
X3 is N.
10. Compounds of the general formula (I) according to any of claims 1 to 9 , characterized in that they are present in optically active form and that they are the (laevorotatory) (−)-enantiomer, which rotates the plane of polarization of linear polarized light to the left, of the compound of the general formula (I) in question in the form of the free base, and the pharmaceutically acceptable salts, tautomeric forms and/or prodrugs thereof.
11. Compounds of the general formula (I) according to any of claims 1 to 9 , characterized in that they are present in optically active form, where the absolute configuration of the chiral C-3 ring carbon atom corresponds to the absolute configuration at C-3 of the (laevorotatory) (−)-enantiomer, which rotates the plane of polarization of linear polarized light to the left, of the compound of the formula (Ia) in the form of the free base
and the pharmaceutically acceptable salts, tautomeric forms and prodrugs thereof.
12. Compounds of the general formula (I) according to claim 10 in optically active form, characterized in that the corresponding laevorotatory (−)-enantiomer is present in an optical purity (enantiomeric excess, ee) of greater than 50%, and the pharmaceutically acceptable salts, tautomeric forms and prodrugs thereof.
13. Compounds of the general formula (I) according to claim 11 in optically active form, characterized in that the enantiomer having the preferred absolute configuration at the C-3 ring carbon atom is present in an optical purity (enantiomeric excess, ee) of greater than 50%, and the pharmaceutically acceptable salts, tautomeric forms and prodrugs thereof.
14. Compounds of the general formula (I) according to claim 10 in optically active form, characterized in that the corresponding laevorotatory (−)-enantiomer is present in an optical purity (enantiomeric excess, ee) of greater than 90%, and the pharmaceutically acceptable salts, tautomeric forms and prodrugs thereof.
15. Compounds of the general formula (I) according to claim 11 in optically active form, characterized in that the enantiomer having the preferred absolute configuration at the C-3 ring carbon atom is present in an optical purity (enantiomeric excess, ee) of greater than 90%, and the pharmaceutically acceptable salts, tautomeric forms and prodrugs thereof.
16. Compounds of the general formula (I) according to any of claims 1 to 9 in the form of the racemate, and the pharmaceutically acceptable salts, tautomeric forms and prodrugs of the racemate of the compounds of the general formula (I).
17. Medicament, comprising at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof.
18. At least one compound of the general formula (I) according to any of claims 1 to 16, or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for use as a medicament.
19. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment and/or prophylaxis of at least one vasopressin-dependent disease.
20. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of diabetes, insulin resistance, nocturnal enuresis, incontinence, diseases in which blood coagulation disorders occur, and/or for delaying micturition.
21. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of hypertension, pulmonary hypertension, heart failure, myocardial infarction, coronary spasm, unstable angina, PTCA (percutaneous transluminal coronary angioplasty), ischemias of the heart, disorders of the renal system, edemas, renal vasospasm, necrosis of the renal cortex, hyponatremia, hypokalemia, Schwartz-Bartter syndrome, disorders of the gastrointestinal tract, gastritic vasospasm, hepatocirrhosis, gastric and intestinal ulcer, emesis, emesis occurring during chemotherapy, and/or travel sickness.
22. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of affective disorders.
23. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of anxiety disorders and/or stress-dependent anxiety disorders.
24. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of memory impairments and/or Alzheimer's disease.
25. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of psychoses and/or psychotic disorders.
26. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of Cushing's syndrome or other stress-dependent diseases.
27. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of sleep disorders.
28. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of depressive disorders
29. Use according to claim 28 , for the treatment and/or prophylaxis of childhood onset mood disorders.
30. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment of vasomotor symptoms and/or thermoregulatory dysfunctions, such as, for example, the “hot flush” symptom.
31. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment and/or prophylaxis of drug dependencies, medicament dependencies and/or dependencies mediated by other factors, for the treatment and/or prophylaxis of stress caused by the withdrawal of one or more factors mediating the dependency and/or for the treatment and/or prophylaxis of stress-induced relapses into the drug dependencies, medicament dependencies and/or dependencies mediated by other factors.
32. Use of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the treatment and/or prophylaxis of schizophrenia and/or psychosis.
33. Method for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of diabetes, insulin resistance, nocturnal enuresis, incontinence, diseases in which blood coagulation disorders occur, and for delaying micturition in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
34. Method for the treatment and/or prophylaxis of at least one disorder selected from the group consisting of hypertension, pulmonary hypertension, heart failure, myocardial infarction, coronary spasm, unstable angina, PTCA (percutaneous transluminal coronary angioplasty), ischemias of the heart, disorders of the renal system, edemas, renal vasospasm, necrosis of the renal cortex, hyponatremia, hypokalemia, Schwartz-Bartter syndrome, disorders of the gastrointestinal tract, gastritic vasospasm, hepatocirrhosis, gastric and intestinal ulcer, emesis, emesis occurring during chemotherapy, and travel sickness in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
35. Method for the treatment and/or prophylaxis of affective disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
36. Method for the treatment of anxiety disorders and/or stress-dependent anxiety disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
37. Method for the treatment of memory impairments and/or Alzheimer's disease in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
38. Method for the treatment of psychoses and/or psychotic disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
39. Method for the treatment of Cushing's syndrome in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
40. Method for the treatment of sleep disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
41. Method for the treatment of depressive disorders in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
42. Method according to claim 41 , for the treatment and/or prophylaxis of childhood onset mood disorders.
43. Method for the treatment and/or prophylaxis of vasomotor symptoms and/or thermoregulatory dysfunctions, such as, for example, the “hot flush” symptom, in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
44. Method for the treatment and/or prophylaxis of drug dependencies, medicament dependencies and/or dependencies mediated by other factors, for the treatment and/or prophylaxis of stress caused by the withdrawal of one or more factors mediating the dependency and/or for the treatment and/or prophylaxis of stress-induced relapses in the drug dependencies, medicament dependencies and/or dependencies mediated by other factors, in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
45. Method for the treatment and/or prophylaxis of schizophrenia and/or psychosis in a patient, characterized in that an effective amount of at least one compound of the general formula (I) according to any of claims 1 to 16 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof is administered to the patient.
46. Method according to any of claims 33 to 45 , characterized in that the patient is a mammal, preferably a human or a nonhuman or a nonhuman transgenic mammal.
47. Process for preparing at least one compound of the general formula (I) according to any of claims 1 to 16 , characterized in that it can be prepared by the relevant skilled worker with knowledge of the technical teaching of the invention in implementation and/or in analogous implementation of process steps known per se.
48. A compound of the formula (I) according to any of claims 1 to 7 , or a pharmaceutically acceptable salt, a tautomeric form or a prodrug thereof for use in treatment and/or prophylaxis of a disease or disorder.
49. The compound as claimed in claim 48 for use in treatment and/or prophylaxis of a disease or disorder as set forth in any of claims 19 to 32 .
50. Use of the compound of the formula (I) according to any of claims 1 to 7 or at least one pharmaceutically acceptable salt, one tautomeric form or one prodrug thereof for the manufacture of a medicament for the treatment and/or prophylaxis of a disease or disorder.
51. The use as claimed in claim 50 , where the disease or disorder is as set forth in any of claims 19 to 32 .
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/481,847 US20140378471A1 (en) | 2006-12-30 | 2014-09-09 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
| US14/740,598 US20150352110A1 (en) | 2006-12-30 | 2015-06-16 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
Applications Claiming Priority (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102006062508.0 | 2006-12-30 | ||
| DE102006062505 | 2006-12-30 | ||
| DE102006062508 | 2006-12-30 | ||
| DE102006062507 | 2006-12-30 | ||
| DE102006062506.4 | 2006-12-30 | ||
| DE102006062507.2 | 2006-12-30 | ||
| DE102006062506 | 2006-12-30 | ||
| DE102006062505.6 | 2006-12-30 | ||
| PCT/EP2007/064622 WO2008080973A1 (en) | 2006-12-30 | 2007-12-28 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
| US52171310A | 2010-09-07 | 2010-09-07 | |
| US13/590,261 US8859557B2 (en) | 2006-12-30 | 2012-08-21 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
| US14/481,847 US20140378471A1 (en) | 2006-12-30 | 2014-09-09 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/590,261 Division US8859557B2 (en) | 2006-12-30 | 2012-08-21 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/740,598 Continuation US20150352110A1 (en) | 2006-12-30 | 2015-06-16 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140378471A1 true US20140378471A1 (en) | 2014-12-25 |
Family
ID=39125247
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/521,713 Expired - Fee Related US8815868B2 (en) | 2006-12-30 | 2007-12-28 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
| US13/590,261 Expired - Fee Related US8859557B2 (en) | 2006-12-30 | 2012-08-21 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
| US14/481,847 Abandoned US20140378471A1 (en) | 2006-12-30 | 2014-09-09 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
| US14/740,598 Abandoned US20150352110A1 (en) | 2006-12-30 | 2015-06-16 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/521,713 Expired - Fee Related US8815868B2 (en) | 2006-12-30 | 2007-12-28 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
| US13/590,261 Expired - Fee Related US8859557B2 (en) | 2006-12-30 | 2012-08-21 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/740,598 Abandoned US20150352110A1 (en) | 2006-12-30 | 2015-06-16 | Substituted oxindole derivatives and their use as vasopressin receptor ligands |
Country Status (21)
| Country | Link |
|---|---|
| US (4) | US8815868B2 (en) |
| EP (1) | EP2114923B1 (en) |
| JP (1) | JP5318781B2 (en) |
| KR (1) | KR101485326B1 (en) |
| AR (3) | AR064692A1 (en) |
| AU (1) | AU2007341236B2 (en) |
| BR (1) | BRPI0720866A2 (en) |
| CA (1) | CA2673584C (en) |
| CR (1) | CR10900A (en) |
| ES (1) | ES2523320T3 (en) |
| GT (1) | GT200900187A (en) |
| IL (1) | IL199265A (en) |
| MX (1) | MX2009007104A (en) |
| NZ (1) | NZ577720A (en) |
| PE (2) | PE20081557A1 (en) |
| SA (1) | SA07280709B1 (en) |
| TW (1) | TWI423804B (en) |
| UA (1) | UA96785C2 (en) |
| UY (1) | UY30846A1 (en) |
| WO (1) | WO2008080973A1 (en) |
| ZA (1) | ZA200904363B (en) |
Families Citing this family (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8580842B2 (en) * | 2003-09-30 | 2013-11-12 | Abbott Gmbh & Co. Kg | Heteroaryl-substituted 1,3-dihydroindol-2-one derivatives and medicaments containing them |
| US8486979B2 (en) | 2006-12-12 | 2013-07-16 | Abbvie Inc. | 1,2,4 oxadiazole compounds and methods of use thereof |
| US20080167286A1 (en) | 2006-12-12 | 2008-07-10 | Abbott Laboratories | Pharmaceutical compositions and their methods of use |
| UY30846A1 (en) | 2006-12-30 | 2008-07-31 | Abbott Gmbh & Amp | OXINDOL DERIVATIVES REPLACED, MEDICINES THAT UNDERSTAND AND USE THEMSELVES |
| WO2009071691A2 (en) * | 2007-12-07 | 2009-06-11 | Abbott Gmbh & Co. Kg | Oxindole derivatives and the use thereof as a medication |
| US8703774B2 (en) * | 2007-12-07 | 2014-04-22 | AbbVie Deutschland GmbH & Co. KG | Carbamate-substituted oxindole derivatives and use thereof for the treatment of vasopressin-dependent diseases |
| EP2623504A1 (en) * | 2007-12-07 | 2013-08-07 | Abbott GmbH & Co. KG | 5,6-Disubstituted oxindole derivatives and their use in the manufacture of a medicament for the treatment of vasopressin-dependent diseases |
| CA2707669C (en) * | 2007-12-07 | 2016-07-05 | Wilfried Braje | 5-halogen-substituted oxindole derivatives and use thereof for treating vasopressine-dependent diseases |
| WO2009071687A1 (en) * | 2007-12-07 | 2009-06-11 | Abbott Gmbh & Co. Kg | Amidomethyl-substituted oxindole derivatives and the use thereof for the treatment of vasopressin-dependent illnesses |
| CA2710946C (en) | 2007-12-27 | 2016-05-31 | Abbott Gmbh & Co. Kg | Substituted oxindole-derivatives and the use thereof for the treatment of vasopressin-dependent illnesses |
| WO2010138600A2 (en) | 2009-05-29 | 2010-12-02 | Abbott Laboratories | Pharmaceutical compositions for the treatment of pain |
| MX2011013324A (en) * | 2009-06-10 | 2012-04-30 | Abbott Gmbh & Co Kg | Use of substituted oxindole derivatives for the treatment and prophylaxis of pain. |
| GB201210686D0 (en) * | 2012-06-15 | 2012-08-01 | Holsboermaschmeyer Neurochemie Gmbh | V1B receptor antagonist for use in the treatment of patients having an elevated AVP level and/or an elevated copeptin level |
| US9273036B2 (en) | 2013-03-14 | 2016-03-01 | AbbVie Deutschland GmbH & Co. KG | Oxindole derivatives carrying an oxetane substituent and use thereof for treating vasopressine-related diseases |
| CA2903141A1 (en) | 2013-03-14 | 2014-09-18 | AbbVie Deutschland GmbH & Co. KG | Oxindole derivatives carrying an oxetane substituent and use thereof for treating vasopressine-related diseases |
| GB201310782D0 (en) | 2013-06-17 | 2013-07-31 | Max Planck Innovation Gmbh | Method for predicting a treatment response to a CRHR1 antagonist and/or V1B antagonist in a patient with depressive and/or anxiety symptoms |
| US9840495B2 (en) | 2013-12-20 | 2017-12-12 | AbbVie Deutschland GmbH & Co. KG | Oxindole derivatives carrying a piperidyl-substituted azetidinyl substituent and use thereof for treating vasopressine-related diseases |
| WO2015091934A1 (en) | 2013-12-20 | 2015-06-25 | AbbVie Deutschland GmbH & Co. KG | Oxindole derivatives carrying an amine-substituted piperidyl-azetidinyl substituent and use thereof for treating vasopressine-related diseases |
| US9527856B2 (en) | 2014-05-15 | 2016-12-27 | AbbVie Deutschland GmbH & Co. KG | Oxindole compounds carrying a CO-bound spiro substituent and use thereof for treating vasopressin-related diseases |
| WO2017076931A1 (en) | 2015-11-06 | 2017-05-11 | F. Hoffmann-La Roche Ag | Indolin-2-one derivatives for use in the treatment of cns and related disorders |
| WO2017076932A1 (en) | 2015-11-06 | 2017-05-11 | F. Hoffmann-La Roche Ag | Indolin-2-one derivatives useful in the treatment of cns diseases |
| WO2017076842A1 (en) | 2015-11-06 | 2017-05-11 | F. Hoffmann-La Roche Ag | Indolin-2-one derivatives |
| CN108349944B (en) | 2015-11-06 | 2021-03-30 | 豪夫迈·罗氏有限公司 | Indoline-2-one derivatives |
Family Cites Families (66)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3964896A (en) | 1971-08-09 | 1976-06-22 | Uniroyal, Inc. | Oxadiazole benzoic acid derivatives as herbicides |
| US4022901A (en) | 1975-03-05 | 1977-05-10 | E. R. Squibb & Sons, Inc. | 3-Pyridinyl-5-isothiocyanophenyl oxadiazoles |
| CH623971B5 (en) | 1976-06-04 | 1982-01-15 | Hoechst Ag | Process for the production of new benzofuran derivatives and their use as optical brighteners. |
| WO1993013083A1 (en) | 1991-12-31 | 1993-07-08 | Fujisawa Pharmaceutical Co., Ltd. | Oxadiazole derivatives having acetylcholinesterase-inhibitory and muscarinic agonist activity |
| FR2686878B1 (en) | 1992-01-30 | 1995-06-30 | Sanofi Elf | DERIVATIVES OF N-SULFONYL OXO-2 INDOLE, THEIR PREPARATION, THE PHARMACEUTICAL COMPOSITIONS CONTAINING SAME. |
| US5977144A (en) | 1992-08-31 | 1999-11-02 | University Of Florida | Methods of use and compositions for benzylidene- and cinnamylidene-anabaseines |
| US5948793A (en) * | 1992-10-09 | 1999-09-07 | Abbott Laboratories | 3-pyridyloxymethyl heterocyclic ether compounds useful in controlling neurotransmitter release |
| US5914328A (en) * | 1992-10-09 | 1999-06-22 | Abbott Laboratories | Heterocyclic ether compounds useful in controlling neurotransmitter release |
| FR2714378B1 (en) | 1993-12-24 | 1996-03-15 | Sanofi Sa | Indol-2-one derivatives substituted in 3 with a nitrogen group, their preparation, pharmaceutical compositions containing them. |
| IL118279A (en) | 1995-06-07 | 2006-10-05 | Abbott Lab | 3 - pyridyloxy (or thio) alkyl heterocyclic compounds, pharmaceutical compositions containing them and their uses in the preparation of medicaments for controlling chemical synaptic transmission |
| US6130217A (en) | 1995-09-20 | 2000-10-10 | Pfizer Inc | Compounds enhancing antitumor activity of other cytotoxic agents |
| FR2757157B1 (en) | 1996-12-13 | 1999-12-31 | Sanofi Sa | INDOLIN-2-ONE DERIVATIVES, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| WO1999032480A1 (en) | 1997-12-19 | 1999-07-01 | Abbott Laboratories | Heterocyclic ether and thioether compounds useful in controlling chemical synaptic transmission |
| US6605610B1 (en) | 1997-12-31 | 2003-08-12 | Pfizer Inc | Aryl fused azapolycyclic compounds |
| EP1086082B9 (en) | 1998-06-16 | 2005-03-02 | Targacept, Inc. | Arylsubstituted olefinic amines and their use as cholinergic receptors agonists |
| US6218383B1 (en) | 1998-08-07 | 2001-04-17 | Targacept, Inc. | Pharmaceutical compositions for the prevention and treatment of central nervous system disorders |
| US6207863B1 (en) | 1998-08-11 | 2001-03-27 | Rohm And Haas Company | Synthesis of haloformimine compounds |
| DE19904389A1 (en) | 1999-02-04 | 2000-08-10 | Bayer Ag | Use of substituted isoxazolecarboxylic acids and derivatives and new substances |
| FR2790474B1 (en) * | 1999-03-05 | 2001-04-06 | Synthelabo | PYRIDOPYRANOAZEPINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION |
| DK1178982T3 (en) | 1999-05-21 | 2004-11-08 | Abbott Lab | Heterocyclic substituted aminoazacyclic compounds useful as agents for the central nervous system |
| US6833370B1 (en) * | 1999-05-21 | 2004-12-21 | Abbott Laboratories | Heterocycle substituted aminoazacycles useful as central nervous system agents |
| EP1185514A1 (en) | 1999-06-07 | 2002-03-13 | Targacept, Inc. | Pharmaceutical compositions and methods for use |
| FR2804115B1 (en) * | 2000-01-25 | 2002-03-08 | Sanofi Synthelabo | NOVEL 1,3-DIHYDRO-2H-INDOL-2-ONE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| FR2804114B1 (en) * | 2000-01-25 | 2002-03-08 | Sanofi Synthelabo | NOVEL 1,3-DIHYDRO-2H-INDOL-2-ONE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| FR2805536B1 (en) | 2000-02-25 | 2002-08-23 | Sanofi Synthelabo | NOVEL 1,3-DIHYDRO-2H-INDOL-2-ONE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| JP2001302643A (en) | 2000-04-21 | 2001-10-31 | Suntory Ltd | Cyclic amidine compound |
| US6809105B2 (en) * | 2000-04-27 | 2004-10-26 | Abbott Laboratories | Diazabicyclic central nervous system active agents |
| MY137020A (en) | 2000-04-27 | 2008-12-31 | Abbott Lab | Diazabicyclic central nervous system active agents |
| US6448288B1 (en) | 2000-05-17 | 2002-09-10 | University Of Massachusetts | Cannabinoid drugs |
| US6579880B2 (en) | 2000-06-06 | 2003-06-17 | Ortho-Mcneil Pharmaceutical, Inc. | Isoxazoles and oxadiazoles as anti-inflammatory inhibitors of IL-8 |
| FR2810320B1 (en) * | 2000-06-19 | 2002-08-23 | Sanofi Synthelabo | NOVEL 1,3-DIHYDRO-2H-INDOL-2-ONE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| EP1379525B1 (en) | 2001-02-21 | 2007-10-10 | Nps Pharmaceuticals, Inc. | Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists |
| DE10148598A1 (en) | 2001-04-19 | 2002-10-24 | Bayer Ag | New N-(acylaminophenyl)-heteroaryl-benzenesulfonamide derivatives, useful as antiviral agents, especially effective against human cytomegalovirus infections |
| CN1638776A (en) * | 2001-06-08 | 2005-07-13 | 西托维亚公司 | Substituted 3-aryl-5-aryl-[1,2,4]-oxadiazoles and analogs |
| FR2827604B1 (en) | 2001-07-17 | 2003-09-19 | Sanofi Synthelabo | NOVEL 1-PHENYLSULFONYL-1,3-DIHYDRO-2H-INDOL-2- ONE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| CA2466375A1 (en) | 2001-11-08 | 2003-05-15 | Pharmacia & Upjohn Company | Azabicyclic-substituted-heteroaryl compounds for the treatment of disease |
| US7135484B2 (en) | 2002-08-14 | 2006-11-14 | Abbott Laboratories | Azabicyclic compounds are central nervous system active agents |
| US20040063601A1 (en) | 2002-08-20 | 2004-04-01 | The Procter & Gamble Company | Method for manufacturing liquid gel automatic dishwashing detergent compositions comprising anhydrous solvent |
| ES2770035T3 (en) | 2003-04-11 | 2020-06-30 | Ptc Therapeutics Inc | 1,2,4-Oxadiazole benzoic acid compound and its use for senseless suppression and treatment of diseases |
| US8580842B2 (en) * | 2003-09-30 | 2013-11-12 | Abbott Gmbh & Co. Kg | Heteroaryl-substituted 1,3-dihydroindol-2-one derivatives and medicaments containing them |
| US20050070718A1 (en) | 2003-09-30 | 2005-03-31 | Abbott Gmbh & Co. Kg | Heteroaryl-substituted 1,3-dihydroindol-2-one derivatives and medicaments containing them |
| WO2005034952A2 (en) | 2003-10-07 | 2005-04-21 | The Feinstein Institute For Medical Research | Isoxazole and isothiazole compounds useful in the treatment of inflammation |
| DE102004033834A1 (en) * | 2004-07-13 | 2006-02-02 | Abbott Gmbh & Co. Kg | New 1-sulfonyl-2-oxo-dihydroindole derivatives are selective antagonists of vasopressin receptors useful e.g. for treating hypertension, cardiac insufficiency, unstable angina or affective disorders |
| EP1781289A1 (en) | 2004-07-22 | 2007-05-09 | PTC Therapeutics, Inc. | Thienopyridines for treating hepatitis c |
| WO2006047392A2 (en) | 2004-10-21 | 2006-05-04 | The Trustees Of Columbia University In The City Of New York | Nicotinic-opioid synergy for analgesia |
| US8378109B2 (en) | 2004-12-07 | 2013-02-19 | The Regents Of The University Of California | Labeled ALPHA4BETA2 ligands and methods therefor |
| JP2008525524A (en) | 2004-12-28 | 2008-07-17 | アストラゼネカ・アクチエボラーグ | Arylsulfonamide modulator |
| US20120115842A1 (en) | 2004-12-31 | 2012-05-10 | Wilfried Lubisch | Substituted Oxindole Derivatives, Medicaments Containing Said Derivatives and Use Thereof |
| WO2006080574A1 (en) | 2005-01-28 | 2006-08-03 | Taisho Pharmaceutical Co., Ltd. | 1,3-dihydro-2h-indole-2-one compound and pyrrolidine-2-one compound fused with aromatic heterocycle |
| US20080261999A1 (en) | 2005-03-04 | 2008-10-23 | Fionna Mitchell Martin | Azabicycloalkane Derivatives Useful as Nicotinic Acetylcholine Receptor Agonists |
| DE102005014904A1 (en) * | 2005-03-26 | 2007-02-01 | Abbott Gmbh & Co. Kg | New substituted oxindole derivatives are vasopressin receptor binders useful to treat e.g. diabetes insipidus, enuresis nocturna, incontinence, hypertonia, heart failure, myocardial infarction, coronary spasm and renal disorders |
| DE102005014936A1 (en) | 2005-03-24 | 2006-12-14 | Abbott Gmbh & Co. Kg | New substituted oxindole derivatives are vasopressin receptor binders useful to treat e.g. diabetes insipidus, enuresis nocturna, incontinence, hypertonia, heart failure, myocardial infarction, coronary spasm and renal disorders |
| JP2008534461A (en) * | 2005-03-24 | 2008-08-28 | アボット ゲーエムベーハー ウント カンパニー カーゲー | Substituted oxindole derivatives, medicaments containing said derivatives and uses thereof |
| WO2006114400A1 (en) * | 2005-04-26 | 2006-11-02 | Neurosearch A/S | Novel oxadiazole derivatives and their medical use |
| US20080015193A1 (en) | 2006-06-20 | 2008-01-17 | Mendoza Jose S | Certain azoles exhibiting ATP-utilizing enzyme inhibitory activity, compositions, and uses thereof |
| EP2083921A2 (en) | 2006-09-04 | 2009-08-05 | Neurosearch A/S | Pharmaceutical combinations of a nicotine receptor modulator and a cognitive enhancer |
| US8486979B2 (en) | 2006-12-12 | 2013-07-16 | Abbvie Inc. | 1,2,4 oxadiazole compounds and methods of use thereof |
| US20080167286A1 (en) | 2006-12-12 | 2008-07-10 | Abbott Laboratories | Pharmaceutical compositions and their methods of use |
| WO2008080970A1 (en) | 2006-12-30 | 2008-07-10 | Abbott Gmbh & Co. Kg | Substituted oxindole derivative and its use as a vasopressin receptor ligand |
| WO2008080972A1 (en) | 2006-12-30 | 2008-07-10 | Abbott Gmbh & Co. Kg | Substituted oxindole derivative and its use as a vasopressin receptor modulator |
| WO2008080971A1 (en) | 2006-12-30 | 2008-07-10 | Abbott Gmbh & Co. Kg | Substituted oxindole derivative and its use as a vasopressin receptor ligand |
| UY30846A1 (en) | 2006-12-30 | 2008-07-31 | Abbott Gmbh & Amp | OXINDOL DERIVATIVES REPLACED, MEDICINES THAT UNDERSTAND AND USE THEMSELVES |
| US20080255203A1 (en) * | 2007-04-12 | 2008-10-16 | Abbott Laboratories | Heterocyclic compounds and their methods of use |
| CN102089297A (en) | 2008-06-06 | 2011-06-08 | 雅培制药有限公司 | Novel 1,2,4 oxadiazole compounds and methods of use thereof |
| WO2010138600A2 (en) | 2009-05-29 | 2010-12-02 | Abbott Laboratories | Pharmaceutical compositions for the treatment of pain |
| CN101730041A (en) | 2009-06-26 | 2010-06-09 | 中兴通讯股份有限公司 | Policy and charging control method and system based on current time zone of user |
-
2007
- 2007-12-27 UY UY30846A patent/UY30846A1/en not_active Application Discontinuation
- 2007-12-28 JP JP2009543480A patent/JP5318781B2/en not_active Expired - Fee Related
- 2007-12-28 WO PCT/EP2007/064622 patent/WO2008080973A1/en not_active Ceased
- 2007-12-28 KR KR1020097016052A patent/KR101485326B1/en not_active Expired - Fee Related
- 2007-12-28 TW TW096150905A patent/TWI423804B/en not_active IP Right Cessation
- 2007-12-28 AU AU2007341236A patent/AU2007341236B2/en not_active Ceased
- 2007-12-28 AR ARP070105964A patent/AR064692A1/en unknown
- 2007-12-28 BR BRPI0720866-9A2A patent/BRPI0720866A2/en active Search and Examination
- 2007-12-28 CA CA2673584A patent/CA2673584C/en not_active Expired - Fee Related
- 2007-12-28 MX MX2009007104A patent/MX2009007104A/en active IP Right Grant
- 2007-12-28 US US12/521,713 patent/US8815868B2/en not_active Expired - Fee Related
- 2007-12-28 EP EP07866324.2A patent/EP2114923B1/en active Active
- 2007-12-28 NZ NZ577720A patent/NZ577720A/en not_active IP Right Cessation
- 2007-12-28 UA UAA200908025A patent/UA96785C2/en unknown
- 2007-12-28 ES ES07866324.2T patent/ES2523320T3/en active Active
- 2007-12-29 SA SA07280709A patent/SA07280709B1/en unknown
-
2008
- 2008-01-02 PE PE2008000063A patent/PE20081557A1/en not_active Application Discontinuation
- 2008-01-02 PE PE2012000798A patent/PE20121442A1/en not_active Application Discontinuation
-
2009
- 2009-06-09 IL IL199265A patent/IL199265A/en not_active IP Right Cessation
- 2009-06-22 ZA ZA2009/04363A patent/ZA200904363B/en unknown
- 2009-06-29 GT GT200900187A patent/GT200900187A/en unknown
- 2009-06-30 CR CR10900A patent/CR10900A/en unknown
-
2010
- 2010-07-15 AR ARP100102571A patent/AR077478A2/en unknown
- 2010-07-15 AR ARP100102572A patent/AR077415A2/en unknown
-
2012
- 2012-08-21 US US13/590,261 patent/US8859557B2/en not_active Expired - Fee Related
-
2014
- 2014-09-09 US US14/481,847 patent/US20140378471A1/en not_active Abandoned
-
2015
- 2015-06-16 US US14/740,598 patent/US20150352110A1/en not_active Abandoned
Non-Patent Citations (2)
| Title |
|---|
| Koob, Neuron, vol.59 pages 11-34 (2008). * |
| Zhou et al. Neuropsychopharmacology, pages 226-236 (2008) * |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8859557B2 (en) | Substituted oxindole derivatives and their use as vasopressin receptor ligands | |
| EP2114921B1 (en) | Substituted oxindole derivative and its use as a vasopressin receptor ligand | |
| US8703774B2 (en) | Carbamate-substituted oxindole derivatives and use thereof for the treatment of vasopressin-dependent diseases | |
| EP2114922B1 (en) | Substituted oxindole derivative and its use as a vasopressin receptor modulator | |
| US9023854B2 (en) | 5-halogen-substituted oxindole derivatives and use thereof for treating vasopressin-dependent diseases | |
| CA2707667C (en) | Amidomethyl-substituted oxindole derivatives and the use thereof for the treatment of vasopressin-dependent illnesses | |
| WO2008080971A1 (en) | Substituted oxindole derivative and its use as a vasopressin receptor ligand | |
| RU2461556C2 (en) | Substituted oxydol derivatives and use thereof as vasopressin receptor ligands | |
| CN101611028B (en) | Substituted oxindole derivatives and their use as vasopressin receptor ligands | |
| HK1132740B (en) | Substituted oxindole derivatives and their use as vasopressin receptor ligands | |
| HK1132742B (en) | Substituted oxindole derivative and its use as a vasopressin receptor modulator | |
| HK1132741B (en) | Substituted oxindole derivative and its use as a vasopressin receptor ligand |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ABBOTT GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NETZ, ASTRID;OOST, THORSTEN;GENESTE, HERVE;AND OTHERS;SIGNING DATES FROM 20140929 TO 20141102;REEL/FRAME:034467/0473 Owner name: ABBVIE DEUTSCHLAND GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT GMBH & CO. KG;REEL/FRAME:034467/0547 Effective date: 20141111 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |