[go: up one dir, main page]

US20140372478A1 - Learning Objects And Facts From Documents - Google Patents

Learning Objects And Facts From Documents Download PDF

Info

Publication number
US20140372478A1
US20140372478A1 US14/463,393 US201414463393A US2014372478A1 US 20140372478 A1 US20140372478 A1 US 20140372478A1 US 201414463393 A US201414463393 A US 201414463393A US 2014372478 A1 US2014372478 A1 US 2014372478A1
Authority
US
United States
Prior art keywords
facts
document
fact
attribute
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/463,393
Inventor
Shubin Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Priority to US14/463,393 priority Critical patent/US20140372478A1/en
Publication of US20140372478A1 publication Critical patent/US20140372478A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/958Organisation or management of web site content, e.g. publishing, maintaining pages or automatic linking
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • G06F17/30867
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures

Definitions

  • the disclosed embodiments relate generally to fact databases. More particularly, the disclosed embodiments relate to learning objects and facts from documents.
  • Documents are often generated based on a template. For example, titles of the documents in the wikipedia.org website often follow a pattern of “[SUBJECT]—Wikipedia, the free encyclopedia,” where the section in square bracket is substituted with the subject of the page. These documents also often represent facts in a structured format. For example, documents in the wikipedia.org website frequently list facts in a table format.
  • Embodiments of the methods comprise selecting a source object and a source document and identifying a title pattern and a contextual pattern based on the source object and the source document. A set of documents matching the title pattern and the contextual pattern are selected. For each document in the selected set, a name and one or more facts are identified by applying the title pattern and the contextual pattern to the document. Objects are identified or created based on the identified names and associated with the identified facts.
  • FIG. 1 shows a system architecture adapted to support one embodiment.
  • FIGS. 2( a )- 2 ( d ) are block diagrams illustrating embodiments of a data structure for facts within a repository of FIG. 1 .
  • FIG. 2( e ) is a block diagram illustrating an embodiment of an alternative data structure for facts and objects.
  • FIG. 3 is a flowchart of an exemplary method for learning objects and facts from a plurality of documents in accordance with one embodiment.
  • FIG. 4 is a flowchart illustrating a process to identify a set of documents matching a title pattern and a contextual pattern in accordance with one embodiment.
  • FIG. 5 illustrates an example of learning objects and facts from a plurality of documents in accordance with one embodiment.
  • FIG. 1 shows a system architecture 100 adapted to support one embodiment.
  • FIG. 1 shows components used to add facts into, and retrieve facts from a repository 115 .
  • the system architecture 100 includes a network 104 , through which any number of document hosts 102 communicate with a data processing system 106 , along with any number of object requesters 152 , 154 .
  • Document hosts 102 store documents and provide access to documents.
  • a document is comprised of any machine-readable data including any combination of text, graphics, multimedia content, etc.
  • a document may be encoded in a markup language, such as Hypertext Markup Language (HTML), i.e., a web page, in an interpreted language (e.g., JavaScript) or in any other computer readable or executable format.
  • HTML Hypertext Markup Language
  • a document can include one or more hyperlinks to other documents.
  • a typical document will include one or more facts within its content. The facts describe entities, such as real-world or fictional people, places, or things.
  • a document stored in a document host 102 may be located and/or identified by a Uniform Resource Locator (URL), or Web address, or any other appropriate form of identification and/or location.
  • a document host 102 is implemented by a computer system, and typically includes a server adapted to communicate over the network 104 via networking protocols (e.g., TCP/IP), as well as application and presentation protocols (e.g., HTTP, HTML, SOAP, D-HTML, JAVA®).
  • the documents stored by a host 102 are typically held in a file directory, a database, or other data repository.
  • a host 102 can be implemented in any computing device (e.g., from a PDA or personal computer, a workstation, mini-computer, or mainframe, to a cluster or grid of computers), as well as in any processor architecture or operating system.
  • FIG. 1 shows components used to manage facts in a fact repository 115 .
  • the data processing system 106 includes one or more importers 108 , one or more janitors 110 , a build engine 112 , a service engine 114 , and a fact repository 115 (also called simply a “repository”).
  • Importers 108 operate to process documents received from the document hosts, read the data content of documents, and extract facts (as operationally and programmatically defined within the data processing system 106 ) from such documents.
  • the importers 108 also determine the subject or subjects (i.e., the entity or entities) with which the facts are associated, and extract such facts into individual items of data, for storage in the repository 115 .
  • the subject or subjects i.e., the entity or entities
  • Janitors 110 operate to process facts extracted by the importer 108 .
  • This processing can include but is not limited to, data cleansing, object merging, and fact induction.
  • Other types of janitors 110 may be implemented, depending on the types of data management functions desired, such as translation, compression, spelling or grammar correction, and the like.
  • Various janitors 110 act on facts to normalize attribute names and values, and delete duplicate and near-duplicate facts so an object does not have redundant information. For example, we might find on one page that Britney Spears' birthday is “Dec. 2, 1981” while on another page that her date of birth is “Dec. 2, 1981.” Birthday and Date of birth might both be rewritten as “Birthdate” by one janitor and then another janitor might notice that Dec. 2, 1981 and Dec. 2, 1981 are different forms of the same date. It would choose the preferred form, remove the other fact and combine the source lists for the two facts. As a result, one source page for this fact will contain an exact match of the fact while another source page will contain text that is considered synonymous with the fact.
  • the build engine 112 builds and manages the repository 115 .
  • the service engine 114 is an interface for querying the repository 115 .
  • the service engine 114 's main function is to process queries, score matching objects, and return them to the caller but it is also used by the janitor 110 .
  • the repository 115 stores factual information about entities.
  • the information is extracted from a plurality of documents that are located on document hosts 102 .
  • a document from which a particular fact may be extracted is a source document (or “source”) of that particular fact.
  • source a source of a fact includes that fact (or a synonymous fact) within its contents.
  • the repository 115 contains one or more facts.
  • the facts are logically organized into “objects,” and each object contains a collection of facts associated with a single entity (i.e., real-world or fictional person, place, or thing). Each fact is associated with exactly one object.
  • One implementation for this association includes in each fact an object ID that uniquely identifies the associated object. In this manner, any number of facts may be associated with an individual object, by including the object ID for that object in the facts.
  • objects themselves are not physically stored in the repository 115 , but rather are defined by the set or group of facts with the same associated object ID, as described below. Further details about facts in the repository 115 are described below, in relation to FIGS. 2( a )- 2 ( d ).
  • the importer 108 provides facts directly to the build engine 112 and/or repository 115 .
  • the janitors 110 operate on the facts and/or objects in the repository 115 .
  • the repository 115 may be deployed over multiple servers.
  • the janitors 110 may be located on any number of different computers. For convenience of explanation, however, the components of the data processing system 106 are discussed as though they were implemented on a single computer.
  • document hosts 102 are located on the data processing system 106 instead of being coupled to the data processing system 106 by a network.
  • the importer 108 may import facts from a database that is a part of or associated with the data processing system 106 .
  • FIG. 1 also includes components to access the repository 115 on behalf of one or more object requesters 152 , 154 .
  • Object requesters are entities that request objects from the repository 115 .
  • Object requesters 152 , 154 may be understood as clients of the system 106 , and can be implemented in any computer device or architecture.
  • a first object requester 152 is located remotely from system 106
  • a second object requester 154 is located in the data processing system 106 .
  • the blog may include a reference to an object whose facts are in the repository 115 .
  • An object requester 152 such as a browser displaying the blog, will access data processing system 106 so that the information of the facts associated with the object can be displayed as part of the blog web page.
  • a janitor 110 or other entity considered to be part of data processing system 106 can function as an object requester 154 , requesting the facts of objects from the repository 115 .
  • FIG. 1 shows that the data processing system 106 includes a memory 107 and one or more processors 116 .
  • the memory 107 includes the importers 108 , janitors 110 , build engine 112 , service engine 114 , and requester 154 , each of which is preferably implemented as instructions stored in memory 107 and executable by processor 116 .
  • Memory 107 also includes the repository 115 .
  • the repository 115 can be stored in a memory of one or more computer systems or in a type of memory such as a disk.
  • FIG. 1 also includes a computer readable storage medium 118 containing, for example, at least one of importers 108 , janitors 110 , the build engine 112 , the service engine 114 , the requester 154 , and at least some portions of the repository 115 .
  • FIG. 1 also includes one or more input/output devices 120 that allow data to be input and output to and from the data processing system 106 . It will be understood that embodiments of the data processing system 106 also include standard software components such as operating systems and the like and further include standard hardware components not shown in the figure for clarity of example.
  • FIG. 2( a ) shows an example format of a data structure for facts within the repository 115 , according to some embodiments.
  • the repository 115 includes facts 204 describing entities such as real-world and fictional people, places, and things.
  • Each fact 204 includes a unique identifier for that fact, such as a fact ID 210 .
  • Each fact 204 includes at least an attribute 212 and a value 214 .
  • a fact associated with the entity George Washington may include an attribute of “date of birth” and a value of “Feb. 22, 1732.”
  • all facts are stored as alphanumeric characters since they are extracted from web pages.
  • facts also can store binary data values.
  • Other embodiments, however, may store fact values as mixed types, or in encoded formats.
  • each fact is associated with an object ID 209 that identifies the object with which the fact is associated.
  • each fact that describes the same entity will have the same object ID 209 .
  • the objects are logical concepts that exist as a collection of facts having the same object ID.
  • objects are stored as units of data in memory, and include references (for example, pointers or IDs) to the facts associated with the object.
  • the logical data structure of a fact can take various forms; in general, a fact is represented by a tuple that includes a fact ID, an attribute, a value, and an object ID.
  • the storage implementation of a fact can be in any underlying physical data structure.
  • FIG. 2( b ) shows an example of facts having respective fact IDs of 10, 20, and 30 in the repository 115 .
  • Facts 10 and 20 are associated with an object identified by object ID “1.”
  • Fact 10 has an attribute of “Name” and a value of “China.”
  • Fact 20 has an attribute of “Category” and a value of “Country.”
  • the object identified by object ID “1” has a name fact 205 with a value of “China” and a category fact 206 with a value of “Country.”
  • Fact 30 208 has an attribute of “Property” and a value of “Bill Clinton was the 42nd President of the United States from 1993 to 2001.”
  • the object identified by object ID “2” has a property fact with a fact ID of 30 and a value of “Bill Clinton was the 42nd President of the United States from 1993 to 2001.”
  • each fact has one attribute and one value.
  • the number of facts associated with an object is not limited; thus while only two facts are shown for the “China” object, in practice there may be dozens, even hundreds of facts associated with a given object.
  • the value fields of a fact need not be limited in size or content. For example, a fact about the economy of “China” with an attribute of “Economy” would have a value including several paragraphs of text, numbers, and perhaps even tables of figures. This content can be formatted, for example, in a markup language. For example, a fact having an attribute “original html” might have a value of the original html text taken from the source web page.
  • FIG. 2( b ) shows the explicit coding of object ID, fact ID, attribute, and value
  • content of the fact can be implicitly coded as well (e.g., the first field being the object ID, the second field being the fact ID, the third field being the attribute, and the fourth field being the value).
  • Other fields include but are not limited to: the language used to state the fact (English, etc.), how important the fact is, the source of the fact, a confidence value for the fact, and so on.
  • FIG. 2( c ) shows an example object reference table 210 that is used in some embodiments. Not all embodiments include an object reference table.
  • the object reference table 210 functions to efficiently maintain the associations between object IDs and fact IDs. In the absence of an object reference table 210 , it is also possible to find all facts for a given object ID by querying the repository 115 to find all facts with a particular object ID. While FIGS. 2( b ) and 2 ( c ) illustrate the object reference table 210 with explicit coding of object and fact IDs, the table also may contain just the ID values themselves in column or pair-wise arrangements.
  • FIG. 2( d ) shows an example of a data structure for facts within the repository 115 , according to some embodiments, showing an extended format of facts.
  • the fields include an object reference link 216 to another object.
  • the object reference link 216 can be an object ID of another object in the repository 115 , or a reference to the location (e.g., table row) for the object in the object reference table 210 .
  • the object reference link 216 allows facts to have as values other objects. For example, for an object associated with the entity “United States,” there may be a fact with the attribute of “president” and the value of “George W. Bush,” with “George W. Bush” being an object having its own facts in the repository 115 .
  • the value field 214 stores the name of the linked object and the link 216 stores the object identifier of the linked object.
  • this “president” fact would include the value 214 of “George W. Bush”, and an object reference link 216 that contains the object ID for the “George W. Bush” object.
  • facts 204 do not include a link field 216 because the value 214 of a fact 204 may store a link to another object.
  • Each fact 204 also may include one or more metrics 218 .
  • a metric provides an indication of the quality of the fact.
  • the metrics include a confidence level and an importance level.
  • the confidence level indicates the likelihood that the fact is correct.
  • the importance level indicates the relevance of the fact to the object, compared to other facts for the same object.
  • the importance level may optionally be viewed as a measure of how vital a fact is to an understanding of the entity associated with the object.
  • Each fact 204 includes a list of one or more sources 220 that include the fact and from which the fact was extracted.
  • Each source may be identified by a URL, or Web address, or any other appropriate form of identification and/or location, such as a unique document identifier.
  • the facts illustrated in FIG. 2( d ) include an agent field 222 that identifies the importer 108 that extracted the fact.
  • the importer 108 may be a specialized importer that extracts facts from a specific source (e.g., the pages of a particular web site, or family of web sites) or type of source (e.g., web pages that present factual information in tabular form), or an importer 108 that extracts facts from free text in documents throughout the Web, and so forth.
  • Some embodiments include one or more specialized facts, such as a name fact 207 and a property fact 208 .
  • a name fact 207 is a fact that conveys a name for the entity associated with the object in which the fact is included.
  • a name fact 207 includes an attribute 224 of “name” and a value, which is the name of the associated entity. For example, for an object associated with country Spain, a name fact would have the value “Spain.”
  • a name fact 207 being a special instance of a general fact 204 , includes the same fields as any other fact 204 ; it has an attribute, a value, a fact ID, metrics, sources, etc.
  • the attribute 224 of a name fact 207 indicates that the fact is a name fact, and the value is the actual name.
  • the name may be a string of characters.
  • An object may have one or more associated name facts, as many entities can have more than one name. For example, an object associated with Spain may have associated name facts conveying the country's common name “Spain” and the official name “Kingdom of Spain.” As another example, an object associated with the U.S. Patent and Trademark Office may have associated name facts conveying the agency's acronyms “PTO” and “USPTO” as well as the official name “United States Patent and Trademark Office.” If an object does have more than one associated name fact, one of the name facts may be designated as a primary name and other name facts may be designated as secondary names, either implicitly or explicitly.
  • the name facts associated with an object are also called synonymous names of the object.
  • a property fact 208 is a fact that conveys a statement about the entity associated with the object.
  • Property facts are generally used for summary information about an object.
  • a property fact 208 being a special instance of a general fact 204 , also includes the same fields (such as attribute, value, fact ID, etc.) as other facts 204 .
  • the attribute field 226 of a property fact 208 indicates that the fact is a property fact (e.g., attribute is “property”) and the value is a string of text that conveys the statement of interest.
  • the value of a property fact may be the text string “Bill Clinton was the 42nd President of the United States from 1993 to 2001.”
  • Some objects may have one or more associated property facts while other objects may have no associated property facts.
  • the data structure of the repository 115 may take on other forms.
  • Other fields may be included in facts and some of the fields described above may be omitted.
  • each object may have additional special facts aside from name facts and property facts, such as facts conveying a type or category (for example, person, place, movie, actor, organization, etc.) for categorizing the entity associated with the object.
  • an object's name(s) and/or properties may be represented by special records that have a different format than the general fact records 204 .
  • null object As described previously, a collection of facts is associated with an object ID of an object.
  • An object may become a null or empty object when facts are disassociated from the object.
  • a null object can arise in a number of different ways.
  • One type of null object is an object that has had all of its facts (including name facts) removed, leaving no facts associated with its object ID.
  • Another type of null object is an object that has all of its associated facts other than name facts removed, leaving only its name fact(s).
  • the object may be a null object only if all of its associated name facts are removed.
  • a null object represents an entity or concept for which the data processing system 106 has no factual information and, as far as the data processing system 106 is concerned, does not exist.
  • facts of a null object may be left in the repository 115 , but have their object ID values cleared (or have their importance set to a negative value). However, the facts of the null object are treated as if they were removed from the repository 115 . In some other embodiments, facts of null objects are physically removed from the repository 115 .
  • FIG. 2( e ) is a block diagram illustrating an alternate data structure 290 for facts and objects in accordance with embodiments of the invention.
  • an object 290 contains an object ID 292 and references or points to facts 294 .
  • Each fact includes a fact ID 295 , an attribute 297 , and a value 299 .
  • an object 290 actually exists in memory 107 .
  • an object may explicitly exist in the repository 115 , or it may exist merely as a collection of facts with a common object ID.
  • a fact is associated with an object by sharing a common object ID with other facts. For example, a fact could be associated with an object of a given type by sharing a common object ID at least with a type fact indicating the given type (or as another example, with a category fact indicating a particular category of object).
  • facts and objects can be stored in a variety of structures, such as fact and/or object repositories.
  • structures such as fact and/or object repositories.
  • repository 115 it should be understood that various embodiments may store facts and/or objects in a variety of data structures.
  • FIG. 3 there is shown a flow diagram illustrating a method 300 for learning (or extracting) objects and facts from a plurality of documents in accordance with one embodiment.
  • Other embodiments perform steps of the method 300 in different orders and/or perform different or additional steps than the ones shown in FIG. 3 .
  • the steps of the process illustrated in FIG. 3 may be implemented in software, hardware, or a combination of hardware and software.
  • the steps of the method 300 may be performed by one or more importers 108 as shown in FIG. 1 , although one skilled in the art will recognize that the method could be performed by systems having different architectures as well.
  • the importers 108 can perform multiple instances of the steps of the method 300 concurrently and/or perform steps in parallel.
  • the process commences with a plurality of objects and a plurality of documents.
  • the plurality of objects can be objects in the fact repository 115 .
  • the plurality of documents can be documents in the document hosts 102 .
  • an object is associated with one or more facts.
  • Each fact has an attribute and a value (hereinafter called an “attribute-value pair”).
  • an object representing Canada can have a fact with an attribute “name” and a value of the attribute “Canada”.
  • a fact with the attribute “name” is called a name fact, and its value is called an object name.
  • the object representing Canada can also have a fact with an attribute-value pair of “Capital—Ottawa”, wherein “Capital” is the attribute and “Ottawa” is the value.
  • a document may be encoded in a markup language, such as the Hypertext Markup Language (HTML), i.e., a web page, in an interpreted language (e.g., JavaScript) or in any other computer readable or executable format.
  • HTML Hypertext Markup Language
  • a document can have one or more titles.
  • One example is a web page encoded in HTML with content about the first President of the United States, George Washington.
  • the importer 108 selects 310 a source object from the plurality of objects. In one embodiment, the importer 108 gives priority to objects associated with more facts when selecting 310 the source object. In another embodiment, each of the plurality of objects has equal chance of being selected 310 .
  • the importer 108 selects 320 a source document associated with a fact of the source object from the plurality of documents. As described above in relation to FIG. 2( d ), each fact includes a list of sources 220 from which the fact was extracted. In one embodiment, the importer 108 selects 320 the source document from sources of a fact associated with the source object. In one embodiment, the importer 108 gives priority to documents from reputable websites (e.g., the Encyclopedia Britannica Online) when selecting 320 the source document.
  • reputable websites e.g., the Encyclopedia Britannica Online
  • the importer 108 searches for documents containing an object name of the source object and one or more of its facts (or attribute-value pairs) in the plurality of documents.
  • the importer 108 selects 320 the source document from the search result. For example, for an object with object name “China” and attribute-value pair “Capital—Beijing,” the importer 108 can search for documents containing “China,” “Capital,” and “Beijing.”
  • the importer 108 may specify search criteria such as whether the object name matches document titles and whether the rest of the search terms match document contents.
  • the search may be performed using a search engine, such as a Web search engine.
  • the importer 108 identifies 330 a title pattern and a contextual pattern based on the source document and the source object.
  • the title pattern is intended to reflect a relationship between a title of the source document (hereinafter called “the document title”) and the object name of the source object (“the source object name”).
  • the importer 108 determines whether the document title contains the source object name as a substring. A substring is a contiguous sequence of characters taken from a string. If the document title does not contain the source object name as a substring, the importer 108 repeats the above process and selects 320 another document as the source document.
  • a title pattern comprises a prefix section, a body section, and a suffix section.
  • a title pattern can be expressed as “%[PREFIX SECTION]% && %[SUFFIX SECTION]%”, where “&&” represents the source object name.
  • the title pattern of a document title “Summary for Microsoft CP—Yahoo! Finance” and an object name “Microsoft CP” is “%Summary for% && %—Yahoo! Finance%”.
  • the prefix section is “Summary for”
  • the suffix section is “—Yahoo! Finance”.
  • the body section of the document title is the same as the object name, “Microsoft CP.”
  • the contextual pattern is a structural pattern in which the source document displays (or presents) facts (or attribute-value pairs).
  • a document can display facts of an object in a table (the contextual pattern) such that the attribute-value pair for a fact appears in the same row.
  • the importer 108 identifies 330 the contextual pattern by identifying language markups (e.g., HTML markups (or tags)) that define the structural pattern.
  • a web page may contain a list of attributes and values with HTML markup as the following:
  • the importer 108 can identify 330 the contextual pattern in the source document by matching attribute-value pairs of the source object with content of the source document.
  • the contextual pattern contains the HTML markup (or tag) sequence associated with the matching attribute-value. For example, for an attribute-value pair “Capital—Beijing,” the importer 108 may identify 330 the following contextual pattern in the above web page: “ ⁇ tr> ⁇ td> $$ ⁇ /td> ⁇ td> ££ ⁇ /td> ⁇ /tr>”. In this example, “$$” indicates a text block for an attribute and “££” indicates a text block of a corresponding value.
  • the importer 108 may identify 330 multiple contextual patterns in a source document, with each pattern corresponding with a fact of the source object.
  • the importer 108 selects 340 a set of documents from the plurality of documents based on the title pattern and the contextual pattern.
  • One embodiment of the process for the importer 108 to select 340 the set of documents is further illustrated in the flowchart shown in FIG. 4 .
  • the importer 108 starts the process by applying 410 the title pattern to a title of the document. If the importer 108 determines 420 that the title does not match the title pattern, it determines that the document should not be added to the set and repeats the process for the next document. Otherwise, the importer 108 applies 430 the contextual pattern to the content of the document.
  • the importer 108 determines 440 that there is no match for the contextual pattern, it determines that the document should not be added to the set and repeats the process for the next document. If a title of the document matches the title pattern and the content of the document matches the contextual pattern, the importer 108 adds 450 the document to the set.
  • the importer 108 only examines documents within the same domain as the source document when selecting 340 the set of documents.
  • a domain is a group of computers and devices that share a common part of an Internet Protocol (IP) address that identifies (or locates) an organization (or entity) on the Internet. All documents from computers and devices in the group are said to be from the same domain. Documents from the same domain may be stored in one or multiple document hosts 102 .
  • the set of documents can include the source document.
  • Limiting the set of documents to be within the same domain as the source document can be advantageous, especially when the size of the plurality of documents is large.
  • the computational cost of comparing documents with the title pattern and the contextual pattern can become unmanageable as the number of documents grows. Also, because documents within the same domain as the source document are more likely to share the same style as the source document, they are more likely to match the title pattern and the contextual pattern than documents from other domains.
  • the importer 108 can identify 330 multiple contextual patterns. In one embodiment, the importer 108 adds 450 a document into the set of documents as long as the document matches the title pattern and any one of the multiple contextual patterns. In another embodiment, the importer 108 adds 450 a document into the set only when the document matches the title pattern and all of the identified contextual patterns.
  • the importer 108 identifies 350 a name and one or more attribute-value pairs from the document.
  • the importer 108 identifies 350 the name by applying the title pattern to the title of the document.
  • the importer 108 identifies 350 one or more attribute-value pairs by applying the contextual pattern to the content of the document.
  • the identified name tends to be an object name for an object (or entity) described in the document.
  • the source document contains facts of the source object, and therefore describes the source object.
  • the source object name can be extracted from a title of the source document using the title pattern. Because the title pattern also matches titles of the documents in the selected set, it follows that these documents tend to follow a consistent naming convention (or protocol or standard). For example, titles of web pages containing company profile in Yahoo! finance website follow a common pattern of “%COMPANY NAME% Company Profile—Yahoo! Finance”. Therefore, the name identified by applying the title pattern to a title of the document tends to be an object name for an object described in the document.
  • the identified attribute-value pairs tend to be facts for the object described in the document.
  • the source document contains facts of the source object matching the contextual pattern. Same as the source document, documents in the selected set match the title pattern and the contextual pattern. Therefore, these documents tend to share a style or format (e.g., displaying facts in a table or list). Because facts of the source object can be extracted from the source document using the contextual pattern, it follows that the attribute-value pairs identified by applying the contextual pattern to content of the document tend to be facts for the object described in the document.
  • the importer 108 can repeatedly apply the contextual pattern to content of the document to identify 350 (or extract or learn) attribute-value pairs. For example, if the contextual pattern identifies a table entry, the importer 108 may extract attribute-value pairs from that table entry and nearby table entries that match the contextual pattern. In one embodiment, the importer 108 extracts attribute-value pairs that are proximate to each other. By applying such a limitation, the importer 108 can be sure that the identified attribute-value pairs are likely from the same structure (e.g., the same table or list). Alternatively, the importer 108 can parse the document to identify 350 attribute-value pairs from all structures that match the contextual pattern.
  • the importer 108 examines the quality of the identified attribute-value pairs by matching their attributes with a group of valid attributes (called “a white attribute list”).
  • the identified contextual pattern may be general (e.g., a table row, a list item), and therefore the attribute-value pairs identified by applying the general contextual pattern may be over-inclusive. If the match fails to meet a certain threshold value (percentage or absolute value), the importer 108 determines that the identified attribute-value pairs are low in quality, and may disregard them entirely or only keep those that match.
  • the white attribute list may include attributes identified in the source document and/or attributes collected from other sources (e.g., compiled by human editors). Similarly, the importer 108 may match the identified attribute-value pairs with a group of invalid attributes (called “a black attribute list”), and disregard them if the match exceeds a certain threshold value.
  • the importer 108 For each document in the selected set, the importer 108 associates 360 the attribute-value pairs identified in the document with an object with the identified name. In one embodiment, the importer 108 creates a new object, assigns the new object with the identified name, and associates 360 it with the identified attribute-value pairs. The importer 108 then passes the newly created object to a janitor 110 to incorporate the object into the fact repository 115 . In one embodiment, the janitor 110 searches in the fact repository 115 for an object associated with the identified name. If no such object exists, the janitor 110 adds the newly created object into the fact repository 115 . Otherwise, the janitor 110 merges the newly created object with the existing object in the fact repository 115 .
  • the janitor 110 determines that the existing object does not contain some of the attribute-value pairs identified in the document, it adds these attribute-value pairs into the fact repository 115 and associates 360 them with the existing object. If the existing object and the newly created object contain duplicated attribute-value pairs (e.g., same attribute and same value), the janitor 110 can optionally add the document as a source of this fact of the existing object. If the existing object and the newly created object contain inconsistent attribute-value pairs (e.g., same attribute but different value), the janitor 110 can determine a confidence value for each of the attribute-value pairs, and set the one with higher value as the value of the fact for the existing object. In other embodiments, the importer 108 only creates a new object if no object associated with the identified name is located in the fact repository 115 .
  • the fact repository 115 can have objects associated with the same object name (or name fact value). For example, two objects can both have the name “New York,” one representing the New York City and the other representing a movie with the title “New York.”
  • the janitor 110 searches in the fact repository 115 for an object associated with the identified name and at least one identified attribute-value pair, and merges the newly created object with the object found in the manner detailed above.
  • the importer 108 may apply some normalization rules to the identified names to standardize its format before identifying corresponding objects.
  • the importer 108 may also apply these normalization rules to the identified attribute-value pairs before associating 360 them with objects.
  • Examples of the normalization rules include removal of punctuation, such as removing commas in a string, conversion of uppercase characters in a string to corresponding lowercase characters, such as from “America” to “america,” and stop word removal, such as removing stop words such as “the” and “of” from a string.
  • an object name of “Charles Chaplin” becomes “charles chaplin”.
  • the importer 108 compares the identified names with content of a black list.
  • the black list contains texts that are not entity names (e.g., adjectives such as “beautiful”, and stop words such as “the”). Therefore, if there are matches between the identified name and the black list, the importer 108 determines that this name is not a valid entity name, and therefore does not create an object for it.
  • the importer 108 compares the learned object names with content of a white list.
  • the white list contains some entity names (e.g., “United Nation,” “John Lennon”).
  • the white list can be compiled by human editors or extracted from reputable sources (e.g., the Encyclopedia Britannica Online). Therefore, if there are matches between the identified name and the white list, the importer 108 determines that the identified name is a proper object name.
  • the importer 108 can repeat the process described above for a different source object and/or a different source document. As a result, the importer 108 can learn objects and associated facts from the plurality of documents.
  • the method 300 is further illustrated by an example shown in FIG. 5 .
  • an object O1 has an attribute-value pair of “name—George Washington,” and an attribute-value pair of “Born—Feb. 22, 1732.”
  • the source of both facts (or attribute-pairs) is “http://en.wikipedia.org/wiki/George_washington.”
  • FIG. 5 also shows a plurality of documents D1-D5.
  • Documents D1-D5 are all from Wikipedia.org domain 501 .
  • Document D1 (hereinafter called “D1”) is entitled “George Washington—Wikipedia, the free encyclopedia.” Content of D1 includes the following structured text:
  • D2 Born Feb. 22, 1732 Died Dec. 14, 1799 Spouse Martha Dandridge Custis Washington Document D2 (“D2”) is entitled “Canada—Wikipedia, the free encyclopedia.” Content of D2 includes the following structured text:
  • D3 Document D3
  • D4 Document D4
  • Content of D4 includes the following structured text:
  • Content of documents D1-D5 can be organized in HTML structures such as tables and lists in order to be displayed as structured text as illustrated in FIG. 5 .
  • the HTML source code of D1 may contain the following:
  • the importer 108 selects 310 object O1 as the source object. Because the source of both facts associated with O1 is “http://en.wikipedia.org/wiki/George_washington,” the URL of D1, the importer 108 selects 320 D1 as the source document.
  • the importer 108 identifies 330 a title pattern by comparing the title of the source document D1 (“George Washington—Wikipedia, the free encyclopedia”) with the object name of the source object O1 (“George Washington”). The importer 108 determines that the prefix section of the title pattern is empty and the suffix section is “—Wikipedia, the free encyclopedia”. Therefore, the identified title pattern is “%% && %—Wikipedia, the free encyclopedia%”.
  • the importer 108 identifies 330 a contextual pattern by matching an attribute-value pair of the source object O1 (Born—Feb. 22, 1732) with the content of the source document D1 (“ . . . ⁇ li> ⁇ b> Born ⁇ /b> Feb. 22, 1732 ⁇ /li> . . . ”).
  • the importer 108 identifies 330 the following contextual pattern: “ ⁇ li> ⁇ b>$$ ⁇ /b>££ ⁇ /li>”.
  • the importer 108 selects 340 a set of documents based on the identified title pattern (“%% && %—Wikipedia, the free encyclopedia%”) and the identified contextual pattern (“ ⁇ li> ⁇ b>$$ ⁇ /b>££ ⁇ /li>”).
  • the importer 108 applies 410 the title pattern to titles of D1-D5 and determines 420 that titles of D1-D4 match with the title pattern.
  • the importer 108 applies 430 the contextual pattern to contents of D1-D4, and determines 440 that the contents of D1, D2, and D4 match with the contextual pattern.
  • the importer 108 adds 450 D1, D2, and D4 to the selected set of documents. It is noted that the selected set includes the source document D1.
  • the importer 108 applies the identified title pattern (“%% && %—Wikipedia, the free encyclopedia%”) and contextual pattern (“ ⁇ li> ⁇ b>$$ ⁇ /b>££ ⁇ /li>”) to each document in the selected set (D1, D2, and D4) to identify 350 names and attribute-value pairs.
  • D1 the importer 108 identifies 350 the name “George Washington” and attribute value pairs “Born—Feb. 22, 1732,” “Died—Dec.
  • the importer 108 identifies the name “Canada” and attribute-value pairs “Capital—Ottawa,” “Area—9,984,670 km2,” and “GDP—$1.105 trillion.” Similarly, for D4, the importer 108 identifies the name “Isaac Asimov” and attribute-value pairs “Born—Jan. 2, 1920” and “Died—Apr. 6, 1992.”
  • the importer 108 (or the janitor 110 ) identifies (or creates) objects with the identified names and associates 360 the identified attribute-value pairs with the objects. For D1, because O1 is already associated with the attribute-value pair “Born—Feb. 22, 1732,” the importer 108 (or the janitor 110 ) associates 360 the attribute-value pairs “Died—Dec. 14, 1799” and “Spouse—Martha Dandridge Custis Washington” with O1 and adds D1 as their source.
  • the importer 108 creates an object with object name “Canada,” associates 360 it with attribute-value pairs “Capital—Ottawa,” “Area—9,984,670 km2,” and “GDP—$1.105 trillion,” and adds D2 as their source.
  • the importer 108 creates an object with object name “Isaac Asimov,” associates 360 it with attribute-value pairs “Born—Jan. 2, 1920” and “Died—Apr. 6, 1992,” and adds D4 as their source.
  • the importer 108 can first select a source document and then select a source object based on the subject of the source document. For example, the importer 108 can first identify a title pattern of the selected source document, determine an object name based on the document title and the title pattern, and select a source object associated with the object name. The importer 108 can then identify 330 a contextual pattern as described above. If the importer 108 fails to select such a source object or fails to identify 330 a contextual pattern, it can repeat the process and select a different source document.
  • the importer 108 can identify a title pattern of the source document by analyzing the document title of the source document and anchor texts of documents linking to the source document. Detailed description and embodiments of identifying a title pattern for the source document can be found in U.S. patent application Ser. No. 11/394,610, entitled “Determining Document Subject by Using Title and Anchor Text of Related Documents,” filed on Mar. 31, 2006, the disclosure of which is hereby incorporated by reference in its entirety.
  • the importer 108 can identify 330 more than one contextual pattern for the source document and the source object. For example, some of the attribute-value pairs may be in a list in the source document, and others may be in a table in the source document. In some embodiments, the importer 108 can select 340 a set of documents for each of the identified contextual patterns.
  • process described above may be performed at another time for other purposes, such as learning images and other media data from semi-structured text and verifying the quality of the plurality of documents.
  • the process may be performed as needed or at scheduled intervals.
  • the process may be performed for other objects in the fact repository 115 .
  • Certain aspects of the present invention include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of the present invention can be embodied in software, firmware or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.
  • the present invention also relates to an apparatus for performing the operations herein.
  • This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer.
  • a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
  • the computers referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Document Processing Apparatus (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A system, method, and computer program product for learning objects and facts from documents. Embodiments of the method comprise selecting a source object and a source document and identifying a title pattern and a contextual pattern based on the source object and the source document. A set of documents matching the title pattern and the contextual pattern are selected. For each document in the selected set, a name and one or more facts are identified by applying the title pattern and the contextual pattern to the document. Objects are identified or created based on the identified names and associated with the identified facts.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This application is a continuation of U.S. Utility patent application Ser. No. 11/941,382, entitled “Learning Objects and Facts From Documents,” by Shubin Zhao, filed on Nov. 16, 2007; which is related to U.S. Utility patent application Ser. No. 11/394,610, entitled “Determining Document Subject by Using Title and Anchor Text of Related Documents,” by Shubin Zhao, filed on Mar. 31, 2006, the disclosures of which are hereby incorporated by reference in their entirety.
  • TECHNICAL FIELD
  • The disclosed embodiments relate generally to fact databases. More particularly, the disclosed embodiments relate to learning objects and facts from documents.
  • BACKGROUND
  • As computers and networks gain popularity, web-based computer documents (“documents”) become a vast source of factual information. Users may look to these documents to get answers to factual questions, such as “what is the capital of Poland” or “what is the birth date of George Washington.” The factual information included in these documents may be extracted and stored in a fact database.
  • Documents are often generated based on a template. For example, titles of the documents in the wikipedia.org website often follow a pattern of “[SUBJECT]—Wikipedia, the free encyclopedia,” where the section in square bracket is substituted with the subject of the page. These documents also often represent facts in a structured format. For example, documents in the wikipedia.org website frequently list facts in a table format.
  • Conventionally, objects (or entities) and related facts described in documents are identified and extracted (or learned) by human editors. This approach is insufficient for mass fact extraction because the vast volume of documents and the rapid increase in the number of available documents make it impractical for human editors to perform the task on any meaningful scale.
  • Based on the above, there is a need for a way to automatically identify objects and facts in documents.
  • SUMMARY
  • The above and other needs are met by systems, methods, and computer program products that learn objects and facts from documents. Embodiments of the methods comprise selecting a source object and a source document and identifying a title pattern and a contextual pattern based on the source object and the source document. A set of documents matching the title pattern and the contextual pattern are selected. For each document in the selected set, a name and one or more facts are identified by applying the title pattern and the contextual pattern to the document. Objects are identified or created based on the identified names and associated with the identified facts.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a system architecture adapted to support one embodiment.
  • FIGS. 2( a)-2(d) are block diagrams illustrating embodiments of a data structure for facts within a repository of FIG. 1.
  • FIG. 2( e) is a block diagram illustrating an embodiment of an alternative data structure for facts and objects.
  • FIG. 3 is a flowchart of an exemplary method for learning objects and facts from a plurality of documents in accordance with one embodiment.
  • FIG. 4 is a flowchart illustrating a process to identify a set of documents matching a title pattern and a contextual pattern in accordance with one embodiment.
  • FIG. 5 illustrates an example of learning objects and facts from a plurality of documents in accordance with one embodiment.
  • DESCRIPTION OF EMBODIMENTS
  • Embodiments are now described with reference to the figures where like reference numbers indicate identical or functionally similar elements.
  • System Architecture and Data Structure
  • FIG. 1 shows a system architecture 100 adapted to support one embodiment. FIG. 1 shows components used to add facts into, and retrieve facts from a repository 115. The system architecture 100 includes a network 104, through which any number of document hosts 102 communicate with a data processing system 106, along with any number of object requesters 152, 154.
  • Document hosts 102 store documents and provide access to documents. A document is comprised of any machine-readable data including any combination of text, graphics, multimedia content, etc. A document may be encoded in a markup language, such as Hypertext Markup Language (HTML), i.e., a web page, in an interpreted language (e.g., JavaScript) or in any other computer readable or executable format. A document can include one or more hyperlinks to other documents. A typical document will include one or more facts within its content. The facts describe entities, such as real-world or fictional people, places, or things.
  • A document stored in a document host 102 may be located and/or identified by a Uniform Resource Locator (URL), or Web address, or any other appropriate form of identification and/or location. A document host 102 is implemented by a computer system, and typically includes a server adapted to communicate over the network 104 via networking protocols (e.g., TCP/IP), as well as application and presentation protocols (e.g., HTTP, HTML, SOAP, D-HTML, JAVA®). The documents stored by a host 102 are typically held in a file directory, a database, or other data repository. A host 102 can be implemented in any computing device (e.g., from a PDA or personal computer, a workstation, mini-computer, or mainframe, to a cluster or grid of computers), as well as in any processor architecture or operating system.
  • FIG. 1 shows components used to manage facts in a fact repository 115. The data processing system 106 includes one or more importers 108, one or more janitors 110, a build engine 112, a service engine 114, and a fact repository 115 (also called simply a “repository”). Each of the foregoing is implemented, in one embodiment, as software modules (or programs) executed by the processor 116. Importers 108 operate to process documents received from the document hosts, read the data content of documents, and extract facts (as operationally and programmatically defined within the data processing system 106) from such documents. The importers 108 also determine the subject or subjects (i.e., the entity or entities) with which the facts are associated, and extract such facts into individual items of data, for storage in the repository 115. In one embodiment, there are different types of importers 108 for different types of documents, for example, dependent on the format or document type.
  • Janitors 110 operate to process facts extracted by the importer 108. This processing can include but is not limited to, data cleansing, object merging, and fact induction. In one embodiment, there are a number of different janitors 110 that perform different types of data management operations on the facts. For example, one janitor 110 may traverse some set of facts in the repository 115 to find duplicate facts (that is, facts that convey the same factual information) and merge them. Another janitor 110 may also normalize facts into standard formats. Another janitor 110 may also remove unwanted facts from the repository 115, such as facts related to pornographic content. Other types of janitors 110 may be implemented, depending on the types of data management functions desired, such as translation, compression, spelling or grammar correction, and the like.
  • Various janitors 110 act on facts to normalize attribute names and values, and delete duplicate and near-duplicate facts so an object does not have redundant information. For example, we might find on one page that Britney Spears' birthday is “Dec. 2, 1981” while on another page that her date of birth is “Dec. 2, 1981.” Birthday and Date of Birth might both be rewritten as “Birthdate” by one janitor and then another janitor might notice that Dec. 2, 1981 and Dec. 2, 1981 are different forms of the same date. It would choose the preferred form, remove the other fact and combine the source lists for the two facts. As a result, one source page for this fact will contain an exact match of the fact while another source page will contain text that is considered synonymous with the fact.
  • The build engine 112 builds and manages the repository 115. The service engine 114 is an interface for querying the repository 115. The service engine 114's main function is to process queries, score matching objects, and return them to the caller but it is also used by the janitor 110.
  • The repository 115 stores factual information about entities. The information is extracted from a plurality of documents that are located on document hosts 102. A document from which a particular fact may be extracted is a source document (or “source”) of that particular fact. In other words, a source of a fact includes that fact (or a synonymous fact) within its contents.
  • The repository 115 contains one or more facts. In one embodiment, the facts are logically organized into “objects,” and each object contains a collection of facts associated with a single entity (i.e., real-world or fictional person, place, or thing). Each fact is associated with exactly one object. One implementation for this association includes in each fact an object ID that uniquely identifies the associated object. In this manner, any number of facts may be associated with an individual object, by including the object ID for that object in the facts. In one embodiment, objects themselves are not physically stored in the repository 115, but rather are defined by the set or group of facts with the same associated object ID, as described below. Further details about facts in the repository 115 are described below, in relation to FIGS. 2( a)-2(d).
  • Some embodiments operate on the facts and/or objects in different orders than described above. For example, in one embodiment the importer 108 provides facts directly to the build engine 112 and/or repository 115. The janitors 110, in turn, operate on the facts and/or objects in the repository 115. It should also be appreciated that in practice at least some of the components of the data processing system 106 will be distributed over multiple computers, communicating over a network. For example, the repository 115 may be deployed over multiple servers. As another example, the janitors 110 may be located on any number of different computers. For convenience of explanation, however, the components of the data processing system 106 are discussed as though they were implemented on a single computer.
  • In another embodiment, some or all of document hosts 102 are located on the data processing system 106 instead of being coupled to the data processing system 106 by a network. For example, the importer 108 may import facts from a database that is a part of or associated with the data processing system 106.
  • FIG. 1 also includes components to access the repository 115 on behalf of one or more object requesters 152, 154. Object requesters are entities that request objects from the repository 115. Object requesters 152, 154 may be understood as clients of the system 106, and can be implemented in any computer device or architecture. As shown in FIG. 1, a first object requester 152 is located remotely from system 106, while a second object requester 154 is located in the data processing system 106. For example, in a computer system hosting a blog, the blog may include a reference to an object whose facts are in the repository 115. An object requester 152, such as a browser displaying the blog, will access data processing system 106 so that the information of the facts associated with the object can be displayed as part of the blog web page. As a second example, a janitor 110 or other entity considered to be part of data processing system 106 can function as an object requester 154, requesting the facts of objects from the repository 115.
  • FIG. 1 shows that the data processing system 106 includes a memory 107 and one or more processors 116. The memory 107 includes the importers 108, janitors 110, build engine 112, service engine 114, and requester 154, each of which is preferably implemented as instructions stored in memory 107 and executable by processor 116. Memory 107 also includes the repository 115. The repository 115 can be stored in a memory of one or more computer systems or in a type of memory such as a disk. FIG. 1 also includes a computer readable storage medium 118 containing, for example, at least one of importers 108, janitors 110, the build engine 112, the service engine 114, the requester 154, and at least some portions of the repository 115. FIG. 1 also includes one or more input/output devices 120 that allow data to be input and output to and from the data processing system 106. It will be understood that embodiments of the data processing system 106 also include standard software components such as operating systems and the like and further include standard hardware components not shown in the figure for clarity of example.
  • FIG. 2( a) shows an example format of a data structure for facts within the repository 115, according to some embodiments. As described above, the repository 115 includes facts 204 describing entities such as real-world and fictional people, places, and things. Each fact 204 includes a unique identifier for that fact, such as a fact ID 210. Each fact 204 includes at least an attribute 212 and a value 214. For example, a fact associated with the entity George Washington may include an attribute of “date of birth” and a value of “Feb. 22, 1732.” In one embodiment, all facts are stored as alphanumeric characters since they are extracted from web pages. In another embodiment, facts also can store binary data values. Other embodiments, however, may store fact values as mixed types, or in encoded formats.
  • As described above, each fact is associated with an object ID 209 that identifies the object with which the fact is associated. Thus, each fact that describes the same entity (such as George Washington), will have the same object ID 209. In one embodiment, the objects are logical concepts that exist as a collection of facts having the same object ID. In another embodiment, objects are stored as units of data in memory, and include references (for example, pointers or IDs) to the facts associated with the object. The logical data structure of a fact can take various forms; in general, a fact is represented by a tuple that includes a fact ID, an attribute, a value, and an object ID. The storage implementation of a fact can be in any underlying physical data structure.
  • FIG. 2( b) shows an example of facts having respective fact IDs of 10, 20, and 30 in the repository 115. Facts 10 and 20 are associated with an object identified by object ID “1.” Fact 10 has an attribute of “Name” and a value of “China.” Fact 20 has an attribute of “Category” and a value of “Country.” Thus, the object identified by object ID “1” has a name fact 205 with a value of “China” and a category fact 206 with a value of “Country.” Fact 30 208 has an attribute of “Property” and a value of “Bill Clinton was the 42nd President of the United States from 1993 to 2001.” Thus, the object identified by object ID “2” has a property fact with a fact ID of 30 and a value of “Bill Clinton was the 42nd President of the United States from 1993 to 2001.” In the illustrated embodiment, each fact has one attribute and one value. The number of facts associated with an object is not limited; thus while only two facts are shown for the “China” object, in practice there may be dozens, even hundreds of facts associated with a given object. Also, the value fields of a fact need not be limited in size or content. For example, a fact about the economy of “China” with an attribute of “Economy” would have a value including several paragraphs of text, numbers, and perhaps even tables of figures. This content can be formatted, for example, in a markup language. For example, a fact having an attribute “original html” might have a value of the original html text taken from the source web page.
  • Also, while the illustration of FIG. 2( b) shows the explicit coding of object ID, fact ID, attribute, and value, in practice the content of the fact can be implicitly coded as well (e.g., the first field being the object ID, the second field being the fact ID, the third field being the attribute, and the fourth field being the value). Other fields include but are not limited to: the language used to state the fact (English, etc.), how important the fact is, the source of the fact, a confidence value for the fact, and so on.
  • FIG. 2( c) shows an example object reference table 210 that is used in some embodiments. Not all embodiments include an object reference table. The object reference table 210 functions to efficiently maintain the associations between object IDs and fact IDs. In the absence of an object reference table 210, it is also possible to find all facts for a given object ID by querying the repository 115 to find all facts with a particular object ID. While FIGS. 2( b) and 2(c) illustrate the object reference table 210 with explicit coding of object and fact IDs, the table also may contain just the ID values themselves in column or pair-wise arrangements.
  • FIG. 2( d) shows an example of a data structure for facts within the repository 115, according to some embodiments, showing an extended format of facts. In this example, the fields include an object reference link 216 to another object. The object reference link 216 can be an object ID of another object in the repository 115, or a reference to the location (e.g., table row) for the object in the object reference table 210. The object reference link 216 allows facts to have as values other objects. For example, for an object associated with the entity “United States,” there may be a fact with the attribute of “president” and the value of “George W. Bush,” with “George W. Bush” being an object having its own facts in the repository 115. In some embodiments, the value field 214 stores the name of the linked object and the link 216 stores the object identifier of the linked object. Thus, this “president” fact would include the value 214 of “George W. Bush”, and an object reference link 216 that contains the object ID for the “George W. Bush” object. In some other embodiments, facts 204 do not include a link field 216 because the value 214 of a fact 204 may store a link to another object.
  • Each fact 204 also may include one or more metrics 218. A metric provides an indication of the quality of the fact. In some embodiments, the metrics include a confidence level and an importance level. The confidence level indicates the likelihood that the fact is correct. The importance level indicates the relevance of the fact to the object, compared to other facts for the same object. The importance level may optionally be viewed as a measure of how vital a fact is to an understanding of the entity associated with the object.
  • Each fact 204 includes a list of one or more sources 220 that include the fact and from which the fact was extracted. Each source may be identified by a URL, or Web address, or any other appropriate form of identification and/or location, such as a unique document identifier.
  • The facts illustrated in FIG. 2( d) include an agent field 222 that identifies the importer 108 that extracted the fact. For example, the importer 108 may be a specialized importer that extracts facts from a specific source (e.g., the pages of a particular web site, or family of web sites) or type of source (e.g., web pages that present factual information in tabular form), or an importer 108 that extracts facts from free text in documents throughout the Web, and so forth.
  • Some embodiments include one or more specialized facts, such as a name fact 207 and a property fact 208. A name fact 207 is a fact that conveys a name for the entity associated with the object in which the fact is included. A name fact 207 includes an attribute 224 of “name” and a value, which is the name of the associated entity. For example, for an object associated with country Spain, a name fact would have the value “Spain.” A name fact 207, being a special instance of a general fact 204, includes the same fields as any other fact 204; it has an attribute, a value, a fact ID, metrics, sources, etc. The attribute 224 of a name fact 207 indicates that the fact is a name fact, and the value is the actual name. The name may be a string of characters. An object may have one or more associated name facts, as many entities can have more than one name. For example, an object associated with Spain may have associated name facts conveying the country's common name “Spain” and the official name “Kingdom of Spain.” As another example, an object associated with the U.S. Patent and Trademark Office may have associated name facts conveying the agency's acronyms “PTO” and “USPTO” as well as the official name “United States Patent and Trademark Office.” If an object does have more than one associated name fact, one of the name facts may be designated as a primary name and other name facts may be designated as secondary names, either implicitly or explicitly. The name facts associated with an object are also called synonymous names of the object.
  • A property fact 208 is a fact that conveys a statement about the entity associated with the object. Property facts are generally used for summary information about an object. A property fact 208, being a special instance of a general fact 204, also includes the same fields (such as attribute, value, fact ID, etc.) as other facts 204. The attribute field 226 of a property fact 208 indicates that the fact is a property fact (e.g., attribute is “property”) and the value is a string of text that conveys the statement of interest. For example, for the object associated with Bill Clinton, the value of a property fact may be the text string “Bill Clinton was the 42nd President of the United States from 1993 to 2001.” Some objects may have one or more associated property facts while other objects may have no associated property facts. It should be appreciated that the data structures shown in FIGS. 2( a)-2(d) and described above are merely exemplary. The data structure of the repository 115 may take on other forms. Other fields may be included in facts and some of the fields described above may be omitted. Additionally, each object may have additional special facts aside from name facts and property facts, such as facts conveying a type or category (for example, person, place, movie, actor, organization, etc.) for categorizing the entity associated with the object. In some embodiments, an object's name(s) and/or properties may be represented by special records that have a different format than the general fact records 204.
  • As described previously, a collection of facts is associated with an object ID of an object. An object may become a null or empty object when facts are disassociated from the object. A null object can arise in a number of different ways. One type of null object is an object that has had all of its facts (including name facts) removed, leaving no facts associated with its object ID. Another type of null object is an object that has all of its associated facts other than name facts removed, leaving only its name fact(s). Alternatively, the object may be a null object only if all of its associated name facts are removed. A null object represents an entity or concept for which the data processing system 106 has no factual information and, as far as the data processing system 106 is concerned, does not exist. In some embodiments, facts of a null object may be left in the repository 115, but have their object ID values cleared (or have their importance set to a negative value). However, the facts of the null object are treated as if they were removed from the repository 115. In some other embodiments, facts of null objects are physically removed from the repository 115.
  • FIG. 2( e) is a block diagram illustrating an alternate data structure 290 for facts and objects in accordance with embodiments of the invention. In this data structure, an object 290 contains an object ID 292 and references or points to facts 294. Each fact includes a fact ID 295, an attribute 297, and a value 299. In this embodiment, an object 290 actually exists in memory 107.
  • As described above, an object may explicitly exist in the repository 115, or it may exist merely as a collection of facts with a common object ID. Reference is made to particular objects for the purposes of illustration; one of skill in the art will recognize that the systems and methods described herein are applicable to a variety of implementations and that such references are not limiting. When reference is made to a fact being associated with an object, it should be understood that in at least one embodiment a fact is associated with an object by sharing a common object ID with other facts. For example, a fact could be associated with an object of a given type by sharing a common object ID at least with a type fact indicating the given type (or as another example, with a category fact indicating a particular category of object). Furthermore, in various embodiments, facts and objects can be stored in a variety of structures, such as fact and/or object repositories. When reference is made herein to the repository 115, it should be understood that various embodiments may store facts and/or objects in a variety of data structures.
  • Overview of Methodology
  • Referring now to FIG. 3, there is shown a flow diagram illustrating a method 300 for learning (or extracting) objects and facts from a plurality of documents in accordance with one embodiment. Other embodiments perform steps of the method 300 in different orders and/or perform different or additional steps than the ones shown in FIG. 3. The steps of the process illustrated in FIG. 3 may be implemented in software, hardware, or a combination of hardware and software.
  • In one embodiment, the steps of the method 300 may be performed by one or more importers 108 as shown in FIG. 1, although one skilled in the art will recognize that the method could be performed by systems having different architectures as well. The importers 108 can perform multiple instances of the steps of the method 300 concurrently and/or perform steps in parallel.
  • The flowchart shown in FIG. 3 will now be described in detail. The process commences with a plurality of objects and a plurality of documents. The plurality of objects can be objects in the fact repository 115. The plurality of documents can be documents in the document hosts 102.
  • As described above in relation to FIGS. 2( a)-2(e), an object is associated with one or more facts. Each fact has an attribute and a value (hereinafter called an “attribute-value pair”). For example, an object representing Canada can have a fact with an attribute “name” and a value of the attribute “Canada”. A fact with the attribute “name” is called a name fact, and its value is called an object name. The object representing Canada can also have a fact with an attribute-value pair of “Capital—Ottawa”, wherein “Capital” is the attribute and “Ottawa” is the value.
  • As described above, a document may be encoded in a markup language, such as the Hypertext Markup Language (HTML), i.e., a web page, in an interpreted language (e.g., JavaScript) or in any other computer readable or executable format. A document can have one or more titles. One example is a web page encoded in HTML with content about the first President of the United States, George Washington.
  • The importer 108 selects 310 a source object from the plurality of objects. In one embodiment, the importer 108 gives priority to objects associated with more facts when selecting 310 the source object. In another embodiment, each of the plurality of objects has equal chance of being selected 310.
  • The importer 108 selects 320 a source document associated with a fact of the source object from the plurality of documents. As described above in relation to FIG. 2( d), each fact includes a list of sources 220 from which the fact was extracted. In one embodiment, the importer 108 selects 320 the source document from sources of a fact associated with the source object. In one embodiment, the importer 108 gives priority to documents from reputable websites (e.g., the Encyclopedia Britannica Online) when selecting 320 the source document.
  • Alternatively, the importer 108 searches for documents containing an object name of the source object and one or more of its facts (or attribute-value pairs) in the plurality of documents. The importer 108 then selects 320 the source document from the search result. For example, for an object with object name “China” and attribute-value pair “Capital—Beijing,” the importer 108 can search for documents containing “China,” “Capital,” and “Beijing.” The importer 108 may specify search criteria such as whether the object name matches document titles and whether the rest of the search terms match document contents. The search may be performed using a search engine, such as a Web search engine.
  • The importer 108 identifies 330 a title pattern and a contextual pattern based on the source document and the source object. The title pattern is intended to reflect a relationship between a title of the source document (hereinafter called “the document title”) and the object name of the source object (“the source object name”). In one embodiment, the importer 108 determines whether the document title contains the source object name as a substring. A substring is a contiguous sequence of characters taken from a string. If the document title does not contain the source object name as a substring, the importer 108 repeats the above process and selects 320 another document as the source document.
  • The importer 108 identifies 330 the title pattern by comparing the document title with the source object name. In one embodiment, a title pattern comprises a prefix section, a body section, and a suffix section. A title pattern can be expressed as “%[PREFIX SECTION]% && %[SUFFIX SECTION]%”, where “&&” represents the source object name. For example, the title pattern of a document title “Summary for Microsoft CP—Yahoo! Finance” and an object name “Microsoft CP” is “%Summary for% && %—Yahoo! Finance%”. In this example, the prefix section is “Summary for” and the suffix section is “—Yahoo! Finance”. The body section of the document title is the same as the object name, “Microsoft CP.”
  • The contextual pattern is a structural pattern in which the source document displays (or presents) facts (or attribute-value pairs). For example, a document can display facts of an object in a table (the contextual pattern) such that the attribute-value pair for a fact appears in the same row. In one embodiment, the importer 108 identifies 330 the contextual pattern by identifying language markups (e.g., HTML markups (or tags)) that define the structural pattern. For example, a web page may contain a list of attributes and values with HTML markup as the following:
  • . . .
    <title> China - Country Facts </title>
    . . .
    <table border=″1″>
    <tr> <td> Population </td> < td> 1.3 billion </td> </tr>
    <tr> <td> Capital </td> <td> Beijing </td> </tr>
    <tr> <td> Largest City </td> <td> Shanghai </td> </tr>
    </table>
    . . .

    The above web page contains facts about China such as that its capital is Beijing. The HTML markups indicate that the facts should be presented in a table format (e.g., by a web browser).
  • The importer 108 can identify 330 the contextual pattern in the source document by matching attribute-value pairs of the source object with content of the source document. The contextual pattern contains the HTML markup (or tag) sequence associated with the matching attribute-value. For example, for an attribute-value pair “Capital—Beijing,” the importer 108 may identify 330 the following contextual pattern in the above web page: “<tr><td> $$ </td><td> ££</td></tr>”. In this example, “$$” indicates a text block for an attribute and “££” indicates a text block of a corresponding value. The importer 108 may identify 330 multiple contextual patterns in a source document, with each pattern corresponding with a fact of the source object.
  • The importer 108 selects 340 a set of documents from the plurality of documents based on the title pattern and the contextual pattern. One embodiment of the process for the importer 108 to select 340 the set of documents is further illustrated in the flowchart shown in FIG. 4. For each of the plurality of documents, the importer 108 starts the process by applying 410 the title pattern to a title of the document. If the importer 108 determines 420 that the title does not match the title pattern, it determines that the document should not be added to the set and repeats the process for the next document. Otherwise, the importer 108 applies 430 the contextual pattern to the content of the document. If the importer 108 determines 440 that there is no match for the contextual pattern, it determines that the document should not be added to the set and repeats the process for the next document. If a title of the document matches the title pattern and the content of the document matches the contextual pattern, the importer 108 adds 450 the document to the set.
  • In one embodiment, the importer 108 only examines documents within the same domain as the source document when selecting 340 the set of documents. A domain is a group of computers and devices that share a common part of an Internet Protocol (IP) address that identifies (or locates) an organization (or entity) on the Internet. All documents from computers and devices in the group are said to be from the same domain. Documents from the same domain may be stored in one or multiple document hosts 102. The set of documents can include the source document.
  • Limiting the set of documents to be within the same domain as the source document can be advantageous, especially when the size of the plurality of documents is large. The computational cost of comparing documents with the title pattern and the contextual pattern can become unmanageable as the number of documents grows. Also, because documents within the same domain as the source document are more likely to share the same style as the source document, they are more likely to match the title pattern and the contextual pattern than documents from other domains.
  • As described above, the importer 108 can identify 330 multiple contextual patterns. In one embodiment, the importer 108 adds 450 a document into the set of documents as long as the document matches the title pattern and any one of the multiple contextual patterns. In another embodiment, the importer 108 adds 450 a document into the set only when the document matches the title pattern and all of the identified contextual patterns.
  • Referring back to FIG. 3, for each document in the selected set, the importer 108 identifies 350 a name and one or more attribute-value pairs from the document. The importer 108 identifies 350 the name by applying the title pattern to the title of the document. The importer 108 identifies 350 one or more attribute-value pairs by applying the contextual pattern to the content of the document.
  • The identified name tends to be an object name for an object (or entity) described in the document. As described above, the source document contains facts of the source object, and therefore describes the source object. Further, the source object name can be extracted from a title of the source document using the title pattern. Because the title pattern also matches titles of the documents in the selected set, it follows that these documents tend to follow a consistent naming convention (or protocol or standard). For example, titles of web pages containing company profile in Yahoo! finance website follow a common pattern of “%COMPANY NAME% Company Profile—Yahoo! Finance”. Therefore, the name identified by applying the title pattern to a title of the document tends to be an object name for an object described in the document.
  • Similarly, the identified attribute-value pairs tend to be facts for the object described in the document. As described above, the source document contains facts of the source object matching the contextual pattern. Same as the source document, documents in the selected set match the title pattern and the contextual pattern. Therefore, these documents tend to share a style or format (e.g., displaying facts in a table or list). Because facts of the source object can be extracted from the source document using the contextual pattern, it follows that the attribute-value pairs identified by applying the contextual pattern to content of the document tend to be facts for the object described in the document.
  • The importer 108 can repeatedly apply the contextual pattern to content of the document to identify 350 (or extract or learn) attribute-value pairs. For example, if the contextual pattern identifies a table entry, the importer 108 may extract attribute-value pairs from that table entry and nearby table entries that match the contextual pattern. In one embodiment, the importer 108 extracts attribute-value pairs that are proximate to each other. By applying such a limitation, the importer 108 can be sure that the identified attribute-value pairs are likely from the same structure (e.g., the same table or list). Alternatively, the importer 108 can parse the document to identify 350 attribute-value pairs from all structures that match the contextual pattern.
  • In one embodiment, the importer 108 examines the quality of the identified attribute-value pairs by matching their attributes with a group of valid attributes (called “a white attribute list”). The identified contextual pattern may be general (e.g., a table row, a list item), and therefore the attribute-value pairs identified by applying the general contextual pattern may be over-inclusive. If the match fails to meet a certain threshold value (percentage or absolute value), the importer 108 determines that the identified attribute-value pairs are low in quality, and may disregard them entirely or only keep those that match. The white attribute list may include attributes identified in the source document and/or attributes collected from other sources (e.g., compiled by human editors). Similarly, the importer 108 may match the identified attribute-value pairs with a group of invalid attributes (called “a black attribute list”), and disregard them if the match exceeds a certain threshold value.
  • For each document in the selected set, the importer 108 associates 360 the attribute-value pairs identified in the document with an object with the identified name. In one embodiment, the importer 108 creates a new object, assigns the new object with the identified name, and associates 360 it with the identified attribute-value pairs. The importer 108 then passes the newly created object to a janitor 110 to incorporate the object into the fact repository 115. In one embodiment, the janitor 110 searches in the fact repository 115 for an object associated with the identified name. If no such object exists, the janitor 110 adds the newly created object into the fact repository 115. Otherwise, the janitor 110 merges the newly created object with the existing object in the fact repository 115. If the janitor 110 determines that the existing object does not contain some of the attribute-value pairs identified in the document, it adds these attribute-value pairs into the fact repository 115 and associates 360 them with the existing object. If the existing object and the newly created object contain duplicated attribute-value pairs (e.g., same attribute and same value), the janitor 110 can optionally add the document as a source of this fact of the existing object. If the existing object and the newly created object contain inconsistent attribute-value pairs (e.g., same attribute but different value), the janitor 110 can determine a confidence value for each of the attribute-value pairs, and set the one with higher value as the value of the fact for the existing object. In other embodiments, the importer 108 only creates a new object if no object associated with the identified name is located in the fact repository 115.
  • In one embodiment, the fact repository 115 can have objects associated with the same object name (or name fact value). For example, two objects can both have the name “New York,” one representing the New York City and the other representing a movie with the title “New York.” In order to locate the right object as described in the document, and not an object that happens to share the same object name, the janitor 110 searches in the fact repository 115 for an object associated with the identified name and at least one identified attribute-value pair, and merges the newly created object with the object found in the manner detailed above.
  • It is noted that in alternative embodiments, the importer 108 (or the janitor 110) may apply some normalization rules to the identified names to standardize its format before identifying corresponding objects. The importer 108 may also apply these normalization rules to the identified attribute-value pairs before associating 360 them with objects. Examples of the normalization rules include removal of punctuation, such as removing commas in a string, conversion of uppercase characters in a string to corresponding lowercase characters, such as from “America” to “america,” and stop word removal, such as removing stop words such as “the” and “of” from a string. For example, after applying the above normalization rules, an object name of “Charles Chaplin” becomes “charles chaplin”.
  • In one embodiment, the importer 108 (or the janitor 110) compares the identified names with content of a black list. The black list contains texts that are not entity names (e.g., adjectives such as “beautiful”, and stop words such as “the”). Therefore, if there are matches between the identified name and the black list, the importer 108 determines that this name is not a valid entity name, and therefore does not create an object for it.
  • In one embodiment, the importer 108 (or the janitor 110) compares the learned object names with content of a white list. The white list contains some entity names (e.g., “United Nation,” “John Lennon”). The white list can be compiled by human editors or extracted from reputable sources (e.g., the Encyclopedia Britannica Online). Therefore, if there are matches between the identified name and the white list, the importer 108 determines that the identified name is a proper object name.
  • The importer 108 can repeat the process described above for a different source object and/or a different source document. As a result, the importer 108 can learn objects and associated facts from the plurality of documents.
  • Example Process
  • The method 300 is further illustrated by an example shown in FIG. 5. As illustrated in FIG. 5, an object O1 has an attribute-value pair of “name—George Washington,” and an attribute-value pair of “Born—Feb. 22, 1732.” The source of both facts (or attribute-pairs) is “http://en.wikipedia.org/wiki/George_washington.”
  • FIG. 5 also shows a plurality of documents D1-D5. Documents D1-D5 are all from Wikipedia.org domain 501. Document D1 (hereinafter called “D1”) is entitled “George Washington—Wikipedia, the free encyclopedia.” Content of D1 includes the following structured text:
  • Born Feb. 22, 1732
    Died Dec. 14, 1799
    Spouse Martha Dandridge Custis Washington

    Document D2 (“D2”) is entitled “Canada—Wikipedia, the free encyclopedia.” Content of D2 includes the following structured text:
  • Capital Ottawa
    Area 9,984,670 km2
    GDP $1.105 trillion

    Document D3 (“D3”) is entitled “Help:Contents—Wikipedia, the free encyclopedia” and does not contain text structured as displayed above. Document D4 (“D4”) is entitled “Isaac Asimov—Wikipedia, the free encyclopedia.” Content of D4 includes the following structured text:
  • Born Jan. 2, 1920
    Died Apr. 6, 1992

    Document D5 (“D5”) is entitled “Fundraising—Wikimedia Foundation” and does not contain text structured as displayed above.
  • Content of documents D1-D5 can be organized in HTML structures such as tables and lists in order to be displayed as structured text as illustrated in FIG. 5. For example, the HTML source code of D1 may contain the following:
  • . . .
    <title> George Washington - Wikipedia, the free encyclopedia
    </title>
    . . .
    <li><b> Born </b> February 22, 1732 </li>
    <li><b> Died </b> December 14, 1799 </li>
    <li><b> Spouse </b> Martha Dandridge Custis Washington </li>
    . . .

    As shown above, content of D1 is organized as a list, and thus appears as structured text to viewers.
  • The importer 108 selects 310 object O1 as the source object. Because the source of both facts associated with O1 is “http://en.wikipedia.org/wiki/George_washington,” the URL of D1, the importer 108 selects 320 D1 as the source document.
  • The importer 108 identifies 330 a title pattern by comparing the title of the source document D1 (“George Washington—Wikipedia, the free encyclopedia”) with the object name of the source object O1 (“George Washington”). The importer 108 determines that the prefix section of the title pattern is empty and the suffix section is “—Wikipedia, the free encyclopedia”. Therefore, the identified title pattern is “%% && %—Wikipedia, the free encyclopedia%”.
  • The importer 108 identifies 330 a contextual pattern by matching an attribute-value pair of the source object O1 (Born—Feb. 22, 1732) with the content of the source document D1 (“ . . . <li><b> Born </b> Feb. 22, 1732 </li> . . . ”). The importer 108 identifies 330 the following contextual pattern: “<li><b>$$</b>££</li>”.
  • The importer 108 selects 340 a set of documents based on the identified title pattern (“%% && %—Wikipedia, the free encyclopedia%”) and the identified contextual pattern (“<li><b>$$</b>££</li>”). The importer 108 applies 410 the title pattern to titles of D1-D5 and determines 420 that titles of D1-D4 match with the title pattern. The importer 108 applies 430 the contextual pattern to contents of D1-D4, and determines 440 that the contents of D1, D2, and D4 match with the contextual pattern. As a result, the importer 108 adds 450 D1, D2, and D4 to the selected set of documents. It is noted that the selected set includes the source document D1.
  • The importer 108 applies the identified title pattern (“%% && %—Wikipedia, the free encyclopedia%”) and contextual pattern (“<li><b>$$</b>££</li>”) to each document in the selected set (D1, D2, and D4) to identify 350 names and attribute-value pairs. For D1, the importer 108 identifies 350 the name “George Washington” and attribute value pairs “Born—Feb. 22, 1732,” “Died—Dec. 14, 1799,” and “Spouse—Martha Dandridge Custis Washington.” For D2, the importer 108 identifies the name “Canada” and attribute-value pairs “Capital—Ottawa,” “Area—9,984,670 km2,” and “GDP—$1.105 trillion.” Similarly, for D4, the importer 108 identifies the name “Isaac Asimov” and attribute-value pairs “Born—Jan. 2, 1920” and “Died—Apr. 6, 1992.”
  • The importer 108 (or the janitor 110) identifies (or creates) objects with the identified names and associates 360 the identified attribute-value pairs with the objects. For D1, because O1 is already associated with the attribute-value pair “Born—Feb. 22, 1732,” the importer 108 (or the janitor 110) associates 360 the attribute-value pairs “Died—Dec. 14, 1799” and “Spouse—Martha Dandridge Custis Washington” with O1 and adds D1 as their source. For D2, the importer 108 (or the janitor 110) creates an object with object name “Canada,” associates 360 it with attribute-value pairs “Capital—Ottawa,” “Area—9,984,670 km2,” and “GDP—$1.105 trillion,” and adds D2 as their source. Similarly, for D4, the importer 108 (or the janitor 110) creates an object with object name “Isaac Asimov,” associates 360 it with attribute-value pairs “Born—Jan. 2, 1920” and “Died—Apr. 6, 1992,” and adds D4 as their source.
  • Alternative Embodiments
  • In one embodiment, instead of selecting 320 a source document based on facts of the identified source object, the importer 108 can first select a source document and then select a source object based on the subject of the source document. For example, the importer 108 can first identify a title pattern of the selected source document, determine an object name based on the document title and the title pattern, and select a source object associated with the object name. The importer 108 can then identify 330 a contextual pattern as described above. If the importer 108 fails to select such a source object or fails to identify 330 a contextual pattern, it can repeat the process and select a different source document.
  • The importer 108 can identify a title pattern of the source document by analyzing the document title of the source document and anchor texts of documents linking to the source document. Detailed description and embodiments of identifying a title pattern for the source document can be found in U.S. patent application Ser. No. 11/394,610, entitled “Determining Document Subject by Using Title and Anchor Text of Related Documents,” filed on Mar. 31, 2006, the disclosure of which is hereby incorporated by reference in its entirety.
  • It is noted that the importer 108 can identify 330 more than one contextual pattern for the source document and the source object. For example, some of the attribute-value pairs may be in a list in the source document, and others may be in a table in the source document. In some embodiments, the importer 108 can select 340 a set of documents for each of the identified contextual patterns.
  • It should be appreciated that the process described above may be performed at another time for other purposes, such as learning images and other media data from semi-structured text and verifying the quality of the plurality of documents. The process may be performed as needed or at scheduled intervals. Furthermore, the process may be performed for other objects in the fact repository 115.
  • Reference in the specification to “one embodiment” or to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
  • Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.
  • It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.
  • Certain aspects of the present invention include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of the present invention can be embodied in software, firmware or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.
  • The present invention also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Furthermore, the computers referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
  • The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the present invention as described herein, and any references below to specific languages are provided for disclosure of enablement and best mode of the present invention.
  • While the invention has been particularly shown and described with reference to a preferred embodiment and several alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.
  • Finally, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.

Claims (1)

What is claimed is:
1. A method comprising:
at a computing device having one or more processors and memory storing one or more programs for execution by the one or more processors:
selecting a source object from a plurality of objects stored in a fact repository, the source object having an object name and a fact including an attribute-value pair;
selecting a source document associated with the fact;
identifying a title pattern for the title of the source document based on a first syntax of (i) the title of the source document, and (ii) the object name of the source object within the title of the source document;
identifying a contextual pattern for the content of the source document based on a second syntax of (i) the attribute and (ii) the value related to the attribute-value pair of the source object, wherein the contextual pattern specifies a structural pattern with which the attribute-value pair of the source object is presented;
selecting a second document based on a determination that (i) content of the second document matches the identified contextual pattern and (ii) a title of the second document matches the title pattern;
identifying a new object name and a new attribute-value pair from the second document by applying the identified title pattern and the contextual pattern to the second document; and
storing in the fact repository the new attribute-value pair and a new object having the new object name.
US14/463,393 2007-11-16 2014-08-19 Learning Objects And Facts From Documents Abandoned US20140372478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/463,393 US20140372478A1 (en) 2007-11-16 2014-08-19 Learning Objects And Facts From Documents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/941,382 US8812435B1 (en) 2007-11-16 2007-11-16 Learning objects and facts from documents
US14/463,393 US20140372478A1 (en) 2007-11-16 2014-08-19 Learning Objects And Facts From Documents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/941,382 Continuation US8812435B1 (en) 2007-11-16 2007-11-16 Learning objects and facts from documents

Publications (1)

Publication Number Publication Date
US20140372478A1 true US20140372478A1 (en) 2014-12-18

Family

ID=51301801

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/941,382 Active 2028-02-29 US8812435B1 (en) 2007-11-16 2007-11-16 Learning objects and facts from documents
US14/463,393 Abandoned US20140372478A1 (en) 2007-11-16 2014-08-19 Learning Objects And Facts From Documents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/941,382 Active 2028-02-29 US8812435B1 (en) 2007-11-16 2007-11-16 Learning objects and facts from documents

Country Status (1)

Country Link
US (2) US8812435B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558186B2 (en) 2005-05-31 2017-01-31 Google Inc. Unsupervised extraction of facts
US20170199878A1 (en) * 2016-01-11 2017-07-13 Accenture Global Solutions Limited Method and system for generating an architecture document for describing a system framework
US9760570B2 (en) 2006-10-20 2017-09-12 Google Inc. Finding and disambiguating references to entities on web pages
US9892132B2 (en) 2007-03-14 2018-02-13 Google Llc Determining geographic locations for place names in a fact repository
CN109791563A (en) * 2016-09-26 2019-05-21 日本电气株式会社 Information Collection System, formation gathering method and recording medium
US10944569B2 (en) 2018-11-20 2021-03-09 International Business Machines Corporation Comparison and validation of digital content using contextual analysis
WO2021096615A1 (en) * 2019-11-14 2021-05-20 Ghangorcloud, Inc Method and system for identifying information objects using deep ai-based knowledge objects
US11455855B2 (en) 2019-09-24 2022-09-27 International Business Machines Corporation Content validation document transmission

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154996A (en) * 2010-10-25 2013-06-12 惠普发展公司,有限责任合伙企业 Providing information management
US10268965B2 (en) 2015-10-27 2019-04-23 Yardi Systems, Inc. Dictionary enhancement technique for business name categorization
US11216718B2 (en) 2015-10-27 2022-01-04 Yardi Systems, Inc. Energy management system
US10274983B2 (en) 2015-10-27 2019-04-30 Yardi Systems, Inc. Extended business name categorization apparatus and method
US10275708B2 (en) 2015-10-27 2019-04-30 Yardi Systems, Inc. Criteria enhancement technique for business name categorization
US10275841B2 (en) 2015-10-27 2019-04-30 Yardi Systems, Inc. Apparatus and method for efficient business name categorization
US11023475B2 (en) 2016-07-22 2021-06-01 International Business Machines Corporation Testing pairings to determine whether they are publically known
US10255271B2 (en) * 2017-02-06 2019-04-09 International Business Machines Corporation Disambiguation of the meaning of terms based on context pattern detection
US12135737B1 (en) 2023-06-21 2024-11-05 Sas Institute Inc. Graphical user interface and pipeline for text analytics

Family Cites Families (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010478A (en) 1986-04-11 1991-04-23 Deran Roger L Entity-attribute value database system with inverse attribute for selectively relating two different entities
US5133075A (en) 1988-12-19 1992-07-21 Hewlett-Packard Company Method of monitoring changes in attribute values of object in an object-oriented database
US5440730A (en) 1990-08-09 1995-08-08 Bell Communications Research, Inc. Time index access structure for temporal databases having concurrent multiple versions
CA2048306A1 (en) 1990-10-02 1992-04-03 Steven P. Miller Distributed configuration profile for computing system
US5347653A (en) 1991-06-28 1994-09-13 Digital Equipment Corporation System for reconstructing prior versions of indexes using records indicating changes between successive versions of the indexes
US5694590A (en) 1991-09-27 1997-12-02 The Mitre Corporation Apparatus and method for the detection of security violations in multilevel secure databases
US5574898A (en) 1993-01-08 1996-11-12 Atria Software, Inc. Dynamic software version auditor which monitors a process to provide a list of objects that are accessed
US7082426B2 (en) 1993-06-18 2006-07-25 Cnet Networks, Inc. Content aggregation method and apparatus for an on-line product catalog
US5519608A (en) 1993-06-24 1996-05-21 Xerox Corporation Method for extracting from a text corpus answers to questions stated in natural language by using linguistic analysis and hypothesis generation
US5546507A (en) 1993-08-20 1996-08-13 Unisys Corporation Apparatus and method for generating a knowledge base
US5560005A (en) 1994-02-25 1996-09-24 Actamed Corp. Methods and systems for object-based relational distributed databases
US5680622A (en) 1994-06-30 1997-10-21 Borland International, Inc. System and methods for quickly detecting shareability of symbol and type information in header files
US5675785A (en) 1994-10-04 1997-10-07 Hewlett-Packard Company Data warehouse which is accessed by a user using a schema of virtual tables
JP2809341B2 (en) 1994-11-18 1998-10-08 松下電器産業株式会社 Information summarizing method, information summarizing device, weighting method, and teletext receiving device.
US5608903A (en) 1994-12-15 1997-03-04 Novell, Inc. Method and apparatus for moving subtrees in a distributed network directory
US5717911A (en) 1995-01-23 1998-02-10 Tandem Computers, Inc. Relational database system and method with high availability compliation of SQL programs
US5793966A (en) 1995-12-01 1998-08-11 Vermeer Technologies, Inc. Computer system and computer-implemented process for creation and maintenance of online services
US5724571A (en) 1995-07-07 1998-03-03 Sun Microsystems, Inc. Method and apparatus for generating query responses in a computer-based document retrieval system
US5717951A (en) 1995-08-07 1998-02-10 Yabumoto; Kan W. Method for storing and retrieving information on a magnetic storage medium via data blocks of variable sizes
AU6849196A (en) 1995-08-16 1997-03-19 Syracuse University Multilingual document retrieval system and method using semantic vector matching
US5838979A (en) 1995-10-31 1998-11-17 Peritus Software Services, Inc. Process and tool for scalable automated data field replacement
US5701470A (en) 1995-12-08 1997-12-23 Sun Microsystems, Inc. System and method for space efficient object locking using a data subarray and pointers
US5815415A (en) 1996-01-19 1998-09-29 Bentley Systems, Incorporated Computer system for portable persistent modeling
US5802299A (en) 1996-02-13 1998-09-01 Microtouch Systems, Inc. Interactive system for authoring hypertext document collections
US5778378A (en) 1996-04-30 1998-07-07 International Business Machines Corporation Object oriented information retrieval framework mechanism
US5920859A (en) 1997-02-05 1999-07-06 Idd Enterprises, L.P. Hypertext document retrieval system and method
US5819210A (en) 1996-06-21 1998-10-06 Xerox Corporation Method of lazy contexted copying during unification
US6052693A (en) 1996-07-02 2000-04-18 Harlequin Group Plc System for assembling large databases through information extracted from text sources
US5987460A (en) 1996-07-05 1999-11-16 Hitachi, Ltd. Document retrieval-assisting method and system for the same and document retrieval service using the same with document frequency and term frequency
US5819265A (en) 1996-07-12 1998-10-06 International Business Machines Corporation Processing names in a text
US5778373A (en) 1996-07-15 1998-07-07 At&T Corp Integration of an information server database schema by generating a translation map from exemplary files
US5787413A (en) 1996-07-29 1998-07-28 International Business Machines Corporation C++ classes for a digital library
US6820093B2 (en) 1996-07-30 2004-11-16 Hyperphrase Technologies, Llc Method for verifying record code prior to an action based on the code
US6285999B1 (en) 1997-01-10 2001-09-04 The Board Of Trustees Of The Leland Stanford Junior University Method for node ranking in a linked database
AUPO525497A0 (en) 1997-02-21 1997-03-20 Mills, Dudley John Network-based classified information systems
US6134555A (en) 1997-03-10 2000-10-17 International Business Machines Corporation Dimension reduction using association rules for data mining application
US5822743A (en) 1997-04-08 1998-10-13 1215627 Ontario Inc. Knowledge-based information retrieval system
US6038560A (en) 1997-05-21 2000-03-14 Oracle Corporation Concept knowledge base search and retrieval system
US5974254A (en) 1997-06-06 1999-10-26 National Instruments Corporation Method for detecting differences between graphical programs
US5893093A (en) 1997-07-02 1999-04-06 The Sabre Group, Inc. Information search and retrieval with geographical coordinates
WO1999005593A1 (en) 1997-07-25 1999-02-04 British Telecommunications Public Limited Company Software system generation
WO1999005597A1 (en) 1997-07-25 1999-02-04 British Telecommunications Public Limited Company Visualisation in a modular software system
EP0996887B1 (en) 1997-07-25 2002-10-09 BRITISH TELECOMMUNICATIONS public limited company Scheduler for a software system
US5909689A (en) 1997-09-18 1999-06-01 Sony Corporation Automatic update of file versions for files shared by several computers which record in respective file directories temporal information for indicating when the files have been created
US6073130A (en) 1997-09-23 2000-06-06 At&T Corp. Method for improving the results of a search in a structured database
US6442540B2 (en) 1997-09-29 2002-08-27 Kabushiki Kaisha Toshiba Information retrieval apparatus and information retrieval method
US6018741A (en) 1997-10-22 2000-01-25 International Business Machines Corporation Method and system for managing objects in a dynamic inheritance tree
US6112210A (en) 1997-10-31 2000-08-29 Oracle Corporation Apparatus and method for null representation in database object storage
US5943670A (en) 1997-11-21 1999-08-24 International Business Machines Corporation System and method for categorizing objects in combined categories
US6349275B1 (en) 1997-11-24 2002-02-19 International Business Machines Corporation Multiple concurrent language support system for electronic catalogue using a concept based knowledge representation
US6212526B1 (en) 1997-12-02 2001-04-03 Microsoft Corporation Method for apparatus for efficient mining of classification models from databases
US6094650A (en) 1997-12-15 2000-07-25 Manning & Napier Information Services Database analysis using a probabilistic ontology
FI106089B (en) 1997-12-23 2000-11-15 Sonera Oyj Mobile terminal monitoring in a mobile communication system
US6044366A (en) 1998-03-16 2000-03-28 Microsoft Corporation Use of the UNPIVOT relational operator in the efficient gathering of sufficient statistics for data mining
US6078918A (en) 1998-04-02 2000-06-20 Trivada Corporation Online predictive memory
US6112203A (en) 1998-04-09 2000-08-29 Altavista Company Method for ranking documents in a hyperlinked environment using connectivity and selective content analysis
US6567846B1 (en) 1998-05-15 2003-05-20 E.Piphany, Inc. Extensible user interface for a distributed messaging framework in a computer network
US6122647A (en) 1998-05-19 2000-09-19 Perspecta, Inc. Dynamic generation of contextual links in hypertext documents
US6742003B2 (en) 2001-04-30 2004-05-25 Microsoft Corporation Apparatus and accompanying methods for visualizing clusters of data and hierarchical cluster classifications
US6327574B1 (en) 1998-07-07 2001-12-04 Encirq Corporation Hierarchical models of consumer attributes for targeting content in a privacy-preserving manner
US6240546B1 (en) 1998-07-24 2001-05-29 International Business Machines Corporation Identifying date fields for runtime year 2000 system solution process, method and article of manufacture
WO2000007117A2 (en) 1998-07-30 2000-02-10 British Telecommunications Public Limited Company An index to a semi-structured database
US6665837B1 (en) 1998-08-10 2003-12-16 Overture Services, Inc. Method for identifying related pages in a hyperlinked database
US6694482B1 (en) 1998-09-11 2004-02-17 Sbc Technology Resources, Inc. System and methods for an architectural framework for design of an adaptive, personalized, interactive content delivery system
US6470330B1 (en) 1998-11-05 2002-10-22 Sybase, Inc. Database system with methods for estimation and usage of index page cluster ratio (IPCR) and data page cluster ratio (DPCR)
FR2787957B1 (en) 1998-12-28 2001-10-05 Inst Nat Rech Inf Automat PROCESS FOR PROCESSING A REQUEST
US6572661B1 (en) 1999-01-11 2003-06-03 Cisco Technology, Inc. System and method for automated annotation of files
US6377943B1 (en) 1999-01-20 2002-04-23 Oracle Corp. Initial ordering of tables for database queries
US7003719B1 (en) 1999-01-25 2006-02-21 West Publishing Company, Dba West Group System, method, and software for inserting hyperlinks into documents
US6565610B1 (en) 1999-02-11 2003-05-20 Navigation Technologies Corporation Method and system for text placement when forming maps
US6574635B2 (en) 1999-03-03 2003-06-03 Siebel Systems, Inc. Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components
US6584464B1 (en) 1999-03-19 2003-06-24 Ask Jeeves, Inc. Grammar template query system
US6763496B1 (en) 1999-03-31 2004-07-13 Microsoft Corporation Method for promoting contextual information to display pages containing hyperlinks
US6397228B1 (en) 1999-03-31 2002-05-28 Verizon Laboratories Inc. Data enhancement techniques
US6263328B1 (en) 1999-04-09 2001-07-17 International Business Machines Corporation Object oriented query model and process for complex heterogeneous database queries
US20030195872A1 (en) 1999-04-12 2003-10-16 Paul Senn Web-based information content analyzer and information dimension dictionary
US6721713B1 (en) 1999-05-27 2004-04-13 Andersen Consulting Llp Business alliance identification in a web architecture framework
US6606625B1 (en) 1999-06-03 2003-08-12 University Of Southern California Wrapper induction by hierarchical data analysis
US6711585B1 (en) 1999-06-15 2004-03-23 Kanisa Inc. System and method for implementing a knowledge management system
US6438543B1 (en) 1999-06-17 2002-08-20 International Business Machines Corporation System and method for cross-document coreference
US6473898B1 (en) 1999-07-06 2002-10-29 Pcorder.Com, Inc. Method for compiling and selecting data attributes
US6873982B1 (en) 1999-07-16 2005-03-29 International Business Machines Corporation Ordering of database search results based on user feedback
EP1072987A1 (en) 1999-07-29 2001-01-31 International Business Machines Corporation Geographic web browser and iconic hyperlink cartography
US6341306B1 (en) 1999-08-13 2002-01-22 Atomica Corporation Web-based information retrieval responsive to displayed word identified by a text-grabbing algorithm
CA2281331A1 (en) 1999-09-03 2001-03-03 Cognos Incorporated Database management system
US6845354B1 (en) 1999-09-09 2005-01-18 Institute For Information Industry Information retrieval system with a neuro-fuzzy structure
US6754873B1 (en) 1999-09-20 2004-06-22 Google Inc. Techniques for finding related hyperlinked documents using link-based analysis
WO2001022285A2 (en) 1999-09-21 2001-03-29 Borthwick Andrew E A probabilistic record linkage model derived from training data
US6665666B1 (en) 1999-10-26 2003-12-16 International Business Machines Corporation System, method and program product for answering questions using a search engine
US6850896B1 (en) 1999-10-28 2005-02-01 Market-Touch Corporation Method and system for managing and providing sales data using world wide web
JP3888812B2 (en) 1999-11-01 2007-03-07 富士通株式会社 Fact data integration method and apparatus
US6804667B1 (en) 1999-11-30 2004-10-12 Ncr Corporation Filter for checking for duplicate entries in database
US6963867B2 (en) 1999-12-08 2005-11-08 A9.Com, Inc. Search query processing to provide category-ranked presentation of search results
US7305380B1 (en) 1999-12-15 2007-12-04 Google Inc. Systems and methods for performing in-context searching
US6865582B2 (en) 2000-01-03 2005-03-08 Bechtel Bwxt Idaho, Llc Systems and methods for knowledge discovery in spatial data
US6606659B1 (en) 2000-01-28 2003-08-12 Websense, Inc. System and method for controlling access to internet sites
US6665659B1 (en) 2000-02-01 2003-12-16 James D. Logan Methods and apparatus for distributing and using metadata via the internet
US6567936B1 (en) 2000-02-08 2003-05-20 Microsoft Corporation Data clustering using error-tolerant frequent item sets
US6886005B2 (en) 2000-02-17 2005-04-26 E-Numerate Solutions, Inc. RDL search engine
US6584646B2 (en) 2000-02-29 2003-07-01 Katoh Electrical Machinery Co., Ltd. Tilt hinge for office automation equipment
US6901403B1 (en) 2000-03-02 2005-05-31 Quovadx, Inc. XML presentation of general-purpose data sources
US6311194B1 (en) 2000-03-15 2001-10-30 Taalee, Inc. System and method for creating a semantic web and its applications in browsing, searching, profiling, personalization and advertising
US6738767B1 (en) 2000-03-20 2004-05-18 International Business Machines Corporation System and method for discovering schematic structure in hypertext documents
US6502102B1 (en) 2000-03-27 2002-12-31 Accenture Llp System, method and article of manufacture for a table-driven automated scripting architecture
US6643641B1 (en) 2000-04-27 2003-11-04 Russell Snyder Web search engine with graphic snapshots
EP1156430A2 (en) 2000-05-17 2001-11-21 Matsushita Electric Industrial Co., Ltd. Information retrieval system
US6957213B1 (en) 2000-05-17 2005-10-18 Inquira, Inc. Method of utilizing implicit references to answer a query
US7062483B2 (en) 2000-05-18 2006-06-13 Endeca Technologies, Inc. Hierarchical data-driven search and navigation system and method for information retrieval
US7325201B2 (en) 2000-05-18 2008-01-29 Endeca Technologies, Inc. System and method for manipulating content in a hierarchical data-driven search and navigation system
AU2001264928A1 (en) 2000-05-25 2001-12-03 Kanisa Inc. System and method for automatically classifying text
US6487495B1 (en) 2000-06-02 2002-11-26 Navigation Technologies Corporation Navigation applications using related location-referenced keywords
US6963876B2 (en) 2000-06-05 2005-11-08 International Business Machines Corporation System and method for searching extended regular expressions
US6745189B2 (en) 2000-06-05 2004-06-01 International Business Machines Corporation System and method for enabling multi-indexing of objects
WO2001098942A2 (en) 2000-06-19 2001-12-27 Lernout & Hauspie Speech Products N.V. Package driven parsing using structure function grammar
GB0015233D0 (en) 2000-06-21 2000-08-16 Canon Kk Indexing method and apparatus
US7162499B2 (en) 2000-06-21 2007-01-09 Microsoft Corporation Linked value replication
MXPA03000110A (en) 2000-06-22 2006-06-08 Mayer Yaron System and method for searching, finding and contacting dates on the internet in instant messaging networks.
US7003506B1 (en) 2000-06-23 2006-02-21 Microsoft Corporation Method and system for creating an embedded search link document
US6578032B1 (en) 2000-06-28 2003-06-10 Microsoft Corporation Method and system for performing phrase/word clustering and cluster merging
US7080085B1 (en) 2000-07-12 2006-07-18 International Business Machines Corporation System and method for ensuring referential integrity for heterogeneously scoped references in an information management system
US6728728B2 (en) 2000-07-24 2004-04-27 Israel Spiegler Unified binary model and methodology for knowledge representation and for data and information mining
US6675159B1 (en) 2000-07-27 2004-01-06 Science Applic Int Corp Concept-based search and retrieval system
US7100082B2 (en) 2000-08-04 2006-08-29 Sun Microsystems, Inc. Check creation and maintenance for product knowledge management
US7146536B2 (en) 2000-08-04 2006-12-05 Sun Microsystems, Inc. Fact collection for product knowledge management
US7080073B1 (en) 2000-08-18 2006-07-18 Firstrain, Inc. Method and apparatus for focused crawling
US6556991B1 (en) 2000-09-01 2003-04-29 E-Centives, Inc. Item name normalization
US6823495B1 (en) 2000-09-14 2004-11-23 Microsoft Corporation Mapping tool graphical user interface
US6832218B1 (en) 2000-09-22 2004-12-14 International Business Machines Corporation System and method for associating search results
US7493308B1 (en) 2000-10-03 2009-02-17 A9.Com, Inc. Searching documents using a dimensional database
US6684205B1 (en) 2000-10-18 2004-01-27 International Business Machines Corporation Clustering hypertext with applications to web searching
JP2002157276A (en) 2000-11-16 2002-05-31 Hitachi Software Eng Co Ltd Problem solving support method and system
US7013308B1 (en) 2000-11-28 2006-03-14 Semscript Ltd. Knowledge storage and retrieval system and method
US20020174099A1 (en) 2000-11-28 2002-11-21 Anthony Raj Minimal identification
US8402068B2 (en) 2000-12-07 2013-03-19 Half.Com, Inc. System and method for collecting, associating, normalizing and presenting product and vendor information on a distributed network
JP2002230035A (en) 2001-01-05 2002-08-16 Internatl Business Mach Corp <Ibm> Information arranging method, information processor, information processing system, storage medium and program transmitting device
US6693651B2 (en) 2001-02-07 2004-02-17 International Business Machines Corporation Customer self service iconic interface for resource search results display and selection
US7143099B2 (en) 2001-02-08 2006-11-28 Amdocs Software Systems Limited Historical data warehousing system
EP1490790A2 (en) 2001-03-13 2004-12-29 Intelligate Ltd. Dynamic natural language understanding
US6820081B1 (en) 2001-03-19 2004-11-16 Attenex Corporation System and method for evaluating a structured message store for message redundancy
US20020147738A1 (en) 2001-04-06 2002-10-10 Reader Scot A. Method and appratus for finding patent-relevant web documents
EP1382196A1 (en) 2001-04-12 2004-01-21 Koninklijke Philips Electronics N.V. Method and system for registering a user preference
US20020169770A1 (en) 2001-04-27 2002-11-14 Kim Brian Seong-Gon Apparatus and method that categorize a collection of documents into a hierarchy of categories that are defined by the collection of documents
US7020662B2 (en) 2001-05-29 2006-03-28 Sun Microsystems, Inc. Method and system for determining a directory entry's class of service based on the value of a specifier in the entry
JP2005514673A (en) 2001-06-22 2005-05-19 オモイグイ,ノサ Knowledge acquisition, management, communication and presentation system and method
US7263656B2 (en) 2001-07-16 2007-08-28 Canon Kabushiki Kaisha Method and device for scheduling, generating and processing a document comprising blocks of information
US7412078B2 (en) 2001-07-18 2008-08-12 Hyunjae Tech Co., Ltd. System for automatic recognizing license number of other vehicles on observation vehicles and method thereof
KR20040018404A (en) 2001-07-26 2004-03-03 인터내셔널 비지네스 머신즈 코포레이션 Data processing method, data processing system, and program
CA2354443A1 (en) 2001-07-31 2003-01-31 Ibm Canada Limited-Ibm Canada Limitee Method and system for visually constructing xml schemas using an object-oriented model
US6868411B2 (en) 2001-08-13 2005-03-15 Xerox Corporation Fuzzy text categorizer
AU2002326118A1 (en) 2001-08-14 2003-03-03 Quigo Technologies, Inc. System and method for extracting content for submission to a search engine
US6607151B2 (en) 2001-08-16 2003-08-19 Morris Samelson Ultra fine dead sea mineral compound and method of manufacture
US7386832B2 (en) 2001-08-31 2008-06-10 Siebel Systems, Inc. Configurator using structure to provide a user interface
US7058653B2 (en) 2001-09-17 2006-06-06 Ricoh Company, Ltd. Tree system diagram output method, computer program and recording medium
US7403938B2 (en) 2001-09-24 2008-07-22 Iac Search & Media, Inc. Natural language query processing
US7020641B2 (en) 2001-10-22 2006-03-28 Sun Microsystems, Inc. Method, system, and program for maintaining a database of data objects
US7197449B2 (en) 2001-10-30 2007-03-27 Intel Corporation Method for extracting name entities and jargon terms using a suffix tree data structure
TWI248023B (en) 2001-11-09 2006-01-21 Sheng A Tsao Data object oriented repository system
JP3931214B2 (en) 2001-12-17 2007-06-13 日本アイ・ビー・エム株式会社 Data analysis apparatus and program
US6965900B2 (en) 2001-12-19 2005-11-15 X-Labs Holdings, Llc Method and apparatus for electronically extracting application specific multidimensional information from documents selected from a set of documents electronically extracted from a library of electronically searchable documents
US7096231B2 (en) 2001-12-28 2006-08-22 American Management Systems, Inc. Export engine which builds relational database directly from object model
US7219098B2 (en) 2002-01-14 2007-05-15 International Business Machines Corporation System and method for processing data in a distributed architecture
US7398461B1 (en) 2002-01-24 2008-07-08 Overture Services, Inc. Method for ranking web page search results
US20030149567A1 (en) 2002-02-04 2003-08-07 Tony Schmitz Method and system for using natural language in computer resource utilization analysis via a communications network
US7421660B2 (en) 2003-02-04 2008-09-02 Cataphora, Inc. Method and apparatus to visually present discussions for data mining purposes
CA2475319A1 (en) 2002-02-04 2003-08-14 Cataphora, Inc. A method and apparatus to visually present discussions for data mining purposes
US20030154071A1 (en) 2002-02-11 2003-08-14 Shreve Gregory M. Process for the document management and computer-assisted translation of documents utilizing document corpora constructed by intelligent agents
US7165024B2 (en) 2002-02-22 2007-01-16 Nec Laboratories America, Inc. Inferring hierarchical descriptions of a set of documents
JP4098539B2 (en) 2002-03-15 2008-06-11 富士通株式会社 Profile information recommendation method, program, and apparatus
US7043521B2 (en) 2002-03-21 2006-05-09 Rockwell Electronic Commerce Technologies, Llc Search agent for searching the internet
JP3896014B2 (en) 2002-03-22 2007-03-22 株式会社東芝 Information collection system, information collection method, and program causing computer to collect information
CA2479228C (en) 2002-03-27 2011-08-09 British Telecommunications Public Limited Company Network security system
US6857053B2 (en) 2002-04-10 2005-02-15 International Business Machines Corporation Method, system, and program for backing up objects by creating groups of objects
TWI256562B (en) 2002-05-03 2006-06-11 Ind Tech Res Inst Method for named-entity recognition and verification
US6963880B1 (en) 2002-05-10 2005-11-08 Oracle International Corporation Schema evolution of complex objects
US20040015481A1 (en) 2002-05-23 2004-01-22 Kenneth Zinda Patent data mining
US7003522B1 (en) 2002-06-24 2006-02-21 Microsoft Corporation System and method for incorporating smart tags in online content
US20040003067A1 (en) 2002-06-27 2004-01-01 Daniel Ferrin System and method for enabling a user interface with GUI meta data
GB0215464D0 (en) 2002-07-04 2002-08-14 Hewlett Packard Co Combining data descriptions
US20060074824A1 (en) 2002-08-22 2006-04-06 Jinyan Li Prediction by collective likelihood from emerging patterns
US20040059726A1 (en) * 2002-09-09 2004-03-25 Jeff Hunter Context-sensitive wordless search
US20040064447A1 (en) 2002-09-27 2004-04-01 Simske Steven J. System and method for management of synonymic searching
US6886010B2 (en) 2002-09-30 2005-04-26 The United States Of America As Represented By The Secretary Of The Navy Method for data and text mining and literature-based discovery
US7096217B2 (en) 2002-10-31 2006-08-22 International Business Machines Corporation Global query correlation attributes
US20050108256A1 (en) 2002-12-06 2005-05-19 Attensity Corporation Visualization of integrated structured and unstructured data
US7277879B2 (en) 2002-12-17 2007-10-02 Electronic Data Systems Corporation Concept navigation in data storage systems
US7181450B2 (en) 2002-12-18 2007-02-20 International Business Machines Corporation Method, system, and program for use of metadata to create multidimensional cubes in a relational database
US20040122846A1 (en) 2002-12-19 2004-06-24 Ibm Corporation Fact verification system
US7107528B2 (en) 2002-12-20 2006-09-12 International Business Machines Corporation Automatic completion of dates
US7472182B1 (en) 2002-12-31 2008-12-30 Emc Corporation Data collection policy for storage devices
GB0304639D0 (en) 2003-02-28 2003-04-02 Kiq Ltd Classification using re-sampling of probability estimates
US7020666B2 (en) 2003-03-07 2006-03-28 Microsoft Corporation System and method for unknown type serialization
US7051023B2 (en) 2003-04-04 2006-05-23 Yahoo! Inc. Systems and methods for generating concept units from search queries
EP1629359A4 (en) 2003-04-07 2008-01-09 Sevenecho Llc Method, system and software for digital media narrative personalization
US8095544B2 (en) 2003-05-30 2012-01-10 Dictaphone Corporation Method, system, and apparatus for validation
US7747571B2 (en) 2003-04-15 2010-06-29 At&T Intellectual Property, I,L.P. Methods, systems, and computer program products for implementing logical and physical data models
US20040243552A1 (en) 2003-05-30 2004-12-02 Dictaphone Corporation Method, system, and apparatus for viewing data
EP1477892B1 (en) 2003-05-16 2015-12-23 Sap Se System, method, computer program product and article of manufacture for inputting data in a computer system
JP2004362223A (en) 2003-06-04 2004-12-24 Hitachi Ltd Information mining system
US7836391B2 (en) 2003-06-10 2010-11-16 Google Inc. Document search engine including highlighting of confident results
US9026901B2 (en) 2003-06-20 2015-05-05 International Business Machines Corporation Viewing annotations across multiple applications
US7162473B2 (en) 2003-06-26 2007-01-09 Microsoft Corporation Method and system for usage analyzer that determines user accessed sources, indexes data subsets, and associated metadata, processing implicit queries based on potential interest to users
US7739588B2 (en) 2003-06-27 2010-06-15 Microsoft Corporation Leveraging markup language data for semantically labeling text strings and data and for providing actions based on semantically labeled text strings and data
AU2004258349B2 (en) 2003-07-22 2010-11-11 Kinor Technologies Inc. Information access using ontologies
US20060242180A1 (en) 2003-07-23 2006-10-26 Graf James A Extracting data from semi-structured text documents
WO2005020092A1 (en) 2003-08-21 2005-03-03 Idilia Inc. System and method for processing a query
US20050055365A1 (en) 2003-09-09 2005-03-10 I.V. Ramakrishnan Scalable data extraction techniques for transforming electronic documents into queriable archives
US7644076B1 (en) 2003-09-12 2010-01-05 Teradata Us, Inc. Clustering strings using N-grams
US7496560B2 (en) 2003-09-23 2009-02-24 Amazon Technologies, Inc. Personalized searchable library with highlighting capabilities
US7158980B2 (en) 2003-10-02 2007-01-02 Acer Incorporated Method and apparatus for computerized extracting of scheduling information from a natural language e-mail
US20070073768A1 (en) 2003-10-15 2007-03-29 Goradia Gautam D Interactive system for building and sharing one's own databank of wisdom bytes, such as words of wisdom, basic truths and/or facts and and feats, in one or more languages
KR100533810B1 (en) 2003-10-16 2005-12-07 한국전자통신연구원 Semi-Automatic Construction Method for Knowledge of Encyclopedia Question Answering System
GB0325626D0 (en) 2003-11-03 2003-12-10 Infoshare Ltd Data aggregation
US20050108630A1 (en) * 2003-11-19 2005-05-19 Wasson Mark D. Extraction of facts from text
US7512553B2 (en) 2003-12-05 2009-03-31 International Business Machines Corporation System for automated part-number mapping
US20050149851A1 (en) 2003-12-31 2005-07-07 Google Inc. Generating hyperlinks and anchor text in HTML and non-HTML documents
US8150824B2 (en) 2003-12-31 2012-04-03 Google Inc. Systems and methods for direct navigation to specific portion of target document
US7424467B2 (en) 2004-01-26 2008-09-09 International Business Machines Corporation Architecture for an indexer with fixed width sort and variable width sort
EP1716511A1 (en) 2004-02-20 2006-11-02 Dow Jones Reuters Business Interactive, LLC Intelligent search and retrieval system and method
US7756823B2 (en) 2004-03-26 2010-07-13 Lockheed Martin Corporation Dynamic reference repository
US7725498B2 (en) 2004-04-22 2010-05-25 International Business Machines Corporation Techniques for identifying mergeable data
US7260573B1 (en) 2004-05-17 2007-08-21 Google Inc. Personalizing anchor text scores in a search engine
US7716225B1 (en) 2004-06-17 2010-05-11 Google Inc. Ranking documents based on user behavior and/or feature data
US8051207B2 (en) 2004-06-25 2011-11-01 Citrix Systems, Inc. Inferring server state in s stateless communication protocol
US20060036504A1 (en) 2004-08-11 2006-02-16 Allocca William W Dynamically classifying items for international delivery
US7809695B2 (en) 2004-08-23 2010-10-05 Thomson Reuters Global Resources Information retrieval systems with duplicate document detection and presentation functions
US20060047691A1 (en) 2004-08-31 2006-03-02 Microsoft Corporation Creating a document index from a flex- and Yacc-generated named entity recognizer
US20060053171A1 (en) 2004-09-03 2006-03-09 Biowisdom Limited System and method for curating one or more multi-relational ontologies
US20060053175A1 (en) 2004-09-03 2006-03-09 Biowisdom Limited System and method for creating, editing, and utilizing one or more rules for multi-relational ontology creation and maintenance
WO2006034038A2 (en) 2004-09-17 2006-03-30 Become, Inc. Systems and methods of retrieving topic specific information
JP4587756B2 (en) 2004-09-21 2010-11-24 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
US20060064411A1 (en) 2004-09-22 2006-03-23 William Gross Search engine using user intent
US7809763B2 (en) 2004-10-15 2010-10-05 Oracle International Corporation Method(s) for updating database object metadata
US7822768B2 (en) 2004-11-23 2010-10-26 International Business Machines Corporation System and method for automating data normalization using text analytics
US9137115B2 (en) 2004-12-06 2015-09-15 Bmc Software, Inc. System and method for resource reconciliation in an enterprise management system
US20060167991A1 (en) 2004-12-16 2006-07-27 Heikes Brian D Buddy list filtering
US20060143227A1 (en) 2004-12-27 2006-06-29 Helm Martin W System and method for persisting software objects
US8719779B2 (en) 2004-12-28 2014-05-06 Sap Ag Data object association based on graph theory techniques
US7672971B2 (en) 2006-02-17 2010-03-02 Google Inc. Modular architecture for entity normalization
US7769579B2 (en) * 2005-05-31 2010-08-03 Google Inc. Learning facts from semi-structured text
US7685136B2 (en) 2005-01-12 2010-03-23 International Business Machines Corporation Method, system and program product for managing document summary information
US7953720B1 (en) 2005-03-31 2011-05-31 Google Inc. Selecting the best answer to a fact query from among a set of potential answers
US7587387B2 (en) 2005-03-31 2009-09-08 Google Inc. User interface for facts query engine with snippets from information sources that include query terms and answer terms
US9208229B2 (en) 2005-03-31 2015-12-08 Google Inc. Anchor text summarization for corroboration
US20060238919A1 (en) 2005-04-20 2006-10-26 The Boeing Company Adaptive data cleaning
US20060248456A1 (en) 2005-05-02 2006-11-02 Ibm Corporation Assigning a publication date for at least one electronic document
US20060259462A1 (en) 2005-05-12 2006-11-16 Sybase, Inc. System and Methodology for Real-time Content Aggregation and Syndication
US7590647B2 (en) 2005-05-27 2009-09-15 Rage Frameworks, Inc Method for extracting, interpreting and standardizing tabular data from unstructured documents
US20060277169A1 (en) 2005-06-02 2006-12-07 Lunt Tracy T Using the quantity of electronically readable text to generate a derivative attribute for an electronic file
US7630977B2 (en) 2005-06-29 2009-12-08 Xerox Corporation Categorization including dependencies between different category systems
US20070005593A1 (en) * 2005-06-30 2007-01-04 Microsoft Corporation Attribute-based data retrieval and association
CA2545232A1 (en) 2005-07-29 2007-01-29 Cognos Incorporated Method and system for creating a taxonomy from business-oriented metadata content
US8666928B2 (en) 2005-08-01 2014-03-04 Evi Technologies Limited Knowledge repository
US7797282B1 (en) 2005-09-29 2010-09-14 Hewlett-Packard Development Company, L.P. System and method for modifying a training set
US7493317B2 (en) 2005-10-20 2009-02-17 Omniture, Inc. Result-based triggering for presentation of online content
US7730013B2 (en) 2005-10-25 2010-06-01 International Business Machines Corporation System and method for searching dates efficiently in a collection of web documents
KR100755678B1 (en) 2005-10-28 2007-09-05 삼성전자주식회사 Object Name Detection Apparatus and Method
US7574449B2 (en) 2005-12-02 2009-08-11 Microsoft Corporation Content matching
US7774328B2 (en) 2006-02-17 2010-08-10 Google Inc. Browseable fact repository
US8954426B2 (en) 2006-02-17 2015-02-10 Google Inc. Query language
US7555471B2 (en) 2006-01-27 2009-06-30 Google Inc. Data object visualization
US8260785B2 (en) 2006-02-17 2012-09-04 Google Inc. Automatic object reference identification and linking in a browseable fact repository
US7454398B2 (en) * 2006-02-17 2008-11-18 Google Inc. Support for object search
US7991797B2 (en) * 2006-02-17 2011-08-02 Google Inc. ID persistence through normalization
US8700568B2 (en) 2006-02-17 2014-04-15 Google Inc. Entity normalization via name normalization
US9286404B2 (en) 2006-06-28 2016-03-15 Nokia Technologies Oy Methods of systems using geographic meta-metadata in information retrieval and document displays
US7685201B2 (en) 2006-09-08 2010-03-23 Microsoft Corporation Person disambiguation using name entity extraction-based clustering
US8458207B2 (en) 2006-09-15 2013-06-04 Microsoft Corporation Using anchor text to provide context
US7698336B2 (en) 2006-10-26 2010-04-13 Microsoft Corporation Associating geographic-related information with objects
US7917154B2 (en) 2006-11-01 2011-03-29 Yahoo! Inc. Determining mobile content for a social network based on location and time
US8108501B2 (en) 2006-11-01 2012-01-31 Yahoo! Inc. Searching and route mapping based on a social network, location, and time
TWI449786B (en) 2007-06-14 2014-08-21 Suntory Holdings Ltd Safflower and natural aroma of distilled liquor and its manufacturing method
US8316007B2 (en) 2007-06-28 2012-11-20 Oracle International Corporation Automatically finding acronyms and synonyms in a corpus
US8024281B2 (en) 2008-02-29 2011-09-20 Red Hat, Inc. Alpha node hashing in a rule engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558186B2 (en) 2005-05-31 2017-01-31 Google Inc. Unsupervised extraction of facts
US9760570B2 (en) 2006-10-20 2017-09-12 Google Inc. Finding and disambiguating references to entities on web pages
US9892132B2 (en) 2007-03-14 2018-02-13 Google Llc Determining geographic locations for place names in a fact repository
US10459955B1 (en) 2007-03-14 2019-10-29 Google Llc Determining geographic locations for place names
US20170199878A1 (en) * 2016-01-11 2017-07-13 Accenture Global Solutions Limited Method and system for generating an architecture document for describing a system framework
US10740408B2 (en) * 2016-01-11 2020-08-11 Accenture Global Solutions Limited Method and system for generating an architecture document for describing a system framework
CN109791563A (en) * 2016-09-26 2019-05-21 日本电气株式会社 Information Collection System, formation gathering method and recording medium
US11308091B2 (en) * 2016-09-26 2022-04-19 Nec Corporation Information collection system, information collection method, and recording medium
US10944569B2 (en) 2018-11-20 2021-03-09 International Business Machines Corporation Comparison and validation of digital content using contextual analysis
US11455855B2 (en) 2019-09-24 2022-09-27 International Business Machines Corporation Content validation document transmission
WO2021096615A1 (en) * 2019-11-14 2021-05-20 Ghangorcloud, Inc Method and system for identifying information objects using deep ai-based knowledge objects

Also Published As

Publication number Publication date
US8812435B1 (en) 2014-08-19

Similar Documents

Publication Publication Date Title
US8812435B1 (en) Learning objects and facts from documents
US8825471B2 (en) Unsupervised extraction of facts
US7792837B1 (en) Entity name recognition
US9092495B2 (en) Automatic object reference identification and linking in a browseable fact repository
US7774328B2 (en) Browseable fact repository
US10223406B2 (en) Entity normalization via name normalization
US7966291B1 (en) Fact-based object merging
US9760570B2 (en) Finding and disambiguating references to entities on web pages
US8954426B2 (en) Query language
US20120124053A1 (en) Annotation Framework
US20140359409A1 (en) Learning Synonymous Object Names from Anchor Texts
US9785686B2 (en) Corroborating facts in electronic documents
US7464090B2 (en) Object categorization for information extraction
JP2007122732A (en) Method for searching dates efficiently in collection of web documents, computer program, and service method (system and method for searching dates efficiently in collection of web documents)
US7672971B2 (en) Modular architecture for entity normalization
US9208229B2 (en) Anchor text summarization for corroboration
US7590628B2 (en) Determining document subject by using title and anchor text of related documents
US7991797B2 (en) ID persistence through normalization
CN114443928B (en) Web text data crawler method and system
US7739212B1 (en) System and method for updating facts in a fact repository

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION