US20140357415A1 - Multi-layer golf ball - Google Patents
Multi-layer golf ball Download PDFInfo
- Publication number
- US20140357415A1 US20140357415A1 US14/076,864 US201314076864A US2014357415A1 US 20140357415 A1 US20140357415 A1 US 20140357415A1 US 201314076864 A US201314076864 A US 201314076864A US 2014357415 A1 US2014357415 A1 US 2014357415A1
- Authority
- US
- United States
- Prior art keywords
- golf ball
- ball according
- cover
- core
- core layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000554 ionomer Polymers 0.000 claims abstract description 51
- 239000012792 core layer Substances 0.000 claims abstract description 44
- 229920001971 elastomer Polymers 0.000 claims abstract description 44
- 239000012815 thermoplastic material Substances 0.000 claims abstract description 40
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 239000011347 resin Substances 0.000 claims abstract description 36
- 230000006835 compression Effects 0.000 claims abstract description 29
- 238000007906 compression Methods 0.000 claims abstract description 29
- 239000005060 rubber Substances 0.000 claims abstract description 24
- 230000005484 gravity Effects 0.000 claims abstract description 22
- 150000003839 salts Chemical class 0.000 claims abstract description 21
- 229910052751 metal Chemical class 0.000 claims abstract description 16
- 239000002184 metal Chemical class 0.000 claims abstract description 16
- 239000003999 initiator Substances 0.000 claims abstract description 12
- 150000003254 radicals Chemical class 0.000 claims abstract description 7
- 229920002857 polybutadiene Polymers 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 19
- 239000005062 Polybutadiene Substances 0.000 claims description 17
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 12
- 150000007524 organic acids Chemical class 0.000 claims description 12
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 12
- 150000001735 carboxylic acids Chemical class 0.000 claims description 11
- 229920006124 polyolefin elastomer Polymers 0.000 claims description 6
- 239000010410 layer Substances 0.000 abstract description 26
- 150000001732 carboxylic acid derivatives Chemical class 0.000 abstract description 10
- 229920003193 cis-1,4-polybutadiene polymer Polymers 0.000 abstract description 4
- -1 oligomers Polymers 0.000 description 41
- 239000002253 acid Substances 0.000 description 34
- 150000002009 diols Chemical class 0.000 description 32
- 229920001577 copolymer Polymers 0.000 description 26
- 229920000642 polymer Polymers 0.000 description 23
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 22
- 239000005977 Ethylene Substances 0.000 description 21
- 239000000806 elastomer Substances 0.000 description 20
- 229920001169 thermoplastic Polymers 0.000 description 20
- 239000000945 filler Substances 0.000 description 17
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 15
- 239000004416 thermosoftening plastic Substances 0.000 description 15
- 150000004985 diamines Chemical class 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 13
- 239000011162 core material Substances 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 239000004606 Fillers/Extenders Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 229920002635 polyurethane Polymers 0.000 description 10
- 239000004814 polyurethane Substances 0.000 description 10
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 125000005442 diisocyanate group Chemical group 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 229920002725 thermoplastic elastomer Polymers 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 229920001400 block copolymer Polymers 0.000 description 5
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 5
- 150000002596 lactones Chemical class 0.000 description 5
- 238000006386 neutralization reaction Methods 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 229920000570 polyether Polymers 0.000 description 5
- 229920000909 polytetrahydrofuran Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- 229920002396 Polyurea Polymers 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 239000005056 polyisocyanate Substances 0.000 description 4
- 229920001228 polyisocyanate Polymers 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 229920006132 styrene block copolymer Polymers 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- 239000004970 Chain extender Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229920001038 ethylene copolymer Polymers 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920001610 polycaprolactone Polymers 0.000 description 3
- 239000004632 polycaprolactone Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920003225 polyurethane elastomer Polymers 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229920002397 thermoplastic olefin Polymers 0.000 description 3
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000012463 white pigment Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- PBLZLIFKVPJDCO-UHFFFAOYSA-N 12-aminododecanoic acid Chemical compound NCCCCCCCCCCCC(O)=O PBLZLIFKVPJDCO-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 244000144992 flock Species 0.000 description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 2
- IFYYFLINQYPWGJ-UHFFFAOYSA-N gamma-decalactone Chemical compound CCCCCCC1CCC(=O)O1 IFYYFLINQYPWGJ-UHFFFAOYSA-N 0.000 description 2
- IPBFYZQJXZJBFQ-UHFFFAOYSA-N gamma-octalactone Chemical compound CCCCC1CCC(=O)O1 IPBFYZQJXZJBFQ-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920006345 thermoplastic polyamide Polymers 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- ZWAJLVLEBYIOTI-OLQVQODUSA-N (1s,6r)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CCC[C@@H]2O[C@@H]21 ZWAJLVLEBYIOTI-OLQVQODUSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- ZGDSDWSIFQBAJS-UHFFFAOYSA-N 1,2-diisocyanatopropane Chemical compound O=C=NC(C)CN=C=O ZGDSDWSIFQBAJS-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- SZBXTBGNJLZMHB-UHFFFAOYSA-N 1-chloro-2,4-diisocyanatobenzene Chemical compound ClC1=CC=C(N=C=O)C=C1N=C=O SZBXTBGNJLZMHB-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- LIQNYLUOMSQISE-UHFFFAOYSA-N 1-n,4-n-di(butan-2-yl)cyclohexane-1,4-diamine Chemical compound CCC(C)NC1CCC(NC(C)CC)CC1 LIQNYLUOMSQISE-UHFFFAOYSA-N 0.000 description 1
- XDCMXOFKBHKHGP-UHFFFAOYSA-N 1-n,4-n-dimethylcyclohexane-1,4-diamine Chemical compound CNC1CCC(NC)CC1 XDCMXOFKBHKHGP-UHFFFAOYSA-N 0.000 description 1
- GUOSQNAUYHMCRU-UHFFFAOYSA-N 11-Aminoundecanoic acid Chemical compound NCCCCCCCCCCC(O)=O GUOSQNAUYHMCRU-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- GELKGHVAFRCJNA-UHFFFAOYSA-N 2,2-Dimethyloxirane Chemical compound CC1(C)CO1 GELKGHVAFRCJNA-UHFFFAOYSA-N 0.000 description 1
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- AJKXDPSHWRTFOZ-UHFFFAOYSA-N 2-ethylhexane-1,6-diol Chemical compound CCC(CO)CCCCO AJKXDPSHWRTFOZ-UHFFFAOYSA-N 0.000 description 1
- KHBBRIBQJGWUOW-UHFFFAOYSA-N 2-methylcyclohexane-1,3-diamine Chemical compound CC1C(N)CCCC1N KHBBRIBQJGWUOW-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- AAMHBRRZYSORSH-UHFFFAOYSA-N 2-octyloxirane Chemical compound CCCCCCCCC1CO1 AAMHBRRZYSORSH-UHFFFAOYSA-N 0.000 description 1
- SYURNNNQIFDVCA-UHFFFAOYSA-N 2-propyloxirane Chemical compound CCCC1CO1 SYURNNNQIFDVCA-UHFFFAOYSA-N 0.000 description 1
- HEAYDCIZOFDHRM-UHFFFAOYSA-N 2-tert-butyloxirane Chemical compound CC(C)(C)C1CO1 HEAYDCIZOFDHRM-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- ALZLTHLQMAFAPA-UHFFFAOYSA-N 3-Methylbutyrolactone Chemical compound CC1COC(=O)C1 ALZLTHLQMAFAPA-UHFFFAOYSA-N 0.000 description 1
- JCEZOHLWDIONSP-UHFFFAOYSA-N 3-[2-[2-(3-aminopropoxy)ethoxy]ethoxy]propan-1-amine Chemical compound NCCCOCCOCCOCCCN JCEZOHLWDIONSP-UHFFFAOYSA-N 0.000 description 1
- YOOSAIJKYCBPFW-UHFFFAOYSA-N 3-[4-(3-aminopropoxy)butoxy]propan-1-amine Chemical compound NCCCOCCCCOCCCN YOOSAIJKYCBPFW-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- BLFRQYKZFKYQLO-UHFFFAOYSA-N 4-aminobutan-1-ol Chemical compound NCCCCO BLFRQYKZFKYQLO-UHFFFAOYSA-N 0.000 description 1
- OALYTRUKMRCXNH-UHFFFAOYSA-N 5-pentyloxolan-2-one Chemical compound CCCCCC1CCC(=O)O1 OALYTRUKMRCXNH-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- GJEZBVHHZQAEDB-UHFFFAOYSA-N 6-oxabicyclo[3.1.0]hexane Chemical compound C1CCC2OC21 GJEZBVHHZQAEDB-UHFFFAOYSA-N 0.000 description 1
- GHBSPIPJMLAMEP-UHFFFAOYSA-N 6-pentyloxan-2-one Chemical compound CCCCCC1CCCC(=O)O1 GHBSPIPJMLAMEP-UHFFFAOYSA-N 0.000 description 1
- WDYVUKGVKRZQNM-UHFFFAOYSA-N 6-phosphonohexylphosphonic acid Chemical compound OP(O)(=O)CCCCCCP(O)(O)=O WDYVUKGVKRZQNM-UHFFFAOYSA-N 0.000 description 1
- VWPQCOZMXULHDM-UHFFFAOYSA-N 9-aminononanoic acid Chemical compound NCCCCCCCCC(O)=O VWPQCOZMXULHDM-UHFFFAOYSA-N 0.000 description 1
- 229910017048 AsF6 Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- QGLBZNZGBLRJGS-UHFFFAOYSA-N Dihydro-3-methyl-2(3H)-furanone Chemical compound CC1CCOC1=O QGLBZNZGBLRJGS-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical class O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- QVHMSMOUDQXMRS-UHFFFAOYSA-N PPG n4 Chemical compound CC(O)COC(C)COC(C)COC(C)CO QVHMSMOUDQXMRS-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 229920000034 Plastomer Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229920003182 Surlyn® Polymers 0.000 description 1
- 239000005035 Surlyn® Substances 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- YWMLORGQOFONNT-UHFFFAOYSA-N [3-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC(CO)=C1 YWMLORGQOFONNT-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- OTBHHUPVCYLGQO-UHFFFAOYSA-N bis(3-aminopropyl)amine Chemical compound NCCCNCCCN OTBHHUPVCYLGQO-UHFFFAOYSA-N 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920006147 copolyamide elastomer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- ARUKYTASOALXFG-UHFFFAOYSA-N cycloheptylcycloheptane Chemical compound C1CCCCCC1C1CCCCCC1 ARUKYTASOALXFG-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N linoleic acid group Chemical group C(CCCCCCC\C=C/C\C=C/CCCCC)(=O)O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 238000010551 living anionic polymerization reaction Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- DZBOAIYHPIPCBP-UHFFFAOYSA-L magnesium;2-methylprop-2-enoate Chemical compound [Mg+2].CC(=C)C([O-])=O.CC(=C)C([O-])=O DZBOAIYHPIPCBP-UHFFFAOYSA-L 0.000 description 1
- DWLAVVBOGOXHNH-UHFFFAOYSA-L magnesium;prop-2-enoate Chemical compound [Mg+2].[O-]C(=O)C=C.[O-]C(=O)C=C DWLAVVBOGOXHNH-UHFFFAOYSA-L 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical class Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- KMBPCQSCMCEPMU-UHFFFAOYSA-N n'-(3-aminopropyl)-n'-methylpropane-1,3-diamine Chemical compound NCCCN(C)CCCN KMBPCQSCMCEPMU-UHFFFAOYSA-N 0.000 description 1
- QDBQXOAICGSACD-UHFFFAOYSA-N n'-hexylhexanediamide Chemical compound CCCCCCNC(=O)CCCCC(N)=O QDBQXOAICGSACD-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920006342 thermoplastic vulcanizate Polymers 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- PIMBTRGLTHJJRV-UHFFFAOYSA-L zinc;2-methylprop-2-enoate Chemical compound [Zn+2].CC(=C)C([O-])=O.CC(=C)C([O-])=O PIMBTRGLTHJJRV-UHFFFAOYSA-L 0.000 description 1
- XKMZOFXGLBYJLS-UHFFFAOYSA-L zinc;prop-2-enoate Chemical compound [Zn+2].[O-]C(=O)C=C.[O-]C(=O)C=C XKMZOFXGLBYJLS-UHFFFAOYSA-L 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/006—Physical properties
- A63B37/0066—Density; Specific gravity
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/007—Characteristics of the ball as a whole
- A63B37/0077—Physical properties
- A63B37/0091—Density distribution amongst the different ball layers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0023—Covers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0023—Covers
- A63B37/0029—Physical properties
- A63B37/0031—Hardness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0023—Covers
- A63B37/0029—Physical properties
- A63B37/0034—Deflection or compression
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0023—Covers
- A63B37/0029—Physical properties
- A63B37/0037—Flexural modulus; Bending stiffness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/004—Physical properties
- A63B37/0045—Thickness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/004—Physical properties
- A63B37/0046—Deflection or compression
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/004—Physical properties
- A63B37/0047—Density; Specific gravity
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/004—Physical properties
- A63B37/0049—Flexural modulus; Bending stiffness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/0051—Materials other than polybutadienes; Constructional details
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/0051—Materials other than polybutadienes; Constructional details
- A63B37/0059—Ionomer
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/006—Physical properties
- A63B37/0064—Diameter
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/006—Physical properties
- A63B37/0065—Deflection or compression
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/006—Physical properties
- A63B37/0069—Flexural modulus; Bending stiffness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/007—Characteristics of the ball as a whole
- A63B37/0072—Characteristics of the ball as a whole with a specified number of layers
- A63B37/0075—Three piece balls, i.e. cover, intermediate layer and core
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
Definitions
- the invention concerns multi-layer golf balls with thermoplastic core materials.
- Golf ball core and cover layers are typically constructed with polymer compositions including, for example, polybutadiene rubber, polyurethanes, polyamides, ionomers, and blends of such polymers.
- Ionomers particularly ethylene-based ionomers, are a preferred group of polymers for golf ball layers because of their toughness, durability, and wide range of hardness values.
- thermoplastic ionomer resin composition comprising (a) melt-processable, ethylene acid copolymer; (b) aliphatic, mono-functional organic acid or its salt; (c) a thermoplastic resin; (d) a cation source; and (e) optionally, a filler.
- the ionomer resin may be neutralized to greater than 90% of all the acid groups present and remain melt-processable.
- the patent discloses using the highly-resilient thermoplastic composition in one-piece, two-piece, three-piece, and multi-layered golf balls.
- a multi-layer golf ball has a core center including an ionomer resin and, optionally, further including a polyolefin elastomer; a core layer including a cured product of a rubber composition including (a) a polybutadiene with at least 70% cis-1,4 bonds and with a Mooney viscosity (ML 1+4 (100° C.)) of at least about 40, (b) an unsaturated carboxylic acid or its metal salt, and (c) a free radical initiator, e.g., an organic peroxide; and a cover including a thermoplastic material.
- the core center has a diameter of from about 21 mm to about 29 mm and a 10-130 kg compression deformation of at least about 4 mm.
- the core layer is at least about 5 mm thick.
- the specific gravity of the core layer is at least about 0.1 g/cm 3 greater than the specific gravity of the core center.
- the cover has a flexural modulus of at least about 15,000 psi. In a second embodiment, the cover has a flexural modulus of up to about 35,000 psi.
- a golf ball with a core center including an ionomer resin and having a 10-130 kg compression deformation of at least about 3.5 mm, a core layer including the cured product of the disclosed rubber composition having a thickness of at least about 5 mm and a second 10-130 kg compression deformation C2 of at least about 3 mm, and a cover having a third 10-130 kg compression deformation C3 of at least about 2.8 mm, with ratios of C2/C1 and C3/C2 each independently being from about 0.8 to about 1.
- the cover has a surface Shore D hardness of at least 60. In a second embodiment, the cover has a surface Shore D hardness of less than 60.
- the golf ball has a multi-layer core including a core center as an innermost core part and one or more “core layers” outward from and enclosing the center.
- a “core layer” for this invention is a golf ball layer lying between the center and the cover of the golf ball.
- a “cover” is the outermost structural golf ball layer or, for two cover layers, each “cover layer” is one of the two outermost structural golf ball layers. Coating layers (whether paint layers or clear coating layers) are not considered to be structural layers.
- Hardness is measured according to ASTM D2240, but measured on a curved surface of the core center and core layer or on a land area of a curved surface of the cover. It is understood in this technical field of art that the hardness measured in this way often varies from the hardness of a flat slab or button of material in a non-linear way that cannot be correlated, for example because of effects of underlying layers. Because of the curved surface, care must be taken to center the golf ball or golf ball subassembly under the durometer indentor before a surface hardness reading is obtained and to measure an even area, e.g. on the dimpled surface cover measurements are taken on a land (fret) area between dimples. Specific gravity is measured according to ASTM D792.
- Flexural modulus is measured according to ASTM D790. Specific gravity is measured according to ASTM D792.
- compression deformation is the deformation amount under a compressive load of 130 kg minus the deformation amount under a compressive load of 10 kg. The amount of deformation of the ball under a force of 10 kg is measured, then the force is increased to 130 kg and the amount of deformation under the new force of 130 kg is measured. The deformation amount at 10 kg is subtracted from the deformation amount at 130 kg to give the 10-130 kg compression deformation.
- “Mooney viscosity (ML 1+4 (100° C.))” is measured according to JIS K6300 using a Mooney viscometer, which is a type of rotary plastomer.
- ML 1+4 100° C.
- M indicates Mooney viscosity
- L stands for large rotor (L-type)
- 1+4 indicates a pre-heating time of 1 minute and a rotor rotation time of 4 minutes.
- the “(100° C.)” indicates that the measurement is carried out at a temperature of 100° C.
- “Coefficient of restitution” or COR in the present invention is measured generally according to the following procedure: a golf ball is fired by an air cannon at an initial velocity of 40 msec, and a speed monitoring device is located over a distance of 0.6 to 0.9 meters from the cannon. After striking a steel plate positioned about 1.2 meters away from the air cannon, the test object rebounds through the speed-monitoring device. The return velocity divided by the initial velocity is the COR.
- the FIGURE is a partial cross-sectional view of an embodiment of a multi-layer golf ball that illustrates some aspects of the disclosed technology.
- the parts of the FIGURE are not necessarily to scale.
- a multi-layer golf ball 100 has a core center 110 with a surface 115 , a core layer 120 that is radially outward from the core center 110 and has a surface 125 , and a cover 130 that has a surface 135 and forms the outermost layer of the golf ball 100 .
- the core center includes an ionomer resin.
- Ionomer resins which are metal cation ionomers of addition copolymers of ethylenically unsaturated acids, are preferably alpha-olefin, particularly ethylene, copolymers with C 3 to C 8 ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, particularly acrylic or methacrylic acid.
- the copolymers may also contain a softening monomer such as an alkyl acrylate or methacrylate, for example a C 1 to C 8 alkyl acrylate or methacrylate ester.
- the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer may be from about 4 weight percent or about 6 weight percent or about 8 weight percent up to about 20 weight percent or up to about 35 weight percent of the copolymer, and the softening monomer, when present, is preferably present in a finite amount, preferably at least about 5 weight percent or at least about 11 weight percent, up to about 23 weight percent or up to about 25 weight percent or up to about 50 weight percent of the copolymer.
- Nonlimiting specific examples of acid-containing ethylene copolymers include copolymers of ethylene/acrylic acid/n-butyl acrylate, ethylene/methacrylic acid/n-butyl acrylate, ethylene/methacrylic acid/isobutyl acrylate, ethylene/acrylic acid/isobutyl acrylate, ethylene/methacrylic acid/n-butyl methacrylate, ethylene/acrylic acid/methyl methacrylate, ethylene/acrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl methacrylate, and ethylene/acrylic acid/n-butyl methacrylate.
- Preferred acid-containing ethylene copolymers include copolymers of ethylene/methacrylic acid/n-butyl acrylate, ethylene/acrylic acid/n-butyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/acrylic acid/ethyl acrylate, ethylene/methacrylic acid/ethyl acrylate, and ethylene/acrylic acid/methyl acrylate.
- the most preferred acid-containing ethylene copolymers include ethylene/(meth)acrylic acid/n-butyl acrylate, ethylene/(meth)acrylic acid/ethyl acrylate, and ethylene/(meth)acrylic acid/methyl acrylate copolymers.
- the ionomer resin may be a high acid ionomer resin.
- ionomers prepared by neutralizing acid copolymers including at least about 16 weight % of copolymerized acid residues based on the total weight of the unneutralized ethylene acid copolymer are considered “high acid” ionomers.
- the acid monomer, particularly acrylic or methacrylic acid is present in about 16 to about 35 weight %.
- the copolymerized carboxylic acid may be from about 16 weight %, or about 17 weight % or about 18.5 weight % or about 20 weight % up to about 21.5 weight % or up to about 25 weight % or up to about 30 weight % or up to about 35 weight % of the unneutralized copolymer.
- a high acid ionomer may be combined with a “low acid” ionomer in which the copolymerized carboxylic acid is less than 16 weight % of the unneutralized copolymer.
- Such a mixture of a high acid ionomer and a low acid ionomer is particularly suitable for the third thermoplastic material of the inner cover layer or the fourth thermoplastic material or the outer cover layer, and especially for the third thermoplastic material of the inner cover layer.
- the acid moiety in the ethylene-acid copolymer is neutralized by any metal cation. Suitable preferred cations include lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, or a combination of these cations; in various embodiments alkali metal, alkaline earth metal, or zinc cations are particularly preferred.
- the acid groups of the ionomer may be neutralized from about 10% or from about 20% or from about 30% or from about 40% to about 60% or to about 70% or to about 75% or to about 80% or to about 90%.
- a sufficiently high molecular weight, monomeric organic acid or salt of such an organic acid may be added to the acid copolymer or ionomer so that the acid copolymer or ionomer can be neutralized, without losing processability, to a level above the level that would cause the ionomer alone to become non-melt-processable.
- the high-molecular weight, monomeric organic acid its salt may be added to the ethylene-unsaturated acid copolymers before they are neutralized or after they are optionally partially neutralized to a level between about 1 and about 100%, provided that the level of neutralization is such that the resulting ionomer remains melt-processable.
- the acid groups of the copolymer may be neutralized from at least about 40 to about 100%, preferably from at least about 90% to about 100%, and most preferably 100% without losing processability.
- Such high neutralization, particularly to levels greater than 80%, greater than 90% or greater than 95% or most preferably 100%, without loss of processability can be done by (a) melt-blending the ethylene ⁇ , ⁇ -ethylenically unsaturated carboxylic acid copolymer or a melt-processable salt of the copolymer with an organic acid or a salt of organic acid, and (b) adding a sufficient amount of a cation source up to 110% of the amount needed to neutralize the total acid in the copolymer or ionomer and organic acid or salt to the desired level to increase the level of neutralization of all the acid moieties in the mixture preferably to greater than 90%, preferably greater than 95%, or preferably to 100%.
- the high molecular weight, monomeric saturated or unsaturated acid may have from 8 or 12 or 18 carbon atoms to 36 carbon atoms or to less than 36 carbon atoms.
- Nonlimiting suitable examples of the high-molecular weight, monomeric saturated or unsaturated organic acids include stearic, behenic, erucic, oleic, and linoleic acids and their salts, particularly the barium, lithium, sodium, zinc, bismuth, chromium, cobalt, copper, potassium, strontium, titanium, tungsten, magnesium, or calcium salts of these fatty acids. These may be used in combinations.
- the thermoplastic material of the cover may also include an ionomer resin.
- the ionomer resin used in the thermoplastic material of the cover may be the same or different from the ionomer resin or resins in the core center.
- a “high acid” ionomer resin may be used in the thermoplastic material of the cover.
- the polymeric portions of the core center and cover thermoplastic material may independent of one another be only, or essentially, one or more ionomer resins.
- the ionomer resin or resins may be at least about 90 weight percent, or at least about 95 weight percent, or preferably at least about 97 weight percent or at least about 98 weight percent or at least about 99 weight percent, or more preferably about 100 weight percent of the polymeric portion of the thermoplastic material.
- the core center and the cover thermoplastic material may include one or more other thermoplastic polymers, particularly thermoplastic elastomers, in addition to an ionomer resin, or, in the case of the cover thermoplastic material, instead of the ionomer resin.
- thermoplastic polyolefin elastomers such as metallocene-catalyzed block copolymers of ethylene and ⁇ -olefins having 4 to about 8 carbon atoms
- thermoplastic polyamide elastomers e.g., polyether block polyamides
- thermoplastic polyester elastomers thermoplastic styrene block copolymer elastomers such as poly(styrene-butadiene-styrene), poly(styrene-ethylene-co-butylene-styrene), and poly(styrene-isoprene-styrene)
- thermoplastic polyurethane elastomers thermoplastic polyurea elastomers, and dynamic vulcanizates of rubbers in these thermoplastic elastomers and in other thermoplastic matrix polymers.
- Thermoplastic polyolefin elastomers may also be used in the thermoplastic materials of the golf ball. These are metallocene-catalyzed block copolymers of ethylene and ⁇ -olefins having 4 to about 8 carbon atoms that are prepared by single-site metallocene catalysis, for example in a high pressure process in the presence of a catalyst system comprising a cyclopentadienyl-transition metal compound and an alumoxane.
- Nonlimiting examples of the ⁇ -olefin softening comonomers include hexane-1 or octene-1; octene-1 is a preferred comonomer to use. These materials are commercially available, for example, from ExxonMobil under the tradename ExactTM and from the Dow Chemical Company under the tradename EngageTM.
- the core center includes a polyolefin elastomer, especially one of the thermoplastic polyolefin elastomers just described.
- the core center may include from about 5 percent by weight to about 50 percent by weight, preferably from about 10 percent by weight to about 30 percent by weight polyolefin elastomer based on the combined weights of polyolefin elastomer and ionomer resin.
- one or both of the core center and cover includes or include a combination of a metal ionomer of a copolymer of ethylene and at least one of acrylic acid and methacrylic acid, a metallocene-catalyzed copolymer of ethylene and an ⁇ -olefin having 4 to about 8 carbon atoms, and a metal salt of an unsaturated fatty acid that may be prepared as described in Statz et al., U.S. Pat. No. 7,375,151 or as described in Kennedy, “Process for Making Thermoplastic Golf Ball Material and Golf Ball with Thermoplastic Material, U.S. patent application Ser. No. 13/825,112, filed 15 Mar. 2013, the entire contents of both being incorporated herein by reference.
- thermoplastic styrene block copolymer elastomers that may be used in the core center and cover thermoplastic material of the golf ball include poly(styrene-butadiene-styrene), poly(styrene-ethylene-co-butylene-styrene), poly(styrene-isoprene-styrene), and poly(styrene-ethylene-co-propylene) copolymers.
- These styrenic block copolymers may be prepared by living anionic polymerization with sequential addition of styrene and the diene forming the soft block, for example using butyl lithium as initiator.
- Thermoplastic styrene block copolymer elastomers are commercially available, for example, under the trademark KratonTM sold by Kraton Polymers U.S. LLC, Houston, Tex.
- Other such elastomers may be made as block copolymers by using other polymerizable, hard, non-rubber monomers in place of the styrene, including meth(acrylate) esters such as methyl methacrylate and cyclohexyl methacrylate, and other vinyl arylenes, such as alkyl styrenes.
- Thermoplastic polyurethane elastomers such as thermoplastic polyester-polyurethanes, polyether-polyurethanes, and polycarbonate-polyurethanes may be used in the core center and cover thermoplastic material, particularly in the cover thermoplastic material.
- the thermoplastic polyurethane elastomers include polyurethanes polymerized using as polymeric diol reactants polyethers and polyesters including polycaprolactone polyesters.
- polymeric diol-based polyurethanes are prepared by reaction of the polymeric diol (polyester diol, polyether diol, polycaprolactone diol, polytetrahydrofuran diol, or polycarbonate diol), one or more polyisocyanates, and, optionally, one or more chain extension compounds.
- Chain extension compounds are compounds having two or more functional groups reactive with isocyanate groups, such as the diols, amino alcohols, and diamines.
- the polymeric diol-based polyurethane is substantially linear (i.e., substantially all of the reactants are difunctional).
- Diisocyanates used in making the polyurethane elastomers may be aromatic or aliphatic.
- Useful diisocyanate compounds used to prepare thermoplastic polyurethanes include, without limitation, isophorone diisocyanate (IPDI), methylene bis-4-cyclohexyl isocyanate (H 12 MDI), cyclohexyl diisocyanate (CHDI), m-tetramethyl xylene diisocyanate (m-TMXDI), p-tetramethyl xylene diisocyanate (p-TMXDI), 4,4′-methylene diphenyl diisocyanate (MDI, also known as 4,4′-diphenylmethane diisocyanate), 2,4- or 2,6-toluene diisocyanate (TDI), ethylene diisocyanate, 1,2-diisocyanatopropane, 1,3-diisocyanatopropane, 1,6-diis
- Nonlimiting examples of higher-functionality polyisocyanates that may be used in limited amounts to produce branched thermoplastic polyurethanes (optionally along with monofunctional alcohols or monofunctional isocyanates) include 1,2,4-benzene triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,6,11-undecane triisocyanate, bicycloheptane triisocyanate, triphenylmethane-4,4′,4′′-triisocyanate, isocyanurates of diisocyanates, biurets of diisocyanates, allophanates of diisocyanates, and the like.
- Nonlimiting examples of suitable diols that may be used as extenders include ethylene glycol and lower oligomers of ethylene glycol including diethylene glycol, triethylene glycol, and tetraethylene glycol; propylene glycol and lower oligomers of propylene glycol including dipropylene glycol, tripropylene glycol, and tetrapropylene glycol; cyclohexanedimethanol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,3-propanediol, butylene glycol, neopentyl glycol, dihydroxyalkylated aromatic compounds such as the bis(2-hydroxyethyl)ethers of hydroquinone and resorcinol; p-xylene- ⁇ , ⁇ ′-diol; the bis(2-hydroxye
- active hydrogen-containing chain extenders that contain at least two active hydrogen groups may be used, for example, dithiols, diamines, or compounds having a mixture of hydroxyl, thiol, and amine groups, such as alkanolamines, aminoalkyl mercaptans, and hydroxyalkyl mercaptans, among others.
- Suitable diamine extenders include, without limitation, ethylene diamine, diethylene triamine, triethylene tetraamine, and combinations of these.
- Other typical chain extenders are amino alcohols such as ethanolamine, propanolamine, butanolamine, and combinations of these.
- the molecular weights of the chain extenders preferably range from about 60 to about 400. Alcohols and amines are preferred.
- a small amount of a trifunctional extender such as trimethylolpropane, 1,2,6-hexanetriol and glycerol, or monofunctional active hydrogen compounds such as butanol or dimethylamine, may also be included.
- the amount of trifunctional extender or monofunctional compound employed may be, for example, 5.0 equivalent percent or less based on the total weight of the reaction product and active hydrogen containing groups used.
- the polyester diols used in forming a thermoplastic polyurethane elastomer are in general prepared by the condensation polymerization of one or more polyacid compounds and one or more polyol compounds.
- the polyacid compounds and polyol compounds are di-functional, i.e., diacid compounds and diols are used to prepare substantially linear polyester diols, although minor amounts of mono-functional, tri-functional, and higher functionality materials can be included to provide a slightly branched, but uncrosslinked polyester polyol component.
- Suitable dicarboxylic acids include, without limitation, glutaric acid, succinic acid, malonic acid, oxalic acid, phthalic acid, isophthalic acid, hexahydrophthalic acid, adipic acid, maleic acid, suberic acid, azelaic acid, dodecanedioic acid, their anhydrides and polymerizable esters (e.g., methyl esters) and acid halides (e.g., acid chlorides), and mixtures of these.
- Suitable polyols include those already mentioned, especially the diols.
- Typical catalysts for the esterification polymerization are protonic acids, Lewis acids, titanium alkoxides, and dialkyltin oxides.
- a polymeric polyether or polycaprolactone diol reactant for preparing thermoplastic polyurethane elastomers may be obtained by reacting a diol initiator, e.g., 1,3-propanediol or ethylene or propylene glycol, with a lactone or alkylene oxide chain-extension reagent. Lactones that can be ring opened by an active hydrogen are well-known in the art.
- lactones examples include, without limitation, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -butyrolactone, ⁇ -propriolactone, ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -decanolactone, ⁇ -decanolactone, ⁇ -nonanoic lactone, ⁇ -octanoic lactone, and combinations of these.
- the lactone is ⁇ -caprolactone.
- Useful catalysts include those mentioned above for polyester synthesis.
- reaction can be initiated by forming a sodium salt of the hydroxyl group on the molecules that will react with the lactone ring.
- a diol initiator may be reacted with an oxirane-containing compound or cyclic ether to produce a polyether diol to be used in the polyurethane elastomer polymerization.
- Alkylene oxide polymer segments include, without limitation, the polymerization products of ethylene oxide, propylene oxide, 1,2-cyclohexene oxide, 1-butene oxide, 2-butene oxide, 1-hexene oxide, tert-butylethylene oxide, phenyl glycidyl ether, 1-decene oxide, isobutylene oxide, cyclopentene oxide, 1-pentene oxide, and combinations of these.
- the oxirane- or cyclic ether-containing compound is preferably selected from ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, and combinations of these.
- the alkylene oxide polymerization is typically base-catalyzed.
- the polymerization may be carried out, for example, by charging the hydroxyl-functional initiator compound and a catalytic amount of caustic, such as potassium hydroxide, sodium methoxide, or potassium tert-butoxide, and adding the alkylene oxide at a sufficient rate to keep the monomer available for reaction.
- a catalytic amount of caustic such as potassium hydroxide, sodium methoxide, or potassium tert-butoxide
- Two or more different alkylene oxide monomers may be randomly copolymerized by coincidental addition or polymerized in blocks by sequential addition. Homopolymers or copolymers of ethylene oxide or propylene oxide are preferred.
- Tetrahydrofuran may be polymerized by a cationic ring-opening reaction using such counterions as SbF 6 ⁇ , AsF 6 ⁇ , PF 6 ⁇ , SbCl 6 ⁇ , BF 4 ⁇ , CF 3 SO 3 ⁇ , FSO 3 ⁇ , and ClO 4 ⁇ . Initiation is by formation of a tertiary oxonium ion.
- the polytetrahydrofuran segment can be prepared as a “living polymer” and terminated by reaction with the hydroxyl group of a diol such as any of those mentioned above.
- Polytetrahydrofuran is also known as polytetramethylene ether glycol (PTMEG).
- Aliphatic polycarbonate diols that may be used in making a thermoplastic polyurethane elastomer may be prepared by the reaction of diols with dialkyl carbonates (such as diethyl carbonate), diphenyl carbonate, or dioxolanones (such as cyclic carbonates having five- and six-member rings) in the presence of catalysts like alkali metal, tin catalysts, or titanium compounds.
- dialkyl carbonates such as diethyl carbonate
- diphenyl carbonate diphenyl carbonate
- dioxolanones such as cyclic carbonates having five- and six-member rings
- Useful diols include, without limitation, any of those already mentioned.
- Aromatic polycarbonates are usually prepared from reaction of bisphenols, e.g., bisphenol A, with phosgene or diphenyl carbonate.
- the polymeric diol preferably has a weight average molecular weight of at least about 500, more preferably at least about 1000, and even more preferably at least about 1800 and a weight average molecular weight of up to about 10,000, but polymeric diols having weight average molecular weights of up to about 5000, especially up to about 4000, may also be preferred.
- the polymeric diol advantageously has a weight average molecular weight in the range from about 500 to about 10,000, preferably from about 1000 to about 5000, and more preferably from about 1500 to about 4000.
- the weight average molecular weights may be determined by ASTM D4274.
- the reaction of the polyisocyanate, polymeric diol, and diol or other chain extension agent is typically carried out at an elevated temperature in the presence of a catalyst.
- Typical catalysts for this reaction include organotin catalysts such as stannous octoate, dibutyl tin dilaurate, dibutyl tin diacetate, dibutyl tin oxide, tertiary amines, zinc salts, and manganese salts.
- organotin catalysts such as stannous octoate, dibutyl tin dilaurate, dibutyl tin diacetate, dibutyl tin oxide, tertiary amines, zinc salts, and manganese salts.
- the ratio of polymeric diol, such as polyester diol, to extender can be varied within a relatively wide range depending largely on the desired flexural modulus of the final polyurethane elastomer.
- the equivalent proportion of polyester diol to extender may be within the range of 1:0 to 1:12 and, more preferably, from 1:1 to 1:8.
- the diisocyanate(s) employed are proportioned such that the overall ratio of equivalents of isocyanate to equivalents of active hydrogen containing materials is within the range of 1:1 to 1:1.05, and more preferably, 1:1 to 1:1.02.
- the polymeric diol segments typically are from about 35% to about 65% by weight of the polyurethane polymer, and preferably from about 35% to about 50% by weight of the polyurethane polymer.
- Suitable thermoplastic polyurea elastomers may be prepared by reaction of one or more polymeric diamines or polyols with one or more of the polyisocyanates already mentioned and one or more diamine extenders.
- suitable diamine extenders include ethylene diamine, 1,3-propylene diamine, 2-methyl-pentamethylene diamine, hexamethylene diamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexane diamine, imino-bis(propylamine), imido-bis(propylamine), N-(3-aminopropyl)-N-methyl-1,3-propanediamine), 1,4-bis(3-aminopropoxy)butane, diethyleneglycol-di(aminopropyl)ether), 1-methyl-2,6-diamino-cyclohexane, 1,4-diamino-cyclohexane, 1,3- or 1,4-bis(methylamino)-cyclohexane
- Polymeric diamines include polyoxyethylene diamines, polyoxypropylene diamines, poly(oxyethylene-oxypropylene)diamines, and poly(tetramethylene ether)diamines.
- the amine- and hydroxyl-functional extenders already mentioned may be used as well.
- trifunctional reactants are limited and may be used in conjunction with monofunctional reactants to prevent crosslinking.
- Suitable thermoplastic polyamide elastomers may be obtained by: (1) polycondensation of (a) a dicarboxylic acid, such as oxalic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, or any of the other dicarboxylic acids already mentioned with (b) a diamine, such as ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, or decamethylenediamine, 1,4-cyclohexanediamine, m-xylylenediamine, or any of the other diamines already mentioned; (2) a ring-opening polymerization of a cyclic lactam, such as ⁇ -caprolactam or ⁇ -laurolactam; (3) polycondensation of an aminocarboxylic acid, such as 6-aminocaproic acid, 9-aminononanoi
- Polymerization may be carried out, for example, at temperatures of from about 180° C. to about 300° C.
- suitable polyamide block copolymers include NYLON 6, NYLON 66, NYLON 610, NYLON 11, NYLON 12, copolymerized NYLON MXD6, and NYLON 46 block copolymer elastomers.
- Thermoplastic poly(ether amide) block copolymer elastomers (PEBA) are commercially available under the trademark Pebax® from Arkema.
- Thermoplastic polyester elastomers have blocks of monomer units with low chain length that form the crystalline regions and blocks of softening segments with monomer units having relatively higher chain lengths.
- Thermoplastic polyester elastomers are commercially available under the trademark Hytrel® from DuPont.
- the core center and cover thermoplastic material may each independently include other polymers.
- the core center may include dispersed domains of cured rubbers, which may be incorporated in a thermoplastic elastomer matrix via dynamic vulcanization of rubbers in any of these thermoplastic elastomers or in other thermoplastic polymers.
- One such composition is described in Voorheis et al, U.S. Pat. No. 7,148,279, which is incorporated herein by reference.
- the core center may include a thermoplastic dynamic vulcanizate of a rubber in a non-elastomeric matrix resin such as polypropylene.
- Thermoplastic vulcanizates commercially available from ExxonMobil under the tradename SantopreneTM are believed to be vulcanized domains of EPDM in polypropylene.
- Plasticizers or softening polymers may be incorporated.
- a plasticizer is the high molecular weight, monomeric organic acid or its salt that may be incorporated, for example, with an ionomer polymer as already described, including metal stearates such as zinc stearate, calcium stearate, barium stearate, lithium stearate and magnesium stearate.
- metal stearates such as zinc stearate, calcium stearate, barium stearate, lithium stearate and magnesium stearate.
- the percentage of hard-to-soft segments is adjusted if lower hardness is desired rather than by adding a plasticizer.
- the cover thermoplastic material has a flexural modulus of at least about 15,000 psi. Like compression deformation, flexural modulus depends on the nature of the polymers used and their relative proportions and whether plasticizers or fillers are used and in what amount. In various preferred embodiments, the flexural modulus of the cover thermoplastic material may be from about 20,000 psi to about 50,000 psi, or preferably from about 20,000 psi to about 45,000 psi, or more preferably from about 25,000 psi to about 40,000 psi.
- Nonlimiting examples of commercial polymers that may be used that have a flexural modulus of at least about 15,000 psi are the grades of ionomer resins sold by DuPont Company, Wilmington Del. under the name Surlyn® 7930, 7940, 8140, 8150, 8920, 8940, 8945, 9120, 9150, 9910, and 9945.
- the thermoplastic polymers may be mixed with an amount of filler or other polymers that results in the flexural modulus of the thermoplastic material being up to the desired value.
- the cover thermoplastic material may instead, or in addition, have a flexural modulus of up to about 35,000 psi.
- the flexural modulus of the cover thermoplastic material may be from about 20,000 psi to about 50,000 psi
- thermoplastic polymers may be mixed with an amount of filler or other polymers that results in the flexural modulus of the thermoplastic material being up to the desired value.
- the golf ball has a core layer between the core center and the cover.
- the core layer includes a cured product of a rubber composition comprising a polybutadiene, an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid, and an organic peroxide, wherein the polybutadiene has Mooney viscosity (ML 1+4 (100° C.)) of at least about 40, preferably from about 40 to about 85, and more preferably from about 50 to about 85 and has at least about 70%, preferably at least about 80%, more preferably at least about 90%, and still more preferably at least about 95%, and most preferably at least about 98% of the monomer units joined via cis-1,4 bonds based on the total number of butadiene monomer units.
- Mooney viscosity ML 1+4 (100° C.)
- polystyrene resin preferably not more than 2%, more preferably not more than 1.7%, and even more preferably not more than 1.5%.
- Such high cis-1,4 polybutadienes are commercially available or can be polymerized using a rare-earth catalyst or a Group VIII metal compound catalyst, preferably a rare-earth catalyst.
- rare-earth catalysts that may be used include those made by a combination of a lanthanide series rare-earth compound with an organoaluminum compound, an alumoxane, a halogen-bearing compound, and an optional Lewis base.
- suitable lanthanide series rare-earth compounds include halides, carboxylates, alcoholates, thioalcoholates and amides of atomic number 57 to 71 metals.
- a neodymium catalyst is particularly advantageous because it results in a polybutadiene rubber having a high cis-1,4 bond content and a low 1,2-vinyl bond content.
- the base rubber may include other rubbers in addition to the high cis-1,4 polybutadiene, for example natural rubber, polyisoprene rubber, styrene polybutadiene rubber, ethylene-propylene-diene rubber (EPDM).
- the high cis-1,4 polybutadiene should be at least about 50% by weight, preferably at least about 80% by weight based on the total weight of base rubber.
- the rubber composition includes an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid which acts as a crosslinker or co-crosslinking agent.
- unsaturated carboxylic acids or salts may, in general, be ⁇ , ⁇ -ethylenically unsaturated acids having 3 to 8 carbon atoms such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, and fumaric acid that may be used as their magnesium and zinc salts.
- preferable co-crosslinking agents include zinc diacrylate, magnesium diacrylate, zinc dimethacrylate and magnesium dimethacrylate.
- the amount of the unsaturated carboxylic acid or its salt is typically at least about 10 parts by weight, preferably at least about 15 parts by weight and up to about 50 parts by weight, preferably up to about 45 parts by weight per 100 parts by weight of the base rubber.
- the rubber composition includes a free radical initiator.
- Suitable initiators include organic peroxide compounds such as dicumyl peroxide, 1,1-di(t-butylperoxy) 3,3,5-trimethyl cyclohexane, ⁇ , ⁇ -bis(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5 di(t-butylperoxy)hexane, di-t-butyl peroxide.
- the amount of the organic peroxide is typically at least about 0.1 part by weight, preferably at least about 0.3 part by weight, more preferably equal at least about 0.5 part by weight up to about 3.0 parts by weight, preferably up to about 2.5 parts by weight, based on 100 parts by weight of the base rubber.
- the physical properties of the golf ball components can be modified by including a filler.
- suitable fillers include clay, talc, asbestos, graphite, glass, mica, calcium metasilicate, barium sulfate, zinc sulfide, aluminum hydroxide, silicates, diatomaceous earth, carbonates (such as calcium carbonate, magnesium carbonate and the like), metals (such as titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, copper, brass, boron, bronze, cobalt, beryllium and alloys of these), metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide and the like), particulate synthetic plastics (such as high molecular weight polyethylene, polystyrene, polyethylene ionomeric resins and the like), particulate carbonaceous materials (such as carbon black, natural bitumen and the like), as well as cotton flock, cellulose flock and/or leather fiber.
- suitable fillers include clay,
- Nonlimiting examples of heavy-weight fillers that may be used to increase specific gravity include titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, steel, lead, copper, brass, boron, boron carbide whiskers, bronze, cobalt, beryllium, zinc, tin, and metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide).
- Nonlimiting examples of light-weight fillers that may be used to decrease specific gravity include particulate plastics, glass, ceramics, and hollow spheres, regrinds, or foams of these. Fillers that may be used in the core center and core layers of a golf ball are typically in a finely divided form.
- the specific gravity of the core layer is at least about 0.1 g/cm 3 greater than the specific gravity of the core center. In preferred embodiments, specific gravity of the core layer is at least about 0.3 g/cm 3 greater than the specific gravity of the core center.
- a heavy-weight filler, or more of a heavy-weight filler may be included to attain a higher specific gravity.
- a light-weight filler or no filler may be included to attain a lower specific gravity.
- the cover may be formulated with a pigment, such as a yellow or white pigment, and in particular a white pigment such as titanium dioxide or zinc oxide.
- a white pigment such as titanium dioxide or zinc oxide.
- titanium dioxide is used as a white pigment, for example in amounts of from about 0.5 parts by weight or 1 part by weight to about 8 parts by weight or 10 parts by weight based on 100 parts by weight of polymer.
- a white-colored cover may be tinted with a small amount of blue pigment or brightener.
- the cover has a surface Shore D hardness of at least 60, preferably at least about 65. In a second embodiment, the cover has a surface Shore D hardness of less than 60, preferably up to about 55, or up to about 50, or up to about 45, or up to about 40, or up to about 35.
- the surface hardness of the cover can be affected by the polymer or polymers and the filler or fillers used in making it.
- Customary additives can also be included in the thermoplastic materials, for example dispersants, antioxidants such as phenols, phosphites, and hydrazides, processing aids, surfactants, stabilizers, and so on.
- the cover may also contain additives such as hindered amine light stabilizers such as piperidines and oxanalides, ultraviolet light absorbers such as benzotriazoles, triazines, and hindered phenols, fluorescent materials and fluorescent brighteners, dyes such as blue dye, and antistatic agents.
- the 10-130 kg compression deformation of the core center is at least about 3.5 mm. In a second embodiment, the 10-130 kg compression deformation of the core center is at least about 4.0 mm.
- the 10-130 kg compression deformation is determined by a combination of factors, including the nature and amount of ionomer resins, the presence, nature, and amount of other polymeric materials or plasticizers, and the presence, nature, and amount of fillers.
- the core layer including the cured product of the rubber composition may have a 10-130 kg compression deformation of at least about 3 mm.
- the cover i.e., the golf ball
- the cover may have a 10-130 kg compression deformation of at least about 2.8 mm.
- the ratio of the 10-130 kg compression deformation of the core layer to the 10-130 kg compression deformation of the core center is from about 0.8 to about 1. In various preferred golf balls the ratio of the 10-130 kg compression deformation of the cover to the 10-130 kg compression deformation of the core layer is from about 0.8 to about 1.
- the thermoplastic materials may be made by conventional methods, such as melt mixing in a single- or twin-screw extruder, a Banbury mixer, an internal mixer, a two-roll mill, or a ribbon mixer.
- the first thermoplastic material is formed into a core center and the second thermoplastic material is formed into a core layer around the core center by usual methods, for example by injection molding with a mold temperature in the range of 150° C. to 230° C. If there is a second core layer, the fourth thermoplastic material may be formed in a layer over the core layer by the same methods.
- the molded core including core center, core layer, and optionally second core layer or further core layers may be ground to a desired diameter after cooling. Grinding can also be used to remove flash, pin marks, and gate marks due to the molding process.
- the third thermoplastic material used to make the cover may preferably include one or more of thermoplastic polyurethane elastomers, thermoplastic polyurea elastomers, and the metal cation salts of copolymers of ethylene with ethylenically unsaturated carboxylic acids.
- the cover may be formed on the multi-layer core by injection molding, compression molding, casting, and so on.
- a core fabricated beforehand may be set inside a mold, and the cover material may be injected into the mold.
- the cover is typically molded on the core by injection molding or compression molding.
- another method that may be used involves pre-molding a pair of half-covers from the cover material by die casting or another molding method, enclosing the core in the half-covers, and compression molding at, for example, between 120° C. and 170° C. for a period of 1 to 5 minutes to attach the cover halves around the core.
- the core may be surface-treated before the cover is formed over it to increase the adhesion between the core and the cover.
- Nonlimiting examples of suitable surface preparations include mechanical or chemical abrasion, corona discharge, plasma treatment, or application of an adhesion promoter such as a silane or of an adhesive.
- the cover typically has a dimple pattern and profile to provide desirable aerodynamic characteristics to the golf ball.
- thermoplastic material used to make the cover may preferably include thermoplastic polyurethane elastomer, thermoplastic polyurea elastomer, ionomer resin, or combinations of these.
- the cover may have a thickness of from about 0.5 mm to about 4 mm. If there are two cover layers, typically, the cover layers may each independently have a thickness of from about 0.3 mm to about 2.0 mm, preferably from about 0.8 mm to about 1.6 mm.
- the core center has a diameter of 21 mm to 29 mm. In various embodiments, the core center has a diameter of from about 23 mm to about 27 mm.
- the core layer may have a thickness of at least about 5 mm. In various embodiments, the core layer may have a thickness of from about 5 mm to about 10 mm.
- the golf ball may have a second core layer between the core center and the core layer or between the core layer and the cover.
- the golf balls can be of any size, although the USGA requires that golf balls used in competition have a diameter of at least 1.68 inches (42.672 mm) and a weight of no greater than 1.62 ounces (45.926 g). For play outside of USGA competition, the golf balls can have smaller diameters and be heavier.
- the golf ball After a golf ball has been molded, it may undergo various further processing steps such as buffing, painting and marking.
- the golf ball has a dimple pattern that coverage of 65% or more of the surface.
- the golf ball typically is coated with a durable, abrasion-resistant and relatively non-yellowing finish coat.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application 61/829,446, filed May 31, 2013, which is hereby incorporated by reference in its entirety.
- The invention concerns multi-layer golf balls with thermoplastic core materials.
- This section provides information helpful in understanding the invention but that is not necessarily prior art.
- Golf ball core and cover layers are typically constructed with polymer compositions including, for example, polybutadiene rubber, polyurethanes, polyamides, ionomers, and blends of such polymers. Ionomers, particularly ethylene-based ionomers, are a preferred group of polymers for golf ball layers because of their toughness, durability, and wide range of hardness values.
- Golf ball compositions comprising highly neutralized acid polymers are known. For example, U.S. Pat. No. 7,375,151, the entire disclosure of which is incorporated herein by reference, discloses a highly-resilient thermoplastic ionomer resin composition comprising (a) melt-processable, ethylene acid copolymer; (b) aliphatic, mono-functional organic acid or its salt; (c) a thermoplastic resin; (d) a cation source; and (e) optionally, a filler. The ionomer resin may be neutralized to greater than 90% of all the acid groups present and remain melt-processable. The patent discloses using the highly-resilient thermoplastic composition in one-piece, two-piece, three-piece, and multi-layered golf balls.
- While various uses for highly neutralized acid polymers in golf balls have been discovered, there is a need to improve golf ball materials using highly neutralized acid polymers or other thermoplastic polymers to particular golf ball constructions having desirable properties.
- This section provides a general summary of the disclosure and is not comprehensive of its full scope or all of the disclosed features.
- A multi-layer golf ball has a core center including an ionomer resin and, optionally, further including a polyolefin elastomer; a core layer including a cured product of a rubber composition including (a) a polybutadiene with at least 70% cis-1,4 bonds and with a Mooney viscosity (ML1+4(100° C.)) of at least about 40, (b) an unsaturated carboxylic acid or its metal salt, and (c) a free radical initiator, e.g., an organic peroxide; and a cover including a thermoplastic material. The core center has a diameter of from about 21 mm to about 29 mm and a 10-130 kg compression deformation of at least about 4 mm. The core layer is at least about 5 mm thick. The specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center.
- In a first embodiment, the cover has a flexural modulus of at least about 15,000 psi. In a second embodiment, the cover has a flexural modulus of up to about 35,000 psi.
- Also disclosed is a golf ball with a core center including an ionomer resin and having a 10-130 kg compression deformation of at least about 3.5 mm, a core layer including the cured product of the disclosed rubber composition having a thickness of at least about 5 mm and a second 10-130 kg compression deformation C2 of at least about 3 mm, and a cover having a third 10-130 kg compression deformation C3 of at least about 2.8 mm, with ratios of C2/C1 and C3/C2 each independently being from about 0.8 to about 1.
- In a first embodiment, the cover has a surface Shore D hardness of at least 60. In a second embodiment, the cover has a surface Shore D hardness of less than 60.
- The golf ball has a multi-layer core including a core center as an innermost core part and one or more “core layers” outward from and enclosing the center. A “core layer” for this invention is a golf ball layer lying between the center and the cover of the golf ball. In describing this invention, a “cover” is the outermost structural golf ball layer or, for two cover layers, each “cover layer” is one of the two outermost structural golf ball layers. Coating layers (whether paint layers or clear coating layers) are not considered to be structural layers.
- Hardness is measured according to ASTM D2240, but measured on a curved surface of the core center and core layer or on a land area of a curved surface of the cover. It is understood in this technical field of art that the hardness measured in this way often varies from the hardness of a flat slab or button of material in a non-linear way that cannot be correlated, for example because of effects of underlying layers. Because of the curved surface, care must be taken to center the golf ball or golf ball subassembly under the durometer indentor before a surface hardness reading is obtained and to measure an even area, e.g. on the dimpled surface cover measurements are taken on a land (fret) area between dimples. Specific gravity is measured according to ASTM D792. Flexural modulus is measured according to ASTM D790. Specific gravity is measured according to ASTM D792. “Compression deformation” is the deformation amount under a compressive load of 130 kg minus the deformation amount under a compressive load of 10 kg. The amount of deformation of the ball under a force of 10 kg is measured, then the force is increased to 130 kg and the amount of deformation under the new force of 130 kg is measured. The deformation amount at 10 kg is subtracted from the deformation amount at 130 kg to give the 10-130 kg compression deformation. “Mooney viscosity (ML1+4(100° C.))” is measured according to JIS K6300 using a Mooney viscometer, which is a type of rotary plastomer. In the term ML1+4(100° C.), “M” indicates Mooney viscosity, “L” stands for large rotor (L-type), and “1+4” indicates a pre-heating time of 1 minute and a rotor rotation time of 4 minutes. The “(100° C.)” indicates that the measurement is carried out at a temperature of 100° C. “Coefficient of restitution” or COR in the present invention is measured generally according to the following procedure: a golf ball is fired by an air cannon at an initial velocity of 40 msec, and a speed monitoring device is located over a distance of 0.6 to 0.9 meters from the cannon. After striking a steel plate positioned about 1.2 meters away from the air cannon, the test object rebounds through the speed-monitoring device. The return velocity divided by the initial velocity is the COR.
- “A,” “an,” “the,” “at least one,” and “one or more” are used interchangeably to indicate that at least one of the item is present; the indefinite articles indicate a plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range. Each value within a range and the endpoints of a range are hereby all disclosed as separate embodiments. In this description of the invention, for convenience, “polymer” and “resin” are used interchangeably to encompass resins, oligomers, and polymers. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated items, but do not preclude the presence of other items. As used in this specification, the term “or” includes any and all combinations of one or more of the listed items. When the terms first, second, third, etc. are used to differentiate various items from each other, these designations are merely for convenience and do not limit the items.
- The FIGURE is a partial cross-sectional view of an embodiment of a multi-layer golf ball that illustrates some aspects of the disclosed technology. The parts of the FIGURE are not necessarily to scale.
- A detailed description of exemplary, nonlimiting embodiments follows.
- As shown in the FIGURE, a
multi-layer golf ball 100 has acore center 110 with asurface 115, acore layer 120 that is radially outward from thecore center 110 and has asurface 125, and acover 130 that has asurface 135 and forms the outermost layer of thegolf ball 100. - The core center includes an ionomer resin. Ionomer resins, which are metal cation ionomers of addition copolymers of ethylenically unsaturated acids, are preferably alpha-olefin, particularly ethylene, copolymers with C3 to C8 α,β-ethylenically unsaturated carboxylic acids, particularly acrylic or methacrylic acid. The copolymers may also contain a softening monomer such as an alkyl acrylate or methacrylate, for example a C1 to C8 alkyl acrylate or methacrylate ester. The α,β-ethylenically unsaturated carboxylic acid monomer may be from about 4 weight percent or about 6 weight percent or about 8 weight percent up to about 20 weight percent or up to about 35 weight percent of the copolymer, and the softening monomer, when present, is preferably present in a finite amount, preferably at least about 5 weight percent or at least about 11 weight percent, up to about 23 weight percent or up to about 25 weight percent or up to about 50 weight percent of the copolymer.
- Nonlimiting specific examples of acid-containing ethylene copolymers include copolymers of ethylene/acrylic acid/n-butyl acrylate, ethylene/methacrylic acid/n-butyl acrylate, ethylene/methacrylic acid/isobutyl acrylate, ethylene/acrylic acid/isobutyl acrylate, ethylene/methacrylic acid/n-butyl methacrylate, ethylene/acrylic acid/methyl methacrylate, ethylene/acrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl methacrylate, and ethylene/acrylic acid/n-butyl methacrylate. Preferred acid-containing ethylene copolymers include copolymers of ethylene/methacrylic acid/n-butyl acrylate, ethylene/acrylic acid/n-butyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/acrylic acid/ethyl acrylate, ethylene/methacrylic acid/ethyl acrylate, and ethylene/acrylic acid/methyl acrylate. In various embodiments the most preferred acid-containing ethylene copolymers include ethylene/(meth)acrylic acid/n-butyl acrylate, ethylene/(meth)acrylic acid/ethyl acrylate, and ethylene/(meth)acrylic acid/methyl acrylate copolymers.
- The ionomer resin may be a high acid ionomer resin. In general, ionomers prepared by neutralizing acid copolymers including at least about 16 weight % of copolymerized acid residues based on the total weight of the unneutralized ethylene acid copolymer are considered “high acid” ionomers. In these high modulus ionomers, the acid monomer, particularly acrylic or methacrylic acid, is present in about 16 to about 35 weight %. In various embodiments, the copolymerized carboxylic acid may be from about 16 weight %, or about 17 weight % or about 18.5 weight % or about 20 weight % up to about 21.5 weight % or up to about 25 weight % or up to about 30 weight % or up to about 35 weight % of the unneutralized copolymer. A high acid ionomer may be combined with a “low acid” ionomer in which the copolymerized carboxylic acid is less than 16 weight % of the unneutralized copolymer. Such a mixture of a high acid ionomer and a low acid ionomer is particularly suitable for the third thermoplastic material of the inner cover layer or the fourth thermoplastic material or the outer cover layer, and especially for the third thermoplastic material of the inner cover layer.
- The acid moiety in the ethylene-acid copolymer is neutralized by any metal cation. Suitable preferred cations include lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, or a combination of these cations; in various embodiments alkali metal, alkaline earth metal, or zinc cations are particularly preferred. In various embodiments, the acid groups of the ionomer may be neutralized from about 10% or from about 20% or from about 30% or from about 40% to about 60% or to about 70% or to about 75% or to about 80% or to about 90%.
- A sufficiently high molecular weight, monomeric organic acid or salt of such an organic acid may be added to the acid copolymer or ionomer so that the acid copolymer or ionomer can be neutralized, without losing processability, to a level above the level that would cause the ionomer alone to become non-melt-processable. The high-molecular weight, monomeric organic acid its salt may be added to the ethylene-unsaturated acid copolymers before they are neutralized or after they are optionally partially neutralized to a level between about 1 and about 100%, provided that the level of neutralization is such that the resulting ionomer remains melt-processable. In generally, when the high-molecular weight, monomeric organic acid is included the acid groups of the copolymer may be neutralized from at least about 40 to about 100%, preferably from at least about 90% to about 100%, and most preferably 100% without losing processability. Such high neutralization, particularly to levels greater than 80%, greater than 90% or greater than 95% or most preferably 100%, without loss of processability can be done by (a) melt-blending the ethylene α,β-ethylenically unsaturated carboxylic acid copolymer or a melt-processable salt of the copolymer with an organic acid or a salt of organic acid, and (b) adding a sufficient amount of a cation source up to 110% of the amount needed to neutralize the total acid in the copolymer or ionomer and organic acid or salt to the desired level to increase the level of neutralization of all the acid moieties in the mixture preferably to greater than 90%, preferably greater than 95%, or preferably to 100%. To obtain 100% neutralization, it is preferred to add a slight excess of up to 110% of cation source over the amount stoichiometrically required to obtain the 100% neutralization.
- The high molecular weight, monomeric saturated or unsaturated acid may have from 8 or 12 or 18 carbon atoms to 36 carbon atoms or to less than 36 carbon atoms. Nonlimiting suitable examples of the high-molecular weight, monomeric saturated or unsaturated organic acids include stearic, behenic, erucic, oleic, and linoleic acids and their salts, particularly the barium, lithium, sodium, zinc, bismuth, chromium, cobalt, copper, potassium, strontium, titanium, tungsten, magnesium, or calcium salts of these fatty acids. These may be used in combinations.
- The thermoplastic material of the cover may also include an ionomer resin. The ionomer resin used in the thermoplastic material of the cover may be the same or different from the ionomer resin or resins in the core center. A “high acid” ionomer resin may be used in the thermoplastic material of the cover.
- The polymeric portions of the core center and cover thermoplastic material may independent of one another be only, or essentially, one or more ionomer resins. In such cases, the ionomer resin or resins may be at least about 90 weight percent, or at least about 95 weight percent, or preferably at least about 97 weight percent or at least about 98 weight percent or at least about 99 weight percent, or more preferably about 100 weight percent of the polymeric portion of the thermoplastic material.
- In various embodiments, the core center and the cover thermoplastic material may include one or more other thermoplastic polymers, particularly thermoplastic elastomers, in addition to an ionomer resin, or, in the case of the cover thermoplastic material, instead of the ionomer resin. Nonlimiting examples of other suitable thermoplastic elastomers that can be used include thermoplastic polyolefin elastomers such as metallocene-catalyzed block copolymers of ethylene and α-olefins having 4 to about 8 carbon atoms, thermoplastic polyamide elastomers (e.g., polyether block polyamides), thermoplastic polyester elastomers, thermoplastic styrene block copolymer elastomers such as poly(styrene-butadiene-styrene), poly(styrene-ethylene-co-butylene-styrene), and poly(styrene-isoprene-styrene), thermoplastic polyurethane elastomers, thermoplastic polyurea elastomers, and dynamic vulcanizates of rubbers in these thermoplastic elastomers and in other thermoplastic matrix polymers.
- Thermoplastic polyolefin elastomers may also be used in the thermoplastic materials of the golf ball. These are metallocene-catalyzed block copolymers of ethylene and α-olefins having 4 to about 8 carbon atoms that are prepared by single-site metallocene catalysis, for example in a high pressure process in the presence of a catalyst system comprising a cyclopentadienyl-transition metal compound and an alumoxane. Nonlimiting examples of the α-olefin softening comonomers include hexane-1 or octene-1; octene-1 is a preferred comonomer to use. These materials are commercially available, for example, from ExxonMobil under the tradename Exact™ and from the Dow Chemical Company under the tradename Engage™.
- In various preferred embodiments, the core center includes a polyolefin elastomer, especially one of the thermoplastic polyolefin elastomers just described. The core center may include from about 5 percent by weight to about 50 percent by weight, preferably from about 10 percent by weight to about 30 percent by weight polyolefin elastomer based on the combined weights of polyolefin elastomer and ionomer resin.
- In one embodiment, one or both of the core center and cover includes or include a combination of a metal ionomer of a copolymer of ethylene and at least one of acrylic acid and methacrylic acid, a metallocene-catalyzed copolymer of ethylene and an α-olefin having 4 to about 8 carbon atoms, and a metal salt of an unsaturated fatty acid that may be prepared as described in Statz et al., U.S. Pat. No. 7,375,151 or as described in Kennedy, “Process for Making Thermoplastic Golf Ball Material and Golf Ball with Thermoplastic Material, U.S. patent application Ser. No. 13/825,112, filed 15 Mar. 2013, the entire contents of both being incorporated herein by reference.
- Suitable thermoplastic styrene block copolymer elastomers that may be used in the core center and cover thermoplastic material of the golf ball include poly(styrene-butadiene-styrene), poly(styrene-ethylene-co-butylene-styrene), poly(styrene-isoprene-styrene), and poly(styrene-ethylene-co-propylene) copolymers. These styrenic block copolymers may be prepared by living anionic polymerization with sequential addition of styrene and the diene forming the soft block, for example using butyl lithium as initiator. Thermoplastic styrene block copolymer elastomers are commercially available, for example, under the trademark Kraton™ sold by Kraton Polymers U.S. LLC, Houston, Tex. Other such elastomers may be made as block copolymers by using other polymerizable, hard, non-rubber monomers in place of the styrene, including meth(acrylate) esters such as methyl methacrylate and cyclohexyl methacrylate, and other vinyl arylenes, such as alkyl styrenes.
- Thermoplastic polyurethane elastomers such as thermoplastic polyester-polyurethanes, polyether-polyurethanes, and polycarbonate-polyurethanes may be used in the core center and cover thermoplastic material, particularly in the cover thermoplastic material. The thermoplastic polyurethane elastomers include polyurethanes polymerized using as polymeric diol reactants polyethers and polyesters including polycaprolactone polyesters. These polymeric diol-based polyurethanes are prepared by reaction of the polymeric diol (polyester diol, polyether diol, polycaprolactone diol, polytetrahydrofuran diol, or polycarbonate diol), one or more polyisocyanates, and, optionally, one or more chain extension compounds. Chain extension compounds, as the term is being used, are compounds having two or more functional groups reactive with isocyanate groups, such as the diols, amino alcohols, and diamines. Preferably the polymeric diol-based polyurethane is substantially linear (i.e., substantially all of the reactants are difunctional).
- Diisocyanates used in making the polyurethane elastomers may be aromatic or aliphatic. Useful diisocyanate compounds used to prepare thermoplastic polyurethanes include, without limitation, isophorone diisocyanate (IPDI), methylene bis-4-cyclohexyl isocyanate (H12MDI), cyclohexyl diisocyanate (CHDI), m-tetramethyl xylene diisocyanate (m-TMXDI), p-tetramethyl xylene diisocyanate (p-TMXDI), 4,4′-methylene diphenyl diisocyanate (MDI, also known as 4,4′-diphenylmethane diisocyanate), 2,4- or 2,6-toluene diisocyanate (TDI), ethylene diisocyanate, 1,2-diisocyanatopropane, 1,3-diisocyanatopropane, 1,6-diisocyanatohexane (hexamethylene diisocyanate or HDI), 1,4-butylene diisocyanate, lysine diisocyanate, meta-xylylenediioscyanate and para-xylylenediisocyanate (XDI), 4-chloro-1,3-phenylene diisocyanate, 1,5-tetrahydro-naphthalene diisocyanate, 4,4′-dibenzyl diisocyanate, and combinations of these. Nonlimiting examples of higher-functionality polyisocyanates that may be used in limited amounts to produce branched thermoplastic polyurethanes (optionally along with monofunctional alcohols or monofunctional isocyanates) include 1,2,4-benzene triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,6,11-undecane triisocyanate, bicycloheptane triisocyanate, triphenylmethane-4,4′,4″-triisocyanate, isocyanurates of diisocyanates, biurets of diisocyanates, allophanates of diisocyanates, and the like.
- Nonlimiting examples of suitable diols that may be used as extenders include ethylene glycol and lower oligomers of ethylene glycol including diethylene glycol, triethylene glycol, and tetraethylene glycol; propylene glycol and lower oligomers of propylene glycol including dipropylene glycol, tripropylene glycol, and tetrapropylene glycol; cyclohexanedimethanol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,3-propanediol, butylene glycol, neopentyl glycol, dihydroxyalkylated aromatic compounds such as the bis(2-hydroxyethyl)ethers of hydroquinone and resorcinol; p-xylene-α,α′-diol; the bis(2-hydroxyethyl)ether of p-xylene-α,α′-diol; m-xylene-α,α′-diol, and combinations of these. Other active hydrogen-containing chain extenders that contain at least two active hydrogen groups may be used, for example, dithiols, diamines, or compounds having a mixture of hydroxyl, thiol, and amine groups, such as alkanolamines, aminoalkyl mercaptans, and hydroxyalkyl mercaptans, among others. Suitable diamine extenders include, without limitation, ethylene diamine, diethylene triamine, triethylene tetraamine, and combinations of these. Other typical chain extenders are amino alcohols such as ethanolamine, propanolamine, butanolamine, and combinations of these. The molecular weights of the chain extenders preferably range from about 60 to about 400. Alcohols and amines are preferred.
- In addition to difunctional extenders, a small amount of a trifunctional extender such as trimethylolpropane, 1,2,6-hexanetriol and glycerol, or monofunctional active hydrogen compounds such as butanol or dimethylamine, may also be included. The amount of trifunctional extender or monofunctional compound employed may be, for example, 5.0 equivalent percent or less based on the total weight of the reaction product and active hydrogen containing groups used.
- The polyester diols used in forming a thermoplastic polyurethane elastomer are in general prepared by the condensation polymerization of one or more polyacid compounds and one or more polyol compounds. Preferably, the polyacid compounds and polyol compounds are di-functional, i.e., diacid compounds and diols are used to prepare substantially linear polyester diols, although minor amounts of mono-functional, tri-functional, and higher functionality materials can be included to provide a slightly branched, but uncrosslinked polyester polyol component. Suitable dicarboxylic acids include, without limitation, glutaric acid, succinic acid, malonic acid, oxalic acid, phthalic acid, isophthalic acid, hexahydrophthalic acid, adipic acid, maleic acid, suberic acid, azelaic acid, dodecanedioic acid, their anhydrides and polymerizable esters (e.g., methyl esters) and acid halides (e.g., acid chlorides), and mixtures of these. Suitable polyols include those already mentioned, especially the diols. Typical catalysts for the esterification polymerization are protonic acids, Lewis acids, titanium alkoxides, and dialkyltin oxides.
- A polymeric polyether or polycaprolactone diol reactant for preparing thermoplastic polyurethane elastomers may be obtained by reacting a diol initiator, e.g., 1,3-propanediol or ethylene or propylene glycol, with a lactone or alkylene oxide chain-extension reagent. Lactones that can be ring opened by an active hydrogen are well-known in the art. Examples of suitable lactones include, without limitation, ε-caprolactone, γ-caprolactone, β-butyrolactone, β-propriolactone, γ-butyrolactone, α-methyl-γ-butyrolactone, β-methyl-γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-decanolactone, δ-decanolactone, γ-nonanoic lactone, γ-octanoic lactone, and combinations of these. In one preferred embodiment, the lactone is ε-caprolactone. Useful catalysts include those mentioned above for polyester synthesis. Alternatively, the reaction can be initiated by forming a sodium salt of the hydroxyl group on the molecules that will react with the lactone ring. In other embodiments, a diol initiator may be reacted with an oxirane-containing compound or cyclic ether to produce a polyether diol to be used in the polyurethane elastomer polymerization. Alkylene oxide polymer segments include, without limitation, the polymerization products of ethylene oxide, propylene oxide, 1,2-cyclohexene oxide, 1-butene oxide, 2-butene oxide, 1-hexene oxide, tert-butylethylene oxide, phenyl glycidyl ether, 1-decene oxide, isobutylene oxide, cyclopentene oxide, 1-pentene oxide, and combinations of these. The oxirane- or cyclic ether-containing compound is preferably selected from ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, and combinations of these. The alkylene oxide polymerization is typically base-catalyzed. The polymerization may be carried out, for example, by charging the hydroxyl-functional initiator compound and a catalytic amount of caustic, such as potassium hydroxide, sodium methoxide, or potassium tert-butoxide, and adding the alkylene oxide at a sufficient rate to keep the monomer available for reaction. Two or more different alkylene oxide monomers may be randomly copolymerized by coincidental addition or polymerized in blocks by sequential addition. Homopolymers or copolymers of ethylene oxide or propylene oxide are preferred. Tetrahydrofuran may be polymerized by a cationic ring-opening reaction using such counterions as SbF6 −, AsF6 −, PF6 −, SbCl6 −, BF4 −, CF3SO3 −, FSO3 −, and ClO4 −. Initiation is by formation of a tertiary oxonium ion. The polytetrahydrofuran segment can be prepared as a “living polymer” and terminated by reaction with the hydroxyl group of a diol such as any of those mentioned above. Polytetrahydrofuran is also known as polytetramethylene ether glycol (PTMEG).
- Aliphatic polycarbonate diols that may be used in making a thermoplastic polyurethane elastomer may be prepared by the reaction of diols with dialkyl carbonates (such as diethyl carbonate), diphenyl carbonate, or dioxolanones (such as cyclic carbonates having five- and six-member rings) in the presence of catalysts like alkali metal, tin catalysts, or titanium compounds. Useful diols include, without limitation, any of those already mentioned. Aromatic polycarbonates are usually prepared from reaction of bisphenols, e.g., bisphenol A, with phosgene or diphenyl carbonate.
- In various embodiments, the polymeric diol preferably has a weight average molecular weight of at least about 500, more preferably at least about 1000, and even more preferably at least about 1800 and a weight average molecular weight of up to about 10,000, but polymeric diols having weight average molecular weights of up to about 5000, especially up to about 4000, may also be preferred. The polymeric diol advantageously has a weight average molecular weight in the range from about 500 to about 10,000, preferably from about 1000 to about 5000, and more preferably from about 1500 to about 4000. The weight average molecular weights may be determined by ASTM D4274.
- The reaction of the polyisocyanate, polymeric diol, and diol or other chain extension agent is typically carried out at an elevated temperature in the presence of a catalyst. Typical catalysts for this reaction include organotin catalysts such as stannous octoate, dibutyl tin dilaurate, dibutyl tin diacetate, dibutyl tin oxide, tertiary amines, zinc salts, and manganese salts. Generally, for elastomeric polyurethanes, the ratio of polymeric diol, such as polyester diol, to extender can be varied within a relatively wide range depending largely on the desired flexural modulus of the final polyurethane elastomer. For example, the equivalent proportion of polyester diol to extender may be within the range of 1:0 to 1:12 and, more preferably, from 1:1 to 1:8. Preferably, the diisocyanate(s) employed are proportioned such that the overall ratio of equivalents of isocyanate to equivalents of active hydrogen containing materials is within the range of 1:1 to 1:1.05, and more preferably, 1:1 to 1:1.02. The polymeric diol segments typically are from about 35% to about 65% by weight of the polyurethane polymer, and preferably from about 35% to about 50% by weight of the polyurethane polymer.
- Suitable thermoplastic polyurea elastomers may be prepared by reaction of one or more polymeric diamines or polyols with one or more of the polyisocyanates already mentioned and one or more diamine extenders. Nonlimiting examples of suitable diamine extenders include ethylene diamine, 1,3-propylene diamine, 2-methyl-pentamethylene diamine, hexamethylene diamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexane diamine, imino-bis(propylamine), imido-bis(propylamine), N-(3-aminopropyl)-N-methyl-1,3-propanediamine), 1,4-bis(3-aminopropoxy)butane, diethyleneglycol-di(aminopropyl)ether), 1-methyl-2,6-diamino-cyclohexane, 1,4-diamino-cyclohexane, 1,3- or 1,4-bis(methylamino)-cyclohexane, isophorone diamine, 1,2- or 1,4-bis(sec-butylamino)-cyclohexane, N,N′-diisopropyl-isophorone diamine, 4,4′-diamino-dicyclohexylmethane, 3,3′-dimethyl-4,4′-diamino-dicyclohexylmethane, N,N′-dialkylamino-dicyclohexylmethane, and 3,3′-diethyl-5,5′-dimethyl-4,4′-diamino-dicyclohexylmethane. Polymeric diamines include polyoxyethylene diamines, polyoxypropylene diamines, poly(oxyethylene-oxypropylene)diamines, and poly(tetramethylene ether)diamines. The amine- and hydroxyl-functional extenders already mentioned may be used as well. Generally, as before, trifunctional reactants are limited and may be used in conjunction with monofunctional reactants to prevent crosslinking.
- Suitable thermoplastic polyamide elastomers may be obtained by: (1) polycondensation of (a) a dicarboxylic acid, such as oxalic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, or any of the other dicarboxylic acids already mentioned with (b) a diamine, such as ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, or decamethylenediamine, 1,4-cyclohexanediamine, m-xylylenediamine, or any of the other diamines already mentioned; (2) a ring-opening polymerization of a cyclic lactam, such as ε-caprolactam or ω-laurolactam; (3) polycondensation of an aminocarboxylic acid, such as 6-aminocaproic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, or 12-aminododecanoic acid; or (4) copolymerization of a cyclic lactam with a dicarboxylic acid and a diamine to prepare a carboxylic acid-functional polyamide block, followed by reaction with a polymeric ether diol (polyoxyalkylene glycol) such as any of those already mentioned. Polymerization may be carried out, for example, at temperatures of from about 180° C. to about 300° C. Specific examples of suitable polyamide block copolymers include NYLON 6, NYLON 66, NYLON 610, NYLON 11, NYLON 12, copolymerized NYLON MXD6, and NYLON 46 block copolymer elastomers. Thermoplastic poly(ether amide) block copolymer elastomers (PEBA) are commercially available under the trademark Pebax® from Arkema.
- Thermoplastic polyester elastomers have blocks of monomer units with low chain length that form the crystalline regions and blocks of softening segments with monomer units having relatively higher chain lengths. Thermoplastic polyester elastomers are commercially available under the trademark Hytrel® from DuPont. The core center and cover thermoplastic material may each independently include other polymers. In one example, the core center may include dispersed domains of cured rubbers, which may be incorporated in a thermoplastic elastomer matrix via dynamic vulcanization of rubbers in any of these thermoplastic elastomers or in other thermoplastic polymers. One such composition is described in Voorheis et al, U.S. Pat. No. 7,148,279, which is incorporated herein by reference. In various embodiments, the core center may include a thermoplastic dynamic vulcanizate of a rubber in a non-elastomeric matrix resin such as polypropylene. Thermoplastic vulcanizates commercially available from ExxonMobil under the tradename Santoprene™ are believed to be vulcanized domains of EPDM in polypropylene.
- Plasticizers or softening polymers may be incorporated. One example of such a plasticizer is the high molecular weight, monomeric organic acid or its salt that may be incorporated, for example, with an ionomer polymer as already described, including metal stearates such as zinc stearate, calcium stearate, barium stearate, lithium stearate and magnesium stearate. For most thermoplastic elastomers, the percentage of hard-to-soft segments is adjusted if lower hardness is desired rather than by adding a plasticizer.
- The cover thermoplastic material has a flexural modulus of at least about 15,000 psi. Like compression deformation, flexural modulus depends on the nature of the polymers used and their relative proportions and whether plasticizers or fillers are used and in what amount. In various preferred embodiments, the flexural modulus of the cover thermoplastic material may be from about 20,000 psi to about 50,000 psi, or preferably from about 20,000 psi to about 45,000 psi, or more preferably from about 25,000 psi to about 40,000 psi.
- Nonlimiting examples of commercial polymers that may be used that have a flexural modulus of at least about 15,000 psi are the grades of ionomer resins sold by DuPont Company, Wilmington Del. under the name Surlyn® 7930, 7940, 8140, 8150, 8920, 8940, 8945, 9120, 9150, 9910, and 9945. The thermoplastic polymers may be mixed with an amount of filler or other polymers that results in the flexural modulus of the thermoplastic material being up to the desired value.
- The cover thermoplastic material may instead, or in addition, have a flexural modulus of up to about 35,000 psi. In various preferred embodiments, the flexural modulus of the cover thermoplastic material may be from about 20,000 psi to about 50,000 psi
- The thermoplastic polymers may be mixed with an amount of filler or other polymers that results in the flexural modulus of the thermoplastic material being up to the desired value.
- The golf ball has a core layer between the core center and the cover. The core layer includes a cured product of a rubber composition comprising a polybutadiene, an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid, and an organic peroxide, wherein the polybutadiene has Mooney viscosity (ML1+4(100° C.)) of at least about 40, preferably from about 40 to about 85, and more preferably from about 50 to about 85 and has at least about 70%, preferably at least about 80%, more preferably at least about 90%, and still more preferably at least about 95%, and most preferably at least about 98% of the monomer units joined via cis-1,4 bonds based on the total number of butadiene monomer units. Higher cis-1,4-bond content in the polybutadiene increases resilience. Moreover, it is preferred that the polybutadiene have a 1,2-vinyl bond content of preferably not more than 2%, more preferably not more than 1.7%, and even more preferably not more than 1.5%.
- Such high cis-1,4 polybutadienes are commercially available or can be polymerized using a rare-earth catalyst or a Group VIII metal compound catalyst, preferably a rare-earth catalyst. Nonlimiting examples of rare-earth catalysts that may be used include those made by a combination of a lanthanide series rare-earth compound with an organoaluminum compound, an alumoxane, a halogen-bearing compound, and an optional Lewis base. Examples of suitable lanthanide series rare-earth compounds include halides, carboxylates, alcoholates, thioalcoholates and amides of atomic number 57 to 71 metals. A neodymium catalyst is particularly advantageous because it results in a polybutadiene rubber having a high cis-1,4 bond content and a low 1,2-vinyl bond content.
- The base rubber may include other rubbers in addition to the high cis-1,4 polybutadiene, for example natural rubber, polyisoprene rubber, styrene polybutadiene rubber, ethylene-propylene-diene rubber (EPDM). When other rubbers are included, the high cis-1,4 polybutadiene should be at least about 50% by weight, preferably at least about 80% by weight based on the total weight of base rubber.
- The rubber composition includes an unsaturated carboxylic acid or metal salt of an unsaturated carboxylic acid which acts as a crosslinker or co-crosslinking agent. Such unsaturated carboxylic acids or salts may, in general, be α,β-ethylenically unsaturated acids having 3 to 8 carbon atoms such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, and fumaric acid that may be used as their magnesium and zinc salts. Specific examples of preferable co-crosslinking agents include zinc diacrylate, magnesium diacrylate, zinc dimethacrylate and magnesium dimethacrylate. The amount of the unsaturated carboxylic acid or its salt is typically at least about 10 parts by weight, preferably at least about 15 parts by weight and up to about 50 parts by weight, preferably up to about 45 parts by weight per 100 parts by weight of the base rubber.
- The rubber composition includes a free radical initiator. Suitable initiators include organic peroxide compounds such as dicumyl peroxide, 1,1-di(t-butylperoxy) 3,3,5-trimethyl cyclohexane, α,α-bis(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5 di(t-butylperoxy)hexane, di-t-butyl peroxide. The amount of the organic peroxide is typically at least about 0.1 part by weight, preferably at least about 0.3 part by weight, more preferably equal at least about 0.5 part by weight up to about 3.0 parts by weight, preferably up to about 2.5 parts by weight, based on 100 parts by weight of the base rubber.
- The physical properties of the golf ball components can be modified by including a filler. Nonlimiting examples of suitable fillers include clay, talc, asbestos, graphite, glass, mica, calcium metasilicate, barium sulfate, zinc sulfide, aluminum hydroxide, silicates, diatomaceous earth, carbonates (such as calcium carbonate, magnesium carbonate and the like), metals (such as titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, copper, brass, boron, bronze, cobalt, beryllium and alloys of these), metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide and the like), particulate synthetic plastics (such as high molecular weight polyethylene, polystyrene, polyethylene ionomeric resins and the like), particulate carbonaceous materials (such as carbon black, natural bitumen and the like), as well as cotton flock, cellulose flock and/or leather fiber. Nonlimiting examples of heavy-weight fillers that may be used to increase specific gravity include titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, steel, lead, copper, brass, boron, boron carbide whiskers, bronze, cobalt, beryllium, zinc, tin, and metal oxides (such as zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, zirconium oxide). Nonlimiting examples of light-weight fillers that may be used to decrease specific gravity include particulate plastics, glass, ceramics, and hollow spheres, regrinds, or foams of these. Fillers that may be used in the core center and core layers of a golf ball are typically in a finely divided form.
- Including various heavy-weight or light-weight fillers in the different thermoplastic materials of the golf ball results in desirable relationships between the specific gravities of the different layers. The specific gravity of the core layer is at least about 0.1 g/cm3 greater than the specific gravity of the core center. In preferred embodiments, specific gravity of the core layer is at least about 0.3 g/cm3 greater than the specific gravity of the core center. A heavy-weight filler, or more of a heavy-weight filler, may be included to attain a higher specific gravity. A light-weight filler or no filler may be included to attain a lower specific gravity.
- The cover may be formulated with a pigment, such as a yellow or white pigment, and in particular a white pigment such as titanium dioxide or zinc oxide. Generally titanium dioxide is used as a white pigment, for example in amounts of from about 0.5 parts by weight or 1 part by weight to about 8 parts by weight or 10 parts by weight based on 100 parts by weight of polymer. In various embodiments, a white-colored cover may be tinted with a small amount of blue pigment or brightener.
- In a first embodiment, the cover has a surface Shore D hardness of at least 60, preferably at least about 65. In a second embodiment, the cover has a surface Shore D hardness of less than 60, preferably up to about 55, or up to about 50, or up to about 45, or up to about 40, or up to about 35. The surface hardness of the cover can be affected by the polymer or polymers and the filler or fillers used in making it.
- Customary additives can also be included in the thermoplastic materials, for example dispersants, antioxidants such as phenols, phosphites, and hydrazides, processing aids, surfactants, stabilizers, and so on. The cover may also contain additives such as hindered amine light stabilizers such as piperidines and oxanalides, ultraviolet light absorbers such as benzotriazoles, triazines, and hindered phenols, fluorescent materials and fluorescent brighteners, dyes such as blue dye, and antistatic agents.
- In a first embodiment, the 10-130 kg compression deformation of the core center is at least about 3.5 mm. In a second embodiment, the 10-130 kg compression deformation of the core center is at least about 4.0 mm. The 10-130 kg compression deformation is determined by a combination of factors, including the nature and amount of ionomer resins, the presence, nature, and amount of other polymeric materials or plasticizers, and the presence, nature, and amount of fillers.
- The core layer including the cured product of the rubber composition may have a 10-130 kg compression deformation of at least about 3 mm.
- The cover (i.e., the golf ball) may have a 10-130 kg compression deformation of at least about 2.8 mm.
- In certain preferred golf balls the ratio of the 10-130 kg compression deformation of the core layer to the 10-130 kg compression deformation of the core center is from about 0.8 to about 1. In various preferred golf balls the ratio of the 10-130 kg compression deformation of the cover to the 10-130 kg compression deformation of the core layer is from about 0.8 to about 1.
- The thermoplastic materials may be made by conventional methods, such as melt mixing in a single- or twin-screw extruder, a Banbury mixer, an internal mixer, a two-roll mill, or a ribbon mixer. The first thermoplastic material is formed into a core center and the second thermoplastic material is formed into a core layer around the core center by usual methods, for example by injection molding with a mold temperature in the range of 150° C. to 230° C. If there is a second core layer, the fourth thermoplastic material may be formed in a layer over the core layer by the same methods. The molded core including core center, core layer, and optionally second core layer or further core layers, may be ground to a desired diameter after cooling. Grinding can also be used to remove flash, pin marks, and gate marks due to the molding process.
- A cover layer is molded over the core. In various embodiments, the third thermoplastic material used to make the cover may preferably include one or more of thermoplastic polyurethane elastomers, thermoplastic polyurea elastomers, and the metal cation salts of copolymers of ethylene with ethylenically unsaturated carboxylic acids.
- The cover may be formed on the multi-layer core by injection molding, compression molding, casting, and so on. For example, when the cover is formed by injection molding, a core fabricated beforehand may be set inside a mold, and the cover material may be injected into the mold. The cover is typically molded on the core by injection molding or compression molding. Alternatively, another method that may be used involves pre-molding a pair of half-covers from the cover material by die casting or another molding method, enclosing the core in the half-covers, and compression molding at, for example, between 120° C. and 170° C. for a period of 1 to 5 minutes to attach the cover halves around the core. The core may be surface-treated before the cover is formed over it to increase the adhesion between the core and the cover. Nonlimiting examples of suitable surface preparations include mechanical or chemical abrasion, corona discharge, plasma treatment, or application of an adhesion promoter such as a silane or of an adhesive. The cover typically has a dimple pattern and profile to provide desirable aerodynamic characteristics to the golf ball.
- In various embodiments, the thermoplastic material used to make the cover may preferably include thermoplastic polyurethane elastomer, thermoplastic polyurea elastomer, ionomer resin, or combinations of these.
- Typically, the cover may have a thickness of from about 0.5 mm to about 4 mm. If there are two cover layers, typically, the cover layers may each independently have a thickness of from about 0.3 mm to about 2.0 mm, preferably from about 0.8 mm to about 1.6 mm.
- The core center has a diameter of 21 mm to 29 mm. In various embodiments, the core center has a diameter of from about 23 mm to about 27 mm.
- The core layer may have a thickness of at least about 5 mm. In various embodiments, the core layer may have a thickness of from about 5 mm to about 10 mm.
- In certain embodiments, the golf ball may have a second core layer between the core center and the core layer or between the core layer and the cover.
- The golf balls can be of any size, although the USGA requires that golf balls used in competition have a diameter of at least 1.68 inches (42.672 mm) and a weight of no greater than 1.62 ounces (45.926 g). For play outside of USGA competition, the golf balls can have smaller diameters and be heavier.
- After a golf ball has been molded, it may undergo various further processing steps such as buffing, painting and marking. In a particularly preferred embodiment of the invention, the golf ball has a dimple pattern that coverage of 65% or more of the surface. The golf ball typically is coated with a durable, abrasion-resistant and relatively non-yellowing finish coat.
- The description is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are a part of the invention. Variations are not to be regarded as a departure from the spirit and scope of the disclosure
Claims (30)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/076,864 US20140357415A1 (en) | 2013-05-31 | 2013-11-11 | Multi-layer golf ball |
| CN201480030355.3A CN105246558A (en) | 2013-05-31 | 2014-05-19 | multi-ply golf ball |
| US14/892,993 US20160089579A1 (en) | 2013-05-31 | 2014-05-19 | Multi-layer golf ball |
| KR1020157036067A KR20160003892A (en) | 2013-05-31 | 2014-05-19 | Multi-layer golf ball |
| JP2015563060A JP2016526933A (en) | 2013-05-31 | 2014-05-19 | Multi-layer golf ball |
| PCT/US2014/038577 WO2014193678A1 (en) | 2013-05-31 | 2014-05-19 | Multi-layer golf ball |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361829446P | 2013-05-31 | 2013-05-31 | |
| US14/076,864 US20140357415A1 (en) | 2013-05-31 | 2013-11-11 | Multi-layer golf ball |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/892,993 Continuation US20160089579A1 (en) | 2013-05-31 | 2014-05-19 | Multi-layer golf ball |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140357415A1 true US20140357415A1 (en) | 2014-12-04 |
Family
ID=51985756
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/076,864 Abandoned US20140357415A1 (en) | 2013-05-31 | 2013-11-11 | Multi-layer golf ball |
| US14/892,993 Abandoned US20160089579A1 (en) | 2013-05-31 | 2014-05-19 | Multi-layer golf ball |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/892,993 Abandoned US20160089579A1 (en) | 2013-05-31 | 2014-05-19 | Multi-layer golf ball |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US20140357415A1 (en) |
| JP (1) | JP2016526933A (en) |
| KR (1) | KR20160003892A (en) |
| CN (1) | CN105246558A (en) |
| WO (1) | WO2014193678A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105457243A (en) * | 2016-02-02 | 2016-04-06 | 傅军平 | Soft medicine ball |
| US20240278077A1 (en) * | 2023-02-10 | 2024-08-22 | Acushnet Company | Multi-layer golf balls with increased interlayer adhesion |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2619329A (en) * | 2022-06-01 | 2023-12-06 | Sekura Global Ip Llp | Retail security assembly |
Citations (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5120791A (en) * | 1990-07-27 | 1992-06-09 | Lisco, Inc. | Golf ball cover compositions |
| US5779562A (en) * | 1993-06-01 | 1998-07-14 | Melvin; Terrence | Multi-core, multi-cover golf ball |
| US5813923A (en) * | 1995-06-07 | 1998-09-29 | Acushnet Company | Golf ball |
| US6057403A (en) * | 1993-06-01 | 2000-05-02 | Spalding Sports Worldwide, Inc | Dual cores for golf balls |
| US6306049B1 (en) * | 1999-03-01 | 2001-10-23 | Acushnet Company | Method of improving impact resistance in golf ball core formulations |
| US6414082B1 (en) * | 1995-01-24 | 2002-07-02 | Acushnet Company | Golf ball compositions formed of grafted metallocene-catalyzed polymer blends |
| US6431999B1 (en) * | 1993-06-01 | 2002-08-13 | Spalding Sports Worldwide Inc. | Golf ball |
| US6476130B1 (en) * | 1995-01-24 | 2002-11-05 | Acushnet Company | Golf ball compositions formed from single catalyzed polymers |
| US6653403B2 (en) * | 1995-01-24 | 2003-11-25 | Acushnet Company | Golf balls having a cover layer formed from an ionomer and metallocene-catalyzed polyolefin blend and methods of making same |
| US6756436B2 (en) * | 2001-06-26 | 2004-06-29 | Acushnet Company | Golf balls comprising highly-neutralized acid polymers |
| US6780126B2 (en) * | 2003-01-02 | 2004-08-24 | Acushnet Company | Golf ball with large inner core |
| US6852784B2 (en) * | 2003-03-21 | 2005-02-08 | Acushnet Company | Non-conforming golf balls comprising highly-neutralized acid polymers |
| US6916254B2 (en) * | 2003-01-02 | 2005-07-12 | Acushnet Company | Golf ball with small inner core |
| US7041721B2 (en) * | 1995-06-07 | 2006-05-09 | Acushnet Company | Highly neutralized polymer golf ball compositions including oxa acids and methods of making same |
| US7131915B2 (en) * | 2001-04-10 | 2006-11-07 | Acushnet Company | Three-layer-cover golf ball |
| US20060252577A1 (en) * | 2004-02-06 | 2006-11-09 | Sullivan Michael J | Improved multi-layer core golf ball |
| US7148279B2 (en) * | 2001-04-13 | 2006-12-12 | Acushnet Company | Golf ball compositions comprising dynamically vulcanized blends of highly neutralized polymers and diene rubber |
| US7172520B2 (en) * | 2001-12-14 | 2007-02-06 | Sri Sports Limited | Golf ball |
| US7230045B2 (en) * | 2001-06-26 | 2007-06-12 | Acushnet Company | Golf balls comprising highly-neutralized acid polymers |
| US7300364B2 (en) * | 2004-02-06 | 2007-11-27 | Acushnet Company | Multi-layer golf ball having velocity gradient from faster center to slower cover |
| US7331878B2 (en) * | 2004-02-06 | 2008-02-19 | Acushnet Company | Multi-layer golf ball having velocity gradient from slower center to faster cover |
| US7357735B2 (en) * | 2001-03-23 | 2008-04-15 | Acushnet Company | Fully-neutralized ionomers for use in golf ball having a large core and a thin, dense layer |
| US7429221B1 (en) * | 2007-07-03 | 2008-09-30 | Acushnet Company | Negative hardness gradient outer core layer for dual core golf ball |
| US7452289B2 (en) * | 2006-08-31 | 2008-11-18 | Acushnet Company | Highly neutralized acid polymer compositions having a low moisture vapor transmission rate and their use in golf balls |
| US7530907B2 (en) * | 2006-02-14 | 2009-05-12 | Acushnet Company | Golf balls having a low modulus HNP layer and a high modulus HNP layer |
| US20090181796A1 (en) * | 2008-01-10 | 2009-07-16 | Sullivan Michael J | Multi-Layer Core Golf Ball |
| US7652086B2 (en) * | 2001-06-26 | 2010-01-26 | Acushnet Company | Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball |
| US7897671B2 (en) * | 2008-04-14 | 2011-03-01 | Acushnet Company | Method for forming a golf ball from a poly(dimethyl siloxane) ionomer |
| US7935759B2 (en) * | 2008-05-12 | 2011-05-03 | Acushnet Company | Golf ball with heat resistant shield layer |
| US20110312445A1 (en) * | 2008-01-10 | 2011-12-22 | Sullivan Michael J | Multi-layer core golf ball |
| US8188186B2 (en) * | 2008-04-28 | 2012-05-29 | Sri Sports Limited | Golf ball |
| US8618197B2 (en) * | 2001-06-26 | 2013-12-31 | Acushnet Company | Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball |
| US20140018191A1 (en) * | 2012-07-13 | 2014-01-16 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
| US8905864B2 (en) * | 2012-08-13 | 2014-12-09 | Nike, Inc. | Golf ball with resin inner core with a designated specific gravity |
| US8911307B2 (en) * | 2012-08-13 | 2014-12-16 | Nike, Inc. | Golf ball with resin inner core and specified inner core and cover layer hardness |
| US8911306B2 (en) * | 2012-08-13 | 2014-12-16 | Nike, Inc. | Golf ball with resin inner core having specified coefficient of restitution of the inner core at various speeds |
| US8920263B2 (en) * | 2012-08-13 | 2014-12-30 | Nike, Inc. | Golf ball with resin inner core and specified inner core and ball compression |
| US8944935B2 (en) * | 2012-08-13 | 2015-02-03 | Nike, Inc. | Multilayer golf ball with resin inner core and specific coefficient of restitution relationships between the layers |
| US8992340B2 (en) * | 2012-01-03 | 2015-03-31 | Nike, Inc. | Golf ball with an outer core having a high coefficient of restitution |
| US9005051B2 (en) * | 2012-03-05 | 2015-04-14 | Nike, Inc. | Golf ball with a large and soft polymer core |
| US9033823B2 (en) * | 2012-01-03 | 2015-05-19 | Nike, Inc. | Golf ball with specified density inner cover layer |
| US9061184B2 (en) * | 2012-01-03 | 2015-06-23 | Nike, Inc. | Golf ball with specified inner core and outer core compression |
| US9101798B2 (en) * | 2012-01-03 | 2015-08-11 | Nike, Inc. | Golf ball with high density and high hardness mantle |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5824746A (en) * | 1995-01-24 | 1998-10-20 | Acushnet Company | Golf balls incorporating foamed metallocene catalyzed polymer |
| US6409614B1 (en) * | 1995-06-15 | 2002-06-25 | Spalding Sports Worldwide, Inc. | Multi-layer golf ball and method of making same |
| US6653382B1 (en) * | 1999-10-21 | 2003-11-25 | E. I. Du Pont De Nemours And Company | Highly-neutralized ethylene copolymers and their use in golf balls |
| JP2004000507A (en) * | 2002-03-13 | 2004-01-08 | Acushnet Co | Multilayer golf ball |
| US7144958B2 (en) * | 2003-05-21 | 2006-12-05 | E. I. Du Pont De Nemours And Company | Articles prepared from compositions modified with organic fiber micropulp |
| JP4431371B2 (en) * | 2003-11-27 | 2010-03-10 | キャスコ株式会社 | Multi-piece solid golf ball |
| US7312267B2 (en) * | 2005-02-23 | 2007-12-25 | Callaway Golf Company | Golf ball and thermoplastic material |
| US7442736B2 (en) * | 2005-06-09 | 2008-10-28 | Acushnet Company | Use of nucleating agents to increase the flexural modulus of ionomers |
| US20090181801A1 (en) * | 2008-01-10 | 2009-07-16 | Sullivan Michael J | Two-Layer Core Golf Ball |
| US8025594B2 (en) * | 2009-06-26 | 2011-09-27 | Acushnet Company | Golf ball with single layer core having specific regions of varying hardness |
| US8026304B2 (en) * | 2008-07-14 | 2011-09-27 | Acushnet Company | Partially or fully neutralized butyl ionomers in golf ball layers |
| US9409060B2 (en) * | 2008-08-27 | 2016-08-09 | Nike, Inc. | Multilayer solid golf ball |
| US8672775B2 (en) * | 2009-03-12 | 2014-03-18 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
| US20120115637A1 (en) * | 2010-06-30 | 2012-05-10 | Nike, Inc. | Golf Balls Including A Crosslinked Thermoplastic Polyurethane Cover Layer Having Improved Scuff Resistance |
| US20130190106A1 (en) * | 2010-08-20 | 2013-07-25 | Nike, Inc. | Golf ball having layers with specified moduli |
| US9132319B2 (en) * | 2011-06-03 | 2015-09-15 | Acushnet Company | Multi-layered cores for golf balls based on ionomers |
| US9095748B2 (en) * | 2011-06-03 | 2015-08-04 | Acushnet Company | Multi-layered cores for golf balls containing polyamide and ionomer layers |
| US9108083B2 (en) * | 2011-07-29 | 2015-08-18 | Nike, Inc. | Golf ball including a blend of highly neutralized acid polymers and method of manufacture |
| US8979676B2 (en) * | 2011-08-23 | 2015-03-17 | Nike, Inc. | Multi-core golf ball having increased initial velocity at high swing speeds relative to low swing speeds |
| US9089739B2 (en) * | 2011-08-23 | 2015-07-28 | Nike, Inc. | Multi-core golf ball having increased initial velocity |
| US9526950B2 (en) * | 2012-03-28 | 2016-12-27 | Nike, Inc. | Golf balls including dense high acid lonomers |
-
2013
- 2013-11-11 US US14/076,864 patent/US20140357415A1/en not_active Abandoned
-
2014
- 2014-05-19 KR KR1020157036067A patent/KR20160003892A/en not_active Ceased
- 2014-05-19 JP JP2015563060A patent/JP2016526933A/en active Pending
- 2014-05-19 CN CN201480030355.3A patent/CN105246558A/en active Pending
- 2014-05-19 US US14/892,993 patent/US20160089579A1/en not_active Abandoned
- 2014-05-19 WO PCT/US2014/038577 patent/WO2014193678A1/en not_active Ceased
Patent Citations (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5120791A (en) * | 1990-07-27 | 1992-06-09 | Lisco, Inc. | Golf ball cover compositions |
| US6057403A (en) * | 1993-06-01 | 2000-05-02 | Spalding Sports Worldwide, Inc | Dual cores for golf balls |
| US6431999B1 (en) * | 1993-06-01 | 2002-08-13 | Spalding Sports Worldwide Inc. | Golf ball |
| US5779562A (en) * | 1993-06-01 | 1998-07-14 | Melvin; Terrence | Multi-core, multi-cover golf ball |
| US6414082B1 (en) * | 1995-01-24 | 2002-07-02 | Acushnet Company | Golf ball compositions formed of grafted metallocene-catalyzed polymer blends |
| US6476130B1 (en) * | 1995-01-24 | 2002-11-05 | Acushnet Company | Golf ball compositions formed from single catalyzed polymers |
| US6653403B2 (en) * | 1995-01-24 | 2003-11-25 | Acushnet Company | Golf balls having a cover layer formed from an ionomer and metallocene-catalyzed polyolefin blend and methods of making same |
| US5813923A (en) * | 1995-06-07 | 1998-09-29 | Acushnet Company | Golf ball |
| US7041721B2 (en) * | 1995-06-07 | 2006-05-09 | Acushnet Company | Highly neutralized polymer golf ball compositions including oxa acids and methods of making same |
| US6306049B1 (en) * | 1999-03-01 | 2001-10-23 | Acushnet Company | Method of improving impact resistance in golf ball core formulations |
| US7357735B2 (en) * | 2001-03-23 | 2008-04-15 | Acushnet Company | Fully-neutralized ionomers for use in golf ball having a large core and a thin, dense layer |
| US7131915B2 (en) * | 2001-04-10 | 2006-11-07 | Acushnet Company | Three-layer-cover golf ball |
| US7148279B2 (en) * | 2001-04-13 | 2006-12-12 | Acushnet Company | Golf ball compositions comprising dynamically vulcanized blends of highly neutralized polymers and diene rubber |
| US7230045B2 (en) * | 2001-06-26 | 2007-06-12 | Acushnet Company | Golf balls comprising highly-neutralized acid polymers |
| US7652086B2 (en) * | 2001-06-26 | 2010-01-26 | Acushnet Company | Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball |
| US6756436B2 (en) * | 2001-06-26 | 2004-06-29 | Acushnet Company | Golf balls comprising highly-neutralized acid polymers |
| US8618197B2 (en) * | 2001-06-26 | 2013-12-31 | Acushnet Company | Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball |
| US7172520B2 (en) * | 2001-12-14 | 2007-02-06 | Sri Sports Limited | Golf ball |
| US6916254B2 (en) * | 2003-01-02 | 2005-07-12 | Acushnet Company | Golf ball with small inner core |
| US6780126B2 (en) * | 2003-01-02 | 2004-08-24 | Acushnet Company | Golf ball with large inner core |
| US6852784B2 (en) * | 2003-03-21 | 2005-02-08 | Acushnet Company | Non-conforming golf balls comprising highly-neutralized acid polymers |
| US20060252577A1 (en) * | 2004-02-06 | 2006-11-09 | Sullivan Michael J | Improved multi-layer core golf ball |
| US7300364B2 (en) * | 2004-02-06 | 2007-11-27 | Acushnet Company | Multi-layer golf ball having velocity gradient from faster center to slower cover |
| US7331878B2 (en) * | 2004-02-06 | 2008-02-19 | Acushnet Company | Multi-layer golf ball having velocity gradient from slower center to faster cover |
| US7530907B2 (en) * | 2006-02-14 | 2009-05-12 | Acushnet Company | Golf balls having a low modulus HNP layer and a high modulus HNP layer |
| US7452289B2 (en) * | 2006-08-31 | 2008-11-18 | Acushnet Company | Highly neutralized acid polymer compositions having a low moisture vapor transmission rate and their use in golf balls |
| US7429221B1 (en) * | 2007-07-03 | 2008-09-30 | Acushnet Company | Negative hardness gradient outer core layer for dual core golf ball |
| US7753810B2 (en) * | 2008-01-10 | 2010-07-13 | Acushnet Company | Multi-layer core golf ball |
| US20110312445A1 (en) * | 2008-01-10 | 2011-12-22 | Sullivan Michael J | Multi-layer core golf ball |
| US20090181796A1 (en) * | 2008-01-10 | 2009-07-16 | Sullivan Michael J | Multi-Layer Core Golf Ball |
| US7897671B2 (en) * | 2008-04-14 | 2011-03-01 | Acushnet Company | Method for forming a golf ball from a poly(dimethyl siloxane) ionomer |
| US8188186B2 (en) * | 2008-04-28 | 2012-05-29 | Sri Sports Limited | Golf ball |
| US7935759B2 (en) * | 2008-05-12 | 2011-05-03 | Acushnet Company | Golf ball with heat resistant shield layer |
| US8992340B2 (en) * | 2012-01-03 | 2015-03-31 | Nike, Inc. | Golf ball with an outer core having a high coefficient of restitution |
| US9033823B2 (en) * | 2012-01-03 | 2015-05-19 | Nike, Inc. | Golf ball with specified density inner cover layer |
| US9061184B2 (en) * | 2012-01-03 | 2015-06-23 | Nike, Inc. | Golf ball with specified inner core and outer core compression |
| US9101798B2 (en) * | 2012-01-03 | 2015-08-11 | Nike, Inc. | Golf ball with high density and high hardness mantle |
| US9005051B2 (en) * | 2012-03-05 | 2015-04-14 | Nike, Inc. | Golf ball with a large and soft polymer core |
| US20140018191A1 (en) * | 2012-07-13 | 2014-01-16 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
| US8905864B2 (en) * | 2012-08-13 | 2014-12-09 | Nike, Inc. | Golf ball with resin inner core with a designated specific gravity |
| US8911307B2 (en) * | 2012-08-13 | 2014-12-16 | Nike, Inc. | Golf ball with resin inner core and specified inner core and cover layer hardness |
| US8911306B2 (en) * | 2012-08-13 | 2014-12-16 | Nike, Inc. | Golf ball with resin inner core having specified coefficient of restitution of the inner core at various speeds |
| US8920263B2 (en) * | 2012-08-13 | 2014-12-30 | Nike, Inc. | Golf ball with resin inner core and specified inner core and ball compression |
| US8944935B2 (en) * | 2012-08-13 | 2015-02-03 | Nike, Inc. | Multilayer golf ball with resin inner core and specific coefficient of restitution relationships between the layers |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105457243A (en) * | 2016-02-02 | 2016-04-06 | 傅军平 | Soft medicine ball |
| US20240278077A1 (en) * | 2023-02-10 | 2024-08-22 | Acushnet Company | Multi-layer golf balls with increased interlayer adhesion |
| US12157036B2 (en) * | 2023-02-10 | 2024-12-03 | Acushnet Company | Multi-layer golf balls with increased interlayer adhesion |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160089579A1 (en) | 2016-03-31 |
| WO2014193678A1 (en) | 2014-12-04 |
| KR20160003892A (en) | 2016-01-11 |
| CN105246558A (en) | 2016-01-13 |
| JP2016526933A (en) | 2016-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9573023B2 (en) | Multi-layer golf ball | |
| US9446289B2 (en) | Thermoplastic multi-layer golf ball | |
| US9468814B2 (en) | Multi-layer golf ball | |
| US20160089579A1 (en) | Multi-layer golf ball | |
| US9409061B2 (en) | Thermoplastic multi-layer golf ball | |
| US20150011334A1 (en) | Multi-layer golf ball | |
| US20150007931A1 (en) | Method of manufacturing a multi-layer golf ball | |
| US9242148B2 (en) | Thermoplastic multi-layer golf ball | |
| US9272189B2 (en) | Thermoplastic multi-layer golf ball | |
| US20140357418A1 (en) | Thermoplastic multi-layer golf ball | |
| US20140357410A1 (en) | Thermoplastic multi-layer golf ball | |
| US20140357422A1 (en) | Thermoplastic multi-layer golf ball | |
| US9757623B2 (en) | Thermoplastic multi-layer golf ball | |
| US20140357414A1 (en) | Thermoplastic multi-layer golf ball | |
| US20140357416A1 (en) | Thermoplastic multi-layer golf ball | |
| US20140357417A1 (en) | Thermoplastic multi-layer golf ball | |
| US20140357420A1 (en) | Thermoplastic multi-layer golf ball | |
| US20150011332A1 (en) | Multi-layer golf ball | |
| US20140357412A1 (en) | Thermoplastic multi-layer golf ball | |
| US20140357423A1 (en) | Thermoplastic multi-layer golf ball | |
| US20150008614A1 (en) | Method of manufacturing a multi-layer golf ball |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: FENG TAY ENTERPRISES CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOU, CHIEN-HSIN;LIU, CHEN-TAI;REEL/FRAME:032001/0918 Effective date: 20131125 |
|
| AS | Assignment |
Owner name: NIKE, INC., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FENG TAY ENTERPRISES CO., LTD.;REEL/FRAME:032040/0281 Effective date: 20131209 Owner name: NIKE INTERNATIONAL LTD., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FENG TAY ENTERPRISES CO., LTD.;REEL/FRAME:032040/0281 Effective date: 20131209 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |