US20140328931A1 - Nucleic acid particles, methods and use thereof - Google Patents
Nucleic acid particles, methods and use thereof Download PDFInfo
- Publication number
- US20140328931A1 US20140328931A1 US14/190,983 US201414190983A US2014328931A1 US 20140328931 A1 US20140328931 A1 US 20140328931A1 US 201414190983 A US201414190983 A US 201414190983A US 2014328931 A1 US2014328931 A1 US 2014328931A1
- Authority
- US
- United States
- Prior art keywords
- particle
- nucleic acid
- core
- rnai
- acid molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 149
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 136
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 136
- 239000002245 particle Substances 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000007888 film coating Substances 0.000 claims abstract description 3
- 238000009501 film coating Methods 0.000 claims abstract description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 52
- 239000003795 chemical substances by application Substances 0.000 claims description 43
- -1 sorafinib Chemical compound 0.000 claims description 41
- 239000002773 nucleotide Substances 0.000 claims description 27
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 26
- 238000003776 cleavage reaction Methods 0.000 claims description 20
- 230000007017 scission Effects 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 229920000642 polymer Polymers 0.000 claims description 16
- 238000005096 rolling process Methods 0.000 claims description 16
- 238000013518 transcription Methods 0.000 claims description 12
- 230000035897 transcription Effects 0.000 claims description 12
- 229920000867 polyelectrolyte Polymers 0.000 claims description 11
- 108090000623 proteins and genes Proteins 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims description 8
- 150000002632 lipids Chemical class 0.000 claims description 6
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 5
- 229920000729 poly(L-lysine) polymer Polymers 0.000 claims description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 3
- 229940127089 cytotoxic agent Drugs 0.000 claims description 3
- 229920000447 polyanionic polymer Polymers 0.000 claims description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 claims description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 claims description 2
- 101000907904 Homo sapiens Endoribonuclease Dicer Proteins 0.000 claims description 2
- 101710163270 Nuclease Proteins 0.000 claims description 2
- 230000008482 dysregulation Effects 0.000 claims description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 claims 1
- 239000002147 L01XE04 - Sunitinib Substances 0.000 claims 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims 1
- 229930012538 Paclitaxel Natural products 0.000 claims 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims 1
- 229960004562 carboplatin Drugs 0.000 claims 1
- 190000008236 carboplatin Chemical compound 0.000 claims 1
- 229960004316 cisplatin Drugs 0.000 claims 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims 1
- 229960004397 cyclophosphamide Drugs 0.000 claims 1
- 229960003668 docetaxel Drugs 0.000 claims 1
- 229960004679 doxorubicin Drugs 0.000 claims 1
- 229960001433 erlotinib Drugs 0.000 claims 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 claims 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims 1
- 229960005420 etoposide Drugs 0.000 claims 1
- 229960002949 fluorouracil Drugs 0.000 claims 1
- 229960005277 gemcitabine Drugs 0.000 claims 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims 1
- 229960003685 imatinib mesylate Drugs 0.000 claims 1
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 claims 1
- 239000011147 inorganic material Substances 0.000 claims 1
- 229910010272 inorganic material Inorganic materials 0.000 claims 1
- 229960004768 irinotecan Drugs 0.000 claims 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 claims 1
- 229960000485 methotrexate Drugs 0.000 claims 1
- 239000011368 organic material Substances 0.000 claims 1
- 229960001592 paclitaxel Drugs 0.000 claims 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 claims 1
- 229960001796 sunitinib Drugs 0.000 claims 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims 1
- 229960000303 topotecan Drugs 0.000 claims 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims 1
- 229960003048 vinblastine Drugs 0.000 claims 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims 1
- 229960004528 vincristine Drugs 0.000 claims 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims 1
- 229920002477 rna polymer Polymers 0.000 description 117
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 52
- 230000009368 gene silencing by RNA Effects 0.000 description 52
- 210000004027 cell Anatomy 0.000 description 38
- 230000003993 interaction Effects 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- 239000010410 layer Substances 0.000 description 25
- 102000053602 DNA Human genes 0.000 description 24
- 108020004638 Circular DNA Proteins 0.000 description 20
- 239000003814 drug Substances 0.000 description 20
- 206010028980 Neoplasm Diseases 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 17
- 239000005089 Luciferase Substances 0.000 description 15
- 230000015556 catabolic process Effects 0.000 description 14
- 238000003197 gene knockdown Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 108060001084 Luciferase Proteins 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000006731 degradation reaction Methods 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 108090000331 Firefly luciferases Proteins 0.000 description 10
- 102000006382 Ribonucleases Human genes 0.000 description 10
- 108010083644 Ribonucleases Proteins 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- 229940124597 therapeutic agent Drugs 0.000 description 10
- 238000001890 transfection Methods 0.000 description 10
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000002502 liposome Substances 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 238000001502 gel electrophoresis Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 150000003384 small molecules Chemical class 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 239000003242 anti bacterial agent Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000030279 gene silencing Effects 0.000 description 6
- 239000003102 growth factor Substances 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 5
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 108091027967 Small hairpin RNA Proteins 0.000 description 5
- 108020004459 Small interfering RNA Proteins 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000002601 intratumoral effect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000001907 polarising light microscopy Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- 230000036962 time dependent Effects 0.000 description 5
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 4
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 4
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 4
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 4
- 108091093094 Glycol nucleic acid Proteins 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 239000012124 Opti-MEM Substances 0.000 description 4
- 108091093037 Peptide nucleic acid Proteins 0.000 description 4
- 108091046915 Threose nucleic acid Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 241000021375 Xenogenes Species 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 description 4
- 239000002260 anti-inflammatory agent Substances 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000004700 cellular uptake Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012226 gene silencing method Methods 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002679 microRNA Substances 0.000 description 4
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 230000004962 physiological condition Effects 0.000 description 4
- 229920001610 polycaprolactone Polymers 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- 108010025020 Nerve Growth Factor Proteins 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 101710137500 T7 RNA polymerase Proteins 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 108091070501 miRNA Proteins 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 230000002688 persistence Effects 0.000 description 3
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 3
- CJLHTKGWEUGORV-UHFFFAOYSA-N Artemin Chemical compound C1CC2(C)C(O)CCC(=C)C2(O)C2C1C(C)C(=O)O2 CJLHTKGWEUGORV-UHFFFAOYSA-N 0.000 description 2
- 102000008143 Bone Morphogenetic Protein 2 Human genes 0.000 description 2
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 description 2
- 101710098309 C-X-C motif chemokine 13 Proteins 0.000 description 2
- 102100028892 Cardiotrophin-1 Human genes 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical class OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 2
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 description 2
- 108700011259 MicroRNAs Proteins 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 2
- 102000015336 Nerve Growth Factor Human genes 0.000 description 2
- 102000007072 Nerve Growth Factors Human genes 0.000 description 2
- 102000008108 Osteoprotegerin Human genes 0.000 description 2
- 108010035042 Osteoprotegerin Proteins 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 2
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 2
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 2
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 2
- 102000003661 Ribonuclease III Human genes 0.000 description 2
- 108010057163 Ribonuclease III Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 102100024598 Tumor necrosis factor ligand superfamily member 10 Human genes 0.000 description 2
- 101710097160 Tumor necrosis factor ligand superfamily member 10 Proteins 0.000 description 2
- 102100033726 Tumor necrosis factor receptor superfamily member 17 Human genes 0.000 description 2
- 101710187885 Tumor necrosis factor receptor superfamily member 17 Proteins 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 239000004037 angiogenesis inhibitor Substances 0.000 description 2
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 2
- 230000029918 bioluminescence Effects 0.000 description 2
- 238000005415 bioluminescence Methods 0.000 description 2
- 108010041776 cardiotrophin 1 Proteins 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 2
- 239000012578 cell culture reagent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 229920006237 degradable polymer Polymers 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 229960004945 etoricoxib Drugs 0.000 description 2
- MNJVRJDLRVPLFE-UHFFFAOYSA-N etoricoxib Chemical compound C1=NC(C)=CC=C1C1=NC=C(Cl)C=C1C1=CC=C(S(C)(=O)=O)C=C1 MNJVRJDLRVPLFE-UHFFFAOYSA-N 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000000707 layer-by-layer assembly Methods 0.000 description 2
- UAWXGRJVZSAUSZ-UHFFFAOYSA-N licofelone Chemical compound OC(=O)CC=1N2CC(C)(C)CC2=C(C=2C=CC=CC=2)C=1C1=CC=C(Cl)C=C1 UAWXGRJVZSAUSZ-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000003589 local anesthetic agent Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 210000003593 megakaryocyte Anatomy 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 2
- 229940053128 nerve growth factor Drugs 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 150000004713 phosphodiesters Chemical group 0.000 description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920006210 poly(glycolide-co-caprolactone) Polymers 0.000 description 2
- 229920001306 poly(lactide-co-caprolactone) Polymers 0.000 description 2
- 229920002721 polycyanoacrylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 239000011535 reaction buffer Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- WVYADZUPLLSGPU-UHFFFAOYSA-N salsalate Chemical compound OC(=O)C1=CC=CC=C1OC(=O)C1=CC=CC=C1O WVYADZUPLLSGPU-UHFFFAOYSA-N 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 239000002550 vasoactive agent Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 239000002132 β-lactam antibiotic Substances 0.000 description 2
- 229940124586 β-lactam antibiotics Drugs 0.000 description 2
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- RIFDKYBNWNPCQK-IOSLPCCCSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-(6-imino-3-methylpurin-9-yl)oxolane-3,4-diol Chemical compound C1=2N(C)C=NC(=N)C=2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RIFDKYBNWNPCQK-IOSLPCCCSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- MDKGKXOCJGEUJW-VIFPVBQESA-N (2s)-2-[4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound C1=CC([C@@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-VIFPVBQESA-N 0.000 description 1
- VEEGZPWAAPPXRB-BJMVGYQFSA-N (3e)-3-(1h-imidazol-5-ylmethylidene)-1h-indol-2-one Chemical compound O=C1NC2=CC=CC=C2\C1=C/C1=CN=CN1 VEEGZPWAAPPXRB-BJMVGYQFSA-N 0.000 description 1
- VCOPTHOUUNAYKQ-WBTCAYNUSA-N (3s)-3,6-diamino-n-[[(2s,5s,8e,11s,15s)-15-amino-11-[(6r)-2-amino-1,4,5,6-tetrahydropyrimidin-6-yl]-8-[(carbamoylamino)methylidene]-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentazacyclohexadec-5-yl]methyl]hexanamide;(3s)-3,6-diamino-n-[[(2s,5s,8 Chemical compound N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](C)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1.N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1 VCOPTHOUUNAYKQ-WBTCAYNUSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- RKSLVDIXBGWPIS-UAKXSSHOSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidine-2,4-dione Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 RKSLVDIXBGWPIS-UAKXSSHOSA-N 0.000 description 1
- QLOCVMVCRJOTTM-TURQNECASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C#CC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 QLOCVMVCRJOTTM-TURQNECASA-N 0.000 description 1
- PISWNSOQFZRVJK-XLPZGREQSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-2-sulfanylidenepyrimidin-4-one Chemical compound S=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 PISWNSOQFZRVJK-XLPZGREQSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- ZDTFMPXQUSBYRL-UUOKFMHZSA-N 2-Aminoadenosine Chemical compound C12=NC(N)=NC(N)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O ZDTFMPXQUSBYRL-UUOKFMHZSA-N 0.000 description 1
- JIEKMACRVQTPRC-UHFFFAOYSA-N 2-[4-(4-chlorophenyl)-2-phenyl-5-thiazolyl]acetic acid Chemical compound OC(=O)CC=1SC(C=2C=CC=CC=2)=NC=1C1=CC=C(Cl)C=C1 JIEKMACRVQTPRC-UHFFFAOYSA-N 0.000 description 1
- MBNMSERYORMPIB-UHFFFAOYSA-N 2-acetyloxybenzoic acid;calcium Chemical compound [Ca].CC(=O)OC1=CC=CC=C1C(O)=O MBNMSERYORMPIB-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- JRYMOPZHXMVHTA-DAGMQNCNSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JRYMOPZHXMVHTA-DAGMQNCNSA-N 0.000 description 1
- FFKUDWZICMJVPA-UHFFFAOYSA-N 2-phosphonooxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1OP(O)(O)=O FFKUDWZICMJVPA-UHFFFAOYSA-N 0.000 description 1
- RHFUOMFWUGWKKO-XVFCMESISA-N 2-thiocytidine Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RHFUOMFWUGWKKO-XVFCMESISA-N 0.000 description 1
- XXSIICQLPUAUDF-TURQNECASA-N 4-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidin-2-one Chemical compound O=C1N=C(N)C(C#CC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XXSIICQLPUAUDF-TURQNECASA-N 0.000 description 1
- SYCHUQUJURZQMO-UHFFFAOYSA-N 4-hydroxy-2-methyl-1,1-dioxo-n-(1,3-thiazol-2-yl)-1$l^{6},2-benzothiazine-3-carboxamide Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=CS1 SYCHUQUJURZQMO-UHFFFAOYSA-N 0.000 description 1
- AGFIRQJZCNVMCW-UAKXSSHOSA-N 5-bromouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 AGFIRQJZCNVMCW-UAKXSSHOSA-N 0.000 description 1
- FHIDNBAQOFJWCA-UAKXSSHOSA-N 5-fluorouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 FHIDNBAQOFJWCA-UAKXSSHOSA-N 0.000 description 1
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- KDOPAZIWBAHVJB-UHFFFAOYSA-N 5h-pyrrolo[3,2-d]pyrimidine Chemical compound C1=NC=C2NC=CC2=N1 KDOPAZIWBAHVJB-UHFFFAOYSA-N 0.000 description 1
- BXJHWYVXLGLDMZ-UHFFFAOYSA-N 6-O-methylguanine Chemical compound COC1=NC(N)=NC2=C1NC=N2 BXJHWYVXLGLDMZ-UHFFFAOYSA-N 0.000 description 1
- UEHOMUNTZPIBIL-UUOKFMHZSA-N 6-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-7h-purin-8-one Chemical compound O=C1NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UEHOMUNTZPIBIL-UUOKFMHZSA-N 0.000 description 1
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- 102100026376 Artemin Human genes 0.000 description 1
- 101710205806 Artemin Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102100025250 C-X-C motif chemokine 14 Human genes 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 108010065839 Capreomycin Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 108091008102 DNA aptamers Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- XULFJDKZVHTRLG-JDVCJPALSA-N DOSPA trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F.CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)CCNC(=O)C(CCCNCCCN)NCCCN)OCCCCCCCC\C=C/CCCCCCCC XULFJDKZVHTRLG-JDVCJPALSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 108091027757 Deoxyribozyme Proteins 0.000 description 1
- JWCSIUVGFCSJCK-CAVRMKNVSA-N Disodium Moxalactam Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CO[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C1=CC=C(O)C=C1 JWCSIUVGFCSJCK-CAVRMKNVSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- RBBWCVQDXDFISW-UHFFFAOYSA-N Feprazone Chemical compound O=C1C(CC=C(C)C)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 RBBWCVQDXDFISW-UHFFFAOYSA-N 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 101000858068 Homo sapiens C-X-C motif chemokine 14 Proteins 0.000 description 1
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000011769 Member 9 Tumor Necrosis Factor Receptor Superfamily Human genes 0.000 description 1
- 108010037274 Member 9 Tumor Necrosis Factor Receptor Superfamily Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 description 1
- 108010009711 Phalloidine Proteins 0.000 description 1
- 229920001212 Poly(beta amino esters) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001273 Polyhydroxy acid Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 108091008103 RNA aptamers Proteins 0.000 description 1
- 108091028733 RNTP Proteins 0.000 description 1
- 108010052090 Renilla Luciferases Proteins 0.000 description 1
- 229930189077 Rifamycin Natural products 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 239000008049 TAE buffer Substances 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- RRDRHWJDBOGQHN-JWCTVYNTSA-N [2-[(2s,5r,8s,11s,14r,17s,22s)-17-[(1r)-1-hydroxyethyl]-22-[[(2s)-2-[[(2s,3r)-3-hydroxy-2-[[(2s)-2-[6-methyloctanoyl(sulfomethyl)amino]-4-(sulfomethylamino)butanoyl]amino]butyl]amino]-4-(sulfomethylamino)butanoyl]amino]-5,8-bis(2-methylpropyl)-3,6,9,12,15 Chemical compound CCC(C)CCCCC(=O)N(CS(O)(=O)=O)[C@@H](CCNCS(O)(=O)=O)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCNCS(O)(=O)=O)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](CCNCS(O)(=O)=O)NC(=O)[C@H](CCNCS(O)(=O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCNCS(O)(=O)=O)NC1=O RRDRHWJDBOGQHN-JWCTVYNTSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229960005142 alclofenac Drugs 0.000 description 1
- ARHWPKZXBHOEEE-UHFFFAOYSA-N alclofenac Chemical compound OC(=O)CC1=CC=C(OCC=C)C(Cl)=C1 ARHWPKZXBHOEEE-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003276 anti-hypertensive effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000561 anti-psychotic effect Effects 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000000030 antiglaucoma agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 229960001671 azapropazone Drugs 0.000 description 1
- WOIIIUDZSOLAIW-NSHDSACASA-N azapropazone Chemical compound C1=C(C)C=C2N3C(=O)[C@H](CC=C)C(=O)N3C(N(C)C)=NC2=C1 WOIIIUDZSOLAIW-NSHDSACASA-N 0.000 description 1
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 1
- 229960003644 aztreonam Drugs 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- FEJKLNWAOXSSNR-UHFFFAOYSA-N benorilate Chemical compound C1=CC(NC(=O)C)=CC=C1OC(=O)C1=CC=CC=C1OC(C)=O FEJKLNWAOXSSNR-UHFFFAOYSA-N 0.000 description 1
- 229960004277 benorilate Drugs 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 229940030611 beta-adrenergic blocking agent Drugs 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229960004602 capreomycin Drugs 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229960003184 carprofen Drugs 0.000 description 1
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 1
- 229940047475 cataflam Drugs 0.000 description 1
- 229960003866 cefaloridine Drugs 0.000 description 1
- CZTQZXZIADLWOZ-CRAIPNDOSA-N cefaloridine Chemical compound O=C([C@@H](NC(=O)CC=1SC=CC=1)[C@H]1SC2)N1C(C(=O)[O-])=C2C[N+]1=CC=CC=C1 CZTQZXZIADLWOZ-CRAIPNDOSA-N 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- VUFGUVLLDPOSBC-XRZFDKQNSA-M cephalothin sodium Chemical compound [Na+].N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C([O-])=O)C(=O)CC1=CC=CS1 VUFGUVLLDPOSBC-XRZFDKQNSA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229960003326 cloxacillin Drugs 0.000 description 1
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 description 1
- 229940108538 colistimethate Drugs 0.000 description 1
- 108700028201 colistinmethanesulfonic acid Proteins 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229940124570 cycloplegic agent Drugs 0.000 description 1
- 230000003500 cycloplegic effect Effects 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 229940072701 dolobid Drugs 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 210000003372 endocrine gland Anatomy 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- NNYBQONXHNTVIJ-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=C1C(C=CC=C1CC)=C1N2 NNYBQONXHNTVIJ-UHFFFAOYSA-N 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 125000004030 farnesyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 229940065410 feldene Drugs 0.000 description 1
- 229960001395 fenbufen Drugs 0.000 description 1
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 1
- 229950006236 fenclofenac Drugs 0.000 description 1
- IDKAXRLETRCXKS-UHFFFAOYSA-N fenclofenac Chemical compound OC(=O)CC1=CC=CC=C1OC1=CC=C(Cl)C=C1Cl IDKAXRLETRCXKS-UHFFFAOYSA-N 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 229960002679 fentiazac Drugs 0.000 description 1
- 229960000489 feprazone Drugs 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002390 flurbiprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229960000308 fosfomycin Drugs 0.000 description 1
- YMDXZJFXQJVXBF-STHAYSLISA-N fosfomycin Chemical compound C[C@@H]1O[C@@H]1P(O)(O)=O YMDXZJFXQJVXBF-STHAYSLISA-N 0.000 description 1
- 229950010892 fosfosal Drugs 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-M fusidate Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C([O-])=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-M 0.000 description 1
- 229940083579 fusidate sodium Drugs 0.000 description 1
- 229960004675 fusidic acid Drugs 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 239000001046 green dye Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 239000000677 immunologic agent Substances 0.000 description 1
- 229940124541 immunological agent Drugs 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 229940089536 indocin Drugs 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 210000002977 intracellular fluid Anatomy 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 229950002252 isoxicam Drugs 0.000 description 1
- YYUAYBYLJSNDCX-UHFFFAOYSA-N isoxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC=1C=C(C)ON=1 YYUAYBYLJSNDCX-UHFFFAOYSA-N 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229960000433 latamoxef Drugs 0.000 description 1
- 229950003488 licofelone Drugs 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 229940063718 lodine Drugs 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229960000994 lumiracoxib Drugs 0.000 description 1
- KHPKQFYUPIUARC-UHFFFAOYSA-N lumiracoxib Chemical compound OC(=O)CC1=CC(C)=CC=C1NC1=C(F)C=CC=C1Cl KHPKQFYUPIUARC-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229960001929 meloxicam Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 229940112801 mobic Drugs 0.000 description 1
- 229940041009 monobactams Drugs 0.000 description 1
- 229940072709 motrin Drugs 0.000 description 1
- 238000007040 multi-step synthesis reaction Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 229940090008 naprosyn Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960002950 novobiocin Drugs 0.000 description 1
- YJQPYGGHQPGBLI-KGSXXDOSSA-N novobiocin Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- HFHZKZSRXITVMK-UHFFFAOYSA-N oxyphenbutazone Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 HFHZKZSRXITVMK-UHFFFAOYSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960004662 parecoxib Drugs 0.000 description 1
- TZRHLKRLEZJVIJ-UHFFFAOYSA-N parecoxib Chemical compound C1=CC(S(=O)(=O)NC(=O)CC)=CC=C1C1=C(C)ON=C1C1=CC=CC=C1 TZRHLKRLEZJVIJ-UHFFFAOYSA-N 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- VOUGEZYPVGAPBB-UHFFFAOYSA-N penicillin acid Natural products OC(=O)C=C(OC)C(=O)C(C)=C VOUGEZYPVGAPBB-UHFFFAOYSA-N 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001299 polypropylene fumarate Polymers 0.000 description 1
- 238000001485 positron annihilation lifetime spectroscopy Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 229940087462 relafen Drugs 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- BTVYFIMKUHNOBZ-QXMMDKDBSA-N rifamycin s Chemical class O=C1C(C(O)=C2C)=C3C(=O)C=C1NC(=O)\C(C)=C/C=C\C(C)C(O)C(C)C(O)C(C)C(OC(C)=O)C(C)C(OC)\C=C/OC1(C)OC2=C3C1=O BTVYFIMKUHNOBZ-QXMMDKDBSA-N 0.000 description 1
- 229940081192 rifamycins Drugs 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RHFUOMFWUGWKKO-UHFFFAOYSA-N s2C Natural products S=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 RHFUOMFWUGWKKO-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229960000953 salsalate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- HJHVQCXHVMGZNC-JCJNLNMISA-M sodium;(2z)-2-[(3r,4s,5s,8s,9s,10s,11r,13r,14s,16s)-16-acetyloxy-3,11-dihydroxy-4,8,10,14-tetramethyl-2,3,4,5,6,7,9,11,12,13,15,16-dodecahydro-1h-cyclopenta[a]phenanthren-17-ylidene]-6-methylhept-5-enoate Chemical compound [Na+].O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C([O-])=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C HJHVQCXHVMGZNC-JCJNLNMISA-M 0.000 description 1
- JZLOKWGVGHYBKD-UHFFFAOYSA-M sodium;2-acetyloxybenzoate Chemical compound [Na+].CC(=O)OC1=CC=CC=C1C([O-])=O JZLOKWGVGHYBKD-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229950005175 sudoxicam Drugs 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229960002871 tenoxicam Drugs 0.000 description 1
- WZWYJBNHTWCXIM-UHFFFAOYSA-N tenoxicam Chemical compound O=C1C=2SC=CC=2S(=O)(=O)N(C)C1=C(O)NC1=CC=CC=N1 WZWYJBNHTWCXIM-UHFFFAOYSA-N 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 description 1
- 229960004659 ticarcillin Drugs 0.000 description 1
- 229950002145 tilomisole Drugs 0.000 description 1
- PUYFLGQZLHVTHX-UHFFFAOYSA-N tilomisole Chemical compound OC(=O)CC=1SC2=NC3=CC=CC=C3N2C=1C1=CC=C(Cl)C=C1 PUYFLGQZLHVTHX-UHFFFAOYSA-N 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-KCGFPETGSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HDZZVAMISRMYHH-KCGFPETGSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 229960002004 valdecoxib Drugs 0.000 description 1
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229940087652 vioxx Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229940063674 voltaren Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/167—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5089—Processes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/34—Polynucleotides, e.g. nucleic acids, oligoribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/32—Special delivery means, e.g. tissue-specific
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Definitions
- RNA interference is a powerful tool for suppressing gene expression, and much research has been directed at efforts to develop an efficient delivery method for small interference RNA (siRNA).
- siRNA small interference RNA
- Conventional complexation or encapsulation of siRNA with polymers or lipids can often require multi-step synthesis of carriers or relatively ineffectual encapsulation processes; furthermore, such approaches often involve introducing a significant amount of an additional component, which can lead to greater potential for immunogenic response or toxicity.
- the amount of siRNA per carrier is limited due to the rigidity of double stranded siRNA, low surface charge of individual siRNA, and low loading efficiency, making RNAi encapsulation particularly challenging.
- RNAi requires specialized synthesis and is often available in small quantities at high cost, making it a very costly cargo that is delivered with fairly low efficiency carriers.
- nucleic acids such as siRNA.
- the present invention describes particles including a core of self-assembled one or more nucleic acid molecules.
- nucleic acid molecules within a particle core are formed via elongation by rolling circle amplification (RCA) and/or rolling circle transcription (RCT).
- provided particles may contain a core that is coated by a film so that the particles are condensed to achieve a smaller particle size.
- Provided compositions and methods can be particularly useful for delivery of high loads of nucleic acids, optionally with any other agents.
- the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of a stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
- associated typically refers to two or more entities in physical proximity with one another, either directly or indirectly (e.g., via one or more additional entities that serve as a linking agent), to form a structure that is sufficiently stable so that the entities remain in physical proximity under relevant conditions, e.g., physiological conditions.
- associated entities are covalently linked to one another.
- associated entities are non-covalently linked.
- associated entities are linked to one another by specific non-covalent interactions (i.e., by interactions between interacting ligands that discriminate between their interaction partner and other entities present in the context of use, such as, for example, streptavidin/avidin interactions, antibody/antigen interactions, etc.).
- a sufficient number of weaker non-covalent interactions can provide sufficient stability for moieties to remain associated.
- exemplary non-covalent interactions include, but are not limited to, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, pi stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, etc.
- Biodegradable As used herein, the term “biodegradable” is used to refer to materials that, when introduced into cells, are broken down by cellular machinery (e.g., enzymatic degradation) or by hydrolysis into components that cells can either reuse or dispose of without significant toxic effect(s) on the cells. In certain embodiments, components generated by breakdown of a biodegradable material do not induce inflammation and/or other adverse effects in vivo. In some embodiments, biodegradable materials are enzymatically broken down. Alternatively or additionally, in some embodiments, biodegradable materials are broken down by hydrolysis. In some embodiments, biodegradable polymeric materials break down into their component and/or into fragments thereof (e.g., into monomeric or submonomeric species).
- breakdown of biodegradable materials includes hydrolysis of ester bonds. In some embodiments, breakdown of materials (including, for example, biodegradable polymeric materials) includes cleavage of urethane linkages.
- Hydrolytically degradable As used herein, the term “hydrolytically degradable” is used to refer to materials that degrade by hydrolytic cleavage. In some embodiments, hydrolytically degradable materials degrade in water. In some embodiments, hydrolytically degradable materials degrade in water in the absence of any other agents or materials. In some embodiments, hydrolytically degradable materials degrade completely by hydrolytic cleavage, e.g., in water. By contrast, the term “non-hydrolytically degradable” typically refers to materials that do not fully degrade by hydrolytic cleavage and/or in the presence of water (e.g., in the sole presence of water).
- nucleic acid refers to a polymer of nucleotides.
- nucleic acids are or contain deoxyribonucleic acids (DNA); in some embodiments, nucleic acids are or contain ribonucleic acids (RNA).
- nucleic acids include naturally-occurring nucleotides (e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine).
- nucleic acids include non-naturally-occurring nucleotides including, but not limited to, nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, C5-propynylcytidine, C5-propynyluridine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-methylcytidine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine), chemically modified bases, biologically modified bases (e.g., methylated bases), intercalated bases, modified sugars (e.g., 2′-fluororibose, ribose, 2
- nucleic acids include phosphodiester backbone linkages; alternatively or additionally, in some embodiments, nucleic acids include one or more non-phosphodiester backbone linkages such as, for example, phosphorothioates and 5′-N-phosphoramidite linkages.
- a nucleic acid is an oligonucleotide in that it is relatively short (e.g., less that about 5000, 4000, 3000, 2000, 1000, 900, 800, 700, 600, 500, 450, 400, 350, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 15, 10 or fewer nucleotides in length)
- physiological conditions The phrase “physiological conditions”, as used herein, relates to the range of chemical (e.g., pH, ionic strength) and biochemical (e.g., enzyme concentrations) conditions likely to be encountered in the intracellular and extracellular fluids of tissues.
- chemical e.g., pH, ionic strength
- biochemical e.g., enzyme concentrations
- Polyelectrolyte refers to a polymer which under a particular set of conditions (e.g., physiological conditions) has a net positive or negative charge.
- a polyelectrolyte is or comprises a polycation; in some embodiments, a polyelectrolyte is or comprises a polyanion. Polycations have a net positive charge and polyanions have a net negative charge. The net charge of a given polyelectrolyte may depend on the surrounding chemical conditions, e.g., on the pH.
- Polypeptide refers to a string of at least three amino acids linked together by peptide bonds.
- a polypeptide comprises naturally-occurring amino acids; alternatively or additionally, in some embodiments, a polypeptide comprises one or more non-natural amino acids (i.e., compounds that do not occur in nature but that can be incorporated into a polypeptide chain; see, for example, http://www.cco.caltech.edu/ ⁇ dadgrp/Unnatstruct.gif, which displays structures of non-natural amino acids that have been successfully incorporated into functional ion channels) and/or amino acid analogs as are known in the art may alternatively be employed).
- non-natural amino acids i.e., compounds that do not occur in nature but that can be incorporated into a polypeptide chain; see, for example, http://www.cco.caltech.edu/ ⁇ dadgrp/Unnatstruct.gif, which displays structures of non-natural amino acids that have been successfully incorporated into functional ion channels
- one or more of the amino acids in a protein may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc.
- a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc.
- Polysaccharide refers to a polymer of sugars. Typically, a polysaccharide comprises at least three sugars.
- a polypeptide comprises natural sugars (e.g., glucose, fructose, galactose, mannose, arabinose, ribose, and xylose); alternatively or additionally, in some embodiments, a polypeptide comprises one or more non-natural amino acids (e.g., modified sugars such as 2′-fluororibose, 2′-deoxyribose, and hexose).
- Reference nucleic acid refers to any known nucleic acid molecule with which a nucleic acid molecule of interest is compared.
- Sequence element refers to a discrete portion of nucleotide sequence, recognizable to one skilled in the art.
- a sequence element comprises a series of at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 116, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000 or more contiguous nucleotides in a polymer.
- a sequence element is recognizable because it is found in a different nucleic acid molecule, with which a nucleic acid molecule of interest is being compared.
- a nucleic acid molecule of interest has a nucleotide sequence that is selected or designed to contain, or otherwise contains, one or more particular sequence elements that is/are found in one or more (optionally predetermined) reference or source nucleic acids.
- Small molecule As used herein, the term “small molecule” is used to refer to molecules, whether naturally-occurring or artificially created (e.g., via chemical synthesis), that have a relatively low molecular weight. Typically, small molecules are monomeric and have a molecular weight of less than about 1500 g/mol. Preferred small molecules are biologically active in that they produce a local or systemic effect in animals, preferably mammals, more preferably humans.
- the small molecule is a drug. Preferably, though not necessarily, the drug is one that has already been deemed safe and effective for use by the appropriate governmental agency or body. For example, drugs for human use listed by the FDA under 21 C.F.R. ⁇ 330.5, 331 through 361, and 440 through 460; drugs for veterinary use listed by the FDA under 21 C.F.R. ⁇ 500 through 589, incorporated herein by reference, are all considered acceptable for use in accordance with the present application.
- Source nucleic acid The term “source nucleic acid” is used herein to refer to a known nucleic acid molecule whose nucleotide sequence includes at least one sequence element of interest.
- a source nucleic acid is a natural nucleic acid in that it occurs in a context (e.g., within an organism) as exists in nature (e.g., without manipulation by the hand of man).
- a source nucleic acid is not a natural nucleic acid in that its nucleotide sequences includes one or more portions, linkages, or elements that do not occur in the same arrangement in nature and/or were designed, selected, or assembled through action of the hand of man.
- substantially refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest.
- biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result.
- Treating refers to partially or completely alleviating, ameliorating, relieving, inhibiting, preventing (for at least a period of time), delaying onset of, reducing severity of, reducing frequency of and/or reducing incidence of one or more symptoms or features of a particular disease, disorder, and/or condition.
- treatment may be administered to a subject who does not exhibit symptoms, signs, or characteristics of a disease and/or exhibits only early symptoms, signs, and/or characteristics of the disease, for example for the purpose of decreasing the risk of developing pathology associated with the disease.
- treatment may be administered after development of one or more symptoms, signs, and/or characteristics of the disease.
- FIG. 1 Schematic drawing of the process of rolling circle transcription (RCT) for the self-assembled RNAi-microsponge used in accordance with certain embodiments of the present invention.
- RCT rolling circle transcription
- circular DNA needs to be synthesized first.
- Linear ssDNA that includes antisense and sense sequences of anti-luciferase siRNA is hybridized with equal molar of short DNA strand containing T7 promoter sequence.
- the nick in the circular DNA was chemically closed by T4 DNA ligase.
- RCT rolling circle transcription
- FIG. 2 Characterization of the RNAi-microsponge.
- a SEM image of RNAi-microsponge. Scale bar: 5 ⁇ m.
- b Fluorescence microscope image of RNAi-microsponges after staining with SYBR II, RNA specific dye. Scale bars: 10 ⁇ m and 5 ⁇ m (Inset).
- c, d SEM images of RNAi-microsponges after sonication. Low magnification image of RNAi-microsponges (c). Scale bars: 10 ⁇ m and 500 nm (Inset). High magnification image of RNAi-microsponge (d). Scale bar: 500 nm.
- FIG. 3 Formation of sponge-like spherical structures purely with RNA strands.
- a, b, c, d, and e SEM images of RNA products of time-dependent RCT at 37° C. for 1 h (a), 4 h (b), 8 h (c), 12 h (d), and 16 h (e). Scale bars: 5 ⁇ m and 500 nm (inset).
- f Image of mature RNAi microsponges after 20 h RCT. Scale bar: 10 ⁇ m.
- g Schematic illustration of the formation of RNAi-microsponges. The spherical sponge-like structure is formed through a series of preliminary structures.
- RNA strands from the RCT reaction are entangled and twisted into a fiber-like structure1.
- RNA strands grow, they begin to organize into lamellar sheets that gradually become thicker2; as the internal structure of the sheets begin to get very dense, some of the RNA sheets begin to grow in the Z direction, possibly due to limited packing area for the RNA polymer as it is produced by the reaction. This process could generate wrinkled semi-spherical structure on the sheet3.
- the entire structure begins to pinch off to form individual particles consisting of gathered RNA sheets4.
- h Polarized optical microscopy of RNAi-microsponge. Scale bars: 5 ⁇ m and 1 ⁇ m (Inset).
- RNAi-microsponge X-ray diffraction pattern of RNAi-microsponge.
- j TEM images of RNAi-microsponge and schematic representation of the proposed crystal-like ordered structure of RNA sheet in microsponge. Scale bars: 100 nm and 500 nm (Inset).
- FIG. 4 Generating siRNA from RNAi-microsponge by RNAi pathway and condensing RNAi-microsponge for transfection.
- a Schematic illustration of generating siRNA from RNAi-microsponges by Dicer in RNAi pathway.
- b Gel electrophoresis result after Dicer reaction.
- Lane 1 and 2 indicate double stranded RNA ladder and RNAi-microsponges (MS) after treatment with Dicer (1 unit) for 36 hours, respectively (Left).
- Land 1 and 2 indicate double stranded RNA ladder and RNAi-microsponges without Dicer treatment (Right).
- Lane 3 to 8 correspond to 12 h, 24 h, 36 h, and 48 h reaction with 1 unit of Dicer and 36 h reaction with 1.25 and 1.5 unit of Dicer, respectively. Increasing the amount of Dicer did not help to generate more siRNA (lane 7 and 8 of FIG. 4 b , right).
- the amount of generated siRNA from RNAi-microsponges was quantified relative to double-stranded RNA standards. 21% of the cleavable double stranded RNA was actually diced to siRNA because Dicer also produced the two or three repeat RNA units that included two or three non-diced RNA duplex. The results suggest the possibility that in a more close-packed self-assembled structure, some portion of the RNA is not as readily accessed by dicer.
- RNAi-microsponge Particle size and zeta potential before and after condensing RNAi-microsponge with PEI.
- d SEM image of further condensed RNAi-microsponge with PEI. Scale bar: 500 nm.
- the size of RNAi-microsponge was significantly reduced by linear PEI because the RNAi-microsponge with high charge density would be more readily complexed with oppositely charged polycations.
- the porous structure of RNAi-microsponge was disappeared by the condensation.
- FIG. 5 Transfection and gene-silencing effect.
- a Intracellular uptake of red fluorescent dye-labeled RNAi-microsponge without PEI (top) and RNAi-microsponge/PEI (bottom).
- red fluorescence labeled both particles were incubated with T22 cells.
- Fluorescence labeled RNAi-microsponge without PEI outer layer showed relatively less cellular uptake by the cancer cell line, T22 cells, suggesting that the larger size and strong net negative surface charge of RNAi-microsponge likely prevents cellular internalization.
- RNAi-MS/PEI Suppression of luciferase expression by siRNA, Lipofectamine complexed with siRNA (siRNA/Lipo), siRNA complex with PEI (siRNA/PEI), RNAi-microsponge, and RNAi-microsponge condensed by PEI (RNAi-MS/PEI).
- siRNA/Lipo siRNA/Lipo
- siRNA/PEI siRNA complex with PEI
- RNAi-microsponge RNAi-microsponge condensed by PEI
- the values outside parentheses indicate the concentration of siRNA and siRNA for siRNA/Lipo and siRNA/PEI.
- the values within parentheses indicate the concentration of RNAi-microsponge and RNAi-microsponge for RNAi-MS/PEI.
- the same amount of siRNA is theoretically produced from RNAi-microsponges at the concentration in parentheses.
- RNAi-MS/PEI In vivo knockdown of firefly luciferase by RNAi-MS/PEI. Optical images of tumours after intratumoral injection of RNAi-MS/PEI into the left tumor of mouse and PEI solution only as a control into the right tumor of same mouse.
- FIG. 6 Secondary structure of eight repeated units produced by RCT (using M-fold software).
- FIG. 7 Confocal image of RNAi-microsponges labeled with Cyanine 5-dUTPs. RNAi polymerization took place with rolling circle transcription in the presence of Cyanine 5-dUTPs used as one of the ribonucleotides to form the RNA-microsponge. The red fluorescence from the RNAi-microsponge confirms that the microsponge is formed of RNA.
- FIG. 8 SEM images of RNAi-microsponges after incubation with various concentrations of RNase (RNase I for single stranded RNA and RNase III for double stranded RNA, NEB, Ipswich, Mass.).
- RNase I for single stranded RNA
- RNase III for double stranded RNA
- NEB double stranded RNA
- FIG. 8 SEM images of RNAi-microsponges after incubation with various concentrations of RNase (RNase I for single stranded RNA and RNase III for double stranded RNA, NEB, Ipswich, Mass.).
- RNase I for single stranded RNA
- RNase III for double stranded RNA
- FIG. 9 Cartoon schematic image of the formation of RNAi-microsponges (Top). Scanning electron microscope images of preliminary structure of RNAi-microsponges after 12 h rolling circle transcription (Bottom). Scale bars indicate 5 ⁇ m and 1 ⁇ m.
- FIG. 10 Transmission electron microscope image of RNAi microsponge. Multi-layered RNA sheets are shown in high magnification image. Scale bar indicates 50 nm.
- FIG. 11 Polarized optical microscopy images of RNAi-MS with heating stage.
- FIG. 12 Scanning electron microscope images of RNA products by rolling circle transcription with different concentrations of circular DNA from 100 nM (A), 30 nM(B), 10 nM(C), and 3 nM(D). With 100 nM of circular DNA, sponge-like structures from RNA products are shown, however, microsponges are not generated with 30 nM, 10 nM, and 3 nM of circular DNA.
- RNA products form fiber-like structures that are similar to the products of time-dependent experiment after 1 hour RCT (see FIG. 2A in main text).
- RNAi-microsponge the mechanism of formation of RNAi-microsponge is crystallization of RNA polymers into thin lamellae by nucleation of poly-RNA when its concentration is higher than a critical concentration beyond which individual crystalline forms aggregate and merge into superstructures. Therefore, the final structure is reminiscent of the lamellar spherulite structures that are formed by highly crystalline polymers [Formation of Spherulites in Polyethylene. Nature 194, 542-& (1962)].
- FIG. 13 Distribution of the particle size of RNAi-microsponge/PEI.
- FIG. 14 In vitro knockdown of luciferase by naked siRNA, siRNA/Lipo [siRNA/Lipofectamine (commercially available gene delivery reagent) complexes], siRNA/PEI, RNAi-MS, RNAi-MS/PEI, control-MS (RNA microsponge without meaningful sequence), control-MS/PEI, and untreated cell.
- siRNA/Lipo siRNA/Lipofectamine (commercially available gene delivery reagent) complexes]
- siRNA/PEI siRNA/PEI
- RNAi-MS RNAi-MS
- PEI RNA microsponge without meaningful sequence
- control-MS/PEI untreated cell.
- FIG. 15 In vivo knockdown of firefly luciferase by RNAi-MS/PEI. Optical images of tumours after intratumoral injection of RNAi-MS/PEI into the tumor of mouse with six different wavelength.
- FIG. 16 In vivo knockdown of firefly luciferase by control RNA microsponge/PEI. Optical images of tumours after intratumoral injection of control RNA microsponge/PEI into the tumor of mouse. Here, control RNA microsponge dose not contain siRNA for luciferase. A significant decrease of expression is not observed.
- FIG. 17 Cell viability assay of RNAi-microsponges.
- FIG. 18 Fluorescence microscopic images of RNAi-microsponge before (left) after incubating in 10% Serum for one day at 37° C. (right). Scale bar indicates 10 ⁇ m. The size of the RNAi-microsponge is reduced, possibly by degradation of RNAse, but still maintain the particle structure, supporting the idea that the RNA in the RNAi-microsponges are protected from degradation within the sponge structure.
- FIG. 19 Schematic illustration of multiple components RNAi microsponges in accordance with certain embodiments of the present invention.
- FIG. 20 Characterization of multiple components RNAi microsponges.
- the present invention describes compositions of nucleic acid particles and methods and uses thereof.
- Particles used in accordance with various embodiments of the present disclosure can contain a particle core, which can optionally be coated by a film. Upon coating, a particle can be converted from a first configuration to a second configuration.
- the greatest dimension of a particle may be greater or less than 5 ⁇ m, 2 ⁇ m, 1 ⁇ m, 800 nm, 500 nm, 200 nm, 100 nm, 90 nm, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm, 10 nm, or even 5 nm.
- the greatest dimension a particle (in its first or second configuration) may be in a range of any two values above.
- a particle in a first configuration has the greatest dimension in a range of about 5 ⁇ m to about 2 ⁇ m or about 2 ⁇ m to about 1 ⁇ m.
- a particle in a second configuration has the greatest dimension in may be in a range of about 500 nm to about 200 nm, about 200 nm to about 100 nm or about 100 nm to about 50 nm.
- a particle can be substantially spherical.
- the dimension of a particle is a diameter, wherein the diameter can be in a range as mentioned above.
- a particle described herein can comprise a particle core, a coating film (including one or more layers; in some embodiments one or more polyelectrolyte layers), and one or more agents such as diagnostic, therapeutic and/or targeting agents.
- a particle core can consist of or include one or more nucleic acid molecules.
- a core is comprised of a plurality of nucleic acid molecules. Individual nucleic acid molecules within a core can have different nucleic acid sequences or substantially the same nucleic acid sequence. In some embodiments, nucleic acid molecule(s) within a core have sequences that share at least one common sequence element.
- At least one nucleic acid molecule in a core has a nucleotide sequence that comprises multiple copies of at least a first sequence element. In some embodiments, at least one nucleic acid molecule in a core has a nucleotide sequence that comprises multiple copies of each of at least a first and a second sequence element. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that comprises alternating copies of the first and second sequence elements. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that comprises multiple copies of each of three or more sequence elements.
- At least one nucleic acid molecule has a nucleotide sequence that includes one or more sequence elements found in a natural source. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that includes a first sequence element that is found in a first natural source and a second sequence element that is found in a second natural source. The first and second natural sources can be the same or difference.
- At least one nucleic acid molecule has a nucleotide sequence that represents an assemblage of sequence elements found in one or more source nucleic acid molecules. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that represents an assemblage of at least two different sequence elements found in two different source nucleic acid molecules.
- nucleic acid molecule(s) within a core have nucleotide sequences that fold into higher order structures (e.g., double and/or triple-stranded structures).
- nucleic acid molecule(s) within a core have nucleotide sequences that comprise two or more complementary elements.
- such complementary elements can form one or more (optionally alternative) stem-loop (e.g., hairpin) structures.
- nucleic acid molecule(s) within a core have nucleotide sequences that include one or more portions that remain single stranded (i.e., do not pair intra- or inter-molecularly with other core nucleic acid sequence elements).
- At least one nucleic acid molecules in a core contains at least one cleavage site.
- a cleavage site is a bond or location susceptible to cleavage by a cleaving agent such as a chemical, an enzyme (e.g., nuclease, dicer, DNAase and RNAase), radiation, temperature, etc.
- the cleaving agent is a sequence specific cleaving agent in that it selectively cleaves nucleic acid molecules at a particular site or sequence.
- At least one nucleic acid molecules in a core contains at least one cleavage site susceptible to cleavage after delivery or localization of a particle as described herein to a target site of interest.
- nucleic acid molecule(s) in a core have a plurality of cleavage sites and/or are otherwise arranged and constructed so that multiple copies of a particular nucleic acid of interest are released at the target site, upon delivery of a particle as described herein.
- nucleic acid molecule(s) within a core have a self-assembled structure and/or are characterized by an ability to self-assemble in that it/they fold(s) into a stable three-dimensional structure, typically including one or more non-covalent interactions that occur between or among different moieties within the nucleic acid, without requiring assistance of non-nucleic acid entities.
- nucleic acid molecule(s) within a core are arranged in a crystalline structure comprising lamellar sheets.
- a core comprises or consists of one or more entangled nucleic acid molecules.
- nucleic acid molecule(s) in a core have a molecular weight greater than about 1 ⁇ 10 10 g/mol, about 1 ⁇ 10 9 g/mol, about 1 ⁇ 10 8 g/mol, about 1 ⁇ 10 7 g/mol, about 1 ⁇ 10 6 g/mol, or about 1 ⁇ 10 5 g/mol.
- nucleic acid molecule(s) in a core includes multiple copies of at least one sequence element (e.g., concatenated in one or more long nucleic acid molecules whose sequence comprises or consists of multiple copies of the sequence element, and/or as discrete nucleic acid molecules each of which has a sequence that comprises or consists of the element, or a combination of both) whose length is within the range between a lower length of at least 5, 10, 15, 20, 25, 30, 35, 40, 45, or more and an upper length of not more than 10000, 9000, 8000, 7000, 6000, 5000, 4000, 3000, 2000, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80, 70, 60, 50, 40, 30 or less, wherein the upper length is greater than the lower length.
- sequence element e.g., concatenated in one or more long nucleic acid molecules whose sequence comprises or consists of multiple copies of the sequence element, and/or as discrete nucleic acid molecules each
- a particle core comprises at least about 1 ⁇ 10 3 , about 1 ⁇ 10 4 , about 1 ⁇ 10 5 , about 1 ⁇ 10 6 , about 1 ⁇ 10 7 , about 1 ⁇ 10 8 , about 1 ⁇ 10 9 , or about 1 ⁇ 10 10 copies of a particular sequence element of interests.
- a particle core comprises copies of a particular sequence element of interests in a range of about 1 ⁇ 10 3 to about 1 ⁇ 10 4 , about 1 ⁇ 10 4 to about 1 ⁇ 10 5 , about 1 ⁇ 10 5 to about 1 ⁇ 10 6 , about 1 ⁇ 10 6 to about 1 ⁇ 10 7 , about 1 ⁇ 10 7 to about 11 ⁇ 10 8 , about 11 ⁇ 10 8 to about 11 ⁇ 10 9 , or about 11 ⁇ 10 9 to about 11 ⁇ 10 10 .
- a particle core comprises copies of a particular sequence element of interests in a range of about 1 ⁇ 10 3 to about 1 ⁇ 10 10 , about 1 ⁇ 10 4 to about 1 ⁇ 10 8 or about 1 ⁇ 10 5 to about 1 ⁇ 10 7 .
- a particle core comprises copies of a particular sequence element of interests in a range of any two values above.
- Nucleic acid molecules can carry positive or negative charges. Alternatively, they can be neutral. In some embodiments, a nucleic acid-containing particle core may have a positive or negative surface charge.
- nucleic acid molecules for use in a nucleic acid core as described herein comprise or consist of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide nucleic acid (PNA), morpholino and locked nucleic acid (LNA), glycol nucleic acid (GNA) and/or threose nucleic acid (TNA).
- DNA deoxyribonucleic acid
- RNA ribonucleic acid
- PNA peptide nucleic acid
- LNA morpholino and locked nucleic acid
- GAA glycol nucleic acid
- TAA threose nucleic acid
- utilized nucleic acid molecules comprise or consist of one or more oliogonucleotides (ODN), DNA aptamers, DNAzymes, siRNAs, shRNAs, RNA aptamers RNAzymes, miRNAs or combination thereof.
- ODN oliogonucleotides
- nucleic acid molecules for use in accordance with the present invention have nucleotide sequence(s) that include(s) one or more coding sequences; one or more non-coding sequences, and/or combinations thereof.
- a coding sequence includes a gene sequence encoding a protein.
- proteins include, but are not limited to brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), neurotrophic factor 3 (NT3), fibroblast growth factor (FGF), transforming growth factor (TGF), platelet transforming growth factor, milk growth factor, endothelial growth factors (EGF), endothelial cell-derived growth factors (ECDGF), alpha-endothelial growth factors, beta-endothelial growth factor, neurotrophic growth factor, nerve growth factor (NGF), vascular endothelial growth factor (VEGF), 4-1 BB receptor (4-1BBR), TRAIL (TNF-related apoptosis inducing ligand), artemin (GFRalpha3-RET ligand), BCA-1 (B cell-attracting chemokinel), B lymphocyte chemoattractant (BLC), B cell maturation protein (BCMA), brain-derived neurotrophic factor
- Particles provided by the present invention may include a coating film on a nucleic acid-containing core.
- a film substantially covers at least one surface of a particle core.
- a film substantially encapsulates a core.
- a film can have an average thickness in various ranges.
- an averaged thickness is about or less than 200 nm, 100 nm, 50 nm, 40 nm, 30 nm, 20 nm, 15 nm, 10 nm, 5 nm, 1 nm, 0.5 nm, or 0.1 nm.
- an averaged thickness is in a range from about 0.1 nm to about 100 nm, about 0.5 nm to about 50 nm, or about 5 nm to about 20 nm.
- an averaged thickness is in a range of any two values above.
- a coating film include one or more layers.
- a plurality of layers each can respectively contain one or more materials.
- a layer can consist of or comprise metal (e.g., gold, silver, and the like), semi-metal or non-metal, and metal/semi-metal/non-metal oxides such as silica (SiO 2 ).
- a layer can consist of or comprise a magnetic material (e.g., iron oxide).
- materials of a layer can be polymers.
- a layer can be polyethyleneimine as demonstrated in Example 1.
- a layer is or includes one or more polymers, particularly polymers that which have been approved for use in humans by the U.S. Food and Drug Administration (FDA) under 21 C.F.R. ⁇ 177.2600, including, but not limited to, polyesters (e.g. polylactic acid, poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly(1,3-dioxan-2-one)); polyanhydrides (e.g.
- a polymer is a lipid.
- a layer is or includes at least a degradable material.
- a degradable material can be hydrolytically degradable, biodegradable, thermally degradable, enzymatically degradable, and/or photolytically degradable polyelectrolytes.
- degradation may enable release of one or more agents associated with a particle described herein.
- Degradable polymers known in the art include, for example, certain polyesters, polyanhydrides, polyorthoesters, polyphosphazenes, polyphosphoesters, certain polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, poly(amino acids), polyacetals, polyethers, biodegradable polycyanoacrylates, biodegradable polyurethanes and polysaccharides.
- biodegradable polymers that may be used include but are not limited to polylysine (e.g., poly(L-lysine) (PLL)), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLG), poly(lactide-co-caprolactone) (PLC), and poly(glycolide-co-caprolactone) (PGC).
- polylysine e.g., poly(L-lysine) (PLL)
- PLA poly(lactic acid)
- PGA poly(glycolic acid)
- PCL poly(caprolactone)
- PLC poly(lactide-co-glycolide)
- PLC poly(glycolide-co-caprolactone)
- PLC poly(glycolide-co-caprolactone)
- Another exemplary degradable polymer is poly(beta-amino esters),
- LBL films can be used alternatively or in addition to other layers to coat a particle core in accordance with the present invention.
- a LBL film may have any of a variety of film architectures (e.g., numbers of layers, thickness of individual layers, identity of materials within films, nature of surface chemistry, presence and/or degree of incorporated materials, etc), as appropriate to the design and application of a coated particle core as described herein.
- a LBL film may has a single layer.
- LBL films may be comprised of multilayer units in which alternating layers have opposite charges, such as alternating anionic and cationic layers.
- LBL films for use in accordance with the present invention may be comprised of (or include one or more) multilayer units in which adjacent layers are associated via other non-covalent interactions.
- Exemplary non-covalent interactions include, but are not limited to ionic interactions, hydrogen bonding interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, pi stacking interactions, van der Waals interactions, magnetic interactions, dipole-dipole interactions and combinations thereof.
- Detailed description of LBL films can be found in U.S. Pat. No. 7,112,361, the contents of which are incorporated herein by reference.
- Features of the compositions and methods described in the patent may be applied in various combinations in the embodiments described herein.
- a layer can have or be modified to have one or more functional groups.
- functional groups within or on the surface of a layer
- any agents e.g., detectable agents, targeting agents, or PEG.
- the present invention provides compositions that comprise one or more agents.
- one or more agents are associated independently with a core, a film coating the core, or both.
- agents can be covalently linked to or hybridized to a nucleic acid-containing core, and/or encapsulated in a coating film of a particle described herein.
- an agent can be associated with one or more individual layers of an LBL film that is coated on a core, affording the opportunity for extraordinar control of loading and/or release from the film.
- any agents including, for example, therapeutic agents (e.g. antibiotics, NSAIDs, glaucoma medications, angiogenesis inhibitors, neuroprotective agents), cytotoxic agents, diagnostic agents (e.g. contrast agents; radionuclides; and fluorescent, luminescent, and magnetic moieties), prophylactic agents (e.g. vaccines), and/or nutraceutical agents (e.g. vitamins, minerals, etc.) may be associated with the LBL film disclosed herein to be released.
- therapeutic agents e.g. antibiotics, NSAIDs, glaucoma medications, angiogenesis inhibitors, neuroprotective agents
- diagnostic agents e.g. contrast agents; radionuclides; and fluorescent, luminescent, and magnetic moieties
- prophylactic agents e.g. vaccines
- nutraceutical agents e.g. vitamins, minerals, etc.
- compositions described herein include one or more therapeutic agents.
- agents include, but are not limited to, small molecules (e.g. cytotoxic agents), nucleic acids (e.g., siRNA, RNAi, and microRNA agents), proteins (e.g. antibodies), peptides, lipids, carbohydrates, hormones, metals, radioactive elements and compounds, drugs, vaccines, immunological agents, etc., and/or combinations thereof.
- a therapeutic agent to be delivered is an agent useful in combating inflammation and/or infection.
- a therapeutic agent is or comprises a small molecule and/or organic compound with pharmaceutical activity.
- a therapeutic agent is a clinically-used drug.
- a therapeutic agent is or comprises an antibiotic, anti-viral agent, anesthetic, anticoagulant, anti-cancer agent, inhibitor of an enzyme, steroidal agent, anti-inflammatory agent, anti-neoplastic agent, antigen, vaccine, antibody, decongestant, antihypertensive, sedative, birth control agent, progestational agent, anti-cholinergic, analgesic, anti-depressant, anti-psychotic, ⁇ -adrenergic blocking agent, diuretic, cardiovascular active agent, vasoactive agent, anti-glaucoma agent, neuroprotectant, angiogenesis inhibitor, etc.
- a therapeutic agent may be a mixture of pharmaceutically active agents.
- a local anesthetic may be delivered in combination with an anti-inflammatory agent such as a steroid.
- Local anesthetics may also be administered with vasoactive agents such as epinephrine.
- an antibiotic may be combined with an inhibitor of the enzyme commonly produced by bacteria to inactivate the antibiotic (e.g., penicillin and clavulanic acid).
- a therapeutic agent may be an antibiotic.
- antibiotics include, but are not limited to, ⁇ -lactam antibiotics, macrolides, monobactams, rifamycins, tetracyclines, chloramphenicol, clindamycin, lincomycin, fusidic acid, novobiocin, fosfomycin, fusidate sodium, capreomycin, colistimethate, gramicidin, minocycline, doxycycline, bacitracin, erythromycin, nalidixic acid, vancomycin, and trimethoprim.
- ⁇ -lactam antibiotics can be ampicillin, aziocillin, aztreonam, carbenicillin, cefoperazone, ceftriaxone, cephaloridine, cephalothin, cloxacillin, moxalactam, penicillin G, piperacillin, ticarcillin and any combination thereof.
- An antibiotic used in accordance with the present disclosure may be bacteriocidial or bacteriostatic.
- Other anti-microbial agents may also be used in accordance with the present disclosure.
- anti-viral agents, anti-protazoal agents, anti-parasitic agents, etc. may be of use.
- a therapeutic agent may be or comprise an anti-inflammatory agent.
- Anti-inflammatory agents may include corticosteroids (e.g., glucocorticoids), cycloplegics, non-steroidal anti-inflammatory drugs (NSAIDs), immune selective anti-inflammatory derivatives (ImSAIDs), and any combination thereof.
- corticosteroids e.g., glucocorticoids
- NSAIDs non-steroidal anti-inflammatory drugs
- ImSAIDs immune selective anti-inflammatory derivatives
- NSAIDs include, but not limited to, celecoxib (Celebrex®); rofecoxib (Vioxx®), etoricoxib (Arcoxia®), meloxicam (Mobic®), valdecoxib, diclofenac (Voltaren®, Cataflam®), etodolac (Lodine®), sulindac (Clinori®), aspirin, alclofenac, fenclofenac, diflunisal (Dolobid®), benorylate, fosfosal, salicylic acid including acetylsalicylic acid, sodium acetylsalicylic acid, calcium acetylsalicylic acid, and sodium salicylate; ibuprofen (Motrin), ketoprofen, carprofen, fenbufen, flurbiprofen, oxaprozin, suprofen, triaprofenic acid,
- nucleic acid molecules as described may self-assemble into a core.
- a core can be coated with a film, wherein the core is characterized by being converted from a first configuration to a second configuration upon coating.
- nucleic acid molecules for use in particle cores in accordance with the present invention may be prepared by any available technology.
- the present invention encompasses the recognition that rolling circle amplification (RCA) and/or rolling circle transcription (RCT) can be a particularly useful methodology for production of nucleic acid molecules for use herein.
- RCA strategies include, for example, single-primer initiated RCA and by various two-primer amplification methods such as ramification amplification (RAM), hyperbranched RCA, cascade RCA, and exponential RCA.
- RNA-containing molecules can be produced via rolling circle transcription (RCT).
- the present invention specifically encompasses the recognition that RCA/RCT may be particularly useful for production of long nucleic acid molecules, and/or furthermore may generate nucleic acid molecules.
- RCA/RCT may be particularly useful for production of long nucleic acid molecules, and/or furthermore may generate nucleic acid molecules.
- a nucleic acid molecule produced by RCA/RCT will typically have a nucleotide sequence comprising or consisting of multiple copies of the complement of the circular template being amplified.
- a template used for RCA/RCT as described herein is or comprises deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide nucleic acid (PNA), morpholino and locked nucleic acid (LNA), glycol nucleic acid (GNA) and/or threose nucleic acid (TNA).
- DNA deoxyribonucleic acid
- RNA ribonucleic acid
- PNA peptide nucleic acid
- LNA morpholino and locked nucleic acid
- GNA glycol nucleic acid
- TPA threose nucleic acid
- a template used for RCA/RCT as described herein has a nucleotide sequence that includes one or more coding sequences, one or more non-coding sequences, and/or combinations thereof.
- a polymerase selected from the group consisting of ⁇ 29 DNA polymerase and T7 is utilized to perform the RCA/RCT (see, for example, Example 1).
- a first single-stranded nucleic acid molecule is formed by RCA.
- the first single-stranded nucleic acid molecule is formed with the aid of a first primer and a nucleic acid polymerase.
- a second single-stranded nucleic acid molecule is formed by amplifying the first single-stranded nucleic acid with the aid of a second primer and a polymerase.
- a third single-stranded nucleic acid molecule is formed by amplifying the second single-stranded nucleic acid molecule with the aid of a third primer and a polymerase.
- a RCA can be repeated with as many primers as desired, e.g., 4, 5, 6, 7, 8, 9, 10 or more primers can be used.
- a plurality of primers can be added to templates to form nucleic acid molecules, wherein the plurality can comprise at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 primers. In some embodiments, more than 100 primers are used.
- random fragments of short nucleic acid fragments e.g., comprising digested or otherwise degraded DNAs, are used as non-specific primers to prime the formation of nucleic acid molecules using rolling circle amplification.
- polymerization reaction conditions can be adjusted as desired to form nucleic acid molecules and self-assembled particles.
- reaction conditions that favor stringent nucleic acid hybridization e.g., high temperature, can be used to favor more specific primer binding during amplification.
- the present invention specifically encompasses the recognition that LBL assembly may be particularly useful for coating a particle core described herein.
- LBL assembly techniques including mild aqueous processing conditions (which may allow preservation of biomolecule function); nanometer-scale conformal coating of surfaces; and the flexibility to coat objects of any size, shape or surface chemistry, leading to versatility in design options.
- one or more LBL films can be assembled and/or deposited on a core to convert it to a condensed configuration with a smaller size.
- a coated core having one or more agents for delivery associated with the LBL film, such that decomposition of layers of the LBL films results in release of the agents.
- assembly of an LBL film may involve one or a series of dip coating steps in which a core is dipped in coating solutions. Additionally or alternatively, it will be appreciated that film assembly may also be achieved by spray coating, dip coating, brush coating, roll coating, spin casting, or combinations of any of these techniques.
- particles described herein including nucleic acid-containing core can be subjected to a cleavage agent, so that nucleic acid molecules are cleaved into multiple copies of a particular nucleic acid of interest and such copies can be released.
- At least one nucleic acid in a nucleic acid core contains at least one cleavage site.
- a cleavage site is a bond or location susceptible to cleavage by a cleaving agent such as a chemical, an enzyme, radiation, temperature, etc.
- the cleaving agent is a sequence specific cleaving agent in that it selectively cleaves nucleic acid molecules at a particular site or sequence.
- At least one nucleic acid in a nucleic acid core contains at least one cleavage site susceptible to cleavage after delivery or localization of a particle as described herein to a target site of interest.
- nucleic acid(s) in a core have a plurality of cleavage sites and/or are otherwise arranged and constructed so that multiple copies of a particular nucleic acid of interest are released at the target site, upon delivery of a particle as described herein.
- particles are provided with a nucleic acid core that comprises one or more sequence elements that targets a particular disease, disorder, or condition of interest (e.g., cancer, infection, etc).
- a particular disease, disorder, or condition of interest e.g., cancer, infection, etc.
- provided particles and methods can be useful for dysregulation of genes.
- particles are provided with a nucleic acid core that comprises a plurality of different sequence elements, for example targeting the same disease, disorder or condition of interest.
- particles are provided with a nucleic acid core that comprises a plurality of sequence elements, each of which targets a different cancer pathway, for example, as an siRNA that inhibits expression of a protein whose activity contributes to or supports the pathway.
- the present invention encompasses the recognition that particles can be designed and/or prepared to simultaneously deliver to a target site (e.g., to a cancer cell) a plurality of different nucleic acid agents (e.g., siRNAs), each of which is directed to a different specific molecular target of interest (e.g., an mRNA encoding a cancer-related protein).
- a target site e.g., to a cancer cell
- nucleic acid agents e.g., siRNAs
- RCA/RCT templates can be designed and/or assembled with desired relative numbers of copies of different sequences of interest (e.g., complementary to different siRNAs of interest), so as to achieve precise control over the stoichiometry of delivered siRNA(s). In some embodiments, such control achieves synergistic effects (e.g., with respect to inhibiting tumor growth).
- provided particles are administered or implanted using methods known in the art, including invasive, surgical, minimally invasive and non-surgical procedures, depending on the subject, target sites, and agent(s) to be delivered.
- Particles described herein can be delivered to a cell, tissue, organ of a subject.
- target sites include but are not limited to the eye, pancreas, kidney, liver, stomach, muscle, heart, lungs, lymphatic system, thyroid gland, pituitary gland, ovaries, prostate, skin, endocrine glands, ear, breast, urinary tract, brain or any other site in a subject.
- RNAi is generated in stable form with multiple copy numbers at low cost, and distributed in a form that can readily be adapted for systemic or targeted delivery.
- Ligased circular DNA templates (0.3 ⁇ M) were incubated with T7 RNA polymerase (5 units/ ⁇ L) at 37° C. for 20 hours in the reaction buffer (8 mM Tris-HCl, 0.4 mM spermidine, 1.2 mM MgCl 2 , and 2 mM dithiothreitol) including 2 mM rNTP in final concentration.
- the reaction buffer 8 mM Tris-HCl, 0.4 mM spermidine, 1.2 mM MgCl 2 , and 2 mM dithiothreitol
- Cyanine 5-dUTP (0.5 mM) was added.
- the resultant solution was pipetted several times and then sonicated for 5 min to break possible connection of the particles.
- the solution was centrifuged at 6000 rpm for 6 min to remove the supernatant. Then, RNase free water was added to wash the particles.
- RNA microsponge concentration was conducted by measuring fluorescence using Quant-iT RNA BR assay kits (Invitrogen). 10 ⁇ l of RNA microsponge solution or standard solution was incubated with 190 ⁇ l of working solution for 10 min at room temperature. The fluorescence was measured at 630/660 nm by Fluorolog-3 spectrofluorometer (Horiba Jobin Yvon).
- RNAi microsponges were digested with from 1 unit to 1.5 unit recombinant Dicer (Genlantis, San Diego, Calif.) in 12 ⁇ l of reaction solution (1 mM ATP, 5 mM MgCl2, 40% (v/v) Dicer reaction buffer). The samples treated for different reaction time from 12 h to 48 h were collected and were then inhibited by adding Dicer stop solution (Genlantis, San Diego, Calif.).
- RNA microsponges were incubated for 24 hrs in 10% of serum at 37° C. Degradation experiments with various concentrations of RNase were also performed for 24 hrs at 37° C. (NEB, Ipswich, Mass.).
- JEOL JSM-6060 and JSM-6070 scanning electron microscopes were used to obtain high resolution digital images of the RNA microsponges.
- the sample was coated with Au/Pd.
- JEOL 2000FX transmission electron microscope was used to obtain the internal structure of the RNA particle.
- Zeiss AxioSkop 2 MAT fluorescent microscope was used to image green fluorescently stained RNA microsponges by SYBR II.
- laboratory X-ray powder diffraction (XRD) patterns were recorded using a PANalytical X'Pert Pro diffractometer, fitted with a solid state X'Celerator detector.
- RNA microsponges were mixed with PEI solution, used at a final concentration of up to 5.0 mg/ml. Free PEI was easily removed by centrifugation at 13,700 rpm for 30 min. Repeat this step 2 more times. The PEI layered RNA particles were resuspended in PBS solution (pH 7.4) or MilliQ water.
- T22 cells were maintained in growth media comprised of Minimum Essential Media-Alpha Modification (MEM) supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. 3 days prior to knockdown experiments, cells were seeded in 6-well plates at 30,000 cells per well. 2 days prior to transfection, each well was co-transfected with 3.5 g each of pRL-CMV and gWIZ-Luc using Fugene-HD according the manufacturer's instructions. 1 day prior to transfection, cells were trypsinized and re-seeded in 96-well plates at an initial seeding density of 2000 cells/well. Cells were allowed to attach and proliferate for 24 hours. All knockdown experiments were performed in triplicate.
- MEM Minimum Essential Media-Alpha Modification
- FBS fetal bovine serum
- Penicillin-Streptomycin 1% Penicillin-Streptomycin.
- RNAi-MS and RNAi-MS/PEI were added to 250 ⁇ L phenol-free Opti-MEM at the final concentration of up to 21.2 fM.
- Lipofectamine/siRNA complexes were formed at a 4:1 ratio (v/w). Growth media was removed and Opti-MEM was added to cells, followed by RNAi-microsponges or complexes in PBS, for a total volume of 150 ⁇ L per well, with no less than 100 ⁇ L Opti-MEM per well. Cells were incubated with siRNA constructs for 4 hours, after which media was removed and replaced with 10% serum-containing growth medium.
- a Luciferase assay was performed as using the Dual-Glo Luciferase Assay Kit (Promega, Madison, Wis.) and measured on a Perkin Elmer Plate 1420 Multilabel Counter plate reader. GFP expression was measured after quenching of the luciferase signal with the Stop-and-Glo reagent from Promega.
- T22-Luc is a genetically defined mouse ovarian cancer cell line (p53 ⁇ / ⁇ , Akt, myc) that stably expresses luciferase after infection with pMSCV-puro-Firefly luciferase viral supernatant and selecting the cells in a medium containing 2.0 ⁇ g/ml of puromycin for 1 week.
- T22-Luc tumors were induced on both hind flanks of female nude mice (5 weeks old) with a single injection of 2-5 million cells in 0.1 mL media. After the tumors grew to ⁇ 100 mm 3 in volume, intratumoral injections of RNAi-microsponges were given in volumes of 50 uL.
- D-Luciferin D-Luciferin
- Xenogen D-Luciferin
- Xenogen IVIS Spectrum Imaging System Xenogen, Alameda, Calif.
- Living Image software Version 3.0 Xenogen was used to acquire and quantitate the bioluminescence imaging data sets.
- RNA polymerase and Ribonucleotide Solution Mix were purchased from New England Biolabs (Beverly, Mass.) in pure form at a concentration of 50,000 units/ml and 80 mM, respectively.
- RNase Inhibitor (RNAsin Plus) was purchased from Promega (Madison, Wis.) at a concentration of 40 units/ ⁇ l.
- Linear 25,000 g/mol (M W ) polyethyleneimine (PEI) was purchased from Polysciences Inc. (Warrington, Pa.).
- Other chemical reagents were purchased from Sigma Aldrich (St. Louis, Mo.). Oligonucleotides were commercially synthesized and PAGE purified (Integrated DNA Technologies, Coralville, Iowa).
- siRNA for control experiments was purchased from Dharmacon RNAi Technologies. Dual-Glo Luciferase Assay System was purchased from Promega (Madison, Wis.). All other cell culture reagents were purchased from Invitrogen. GFP- and Luciferase-expressing T22 cells were a gift of the laboratory of Phil Sharp (MIT). Vivo Tag 645 and Cyanine 5-dUTP was purchased from Visen/PerkinElmer.
- TAATACGACTCACTATAGGGAT phosphorylated linear ssDNA
- TAATACGACTCACTATAGGGAT phosphorylated linear ssDNA
- the circular DNA is synthesized by hybridizing a 22 base T7 promoter with a 92 base oligonucleotide which has one larger (16 bases) and one shorter (6 bases) complementary sequence to the T7 promoter (Table 1).
- the nick in the circular DNA was chemically closed by T4 DNA ligase (Promega, Madison, Wis.), following commercial protocol.
- RNA microsponges The resultant solution after dicer treatment of the RNA microsponges was run in a 3% agarose ready gel (Bio-Rad) at 100 V at 25° C. in Tris-acetate-EDTA (TAE) buffer (40 mM Tris, 20 mM acetic acid and 1 mM EDTA, pH 8.0, Bio-Rad) for 90 min. The gel was then stained with 0.5 mg/ml of ethidium bromide in TAE buffer. The gel electrophoresis image was used to calculate the number of siRNA from RNA particle.
- TAE Tris-acetate-EDTA
- the scattering vector q was determined from the following equation.
- ⁇ q is the radial full width at half maximum of a given Bragg spot.
- D is thickness of crystallite.
- ⁇ is the wavelength of the x-ray radiation (here, ⁇ is 1.54).
- the crystallite thickness is estimated to be ⁇ 7.4 nm as determined from the Scherrer equation.
- the observed thickness might correspond to the length of a double stranded 21 bp siRNA coupled to the width of a duplexed RNA helix of approximately 20 ⁇ [Nucleic Acids Research, 27, 949-955 (1999)]. This would theoretically amount to 74.6 to 80.9 ⁇ .
- the rest of RNA strands could be easily packing to form ordered structure since the persistence length of single-stranded RNA is less than 1 nm.
- double stranded RNA part should be rigid because persistence length of double stranded RNA is about 64 nm (Single-Molecule Measurements of the Persistence Length of Double-Stranded RNA, Biophys J. 2005 April; 88(4): 2737-2744).
- RNAi microsponges The size and surface charge of RNAi microsponges were measured using Zeta PALS and Zeta Potential Analyzer software (Brookhaven Instruments Corp., Holtsville, N.Y.). The RNAi microsponges were diluted in Milli-Q water and all measurement were carried out at 25° C. Three measurements each with 10 sub-runs were performed for each sample. Molecular weight of RNA microsponges, 1.36 ⁇ 10 10 g/mole, was obtained from Zeta PALS software.
- RNA microsponges From the measured molecular weight of the RNA microsponges, the number of periodically repeated 92 base RNA strands (from 92 base circular DNA templates) in a single RNA microsponge was calculated as follows:
- siRNA can be maximally generated from one RNAi microsponge.
- the amount of cleaved siRNA from one RNA microsponge was determined using the gel electrophoresis results.
- siRNA strands were generated from one RNAi microsponge under optimal conditions. This result shows that 21% of potential RNAi is converted as siRNA.
- some portion of the RNA is not as readily accessed by dicer in a more close-packed self-assembled RNA structure. Therefore, multimers such as dimer, trimer, and tetramer of repeat RNA unit as incomplete dicing products could be produce.
- the number of liposome can be calculated by the following equation,
- N liposome N lipid /N tot
- LipofectamineTM reagent Invitrogen
- DOSPA 2,3-dioleoyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propaniminium trifluoroacetate
- DOPE dioleoyl-L-a-phosphatidylethanolamine
- the siRNA was purchased from Dharmacon RNAi Technologies. Dual-Glo Luciferase Assay System and Fugene-HD were purchased from Promega. All other cell culture reagents were purchased from Invitrogen. T22 cells stably expressing both GFP and firefly luciferase, untransfected T22 cells, and pRL-CMV ( Renilla luciferase ) plasmid were a gift of the laboratory of Phil Sharp (MIT). gWIZ-Luc (Firefly luciferase) plasmid was obtained from Aldevron. (Firefly) Branched 25,000 g/mol (M W ) polyethyleneimine (PEI) and other chemical reagents were purchased from Sigma Aldrich. Vivo Tag 645 was purchased from Visen/PerkinElmer.
- T22 cells were seeded at 2000 cells/well in a 96-well clear, flat-bottomed plate and transfected according to the above protocol. Cells were incubated with RNAi-microsponges or RNAi-microsponge/PEI for 4 hours, after which media was removed and replaced with 10% serum-containing growth medium. After 48 hours, each well was treated with 20 ⁇ L of MTT reagent (1 mg/mL in MEM) for an additional 4 hours. Media was then removed and formazan crystals were solubilized in 50:50 DMF:water with 5% SDS. After 12 hours, absorbance was read at 570 nm.
- RNAi-MS and RNAi-MS/PEI were added to 250 ⁇ L phenol-free Opti-MEM at the final concentration of up to 21.2 fM.
- RNAi-microsponges were removed, cells were fixed with 3.7% formaldehyde in PBS, stained with Hoechst 33342 (Pierce) and Alexa Fluor 488® phalloidin (Invitrogen) and washed 3 times with PBS. Imaging was done on a PerkinElmer Ultraview spinning disc confocal (PerkinElmer, Waltham, Mass.).
- T22-Luc cells were a generous gift from Dr. Deyin Xing, Professor Philip Sharp (MIT) and Dr. Sandra Orsulic (Cedars-Sinai medical center). Tumors from nude mice injected with Brca1 wild-type cell line C22 were used to generate T22 tumor cell lines ( Cancer Res. 2006 Sep. 15; 66(18): 8949-53).
- T22-Luc is a genetically defined mouse ovarian cancer cell line (p53 ⁇ / ⁇ , Akt, myc) that stably expresses luciferase after infection with pMSCV-puro-Firefly luciferase viral supernatant and selecting the cells in a medium containing 2.0 ⁇ g/ml of puromycin for 1 week.
- RNA microsponges were incubated for 24 hrs in 10% of serum at 37° C. ( FIG. 18 ).
- RNase I from 0.05 U/ ⁇ l to 5 U/ ⁇ l
- RNase III from 0.02 U/ ⁇ l to 1.2 U/ ⁇ l
- RNA microsponges were incubated with 10 U/ ⁇ l of DNase I (NEB, Ipswich, Mass.) for 24 hrs at 37° C.
- RNA polymerase to generate elongated pure RNA strands as polymers that can self-assemble into organized nano- to microstructure, which is key for efficient delivery and high cargo capacity, offering the combined benefit of low off-target effects and low toxicity 4 .
- T7 promoter as a primer so that extremely high molecular weight RNA strands can be produced.
- FIG. 1 long linear single stranded DNA encoding complementary sequences of the antisense and sense sequences of anti-luciferase siRNA are first prepared.
- both ends of the linear DNA are also partially complementary to the T7 promoter sequence
- the long strand is hybridized with a short DNA strand containing the T7 promoter sequence to form circular DNA (see Table 1).
- the nick in the circular DNA is chemically closed with a T4 DNA ligase.
- the closed circular DNA is then used to produce RNA transcripts via RCT, encoding both antisense and sense sequences of anti-luciferase siRNA yielding hairpin RNA structures (see FIG. 6 ).
- the hairpin RNA structures can actively silence genes when converted to siRNA by Dicer. From In vitro RCT of the circular DNA, we can obtain multiple tandem copies of the sequence in coils of single-stranded and double stranded RNA transcripts. Although the products might be compared to DNA toroidal condensates, in this case, there is not a charged condensing element that assists in the formation of structure.
- RNA transcripts form porous sponge-like superstructures with nanoscopic structure readily visible in scanning electron microscope (SEM) image ( FIG. 2 a ).
- SEM scanning electron microscope
- RNAi-microsponge Unlike conventional nucleic acid systems, our RNAi-microsponge exhibits a densely packed molecular scale structure without the use of an additional agent.
- the RNAi-microsponges are composed of RNA by staining with SYBR II and labeling with Cyanine 5-dUTPs, and observing the resulting bright green and red fluorescence, respectively ( FIG. 2 b and FIG. 7 ).
- RNAi-microsponge contains approximately a half million tandem copies of RNA strands that are cleavable with Dicer.
- a higher magnification SEM image of the RNA particles reveals that the sponge-like structure is constructed from RNA sheets that are approximately 12 ⁇ 4 nm thick ( FIG. 2 d ).
- the final structure is reminiscent of the lamellar spherulite structures that are formed by highly crystalline polymers when nucleated in the bulk state or solution.
- the thickness of the lamellar sheets corresponds to the dimensions of chain-folded polymer molecules. It is possible that as the RNA polymer is continuously generated during the RCT reaction, and reaches very high molecular weight at high localized concentrations, a similar ordering and assembly process occurs here. Thus far, such a self-assembled crystalline superstructure has not been observed for RNA polymers.
- RNAi-microsponge The crystalline structure of RNAi-microsponge was confirmed with polarizing optical microscopy (POM); under crossed polarizers, birefringence of the individual particles is observed ( FIG. 3 h ). In comparison to the SEM image (inset of FIG. 2 c ), it appears that the RNA sheet has a crystal-like ordered structure (Inset of FIG. 3 h ). X-ray diffraction further confirmed the crystalline structure of the RNAi-microsponge ( FIG. 3 i ). The crystallite thickness is estimated to be ⁇ 7.4 nm as determined from the Scherrer equation (Table 2). This finding is consistent with the thickness from SEM images although the resolution of SEM is not as sensitive at the nanoscale.
- TEM images ( FIG. 3 j and FIG. 10 ) showing densely assembled RNA sheet structures in the RNAi-microsponge support the proposed structure, as shown in schematic form in FIG. 3 j .
- TEM transmission electron microscope
- the high molecular weight of RNA polymers with periodic RNA duplexes leads to the formation of crystal-like ordered structures.
- the melting experiment using POM with a heating stage show that the RNAi-microsponge is pretty stable up to 150° C. which is much higher than the melting temperature of any double helix DNA or RNA molecules, suggesting that the formation of the RNAi-microsponge is dominantly based on the ordered crystalline structure of RNA polymers ( FIG. 11 ).
- RNA polymer was also observed when polymerized at different concentrations of the rolling circle DNA polymerizing or initiating units ( FIG. 12 ). At lower concentrations, individual branched dendritic polycrystals were formed in solution, but they did not assemble into microparticles until a critical concentration of DNA was achieved.
- concentration dependence, the appearance of more traditional crystalline structures at low concentration, as well as the observed crystallite thickness of 7.4 nm for the sponge layer structures, which corresponds to the length of the rigid 21 bp RNA repeat sequence, were all consistent with phenomena observed for the formation of spherulitic superstructures of chain folded lamellar sheets.
- RNAi-microsponges have a highly localized concentration of RNA strands, as they essentially consist of near 100% potential RNAi. For this reason, these systems should be an effective means to deliver and generate siRNA through intracellular processing mechanisms.
- the RNA structures were designed to be cleaved by the enzyme Dicer by cutting double-stranded RNA into approximately 21-nt RNA duplexes in the cytoplasm, where it can be converted to siRNA by the RNA-induced silencing complex (RISC) for gene silencing ( FIG. 4 a ). To confirm Dicer cleavage of RNAi-microsponge, they were incubated with recombinant Dicer and the products were analyzed by gel electrophoresis ( FIG. 4 b ).
- RISC RNA-induced silencing complex
- RNAi-microsponges yielded 21 bp products ( FIG. 4 b , left); whereas there are no RNA strands as small as the 21 bp siRNA without Dicer treatment (lane 2 of FIG. 4 b , right). Due to the amount of cleavable RNA strands and size of RNAi-microsponge, recombinant Dicer required at least a 36 h reaction time to generate the maximum amount of siRNA (lane 3 to 8 of FIG. 4 b , right).
- RNAi-microsponge 9.5% (w/w) of RNAi-microsponge was converted to siRNA, indicating 21% of the cleavable double stranded RNA was actually diced to siRNA (Table 3). Dicer also produced the two or three repeat RNA units that included two or three non-diced RNA duplex ( FIG. 4 b ). With these results, we estimate that each individual RNAi-microsponge can yield ⁇ 102000 siRNA copies (see Calculation above).
- RNAi-microsponge polyethylenimine
- RNAi-microsponge/PEI polyethylenimine
- the change of particle surface charge (zeta potential) from ⁇ 20 mV (RNAi-microsponge) to +38 mV (RNAi-microsponge/PEI) indicates the successful assembly of RNAi-microsponge with PEI ( FIG. 4 c ).
- the size of the particles was significantly decreased to 200 nm from the original average size of approximately 2 ⁇ m ( FIG. 4 c ).
- RNAi-microsponge/PEI red fluorescence labeled RNAi-microsponge/PEI was incubated with T22 cells.
- RNAi-microsponge/PEI particles exhibited significant cellular uptake by the cancer cell line, compared with the uncondensed RNAi-microsponge ( FIG. 5 a ). Since the RNAi-microsponge was designed to generate siRNA for silencing of firefly luciferase expression, the drug efficacy was determined by measuring the fluorescence intensity of cell lysate after transfection ( FIG. 5 b and FIG. 14 ).
- RNAi-microsponge did not show any significant gene silencing up to 100 nM siRNA, whereas RNAi-microsponge showed slightly reduced gene expression at 980.0 fM.
- PEI layered RNAi-microsponge efficiently inhibited the firefly luciferase expression down to 42.4% at the concentration of 980 fM.
- the RNAi-MS/PEI delivery system shows better silencing efficiency in comparison to siRNA/PEI.
- the level of gene knockdown was also evaluated with in vivo optical images of firefly luciferase-expressing tumors after intratumoral injection of RNAi-microsponge/PEI ( FIG. 5 c and FIG. 15 ). As can be seen in FIG.
- RNAi-microsponge/PEI particles were used to achieve significant gene silencing efficiency—roughly 3 orders of magnitude less carrier was required to achieve the same degree of gene silencing as a conventional particle based vehicle 6 .
- siRNA delivery using our RNAi-microsponges provides synergistic effects for loading efficiency, drug efficacy, and low cytotoxicity ( FIGS. 5 b and 5 c and FIG. 17 ).
- RNAi-microsponge which introduces a new self-assembled structure that provides a route for the effective delivery of siRNA.
- the RNAi microsponge presents a means of rapidly generating large amounts of siRNA in a form that assembles directly into a drug carrier that can be used for direct transfection simply by coating with a positively charged polyion. Given the high cost of therapeutic siRNA and the need for high levels of efficiency, this approach could lead to much more directly accessible routes to therapies involving siRNA.
- the siRNA which is highly prone to degradation during delivery, is protected within the microsponge in the crystalline form of polymeric RNAi. We can significantly reduce the difficulties of achieving high loading efficiency for siRNA using this approach.
- the microsponges are able to deliver the same transfection efficiency with a three order of magnitude lower concentration of siRNA particles when compared to typical commercially available nanoparticle-based delivery. Furthermore, the ease of modification of the RNA polymer composition enables the introduction of multiple RNA species for combination therapies.
- the RNAi microsponge presents a novel new materials system in general due to its unique morphology and nanoscale structure within the polymer particle, and provides a promising self-assembling material that spontaneously generates a dense siRNA carrier for broad clinical applications of RNAi delivery using the intrinsic biology of the cell.
- particles includes nucleic acid molecules comprising multiple sequences are demonstrated.
- RNAi combinations by assembling multiple siRNA and/or microRNA (miR) within a single RNAi microsponge.
- siRNA and/or microRNA miR
- multiple RNA species can be designed within a single circular DNA template.
- self-assembled RNAi microsponge can be synthesized during RCT reaction by producing multiple components from a single circular DNA template (Engineering Strategy 1 in FIG. 19 ).
- Another strategy is that we can design each type of siRNA sequences in a single circular DNA template and mix all types of circular DNA together during RCT reaction (Engineering Strategy 2 in FIG. 19 ).
- Specific composition of multiple RNAi reagents can be incorporated as components of circular DNA to generate the RNAi combination system.
- RNAi microsponge The numbers and types of multiple components in a single RNAi microsponge are unlimited. Possible candidates for RNAi combination systems are siRNA, shRNA, miRNA, and Ribozyme. Note that molar ratios between siRNA sequences can be varied depending on their efficacy of knockdown. A variety of parameters can be considered in the sequence design and for efficient knockdown such as RNA geometry (secondary and tertiary structures), molar ratios of multiple siRNA sequences, additional spacers between multiple siRNAs in a single transcript and destabilizing G:U wobble pairs to improve transcription efficiency.
- RNA geometry secondary and tertiary structures
- molar ratios of multiple siRNA sequences additional spacers between multiple siRNAs in a single transcript and destabilizing G:U wobble pairs to improve transcription efficiency.
- FIG. 20 shows the existence of multiple components within a single RNAi microsponge structure was confirmed by flow cytometry analysis.
- Various RNAi microsponges were constructed based on the molar ratios differences between two siRNA sequences by varying the molar ratio of DNA templates. Then two molecular recognition probes, fluorophores tags both green and red, were attached to each RNAi microsponge.
- the RNAi microsponges 4G1R, 2G1R, 1G1R, 1G2R and 1G4R were decoded based on the ratio of fluorescence intensity. FITC indicates the green channel and APC indicates the red channel.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention provides, among other things, a particle which includes a core comprised of self-assembled one or more nucleic acid molecules, the core being characterized by an ability to adopt at least two configurations: a first configuration having a first greatest dimension greater than 2 μm and; a second configuration having a second greatest dimension less than 500 nm, wherein addition of a film coating converts the core from its first configuration to its second configuration. Methods of making and using of provided particles are also disclosed.
Description
- This application claims priority to and the benefit of, U.S. provisional patent application Ser. No. 61/769,731, filed on Feb. 26, 2013, the entire contents of which are herein incorporated by reference.
- This invention was made with government support under Grant No. DMR-0705234 awarded by the National Science Foundation. The government has certain rights in the invention.
- RNA interference (RNAi) is a powerful tool for suppressing gene expression, and much research has been directed at efforts to develop an efficient delivery method for small interference RNA (siRNA). Conventional complexation or encapsulation of siRNA with polymers or lipids can often require multi-step synthesis of carriers or relatively ineffectual encapsulation processes; furthermore, such approaches often involve introducing a significant amount of an additional component, which can lead to greater potential for immunogenic response or toxicity. In addition, the amount of siRNA per carrier is limited due to the rigidity of double stranded siRNA, low surface charge of individual siRNA, and low loading efficiency, making RNAi encapsulation particularly challenging. Furthermore, RNAi requires specialized synthesis and is often available in small quantities at high cost, making it a very costly cargo that is delivered with fairly low efficiency carriers. Thus, there is a continuing need for new insights on improved technologies for efficient delivery of nucleic acids such as siRNA.
- The present invention, among other things, describes particles including a core of self-assembled one or more nucleic acid molecules. In some embodiments, nucleic acid molecules within a particle core are formed via elongation by rolling circle amplification (RCA) and/or rolling circle transcription (RCT). In some embodiments, provided particles may contain a core that is coated by a film so that the particles are condensed to achieve a smaller particle size. Provided compositions and methods can be particularly useful for delivery of high loads of nucleic acids, optionally with any other agents.
- In order for the present disclosure to be more readily understood, certain terms are first defined below.
- In this application, the use of “or” means “and/or” unless stated otherwise. As used in this application, the term “comprise” and variations of the term, such as “comprising” and “comprises,” have their understood meaning in the art of patent drafting and are inclusive rather than exclusive, for example, of additional additives, components, integers or steps. As used in this application, the terms “about” and “approximately” have their art-understood meanings; use of one vs the other does not necessarily imply different scope. Unless otherwise indicated, numerals used in this application, with or without a modifying term such as “about” or “approximately”, should be understood to cover normal fluctuations appreciated by one of ordinary skill in the relevant art. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of a stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
- “Associated”: As used herein, the term “associated” typically refers to two or more entities in physical proximity with one another, either directly or indirectly (e.g., via one or more additional entities that serve as a linking agent), to form a structure that is sufficiently stable so that the entities remain in physical proximity under relevant conditions, e.g., physiological conditions. In some embodiments, associated entities are covalently linked to one another. In some embodiments, associated entities are non-covalently linked. In some embodiments, associated entities are linked to one another by specific non-covalent interactions (i.e., by interactions between interacting ligands that discriminate between their interaction partner and other entities present in the context of use, such as, for example, streptavidin/avidin interactions, antibody/antigen interactions, etc.). Alternatively or additionally, a sufficient number of weaker non-covalent interactions can provide sufficient stability for moieties to remain associated. Exemplary non-covalent interactions include, but are not limited to, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, pi stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, etc.
- “Biodegradable”: As used herein, the term “biodegradable” is used to refer to materials that, when introduced into cells, are broken down by cellular machinery (e.g., enzymatic degradation) or by hydrolysis into components that cells can either reuse or dispose of without significant toxic effect(s) on the cells. In certain embodiments, components generated by breakdown of a biodegradable material do not induce inflammation and/or other adverse effects in vivo. In some embodiments, biodegradable materials are enzymatically broken down. Alternatively or additionally, in some embodiments, biodegradable materials are broken down by hydrolysis. In some embodiments, biodegradable polymeric materials break down into their component and/or into fragments thereof (e.g., into monomeric or submonomeric species). In some embodiments, breakdown of biodegradable materials (including, for example, biodegradable polymeric materials) includes hydrolysis of ester bonds. In some embodiments, breakdown of materials (including, for example, biodegradable polymeric materials) includes cleavage of urethane linkages.
- “Hydrolytically degradable”: As used herein, the term “hydrolytically degradable” is used to refer to materials that degrade by hydrolytic cleavage. In some embodiments, hydrolytically degradable materials degrade in water. In some embodiments, hydrolytically degradable materials degrade in water in the absence of any other agents or materials. In some embodiments, hydrolytically degradable materials degrade completely by hydrolytic cleavage, e.g., in water. By contrast, the term “non-hydrolytically degradable” typically refers to materials that do not fully degrade by hydrolytic cleavage and/or in the presence of water (e.g., in the sole presence of water).
- “Nucleic acid”: The term “nucleic acid” as used herein, refers to a polymer of nucleotides. In some embodiments, nucleic acids are or contain deoxyribonucleic acids (DNA); in some embodiments, nucleic acids are or contain ribonucleic acids (RNA). In some embodiments, nucleic acids include naturally-occurring nucleotides (e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine). Alternatively or additionally, in some embodiments, nucleic acids include non-naturally-occurring nucleotides including, but not limited to, nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, C5-propynylcytidine, C5-propynyluridine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-methylcytidine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine), chemically modified bases, biologically modified bases (e.g., methylated bases), intercalated bases, modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose), or modified phosphate groups. In some embodiments, nucleic acids include phosphodiester backbone linkages; alternatively or additionally, in some embodiments, nucleic acids include one or more non-phosphodiester backbone linkages such as, for example, phosphorothioates and 5′-N-phosphoramidite linkages. In some embodiments, a nucleic acid is an oligonucleotide in that it is relatively short (e.g., less that about 5000, 4000, 3000, 2000, 1000, 900, 800, 700, 600, 500, 450, 400, 350, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 15, 10 or fewer nucleotides in length)
- “Physiological conditions”: The phrase “physiological conditions”, as used herein, relates to the range of chemical (e.g., pH, ionic strength) and biochemical (e.g., enzyme concentrations) conditions likely to be encountered in the intracellular and extracellular fluids of tissues. For most tissues, the physiological pH ranges from about 7.0 to 7.4.
- “Polyelectrolyte”: The term “polyelectrolyte”, as used herein, refers to a polymer which under a particular set of conditions (e.g., physiological conditions) has a net positive or negative charge. In some embodiments, a polyelectrolyte is or comprises a polycation; in some embodiments, a polyelectrolyte is or comprises a polyanion. Polycations have a net positive charge and polyanions have a net negative charge. The net charge of a given polyelectrolyte may depend on the surrounding chemical conditions, e.g., on the pH.
- “Polypeptide”: The term “polypeptide” as used herein, refers to a string of at least three amino acids linked together by peptide bonds. In some embodiments, a polypeptide comprises naturally-occurring amino acids; alternatively or additionally, in some embodiments, a polypeptide comprises one or more non-natural amino acids (i.e., compounds that do not occur in nature but that can be incorporated into a polypeptide chain; see, for example, http://www.cco.caltech.edu/˜dadgrp/Unnatstruct.gif, which displays structures of non-natural amino acids that have been successfully incorporated into functional ion channels) and/or amino acid analogs as are known in the art may alternatively be employed). In some embodiments, one or more of the amino acids in a protein may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc.
- “Polysaccharide”: The term “polysaccharide” refers to a polymer of sugars. Typically, a polysaccharide comprises at least three sugars. In some embodiments, a polypeptide comprises natural sugars (e.g., glucose, fructose, galactose, mannose, arabinose, ribose, and xylose); alternatively or additionally, in some embodiments, a polypeptide comprises one or more non-natural amino acids (e.g., modified sugars such as 2′-fluororibose, 2′-deoxyribose, and hexose).
- “Reference nucleic acid”: The term “reference nucleic acid”, as used herein, refers to any known nucleic acid molecule with which a nucleic acid molecule of interest is compared.
- “Sequence element”: The term “sequence element”, as used herein, refers to a discrete portion of nucleotide sequence, recognizable to one skilled in the art. In many embodiments, a sequence element comprises a series of at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 116, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000 or more contiguous nucleotides in a polymer. In some embodiments, a sequence element is recognizable because it is found in a different nucleic acid molecule, with which a nucleic acid molecule of interest is being compared. Those of ordinary skill in the art are well aware of methodologies and resources available for the comparison of nucleic acid sequences. In some embodiments, a nucleic acid molecule of interest has a nucleotide sequence that is selected or designed to contain, or otherwise contains, one or more particular sequence elements that is/are found in one or more (optionally predetermined) reference or source nucleic acids.
- “Small molecule”: As used herein, the term “small molecule” is used to refer to molecules, whether naturally-occurring or artificially created (e.g., via chemical synthesis), that have a relatively low molecular weight. Typically, small molecules are monomeric and have a molecular weight of less than about 1500 g/mol. Preferred small molecules are biologically active in that they produce a local or systemic effect in animals, preferably mammals, more preferably humans. In certain preferred embodiments, the small molecule is a drug. Preferably, though not necessarily, the drug is one that has already been deemed safe and effective for use by the appropriate governmental agency or body. For example, drugs for human use listed by the FDA under 21 C.F.R. §§330.5, 331 through 361, and 440 through 460; drugs for veterinary use listed by the FDA under 21 C.F.R. §§500 through 589, incorporated herein by reference, are all considered acceptable for use in accordance with the present application.
- “Source nucleic acid”: The term “source nucleic acid” is used herein to refer to a known nucleic acid molecule whose nucleotide sequence includes at least one sequence element of interest. In some embodiments, a source nucleic acid is a natural nucleic acid in that it occurs in a context (e.g., within an organism) as exists in nature (e.g., without manipulation by the hand of man). In some embodiments, a source nucleic acid is not a natural nucleic acid in that its nucleotide sequences includes one or more portions, linkages, or elements that do not occur in the same arrangement in nature and/or were designed, selected, or assembled through action of the hand of man.
- “Substantially”: As used herein, the term “substantially”, and grammatic equivalents, refer to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the art will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result.
- “Treating”: As used herein, the term “treating” refers to partially or completely alleviating, ameliorating, relieving, inhibiting, preventing (for at least a period of time), delaying onset of, reducing severity of, reducing frequency of and/or reducing incidence of one or more symptoms or features of a particular disease, disorder, and/or condition. In some embodiments, treatment may be administered to a subject who does not exhibit symptoms, signs, or characteristics of a disease and/or exhibits only early symptoms, signs, and/or characteristics of the disease, for example for the purpose of decreasing the risk of developing pathology associated with the disease. In some embodiments, treatment may be administered after development of one or more symptoms, signs, and/or characteristics of the disease.
- The Drawing, comprised of several Figures, is for illustration purposes only, not for limitation.
-
FIG. 1 . Schematic drawing of the process of rolling circle transcription (RCT) for the self-assembled RNAi-microsponge used in accordance with certain embodiments of the present invention. To perform RCT, circular DNA needs to be synthesized first. Linear ssDNA that includes antisense and sense sequences of anti-luciferase siRNA is hybridized with equal molar of short DNA strand containing T7 promoter sequence. The nick in the circular DNA was chemically closed by T4 DNA ligase. By RCT of the closed circular DNA, multiple tandem repeats of hairpin RNA structures from both antisense and sense sequences are generated to be able to form spherical sponge-like structure. -
FIG. 2 . Characterization of the RNAi-microsponge. a, SEM image of RNAi-microsponge. Scale bar: 5 μm. b, Fluorescence microscope image of RNAi-microsponges after staining with SYBR II, RNA specific dye. Scale bars: 10 μm and 5 μm (Inset). c, d, SEM images of RNAi-microsponges after sonication. Low magnification image of RNAi-microsponges (c). Scale bars: 10 μm and 500 nm (Inset). High magnification image of RNAi-microsponge (d). Scale bar: 500 nm. -
FIG. 3 . Formation of sponge-like spherical structures purely with RNA strands. a, b, c, d, and e. SEM images of RNA products of time-dependent RCT at 37° C. for 1 h (a), 4 h (b), 8 h (c), 12 h (d), and 16 h (e). Scale bars: 5 μm and 500 nm (inset). f, Image of mature RNAi microsponges after 20 h RCT. Scale bar: 10 μm. g, Schematic illustration of the formation of RNAi-microsponges. The spherical sponge-like structure is formed through a series of preliminary structures. A tandem copy of RNA strands from the RCT reaction are entangled and twisted into a fiber-like structure1. As the RNA strands grow, they begin to organize into lamellar sheets that gradually become thicker2; as the internal structure of the sheets begin to get very dense, some of the RNA sheets begin to grow in the Z direction, possibly due to limited packing area for the RNA polymer as it is produced by the reaction. This process could generate wrinkled semi-spherical structure on the sheet3. Finally, the entire structure begins to pinch off to form individual particles consisting of gathered RNA sheets4. h, Polarized optical microscopy of RNAi-microsponge. Scale bars: 5 μm and 1 μm (Inset). i, X-ray diffraction pattern of RNAi-microsponge. j, TEM images of RNAi-microsponge and schematic representation of the proposed crystal-like ordered structure of RNA sheet in microsponge. Scale bars: 100 nm and 500 nm (Inset). -
FIG. 4 . Generating siRNA from RNAi-microsponge by RNAi pathway and condensing RNAi-microsponge for transfection. a, Schematic illustration of generating siRNA from RNAi-microsponges by Dicer in RNAi pathway. b, Gel electrophoresis result after Dicer reaction. 1 and 2 indicate double stranded RNA ladder and RNAi-microsponges (MS) after treatment with Dicer (1 unit) for 36 hours, respectively (Left).Lane 1 and 2 indicate double stranded RNA ladder and RNAi-microsponges without Dicer treatment (Right).Land Lane 3 to 8 correspond to 12 h, 24 h, 36 h, and 48 h reaction with 1 unit of Dicer and 36 h reaction with 1.25 and 1.5 unit of Dicer, respectively. Increasing the amount of Dicer did not help to generate more siRNA (lane 7 and 8 ofFIG. 4 b, right). The amount of generated siRNA from RNAi-microsponges was quantified relative to double-stranded RNA standards. 21% of the cleavable double stranded RNA was actually diced to siRNA because Dicer also produced the two or three repeat RNA units that included two or three non-diced RNA duplex. The results suggest the possibility that in a more close-packed self-assembled structure, some portion of the RNA is not as readily accessed by dicer. c, Particle size and zeta potential before and after condensing RNAi-microsponge with PEI. d, SEM image of further condensed RNAi-microsponge with PEI. Scale bar: 500 nm. The size of RNAi-microsponge was significantly reduced by linear PEI because the RNAi-microsponge with high charge density would be more readily complexed with oppositely charged polycations. The porous structure of RNAi-microsponge was disappeared by the condensation. -
FIG. 5 . Transfection and gene-silencing effect. a, Intracellular uptake of red fluorescent dye-labeled RNAi-microsponge without PEI (top) and RNAi-microsponge/PEI (bottom). To confirm the cellular transfection of RNA particles, red fluorescence labeled both particles were incubated with T22 cells. Fluorescence labeled RNAi-microsponge without PEI outer layer showed relatively less cellular uptake by the cancer cell line, T22 cells, suggesting that the larger size and strong net negative surface charge of RNAi-microsponge likely prevents cellular internalization. b, Suppression of luciferase expression by siRNA, Lipofectamine complexed with siRNA (siRNA/Lipo), siRNA complex with PEI (siRNA/PEI), RNAi-microsponge, and RNAi-microsponge condensed by PEI (RNAi-MS/PEI). The values outside parentheses indicate the concentration of siRNA and siRNA for siRNA/Lipo and siRNA/PEI. The values within parentheses indicate the concentration of RNAi-microsponge and RNAi-microsponge for RNAi-MS/PEI. The same amount of siRNA is theoretically produced from RNAi-microsponges at the concentration in parentheses. c, In vivo knockdown of firefly luciferase by RNAi-MS/PEI. Optical images of tumours after intratumoral injection of RNAi-MS/PEI into the left tumor of mouse and PEI solution only as a control into the right tumor of same mouse. -
FIG. 6 . Secondary structure of eight repeated units produced by RCT (using M-fold software). -
FIG. 7 . Confocal image of RNAi-microsponges labeled with Cyanine 5-dUTPs. RNAi polymerization took place with rolling circle transcription in the presence of Cyanine 5-dUTPs used as one of the ribonucleotides to form the RNA-microsponge. The red fluorescence from the RNAi-microsponge confirms that the microsponge is formed of RNA. -
FIG. 8 . SEM images of RNAi-microsponges after incubation with various concentrations of RNase (RNase I for single stranded RNA and RNase III for double stranded RNA, NEB, Ipswich, Mass.). The degradation of RNA microsponge at different concentrations of RNase suggests that our microsponge is made of RNA. At lower concentrations, the size of microsponges is decreased but still protected from RNase. As the concentration increase, the microsponges is not able to maintain the particle form by degradation. Finally, RNA fragments of the microsponges are completely disappeared at the higher concentration of RNase. However, RNA microsponge is intact after incubation with high concentration of DNase I, suggesting that circular DNA is not the building material for microsponges. Scale bars indicate 1 μm. -
FIG. 9 . Cartoon schematic image of the formation of RNAi-microsponges (Top). Scanning electron microscope images of preliminary structure of RNAi-microsponges after 12 h rolling circle transcription (Bottom). Scale bars indicate 5 μm and 1 μm. -
FIG. 10 . Transmission electron microscope image of RNAi microsponge. Multi-layered RNA sheets are shown in high magnification image. Scale bar indicates 50 nm. -
FIG. 11 . Polarized optical microscopy images of RNAi-MS with heating stage. -
FIG. 12 . Scanning electron microscope images of RNA products by rolling circle transcription with different concentrations of circular DNA from 100 nM (A), 30 nM(B), 10 nM(C), and 3 nM(D). With 100 nM of circular DNA, sponge-like structures from RNA products are shown, however, microsponges are not generated with 30 nM, 10 nM, and 3 nM of circular DNA. In figure B-D, RNA products form fiber-like structures that are similar to the products of time-dependent experiment after 1 hour RCT (seeFIG. 2A in main text). According to results from time dependent and concentration dependent experiments, we hypothesize that the mechanism of formation of RNAi-microsponge is crystallization of RNA polymers into thin lamellae by nucleation of poly-RNA when its concentration is higher than a critical concentration beyond which individual crystalline forms aggregate and merge into superstructures. Therefore, the final structure is reminiscent of the lamellar spherulite structures that are formed by highly crystalline polymers [Formation of Spherulites in Polyethylene. Nature 194, 542-& (1962)]. -
FIG. 13 . Distribution of the particle size of RNAi-microsponge/PEI. -
FIG. 14 . In vitro knockdown of luciferase by naked siRNA, siRNA/Lipo [siRNA/Lipofectamine (commercially available gene delivery reagent) complexes], siRNA/PEI, RNAi-MS, RNAi-MS/PEI, control-MS (RNA microsponge without meaningful sequence), control-MS/PEI, and untreated cell. The results show that any significant decrease of luciferase expression is not observed by control-MS and control-MS/PEI, supporting that there is no non-specific gene regulation in our experiments. -
FIG. 15 . In vivo knockdown of firefly luciferase by RNAi-MS/PEI. Optical images of tumours after intratumoral injection of RNAi-MS/PEI into the tumor of mouse with six different wavelength. -
FIG. 16 . In vivo knockdown of firefly luciferase by control RNA microsponge/PEI. Optical images of tumours after intratumoral injection of control RNA microsponge/PEI into the tumor of mouse. Here, control RNA microsponge dose not contain siRNA for luciferase. A significant decrease of expression is not observed. -
FIG. 17 . Cell viability assay of RNAi-microsponges. -
FIG. 18 . Fluorescence microscopic images of RNAi-microsponge before (left) after incubating in 10% Serum for one day at 37° C. (right). Scale bar indicates 10 μm. The size of the RNAi-microsponge is reduced, possibly by degradation of RNAse, but still maintain the particle structure, supporting the idea that the RNA in the RNAi-microsponges are protected from degradation within the sponge structure. -
FIG. 19 . Schematic illustration of multiple components RNAi microsponges in accordance with certain embodiments of the present invention. -
FIG. 20 . Characterization of multiple components RNAi microsponges. - The present invention, among other things, describes compositions of nucleic acid particles and methods and uses thereof.
- Particles used in accordance with various embodiments of the present disclosure can contain a particle core, which can optionally be coated by a film. Upon coating, a particle can be converted from a first configuration to a second configuration.
- In some embodiments, the greatest dimension of a particle (in its first or second configuration) may be greater or less than 5 μm, 2 μm, 1 μm, 800 nm, 500 nm, 200 nm, 100 nm, 90 nm, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm, 10 nm, or even 5 nm. In some embodiments, the greatest dimension a particle (in its first or second configuration) may be in a range of any two values above. In some embodiments, a particle in a first configuration has the greatest dimension in a range of about 5 μm to about 2 μm or about 2 μm to about 1 μm. In some embodiments, a particle in a second configuration has the greatest dimension in may be in a range of about 500 nm to about 200 nm, about 200 nm to about 100 nm or about 100 nm to about 50 nm. In some embodiments, a particle can be substantially spherical. In some embodiments, the dimension of a particle is a diameter, wherein the diameter can be in a range as mentioned above.
- In various embodiments, a particle described herein can comprise a particle core, a coating film (including one or more layers; in some embodiments one or more polyelectrolyte layers), and one or more agents such as diagnostic, therapeutic and/or targeting agents.
- A particle core can consist of or include one or more nucleic acid molecules. In some embodiments, a core is comprised of a plurality of nucleic acid molecules. Individual nucleic acid molecules within a core can have different nucleic acid sequences or substantially the same nucleic acid sequence. In some embodiments, nucleic acid molecule(s) within a core have sequences that share at least one common sequence element.
- In some embodiments, at least one nucleic acid molecule in a core has a nucleotide sequence that comprises multiple copies of at least a first sequence element. In some embodiments, at least one nucleic acid molecule in a core has a nucleotide sequence that comprises multiple copies of each of at least a first and a second sequence element. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that comprises alternating copies of the first and second sequence elements. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that comprises multiple copies of each of three or more sequence elements.
- In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that includes one or more sequence elements found in a natural source. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that includes a first sequence element that is found in a first natural source and a second sequence element that is found in a second natural source. The first and second natural sources can be the same or difference.
- In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that represents an assemblage of sequence elements found in one or more source nucleic acid molecules. In some embodiments, at least one nucleic acid molecule has a nucleotide sequence that represents an assemblage of at least two different sequence elements found in two different source nucleic acid molecules.
- In some embodiments, nucleic acid molecule(s) within a core have nucleotide sequences that fold into higher order structures (e.g., double and/or triple-stranded structures). In some embodiments, nucleic acid molecule(s) within a core have nucleotide sequences that comprise two or more complementary elements. In some embodiments, such complementary elements can form one or more (optionally alternative) stem-loop (e.g., hairpin) structures. In some embodiments, nucleic acid molecule(s) within a core have nucleotide sequences that include one or more portions that remain single stranded (i.e., do not pair intra- or inter-molecularly with other core nucleic acid sequence elements).
- In some embodiments, at least one nucleic acid molecules in a core contains at least one cleavage site. In some embodiments, a cleavage site is a bond or location susceptible to cleavage by a cleaving agent such as a chemical, an enzyme (e.g., nuclease, dicer, DNAase and RNAase), radiation, temperature, etc. In some embodiments, the cleaving agent is a sequence specific cleaving agent in that it selectively cleaves nucleic acid molecules at a particular site or sequence.
- In some embodiments, at least one nucleic acid molecules in a core contains at least one cleavage site susceptible to cleavage after delivery or localization of a particle as described herein to a target site of interest. In some embodiment, nucleic acid molecule(s) in a core have a plurality of cleavage sites and/or are otherwise arranged and constructed so that multiple copies of a particular nucleic acid of interest are released at the target site, upon delivery of a particle as described herein.
- In some embodiments, nucleic acid molecule(s) within a core have a self-assembled structure and/or are characterized by an ability to self-assemble in that it/they fold(s) into a stable three-dimensional structure, typically including one or more non-covalent interactions that occur between or among different moieties within the nucleic acid, without requiring assistance of non-nucleic acid entities. In some embodiments, nucleic acid molecule(s) within a core are arranged in a crystalline structure comprising lamellar sheets. In some embodiments, a core comprises or consists of one or more entangled nucleic acid molecules.
- In some embodiments, nucleic acid molecule(s) in a core have a molecular weight greater than about 1×1010 g/mol, about 1×109 g/mol, about 1×108 g/mol, about 1×107 g/mol, about 1×106 g/mol, or about 1×105 g/mol.
- As described herein, in some embodiments, nucleic acid molecule(s) in a core includes multiple copies of at least one sequence element (e.g., concatenated in one or more long nucleic acid molecules whose sequence comprises or consists of multiple copies of the sequence element, and/or as discrete nucleic acid molecules each of which has a sequence that comprises or consists of the element, or a combination of both) whose length is within the range between a lower length of at least 5, 10, 15, 20, 25, 30, 35, 40, 45, or more and an upper length of not more than 10000, 9000, 8000, 7000, 6000, 5000, 4000, 3000, 2000, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80, 70, 60, 50, 40, 30 or less, wherein the upper length is greater than the lower length.
- Particles described herein are characterized by a high loading of nucleic acids. In some embodiments, a particle core comprises at least about 1×103, about 1×104, about 1×105, about 1×106, about 1×107, about 1×108, about 1×109, or about 1×1010 copies of a particular sequence element of interests. In some embodiments, a particle core comprises copies of a particular sequence element of interests in a range of about 1×103 to about 1×104, about 1×104 to about 1×105, about 1×105 to about 1×106, about 1×106 to about 1×107, about 1×107 to about 11×108, about 11×108 to about 11×109, or about 11×109 to about 11×1010. In some embodiments, a particle core comprises copies of a particular sequence element of interests in a range of about 1×103 to about 1×1010, about 1×104 to about 1×108 or about 1×105 to about 1×107. In some embodiments, a particle core comprises copies of a particular sequence element of interests in a range of any two values above.
- Nucleic acid molecules can carry positive or negative charges. Alternatively, they can be neutral. In some embodiments, a nucleic acid-containing particle core may have a positive or negative surface charge.
- In some embodiments, nucleic acid molecules for use in a nucleic acid core as described herein comprise or consist of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide nucleic acid (PNA), morpholino and locked nucleic acid (LNA), glycol nucleic acid (GNA) and/or threose nucleic acid (TNA).
- In some embodiments, utilized nucleic acid molecules comprise or consist of one or more oliogonucleotides (ODN), DNA aptamers, DNAzymes, siRNAs, shRNAs, RNA aptamers RNAzymes, miRNAs or combination thereof.
- In some embodiments, nucleic acid molecules for use in accordance with the present invention have nucleotide sequence(s) that include(s) one or more coding sequences; one or more non-coding sequences, and/or combinations thereof.
- In some embodiments, a coding sequence includes a gene sequence encoding a protein. Exemplary proteins include, but are not limited to brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), neurotrophic factor 3 (NT3), fibroblast growth factor (FGF), transforming growth factor (TGF), platelet transforming growth factor, milk growth factor, endothelial growth factors (EGF), endothelial cell-derived growth factors (ECDGF), alpha-endothelial growth factors, beta-endothelial growth factor, neurotrophic growth factor, nerve growth factor (NGF), vascular endothelial growth factor (VEGF), 4-1 BB receptor (4-1BBR), TRAIL (TNF-related apoptosis inducing ligand), artemin (GFRalpha3-RET ligand), BCA-1 (B cell-attracting chemokinel), B lymphocyte chemoattractant (BLC), B cell maturation protein (BCMA), brain-derived neurotrophic factor (BDNF), bone growth factor such as osteoprotegerin (OPG), bone-derived growth factor, megakaryocyte derived growth factor (MGDF), keratinocyte growth factor (KGF), thrombopoietin, platelet-derived growth factor (PGDF), megakaryocyte derived growth factor (MGDF), keratinocyte growth factor (KGF), platelet-derived growth factor (PGDF), bone morphogenetic protein 2 (BMP2), BRAK, C-10, Cardiotrophin 1 (CT1), other chemokines, interleukins and combinations thereof.
- Particles provided by the present invention may include a coating film on a nucleic acid-containing core. In some embodiments, a film substantially covers at least one surface of a particle core. In some embodiments, a film substantially encapsulates a core.
- A film can have an average thickness in various ranges. In some embodiments, an averaged thickness is about or less than 200 nm, 100 nm, 50 nm, 40 nm, 30 nm, 20 nm, 15 nm, 10 nm, 5 nm, 1 nm, 0.5 nm, or 0.1 nm. In some embodiments, an averaged thickness is in a range from about 0.1 nm to about 100 nm, about 0.5 nm to about 50 nm, or about 5 nm to about 20 nm. In some embodiments, an averaged thickness is in a range of any two values above.
- In some embodiments, a coating film include one or more layers. A plurality of layers each can respectively contain one or more materials. According to various embodiments of the present disclosure, a layer can consist of or comprise metal (e.g., gold, silver, and the like), semi-metal or non-metal, and metal/semi-metal/non-metal oxides such as silica (SiO2). In certain embodiments, a layer can consist of or comprise a magnetic material (e.g., iron oxide).
- Additionally or alternatively, materials of a layer can be polymers. For example, a layer can be polyethyleneimine as demonstrated in Example 1. In some embodiments, a layer is or includes one or more polymers, particularly polymers that which have been approved for use in humans by the U.S. Food and Drug Administration (FDA) under 21 C.F.R. §177.2600, including, but not limited to, polyesters (e.g. polylactic acid, poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly(1,3-dioxan-2-one)); polyanhydrides (e.g. poly(sebacic anhydride)); polyethers (e.g., polyethylene glycol); polyurethanes; polymethacrylates; polyacrylates; polycyanoacrylates; copolymers of PEG and poly(ethylene oxide) (PEO). In some embodiments, a polymer is a lipid.
- In some embodiments, a layer is or includes at least a degradable material. Such a degradable material can be hydrolytically degradable, biodegradable, thermally degradable, enzymatically degradable, and/or photolytically degradable polyelectrolytes. In some embodiments, degradation may enable release of one or more agents associated with a particle described herein.
- Degradable polymers known in the art, include, for example, certain polyesters, polyanhydrides, polyorthoesters, polyphosphazenes, polyphosphoesters, certain polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, poly(amino acids), polyacetals, polyethers, biodegradable polycyanoacrylates, biodegradable polyurethanes and polysaccharides. For example, specific biodegradable polymers that may be used include but are not limited to polylysine (e.g., poly(L-lysine) (PLL)), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLG), poly(lactide-co-caprolactone) (PLC), and poly(glycolide-co-caprolactone) (PGC). Another exemplary degradable polymer is poly(beta-amino esters), which may be suitable for use in accordance with the present application.
- In some embodiments, layer-by-layer (LBL) films can be used alternatively or in addition to other layers to coat a particle core in accordance with the present invention. A LBL film may have any of a variety of film architectures (e.g., numbers of layers, thickness of individual layers, identity of materials within films, nature of surface chemistry, presence and/or degree of incorporated materials, etc), as appropriate to the design and application of a coated particle core as described herein. In certain embodiments, a LBL film may has a single layer.
- LBL films may be comprised of multilayer units in which alternating layers have opposite charges, such as alternating anionic and cationic layers. Alternatively or additionally, LBL films for use in accordance with the present invention may be comprised of (or include one or more) multilayer units in which adjacent layers are associated via other non-covalent interactions. Exemplary non-covalent interactions include, but are not limited to ionic interactions, hydrogen bonding interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, pi stacking interactions, van der Waals interactions, magnetic interactions, dipole-dipole interactions and combinations thereof. Detailed description of LBL films can be found in U.S. Pat. No. 7,112,361, the contents of which are incorporated herein by reference. Features of the compositions and methods described in the patent may be applied in various combinations in the embodiments described herein.
- In some embodiments, a layer can have or be modified to have one or more functional groups. Apart from changing the surface charge by introducing or modifying surface functionality, functional groups (within or on the surface of a layer) can be used for association with any agents (e.g., detectable agents, targeting agents, or PEG).
- In some embodiments, the present invention provides compositions that comprise one or more agents. In some embodiments, one or more agents are associated independently with a core, a film coating the core, or both. For example, agents can be covalently linked to or hybridized to a nucleic acid-containing core, and/or encapsulated in a coating film of a particle described herein. In certain embodiments, an agent can be associated with one or more individual layers of an LBL film that is coated on a core, affording the opportunity for exquisite control of loading and/or release from the film.
- In theory, any agents including, for example, therapeutic agents (e.g. antibiotics, NSAIDs, glaucoma medications, angiogenesis inhibitors, neuroprotective agents), cytotoxic agents, diagnostic agents (e.g. contrast agents; radionuclides; and fluorescent, luminescent, and magnetic moieties), prophylactic agents (e.g. vaccines), and/or nutraceutical agents (e.g. vitamins, minerals, etc.) may be associated with the LBL film disclosed herein to be released.
- In some embodiments, compositions described herein include one or more therapeutic agents. Exemplary agents include, but are not limited to, small molecules (e.g. cytotoxic agents), nucleic acids (e.g., siRNA, RNAi, and microRNA agents), proteins (e.g. antibodies), peptides, lipids, carbohydrates, hormones, metals, radioactive elements and compounds, drugs, vaccines, immunological agents, etc., and/or combinations thereof. In some embodiments, a therapeutic agent to be delivered is an agent useful in combating inflammation and/or infection.
- In some embodiments, a therapeutic agent is or comprises a small molecule and/or organic compound with pharmaceutical activity. In some embodiments, a therapeutic agent is a clinically-used drug. In some embodiments, a therapeutic agent is or comprises an antibiotic, anti-viral agent, anesthetic, anticoagulant, anti-cancer agent, inhibitor of an enzyme, steroidal agent, anti-inflammatory agent, anti-neoplastic agent, antigen, vaccine, antibody, decongestant, antihypertensive, sedative, birth control agent, progestational agent, anti-cholinergic, analgesic, anti-depressant, anti-psychotic, β-adrenergic blocking agent, diuretic, cardiovascular active agent, vasoactive agent, anti-glaucoma agent, neuroprotectant, angiogenesis inhibitor, etc.
- In some embodiments, a therapeutic agent may be a mixture of pharmaceutically active agents. For example, a local anesthetic may be delivered in combination with an anti-inflammatory agent such as a steroid. Local anesthetics may also be administered with vasoactive agents such as epinephrine. To give but another example, an antibiotic may be combined with an inhibitor of the enzyme commonly produced by bacteria to inactivate the antibiotic (e.g., penicillin and clavulanic acid).
- In some embodiments, a therapeutic agent may be an antibiotic. Exemplary antibiotics include, but are not limited to, β-lactam antibiotics, macrolides, monobactams, rifamycins, tetracyclines, chloramphenicol, clindamycin, lincomycin, fusidic acid, novobiocin, fosfomycin, fusidate sodium, capreomycin, colistimethate, gramicidin, minocycline, doxycycline, bacitracin, erythromycin, nalidixic acid, vancomycin, and trimethoprim. For example, β-lactam antibiotics can be ampicillin, aziocillin, aztreonam, carbenicillin, cefoperazone, ceftriaxone, cephaloridine, cephalothin, cloxacillin, moxalactam, penicillin G, piperacillin, ticarcillin and any combination thereof.
- An antibiotic used in accordance with the present disclosure may be bacteriocidial or bacteriostatic. Other anti-microbial agents may also be used in accordance with the present disclosure. For example, anti-viral agents, anti-protazoal agents, anti-parasitic agents, etc. may be of use.
- In some embodiments, a therapeutic agent may be or comprise an anti-inflammatory agent. Anti-inflammatory agents may include corticosteroids (e.g., glucocorticoids), cycloplegics, non-steroidal anti-inflammatory drugs (NSAIDs), immune selective anti-inflammatory derivatives (ImSAIDs), and any combination thereof. Exemplary NSAIDs include, but not limited to, celecoxib (Celebrex®); rofecoxib (Vioxx®), etoricoxib (Arcoxia®), meloxicam (Mobic®), valdecoxib, diclofenac (Voltaren®, Cataflam®), etodolac (Lodine®), sulindac (Clinori®), aspirin, alclofenac, fenclofenac, diflunisal (Dolobid®), benorylate, fosfosal, salicylic acid including acetylsalicylic acid, sodium acetylsalicylic acid, calcium acetylsalicylic acid, and sodium salicylate; ibuprofen (Motrin), ketoprofen, carprofen, fenbufen, flurbiprofen, oxaprozin, suprofen, triaprofenic acid, fenoprofen, indoprofen, piroprofen, flufenamic, mefenamic, meclofenamic, niflumic, salsalate, rolmerin, fentiazac, tilomisole, oxyphenbutazone, phenylbutazone, apazone, feprazone, sudoxicam, isoxicam, tenoxicam, piroxicam (Feldene®), indomethacin (Indocin®), nabumetone (Relafen®), naproxen (Naprosyn®), tolmetin, lumiracoxib, parecoxib, licofelone (ML3000), including pharmaceutically acceptable salts, isomers, enantiomers, derivatives, prodrugs, crystal polymorphs, amorphous modifications, co-crystals and combinations thereof.
- Those skilled in the art will recognize that this is an exemplary, not comprehensive, list of agents that can be released using compositions and methods in accordance with the present disclosure. In addition to a therapeutic agent or alternatively, various other agents may be associated with a coated device in accordance with the present disclosure.
- The present invention among other things provide methods of making and using particles described herein. In some embodiments, nucleic acid molecules as described may self-assemble into a core. Optionally, such a core can be coated with a film, wherein the core is characterized by being converted from a first configuration to a second configuration upon coating.
- Those of ordinary skill in the art will appreciate that nucleic acid molecules for use in particle cores in accordance with the present invention may be prepared by any available technology. In some aspects, the present invention encompasses the recognition that rolling circle amplification (RCA) and/or rolling circle transcription (RCT) can be a particularly useful methodology for production of nucleic acid molecules for use herein. Exemplary RCA strategies include, for example, single-primer initiated RCA and by various two-primer amplification methods such as ramification amplification (RAM), hyperbranched RCA, cascade RCA, and exponential RCA. In certain embodiments, RNA-containing molecules can be produced via rolling circle transcription (RCT).
- The present invention specifically encompasses the recognition that RCA/RCT may be particularly useful for production of long nucleic acid molecules, and/or furthermore may generate nucleic acid molecules. Those skilled in the art will appreciate that a nucleic acid molecule produced by RCA/RCT will typically have a nucleotide sequence comprising or consisting of multiple copies of the complement of the circular template being amplified.
- In some embodiments, a template used for RCA/RCT as described herein is or comprises deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide nucleic acid (PNA), morpholino and locked nucleic acid (LNA), glycol nucleic acid (GNA) and/or threose nucleic acid (TNA).
- In some embodiments, a template used for RCA/RCT as described herein has a nucleotide sequence that includes one or more coding sequences, one or more non-coding sequences, and/or combinations thereof.
- In some particular embodiments of RCA/RCT contemplated herein, a polymerase selected from the group consisting of Φ29 DNA polymerase and T7 is utilized to perform the RCA/RCT (see, for example, Example 1).
- More details of RCA can be found in US Patent Application No. 2010/0189794, the contents of which are incorporated herein by reference. Features of the compositions and methods described in the application may be applied in various combinations in the embodiments described herein. In some embodiments, a first single-stranded nucleic acid molecule is formed by RCA. In some embodiments, the first single-stranded nucleic acid molecule is formed with the aid of a first primer and a nucleic acid polymerase. In some embodiments, a second single-stranded nucleic acid molecule is formed by amplifying the first single-stranded nucleic acid with the aid of a second primer and a polymerase. In some embodiments, a third single-stranded nucleic acid molecule is formed by amplifying the second single-stranded nucleic acid molecule with the aid of a third primer and a polymerase.
- A RCA can be repeated with as many primers as desired, e.g., 4, 5, 6, 7, 8, 9, 10 or more primers can be used. In some embodiments, a plurality of primers can be added to templates to form nucleic acid molecules, wherein the plurality can comprise at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 primers. In some embodiments, more than 100 primers are used. In some embodiments, random fragments of short nucleic acid fragments, e.g., comprising digested or otherwise degraded DNAs, are used as non-specific primers to prime the formation of nucleic acid molecules using rolling circle amplification. As described herein and will be appreciated by those of skill in the art, polymerization reaction conditions can be adjusted as desired to form nucleic acid molecules and self-assembled particles. For example, reaction conditions that favor stringent nucleic acid hybridization, e.g., high temperature, can be used to favor more specific primer binding during amplification.
- In some aspects, the present invention specifically encompasses the recognition that LBL assembly may be particularly useful for coating a particle core described herein. There are several advantages to coat particle cores using LBL assembly techniques including mild aqueous processing conditions (which may allow preservation of biomolecule function); nanometer-scale conformal coating of surfaces; and the flexibility to coat objects of any size, shape or surface chemistry, leading to versatility in design options. According to the present disclosure, one or more LBL films can be assembled and/or deposited on a core to convert it to a condensed configuration with a smaller size. In some embodiments, a coated core having one or more agents for delivery associated with the LBL film, such that decomposition of layers of the LBL films results in release of the agents. In some embodiments, assembly of an LBL film may involve one or a series of dip coating steps in which a core is dipped in coating solutions. Additionally or alternatively, it will be appreciated that film assembly may also be achieved by spray coating, dip coating, brush coating, roll coating, spin casting, or combinations of any of these techniques.
- In some embodiments, particles described herein including nucleic acid-containing core can be subjected to a cleavage agent, so that nucleic acid molecules are cleaved into multiple copies of a particular nucleic acid of interest and such copies can be released.
- In some embodiments, at least one nucleic acid in a nucleic acid core contains at least one cleavage site. In some embodiments, a cleavage site is a bond or location susceptible to cleavage by a cleaving agent such as a chemical, an enzyme, radiation, temperature, etc. In some embodiments, the cleaving agent is a sequence specific cleaving agent in that it selectively cleaves nucleic acid molecules at a particular site or sequence.
- In some embodiments, at least one nucleic acid in a nucleic acid core contains at least one cleavage site susceptible to cleavage after delivery or localization of a particle as described herein to a target site of interest. In some embodiment, nucleic acid(s) in a core have a plurality of cleavage sites and/or are otherwise arranged and constructed so that multiple copies of a particular nucleic acid of interest are released at the target site, upon delivery of a particle as described herein.
- In some embodiments, particles are provided with a nucleic acid core that comprises one or more sequence elements that targets a particular disease, disorder, or condition of interest (e.g., cancer, infection, etc). For example, provided particles and methods can be useful for dysregulation of genes.
- In some embodiments, particles are provided with a nucleic acid core that comprises a plurality of different sequence elements, for example targeting the same disease, disorder or condition of interest. To give but one example, in some embodiments, particles are provided with a nucleic acid core that comprises a plurality of sequence elements, each of which targets a different cancer pathway, for example, as an siRNA that inhibits expression of a protein whose activity contributes to or supports the pathway.
- The present invention encompasses the recognition that particles can be designed and/or prepared to simultaneously deliver to a target site (e.g., to a cancer cell) a plurality of different nucleic acid agents (e.g., siRNAs), each of which is directed to a different specific molecular target of interest (e.g., an mRNA encoding a cancer-related protein). The present invention further encompasses the recognition that the described technology permits facile and close control of relative amounts of such different nucleic acid agents that are or can be delivered (e.g., substantially simultaneously) to the site. To give but one example, RCA/RCT templates can be designed and/or assembled with desired relative numbers of copies of different sequences of interest (e.g., complementary to different siRNAs of interest), so as to achieve precise control over the stoichiometry of delivered siRNA(s). In some embodiments, such control achieves synergistic effects (e.g., with respect to inhibiting tumor growth).
- In some embodiments, provided particles are administered or implanted using methods known in the art, including invasive, surgical, minimally invasive and non-surgical procedures, depending on the subject, target sites, and agent(s) to be delivered. Particles described herein can be delivered to a cell, tissue, organ of a subject. Examples of target sites include but are not limited to the eye, pancreas, kidney, liver, stomach, muscle, heart, lungs, lymphatic system, thyroid gland, pituitary gland, ovaries, prostate, skin, endocrine glands, ear, breast, urinary tract, brain or any other site in a subject.
- In this Example, an impactful approach is demonstrated to use the DNA/RNA machinery provided by nature to generate RNAi in polymeric form, and in a manner that actually assembles into its own compact delivery cargo system. Thus, the RNAi is generated in stable form with multiple copy numbers at low cost, and distributed in a form that can readily be adapted for systemic or targeted delivery.
- In Vitro Rolling Circle Transcription by T7 RNA Polymerase to Create RNA Microsponges
- Ligased circular DNA templates (0.3 μM) were incubated with T7 RNA polymerase (5 units/μL) at 37° C. for 20 hours in the reaction buffer (8 mM Tris-HCl, 0.4 mM spermidine, 1.2 mM MgCl2, and 2 mM dithiothreitol) including 2 mM rNTP in final concentration. For fluorescently labeling RNA particle, Cyanine 5-dUTP (0.5 mM) was added. The resultant solution was pipetted several times and then sonicated for 5 min to break possible connection of the particles. The solution was centrifuged at 6000 rpm for 6 min to remove the supernatant. Then, RNase free water was added to wash the particles. The solution was sonicated again for 1 min then centrifuged. Repeat this
washing step 3 more times to remove the reagents of RCT. Measurement of RNA microsponge concentration was conducted by measuring fluorescence using Quant-iT RNA BR assay kits (Invitrogen). 10 μl of RNA microsponge solution or standard solution was incubated with 190 μl of working solution for 10 min at room temperature. The fluorescence was measured at 630/660 nm by Fluorolog-3 spectrofluorometer (Horiba Jobin Yvon). - Treatment of RNAi Microsponges with Recombinant Dicer
- RNAi microsponges were digested with from 1 unit to 1.5 unit recombinant Dicer (Genlantis, San Diego, Calif.) in 12 μl of reaction solution (1 mM ATP, 5 mM MgCl2, 40% (v/v) Dicer reaction buffer). The samples treated for different reaction time from 12 h to 48 h were collected and were then inhibited by adding Dicer stop solution (Genlantis, San Diego, Calif.).
- Degradation Experiments of RNAi Microsponges
- RNA microsponges were incubated for 24 hrs in 10% of serum at 37° C. Degradation experiments with various concentrations of RNase were also performed for 24 hrs at 37° C. (NEB, Ipswich, Mass.).
- Characterization of RNAi Microsponges
- JEOL JSM-6060 and JSM-6070 scanning electron microscopes were used to obtain high resolution digital images of the RNA microsponges. The sample was coated with Au/Pd. JEOL 2000FX transmission electron microscope was used to obtain the internal structure of the RNA particle.
Zeiss AxioSkop 2 MAT fluorescent microscope was used to image green fluorescently stained RNA microsponges by SYBR II. For characterization of crystalline structure of RNA microsponge, laboratory X-ray powder diffraction (XRD) patterns were recorded using a PANalytical X'Pert Pro diffractometer, fitted with a solid state X'Celerator detector. The diffractometer uses Cu Kα radiation (λ(Kα1)=1.5406 Å, λ(Kα2)=1.5433 Å, weighted average λ=1.5418 Å) and operates in Bragg geometry. The data were collected from 5° to 40° at a scan rate of 0.1°/min. - Assembly of PEI Layer on RNAi Microsponges
- For assembly of outer layer, RNA microsponges were mixed with PEI solution, used at a final concentration of up to 5.0 mg/ml. Free PEI was easily removed by centrifugation at 13,700 rpm for 30 min. Repeat this
step 2 more times. The PEI layered RNA particles were resuspended in PBS solution (pH 7.4) or MilliQ water. - In Vitro siRNA Knockdown Experiments
- T22 cells were maintained in growth media comprised of Minimum Essential Media-Alpha Modification (MEM) supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. 3 days prior to knockdown experiments, cells were seeded in 6-well plates at 30,000 cells per well. 2 days prior to transfection, each well was co-transfected with 3.5 g each of pRL-CMV and gWIZ-Luc using Fugene-HD according the manufacturer's instructions. 1 day prior to transfection, cells were trypsinized and re-seeded in 96-well plates at an initial seeding density of 2000 cells/well. Cells were allowed to attach and proliferate for 24 hours. All knockdown experiments were performed in triplicate. 50 μL of fluorescently labeled RNAi-MS and RNAi-MS/PEI were added to 250 μL phenol-free Opti-MEM at the final concentration of up to 21.2 fM. Lipofectamine/siRNA complexes were formed at a 4:1 ratio (v/w). Growth media was removed and Opti-MEM was added to cells, followed by RNAi-microsponges or complexes in PBS, for a total volume of 150 μL per well, with no less than 100 μL Opti-MEM per well. Cells were incubated with siRNA constructs for 4 hours, after which media was removed and replaced with 10% serum-containing growth medium. A Luciferase assay was performed as using the Dual-Glo Luciferase Assay Kit (Promega, Madison, Wis.) and measured on a Perkin Elmer Plate 1420 Multilabel Counter plate reader. GFP expression was measured after quenching of the luciferase signal with the Stop-and-Glo reagent from Promega.
- In Vivo siRNA Knockdown Experiments
- T22-Luc is a genetically defined mouse ovarian cancer cell line (p53−/−, Akt, myc) that stably expresses luciferase after infection with pMSCV-puro-Firefly luciferase viral supernatant and selecting the cells in a medium containing 2.0 ìg/ml of puromycin for 1 week. T22-Luc tumors were induced on both hind flanks of female nude mice (5 weeks old) with a single injection of 2-5 million cells in 0.1 mL media. After the tumors grew to ˜100 mm3 in volume, intratumoral injections of RNAi-microsponges were given in volumes of 50 uL. To determine the degree of luciferase knockdown, D-Luciferin (Xenogen) was given via intraveneously (tail vein injection, 25 mg/kg) and bioluminescence images were collected on a Xenogen IVIS Spectrum Imaging System (Xenogen, Alameda, Calif.) 10 minutes after injection. Living Image software Version 3.0 (Xenogen) was used to acquire and quantitate the bioluminescence imaging data sets.
- Chemicals and DNA Sequences:
- T7 RNA polymerase and Ribonucleotide Solution Mix were purchased from New England Biolabs (Beverly, Mass.) in pure form at a concentration of 50,000 units/ml and 80 mM, respectively. RNase Inhibitor (RNAsin Plus) was purchased from Promega (Madison, Wis.) at a concentration of 40 units/μl. Linear 25,000 g/mol (MW) polyethyleneimine (PEI) was purchased from Polysciences Inc. (Warrington, Pa.). Other chemical reagents were purchased from Sigma Aldrich (St. Louis, Mo.). Oligonucleotides were commercially synthesized and PAGE purified (Integrated DNA Technologies, Coralville, Iowa). Sequences of the oligonucleotides are listed in Table 1. siRNA for control experiments was purchased from Dharmacon RNAi Technologies. Dual-Glo Luciferase Assay System was purchased from Promega (Madison, Wis.). All other cell culture reagents were purchased from Invitrogen. GFP- and Luciferase-expressing T22 cells were a gift of the laboratory of Phil Sharp (MIT). Vivo Tag 645 and Cyanine 5-dUTP was purchased from Visen/PerkinElmer.
- Circularization of Linear DNA:
- 0.5 μM of phosphorylated linear ssDNA (ATAGTGAGTCGTATTAACGTACCAACAACTTACGCTGAGTACTTCGATTACTTGAAT CGAAGTACTCAGCGTAAGTTTAGAGGCATATCCCT) was hybridized with equimolar amounts of short DNA strands containing the T7 promoter sequence (TAATACGACTCACTATAGGGAT) by heating at 95° C. for 2 min and slowly cooling to 25° C. over 1 hour. The circular DNA is synthesized by hybridizing a 22 base T7 promoter with a 92 base oligonucleotide which has one larger (16 bases) and one shorter (6 bases) complementary sequence to the T7 promoter (Table 1). The nick in the circular DNA was chemically closed by T4 DNA ligase (Promega, Madison, Wis.), following commercial protocol.
- Gel Electrophoresis:
- The resultant solution after dicer treatment of the RNA microsponges was run in a 3% agarose ready gel (Bio-Rad) at 100 V at 25° C. in Tris-acetate-EDTA (TAE) buffer (40 mM Tris, 20 mM acetic acid and 1 mM EDTA, pH 8.0, Bio-Rad) for 90 min. The gel was then stained with 0.5 mg/ml of ethidium bromide in TAE buffer. The gel electrophoresis image was used to calculate the number of siRNA from RNA particle. By comparing the band intensity of cleaved 21 bp RNA strands to standard RNA strands, the amount of siRNA, which was converted from RNAi microsponges, was calculated (Table 2). Although up to 460 ng of siRNA can be theoretically obtained from 1 μg of RNAi microsponges, the particles were experimentally converted to 94.5 ng of siRNA by Dicer treatment under optimal conditions.
-
TABLE 2 Peak positions and d-spadings for RNAi-microsponge Peak position, Spacing q[Å−1] d[Å] 0.57 11.00 1.18 5.32 1.77 3.56 2.16 2.91 1.04 6.02 2.08 3.03 Spacing was determined by Bragg's Law. -
d=nλ/2 sin θ - Also, the scattering vector q was determined from the following equation.
-
q=4π sin θ/λ - To determine the thickness of crystallite was determined from Scherrer's Formula.
-
D=2πK/Δq - Here, K=0.9 is the Scherrer constant, and Δq is the radial full width at half maximum of a given Bragg spot. D is thickness of crystallite. λ is the wavelength of the x-ray radiation (here, λ is 1.54).
-
Thickness of FWHM, Δq[Å−1] Crystallite, D[Å] 0.077 73.3
Here, the crystallite thickness is estimated to be ˜7.4 nm as determined from the Scherrer equation. The 7.4 nm is close to the theoretical length of double stranded 21 bp siRNA by considering that one base pair corresponds to 2.6-2.9 Å of length along the strand (21×2.6-2.9=54.6-60.9 Å). Considering that the polymer might fold according to the structure displayedFIG. 6 , the observed thickness might correspond to the length of a double stranded 21 bp siRNA coupled to the width of a duplexed RNA helix of approximately 20 Å [Nucleic Acids Research, 27, 949-955 (1999)]. This would theoretically amount to 74.6 to 80.9 Å. In addition, the rest of RNA strands could be easily packing to form ordered structure since the persistence length of single-stranded RNA is less than 1 nm. However, double stranded RNA part should be rigid because persistence length of double stranded RNA is about 64 nm (Single-Molecule Measurements of the Persistence Length of Double-Stranded RNA, Biophys J. 2005 April; 88(4): 2737-2744). - Dynamic Light Scattering (DLS) and Zeta Potential:
- The size and surface charge of RNAi microsponges were measured using Zeta PALS and Zeta Potential Analyzer software (Brookhaven Instruments Corp., Holtsville, N.Y.). The RNAi microsponges were diluted in Milli-Q water and all measurement were carried out at 25° C. Three measurements each with 10 sub-runs were performed for each sample. Molecular weight of RNA microsponges, 1.36×1010 g/mole, was obtained from Zeta PALS software.
- Calculation of Amount of siRNA Generated from RNAi Microsponges:
- From the measured molecular weight of the RNA microsponges, the number of periodically repeated 92 base RNA strands (from 92 base circular DNA templates) in a single RNA microsponge was calculated as follows:
-
- In theory, 480000 of siRNA can be maximally generated from one RNAi microsponge.
Experimentally, the amount of cleaved siRNA from one RNA microsponge was determined using the gel electrophoresis results. -
- According to gel electrophoresis results following the Dicer treatment, 102,000 siRNA strands were generated from one RNAi microsponge under optimal conditions. This result shows that 21% of potential RNAi is converted as siRNA. In our hypothesis, some portion of the RNA is not as readily accessed by dicer in a more close-packed self-assembled RNA structure. Therefore, multimers such as dimer, trimer, and tetramer of repeat RNA unit as incomplete dicing products could be produce.
- Calculation of Amount of Liposome by Lipofectamine with siRN:
- The number of liposome can be calculated by the following equation,
-
N liposome =N lipid /N tot - If 100 nm liposomes are unilamellar structure, the number of lipids in a 100 nm size liposome is about 80047. With 2 mg/ml of Lipofectamine™ reagent (Invitrogen) solution, which is 3:1 (w/w) liposome formulation of DOSPA (2,3-dioleoyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propaniminium trifluoroacetate) and DOPE (dioleoyl-L-a-phosphatidylethanolamine), 1:4 ratio of siRNA/Lipo (w/v) is formed.
- Based on our calculation, about 150 times more number of liposomes that are made of lipofectamine agent are needed to deliver same number of siRNA in comparison to microsponges. For example, to deliver 1 nmole of siRNA, 1.5 pmole of liposome is necessary (in case of RNAi-MS, about 10 fmole of RNA-MS can deliver 1 nmole of siRNA). This is an important issue for the cell type that does not easily allow cellular uptake and low off-target/toxicity.
- Materials for In Vitro Biological Characterization:
- The siRNA was purchased from Dharmacon RNAi Technologies. Dual-Glo Luciferase Assay System and Fugene-HD were purchased from Promega. All other cell culture reagents were purchased from Invitrogen. T22 cells stably expressing both GFP and firefly luciferase, untransfected T22 cells, and pRL-CMV (Renilla luciferase) plasmid were a gift of the laboratory of Phil Sharp (MIT). gWIZ-Luc (Firefly luciferase) plasmid was obtained from Aldevron. (Firefly) Branched 25,000 g/mol (MW) polyethyleneimine (PEI) and other chemical reagents were purchased from Sigma Aldrich. Vivo Tag 645 was purchased from Visen/PerkinElmer.
- Cell Proliferation Assay:
- T22 cells were seeded at 2000 cells/well in a 96-well clear, flat-bottomed plate and transfected according to the above protocol. Cells were incubated with RNAi-microsponges or RNAi-microsponge/PEI for 4 hours, after which media was removed and replaced with 10% serum-containing growth medium. After 48 hours, each well was treated with 20 μL of MTT reagent (1 mg/mL in MEM) for an additional 4 hours. Media was then removed and formazan crystals were solubilized in 50:50 DMF:water with 5% SDS. After 12 hours, absorbance was read at 570 nm.
- Cell Uptake Test by Confocal Microscopy:
- 8-well Lab-Tek chamber slides (Thermo Fisher, Waltham, Mass.) were treated for 20 min with human fibronectin in PBS at 0.1 mg/mL. The fibronectin was removed and T22 cells were trypsinized and seeded in each well at a concentration of 4000 cells/well 24 h before transfection. 50 μL of fluorescently labeled RNAi-MS and RNAi-MS/PEI were added to 250 μL phenol-free Opti-MEM at the final concentration of up to 21.2 fM. After 4 hours, RNAi-microsponges were removed, cells were fixed with 3.7% formaldehyde in PBS, stained with Hoechst 33342 (Pierce) and Alexa Fluor 488® phalloidin (Invitrogen) and washed 3 times with PBS. Imaging was done on a PerkinElmer Ultraview spinning disc confocal (PerkinElmer, Waltham, Mass.).
- Materials for In Vivo siRNA Knockdown Experiments:
- T22-Luc cells were a generous gift from Dr. Deyin Xing, Professor Philip Sharp (MIT) and Dr. Sandra Orsulic (Cedars-Sinai medical center). Tumors from nude mice injected with Brca1 wild-type cell line C22 were used to generate T22 tumor cell lines (Cancer Res. 2006 Sep. 15; 66(18): 8949-53). T22-Luc is a genetically defined mouse ovarian cancer cell line (p53−/−, Akt, myc) that stably expresses luciferase after infection with pMSCV-puro-Firefly luciferase viral supernatant and selecting the cells in a medium containing 2.0 ìg/ml of puromycin for 1 week.
- Degradation Experiments of RNAi Microsponges:
- For degradation test, RNA microsponges were incubated for 24 hrs in 10% of serum at 37° C. (
FIG. 18 ). We have also carried out additional experiments with various concentrations of RNase for 24 hrs at 37° C. (FIG. 8 ) [RNase I (from 0.05 U/μl to 5 U/μl) for single stranded RNA and RNase III (from 0.02 U/μl to 1.2 U/μl) for double stranded RNA, NEB, Ipswich, Mass.]. As a control, RNA microsponges were incubated with 10 U/μl of DNase I (NEB, Ipswich, Mass.) for 24 hrs at 37° C. - By taking advantage of new RNA synthetic methods for the generation of nanostructures via rational design, we utilize an enzymatic RNA polymerization to form condensed RNA structures that contain predetermined sequences for RNA interference by rolling circle transcription (RCT).
- Here we design and use RNA polymerase to generate elongated pure RNA strands as polymers that can self-assemble into organized nano- to microstructure, which is key for efficient delivery and high cargo capacity, offering the combined benefit of low off-target effects and low toxicity4. Using a new approach, we utilize the T7 promoter as a primer so that extremely high molecular weight RNA strands can be produced. As shown in
FIG. 1 , long linear single stranded DNA encoding complementary sequences of the antisense and sense sequences of anti-luciferase siRNA are first prepared. Because both ends of the linear DNA are also partially complementary to the T7 promoter sequence, the long strand is hybridized with a short DNA strand containing the T7 promoter sequence to form circular DNA (see Table 1). The nick in the circular DNA is chemically closed with a T4 DNA ligase. The closed circular DNA is then used to produce RNA transcripts via RCT, encoding both antisense and sense sequences of anti-luciferase siRNA yielding hairpin RNA structures (seeFIG. 6 ). The hairpin RNA structures can actively silence genes when converted to siRNA by Dicer. From In vitro RCT of the circular DNA, we can obtain multiple tandem copies of the sequence in coils of single-stranded and double stranded RNA transcripts. Although the products might be compared to DNA toroidal condensates, in this case, there is not a charged condensing element that assists in the formation of structure. - The RNA transcripts form porous sponge-like superstructures with nanoscopic structure readily visible in scanning electron microscope (SEM) image (
FIG. 2 a). Because of the structural similarity, we refer to the resulting RNA product as an RNA interference (RNAi) microsponge. Unlike conventional nucleic acid systems, our RNAi-microsponge exhibits a densely packed molecular scale structure without the use of an additional agent. We confirmed that the RNAi-microsponges are composed of RNA by staining with SYBR II and labeling with Cyanine 5-dUTPs, and observing the resulting bright green and red fluorescence, respectively (FIG. 2 b andFIG. 7 ). Also, we provide additional evidence with an RNase digestion experiment at various concentrations of RNase. The results clearly show the rate-dependent degradation of the RNA microsponge at high concentrations of RNase (seeFIG. 8 ). Mono-disperse RNA microsponges were prepared with short sonication (FIG. 2 c). The particles exhibit a uniform size of 2 μm, and consistent nano-pleated or fan-like spherical morphology. Based on the molecular weight and concentration, each RNAi-microsponge contains approximately a half million tandem copies of RNA strands that are cleavable with Dicer. A higher magnification SEM image of the RNA particles reveals that the sponge-like structure is constructed from RNA sheets that are approximately 12±4 nm thick (FIG. 2 d). - To examine the formation of the sponge-like spherical structures from their RNA strand building blocks, time-dependent experiments were performed during the RCT polymerization. The morphologies of the RNA superstructures were revealed by SEM after 1 h, 4 h, 8 h, 12 h, 16 h and 20 h RCT reaction time. As shown in
FIG. 3 a, the RCT products first form a fiber-like structure in the early stages of the polymerization. After additional reaction time, a sheet-like structure is formed (FIG. 3 b). At the 8 h time point, the sheet-like structure became thicker and began to exhibit a densely packed internal structure (FIG. 3 c). Wrinkled and semi-spherical structures begin to appear on the sheet structures in the 12 h reaction sample (FIG. 3 d andFIG. 9 ). After 16 h, the morphology of the RNA polymer product transforms into interconnected globular superstructures in which the sheets are re-organized into a complex buckled and folded internal structure (FIG. 3 e). These spherical structures start to separate into individual particles, and after 20 h, the final spherical sponge-like structures were observed (FIGS. 3 f and 2 a). Based on the SEM images from time-dependent experiments, a schematic cartoon of the process of formation of sponge-like superstructure is suggested inFIG. 3 g. The final structure is reminiscent of the lamellar spherulite structures that are formed by highly crystalline polymers when nucleated in the bulk state or solution. In the case of traditional synthetic polymers such as polyethylene or polyethylene oxide, the thickness of the lamellar sheets corresponds to the dimensions of chain-folded polymer molecules. It is possible that as the RNA polymer is continuously generated during the RCT reaction, and reaches very high molecular weight at high localized concentrations, a similar ordering and assembly process occurs here. Thus far, such a self-assembled crystalline superstructure has not been observed for RNA polymers. The crystalline structure of RNAi-microsponge was confirmed with polarizing optical microscopy (POM); under crossed polarizers, birefringence of the individual particles is observed (FIG. 3 h). In comparison to the SEM image (inset ofFIG. 2 c), it appears that the RNA sheet has a crystal-like ordered structure (Inset ofFIG. 3 h). X-ray diffraction further confirmed the crystalline structure of the RNAi-microsponge (FIG. 3 i). The crystallite thickness is estimated to be ˜7.4 nm as determined from the Scherrer equation (Table 2). This finding is consistent with the thickness from SEM images although the resolution of SEM is not as sensitive at the nanoscale. In addition, transmission electron microscope (TEM) images (FIG. 3 j andFIG. 10 ) showing densely assembled RNA sheet structures in the RNAi-microsponge support the proposed structure, as shown in schematic form inFIG. 3 j. Similar to liquid crystal phases from duplex DNA, the high molecular weight of RNA polymers with periodic RNA duplexes leads to the formation of crystal-like ordered structures. The melting experiment using POM with a heating stage show that the RNAi-microsponge is pretty stable up to 150° C. which is much higher than the melting temperature of any double helix DNA or RNA molecules, suggesting that the formation of the RNAi-microsponge is dominantly based on the ordered crystalline structure of RNA polymers (FIG. 11 ). The assembly of the RNA polymer was also observed when polymerized at different concentrations of the rolling circle DNA polymerizing or initiating units (FIG. 12 ). At lower concentrations, individual branched dendritic polycrystals were formed in solution, but they did not assemble into microparticles until a critical concentration of DNA was achieved. The concentration dependence, the appearance of more traditional crystalline structures at low concentration, as well as the observed crystallite thickness of 7.4 nm for the sponge layer structures, which corresponds to the length of the rigid 21 bp RNA repeat sequence, were all consistent with phenomena observed for the formation of spherulitic superstructures of chain folded lamellar sheets. - The RNAi-microsponges have a highly localized concentration of RNA strands, as they essentially consist of near 100% potential RNAi. For this reason, these systems should be an effective means to deliver and generate siRNA through intracellular processing mechanisms. The RNA structures were designed to be cleaved by the enzyme Dicer by cutting double-stranded RNA into approximately 21-nt RNA duplexes in the cytoplasm, where it can be converted to siRNA by the RNA-induced silencing complex (RISC) for gene silencing (
FIG. 4 a). To confirm Dicer cleavage of RNAi-microsponge, they were incubated with recombinant Dicer and the products were analyzed by gel electrophoresis (FIG. 4 b). In the presence of recombinant Dicer, RNAi-microsponges yielded 21 bp products (FIG. 4 b, left); whereas there are no RNA strands as small as the 21 bp siRNA without Dicer treatment (lane 2 ofFIG. 4 b, right). Due to the amount of cleavable RNA strands and size of RNAi-microsponge, recombinant Dicer required at least a 36 h reaction time to generate the maximum amount of siRNA (lane 3 to 8 ofFIG. 4 b, right). 9.5% (w/w) of RNAi-microsponge was converted to siRNA, indicating 21% of the cleavable double stranded RNA was actually diced to siRNA (Table 3). Dicer also produced the two or three repeat RNA units that included two or three non-diced RNA duplex (FIG. 4 b). With these results, we estimate that each individual RNAi-microsponge can yield ˜102000 siRNA copies (see Calculation above). -
TABLE 3 Amount of cleaved siRNA from 1 μg of RNAi- microsponges from gel electrophoresis results. Intensity Amount (abitrary) Std. (ng) 21 bp of 159.3 16.4 93.8 ± 9.7 Reference dsRNA Ladder sIRNA from 160.4 8.8 94.5 ± 5.2 RNA particles - To enhance the cellular uptake of the RNA particle, the synthetic polycation, polyethylenimine (PEI) was used to condense the RNAi-microsponge and generate a net positively charged outer layer. Due to the high negative charge density of the RNAi-microsponge, cationic PEI was readily adsorbed onto the particles by electrostatic interaction. The change of particle surface charge (zeta potential) from −20 mV (RNAi-microsponge) to +38 mV (RNAi-microsponge/PEI) indicates the successful assembly of RNAi-microsponge with PEI (
FIG. 4 c). The size of the particles was significantly decreased to 200 nm from the original average size of approximately 2 μm (FIG. 4 c). The shrinking was also confirmed by SEM image, showing approximately 200 nm monodisperse particles (FIG. 4 d andFIG. 13 ). It is worth noting that a single PEI layered RNAi-microsponge still contains the same number of cleavable RNA strands, thus yielding an extremely high siRNA density. To the best of our knowledge, this represents the highest number of siRNA molecular copies encapsulated in a nanoparticle; typically the loading of siRNA can be challenging for standard polymeric carriers. - To confirm the cellular transfection of RNA particle, red fluorescence labeled RNAi-microsponge/PEI was incubated with T22 cells. RNAi-microsponge/PEI particles exhibited significant cellular uptake by the cancer cell line, compared with the uncondensed RNAi-microsponge (
FIG. 5 a). Since the RNAi-microsponge was designed to generate siRNA for silencing of firefly luciferase expression, the drug efficacy was determined by measuring the fluorescence intensity of cell lysate after transfection (FIG. 5 b andFIG. 14 ). As expected, naked siRNA did not show any significant gene silencing up to 100 nM siRNA, whereas RNAi-microsponge showed slightly reduced gene expression at 980.0 fM. PEI layered RNAi-microsponge efficiently inhibited the firefly luciferase expression down to 42.4% at the concentration of 980 fM. The RNAi-MS/PEI delivery system shows better silencing efficiency in comparison to siRNA/PEI. The level of gene knockdown was also evaluated with in vivo optical images of firefly luciferase-expressing tumors after intratumoral injection of RNAi-microsponge/PEI (FIG. 5 c andFIG. 15 ). As can be seen inFIG. 5 c, after 4 days the level of firefly luciferase expression in the tumor was significantly reduced for the PEI layered RNAi-microsponge; however, there is no significant decrease in firefly luciferase expression with a control RNA-microsponge/PEI that does not knock down luciferase (seeFIG. 16 ). Note that extremely low numbers (2.1 fmoles) of RNAi-microsponge/PEI particles were used to achieve significant gene silencing efficiency—roughly 3 orders of magnitude less carrier was required to achieve the same degree of gene silencing as a conventional particle based vehicle6. Compared to other strategies, siRNA delivery using our RNAi-microsponges provides synergistic effects for loading efficiency, drug efficacy, and low cytotoxicity (FIGS. 5 b and 5 c andFIG. 17 ). - We demonstrated that a new class of siRNA carrier, the RNAi-microsponge, which introduces a new self-assembled structure that provides a route for the effective delivery of siRNA. The RNAi microsponge presents a means of rapidly generating large amounts of siRNA in a form that assembles directly into a drug carrier that can be used for direct transfection simply by coating with a positively charged polyion. Given the high cost of therapeutic siRNA and the need for high levels of efficiency, this approach could lead to much more directly accessible routes to therapies involving siRNA. The siRNA, which is highly prone to degradation during delivery, is protected within the microsponge in the crystalline form of polymeric RNAi. We can significantly reduce the difficulties of achieving high loading efficiency for siRNA using this approach. The microsponges are able to deliver the same transfection efficiency with a three order of magnitude lower concentration of siRNA particles when compared to typical commercially available nanoparticle-based delivery. Furthermore, the ease of modification of the RNA polymer composition enables the introduction of multiple RNA species for combination therapies. The RNAi microsponge presents a novel new materials system in general due to its unique morphology and nanoscale structure within the polymer particle, and provides a promising self-assembling material that spontaneously generates a dense siRNA carrier for broad clinical applications of RNAi delivery using the intrinsic biology of the cell.
- In this Example, particles includes nucleic acid molecules comprising multiple sequences are demonstrated.
- To generate the RNAi combination system, we can incorporate RNAi combinations by assembling multiple siRNA and/or microRNA (miR) within a single RNAi microsponge. To achieve this goal, multiple RNA species can be designed within a single circular DNA template. Then self-assembled RNAi microsponge can be synthesized during RCT reaction by producing multiple components from a single circular DNA template (
Engineering Strategy 1 inFIG. 19 ). Another strategy is that we can design each type of siRNA sequences in a single circular DNA template and mix all types of circular DNA together during RCT reaction (Engineering Strategy 2 inFIG. 19 ). Specific composition of multiple RNAi reagents can be incorporated as components of circular DNA to generate the RNAi combination system. The numbers and types of multiple components in a single RNAi microsponge are unlimited. Possible candidates for RNAi combination systems are siRNA, shRNA, miRNA, and Ribozyme. Note that molar ratios between siRNA sequences can be varied depending on their efficacy of knockdown. A variety of parameters can be considered in the sequence design and for efficient knockdown such as RNA geometry (secondary and tertiary structures), molar ratios of multiple siRNA sequences, additional spacers between multiple siRNAs in a single transcript and destabilizing G:U wobble pairs to improve transcription efficiency. -
FIG. 20 shows the existence of multiple components within a single RNAi microsponge structure was confirmed by flow cytometry analysis. Various RNAi microsponges were constructed based on the molar ratios differences between two siRNA sequences by varying the molar ratio of DNA templates. Then two molecular recognition probes, fluorophores tags both green and red, were attached to each RNAi microsponge. The RNAi microsponges 4G1R, 2G1R, 1G1R, 1G2R and 1G4R were decoded based on the ratio of fluorescence intensity. FITC indicates the green channel and APC indicates the red channel. The intensity ratio IR/IG, where IR and IG were fluorescence intensities of green and red dye from both dyes-tagged RNAi microsponges respectively, was changed between the ratios of two different siRNA molecules (Figure). This result indicates that the internal structure of RNAi mircosponges consists of two siRNA components. - While the present disclosures have been described in conjunction with various embodiments and examples, it is not intended that they be limited to such embodiments or examples. On the contrary, the disclosures encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art. Accordingly, the descriptions, methods and diagrams of should not be read as limited to the described order of elements unless stated to that effect.
- Although this disclosure has described and illustrated certain embodiments, it is to be understood that the disclosure is not restricted to those particular embodiments. Rather, the disclosure includes all embodiments that are functional and/or equivalents of the specific embodiments and features that have been described and illustrated.
Claims (59)
1. A particle, comprising:
a core comprised of self-assembled one or more nucleic acid molecules, the core being characterized by an ability to adopt at least two configurations:
a first configuration having a first greatest dimension greater than 2 μm and;
a second configuration having a second greatest dimension less than 500 nm,
wherein addition of a film coating converts the core from its first configuration to its second configuration.
2. The particle of claim 1 , wherein the core contains a single nucleic acid molecule.
3. The particle of claim 1 , wherein the core is comprised of a plurality of nucleic acid molecules.
4. The particle of claim 3 , wherein individual nucleic acid molecules within the core have different nucleic acid sequences.
5. The particle of claim 3 , wherein all nucleic acid molecules within the core have substantially the same nucleic acid sequence.
6. The particle of claim 3 , wherein nucleic acid molecules within the core have sequences that share at least one common sequence element.
7. The particle of claim 1 , wherein at least one nucleic acid molecule within the core has a nucleotide sequence that comprises multiple copies of at least a first sequence element.
8. The particle of claim 1 , wherein at least one nucleic acid molecule within the core has a nucleotide sequence that comprises multiple copies of each of at least a first and a second sequence element.
9. The particle of claim 8 , wherein the at least one nucleic acid molecule has a nucleotide sequence that comprises alternating copies of the first and second sequence elements.
10. The particle of claim 8 , wherein the at least one nucleic acid molecule has a nucleotide sequence that comprises multiple copies of each of three or more sequence elements.
11. The particle of claim 1 , wherein at least one nucleic acid molecule has a nucleotide sequence that includes one or more sequence elements found in a natural source.
12. The particle of claim 11 , wherein the at least one nucleic acid molecule has a nucleotide sequence that includes a first sequence element that is found in a first natural source and a second sequence element that is found in a second natural source.
13. The particle of claim 12 , wherein the first and second natural sources are the same.
14. The particle of claim 12 , wherein the first and second natural sources are different.
15. The particle of claim 1 , wherein at least one nucleic acid molecule in the core has a nucleotide sequence that represents an assemblage of sequence elements found in one or more source nucleic acid molecules.
16. The particle of claim 15 , wherein the at least one nucleic acid molecule has a nucleotide sequence that represents an assemblage of at least two different sequence elements found in two different source nucleic acid molecules.
17. The particle of claim 1 , wherein at least a portion of the nucleic acid molecules within a core is cleavable.
18. The particle of claim 1 , wherein the nucleic acid molecules within a core comprise single-stranded, double-stranded, triple-stranded nucleic acids or combination thereof.
19. The particle of claim 1 , wherein the nucleic acid molecules within a core are arranged in a crystalline structure comprising lamellar sheets.
20. The particle of claim 1 , wherein the nucleic acid molecules within a core are formed via amplification by rolling circle amplification (RCA), rolling circle transcription (RCT) or both.
21. The particle of claim 1 , wherein the nucleic acid molecules within a core comprise a stem-loop or linear structure.
22. The particle of claim 1 , wherein the core comprises about 1×103 to 1×108 copies of a sequence element.
23. The particle of claim 1 , wherein the core comprises at least 1×106 copies of a sequence element.
24. The particle of claim 1 , wherein the nucleic acid molecules have a molecular weight of at least about 1×1010 g/mol, about 1×109 g/mol, about 1×108 g/mol, about 1×107 g/mol, about 1×106 g/mol, or about 1×105 g/mol.
25. The particle of claim 1 , wherein the core has a negative or positive surface charge.
26. The particle of claim 1 , further comprising one or more agents for delivery within the core.
27. The particle of claim 26 , wherein the agent comprises a chemotherapeutic agent selected from the group consisting of doxorubicin, carboplatin, cisplatin, cyclophosphamide, docetaxel, erlotinib, etoposide, fluorouracil, gemcitabine, imatinib mesylate, irinotecan, methotrexate, paclitaxel, sorafinib, sunitinib, topotecan, vincristine, vinblastine and combination thereof.
28. The particle of claim 1 , wherein the first greatest dimension of the core is greater than 2 μm, 1 μm, 500 nm, 200 nm, 100 nm or 50 nm.
29. The particle of claim 1 , wherein the second greatest dimension of the core is less than 500 nm, 200 nm, 100 nm, 50 nm, 20 nm or 10 nm.
30. The particle of claim 1 , further comprising a film coated on the core, so that the core has its second configuration.
31. The particle of claim 30 , wherein the film is or comprises a material selected from the group consisting of an organic material, an inorganic material, or combination thereof.
32. The particle of claim 30 , wherein the film is or comprises a polymer.
33. The particle of claim 32 , wherein the film is or comprises a lipid.
34. The particle of claim 30 , wherein the film is or comprises at least one polyelectrolyte layer.
35. The particle of claim 34 , wherein the polyelectrolye layer is degradable or non-degradable.
36. The particle of claim 34 , wherein the polyelectrolyte layer is or comprises a polycation or polyanion.
37. The particle of claim 36 , wherein the polycation is selected from the group consisting of polyethylenimine, poly(L-lysine) (PLL), poly(lactic acid) (PLA), derivatives and combination thereof.
38. The particle of claim 30 , wherein the film comprises a layer-by-layer (LBL) film.
39. The particle of claim 38 , wherein the LBL film comprises multiple polyelectrolyte layers.
40. The particle of claim 39 , wherein the LBL film comprises multiple polyelectrolyte layers of alternating charges.
41. The particle of claim 30 , wherein the film further comprises one or more agents.
42. The particle of claim 30 , wherein the coated particle has a positive or negative surface charge.
43. A particle, comprising:
a core comprised of one or more nucleic acid molecules self-assembled in a crystalline structure comprising lamellar sheets.
44. A method for forming a particle comprising:
assembling one or more nucleic acid molecules into a core with a crystalline structure comprising lamellar sheets.
45. A method for forming a particle comprising:
assembling one or more nucleic acid molecules into a core, wherein the core has a first greatest dimension greater than 2 μm, and
coating the core with a film, wherein the coated core has a second greatest dimension less than 500 nm.
46. The method of claim 45 , further comprising forming the nucleic acid molecules via rolling circle amplification (RCA), rolling circle transcription (RCT) or both.
47. The method of claim 46 , wherein the step of forming comprises using a circular nucleic acid template.
48. The method of claim 47 , wherein the step of forming comprises hybridizing the circular nucleic acid template with a primer.
49. The method of claim 48 , wherein the primer is complementary to a portion of the circular nucleic acid template.
50. The method of claim 47 , wherein the step of forming further comprises amplifying the circular nucleic acid template using an enzyme.
51. The method of claim 50 , wherein the enzyme is Φ29 DNA polymerase, T7 polymerase or both.
52. The method of claim 45 , wherein the step of coating comprises mixing the core in a coating solution.
53. The method of claim 52 , wherein the coating solution comprises polyethylenimine.
54. The method of claim 45 , wherein the step of coating further comprises sequentially assembling additional layers.
55. A method for using a particle:
administering or implanting a particle of claim 1 to a subject.
56. The method of claim 55 , further comprising exposing the particle to a cleavage agent so that the nucleic acid molecules are cleaved into copies of nucleic acids.
57. The method of claim 56 , wherein the cleavage agent is an enzyme selected from the group consisting of nuclease, Dicer, DNAase, RNAase and combination thereof.
58. The method of claim 57 , further comprising releasing the cleaved copies of nucleic acids.
59. The method of claim 55 , wherein the particles are used for dysregulation of genes.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/190,983 US20140328931A1 (en) | 2013-02-26 | 2014-02-26 | Nucleic acid particles, methods and use thereof |
| US14/811,263 US9737557B2 (en) | 2013-02-26 | 2015-07-28 | Nucleic acid particles, methods and use thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361769731P | 2013-02-26 | 2013-02-26 | |
| US14/190,983 US20140328931A1 (en) | 2013-02-26 | 2014-02-26 | Nucleic acid particles, methods and use thereof |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/811,263 Continuation US9737557B2 (en) | 2013-02-26 | 2015-07-28 | Nucleic acid particles, methods and use thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140328931A1 true US20140328931A1 (en) | 2014-11-06 |
Family
ID=50342473
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/190,983 Abandoned US20140328931A1 (en) | 2013-02-26 | 2014-02-26 | Nucleic acid particles, methods and use thereof |
| US14/811,263 Active US9737557B2 (en) | 2013-02-26 | 2015-07-28 | Nucleic acid particles, methods and use thereof |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/811,263 Active US9737557B2 (en) | 2013-02-26 | 2015-07-28 | Nucleic acid particles, methods and use thereof |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20140328931A1 (en) |
| WO (1) | WO2014134029A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140284270A1 (en) * | 2012-09-21 | 2014-09-25 | George Fox | RNA pores and methods and compositions for making and using same |
| US9393217B2 (en) | 2007-06-14 | 2016-07-19 | Massachusetts Institute Of Technology | Self assembled films for protein and drug delivery applications |
| WO2017188707A1 (en) * | 2016-04-29 | 2017-11-02 | Ewha University - Industry Collaboration Foundation | Dicer substrate rna nanostructures with enhanced gene silencing effect and preparation method thereof |
| US20180326092A1 (en) * | 2017-05-12 | 2018-11-15 | Massachusetts Institute Of Technology | Argonaute protein-double stranded rna complexes and uses related thereto |
| US10278927B2 (en) | 2012-04-23 | 2019-05-07 | Massachusetts Institute Of Technology | Stable layer-by-layer coated particles |
| US11419947B2 (en) | 2017-10-30 | 2022-08-23 | Massachusetts Institute Of Technology | Layer-by-layer nanoparticles for cytokine therapy in cancer treatment |
| US12018315B2 (en) | 2019-05-30 | 2024-06-25 | Massachusetts Institute Of Technology | Peptide nucleic acid functionalized hydrogel microneedles for sampling and detection of interstitial fluid nucleic acids |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101776368B1 (en) * | 2014-10-02 | 2017-09-07 | 서울시립대학교 산학협력단 | mRNA nanoparticles and manufacturing method thereof |
| US11326196B2 (en) | 2016-01-11 | 2022-05-10 | Vilnius University | System and method for synthesis of DNA particles and use thereof |
| CN110603330B (en) * | 2017-04-28 | 2023-09-05 | 协和麒麟株式会社 | Oligonucleotide derivatives or their salts |
| GB201904081D0 (en) * | 2019-03-25 | 2019-05-08 | Feyrer Hannes | Method and products for producing RNA molecules |
| WO2025058418A1 (en) * | 2023-09-15 | 2025-03-20 | 국민대학교 산학협력단 | Magnetic rna nanoparticles for mrna delivery for expression of therapeutic protein |
Family Cites Families (146)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB969808A (en) | 1962-06-08 | 1964-09-16 | Boots Pure Drug Co Ltd | Anthelmintic compositions and compounds |
| NO125853B (en) | 1966-10-03 | 1972-11-13 | Ford Motor Co | |
| GB1213805A (en) | 1966-10-03 | 1970-11-25 | Ford Motor Co | Polycarboxylic acid resins and paint binder compositions incorporating the same |
| US3710795A (en) | 1970-09-29 | 1973-01-16 | Alza Corp | Drug-delivery device with stretched, rate-controlling membrane |
| US3962414A (en) | 1972-04-27 | 1976-06-08 | Alza Corporation | Structured bioerodible drug delivery device |
| US4191811A (en) | 1977-03-01 | 1980-03-04 | Ionics, Incorported | Ion exchange membranes based upon polyphenylene sulfide and fluorocarbon polymeric binder |
| US4250029A (en) | 1977-04-25 | 1981-02-10 | Rohm And Haas Company | Coated membranes |
| IT1148784B (en) | 1980-04-09 | 1986-12-03 | Eurand Spa | PROCEDURE FOR THE PREPARATION OF MICRO CAPSULES IN A LIQUID VEHICLE |
| US4946929A (en) | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
| US4794000A (en) | 1987-01-08 | 1988-12-27 | Synthetic Blood Corporation | Coacervate-based oral delivery system for medically useful compositions |
| US4638045A (en) | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
| US4806621A (en) | 1986-01-21 | 1989-02-21 | Massachusetts Institute Of Technology | Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article |
| US5736372A (en) | 1986-11-20 | 1998-04-07 | Massachusetts Institute Of Technology | Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure |
| CA1340581C (en) | 1986-11-20 | 1999-06-08 | Joseph P. Vacanti | Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices |
| US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
| US5114719A (en) | 1987-04-29 | 1992-05-19 | Sabel Bernhard A | Extended drug delivery of small, water-soluble molecules |
| US5019379A (en) | 1987-07-31 | 1991-05-28 | Massachusetts Institute Of Technology | Unsaturated polyanhydrides |
| US5010167A (en) | 1989-03-31 | 1991-04-23 | Massachusetts Institute Of Technology | Poly(amide-and imide-co-anhydride) for biological application |
| CA2036606A1 (en) | 1990-02-20 | 1991-08-21 | Michael Colvin | Coated intraocular lens and coatings therefor |
| DE4026978A1 (en) | 1990-08-25 | 1992-02-27 | Bayer Ag | Coated substrates for electro=optical applications, etc. |
| US5462990A (en) | 1990-10-15 | 1995-10-31 | Board Of Regents, The University Of Texas System | Multifunctional organic polymers |
| US5364634A (en) | 1991-11-08 | 1994-11-15 | Southwest Research Institute | Controlled-release PH sensitive capsule and adhesive system and method |
| US5573934A (en) | 1992-04-20 | 1996-11-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
| BR9306038A (en) | 1992-02-28 | 1998-01-13 | Univ Texas | Light-curing biodegradable hydrogels as contact materials for controlled release fabrics and conductors |
| US5399665A (en) | 1992-11-05 | 1995-03-21 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
| US5630941A (en) | 1992-12-23 | 1997-05-20 | Burger; Wolfgang | Permanent hydrophilic modification of fluoropolymers |
| US5512600A (en) | 1993-01-15 | 1996-04-30 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
| US5514378A (en) | 1993-02-01 | 1996-05-07 | Massachusetts Institute Of Technology | Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures |
| US5518767A (en) | 1993-07-01 | 1996-05-21 | Massachusetts Institute Of Technology | Molecular self-assembly of electrically conductive polymers |
| US5512131A (en) | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
| US6180239B1 (en) | 1993-10-04 | 2001-01-30 | President And Fellows Of Harvard College | Microcontact printing on surfaces and derivative articles |
| US5429807A (en) | 1993-10-28 | 1995-07-04 | Beckman Instruments, Inc. | Method and apparatus for creating biopolymer arrays on a solid support surface |
| PL182237B1 (en) | 1994-03-07 | 2001-11-30 | Dow Chemical Co | The method of carrying out cell transfection and achieving the bioavailability of the genetic material in vitro and ex vivo EN EN |
| AUPM623994A0 (en) | 1994-06-15 | 1994-07-07 | Biomolecular Research Institute Limited | Antiviral dendrimers |
| US5716709A (en) | 1994-07-14 | 1998-02-10 | Competitive Technologies, Inc. | Multilayered nanostructures comprising alternating organic and inorganic ionic layers |
| IT1268718B1 (en) | 1994-07-26 | 1997-03-06 | Fidia Advanced Biopolymers Srl | SYNTHESIS OF CHEMICAL GEL FROM POLYSACCHARIDES POLYELECTROLYTES VIA GAMMA IRRADIATION |
| US5660873A (en) | 1994-09-09 | 1997-08-26 | Bioseal, Limited Liability Corporaton | Coating intraluminal stents |
| US5716404A (en) | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
| US5700559A (en) | 1994-12-16 | 1997-12-23 | Advanced Surface Technology | Durable hydrophilic surface coatings |
| US20020131933A1 (en) | 1996-01-16 | 2002-09-19 | Yves Delmotte | Biopolymer membrane and methods for its preparation |
| US6123727A (en) | 1995-05-01 | 2000-09-26 | Massachusetts Institute Of Technology | Tissue engineered tendons and ligaments |
| US6143211A (en) | 1995-07-21 | 2000-11-07 | Brown University Foundation | Process for preparing microparticles through phase inversion phenomena |
| US6095148A (en) | 1995-11-03 | 2000-08-01 | Children's Medical Center Corporation | Neuronal stimulation using electrically conducting polymers |
| US5902599A (en) | 1996-02-20 | 1999-05-11 | Massachusetts Institute Of Technology | Biodegradable polymer networks for use in orthopedic and dental applications |
| US5797898A (en) | 1996-07-02 | 1998-08-25 | Massachusetts Institute Of Technology | Microchip drug delivery devices |
| AUPO104496A0 (en) | 1996-07-17 | 1996-08-08 | Biomolecular Research Institute Limited | Angiogenic inhibitory compounds |
| DE69737504T2 (en) | 1996-10-24 | 2007-11-29 | SDGI Holdings, Inc., Wilmington | CERAMIC IMPLANTS AND COMPOSITIONS WITH OSTEOINDUCTIVE ACTIVE SUBSTANCES |
| GB9623051D0 (en) | 1996-11-06 | 1997-01-08 | Schacht Etienne H | Delivery of DNA to target cells in biological systems |
| US6919373B1 (en) | 1996-11-12 | 2005-07-19 | Alza Corporation | Methods and devices for providing prolonged drug therapy |
| US6114099A (en) | 1996-11-21 | 2000-09-05 | Virginia Tech Intellectual Properties, Inc. | Patterned molecular self-assembly |
| US5904927A (en) | 1997-03-14 | 1999-05-18 | Northeastern University | Drug delivery using pH-sensitive semi-interpenetrating network hydrogels |
| DE69841937D1 (en) | 1997-04-21 | 2010-11-25 | California Inst Of Techn | MULTIFUNCTIONAL POLYMER COATING |
| US5837752A (en) | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
| US6089853A (en) | 1997-12-24 | 2000-07-18 | International Business Machines Corporation | Patterning device for patterning a substrate with patterning cavities fed by service cavities |
| US5926860A (en) | 1997-12-31 | 1999-07-27 | Fluidmaster | Low profile vacuum toilet |
| US6451871B1 (en) | 1998-11-25 | 2002-09-17 | Novartis Ag | Methods of modifying surface characteristics |
| US7101575B2 (en) | 1998-03-19 | 2006-09-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly |
| WO1999047253A1 (en) | 1998-03-19 | 1999-09-23 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Fabrication of multilayer-coated particles and hollow shells via electrostatic self-assembly of nanocomposite multilayers on decomposable colloidal templates |
| DE19812083A1 (en) | 1998-03-19 | 1999-09-30 | Max Planck Gesellschaft | Simple preparation of coated particles, used to prepare systems for slow and/or targeted release of actives including pharmaceuticals, contrast agents, herbicides, pesticides, catalysts and pigments |
| US6123681A (en) | 1998-03-31 | 2000-09-26 | Global Vascular Concepts, Inc. | Anti-embolism stocking device |
| US5962520A (en) | 1998-04-02 | 1999-10-05 | The University Of Akron | Hydrolytically unstable, biocompatible polymer |
| US6103266A (en) | 1998-04-22 | 2000-08-15 | Tapolsky; Gilles H. | Pharmaceutical gel preparation applicable to mucosal surfaces and body tissues |
| ATE244068T1 (en) | 1998-04-30 | 2003-07-15 | Graffinity Pharmaceuticals Ag | DEVICE FOR TRANSPORTING LIQUIDS ALONG PREFINED ROUTES |
| AU755486B2 (en) | 1998-05-19 | 2002-12-12 | American National Red Cross, The | Hemostatic sandwich bandage |
| EP1098696B2 (en) | 1998-07-15 | 2010-07-14 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Polyelectrolyte coverings on biological templates |
| US6402918B1 (en) | 1998-11-16 | 2002-06-11 | Joseph B. Schlenoff | Apparatus for capillary electrophoresis and associated method |
| DE69918159T2 (en) | 1998-11-20 | 2005-03-17 | The University Of Connecticut, Farmington | METHOD AND DEVICE FOR CONTROLLING TISSUE IMPLANT INTERACTIONS |
| US6740643B2 (en) | 1999-01-21 | 2004-05-25 | Mirus Corporation | Compositions and methods for drug delivery using amphiphile binding molecules |
| ATE226267T1 (en) | 1999-06-10 | 2002-11-15 | Max Planck Gesellschaft | ENCAPSULATING CRYSTALS WITH MULTI-LAYER COATING |
| US6447887B1 (en) | 1999-09-14 | 2002-09-10 | Virginia Tech Intellectual Properties, Inc. | Electrostrictive and piezoelectric thin film assemblies and method of fabrication therefor |
| DE10001172A1 (en) | 2000-01-13 | 2001-07-26 | Max Planck Gesellschaft | Templating solid particles with polymer multilayers |
| AR027348A1 (en) | 2000-02-04 | 2003-03-26 | Novartis Ag | PROCESS TO COVER A SURFACE |
| JP2003528755A (en) | 2000-03-28 | 2003-09-30 | ザ・ボード・オブ・リージェンツ・フォー・オクラホマ・ステート・ユニバーシティ | Assembling a free-standing film using a layer-by-layer process |
| DE10027393B4 (en) | 2000-06-02 | 2007-05-16 | Wella Ag | Poly- and oligoesters of cationic hydroxy acids, process for their preparation and their use |
| JP2004507488A (en) | 2000-08-28 | 2004-03-11 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | Controlled and sustained release characteristics of polyelectrolyte multilayer capsules |
| US6860980B2 (en) | 2000-09-15 | 2005-03-01 | The United States Of America As Represented By The Secretary Of Commerce | Polyelectrolyte derivatization of microfluidic devices |
| US7427394B2 (en) | 2000-10-10 | 2008-09-23 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
| US6998115B2 (en) | 2000-10-10 | 2006-02-14 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
| US6716813B2 (en) | 2000-11-28 | 2004-04-06 | House Ear Institute | Use of antimicrobial proteins and peptides for the treatment of otitis media and paranasal sinusitis |
| WO2002085500A1 (en) | 2001-04-18 | 2002-10-31 | Florida State University Research Foundation, Inc. | Method of preparing free polyelectrolyte membranes |
| US6939564B2 (en) | 2001-06-08 | 2005-09-06 | Labopharm, Inc. | Water-soluble stabilized self-assembled polyelectrolytes |
| JP3990880B2 (en) | 2001-07-10 | 2007-10-17 | キヤノン株式会社 | Method for producing polyhydroxyalkanoate-coated liposome |
| US7112361B2 (en) | 2001-10-25 | 2006-09-26 | Massachusetts Institute Of Technology | Methods of making decomposable thin films of polyelectrolytes and uses thereof |
| US7090888B2 (en) | 2002-01-18 | 2006-08-15 | Snyder Michael E | Sustained release ophthalmological device and method of making and using the same |
| JP4624678B2 (en) | 2002-02-21 | 2011-02-02 | パイオニア・サージカル・オーソバイオロジックス,インコーポレイテッド | Cross-linked bioactive hydrogel matrix |
| US7101947B2 (en) | 2002-06-14 | 2006-09-05 | Florida State University Research Foundation, Inc. | Polyelectrolyte complex films for analytical and membrane separation of chiral compounds |
| US7033602B1 (en) | 2002-06-21 | 2006-04-25 | Advanced Cardiovascular Systems, Inc. | Polycationic peptide coatings and methods of coating implantable medical devices |
| US6752868B2 (en) | 2002-07-31 | 2004-06-22 | Mcnc Research & Development Institute | Layer-by-layer assembly of photonic crystals |
| US20050019404A1 (en) | 2003-06-30 | 2005-01-27 | Hsing-Wen Sung | Drug-eluting biodegradable stent |
| US6896926B2 (en) | 2002-09-11 | 2005-05-24 | Novartis Ag | Method for applying an LbL coating onto a medical device |
| US7090868B2 (en) | 2002-09-13 | 2006-08-15 | University Of Florida | Materials and methods for drug delivery and uptake |
| US8105652B2 (en) | 2002-10-24 | 2012-01-31 | Massachusetts Institute Of Technology | Methods of making decomposable thin films of polyelectrolytes and uses thereof |
| WO2004047880A1 (en) | 2002-11-25 | 2004-06-10 | Yissum Research And Development Of The Hebrew University Of Jerusalem | Organic-inorganic nanocomposite coatings for implant materials and methods of preparation thereof |
| US7251893B2 (en) | 2003-06-03 | 2007-08-07 | Massachusetts Institute Of Technology | Tribological applications of polyelectrolyte multilayers |
| US7364585B2 (en) | 2003-08-11 | 2008-04-29 | Boston Scientific Scimed, Inc. | Medical devices comprising drug-loaded capsules for localized drug delivery |
| US7544770B2 (en) | 2003-08-29 | 2009-06-09 | Louisiana Tech Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
| US7348399B2 (en) | 2003-08-29 | 2008-03-25 | Louisiana Tech University Foundation, Inc. | Nanofabricated polypeptide multilayer films, coatings, and microcapsules |
| WO2005046519A1 (en) | 2003-11-07 | 2005-05-26 | Gp Medical, Inc. | Drug-eluting biodegradable stent |
| EP1535952B1 (en) | 2003-11-28 | 2013-01-16 | Universite Louis Pasteur | Method for preparing crosslinked polyelectrolyte multilayer films |
| WO2005058199A1 (en) | 2003-12-16 | 2005-06-30 | Avery Dennison Corporation | Electrostatically self-assembled antimicrobial coating for medical applications |
| US7744644B2 (en) | 2004-03-19 | 2010-06-29 | Boston Scientific Scimed, Inc. | Medical articles having regions with polyelectrolyte multilayer coatings for regulating drug release |
| US7491263B2 (en) | 2004-04-05 | 2009-02-17 | Technology Innovation, Llc | Storage assembly |
| US8128954B2 (en) | 2004-06-07 | 2012-03-06 | California Institute Of Technology | Biodegradable drug-polymer delivery system |
| FR2877846B1 (en) | 2004-11-15 | 2008-12-05 | Univ Lille Sciences Tech | BIOMATERIAL CARRIERS OF CYCLODEXTRINS WITH IMPROVED ABSORPTION PROPERTIES AND PROGRESSIVE AND DELAYED RELEASE OF THERAPEUTIC MOLECULES |
| US20060127437A1 (en) | 2004-12-13 | 2006-06-15 | Misty Anderson Kennedy | Semisolid system and combination semisolid, multiparticulate system for sealing tissues and/or controlling biological fluids |
| DE602006020201D1 (en) | 2005-01-26 | 2011-04-07 | Aquatech Ltd | Aerobic-anaerobic process for the treatment of organically contaminated wastewater |
| WO2006086391A2 (en) | 2005-02-07 | 2006-08-17 | Massachusetts Institute Of Technology | Electrochemically-degradable layer-by-layer thin films |
| WO2006116683A1 (en) | 2005-04-27 | 2006-11-02 | The Trustees Of The University Of Pennsylvania | Nanostructure enhanced luminescence |
| US20080139450A1 (en) | 2005-07-01 | 2008-06-12 | Srinivasa Madhyastha | Antimicrobial Compositions and Uses Thereof |
| JP2009509675A (en) | 2005-09-30 | 2009-03-12 | Tti・エルビュー株式会社 | Transdermal drug delivery systems, devices, and methods using novel pharmaceutical vehicles |
| JP2009509702A (en) | 2005-10-05 | 2009-03-12 | エスセーアー・ハイジーン・プロダクツ・アーベー | Absorbent article with thin film containing activator |
| CA2622136A1 (en) | 2005-11-04 | 2007-05-18 | Merck & Co., Inc. | Methods of using saha and erlotinib for treating cancer |
| US9274108B2 (en) | 2006-02-06 | 2016-03-01 | Massachusetts Institute Of Technology | Self-assembly of macromolecules on multilayered polymer surfaces |
| WO2007106415A2 (en) | 2006-03-10 | 2007-09-20 | Massachusetts Institute Of Technology | Triggered self-assembly conjugates and nanosystems |
| GB0605688D0 (en) | 2006-03-21 | 2006-05-03 | Novartis Ag | Organic compounds |
| US20090061006A1 (en) | 2006-03-31 | 2009-03-05 | Carola Leuschner | Layered Nanoparticles for Sustained Release of Small Molecules |
| US20070276330A1 (en) | 2006-05-28 | 2007-11-29 | Beck Patricia A | Microneedles and methods of fabricating thereof |
| EP2029357A1 (en) | 2006-05-30 | 2009-03-04 | Massachusetts Institute of Technology Inc. | Methods of making decomposable thin films of polyelectrolytes and uses thereof |
| US20090053139A1 (en) | 2006-07-12 | 2009-02-26 | Regents Of The University Of Michigan | Dendrimer based compositions and methods of using the same |
| EP2082075B1 (en) | 2006-09-08 | 2017-05-17 | Massachusetts Institute of Technology | Automated layer by layer spray technology |
| WO2008045806A2 (en) | 2006-10-06 | 2008-04-17 | Microislet, Inc. | Multilayered polyelectrolyte-based capsules for cell encapsulation and delivery of therapeutic compositions |
| US20080311177A1 (en) | 2007-06-14 | 2008-12-18 | Massachusetts Institute Of Technology | Self Assembled Films for Protein and Drug Delivery Applications |
| US20110038939A1 (en) | 2007-07-16 | 2011-02-17 | Northeastern University | Therapeutic stable nanoparticles |
| US8071210B2 (en) | 2007-10-09 | 2011-12-06 | Wiscousin Alumni Research Foundation | Covalent assembly of ultrathin polymeric films |
| US8974814B2 (en) | 2007-11-12 | 2015-03-10 | California Institute Of Technology | Layered drug delivery polymer monofilament fibers |
| CA2707424A1 (en) | 2007-11-28 | 2009-06-04 | Tragara Pharmaceuticals, Inc. | Methods and compositions for the treatment of cancer, tumors, and tumor-related disorders |
| EP3574909A1 (en) | 2008-01-30 | 2019-12-04 | Imbed Biosciences, Inc. | Methods and compositions for wound healing |
| US9603980B2 (en) | 2008-02-26 | 2017-03-28 | CARDINAL HEALTH SWITZERLAND 515 GmbH | Layer-by-layer stereocomplexed polymers as drug depot carriers or coatings in medical devices |
| US20090258045A1 (en) | 2008-03-18 | 2009-10-15 | Massachusetts Institute Of Technology | Structures including antimicrobial peptides |
| TWI531362B (en) | 2008-07-21 | 2016-05-01 | 艾爾康股份有限公司 | Ophthalmic device having therapeutic agent delivery capability |
| US9198875B2 (en) | 2008-08-17 | 2015-12-01 | Massachusetts Institute Of Technology | Controlled delivery of bioactive agents from decomposable films |
| US20100189683A1 (en) | 2008-11-14 | 2010-07-29 | Ascenta Therapeutics, Inc. | Pulsatile Dosing of Gossypol for Treatment of Disease |
| US8715732B2 (en) | 2009-01-05 | 2014-05-06 | Cornell University | Nucleic acid hydrogel via rolling circle amplification |
| WO2010120531A2 (en) | 2009-04-01 | 2010-10-21 | Cornell University | Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon |
| US20120058355A1 (en) | 2009-06-02 | 2012-03-08 | Hyomin Lee | Coatings |
| US20110143127A1 (en) | 2009-12-11 | 2011-06-16 | Biomet Manufacturing Corp. | Methods for coating implants |
| WO2011140136A2 (en) | 2010-05-03 | 2011-11-10 | Massachusetts Institute Of Technology | Drug delivery coating and devices |
| US20120027837A1 (en) | 2010-07-27 | 2012-02-02 | Massachusetts Institute Of Technology | Multilayer coating compositions, coated substrates and methods thereof |
| WO2012149492A1 (en) | 2011-04-27 | 2012-11-01 | Massachusetts Institute Of Technology | Coating compositions, methods and coated devices |
| WO2013110047A1 (en) | 2012-01-20 | 2013-07-25 | Massachusetts Institute Of Technology | Compositions and methods for coating |
| WO2013163234A1 (en) | 2012-04-23 | 2013-10-31 | Massachusetts Institute Of Technology | Stable layer-by-layer coated particles |
| WO2013169479A1 (en) | 2012-05-11 | 2013-11-14 | Massachusetts Institute Of Technology | Compositions and methods of treatment of drug resistant cancers |
| US9511222B2 (en) | 2012-08-03 | 2016-12-06 | Boston Scientific Neuromodulation Corporation | System and method for post-stroke neural rehabilitation |
| US9610252B2 (en) | 2012-10-12 | 2017-04-04 | Massachusetts Institute Of Technology | Multilayer compositions, coated devices and use thereof |
| WO2014066862A2 (en) | 2012-10-26 | 2014-05-01 | Massachusetts Institute Of Technology | Devices and methods for layer-by-layer assembly |
| WO2014150074A1 (en) | 2013-03-15 | 2014-09-25 | Massachusetts Institute Of Technology | Compositions and methods for nucleic acid delivery |
-
2014
- 2014-02-25 WO PCT/US2014/018284 patent/WO2014134029A1/en not_active Ceased
- 2014-02-26 US US14/190,983 patent/US20140328931A1/en not_active Abandoned
-
2015
- 2015-07-28 US US14/811,263 patent/US9737557B2/en active Active
Non-Patent Citations (2)
| Title |
|---|
| Grabow et al. Nature Materials, 11(4): 268-269. (2012) * |
| Lee et al. Nature Materials, 11(4):316-322 (2012). * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9393217B2 (en) | 2007-06-14 | 2016-07-19 | Massachusetts Institute Of Technology | Self assembled films for protein and drug delivery applications |
| US10278927B2 (en) | 2012-04-23 | 2019-05-07 | Massachusetts Institute Of Technology | Stable layer-by-layer coated particles |
| US20140284270A1 (en) * | 2012-09-21 | 2014-09-25 | George Fox | RNA pores and methods and compositions for making and using same |
| WO2017188707A1 (en) * | 2016-04-29 | 2017-11-02 | Ewha University - Industry Collaboration Foundation | Dicer substrate rna nanostructures with enhanced gene silencing effect and preparation method thereof |
| US20180326092A1 (en) * | 2017-05-12 | 2018-11-15 | Massachusetts Institute Of Technology | Argonaute protein-double stranded rna complexes and uses related thereto |
| US10994025B2 (en) * | 2017-05-12 | 2021-05-04 | Massachusetts Institute Of Technology | Argonaute protein-double stranded RNA complexes and uses related thereto |
| US11419947B2 (en) | 2017-10-30 | 2022-08-23 | Massachusetts Institute Of Technology | Layer-by-layer nanoparticles for cytokine therapy in cancer treatment |
| US11964026B2 (en) | 2017-10-30 | 2024-04-23 | Massachusetts Institute Of Technology | Layer-by-layer nanoparticles for cytokine therapy in cancer treatment |
| US12018315B2 (en) | 2019-05-30 | 2024-06-25 | Massachusetts Institute Of Technology | Peptide nucleic acid functionalized hydrogel microneedles for sampling and detection of interstitial fluid nucleic acids |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160151404A1 (en) | 2016-06-02 |
| US9737557B2 (en) | 2017-08-22 |
| WO2014134029A1 (en) | 2014-09-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9737557B2 (en) | Nucleic acid particles, methods and use thereof | |
| Lee et al. | Self-assembled RNA interference microsponges for efficient siRNA delivery | |
| US10883105B2 (en) | RNA-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor | |
| Lee et al. | MicroRNA delivery through nanoparticles | |
| Curtin et al. | Scaffold‐based microRNA therapies in regenerative medicine and cancer | |
| Tagalakis et al. | Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery | |
| US10465189B2 (en) | Multilayered nanoparticle and methods of manufacturing and using the same | |
| Gao et al. | Research progress on siRNA delivery with nonviral carriers | |
| Raemdonck et al. | Prolonged gene silencing by combining siRNA nanogels and photochemical internalization | |
| Guan et al. | Non-coding RNA delivery for bone tissue engineering: Progress, challenges, and potential solutions | |
| Messaoudi et al. | Toward an effective strategy in glioblastoma treatment. Part II: RNA interference as a promising way to sensitize glioblastomas to temozolomide | |
| Zhu et al. | Nucleic acid-based artificial nanocarriers for gene therapy | |
| Yu et al. | Enzymatically Synthesized DNA Polymer as Co-carrier for Enhanced RNA Interference | |
| US11230708B2 (en) | Concatemeric RNA molecules, compositions, and methods and uses thereof | |
| US10172879B2 (en) | Nanocomplexes for co-delivering a drug and siRNA and uses thereof | |
| Seraj et al. | Cytoplasmic expression of EGFR shRNA using a modified T7 autogene-based hybrid mRNA/DNA system induces long-term EGFR silencing and prolongs antitumor effects | |
| Kanwar et al. | Nanotechnological based system for cancer | |
| Yao et al. | Efficient Self‐Assembled DNA Nanoparticles through Rolling Circle Amplification for siRNA Delivery in vitro | |
| KR101660017B1 (en) | RNA particles and manufacturing method thereof | |
| KR101660016B1 (en) | DNA-RNA hybridized particles and manufacturing method thereof | |
| Liu et al. | Delivery systems for RNA interference-based therapy and their applications against cancer | |
| Yoon et al. | Y-shaped oligonucleotides: a promising platform for enhanced therapy with siRNA and CpG oligodeoxyribonucleotides | |
| US11576976B2 (en) | Method of treating cancer by using siRNA nanocomplexes | |
| Raichur et al. | Strategist PLGA nano-capsules to deliver siRNA for inhibition of carcinoma and neuroblastoma cell lines by knockdown of MYC proto-oncogene using CPPs and PNA | |
| Kodama et al. | Novel siRNA delivery system using a ternary polymer complex with strong silencing effect and no cytotoxicity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS INSITUTE OF TECHNOLOGY;REEL/FRAME:035146/0315 Effective date: 20140326 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |