US20140323527A1 - Aryloxy amine compounds and their use as sodium channel modulators - Google Patents
Aryloxy amine compounds and their use as sodium channel modulators Download PDFInfo
- Publication number
- US20140323527A1 US20140323527A1 US14/222,854 US201414222854A US2014323527A1 US 20140323527 A1 US20140323527 A1 US 20140323527A1 US 201414222854 A US201414222854 A US 201414222854A US 2014323527 A1 US2014323527 A1 US 2014323527A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- group
- optionally substituted
- sodium channel
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010052164 Sodium Channels Proteins 0.000 title claims description 36
- 102000018674 Sodium Channels Human genes 0.000 title claims description 36
- -1 Aryloxy amine compounds Chemical class 0.000 title description 101
- 150000001875 compounds Chemical class 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 50
- 208000004296 neuralgia Diseases 0.000 claims abstract description 34
- 230000000694 effects Effects 0.000 claims abstract description 32
- 208000021722 neuropathic pain Diseases 0.000 claims abstract description 32
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 18
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 12
- 208000020431 spinal cord injury Diseases 0.000 claims description 78
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 53
- 230000006378 damage Effects 0.000 claims description 42
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 19
- 230000003376 axonal effect Effects 0.000 claims description 16
- 125000001072 heteroaryl group Chemical group 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 10
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 9
- 239000012453 solvate Substances 0.000 claims description 8
- 125000004450 alkenylene group Chemical group 0.000 claims description 7
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- 125000004419 alkynylene group Chemical group 0.000 claims description 7
- 125000002619 bicyclic group Chemical group 0.000 claims description 7
- 230000007850 degeneration Effects 0.000 claims description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 7
- 208000036110 Neuroinflammatory disease Diseases 0.000 claims description 5
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 5
- 125000002950 monocyclic group Chemical group 0.000 claims description 5
- 208000016192 Demyelinating disease Diseases 0.000 claims description 4
- 230000004941 influx Effects 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 37
- 238000011282 treatment Methods 0.000 abstract description 31
- 239000012528 membrane Substances 0.000 abstract description 25
- 239000003195 sodium channel blocking agent Substances 0.000 abstract description 14
- 102000016913 Voltage-Gated Sodium Channels Human genes 0.000 abstract description 9
- 108010053752 Voltage-Gated Sodium Channels Proteins 0.000 abstract description 9
- 229940125794 sodium channel blocker Drugs 0.000 abstract description 7
- 150000001412 amines Chemical class 0.000 abstract description 4
- 230000001413 cellular effect Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000001225 therapeutic effect Effects 0.000 abstract description 3
- 238000002560 therapeutic procedure Methods 0.000 abstract description 3
- 230000003078 antioxidant effect Effects 0.000 abstract description 2
- 230000009977 dual effect Effects 0.000 abstract description 2
- 230000007760 free radical scavenging Effects 0.000 abstract description 2
- 241000700159 Rattus Species 0.000 description 55
- 229940125904 compound 1 Drugs 0.000 description 41
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 34
- 208000014674 injury Diseases 0.000 description 33
- 229960003404 mexiletine Drugs 0.000 description 31
- VLPIATFUUWWMKC-SNVBAGLBSA-N (2r)-1-(2,6-dimethylphenoxy)propan-2-amine Chemical compound C[C@@H](N)COC1=C(C)C=CC=C1C VLPIATFUUWWMKC-SNVBAGLBSA-N 0.000 description 30
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- 208000002193 Pain Diseases 0.000 description 30
- 239000011780 sodium chloride Substances 0.000 description 30
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 28
- 208000027418 Wounds and injury Diseases 0.000 description 28
- 230000036407 pain Effects 0.000 description 27
- 201000001119 neuropathy Diseases 0.000 description 25
- 230000007823 neuropathy Effects 0.000 description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- 210000000278 spinal cord Anatomy 0.000 description 19
- 210000003050 axon Anatomy 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- 108091006146 Channels Proteins 0.000 description 15
- 210000002683 foot Anatomy 0.000 description 15
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 201000010099 disease Diseases 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000004480 active ingredient Substances 0.000 description 13
- 125000005843 halogen group Chemical group 0.000 description 13
- 210000005036 nerve Anatomy 0.000 description 13
- 210000004885 white matter Anatomy 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 208000004454 Hyperalgesia Diseases 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 210000002569 neuron Anatomy 0.000 description 12
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 12
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 11
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 11
- 125000004093 cyano group Chemical group *C#N 0.000 description 11
- 206010012601 diabetes mellitus Diseases 0.000 description 11
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 11
- 229960002036 phenytoin Drugs 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 208000024891 symptom Diseases 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 201000006417 multiple sclerosis Diseases 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 10
- 206010008723 Chondrodystrophy Diseases 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 206010053552 allodynia Diseases 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 208000037584 hereditary sensory and autonomic neuropathy Diseases 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 229940002612 prodrug Drugs 0.000 description 9
- 239000000651 prodrug Substances 0.000 description 9
- 230000001953 sensory effect Effects 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 8
- 206010029240 Neuritis Diseases 0.000 description 8
- 206010036105 Polyneuropathy Diseases 0.000 description 8
- 230000036982 action potential Effects 0.000 description 8
- 230000001154 acute effect Effects 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 210000000548 hind-foot Anatomy 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 206010010356 Congenital anomaly Diseases 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 7
- 206010003074 arachnoiditis Diseases 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 7
- 210000003169 central nervous system Anatomy 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 208000027232 peripheral nervous system disease Diseases 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 230000003542 behavioural effect Effects 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 230000001684 chronic effect Effects 0.000 description 6
- 229940125782 compound 2 Drugs 0.000 description 6
- 210000004884 grey matter Anatomy 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 230000002981 neuropathic effect Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000000284 resting effect Effects 0.000 description 6
- 208000005198 spinal stenosis Diseases 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 208000011580 syndromic disease Diseases 0.000 description 6
- 208000001640 Fibromyalgia Diseases 0.000 description 5
- 208000007514 Herpes zoster Diseases 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 208000004286 Osteochondrodysplasias Diseases 0.000 description 5
- 206010040037 Sensory neuropathy hereditary Diseases 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 230000007824 polyneuropathy Effects 0.000 description 5
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 235000015424 sodium Nutrition 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 229940083542 sodium Drugs 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- CFMYXEVWODSLAX-QOZOJKKESA-N tetrodotoxin Chemical compound O([C@@]([C@H]1O)(O)O[C@H]2[C@@]3(O)CO)[C@H]3[C@@H](O)[C@]11[C@H]2[C@@H](O)N=C(N)N1 CFMYXEVWODSLAX-QOZOJKKESA-N 0.000 description 5
- 229950010357 tetrodotoxin Drugs 0.000 description 5
- CFMYXEVWODSLAX-UHFFFAOYSA-N tetrodotoxin Natural products C12C(O)NC(=N)NC2(C2O)C(O)C3C(CO)(O)C1OC2(O)O3 CFMYXEVWODSLAX-UHFFFAOYSA-N 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 208000037187 Autoimmune Experimental Neuritis Diseases 0.000 description 4
- 208000023095 Autosomal dominant epidermolytic ichthyosis Diseases 0.000 description 4
- 206010014989 Epidermolysis bullosa Diseases 0.000 description 4
- DJBNUMBKLMJRSA-UHFFFAOYSA-N Flecainide Chemical compound FC(F)(F)COC1=CC=C(OCC(F)(F)F)C(C(=O)NCC2NCCCC2)=C1 DJBNUMBKLMJRSA-UHFFFAOYSA-N 0.000 description 4
- 208000007465 Giant cell arteritis Diseases 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 4
- 102000006386 Myelin Proteins Human genes 0.000 description 4
- 108010083674 Myelin Proteins Proteins 0.000 description 4
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 4
- 206010033799 Paralysis Diseases 0.000 description 4
- 206010043101 Talipes Diseases 0.000 description 4
- 0 [1*]C1=C(O)C([2*])=CC(C(C)C)=C1 Chemical compound [1*]C1=C(O)C([2*])=CC(C(C)C)=C1 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 208000014884 cartilage development disease Diseases 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 201000002491 encephalomyelitis Diseases 0.000 description 4
- 208000033286 epidermolytic ichthyosis Diseases 0.000 description 4
- 229940093499 ethyl acetate Drugs 0.000 description 4
- 235000019439 ethyl acetate Nutrition 0.000 description 4
- 229960000449 flecainide Drugs 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 206010025135 lupus erythematosus Diseases 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- 201000005518 mononeuropathy Diseases 0.000 description 4
- 210000005012 myelin Anatomy 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 208000035824 paresthesia Diseases 0.000 description 4
- 210000001428 peripheral nervous system Anatomy 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 201000006361 tethered spinal cord syndrome Diseases 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- AJZDHLHTTJRNQJ-UHFFFAOYSA-N 3-[4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxy-N-[2-(tetrazol-1-yl)ethyl]benzamide Chemical compound N1(N=NN=C1)CCNC(C1=CC(=CC=C1)OC1=NC(=CC(=C1)CN)C(F)(F)F)=O AJZDHLHTTJRNQJ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 201000006390 Brachial Plexus Neuritis Diseases 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 3
- 208000011691 Burkitt lymphomas Diseases 0.000 description 3
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 3
- 208000030060 Congenital non-bullous ichthyosiform erythroderma Diseases 0.000 description 3
- 208000002197 Ehlers-Danlos syndrome Diseases 0.000 description 3
- 208000000088 Enchondromatosis Diseases 0.000 description 3
- 201000009040 Epidermolytic Hyperkeratosis Diseases 0.000 description 3
- 201000011240 Frontotemporal dementia Diseases 0.000 description 3
- 208000031886 HIV Infections Diseases 0.000 description 3
- 208000037357 HIV infectious disease Diseases 0.000 description 3
- 208000017604 Hodgkin disease Diseases 0.000 description 3
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 208000001294 Nociceptive Pain Diseases 0.000 description 3
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 3
- 208000024571 Pick disease Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 206010037779 Radiculopathy Diseases 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 208000005065 achondrogenesis Diseases 0.000 description 3
- 208000008919 achondroplasia Diseases 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 206010002022 amyloidosis Diseases 0.000 description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 208000003295 carpal tunnel syndrome Diseases 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 201000001981 dermatomyositis Diseases 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- ZVHRTJHLSYKEAK-UHFFFAOYSA-N ethyl 2-[5-[4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxy-2-oxo-3,4-dihydroquinolin-1-yl]acetate Chemical compound CCOC(=O)CN1C(=O)CCC2=C1C=CC=C2OC1=NC(=CC(CN)=C1)C(F)(F)F ZVHRTJHLSYKEAK-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 230000001969 hypertrophic effect Effects 0.000 description 3
- 208000034783 hypoesthesia Diseases 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000007928 intraperitoneal injection Substances 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 229960004194 lidocaine Drugs 0.000 description 3
- 230000003137 locomotive effect Effects 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- 230000036244 malformation Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 210000000929 nociceptor Anatomy 0.000 description 3
- 231100000862 numbness Toxicity 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 208000019629 polyneuritis Diseases 0.000 description 3
- 229910001414 potassium ion Inorganic materials 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000004224 protection Effects 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 206010043207 temporal arteritis Diseases 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- KLIDCXVFHGNTTM-UHFFFAOYSA-N 2,6-dimethoxyphenol Chemical compound COC1=CC=CC(OC)=C1O KLIDCXVFHGNTTM-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- DOZRDZLFLOODMB-UHFFFAOYSA-N 3,5-di-tert-Butyl-4-hydroxybenzaldehyde Chemical compound CC(C)(C)C1=CC(C=O)=CC(C(C)(C)C)=C1O DOZRDZLFLOODMB-UHFFFAOYSA-N 0.000 description 2
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 2
- 125000006164 6-membered heteroaryl group Chemical group 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 208000007848 Alcoholism Diseases 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 206010002660 Anoxia Diseases 0.000 description 2
- 241000976983 Anoxia Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 2
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 description 2
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 2
- 208000004067 Flatfoot Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- RPTUSVTUFVMDQK-UHFFFAOYSA-N Hidralazin Chemical compound C1=CC=C2C(NN)=NN=CC2=C1 RPTUSVTUFVMDQK-UHFFFAOYSA-N 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000035154 Hyperesthesia Diseases 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 2
- LUWJPTVQOMUZLW-UHFFFAOYSA-N Luxol fast blue MBS Chemical compound [Cu++].Cc1ccccc1N\C(N)=N\c1ccccc1C.Cc1ccccc1N\C(N)=N\c1ccccc1C.OS(=O)(=O)c1cccc2c3nc(nc4nc([n-]c5[n-]c(nc6nc(n3)c3ccccc63)c3c(cccc53)S(O)(=O)=O)c3ccccc43)c12 LUWJPTVQOMUZLW-UHFFFAOYSA-N 0.000 description 2
- 206010025219 Lymphangioma Diseases 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 208000002720 Malnutrition Diseases 0.000 description 2
- 208000019695 Migraine disease Diseases 0.000 description 2
- 208000003452 Multiple Hereditary Exostoses Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 206010033892 Paraplegia Diseases 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 206010034277 Pemphigoid Diseases 0.000 description 2
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 2
- 206010037778 Radiculitis brachial Diseases 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- 102000001794 Sodium-Calcium Exchanger Human genes 0.000 description 2
- 108010040240 Sodium-Calcium Exchanger Proteins 0.000 description 2
- 201000010829 Spina bifida Diseases 0.000 description 2
- 208000006097 Spinal Dysraphism Diseases 0.000 description 2
- XNKLLVCARDGLGL-JGVFFNPUSA-N Stavudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1C=C[C@@H](CO)O1 XNKLLVCARDGLGL-JGVFFNPUSA-N 0.000 description 2
- 206010042265 Sturge-Weber Syndrome Diseases 0.000 description 2
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 201000007930 alcohol dependence Diseases 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 230000000202 analgesic effect Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000007953 anoxia Effects 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000006472 autoimmune response Effects 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 201000006431 brachial plexus neuropathy Diseases 0.000 description 2
- 208000029028 brain injury Diseases 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 2
- 229960000623 carbamazepine Drugs 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 208000001020 chondrodysplasia punctata Diseases 0.000 description 2
- 201000011228 clubfoot Diseases 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000009519 contusion Effects 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000003210 demyelinating effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical class C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- 239000002027 dichloromethane extract Substances 0.000 description 2
- 229960002656 didanosine Drugs 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 201000006847 hereditary sensory neuropathy Diseases 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 230000002390 hyperplastic effect Effects 0.000 description 2
- 206010021198 ichthyosis Diseases 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 2
- 238000002684 laminectomy Methods 0.000 description 2
- 229960005015 local anesthetics Drugs 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 206010025005 lumbar spinal stenosis Diseases 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- VLPIATFUUWWMKC-UHFFFAOYSA-N mexiletine Chemical compound CC(N)COC1=C(C)C=CC=C1C VLPIATFUUWWMKC-UHFFFAOYSA-N 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 210000002161 motor neuron Anatomy 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 201000010193 neural tube defect Diseases 0.000 description 2
- 108010091047 neurofilament protein H Proteins 0.000 description 2
- 230000004112 neuroprotection Effects 0.000 description 2
- 230000001473 noxious effect Effects 0.000 description 2
- 235000018343 nutrient deficiency Nutrition 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 210000001328 optic nerve Anatomy 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000001044 sensory neuron Anatomy 0.000 description 2
- 208000007056 sickle cell anemia Diseases 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000013222 sprague-dawley male rat Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000036262 stenosis Effects 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 150000003892 tartrate salts Chemical class 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 230000000542 thalamic effect Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- 206010044652 trigeminal neuralgia Diseases 0.000 description 2
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WZUVPPKBWHMQCE-XJKSGUPXSA-N (+)-haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-XJKSGUPXSA-N 0.000 description 1
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 description 1
- HEVMDQBCAHEHDY-UHFFFAOYSA-N (Dimethoxymethyl)benzene Chemical compound COC(OC)C1=CC=CC=C1 HEVMDQBCAHEHDY-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- 125000005918 1,2-dimethylbutyl group Chemical group 0.000 description 1
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical class CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical compound NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- HOLHYSJJBXSLMV-UHFFFAOYSA-N 2,6-dichlorophenol Chemical compound OC1=C(Cl)C=CC=C1Cl HOLHYSJJBXSLMV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- VKJCJJYNVIYVQR-UHFFFAOYSA-N 2-(3-bromopropyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCCBr)C(=O)C2=C1 VKJCJJYNVIYVQR-UHFFFAOYSA-N 0.000 description 1
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- HUHXLHLWASNVDB-UHFFFAOYSA-N 2-(oxan-2-yloxy)oxane Chemical class O1CCCCC1OC1OCCCC1 HUHXLHLWASNVDB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WTAULRQMVJWDIH-UHFFFAOYSA-N 2-[3-(2,6-dichlorophenoxy)propyl]isoindole-1,3-dione Chemical compound ClC1=CC=CC(Cl)=C1OCCCN1C(=O)C2=CC=CC=C2C1=O WTAULRQMVJWDIH-UHFFFAOYSA-N 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004336 3,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- LKTZAJBMAZVFHK-UHFFFAOYSA-N 3,5-di(propan-2-yl)-1h-pyridin-4-one Chemical compound CC(C)C1=CN=CC(C(C)C)=C1O LKTZAJBMAZVFHK-UHFFFAOYSA-N 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- CUGBBQWDGCXWNB-UHFFFAOYSA-N 4-(3-methyl-5-oxo-4h-pyrazol-1-yl)benzoic acid Chemical compound O=C1CC(C)=NN1C1=CC=C(C(O)=O)C=C1 CUGBBQWDGCXWNB-UHFFFAOYSA-N 0.000 description 1
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- JLLYLQLDYORLBB-UHFFFAOYSA-N 5-bromo-n-methylthiophene-2-sulfonamide Chemical compound CNS(=O)(=O)C1=CC=C(Br)S1 JLLYLQLDYORLBB-UHFFFAOYSA-N 0.000 description 1
- 125000006163 5-membered heteroaryl group Chemical group 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 206010049714 Abdominal migraine Diseases 0.000 description 1
- 208000021970 Abdominal wall defect Diseases 0.000 description 1
- 208000012260 Accidental injury Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 206010056508 Acquired epidermolysis bullosa Diseases 0.000 description 1
- 208000018025 Acquired peripheral neuropathy Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 208000005452 Acute intermittent porphyria Diseases 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 206010061588 Adrenal neoplasm Diseases 0.000 description 1
- 201000011452 Adrenoleukodystrophy Diseases 0.000 description 1
- 208000018126 Adrenomyeloneuropathy Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- ITPDYQOUSLNIHG-UHFFFAOYSA-N Amiodarone hydrochloride Chemical compound [Cl-].CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCC[NH+](CC)CC)C(I)=C1 ITPDYQOUSLNIHG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 208000003808 Amyloid Neuropathies Diseases 0.000 description 1
- 206010002176 Anal stenosis Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 241000790908 Arachnitis Species 0.000 description 1
- 208000008037 Arthrogryposis Diseases 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- XHVAWZZCDCWGBK-WYRLRVFGSA-M Aurothioglucose Chemical compound OC[C@H]1O[C@H](S[Au])[C@H](O)[C@@H](O)[C@@H]1O XHVAWZZCDCWGBK-WYRLRVFGSA-M 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 208000023514 Barrett esophagus Diseases 0.000 description 1
- 208000023665 Barrett oesophagus Diseases 0.000 description 1
- 208000009299 Benign Mucous Membrane Pemphigoid Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 1
- IFCYORNYOPSNOI-UHFFFAOYSA-N CC(C)(C)C1=CC(CNCCCOC2=C(Cl)C=CC=C2Cl)=CC(C(C)(C)C)=C1O Chemical compound CC(C)(C)C1=CC(CNCCCOC2=C(Cl)C=CC=C2Cl)=CC(C(C)(C)C)=C1O IFCYORNYOPSNOI-UHFFFAOYSA-N 0.000 description 1
- SEVNKLGHBAETAF-UHFFFAOYSA-N CC(C)(C)C1=CC(CNCCCOC2=CC=CC=C2)=CC(C(C)(C)C)=C1O Chemical compound CC(C)(C)C1=CC(CNCCCOC2=CC=CC=C2)=CC(C(C)(C)C)=C1O SEVNKLGHBAETAF-UHFFFAOYSA-N 0.000 description 1
- STHSXRBOOHTVIS-UHFFFAOYSA-N CC(C)(C)C1=CC(CNCCCOC2=CC=NC=C2)=CC(C(C)(C)C)=C1O Chemical compound CC(C)(C)C1=CC(CNCCCOC2=CC=NC=C2)=CC(C(C)(C)C)=C1O STHSXRBOOHTVIS-UHFFFAOYSA-N 0.000 description 1
- DUDJUOCINWHTMQ-UHFFFAOYSA-N CC(C)C1=CC=CC(C(C)C)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 Chemical compound CC(C)C1=CC=CC(C(C)C)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 DUDJUOCINWHTMQ-UHFFFAOYSA-N 0.000 description 1
- BLDCFJSQVXXXBM-UHFFFAOYSA-N CC(C)C1=CN=CC(C(C)C)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 Chemical compound CC(C)C1=CN=CC(C(C)C)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BLDCFJSQVXXXBM-UHFFFAOYSA-N 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- UQAXIHUZDRKWNO-UHFFFAOYSA-N CC1=CC=CC(C)=C1OCC(C)NCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 Chemical compound CC1=CC=CC(C)=C1OCC(C)NCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 UQAXIHUZDRKWNO-UHFFFAOYSA-N 0.000 description 1
- QGPDOQXNZPNNNT-UHFFFAOYSA-N CC1=CC=CC(C)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 Chemical compound CC1=CC=CC(C)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 QGPDOQXNZPNNNT-UHFFFAOYSA-N 0.000 description 1
- ZOODSEFEXNPAQP-UHFFFAOYSA-N CC1=CC=CC(C)=C1OCCCNCC1=CC=C(N2N=CC(C)C2=O)C=C1 Chemical compound CC1=CC=CC(C)=C1OCCCNCC1=CC=C(N2N=CC(C)C2=O)C=C1 ZOODSEFEXNPAQP-UHFFFAOYSA-N 0.000 description 1
- VSIAKGYXMFVUGV-UHFFFAOYSA-N COC1=CC=CC(OC)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 Chemical compound COC1=CC=CC(OC)=C1OCCCNCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSIAKGYXMFVUGV-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010064012 Central pain syndrome Diseases 0.000 description 1
- 208000018152 Cerebral disease Diseases 0.000 description 1
- 206010050217 Cervical radiculopathy Diseases 0.000 description 1
- 206010008313 Cervical spinal stenosis Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010057645 Chronic Inflammatory Demyelinating Polyradiculoneuropathy Diseases 0.000 description 1
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 description 1
- 208000004960 Congenital Ichthyosiform Erythroderma Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 208000001154 Dermoid Cyst Diseases 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 208000006926 Discoid Lupus Erythematosus Diseases 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- 201000002650 Ellis-van Creveld syndrome Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010014952 Eosinophilia myalgia syndrome Diseases 0.000 description 1
- 206010014954 Eosinophilic fasciitis Diseases 0.000 description 1
- 208000010305 Epidermal Cyst Diseases 0.000 description 1
- 206010053177 Epidermolysis Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000002100 Equinus Deformity Diseases 0.000 description 1
- 208000025127 Erdheim-Chester disease Diseases 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 208000001730 Familial dysautonomia Diseases 0.000 description 1
- 208000001308 Fasciculation Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010061159 Foot deformity Diseases 0.000 description 1
- 208000001914 Fragile X syndrome Diseases 0.000 description 1
- 208000024412 Friedreich ataxia Diseases 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 244000148687 Glycosmis pentaphylla Species 0.000 description 1
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Natural products C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 1
- 208000037551 Hemoglobin D disease Diseases 0.000 description 1
- 208000009336 Hemoglobin SC Disease Diseases 0.000 description 1
- 201000000917 Hereditary sensory and autonomic neuropathy type 2 Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001092197 Homo sapiens RNA binding protein fox-1 homolog 3 Proteins 0.000 description 1
- 101000635799 Homo sapiens Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 208000004044 Hypesthesia Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 208000032984 Intraoperative Complications Diseases 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 208000012528 Juvenile dermatomyositis Diseases 0.000 description 1
- 206010023506 Kyphoscoliosis Diseases 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000005230 Leg Ulcer Diseases 0.000 description 1
- 208000027414 Legg-Calve-Perthes disease Diseases 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010050219 Lumbar radiculopathy Diseases 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 206010025282 Lymphoedema Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 208000034819 Mobility Limitation Diseases 0.000 description 1
- 206010027910 Mononeuritis Diseases 0.000 description 1
- 206010027918 Mononeuropathy multiplex Diseases 0.000 description 1
- 206010027951 Mood swings Diseases 0.000 description 1
- 206010028095 Mucopolysaccharidosis IV Diseases 0.000 description 1
- 208000012192 Mucous membrane pemphigoid Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 208000033128 Multiple osteochondromas Diseases 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 206010028391 Musculoskeletal Pain Diseases 0.000 description 1
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 1
- 206010028665 Myxoedema Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 208000001738 Nervous System Trauma Diseases 0.000 description 1
- 206010029229 Neuralgic amyotrophy Diseases 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 208000005890 Neuroma Diseases 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000002774 Paraproteinemias Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000010886 Peripheral nerve injury Diseases 0.000 description 1
- 206010034701 Peroneal nerve palsy Diseases 0.000 description 1
- 208000004983 Phantom Limb Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 241000097929 Porphyria Species 0.000 description 1
- 206010036182 Porphyria acute Diseases 0.000 description 1
- 208000033141 Porphyria variegata Diseases 0.000 description 1
- 208000010642 Porphyrias Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- QOSMNYMQXIVWKY-UHFFFAOYSA-N Propyl levulinate Chemical compound CCCOC(=O)CCC(C)=O QOSMNYMQXIVWKY-UHFFFAOYSA-N 0.000 description 1
- 102100029028 Protoporphyrinogen oxidase Human genes 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010037714 Quadriplegia Diseases 0.000 description 1
- 102100035530 RNA binding protein fox-1 homolog 3 Human genes 0.000 description 1
- 206010037751 Radial nerve palsy Diseases 0.000 description 1
- 201000001947 Reflex Sympathetic Dystrophy Diseases 0.000 description 1
- 208000007400 Relapsing-Remitting Multiple Sclerosis Diseases 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 201000001638 Riley-Day syndrome Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 244000235659 Rubus idaeus Species 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 102100030852 Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Human genes 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 208000008765 Sciatica Diseases 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 208000000859 Sickle cell trait Diseases 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 208000010261 Small Fiber Neuropathy Diseases 0.000 description 1
- 206010073928 Small fibre neuropathy Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 206010041549 Spinal cord compression Diseases 0.000 description 1
- 206010041603 Spinal vessel congenital anomaly Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000032509 Stevens-Johnson syndrome/toxic epidermal necrolysis spectrum Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 201000010814 Synostosis Diseases 0.000 description 1
- 206010042928 Syringomyelia Diseases 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 208000024337 Talipes equinovarus Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 206010066334 Tethered cord syndrome Diseases 0.000 description 1
- 206010043395 Thalassaemia sickle cell Diseases 0.000 description 1
- RMMPZDDLWLALLJ-UHFFFAOYSA-N Thermophillin Chemical compound COC1=CC(=O)C(OC)=CC1=O RMMPZDDLWLALLJ-UHFFFAOYSA-N 0.000 description 1
- 206010044074 Torticollis Diseases 0.000 description 1
- 206010044223 Toxic epidermal necrolysis Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 241001227561 Valgus Species 0.000 description 1
- 201000011053 Variegate Porphyria Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- FVECELJHCSPHKY-UHFFFAOYSA-N Veratridine Natural products C1=C(OC)C(OC)=CC=C1C(=O)OC1C2(O)OC34CC5(O)C(CN6C(CCC(C)C6)C6(C)O)C6(O)C(O)CC5(O)C4CCC2C3(C)CC1 FVECELJHCSPHKY-UHFFFAOYSA-N 0.000 description 1
- 206010047601 Vitamin B1 deficiency Diseases 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 208000024066 X-linked chondrodysplasia punctata Diseases 0.000 description 1
- 208000002522 X-linked chondrodysplasia punctata 1 Diseases 0.000 description 1
- 208000032810 X-linked dominant chondrodysplasia punctata Diseases 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- ZHAFUINZIZIXFC-UHFFFAOYSA-N [9-(dimethylamino)-10-methylbenzo[a]phenoxazin-5-ylidene]azanium;chloride Chemical compound [Cl-].O1C2=CC(=[NH2+])C3=CC=CC=C3C2=NC2=C1C=C(N(C)C)C(C)=C2 ZHAFUINZIZIXFC-UHFFFAOYSA-N 0.000 description 1
- VEUACKUBDLVUAC-UHFFFAOYSA-N [Na].[Ca] Chemical group [Na].[Ca] VEUACKUBDLVUAC-UHFFFAOYSA-N 0.000 description 1
- 210000003489 abdominal muscle Anatomy 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000003869 acetamides Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 208000027137 acute motor axonal neuropathy Diseases 0.000 description 1
- 125000005354 acylalkyl group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 208000030597 adult Refsum disease Diseases 0.000 description 1
- 201000010411 adult dermatomyositis Diseases 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 229960005260 amiodarone Drugs 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000002266 amputation Methods 0.000 description 1
- 238000001949 anaesthesia Methods 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 206010003230 arteritis Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 238000011914 asymmetric synthesis Methods 0.000 description 1
- 208000018028 athetoid cerebral palsy Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 229960001799 aurothioglucose Drugs 0.000 description 1
- 230000006470 autoimmune attack Effects 0.000 description 1
- 230000007844 axonal damage Effects 0.000 description 1
- 230000007845 axonopathy Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 229940092782 bentonite Drugs 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 150000003939 benzylamines Chemical class 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 208000002894 beriberi Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- MCQRPQCQMGVWIQ-UHFFFAOYSA-N boron;methylsulfanylmethane Chemical compound [B].CSC MCQRPQCQMGVWIQ-UHFFFAOYSA-N 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 208000024668 brittle bone disease Diseases 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 201000002006 bullous congenital ichthyosiform erythroderma Diseases 0.000 description 1
- 208000000594 bullous pemphigoid Diseases 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000005569 butenylene group Chemical group 0.000 description 1
- MSZJEPVVQWJCIF-UHFFFAOYSA-N butylazanide Chemical compound CCCC[NH-] MSZJEPVVQWJCIF-UHFFFAOYSA-N 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005622 butynylene group Chemical group 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000022159 cartilage development Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 206010008129 cerebral palsy Diseases 0.000 description 1
- 201000002866 cervical dystonia Diseases 0.000 description 1
- 229940081733 cetearyl alcohol Drugs 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 201000010415 childhood type dermatomyositis Diseases 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 201000005795 chronic inflammatory demyelinating polyneuritis Diseases 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 208000007118 chronic progressive multiple sclerosis Diseases 0.000 description 1
- 201000010002 cicatricial pemphigoid Diseases 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 1
- 201000008230 cutaneous porphyria Diseases 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 206010061811 demyelinating polyneuropathy Diseases 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 231100000223 dermal penetration Toxicity 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 description 1
- 229940008406 diethyl sulfate Drugs 0.000 description 1
- 201000001727 diffuse idiopathic skeletal hyperostosis Diseases 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 150000002012 dioxanes Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229960002563 disulfiram Drugs 0.000 description 1
- 150000004887 dithianes Chemical class 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 208000017338 epidermoid cysts Diseases 0.000 description 1
- 201000011114 epidermolysis bullosa acquisita Diseases 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 125000006232 ethoxy propyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LBAQSKZHMLAFHH-UHFFFAOYSA-N ethoxyethane;hydron;chloride Chemical compound Cl.CCOCC LBAQSKZHMLAFHH-UHFFFAOYSA-N 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 231100000573 exposure to toxins Toxicity 0.000 description 1
- 208000034672 familial lumbar stenosis Diseases 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 206010016629 fibroma Diseases 0.000 description 1
- 206010049444 fibromatosis Diseases 0.000 description 1
- 201000010103 fibrous dysplasia Diseases 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000004967 formylalkyl group Chemical group 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- DKFAAPPUYWQKKF-GOEBONIOSA-N gacyclidine Chemical compound C[C@H]1CCCC[C@@]1(C=1SC=CC=1)N1CCCCC1 DKFAAPPUYWQKKF-GOEBONIOSA-N 0.000 description 1
- 229950003638 gacyclidine Drugs 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000006589 gland dysfunction Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- BCQZXOMGPXTTIC-UHFFFAOYSA-N halothane Chemical compound FC(F)(F)C(Cl)Br BCQZXOMGPXTTIC-UHFFFAOYSA-N 0.000 description 1
- 229960003132 halothane Drugs 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 208000010903 hereditary multiple osteochondromas Diseases 0.000 description 1
- 201000000965 hereditary sensory and autonomic neuropathy type 1 Diseases 0.000 description 1
- UBHWBODXJBSFLH-UHFFFAOYSA-N hexadecan-1-ol;octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO.CCCCCCCCCCCCCCCCCCO UBHWBODXJBSFLH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960002474 hydralazine Drugs 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N hydroxymaleic acid group Chemical group O/C(/C(=O)O)=C/C(=O)O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000017326 inherited epidermolysis bullosa Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000005990 isobenzothienyl group Chemical group 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 208000018883 loss of balance Diseases 0.000 description 1
- 208000012866 low blood pressure Diseases 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004705 lumbosacral region Anatomy 0.000 description 1
- 208000026662 macrocystic lymphatic malformation Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- MGJXBDMLVWIYOQ-UHFFFAOYSA-N methylazanide Chemical compound [NH-]C MGJXBDMLVWIYOQ-UHFFFAOYSA-N 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- 229960001070 mexiletine hydrochloride Drugs 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 230000000897 modulatory effect Effects 0.000 description 1
- 201000002003 mononeuritis multiplex Diseases 0.000 description 1
- 208000013734 mononeuritis simplex Diseases 0.000 description 1
- 208000008084 monostotic fibrous dysplasia Diseases 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 208000010978 mucopolysaccharidosis type 4 Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000003786 myxedema Diseases 0.000 description 1
- AFOINIYJDLDVEY-UHFFFAOYSA-N n-(2,6-dichlorophenoxy)propan-1-amine Chemical compound CCCNOC1=C(Cl)C=CC=C1Cl AFOINIYJDLDVEY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 201000004931 neurofibromatosis Diseases 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000003959 neuroinflammation Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000007658 neurological function Effects 0.000 description 1
- 230000007827 neuronopathy Effects 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- NXFQHRVNIOXGAQ-YCRREMRBSA-N nitrofurantoin Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)NC(=O)C1 NXFQHRVNIOXGAQ-YCRREMRBSA-N 0.000 description 1
- 229960000564 nitrofurantoin Drugs 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003040 nociceptive effect Effects 0.000 description 1
- 108091008700 nociceptors Proteins 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000004768 organ dysfunction Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 150000002917 oxazolidines Chemical class 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000008052 pain pathway Effects 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N pentanoic acid group Chemical class C(CCCC)(=O)O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 201000011197 peroneal nerve paralysis Diseases 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 125000005633 phthalidyl group Chemical group 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 208000001061 polyostotic fibrous dysplasia Diseases 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 208000015768 polyposis Diseases 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 208000000813 polyradiculoneuropathy Diseases 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 208000017692 primary erythermalgia Diseases 0.000 description 1
- 206010063401 primary progressive multiple sclerosis Diseases 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 125000006410 propenylene group Chemical group 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- OLBCVFGFOZPWHH-UHFFFAOYSA-N propofol Chemical compound CC(C)C1=CC=CC(C(C)C)=C1O OLBCVFGFOZPWHH-UHFFFAOYSA-N 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 210000002979 radial nerve Anatomy 0.000 description 1
- 208000009873 radial neuropathy Diseases 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002287 radioligand Substances 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000020341 sensory perception of pain Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 208000026473 slurred speech Diseases 0.000 description 1
- 150000003385 sodium Chemical class 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 229960003885 sodium benzoate Drugs 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 208000023531 spina bifida aperta Diseases 0.000 description 1
- 208000014485 spinal arachnoiditis Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229960001203 stavudine Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- MHXBHWLGRWOABW-UHFFFAOYSA-N tetradecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC MHXBHWLGRWOABW-UHFFFAOYSA-N 0.000 description 1
- AUZONCFQVSMFAP-UHFFFAOYSA-N tetraethylthiuram disulfide Natural products CCN(CC)C(=S)SSC(=S)N(CC)CC AUZONCFQVSMFAP-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical class OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 210000000658 ulnar nerve Anatomy 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000003156 vasculitic effect Effects 0.000 description 1
- FVECELJHCSPHKY-JLSHOZRYSA-N veratridine Chemical compound C1=C(OC)C(OC)=CC=C1C(=O)O[C@@H]1[C@@]2(O)O[C@]34C[C@@]5(O)[C@H](CN6[C@@H](CC[C@H](C)C6)[C@@]6(C)O)[C@]6(O)[C@@H](O)C[C@@]5(O)[C@@H]4CC[C@H]2[C@]3(C)CC1 FVECELJHCSPHKY-JLSHOZRYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 229960000523 zalcitabine Drugs 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/06—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
- C07C217/14—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring
- C07C217/16—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring the six-membered aromatic ring or condensed ring system containing that ring not being further substituted
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/54—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
- C07C217/56—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
- C07C217/58—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/06—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
- C07C217/14—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring
- C07C217/18—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring the six-membered aromatic ring or condensed ring system containing that ring being further substituted
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/06—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
- C07C217/14—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring
- C07C217/18—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring the six-membered aromatic ring or condensed ring system containing that ring being further substituted
- C07C217/20—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring the six-membered aromatic ring or condensed ring system containing that ring being further substituted by halogen atoms, by trihalomethyl, nitro or nitroso groups, or by singly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/68—One oxygen atom attached in position 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/18—One oxygen or sulfur atom
- C07D231/20—One oxygen atom attached in position 3 or 5
- C07D231/22—One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
Definitions
- the present invention relates generally to the field of therapeutic treatment and compounds having utility therefor, in particular the therapy or management of conditions associated with excessive, unwanted or undesirable sodium ion passage through cellular membranes via voltage-gated sodium channels.
- the invention is concerned with the treatment of neuropathic pain.
- the invention contemplates to aryloxy-substituted amines, as sodium channel blockers or modulators.
- the invention also relates to compounds which may advantageously have dual sodium channel blocker/modulating and antioxidative (free-radical scavenging) effects. Methods for their manufacture and compositions containing the compounds are also contemplated.
- the electrical potential difference across a neuronal cell membrane is the result of an inequitable distribution of ions on either side of the membrane.
- a neuron In its resting state, a neuron has a high internal store of potassium ions (K + ) with sodium ions (Na + ) accumulated on the outside of the membrane. In such a state, the flow of ions across a membrane is such that their movement causes no net change in charge. However, a perturbation of this resting flow results in an alteration of the membrane's potential.
- Sodium channels are aqueous pores in the cellular membrane which regulate and provide a selective passage for sodium ions between the internal and external environments of a cell.
- Voltage-gated sodium channels ie. those opened by changes in membrane potential, are largely responsible for the depolarization of the cell. When closed, they help maintain the neuron's resting potential, and when open, allow sodium ions to flow down the electrochemical gradient and depolarize the cell.
- the voltage-gated sodium channel is formed by proteins embedded within the cell's membrane and has three known subunits: a large glycoprotein called the ⁇ -subunit, which probably forms the channel's pore, and two smaller polypeptides called ⁇ 1 and ⁇ 2 which regulate the function of the ⁇ -subunit.
- ⁇ - and ⁇ -Subunits may also exist to regulate the ⁇ -subunit.
- the ⁇ -subunit has four repeats, labelled I through IV, of the same 150 amino acid sequence. Each repeat contains six membrane-spanning regions labelled S1 through S6.
- S1 through S6 membrane-spanning regions labelled S1 through S6.
- S4 region thought to be part of the channel that acts as its voltage sensor, has a positive amino acid at every third position, with hydrophobic residues between these. It is thought that when stimulated by a change in transmembrane voltage, this subunit moves from within the pore toward the extracellular side of the cell, allowing the channel to become permeable to ions which would otherwise have been blocked by the subunit's positive charges.
- Voltage-gated sodium channels can have three states: resting (closed), activated (open), and inactivated (closed). Channels in the resting state are blocked on their intracellular side by an “activation gate” which is removed in response to stimulation that opens the channel. The ability to inactivate is thought to be due to a tethered plug (formed by domains III and IV of the alpha subunit), called an inactivation gate, that blocks the inside of the channel shortly after it has been activated. During an action potential the channel remains inactivated for a few milliseconds after the neuron is finished depolarizing. The inactivation is removed when the membrane potential of the neuron becomes negative after the falling phase of the action potential. This allows the channels to be activated again during the next action potential.
- the inner pore of sodium channels contains a selectivity filter made of negatively charged amino acid residues (aspartic acid and glutamic acid), which attract the positive Na + ion and keep out negatively charged ions such as chloride.
- the mouth of the pore is some 1.2 nm wide, narrowing to about 0.3 by 0.5 nm wide, which is just large enough to allow a single Na + ion with a water molecule associated to pass through whilst being small enough to exclude larger K + ions.
- Differently sized ions also cannot interact as well with the negatively charged glutamic acid residues that line the pore.
- Voltage-gated sodium channels are further characterised with regard to their voltage dependence and kinetic behaviour.
- Opening of Na + channels in response to an electrical stimulus results in a rapid influx of sodium ions. This causes a small localised disturbance in the membrane potential which open voltage-gated Na + channels in adjacent areas of the membrane, where in turn, the membrane's electrical potential changes as ions flow across. After the excitatory stimulus, the Na + channels close and the membrane potential is restored to its resting value by an outflow of potassium ions.
- a self-propagating wave of depolarization down the axon of a neuron is known as an action potential.
- the action potential may electrically stimulate the membrane of an adjacent cell or release neurotransmitters into the synaptic cleft, which chemically open gated channels in the adjacent cell membrane. Voltage-gated sodium channels thus play a prominent and significant role in action potentials and, ultimately, the electrical activity of the central and peripheral nervous systems.
- neuronal diseases and conditions a number of neuronal diseases and conditions.
- the neuropathy can be classified as a central or peripheral neuropathy.
- Central neuropathies arise from spinal cord, brainstem, thalamic, and cerebral damage or disease, while peripheral neuropathies arise from damage or disease of peripheral nerves.
- the peripheral nervous system transmits information from the brain and spinal cord to every other part of the body. More than 100 types of peripheral neuropathy have been identified, each with its own characteristic set of symptoms, pattern of development, and prognosis. Impaired function and symptoms depend on the type of nerves—motor, sensory, or autonomic—that are damaged. Some people may experience temporary numbness, tingling, and pricking sensations, sensitivity to touch, or muscle weakness. Others may suffer more extreme symptoms, including burning pain (especially at night), muscle wasting, paralysis, or organ or gland dysfunction. Peripheral neuropathy may be either inherited or acquired. Causes of acquired peripheral neuropathy include systemic diseases (e.g. diabetes), physical injury (trauma) to a nerve, tumors, toxins, autoimmune responses, viral and bacterial infections, nutritional deficiencies, alcoholism, and vascular and metabolic disorders. Inherited forms of peripheral neuropathy are caused by genetic mutations.
- systemic diseases e.g. diabetes
- traumaa to a nerve
- tumors e.g
- Central neuropathy is the result of damage to the central nervous system, i.e. brain and spinal cord. As with peripheral neuropathies, the causes are varied and include physical injury, disease and autoimmune responses.
- MS multiple sclerosis
- Symptoms of MS are unpredictable and vary greatly from person to person and from time to time in the same person. They may include: fatigue, impaired vision, loss of balance and muscle coordination, slurred speech, tremors, stiffness, bladder and bowel problems, difficulty walking, short-term memory loss, mood swings and, in severe cases, partial or complete paralysis.
- a significant contributor to non-remitting deficits in demyelinating neuroinflammatory diseases such as MS and the related Guillain-Barre's syndrome (GBS), and their respective animal models, experimental allergic encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN), is axonal loss.
- MS demyelinating neuroinflammatory diseases
- GBS Guillain-Barre's syndrome
- EAE experimental allergic encephalomyelitis
- EAN experimental autoimmune neuritis
- SCI spinal cord injury
- SCI Besides a loss of sensation or motor functioning, individuals with SCI also experience other changes. For example, they may experience dysfunction of the bowel and bladder. Very high injuries (C-1, C-2) can result in a loss of many involuntary functions including the ability to breathe, necessitating breathing aids such as mechanical ventilators or diaphragmatic pacemakers. Other effects of SCI may include low blood pressure, inability to regulate blood pressure effectively, reduced control of body temperature, inability to sweat below the level of injury, and chronic pain.
- TTX tetrodotoxin
- SCI contusion spinal cord injury
- Pain can be classed as acute (or nociceptive) or neuropathic.
- Nociceptive pain is mediated by thermal, mechanical, electrical or chemical stimulation of pain receptors, known as nociceptors, which are located in skin, bone, connective tissue, muscle and viscera. Its purpose is to serve as a protective biological warning of potential ongoing tissue damage and is experienced in and around the point of injury. It usually responds to opioid and/or Non Steroidal Anti-Inflammatory (NSAID) treatment. In the main, as healing progresses, the pain and inflammation associated with an injury abates and resolves.
- NSAID Non Steroidal Anti-Inflammatory
- neuropathic pain has been variously described as pain that results from a pathologic change in nerves or pain initiated or caused by a primary lesion or dysfunction in the nervous system (Mersky and Bogduk, 1994; De Andres and Garcia-Ribas, 2003) and can be described as burning, electric, tingling and shooting in nature. Neuropathic pain is associated with a variety of disease states and presents in the clinic with a wide range of symptoms. (Woolf and Mannion, 1999).
- the damage to the nerves may be caused by accidental or surgical injury, by metabolic disturbances such as diabetes or vitamin B12 or other nutrient deficiency, by ischaemia, by radiation, by autoimmune attack, by cytotoxic drugs used in cancer chemotherapy, by alcohol, by infections, especially viral infections, particularly with the herpes virus, by tumours, by degenerative diseases, or by unknown factors such as may be operative in trigeminal and other neuralgias.
- Neuropathic pain does not require specific pain receptor stimulation although such stimulation can add to the intensity of the pain sensation (Baron, 2003).
- Neuropathic pain is often characterised by chronic allodynia and/or hyperalgesia. Allodynia is pain resulting from a non-noxious stimulus, ie a stimulus that does not ordinarily cause a painful response, eg a light touch. Hyperalgesia, on the other hand, is an increased sensitivity to noxious stimuli (injury), ie a greater than normal pain response, and can be further defined as primary, occurring immediately in the vicinity of an injury, or secondary, occurring in undamaged area remote from an injury. Neuropathic pain is usually unresponsive to treatments used for nociceptive pain.
- neuropathic pain affects over 26 million people worldwide (Butera 2007) and despite its common occurrence, neuropathic pain remains one of the most poorly understood and untreated conditions in primary care and can have a debilitating effect on almost all aspects of a sufferer's life. It has been associated with depression, anxiety, loss of independence and can impact on an individual's relationships and ability to work. The annual cost of neuropathic pain in the United States alone, including medical expenses, lost income and lost productivity is estimated to be $100 billion. The condition is particularly prevalent amongst the elderly and is experienced by a significant proportion of patients suffering from other disease states such as diabetes and advanced cancer.
- Sodium channel blockers have been reported as useful agents in the treatment of neuropathic pain (Tanelian et al, 1995; Kyle and Ilyin, 2007). There is evidence that sodium channel blockers selectively suppress etopic neural firing in injured (unmyelinated) nerves, which have an accumulation of sodium channels, and studies carried out on known blockers, such as carbamazepine, phenytoin, lidocaine and mexiletine, have demonstrated utility in the treatment of various types of neuropathic pain. Consistent with this, is the demonstration that sodium channels accumulate in the peripheral nerve sites of axonal injury (Devor et al, 1993) and also in second order sensory neurons in pain pathways in the spinal cord (Hams et al, 2004 b). Alterations in the either the level of expression or distribution of sodium channels within an injured nerve, therefore, have a major influence on the pathophysiology of pain associated with this type of trauma.
- aryloxy amine compounds specifically bearing a disubstituted phenol moiety, exhibit sodium channel blocking or modulating activity.
- this activity is substantially improved in comparison to a known aryloxy amine compound without the disubstituted phenol group (mexiletine), or compared to an aryloxy amine compounds which bears a different anti-oxdative group.
- the present invention provides a compound of Formula (I):
- R 1 and R 2 are independently selected from hydrogen, C 1-6 alkyl and C 3-6 cycloalkyl; or a pharmaceutically acceptable salt thereof.
- R 1 and R 2 are not both hydrogen.
- R 1 and R 2 are independently selected from C 1-6 alkyl and C 3-6 cycloalkyl.
- one of R 1 and R 2 is hydrogen and the other is C 1-6 alkyl or C 3-6 cycloalkyl.
- the invention provides a composition comprising a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof together with a pharmaceutically acceptable additive.
- Yet another aspect of the invention relates to a method for preventing sodium ion influx into a cell by blocking or modulating a sodium channel, said method comprising contacting said sodium channel with a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Another aspect of the invention relates to a method for treating a condition in which excessive or undesirable sodium channel activity is implicated, in a subject in need thereof, comprising administering to said subject a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof.
- one embodiment of the invention provides a method for treating a neuroinflammatory disease to a subject in need thereof comprising administering to said subject a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof.
- a further embodiment of the invention provides a method for treating neuropathic pain in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Yet another aspect provides a method for the treatment of spinal cord injury in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- a still further aspect of the invention provides a method for treating axonal loss, degeneration or damage in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Yet another aspect of the invention relates to a method for treating a demyelinating disease in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Yet another aspect of the invention relates to a method for treating a central or peripheral neuropathy in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- L 1 and L 2 are independently substituted or unsubstituted and may be the same or different.
- L 1 and L 2 may be the same or different and are selected from substituted C 1-4 alkylene and unsubstituted C 1-4 alkylene.
- A is an optionally substituted phenyl or 6-membered heteroaryl group. In other embodiments of the invention A is an optionally substituted cyclopentadi-2,4-en-1-yl or 5-membered heteroaryl group.
- R 1 and R 2 are independently straight, branched or cyclo-C 3-6 alkyl. In further examples thereof, R 1 and R 2 are branched or cycloalkyl. In yet further examples, R 1 and R 2 are the same. In one particular example, R 1 and R 2 are both t-butyl. In another example, R 1 is hydrogen and R 2 is branched or cyclo-C 3-6 alkyl, such as t-butyl.
- FIG. 1 graphically depicts the number of paw-licking events in a rat formalin paw model.
- FIG. 2 graphically depicts the individual points and the mean (horizontal line) of the cumulative number of paw-licking events observed in 3 ⁇ 1 minute observation periods in a rat formalin paw model.
- FIG. 3 graphically depicts the effects of mexiletine and Compound 1 on functional recovery following SCI as measured by BBB open-field locomotor.
- FIG. 4 graphically depicts the effects of mexiletine and Compound 1 on foot misplacement in the horizontal ladder test following SCI.
- FIG. 5 graphically depicts the effects of mexiletine and Compound 1 on ledge use following SCI.
- FIG. 6 graphically depicts the effects of mexiletine and Compound 1 on volume of damage (as a whole of both white and gray matter) following SCI.
- FIG. 7 graphically depicts the effects of mexiletine and Compound 1 on plasma pNF-H levels (a marker of axonal damage) in SCI.
- alkyl or “alk”, used either alone or in compound words denotes straight chain, or branched alkyl, preferably C 1-20 alkyl, e.g. C 1-10 or C 1-6 .
- straight chain and branched alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, 1,2-dimethylpropyl, 1,1-dimethyl-propyl, hexyl, 4-methylpentyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1,2,2,-trimethylpropyl, 1,1,2-trimethylpropyl, heptyl, 5-methylhexy
- alkyl group is referred to generally as “propyl”, butyl” etc, it will be understood that this can refer to any of straight or branched isomers where appropriate.
- An alkyl group may be optionally substituted by one or more optional substituents as herein defined.
- alkenyl denotes groups formed from straight chain or branched hydrocarbon residues containing at least one carbon to carbon double bond including ethylenically mono-, di- or poly-unsaturated alkyl groups as previously defined, preferably C 2-20 alkenyl (e.g. C 2-10 or C 2-6 ).
- alkenyl examples include vinyl, allyl, 1-methylvinyl, butenyl, iso-butenyl, 3-methyl-2-butenyl, 1-pentenyl, 1-hexenyl, 3-hexenyl, 1-heptenyl, 3-heptenyl, 1-octenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 3-decenyl, 1,3-butadienyl, 1-4,pentadienyl, 1,3-hexadienyl and 1,4-hexadienyl.
- An alkenyl group may be optionally substituted by one or more optional substituents as herein defined.
- alkynyl denotes groups formed from straight chain or branched hydrocarbon residues containing at least one carbon-carbon triple bond including ethynically mono-, di- or poly-unsaturated alkyl groups as previously defined. Unless the number of carbon atoms is specified the term preferably refers to C 2-20 alkynyl (e.g. C 2-10 or C 2-6 ). Examples include ethynyl, 1-propynyl, 2-propynyl, and butynyl isomers, and pentynyl isomers. An alkynyl group may be optionally substituted by one or more optional substituents as herein defined.
- alkylene denotes a divalent form of an alkyl, alkenyl or alkynyl group and may be substituted or unsubstituted.
- C 1-4 alkylene refers to straight or, where appropriate, branched, methylene, ethylene, propylene and butylene.
- C 1-4 Alkylene refers to ethenylene, propenylene and butenylene, which may be straight, or as appropriate, branched.
- C 1-4 Alkynylene refers to ethynylene, propynylene and butynylene, which may be straight, or as appropriate, branched.
- halogen denotes fluorine, chlorine, bromine or iodine (fluoro, chloro, bromo or iodo).
- heteroaryl includes any of monocyclic or bicyclic, hydrocarbon residues, wherein one or more carbon atoms are replaced by a heteroatom so as to provide an aromatic residue.
- Monocyclic 5-6-membered heteroaryl refers to a single heteroaryl ring having 5-6 ring members.
- Bicyclic 9-10-membered heteroaryl refers to bicyclic heteroaryl ring systems, which may be fused, having a total of 9-10 ring members.
- Suitable heteroatoms include, O, N, S, P and Se, particularly O, N and S. Where two or more carbon atoms are replaced, this may be by two or more of the same heteroatom or by different heteroatoms.
- A when A is a heteroaryl group, it is attached to the adjacent oxygen atom via a carbon atom.
- a heteroaryl group may be optionally substituted by one or more optional substituents as defined herein.
- Suitable examples of monocyclic 5-6-membered heteroaryl groups may include pyrrolyl (2- or 3-), furanyl (2- or 3-), thienyl (2- or 3-), pyrazolyl (3-, 4-, or 5-), imidazolyl (4-, or 5-), oxazolyl (2-, 4-, or 5-), isoxazolyl (3-, 4- or 5-), thiazolyl (4-), isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,3-oxadiazolyl, oxatriazolyl, furazanyl, 1,3,4-thiadiazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl, (1,2,3-, 1,3,5- or 1,2,4-).
- a 5-6-membered heteroaryl group may be attached via any ring carbon atom thereof,
- bicyclic 9-10 membered heteroaryl groups may include indolyl, isoinolyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, quinazolinyl, cinnolinyl, quinolyl, isoquinolyl, quinolinyl, isoquinolinyl, indazolyl, benzimidazolyl, benzthiazolyl, purinyl, quinoxalinyl, 1,8-napthpyridinyl, phthalazinyl, pteridinyl.
- Bicyclic groups, including naphthyl are, in certain embodiments, attached such that the molecule is essentially linear, at a 2- or 3- (or corresponding) position.
- A is optionally substituted phenyl or an optionally substituted 6-membered heteroaryl group, such as optionally substituted pyridyl (e g. optionally substituted 4-pyridyl).
- A is substituted with one, two or three substituents. In further examples, A is substituted at one or both of the positions ortho- to the atom bonded to the —O— atom.
- L 1 and L 2 are independently selected from methylene, ethylene, propylene and butylene. Each linker group, L 1 and L 2 , may be unsubstituted or independently substituted by one or more, same or different, substituents. Suitable substituents for L 1 and L 2 include C 1-6 alkyl, such as methyl, ethyl and propyl (n- or i-). In certain examples, L 1 is unsubstituted. In further examples L 1 is unsubstituted ethylene or propylene, particularly unsubstituted propylene, and L 2 is unsubstituted methylene.
- R is hydrogen. In other embodiments, R is an alkyl group such as methyl, ethyl, or propyl (n- or i-).
- R 1 and R 2 are selected from C 3-6 alkyl, which may be straight chain or branched, such as isopropyl, sec-butyl or t-butyl, or C 3-6 cycloalkyl, for example, cyclopropyl or cyclobutyl. In particular embodiments of the invention, R 1 and R 2 are both t-butyl.
- group A may be optionally substituted, i.e., they may be unsubstituted or substituted by one or more, same or different substituents.
- substituents include those selected from: alkyl, (e.g. C 1-6 alkyl such as methyl, ethyl, propyl, butyl), cycloalkyl (e.g. C 3-6 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl), hydroxyalkyl (e.g.
- hydroxyC 1-6 alkyl such as hydroxymethyl, hydroxyethyl, hydroxypropyl
- alkoxyalkyl e.g. C 1-6 alkoxyC 1-6 alkyl, such as methoxymethyl, methoxyethyl, methoxypropyl, ethoxymethyl, ethoxyethyl, ethoxypropyl
- alkoxy e.g. C 1-6 alkoxy, such as methoxy, ethoxy, propoxy, butoxy
- alkoxyalkoxy e.g.
- C 1-6 alkocyC 1-6 alkoxy such as methoxymethoxy, methoxyethoxy, methoxypropoxy, ethoxymethoxy, ethoxyethoxy, ethoxypropoxy, propoxymethoxy, propoxyethoxy, propoxypropoxy) cycloalkoxy (e.g. cyclopropoxy, cyclobutoxy, cyclopentoxyl, cyclohexyloxy), halo, haloalkyl(e.g. haloC 1-6 alkyl, such as chloromethyl, difluoromethyl, trifluoromethyl, trichloromethyl, tribromomethyl), haloalkoxy (e.g.
- haloC 1-6 alkoxy hydroxy, thio (—SH), sulfonyl, sulfonamido, phenyl (which itself may be further substituted e.g., by one or more C 1-6 alkyl, halo, hydroxy, hydroxyC 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkoxyC 1-6 alkyl, C 1-6 alkoxyC 1-6 alkoxy, halo C 1-6 alkyl, halo C 1-6 alkoxy, cyano, nitro, OC(O)C 1-6 alkyl, NH 2 , NHC 1-6 alkyl, NHC(O)C 1-6 alkyl and NC 1-6 alkylC 1-6 alkyl), benzyl (wherein benzyl itself may be further substituted e.g., by one or more of C 1-6 alkyl, halo, hydroxy, hydroxyC 1-6 alkyl, C 1-6 alkoxy, C 1-6 alk
- —NHC 1-6 alkyl such as methylamino, ethylamino, propylamino etc
- dialkylamino e.g. —NH(C 1-6 alkyl) 2 , such as dimethylamino, diethylamino, dipropylamino
- acylamino e.g. —NHC(O)C 1-6 alkyl, such as —NHC(O)CH 3
- phenylamino i.e.
- phenyl wherein phenyl itself may be further substituted e.g., by one or more of C 1-6 alkyl, halo, hydroxy, hydroxyC 1-6 alkyl, hydroxyC 1-6 alkoxy C 1-6 alkoxyC 1-6 alkyl, C 1-6 alkoxyC 1-6 alkoxy, haloC 1-6 alkyl, haloC 1-6 alkoxy, cyano, nitro, OC(O)C 1-6 alkyl, NH 2 , NHC 1-6 alkyl, NHC(O)C 1-6 alkyl and NC 1-6 alkylC 1-6 alkyl), nitro, cyano, formyl, —C(O)-alkyl (e.g.
- —C(O)C 1-6 alkyl such as acetyl
- O—C(O)-alkyl e.g. —OC(O)C 1-6 alkyl, such as acetyloxy
- benzoyl wherein benzyl itself may be further substituted e.g., by one or more of C 1-6 alkyl, halo, hydroxy, hydroxyC 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkoxyC 1-6 alkyl, C 1-6 alkoxyC 1-6 alkoxy, haloC 1-6 alkyl, halo C 1-6 alkoxy, cyano, nitro, OC(O)C 1-6 alkyl, NH 2 , NHC 1-6 alkyl, NHC(O)C 1-6 alkyl and NC 1-6 alkylC 1-6 alkyl), benzoyloxy (wherein benzyl itself may be further substituted e.g., by one or more of C 1-6 alkyl
- CO 2 C 1-6 alkyl such as methyl ester, ethyl ester, propyl ester, butyl ester
- CO 2 phenyl (wherein phenyl itself may be further substituted e.g., by one or more of C 1-6 alkyl, halo, hydroxy, hydroxyC 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkoxyC 1-6 alkyl, C 1-6 alkoxyC 1-6 alkoxy, haloC 1-6 alkyl, haloC 1-6 alkoxy, cyano, nitro, OC(O)C 1-6 alkyl, NH 2 , NHC 1-6 alkyl, NHC(O)C 1-6 alkyl and NC 1-6 alkylC 1-6 alkyl), CO 2 benzyl (wherein benzyl itself may be further substituted e.g., by one or more of C 1-6 alkyl, halo, hydroxy, hydroxyC 1-6 alkyl, C
- C(O)NHC 1-6 alkyl such as methyl amide, ethyl amide, propyl amide, butyl amide) C(O)Ndialkyl.
- aminoalkyl e.g., HNC 1-6 alkyl-, C 1-6 alkylHN—C 1-6 alkyl- and (C 1-6 alkyl) 2 N—C 1-6 alkyl-
- thioalkyl e.g., HSC 1-6 alkyl-
- carboxyalkyl e.g., HO 2 CC 1-6 alkyl-
- carboxyesteralkyl e.g., C 1-6 alkylO 2 CC 1-6 alkyl-
- amidoalkyl e.g., H 2 N(O)CC 1-6 alkyl-, H(C 1-6 alkyl)N(O)CC 1-6 alkyl-
- formylalkyl e.g.,
- the compounds of the invention may be prepared in accordance with the methods described herein or any other methods known in the art of synthetic organic chemistry.
- compounds of the invention may be prepared by reacting an appropriate aryloxyamine A-O-L 1 -NH 2 , (or suitable salt, for example as the hydrochloride salt thereof) with a disubstituted phenolic aldehyde in the presence of a base (eg an amine base such as Et 3 N).
- a base eg an amine base such as Et 3 N.
- aryloxyamine compounds, and their preparation, for use in accordance with this method are described in U.S. Pat. No. 3,659,019.
- aryloxyamine compounds can be prepared by reacting an appropriate A-OH compound with a suitable phthalimide compound in accordance or analogous to the preparative processes described in the Examples.
- protecting group refers to an introduced functionality which temporarily renders a particular functional group inactive under certain conditions.
- protecting groups and methods for their installation and subsequent removal at an appropriate stage are described in Protective Groups in Organic Chemistry, 3 rd Edition, T. W. Greene and P. G. Wutz, John Wiley and Sons, 1999, the entire contents of which are incorporated herein by reference.
- Exemplary forms of protected groups include:
- certain compounds of formula (I) may possess asymmetric centres and are therefore capable of existing in more than one stereoisomeric form, such as enantiomers and diastereomers.
- the invention thus also relates to optically active compounds and compounds in substantially pure isomeric form at one or more asymmetric centres, e.g., enantiomers having greater than about 90% ee, such as about 95% or 97% ee or greater than 99% ee, as well as mixtures, including racemic mixtures, thereof.
- Such isomers may be prepared by asymmetric synthesis, for example using chiral intermediates, enzymes, or mixtures may be resolved by conventional methods, e.g., chromatography, recrystallization or use of a resolving agent.
- prodrugs may also be administered as prodrugs and thus the invention also contemplates prodrugs of formula (I).
- prodrug is used in its broadest sense and encompasses those derivatives that are converted in vivo, either enzymatically or hydrolytically, to the compounds of the invention. Such derivatives would readily occur to those skilled in the art, and include, for example, compounds where a free thiol or hydroxy group is converted into an ester, such as an acetate, or thioester or where a free amino group is converted into an amide.
- Procedures for acylating the compounds of the invention are well known in the art and may include treatment of the compound with an appropriate carboxylic acid, anhydride or chloride in the presence of a suitable catalyst or base.
- Esters of carboxylic acid (carboxy) groups are also contemplated.
- esters C 1-6 alkyl esters; C 1-6 alkoxymethyl esters, for example methoxymethyl or ethoxymethyl; C 1-6 alkanoyloxymethyl esters, for example, pivaloyloxymethyl; phthalidyl esters; C 3-8 scycloalkoxycarbonylC 1-6 alkyl esters, for example, 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolen-2-onylmethyl esters, for example, 5-methyl-1,3-dioxolen-2-onylmethyl; and C 1-6 alkoxycarbonyloxyethyl esters, for example, 1-methoxycarbonyloxyethyl.
- Prodrugs of amino functional groups include amides (see, for example, Adv. BioSci., 1979, 20, 369, Kyncl, J. et al), enamines (see, for example, J. Pharm. Sci., 1971, 60, 1810, Caldwell, H. et al), Schiff bases (see, for example, U.S. Pat. No. 2,923,661 and Antimicrob. Agents Chemother., 1981, 19, 1004, Smyth, R. et al), oxazolidines (see, for example, J. Pharm. Sci, 1983, 72, 1294, Johansen, M. et al), Mannich bases (see, for example, J. Pharm. Sci.
- esters of phosphoric acids such as phosphate esters of the phenolic hydroxy are also contemplated (see, for example, Mantyla et al, J. Med. Chem., 47:188-195, 2004).
- Other conventional procedures for the selection and preparation of suitable prodrugs are known in the art and are described, for example, in WO 00/23419 ; Design of Prodrugs , H. Bundgaard, Ed., Elsevier Science Publishers, 1985 ; Methods in Enzymology, 42: 309-396, K.
- Suitable pharmaceutically acceptable salts of compounds of formula (I) include, but are not limited to salts of pharmaceutically acceptable inorganic acids such as hydrochloric, sulphuric, phosphoric nitric, carbonic, boric, sulfamic, and hydrobromic acids, or salts of pharmaceutically acceptable organic acids such as acetic, propionic, butyric, tartaric, maleic, hydroxymaleic, fumaric, maleic, citric, lactic, mucic, gluconic, benzoic, succinic, oxalic, phenylacetic, methanesulphonic, toluenesulphonic, benezenesulphonic, salicyclic sulphanilic, aspartic, glutamic, edetic, stearic, palmitic, oleic, lauric, pantothenic, tannic, ascorbic, fendizoic, 4-4′-methylenebis-3-hydroxy-2-naphthoic acid, o
- Base salts include, but are not limited to, those formed with pharmaceutically acceptable cations, such as sodium, potassium, lithium, calcium, magnesium, ammonium and alkylammonium.
- Basic nitrogen-containing groups may be quaternised with such agents as lower alkyl halide, such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides or dialkyl sulfates such as dimethyl and diethyl sulfate.
- solvate refers to a complex or aggregate formed by one or more molecules of a solute, ie compounds contemplated by the invention, and one or more molecules of a solvent.
- Suitable solvents are well understood in the art and include for example, of water, ie to form hydrates, and common organic solvents such as alcohols (methanol, ethanol, isopropanol) and acetic acid. Methods of solvation are generally known within the art, for example, recrystallization from an appropriate solvent.
- the compounds of the invention may be useful in the treatment of conditions in which excessive or undesirable sodium channel activity is implicated.
- conditions are those whose aetiologies or resulting symptoms have an excessive or undesirable sodium channel activity component, and include conditions such as arrhythmia and neuropathies, which may be central or peripheral as previously described herein above.
- Central nervous system injuries which may be treated by compounds contemplated herein include those resulting from stroke, ischemic damage, percussive brain damage, traumatic damage, spinal cord injury, multiple sclerosis, Guillain-Barre syndrome, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, Fisher syndrome, HIV infection or AIDS, and bacterial and viral infections eg meningitis and shingles (Herpes zoster infection).
- Peripheral neuropathies may be categorised as one of distal axonopathies (metabolic or toxic derangement of neurons), myelinopathies (primary attack on myelin causing an acute failure of impulse conduction) and neuronopathies (result of destruction of peripheral nervous system neurons) and may affect just one nerve (mononeuropathy) or several nerves (polyneuropathy).
- Peripheral neuropathies may be the result of compression or entrapment (such, as ulnar nerve palsey, carpal tunnel syndrome, peroneal nerve palsy and radial nerve palsey) metabolic diseases (such as diabetes or amyloidosis), renal failure, deficiency syndromes such as malnutrition and alcoholism, infectious disorders (eg, Lyme disease, HIV infection, leprosy), the effects of toxins or cytotoxic drugs, Sjögren's syndrome and Guillain-Barre syndrome.
- compression or entrapment such, as ulnar nerve palsey, carpal tunnel syndrome, peroneal nerve palsy and radial nerve palsey
- metabolic diseases such as diabetes or amyloidosis
- renal failure such as malnutrition and alcoholism
- deficiency syndromes such as malnutrition and alcoholism
- infectious disorders eg, Lyme disease, HIV infection, leprosy
- Sjögren's syndrome the effects of toxins or
- compounds of the invention may be useful in the treatment of neuropathic pain.
- Neuropathic pain may result from peripheral or central nervous system disorders as described above, including pathologic events, ongoing metabolic or toxic diseases, infections, or endocrinologic disorders (eg, diabetes mellitus, diabetic neurophathy, amyloidosis, amyloid polyneuropathy (primary and familial), neuropathies with monoclonal proteins, vasculitic neuropathy, HIV infection, herpes zoster—shingles and postherpetic neuralgia, etc), neuropathy associated with Guillain-Barre syndrome, neuropathy associated with Fabry's disease, entrapment due to anatomic abnormalities, trigeminal and other CNS neuralgias, malignancies, inflammatory conditions or autoimmune disorders (including demyelinating inflammatory disorders, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome), and cryptogenic causes (idiopathic distal small-fiber
- neuropathic pain include exposure to toxins or drugs (such as arsenic, thallium, alcohol, vincristine, cisplatin and dideoxynucleosides), dietary or absorption abnormalities, immuno-globulinemias, hereditary abnormalities and amputations (including mastectomy).
- toxins or drugs such as arsenic, thallium, alcohol, vincristine, cisplatin and dideoxynucleosides
- dietary or absorption abnormalities such as arsenic, thallium, alcohol, vincristine, cisplatin and dideoxynucleosides
- immuno-globulinemias such as myemasisplatin and dideoxynucleosides
- Hereditary abnormalities including mastectomy
- amputations including mastectomy.
- Neuropathic pain may also result from compression of nerve fibers, such as radiculopathies and carpal tunnel syndrome.
- neurophatic pain which may be treated by compounds contemplated herein include alcohol, diabetes mellitus type 1 and 2, Eosinophilia-myalgia syndrome, Guillain-Barre syndrome, heavy metals (e.g. arsenic, lead, mercury), HIV/AIDS, malignant tumor-related, medications, including antineoplastic drugs, (e.g.
- amiodarone aurothioglucose, cisplatinum, dapsone, d4T (stavudine), ddC (zalcitabine,), ddI (didanosine), disulfiram, FK 506, hydralazine, isoniazid, metronidazole, nitrofurantoin, paclitaxel, phenytoin, vincristine) monoclonal gammopathies multiple sclerosis, post-stroke central pain, postherpetic neuralgia, traumatic/compression, carpal tunnel syndrome, radiculopathy (sciatica, etc.) cervical or lumbar radiculopathy, complex regional pain syndrome, spinal cord injury, stump (phantom limb) pain, trigeminal neuralgia, and vasculitis.
- Reference to neuropathic pain includes reference to a neuropathic component of nociceptive pain.
- subjects to be treated for neuropathic pain in accordance with this embodiment of the present invention are selected on the basis of requiring treatment for the neuropathic pain.
- the sensibility to pain is reduced by at least 30%, preferably at least 50%, more preferably at least 70% and particularly preferably at least 85%.
- the sensibility to the neuropathic pain is completely, or substantially completely, removed.
- tests such as the short form McGill pain questionnaire and/or visual analogue scales for pain intensity and/or verbal rating scales for pain intensity and/or measurement of tactile allodynia using von Frey hairs or similar device. These tests are standard tests within the art and would be well known to the skilled person.
- the compounds contemplated herein may also be used in treating the neuropathic pain in any one or more of the following diseases or conditions which cause neuropathic pain or which have a neuropathic pain component: Abdominal Wall Defect, Abdominal Migraine, Achondro genesis, Achondrogenesis Type IV, Achondrogenesis Type III, Achondroplasia, Achondroplasia Tarda, Achondroplastic Dwarfism, Acquired Immunodeficiency Syndrome (AIDS), Acute Intermittant Porphyria, Acute Porphyrias, Acute Shoulder Neuritis, Acute Toxic Epidermolysis, Adiposa Dolorosa, Adrenal Neoplasm, Adrenomyeloneuropathy, Adult Dermatomyositis, Amyotrophic Lateral Sclerosis, Amyotrophic Lateral Sclerosis-Polyglucosan Bodies, AN, AN 1, AN 2, Anal Rectal Malformations, Anal Stenosis, Arachnitis, Arachnoi
- Subjects to be treated in accordance with the invention include mammalian subjects: humans, primates, livestock animals (including cows, horses, sheep, pigs and goats), companion animals (including dogs, cats, rabbits, guinea pigs), and captive wild animals.
- Laboratory animals such as rabbits, mice, rats, guinea pigs and hamsters are also contemplated as they may provide a convenient test system.
- Non-mammalian species such as birds, amphibians and fish may also be contemplated in certain embodiments of the invention. Particularly contemplated subjects are human subjects.
- the compounds of the invention are administered in an amount and in accordance with a regimen effective to achieve the desired outcome (e.g. full or partial inhibition of sodium channel activity).
- An effective amount is intended to include an amount which, when administered according to the desired dosing regimen, at least partially attains the desired effect.
- a treatment effective amount is intended to include an amount which, when administered according to the desired dosing regimen, at least partially attains the desired therapeutic effect, including one or more of: alleviating, eliminating or reducing the frequency one or more symptoms of, preventing or delaying the onset of, inhibiting the progression of, or halting or reversing (partially or altogether) the onset or progression of the particular disorder or condition being treated.
- Suitable dosage amounts and dosing regimens can be determined by the attending physician and may depend on the particular condition being treated, the severity of the condition as well as the general age, health and weight of the subject. Suitable dosage amounts may lie in the range of from 1 ⁇ g to 1 g of compound, salt, solvate or prodrug, for example, 1 ⁇ g-1 mg, 1 mg-10 mg, 10 mg-50 mg, 50 mg-100 mg, 100 mg-500 mg, 500 mg-750 mg or 750 mg-1000 mg. Dosages may be administered once, or multiple times daily, or one or more times weekly, fortnightly or monthly.
- the active ingredient may be administered in a single dose or a series of doses. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a composition, preferably as a pharmaceutical composition, with one or more pharmaceutically acceptable adjuvants.
- the present invention also relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt or prodrug thereof in the manufacture of a medicament for treating a disease or condition in which undesirable sodium channel activity is involve or implicated.
- compositions of such compositions are well known to those skilled in the art, see for example, Remington's Pharmaceutical Sciences, 18 th Edition, Mack Publishing, 1990.
- the composition may contain any suitable additive such as carriers, diluents or excipients. These include all conventional solvents, dispersion media, fillers, solid carriers, coatings, antifungal and antibacterial agents, dermal penetration agents, surfactants, isotonic and absorption agents and the like. It will be understood that the compositions of the invention may also include other supplementary physiologically active agents.
- compositions include those suitable for oral, rectal, nasal, topical (including dermal, buccal and sublingual), vaginal or parental (including subcutaneous, intramuscular, intravenous and intradermal) administration.
- the compositions may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
- compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
- a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g. inert diluent), preservative disintegrant (e.g. sodium starch glycolate, cross-linked polyvinyl pyrrolidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent.
- a binder e.g. inert diluent
- preservative disintegrant e.g. sodium starch glycolate, cross-linked polyvinyl pyrrolidone, cross-linked sodium carboxymethyl cellulose
- Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
- compositions suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured base, usually sucrose and acacia or tragacanth gum; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia gum; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
- compositions suitable for topical administration to the skin may comprise the compounds dissolved or suspended in any suitable carrier or base and may be in the form of lotions, gel, creams, pastes, ointments and the like.
- suitable carriers include mineral oil, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
- Devices for transdermal delivery, such as patches, may also be used to administer the compounds of the invention.
- compositions for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter, glycerin, gelatin or polyethylene glycol.
- compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
- compositions suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bactericides and solutes which render the composition isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the compositions may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Preferred unit dosage compositions are those containing a daily dose or unit, daily sub-dose, as herein above described, or an appropriate fraction thereof, of the active ingredient.
- compositions of this invention may include other agents conventional in the art having regard to the type of composition in question, for example, those suitable for oral administration may include such further agents as binders, sweeteners, thickeners, flavouring agents disintegrating agents, coating agents, preservatives, lubricants and/or time delay agents.
- suitable sweeteners include sucrose, lactose, glucose, aspartame or saccharine.
- Suitable disintegrating agents include corn starch, methylcellulose, polyvinylpyrrolidone, xanthan gum, bentonite, alginic acid or agar.
- Suitable flavouring agents include peppermint oil, oil of wintergreen, cherry, orange or raspberry flavouring.
- Suitable coating agents include polymers or copolymers of acrylic acid and/or methacrylic acid and/or their esters, waxes, fatty alcohols, zein, shellac or gluten.
- Suitable preservatives include sodium benzoate, vitamin E, alpha-tocopherol, ascorbic acid, methyl paraben, propyl paraben or sodium bisulphite.
- Suitable lubricants include magnesium stearate, stearic acid, sodium oleate, sodium chloride or talc.
- Suitable time delay agents include glyceryl monostearate or glyceryl distearate.
- compositions may also be presented for use in veterinary compositions. These may be prepared by any suitable means known in the art. Examples of such compositions include those adapted for:
- oral administration external application (e.g. drenches including aqueous and non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pellets for admixture with feedstuffs, pastes for application to the tongue;
- parenteral administration e.g. subcutaneous, intramuscular or intravenous injection as a sterile solution or suspension;
- topical application e.g. creams, ointments, gels, lotions etc.
- mexiletine hydrochloride (2.0 g, 9.24 mmol) was dissolved in dry dichloromethane (25 ml) containing 4A molecular sieves (2 g) and triethylamine (1.28 ml, 9.24 mmol) was added followed by commercially available 3,5-di-t-butyl-4-hydroxybenzaldehyde (3.37 g, 13.86 mmol). The mixture was stirred at room temperature under an atmosphere of nitrogen gas for 18 hours and then refluxed for 5 hours. The reaction mixture was cooled to room temperature and filtered to remove molecular sieves.
- the solvent was evaporated in a rotary evaporator and the residue was dissolved in methanol (40 ml) and tetrahydrofuran (10 ml) and sodium cyanoborohydride (1.16 g, 18.48 mmol)) was added portion wise and stirring was continued over 18 hours at room temperature under a nitrogen gas atmosphere.
- the reaction mixture was evaporated to dryness and 100 ml of distilled water was added. This was then extracted with dichloromethane (250 ml) and then dichloromethane layer was washed with a saturated solution of sodium chloride (10 ml).
- 2,6-Dichlorophenoxy-propylamine (0.5 g, 2.2 mmol) was dissolved in dry dichloromethane and 4 A molecular sieves were added followed by 3,5-di-t-butyl-4-hydroxybenzaldehyde (3.3 mmol). The resulting mixture was stirred under an atmosphere of nitrogen at room temperature for 18 hours and then refluxed for 4 hours. The reaction mixture was cooled to room temperature and filtered to remove molecular sieves and the filtrate concentrated in vacuo and then dissolved in methanol (30 ml). Sodium cyanoborohydride (0.3 g, 4.4 mmol)) was added portion wise and stirring was continued over 18 hours at room temperature under a nitrogen gas atmosphere.
- Tartrate salt formation The free base (102 mg, 0.23 mmol) was dissolved in ethyl acetate (10 ml), tartaric acid (0.034 g, 0.23 mmol)) in absolute ethanol (2 ml) was added and the solution was stirred on rotary evaporator. The solvent was evaporated in vacuo and to the residue was added ethyl acetate and this washing procedure was repeated three times to yield a tartrate salt.
- Compound 5 was prepared in an analogous manner to Compound 2 using 3,5-diisopropyl-4-hydroxy-pyridine.
- Rat brain membranes were prepared from Wistar rats and washed by centrifugation in fresh buffer. Aliquots of membranes were added to tubes and then incubated with 3 H-batrachotoxinin (5 nM) in the absence or presence of increasing concentrations of the synthesised compounds. After incubation at 37° C. for 60 minutes, membranes were collected by rapid filtration though filters under vacuum and radioactivity in filters were determined by liquid scintillation counting. Non-specific binding of 3 H-batrachotoxinin to membranes was determined by incubating membranes in a high concentration of veratridine (100 uM) and this was subtracted from all other values to determine specific binding. The concentration of each compound that inhibited specific binding of 3 H-batrachotoxinin by 50% (IC50) was computed by non-linear regression using the EBDA/LIGAND computer software (McPherson, 1985).
- the formalin paw test provides a model of nociception in which a sub-dermal injection of formalin induces a pain that occurs in time-linked phases. Rats typically respond to the injured tissue in a characteristic way that can be quantitated and statistically evaluated. The early phase is thought to be caused by C-fiber activation due to peripheral sensory stimulation, while the late phase is associated with both an inflammatory component and functional changes in the dorsal horn of the spinal cord.
- the purpose of this study was to investigate the efficacy of Compound 1 to reduce the pain associated with the rat formalin paw model.
- the hind paw dermis of each rat was injected with a solution of formalin or saline and pain behavior was evaluated.
- Compound 1 and a known sodium channel blocker, Mexiletine were injected intraperitoneally 30 minutes prior to paw injection. Pain behavior was then evaluated at three time points (at 2 to 5, 25 to 30 and 55 to 60 minutes) following paw injection of formalin or saline by counting the number of paw-licking events.
- mice Thirty-four (34) male Sprague-Dawley rats of approximately 200 to 225 grams weight were used in this study. The rats were housed 2 animals per cage and were acclimated for nine (9) days prior to the commencement of experimental procedures. Rats were randomly allocated to treatment groups based on their body weights taken during the acclimation period. Eight (8) animals were allocated to each of four (4) treatment groups.
- rats were dosed by intraperitoneal injection of the appropriate drug according to Table 3.1.
- baseline control rats received a 50 ⁇ L injection of saline solution into the dermis of either hind paw at 30 minutes post-dosing with vehicle and immediately prior to behavioral observation.
- Eight (8) rats received saline injections in the left hind paw.
- thirty two (32) rats received a 50 ⁇ L injection of 5% formalin solution into the dermis of either hind paw at 30 minutes post dosing and immediately prior to behavioral observation.
- rat was placed in an individual plexiglas chamber on an elevated glass surface for the duration of testing. Rats were observed at 2 to 5 minutes (phase 1), 25 to 30 minutes (early phase 2), and again at 55 to 60 minutes (late phase 2) post-paw injection. For each observation interval, the number of paw-licking events were determined.
- Rats were anaesthetized with a halothane/oxygen (5:95) gas mixture and a dorsal midline incision was made on the rat's lower back to expose the left lumbar region either side of the hip. Bone was clipped away to expose the L4 and L5 nerves distal to their emergence from the intervertebral foramina. The L5 nerve was then isolated using a glass hook, ligated and cut on the peripheral side of the ligation. The incision was then closed with suture threads and the anaesthetic gas discontinued.
- rats underwent testing with the graded Von Frey filaments to the hind paws to determine if allodynia was present in the left paw as compared to the right hind paw. Testing was repeated on these rats until they were 28 days old. On that day, rats that displayed allodynia in their left paw only (Rats #17, 18, 19, 20—Table 4.1) were given an intraperitoneal injection of Compound 1 (7 ⁇ mol per 100 g body weight dissolved in 5% ethanol in a volume of 1 ml/100 g). Rats were then tested with graded Von Frey filaments at 45 minutes and 90 minutes after injection in order to determine if allodynia had been blocked.
- BBB scale Effects of Compound 1 and mexiletine treatment on the time course of functional recovery, following SCI, assessed with the BBB open-field locomotor score. Both Compound 1 and mexiletine significantly increased the rate of recovery following SCI, compared to the vehicle treated controls. Each rat acted as its own control, and results after SCI compared with pre-injury scores (0 h after SCI). The results are presented in FIG. 3 . Data are mean ⁇ SEM.
- Ladder test In the horizontal ladder test, rats are placed onto a beam which is randomly missing rungs, this prevents rats from adapting and compensating for any deficits following SCI. In the ladder test, SCI+saline treated rats showed increased foot misplacements which decreased over the 15 day test period, but remained significantly different from pre-SCI. The results are depicted in FIG. 4 . Treatment with Compound 1 or mexiletine decreased the number of hind-limb foot misplacements when compared to SCI+saline controls at the same time. Data is expressed as the percentage of foot misplacements made of the total number of steps taken, using a combined score for both hindlimbs. (If rats were found to have significant differences between the hind paws they were excluded from the study).
- Ledged beam Effects of Compound 1 and mexiletine, and SCI+saline controls on recovery of function following spinal cord compression injury as assessed by the number of steps using the support ledge on the ledged beam task.
- the results are depicted in FIG. 5 .
- Sham-SCI rats walked the length of the ledged beam with approximately 10% of steps made on the supporting ledge.
- Saline-treated control rats relied on the support ledge significantly more than shams during the course of recovery.
- Use of the support ledge was significantly reduced in rats treated with either Compound 1 or mexiletine. Data is expressed as ledge use/errors made as a percentage of total steps taken with both hindlimbs after SCI.
- Phosphorylated Neurofilament H is a biomarker of axonal injury and degeneration. It has shown to be readily detectable in the sera of rodents with experimental SCI (Shaw et al, 2005). Previous findings have shown that plasma pNF-H levels and behavioural outcomes can be correlated following EAE. Plasma pNF-H levels were determined in healthy controls (SHAM) and SCI injured animals (saline, mexiletine and Compound 1 treated rats). The results are depicted in FIG. 7 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Neurosurgery (AREA)
- Public Health (AREA)
- Neurology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The present invention relates generally to the field of therapeutic treatment and compounds having utility therefor, in particular the therapy or management of conditions associated with excessive, unwanted or undesirable sodium ion passage through cellular membranes via voltage-gated sodium channels. In one embodiment the invention is concerned with the treatment of neuropathic pain. The invention contemplates to aryloxy-substituted amines, as sodium channel blockers or modulators. In further embodiments, the invention also relates to compounds which may advantageously have dual sodium channel blocker/modulating and antioxidative (free-radical scavenging) effects. Methods for their manufacture and compositions containing the compounds are also contemplated.
Description
- 1. Field of the Invention
- The present invention relates generally to the field of therapeutic treatment and compounds having utility therefor, in particular the therapy or management of conditions associated with excessive, unwanted or undesirable sodium ion passage through cellular membranes via voltage-gated sodium channels. In one embodiment the invention is concerned with the treatment of neuropathic pain. The invention contemplates to aryloxy-substituted amines, as sodium channel blockers or modulators. In further embodiments, the invention also relates to compounds which may advantageously have dual sodium channel blocker/modulating and antioxidative (free-radical scavenging) effects. Methods for their manufacture and compositions containing the compounds are also contemplated.
- 2. Description of the Prior Art
- The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
- The electrical potential difference across a neuronal cell membrane is the result of an inequitable distribution of ions on either side of the membrane. In its resting state, a neuron has a high internal store of potassium ions (K+) with sodium ions (Na+) accumulated on the outside of the membrane. In such a state, the flow of ions across a membrane is such that their movement causes no net change in charge. However, a perturbation of this resting flow results in an alteration of the membrane's potential.
- Sodium channels are aqueous pores in the cellular membrane which regulate and provide a selective passage for sodium ions between the internal and external environments of a cell. Voltage-gated sodium channels, ie. those opened by changes in membrane potential, are largely responsible for the depolarization of the cell. When closed, they help maintain the neuron's resting potential, and when open, allow sodium ions to flow down the electrochemical gradient and depolarize the cell.
- The voltage-gated sodium channel is formed by proteins embedded within the cell's membrane and has three known subunits: a large glycoprotein called the α-subunit, which probably forms the channel's pore, and two smaller polypeptides called β1 and β2 which regulate the function of the α-subunit. γ- and δ-Subunits may also exist to regulate the α-subunit.
- The α-subunit has four repeats, labelled I through IV, of the same 150 amino acid sequence. Each repeat contains six membrane-spanning regions labelled S1 through S6. The highly conserved S4 region, thought to be part of the channel that acts as its voltage sensor, has a positive amino acid at every third position, with hydrophobic residues between these. It is thought that when stimulated by a change in transmembrane voltage, this subunit moves from within the pore toward the extracellular side of the cell, allowing the channel to become permeable to ions which would otherwise have been blocked by the subunit's positive charges.
- Voltage-gated sodium channels can have three states: resting (closed), activated (open), and inactivated (closed). Channels in the resting state are blocked on their intracellular side by an “activation gate” which is removed in response to stimulation that opens the channel. The ability to inactivate is thought to be due to a tethered plug (formed by domains III and IV of the alpha subunit), called an inactivation gate, that blocks the inside of the channel shortly after it has been activated. During an action potential the channel remains inactivated for a few milliseconds after the neuron is finished depolarizing. The inactivation is removed when the membrane potential of the neuron becomes negative after the falling phase of the action potential. This allows the channels to be activated again during the next action potential.
- The inner pore of sodium channels contains a selectivity filter made of negatively charged amino acid residues (aspartic acid and glutamic acid), which attract the positive Na+ ion and keep out negatively charged ions such as chloride. The mouth of the pore is some 1.2 nm wide, narrowing to about 0.3 by 0.5 nm wide, which is just large enough to allow a single Na+ ion with a water molecule associated to pass through whilst being small enough to exclude larger K+ ions. Differently sized ions also cannot interact as well with the negatively charged glutamic acid residues that line the pore. Voltage-gated sodium channels are further characterised with regard to their voltage dependence and kinetic behaviour.
- Opening of Na+ channels in response to an electrical stimulus results in a rapid influx of sodium ions. This causes a small localised disturbance in the membrane potential which open voltage-gated Na+ channels in adjacent areas of the membrane, where in turn, the membrane's electrical potential changes as ions flow across. After the excitatory stimulus, the Na+ channels close and the membrane potential is restored to its resting value by an outflow of potassium ions.
- Thus, changes in membrane potential are propagated along the membrane from the point of stimulation. A self-propagating wave of depolarization down the axon of a neuron is known as an action potential. The more Na+ channels which exist in a neuron's membrane, the faster the action potential will propagate down the axon. When it reaches the end of the axon, the action potential may electrically stimulate the membrane of an adjacent cell or release neurotransmitters into the synaptic cleft, which chemically open gated channels in the adjacent cell membrane. Voltage-gated sodium channels thus play a prominent and significant role in action potentials and, ultimately, the electrical activity of the central and peripheral nervous systems.
- Notwithstanding the essential role of voltage-gated sodium channels in the central and peripheral nervous systems, it is now well established that they also implicated in the aetiology of a number of neuronal diseases and conditions (neuropathies). Depending on the particular nerves involved, the neuropathy can be classified as a central or peripheral neuropathy. Central neuropathies arise from spinal cord, brainstem, thalamic, and cerebral damage or disease, while peripheral neuropathies arise from damage or disease of peripheral nerves.
- The peripheral nervous system transmits information from the brain and spinal cord to every other part of the body. More than 100 types of peripheral neuropathy have been identified, each with its own characteristic set of symptoms, pattern of development, and prognosis. Impaired function and symptoms depend on the type of nerves—motor, sensory, or autonomic—that are damaged. Some people may experience temporary numbness, tingling, and pricking sensations, sensitivity to touch, or muscle weakness. Others may suffer more extreme symptoms, including burning pain (especially at night), muscle wasting, paralysis, or organ or gland dysfunction. Peripheral neuropathy may be either inherited or acquired. Causes of acquired peripheral neuropathy include systemic diseases (e.g. diabetes), physical injury (trauma) to a nerve, tumors, toxins, autoimmune responses, viral and bacterial infections, nutritional deficiencies, alcoholism, and vascular and metabolic disorders. Inherited forms of peripheral neuropathy are caused by genetic mutations.
- Central neuropathy, as the name implies, is the result of damage to the central nervous system, i.e. brain and spinal cord. As with peripheral neuropathies, the causes are varied and include physical injury, disease and autoimmune responses.
- A particular example of such a neuropathy is multiple sclerosis (MS) which is a chronic, often disabling, disease that randomly attacks the central nervous system. The progress, severity and specific symptoms of the disease cannot be predicted; symptoms may range from tingling and numbness to paralysis and blindness. MS is a devastating disease because people live with its unpredictable physical and emotional effects for the rest of their lives. Symptoms of MS are unpredictable and vary greatly from person to person and from time to time in the same person. They may include: fatigue, impaired vision, loss of balance and muscle coordination, slurred speech, tremors, stiffness, bladder and bowel problems, difficulty walking, short-term memory loss, mood swings and, in severe cases, partial or complete paralysis.
- A significant contributor to non-remitting deficits in demyelinating neuroinflammatory diseases such as MS and the related Guillain-Barre's syndrome (GBS), and their respective animal models, experimental allergic encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN), is axonal loss. Recent studies have demonstrated that persistently activated sodium channels can trigger axonal injury by providing a sustained sodium influx that can drive reverse sodium-calcium exchange (Stys et al., 1992b, 1993; Craner et al., 2004) and sodium channel blockade can prevent axonal degeneration within white matter tracts in a variety of disease models (Stys et al., 1992a,b; Rosenberg et al., 1999; Kapoor et al., 2003; Lo et al., 2003; Bechtold et al., 2004). In addition, it has recently been demonstrated that the sodium channel blocker phenytoin inhibits immune cells in the neuroinflammatory disorders (Craner et al., 2005), and that administration of the sodium channel blocker flecainide in the EAN model, significantly increased the number of functional axons and significantly decreased axonal loss (Bechtold et al., 2005).
- Physical trauma (car accident, gunshot, falls, etc.) or disease (polio, spina bifida, Friedreich's Ataxia, etc.) can lead to spinal cord injury (SCI)—damage to the spinal cord that results in a loss of function such as mobility or feeling. The spinal cord does not have to be severed in order for a loss of functioning to occur. In fact, in most people with SCI, the spinal cord is intact, but the damage to it results in loss of functioning. The extent of loss of function will vary depending on the area of injury but can range from quadriplegia, partial loss of function or dexterity in the arms and hands, paraplegia, poor trunk control as the result of lack of abdominal muscle control reduced control of the hip flexors and legs. Besides a loss of sensation or motor functioning, individuals with SCI also experience other changes. For example, they may experience dysfunction of the bowel and bladder. Very high injuries (C-1, C-2) can result in a loss of many involuntary functions including the ability to breathe, necessitating breathing aids such as mechanical ventilators or diaphragmatic pacemakers. Other effects of SCI may include low blood pressure, inability to regulate blood pressure effectively, reduced control of body temperature, inability to sweat below the level of injury, and chronic pain.
- Secondary cell injury due to spinal cord trauma results, in part, from the accumulation of calcium ions within injured neurons and their axons. As noted above, this arises due to reverse operation of the sodium-calcium exchanger, which in turn is triggered by an increase in intracellular sodium concentration via persistently activated voltage-gated sodium channels. Pharmacological blockade of sodium channels has been shown to prevent axonal degeneration and preserve function after injury to central nervous system white matter tracts. Sodium channel blockade with tetrodotoxin (TTX), and tertiary and quaternary amine local anaesthetics have been shown to prevent the development of irreversible dysfunction of axons within the anoxic optic nerve (Stys et al., 1992a,b) and spinal cord (Imaizumi et al., 1997) in vitro. TTX applied focally after contusion spinal cord injury (SCI) reduces axoplasmic pathology and damage to myelin, results in residual white matter sparing, and enhances behavioral recovery (Rosenberg et al., 1999; Teng and Wrathall, 1997). Systemic lidocaine after compression SCI results in improved recovery of somatosensory-evoked responses (Kobrine et al., 1984). A charged derivative of lidocaine, QX-314, given after compression SCI partially preserves descending motor axons (Agrawal and Fehlings, 1997). In vitro studies have demonstrated that phenytoin, a drug that blocks sodium channels and inhibits persistent sodium currents (Chao and Alzheimer, 1995; Segal and Douglas, 1997), has a protective effect on axons within white matter after anoxia (Fern et al., 1993). Phenytoin given after compression SCI results in less tissue loss at the injury epicenter, but in these animals, measures of motor function were reported to be poorer (Schwartz and Fehlings, 2001). Phenytoin has recently been shown to protect against axonal degeneration of spinal cord axons and improve neurological outcome in mice with experimental allergic encephalomyelitis (Lo et al., 2002, 2003). The sodium channel blocker flecainide has a similar protective effect (Bechtold et al., 2004). It was subsequently shown that treatment with phenytoin after SCI confers substantial neuroprotection, with sparing of both white and grey matter surrounding the impact site, exerts a protective effect on axons, reduces loss of action potential conduction along spinal cord axons through the impact site and promotes locomotor recovery (Hams et al., 2004).
- Many peripheral or central neuropathic conditions commonly result in pain. Pain can be classed as acute (or nociceptive) or neuropathic.
- Nociceptive pain is mediated by thermal, mechanical, electrical or chemical stimulation of pain receptors, known as nociceptors, which are located in skin, bone, connective tissue, muscle and viscera. Its purpose is to serve as a protective biological warning of potential ongoing tissue damage and is experienced in and around the point of injury. It usually responds to opioid and/or Non Steroidal Anti-Inflammatory (NSAID) treatment. In the main, as healing progresses, the pain and inflammation associated with an injury abates and resolves.
- In contrast, individuals may experience pain in the absence of an obvious tissue injury, or suffer chronic or protracted pain long after the injured tissue is apparently healed. Such pain serves no protective biological function and is predominantly neuropathic in nature, thus referred to as neuropathic pain. Neuropathic pain has been variously described as pain that results from a pathologic change in nerves or pain initiated or caused by a primary lesion or dysfunction in the nervous system (Mersky and Bogduk, 1994; De Andres and Garcia-Ribas, 2003) and can be described as burning, electric, tingling and shooting in nature. Neuropathic pain is associated with a variety of disease states and presents in the clinic with a wide range of symptoms. (Woolf and Mannion, 1999). The damage to the nerves may be caused by accidental or surgical injury, by metabolic disturbances such as diabetes or vitamin B12 or other nutrient deficiency, by ischaemia, by radiation, by autoimmune attack, by cytotoxic drugs used in cancer chemotherapy, by alcohol, by infections, especially viral infections, particularly with the herpes virus, by tumours, by degenerative diseases, or by unknown factors such as may be operative in trigeminal and other neuralgias. Neuropathic pain does not require specific pain receptor stimulation although such stimulation can add to the intensity of the pain sensation (Baron, 2003).
- Neuropathic pain is often characterised by chronic allodynia and/or hyperalgesia. Allodynia is pain resulting from a non-noxious stimulus, ie a stimulus that does not ordinarily cause a painful response, eg a light touch. Hyperalgesia, on the other hand, is an increased sensitivity to noxious stimuli (injury), ie a greater than normal pain response, and can be further defined as primary, occurring immediately in the vicinity of an injury, or secondary, occurring in undamaged area remote from an injury. Neuropathic pain is usually unresponsive to treatments used for nociceptive pain.
- It is estimated that neuropathic pain affects over 26 million people worldwide (Butera 2007) and despite its common occurrence, neuropathic pain remains one of the most poorly understood and untreated conditions in primary care and can have a debilitating effect on almost all aspects of a sufferer's life. It has been associated with depression, anxiety, loss of independence and can impact on an individual's relationships and ability to work. The annual cost of neuropathic pain in the United States alone, including medical expenses, lost income and lost productivity is estimated to be $100 billion. The condition is particularly prevalent amongst the elderly and is experienced by a significant proportion of patients suffering from other disease states such as diabetes and advanced cancer.
- Sodium channel blockers have been reported as useful agents in the treatment of neuropathic pain (Tanelian et al, 1995; Kyle and Ilyin, 2007). There is evidence that sodium channel blockers selectively suppress etopic neural firing in injured (unmyelinated) nerves, which have an accumulation of sodium channels, and studies carried out on known blockers, such as carbamazepine, phenytoin, lidocaine and mexiletine, have demonstrated utility in the treatment of various types of neuropathic pain. Consistent with this, is the demonstration that sodium channels accumulate in the peripheral nerve sites of axonal injury (Devor et al, 1993) and also in second order sensory neurons in pain pathways in the spinal cord (Hams et al, 2004 b). Alterations in the either the level of expression or distribution of sodium channels within an injured nerve, therefore, have a major influence on the pathophysiology of pain associated with this type of trauma.
- Given the individual and social impact of the central and peripheral nervous system disease states, including neuropathic pain, and conditions in which excessive, undesirable or otherwise unwanted sodium channel activity is involved or implicated, there remains the need for new compounds, which may act as sodium channel inhibitors or modulators to ameliorate, relieve, prevent or otherwise improve one or more of their symptoms, or the conditions themselves.
- It has now been found that certain aryloxy amine compounds, specifically bearing a disubstituted phenol moiety, exhibit sodium channel blocking or modulating activity. In certain embodiments, this activity is substantially improved in comparison to a known aryloxy amine compound without the disubstituted phenol group (mexiletine), or compared to an aryloxy amine compounds which bears a different anti-oxdative group.
- Accordingly, in a first aspect, the present invention provides a compound of Formula (I):
-
A-O-L1-NR-L2-B - wherein
- A is an optionally substituted cyclopentadi-2,4-en-1-yl or phenyl group, an optionally substituted 5-6-membered monocyclic heteroaryl group, an optionally substituted napthyl group or an optionally substituted 9-10-membered bicyclic heteroaryl group;
- L1 is an optionally substituted C1-4 alkylene group, an optionally substituted C2-4 alkenylene group or an optionally substituted C2-C4 alkynylene group;
- L2 is an optionally substituted C1-4 alkylene group, an optionally substituted C2-4 alkenylene group or an optionally substituted C2-C4 alkynylene group or a CO2 group;
- R is hydrogen or a C1-6alkyl group; and
- B is a group of formula (a) below:
- wherein R1 and R2 are independently selected from hydrogen, C1-6 alkyl and C3-6cycloalkyl;
or a pharmaceutically acceptable salt thereof. - In certain embodiments of the invention, R1 and R2 are not both hydrogen. Thus, in some embodiments, R1 and R2 are independently selected from C1-6alkyl and C3-6cycloalkyl. In other embodiments, one of R1 and R2 is hydrogen and the other is C1-6alkyl or C3-6cycloalkyl.
- In another aspect, the invention provides a composition comprising a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof together with a pharmaceutically acceptable additive.
- Yet another aspect of the invention relates to a method for preventing sodium ion influx into a cell by blocking or modulating a sodium channel, said method comprising contacting said sodium channel with a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Another aspect of the invention relates to a method for treating a condition in which excessive or undesirable sodium channel activity is implicated, in a subject in need thereof, comprising administering to said subject a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof.
- Thus, one embodiment of the invention provides a method for treating a neuroinflammatory disease to a subject in need thereof comprising administering to said subject a compound of Formula (I) or a pharmaceutically acceptable salt or solvate thereof.
- A further embodiment of the invention provides a method for treating neuropathic pain in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Yet another aspect provides a method for the treatment of spinal cord injury in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- A still further aspect of the invention provides a method for treating axonal loss, degeneration or damage in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Yet another aspect of the invention relates to a method for treating a demyelinating disease in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Yet another aspect of the invention relates to a method for treating a central or peripheral neuropathy in a subject in need thereof, comprising administering to said subject, a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Where appropriate, L1 and L2 are independently substituted or unsubstituted and may be the same or different. L1 and L2 may be the same or different and are selected from substituted C1-4alkylene and unsubstituted C1-4alkylene.
- In certain embodiments of the invention, A is an optionally substituted phenyl or 6-membered heteroaryl group. In other embodiments of the invention A is an optionally substituted cyclopentadi-2,4-en-1-yl or 5-membered heteroaryl group.
- In some embodiments of the invention, R1 and R2 are independently straight, branched or cyclo-C3-6alkyl. In further examples thereof, R1 and R2 are branched or cycloalkyl. In yet further examples, R1 and R2 are the same. In one particular example, R1 and R2 are both t-butyl. In another example, R1 is hydrogen and R2 is branched or cyclo-C3-6alkyl, such as t-butyl.
-
FIG. 1 graphically depicts the number of paw-licking events in a rat formalin paw model. -
FIG. 2 graphically depicts the individual points and the mean (horizontal line) of the cumulative number of paw-licking events observed in 3×1 minute observation periods in a rat formalin paw model. -
FIG. 3 graphically depicts the effects of mexiletine andCompound 1 on functional recovery following SCI as measured by BBB open-field locomotor. -
FIG. 4 graphically depicts the effects of mexiletine andCompound 1 on foot misplacement in the horizontal ladder test following SCI. -
FIG. 5 graphically depicts the effects of mexiletine andCompound 1 on ledge use following SCI. -
FIG. 6 graphically depicts the effects of mexiletine andCompound 1 on volume of damage (as a whole of both white and gray matter) following SCI. -
FIG. 7 graphically depicts the effects of mexiletine andCompound 1 on plasma pNF-H levels (a marker of axonal damage) in SCI. - Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise” and variations such as “comprises” and “comprising” will be understood to imply the inclusion of a stated integer or step or group of integers but not the exclusion of any other integer or step or group of integers.
- The singular forms “a”, “an” and “the” include plural aspects unless the context clearly dictates otherwise.
- As used herein, the term “alkyl” or “alk”, used either alone or in compound words denotes straight chain, or branched alkyl, preferably C1-20 alkyl, e.g. C1-10 or C1-6. Examples of straight chain and branched alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, 1,2-dimethylpropyl, 1,1-dimethyl-propyl, hexyl, 4-methylpentyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1,2,2,-trimethylpropyl, 1,1,2-trimethylpropyl, heptyl, 5-methylhexyl, 1-methylhexyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 4,4-dimethylpentyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethyl-pentyl, 1,2,3-trimethylbutyl, 1,1,2-trimethylbutyl, 1,1,3-trimethylbutyl, octyl, 6-methylheptyl, 1-methylheptyl, 1,1,3,3-tetramethylbutyl, nonyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-methyl-octyl, 1-, 2-, 3-, 4- or 5-ethylheptyl, 1-, 2- or 3-propylhexyl, decyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- and 8-methylnonyl, 1-, 2-, 3-, 4-, 5- or 6-ethyloctyl, 1-, 2-, 3- or 4-propylheptyl, undecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-methyldecyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-ethylnonyl, 1-, 2-, 3-, 4- or 5-propylocytl, 1-, 2- or 3-butylheptyl, 1-pentylhexyl, dodecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- or 10-methylundecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-ethyldecyl, 1-, 2-, 3-, 4-, 5- or 6-propylnonyl, 1-, 2-, 3- or 4-butyloctyl, 1-2-pentylheptyl and the like. Where an alkyl group is referred to generally as “propyl”, butyl” etc, it will be understood that this can refer to any of straight or branched isomers where appropriate. An alkyl group may be optionally substituted by one or more optional substituents as herein defined.
- The term “alkenyl” as used herein denotes groups formed from straight chain or branched hydrocarbon residues containing at least one carbon to carbon double bond including ethylenically mono-, di- or poly-unsaturated alkyl groups as previously defined, preferably C2-20 alkenyl (e.g. C2-10 or C2-6). Examples of alkenyl include vinyl, allyl, 1-methylvinyl, butenyl, iso-butenyl, 3-methyl-2-butenyl, 1-pentenyl, 1-hexenyl, 3-hexenyl, 1-heptenyl, 3-heptenyl, 1-octenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 3-decenyl, 1,3-butadienyl, 1-4,pentadienyl, 1,3-hexadienyl and 1,4-hexadienyl. An alkenyl group may be optionally substituted by one or more optional substituents as herein defined.
- As used herein the term “alkynyl” denotes groups formed from straight chain or branched hydrocarbon residues containing at least one carbon-carbon triple bond including ethynically mono-, di- or poly-unsaturated alkyl groups as previously defined. Unless the number of carbon atoms is specified the term preferably refers to C2-20 alkynyl (e.g. C2-10 or C2-6). Examples include ethynyl, 1-propynyl, 2-propynyl, and butynyl isomers, and pentynyl isomers. An alkynyl group may be optionally substituted by one or more optional substituents as herein defined.
- An “alkylene”, “alkenylene” or “alkynylene” group denotes a divalent form of an alkyl, alkenyl or alkynyl group and may be substituted or unsubstituted. Thus, “C1-4alkylene” refers to straight or, where appropriate, branched, methylene, ethylene, propylene and butylene. “C1-4Alkylene” refers to ethenylene, propenylene and butenylene, which may be straight, or as appropriate, branched. “C1-4Alkynylene” refers to ethynylene, propynylene and butynylene, which may be straight, or as appropriate, branched.
- The term “halogen” (“halo”) denotes fluorine, chlorine, bromine or iodine (fluoro, chloro, bromo or iodo).
- The term “heteroaryl” includes any of monocyclic or bicyclic, hydrocarbon residues, wherein one or more carbon atoms are replaced by a heteroatom so as to provide an aromatic residue. Monocyclic 5-6-membered heteroaryl refers to a single heteroaryl ring having 5-6 ring members. Bicyclic 9-10-membered heteroaryl refers to bicyclic heteroaryl ring systems, which may be fused, having a total of 9-10 ring members. Suitable heteroatoms include, O, N, S, P and Se, particularly O, N and S. Where two or more carbon atoms are replaced, this may be by two or more of the same heteroatom or by different heteroatoms. In particular embodiments of the invention, when A is a heteroaryl group, it is attached to the adjacent oxygen atom via a carbon atom. A heteroaryl group may be optionally substituted by one or more optional substituents as defined herein.
- Suitable examples of monocyclic 5-6-membered heteroaryl groups may include pyrrolyl (2- or 3-), furanyl (2- or 3-), thienyl (2- or 3-), pyrazolyl (3-, 4-, or 5-), imidazolyl (4-, or 5-), oxazolyl (2-, 4-, or 5-), isoxazolyl (3-, 4- or 5-), thiazolyl (4-), isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,3-oxadiazolyl, oxatriazolyl, furazanyl, 1,3,4-thiadiazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl, (1,2,3-, 1,3,5- or 1,2,4-). A 5-6-membered heteroaryl group may be attached via any ring carbon atom thereof, ie at positions 1-, 2-, 3-, 4-, 5- or 6- as appropriate. Some non-limiting exemplary positions are indicated in parentheses above.
- Suitable examples of bicyclic 9-10 membered heteroaryl groups may include indolyl, isoinolyl, benzothienyl, isobenzothienyl, benzofuranyl, isobenzofuranyl, quinazolinyl, cinnolinyl, quinolyl, isoquinolyl, quinolinyl, isoquinolinyl, indazolyl, benzimidazolyl, benzthiazolyl, purinyl, quinoxalinyl, 1,8-napthpyridinyl, phthalazinyl, pteridinyl. Bicyclic groups, including naphthyl, are, in certain embodiments, attached such that the molecule is essentially linear, at a 2- or 3- (or corresponding) position.
- In certain embodiments of the invention, A is optionally substituted phenyl or an optionally substituted 6-membered heteroaryl group, such as optionally substituted pyridyl (e g. optionally substituted 4-pyridyl).
- In some further examples, A is substituted with one, two or three substituents. In further examples, A is substituted at one or both of the positions ortho- to the atom bonded to the —O— atom.
- In certain embodiments of the invention, L1 and L2 are independently selected from methylene, ethylene, propylene and butylene. Each linker group, L1 and L2, may be unsubstituted or independently substituted by one or more, same or different, substituents. Suitable substituents for L1 and L2 include C1-6alkyl, such as methyl, ethyl and propyl (n- or i-). In certain examples, L1 is unsubstituted. In further examples L1 is unsubstituted ethylene or propylene, particularly unsubstituted propylene, and L2 is unsubstituted methylene.
- In some embodiments, R is hydrogen. In other embodiments, R is an alkyl group such as methyl, ethyl, or propyl (n- or i-).
- In some embodiments of the invention, R1 and R2 are selected from C3-6alkyl, which may be straight chain or branched, such as isopropyl, sec-butyl or t-butyl, or C3-6cycloalkyl, for example, cyclopropyl or cyclobutyl. In particular embodiments of the invention, R1 and R2 are both t-butyl.
- Certain groups as defined herein, for example the group A, may be optionally substituted, i.e., they may be unsubstituted or substituted by one or more, same or different substituents. Exemplary optional substituents include those selected from: alkyl, (e.g. C1-6alkyl such as methyl, ethyl, propyl, butyl), cycloalkyl (e.g. C3-6cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl), hydroxyalkyl (e.g. hydroxyC1-6alkyl, such as hydroxymethyl, hydroxyethyl, hydroxypropyl), alkoxyalkyl (e.g. C1-6alkoxyC1-6alkyl, such as methoxymethyl, methoxyethyl, methoxypropyl, ethoxymethyl, ethoxyethyl, ethoxypropyl), alkoxy (e.g. C1-6alkoxy, such as methoxy, ethoxy, propoxy, butoxy), alkoxyalkoxy (e.g. C1-6alkocyC1-6 alkoxy, such as methoxymethoxy, methoxyethoxy, methoxypropoxy, ethoxymethoxy, ethoxyethoxy, ethoxypropoxy, propoxymethoxy, propoxyethoxy, propoxypropoxy) cycloalkoxy (e.g. cyclopropoxy, cyclobutoxy, cyclopentoxyl, cyclohexyloxy), halo, haloalkyl(e.g. haloC1-6alkyl, such as chloromethyl, difluoromethyl, trifluoromethyl, trichloromethyl, tribromomethyl), haloalkoxy (e.g. haloC1-6alkoxy), hydroxy, thio (—SH), sulfonyl, sulfonamido, phenyl (which itself may be further substituted e.g., by one or more C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, halo C1-6alkyl, halo C1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), benzyl (wherein benzyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), phenoxy (wherein phenyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), benzyloxy (wherein benzyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), NH2, alkylamino (e.g. —NHC1-6alkyl, such as methylamino, ethylamino, propylamino etc), dialkylamino (e.g. —NH(C1-6alkyl)2, such as dimethylamino, diethylamino, dipropylamino), acylamino (e.g. —NHC(O)C1-6alkyl, such as —NHC(O)CH3), phenylamino (i.e. —NHphenyl, wherein phenyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, hydroxyC1-6alkoxy C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), nitro, cyano, formyl, —C(O)-alkyl (e.g. —C(O)C1-6alkyl, such as acetyl), O—C(O)-alkyl (e.g. —OC(O)C1-6alkyl, such as acetyloxy), benzoyl (wherein benzyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, halo C1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6 alkyl and NC1-6alkylC1-6alkyl), benzoyloxy (wherein benzyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), CO2H, CO2alkyl (e.g. CO2C1-6alkyl such as methyl ester, ethyl ester, propyl ester, butyl ester), CO2phenyl (wherein phenyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), CO2benzyl (wherein benzyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O) C1-6alkyl and NC1-6alkylC1-6alkyl), CONH2, C(O)NHphenyl (wherein phenyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), C(O)NHbenzyl (wherein benzyl itself may be further substituted e.g., by one or more of C1-6alkyl, halo, hydroxy, hydroxyC1-6alkyl, C1-6alkoxy, C1-6alkoxyC1-6alkyl, C1-6alkoxyC1-6alkoxy, haloC1-6alkyl, haloC1-6alkoxy, cyano, nitro, OC(O)C1-6alkyl, NH2, NHC1-6alkyl, NHC(O)C1-6alkyl and NC1-6alkylC1-6alkyl), C(O)NHalkyl (e.g. C(O)NHC1-6 alkyl such as methyl amide, ethyl amide, propyl amide, butyl amide) C(O)Ndialkyl. (e.g. C(O)N(C1-6alkyl)2) aminoalkyl (e.g., HNC1-6alkyl-, C1-6alkylHN—C1-6alkyl- and (C1-6alkyl)2N—C1-6alkyl-), thioalkyl (e.g., HSC1-6alkyl-), carboxyalkyl (e.g., HO2CC1-6alkyl-), carboxyesteralkyl (e.g., C1-6alkylO2CC1-6alkyl-), amidoalkyl (e.g., H2N(O)CC1-6alkyl-, H(C1-6alkyl)N(O)CC1-6alkyl-), formylalkyl (e.g., OHCC1-6alkyl-), acylalkyl (e.g., C1-6alkyl(O)CC1-6alkyl-), nitroalkyl (e.g., O2NC1-6alkyl-), replacement of CH2 with C═O, replacement of CH2 with C═S, substitution of 2 adjacent or non-adjacent carbon atoms (e.g. 1,2 or 1,3) by one end each of a —O—(CH2)s—O— or —NR′— (CH2)s—NR′— group, wherein s is 1 or 2 and each R′ is independently H or C1-6alkyl, and substitution of 2 adjacent or non-adjacent atoms, independently selected from C and N, by a C2-5alkylene or C2-5alkenylene group.
- The compounds of the invention may be prepared in accordance with the methods described herein or any other methods known in the art of synthetic organic chemistry.
- In some embodiments, compounds of the invention may be prepared by reacting an appropriate aryloxyamine A-O-L1-NH2, (or suitable salt, for example as the hydrochloride salt thereof) with a disubstituted phenolic aldehyde in the presence of a base (eg an amine base such as Et3N). Some exemplary aryloxyamine compounds, and their preparation, for use in accordance with this method are described in U.S. Pat. No. 3,659,019. Alternatively, aryloxyamine compounds can be prepared by reacting an appropriate A-OH compound with a suitable phthalimide compound in accordance or analogous to the preparative processes described in the Examples.
- It will be recognised that during the processes for the preparation of compounds contemplated by the present invention, it may be necessary or desirable to protect certain functional groups which may be reactive or sensitive to the reaction or transformation conditions undertaken (e.g. OH (including diols), NH2, CO2H, SH, C═O). Suitable protecting groups for such functional groups are known in the art and may be used in accordance with standard practice. As used herein, the term “protecting group”, refers to an introduced functionality which temporarily renders a particular functional group inactive under certain conditions. Such protecting groups and methods for their installation and subsequent removal at an appropriate stage are described in Protective Groups in Organic Chemistry, 3rd Edition, T. W. Greene and P. G. Wutz, John Wiley and Sons, 1999, the entire contents of which are incorporated herein by reference. Exemplary forms of protected groups include:
- for amino (NH2)—carbamates (such as Cbz, Boc, Fmoc), benzylamines, acetamides (e.g. acetamide, trifluoroacetamide);
for carbonyl—acetals, ketals, dioxanes, dithianes, and hydrazones;
for hydroxy—ethers (e.g. alkyl ethers, alkoxylalkyl ethers, allyl ethers, silyl ethers, benzyl ethers, tetrahydropyranyl ethers), carboxylic acid esters, acetals (e.g. acetonide and benzylidene acetal);
for thio (SH)—ethers (e.g. alkyl ethers, benzyl ethers), esters
for CO2H—esters (e.g. alkyl esters, benzyl esters). - It will also be recognised that certain compounds of formula (I) may possess asymmetric centres and are therefore capable of existing in more than one stereoisomeric form, such as enantiomers and diastereomers. The invention thus also relates to optically active compounds and compounds in substantially pure isomeric form at one or more asymmetric centres, e.g., enantiomers having greater than about 90% ee, such as about 95% or 97% ee or greater than 99% ee, as well as mixtures, including racemic mixtures, thereof. Such isomers may be prepared by asymmetric synthesis, for example using chiral intermediates, enzymes, or mixtures may be resolved by conventional methods, e.g., chromatography, recrystallization or use of a resolving agent.
- The compounds of the present invention may also be administered as prodrugs and thus the invention also contemplates prodrugs of formula (I). The term “prodrug” is used in its broadest sense and encompasses those derivatives that are converted in vivo, either enzymatically or hydrolytically, to the compounds of the invention. Such derivatives would readily occur to those skilled in the art, and include, for example, compounds where a free thiol or hydroxy group is converted into an ester, such as an acetate, or thioester or where a free amino group is converted into an amide. Procedures for acylating the compounds of the invention, for example to prepare ester and amide prodrugs, are well known in the art and may include treatment of the compound with an appropriate carboxylic acid, anhydride or chloride in the presence of a suitable catalyst or base. Esters of carboxylic acid (carboxy) groups are also contemplated. Suitable esters C1-6alkyl esters; C1-6alkoxymethyl esters, for example methoxymethyl or ethoxymethyl; C1-6alkanoyloxymethyl esters, for example, pivaloyloxymethyl; phthalidyl esters; C3-8scycloalkoxycarbonylC1-6alkyl esters, for example, 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolen-2-onylmethyl esters, for example, 5-methyl-1,3-dioxolen-2-onylmethyl; and C1-6alkoxycarbonyloxyethyl esters, for example, 1-methoxycarbonyloxyethyl. Prodrugs of amino functional groups include amides (see, for example, Adv. BioSci., 1979, 20, 369, Kyncl, J. et al), enamines (see, for example, J. Pharm. Sci., 1971, 60, 1810, Caldwell, H. et al), Schiff bases (see, for example, U.S. Pat. No. 2,923,661 and Antimicrob. Agents Chemother., 1981, 19, 1004, Smyth, R. et al), oxazolidines (see, for example, J. Pharm. Sci, 1983, 72, 1294, Johansen, M. et al), Mannich bases (see, for example, J. Pharm. Sci. 1980, 69, 44, Bundgaard, H. et al and J. Am. Chem. Soc., 1959, 81, 1198, Gottstein, W. et al), hydroxymethyl derivatives (see, for example, J. Pharm. Sci, 1981, 70, 855, Bansal, P. et al) and N-(acyloxy)alkyl derivatives and carbamates (see, for example, J. Med. Chem., 1980, 23, 469, Bodor, N. et al, J. Med. Chem., 1984, 27, 1037, Firestone, R. et al, J. Med. Chem., 1967, 10, 960, Kreiger, M. et al, U.S. Pat. No. 5,684,018 and J. Med. Chem., 1988, 31, 318-322, Alexander, J. et al). Esters of phosphoric acids such as phosphate esters of the phenolic hydroxy are also contemplated (see, for example, Mantyla et al, J. Med. Chem., 47:188-195, 2004). Other conventional procedures for the selection and preparation of suitable prodrugs are known in the art and are described, for example, in WO 00/23419; Design of Prodrugs, H. Bundgaard, Ed., Elsevier Science Publishers, 1985; Methods in Enzymology, 42: 309-396, K. Widder, Ed, Academic Press, 1985; A Textbook of Drug Design and Development, Krogsgaard-Larsen and H. Bundgaard, Eds,
Chapter 5, p113-191 (1991); Advanced Drug Delivery Reviews, 8; 1-38 (1992); Journal of Pharmaceutical Sciences, 77; 285 (1988), H. Bundgaard, et al; Chem Pharm. Bull, 32692 (1984), N. Kakeya et al and The Organic Chemistry of Drug Desig and Drug Action, Chapter 8, pp 352-401, Academic press, Inc., 1992. - Suitable pharmaceutically acceptable salts of compounds of formula (I) include, but are not limited to salts of pharmaceutically acceptable inorganic acids such as hydrochloric, sulphuric, phosphoric nitric, carbonic, boric, sulfamic, and hydrobromic acids, or salts of pharmaceutically acceptable organic acids such as acetic, propionic, butyric, tartaric, maleic, hydroxymaleic, fumaric, maleic, citric, lactic, mucic, gluconic, benzoic, succinic, oxalic, phenylacetic, methanesulphonic, toluenesulphonic, benezenesulphonic, salicyclic sulphanilic, aspartic, glutamic, edetic, stearic, palmitic, oleic, lauric, pantothenic, tannic, ascorbic, fendizoic, 4-4′-methylenebis-3-hydroxy-2-naphthoic acid, o-(p-hydroxybenzoyl)benzoic, 4′-4″-dihydroxytriphenylmethane-2-carboxylic acid and valeric acids. Base salts include, but are not limited to, those formed with pharmaceutically acceptable cations, such as sodium, potassium, lithium, calcium, magnesium, ammonium and alkylammonium. Basic nitrogen-containing groups may be quaternised with such agents as lower alkyl halide, such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides or dialkyl sulfates such as dimethyl and diethyl sulfate.
- The compounds of the invention may be in crystalline form either as the free compounds or as solvates and it is intended that both forms are within the scope of the present invention. The term “solvate” refers to a complex or aggregate formed by one or more molecules of a solute, ie compounds contemplated by the invention, and one or more molecules of a solvent. Suitable solvents are well understood in the art and include for example, of water, ie to form hydrates, and common organic solvents such as alcohols (methanol, ethanol, isopropanol) and acetic acid. Methods of solvation are generally known within the art, for example, recrystallization from an appropriate solvent.
- Due to their sodium channel modulating properties, the compounds of the invention may be useful in the treatment of conditions in which excessive or undesirable sodium channel activity is implicated. Such conditions are those whose aetiologies or resulting symptoms have an excessive or undesirable sodium channel activity component, and include conditions such as arrhythmia and neuropathies, which may be central or peripheral as previously described herein above.
- Central nervous system injuries (or neuropathies) which may be treated by compounds contemplated herein include those resulting from stroke, ischemic damage, percussive brain damage, traumatic damage, spinal cord injury, multiple sclerosis, Guillain-Barre syndrome, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, Fisher syndrome, HIV infection or AIDS, and bacterial and viral infections eg meningitis and shingles (Herpes zoster infection).
- The compounds contemplated herein may also be useful in the treatment of peripheral neuropathies which result in one or more of pain, tingling, numbness, cramps, itching, weakness, heaviness, muscular atrophy, fasciculation, and gait abnormalities. Peripheral neuropathies may be categorised as one of distal axonopathies (metabolic or toxic derangement of neurons), myelinopathies (primary attack on myelin causing an acute failure of impulse conduction) and neuronopathies (result of destruction of peripheral nervous system neurons) and may affect just one nerve (mononeuropathy) or several nerves (polyneuropathy). Peripheral neuropathies may be the result of compression or entrapment (such, as ulnar nerve palsey, carpal tunnel syndrome, peroneal nerve palsy and radial nerve palsey) metabolic diseases (such as diabetes or amyloidosis), renal failure, deficiency syndromes such as malnutrition and alcoholism, infectious disorders (eg, Lyme disease, HIV infection, leprosy), the effects of toxins or cytotoxic drugs, Sjögren's syndrome and Guillain-Barre syndrome.
- In certain embodiments, compounds of the invention may be useful in the treatment of neuropathic pain. Neuropathic pain may result from peripheral or central nervous system disorders as described above, including pathologic events, ongoing metabolic or toxic diseases, infections, or endocrinologic disorders (eg, diabetes mellitus, diabetic neurophathy, amyloidosis, amyloid polyneuropathy (primary and familial), neuropathies with monoclonal proteins, vasculitic neuropathy, HIV infection, herpes zoster—shingles and postherpetic neuralgia, etc), neuropathy associated with Guillain-Barre syndrome, neuropathy associated with Fabry's disease, entrapment due to anatomic abnormalities, trigeminal and other CNS neuralgias, malignancies, inflammatory conditions or autoimmune disorders (including demyelinating inflammatory disorders, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome), and cryptogenic causes (idiopathic distal small-fiber neuropathy). Other causes of neuropathic pain include exposure to toxins or drugs (such as arsenic, thallium, alcohol, vincristine, cisplatin and dideoxynucleosides), dietary or absorption abnormalities, immuno-globulinemias, hereditary abnormalities and amputations (including mastectomy). Neuropathic pain may also result from compression of nerve fibers, such as radiculopathies and carpal tunnel syndrome.
- Common aetiologies of neurophatic pain which may be treated by compounds contemplated herein include alcohol,
1 and 2, Eosinophilia-myalgia syndrome, Guillain-Barre syndrome, heavy metals (e.g. arsenic, lead, mercury), HIV/AIDS, malignant tumor-related, medications, including antineoplastic drugs, (e.g. amiodarone, aurothioglucose, cisplatinum, dapsone, d4T (stavudine), ddC (zalcitabine,), ddI (didanosine), disulfiram, FK 506, hydralazine, isoniazid, metronidazole, nitrofurantoin, paclitaxel, phenytoin, vincristine) monoclonal gammopathies multiple sclerosis, post-stroke central pain, postherpetic neuralgia, traumatic/compression, carpal tunnel syndrome, radiculopathy (sciatica, etc.) cervical or lumbar radiculopathy, complex regional pain syndrome, spinal cord injury, stump (phantom limb) pain, trigeminal neuralgia, and vasculitis.diabetes mellitus type - Reference to neuropathic pain includes reference to a neuropathic component of nociceptive pain. Thus, subjects to be treated for neuropathic pain in accordance with this embodiment of the present invention are selected on the basis of requiring treatment for the neuropathic pain.
- Preferably, the sensibility to pain is reduced by at least 30%, preferably at least 50%, more preferably at least 70% and particularly preferably at least 85%. In a most preferred aspect of the present invention, the sensibility to the neuropathic pain is completely, or substantially completely, removed. To assess the level of reduction of sensibility to pain associated with the analgesia induced by the methods according to the present invention it is possible to conduct tests such as the short form McGill pain questionnaire and/or visual analogue scales for pain intensity and/or verbal rating scales for pain intensity and/or measurement of tactile allodynia using von Frey hairs or similar device. These tests are standard tests within the art and would be well known to the skilled person.
- The compounds contemplated herein may also be used in treating the neuropathic pain in any one or more of the following diseases or conditions which cause neuropathic pain or which have a neuropathic pain component: Abdominal Wall Defect, Abdominal Migraine, Achondro genesis, Achondrogenesis Type IV, Achondrogenesis Type III, Achondroplasia, Achondroplasia Tarda, Achondroplastic Dwarfism, Acquired Immunodeficiency Syndrome (AIDS), Acute Intermittant Porphyria, Acute Porphyrias, Acute Shoulder Neuritis, Acute Toxic Epidermolysis, Adiposa Dolorosa, Adrenal Neoplasm, Adrenomyeloneuropathy, Adult Dermatomyositis, Amyotrophic Lateral Sclerosis, Amyotrophic Lateral Sclerosis-Polyglucosan Bodies, AN, AN 1, AN 2, Anal Rectal Malformations, Anal Stenosis, Arachnitis, Arachnoiditis Ossificans, Arachnoiditis, Arteritis Giant Cell, Arthritis, Arthritis Urethritica, Ascending Paralysis, Astrocytoma Grade I (Benign), Astrocytoma Grade II (Benign), Athetoid Cerebral Palsy, Barrett Esophagus, Barrett Ulcer, Benign Tumors of the Central Nervous System, Bone Tumor-Epidermoid Cyst-Polyposis, Brachial Neuritis, Brachial Neuritis Syndrome, Brachial Plexus Neuritis, Brachial-Plexus-Neuropathy, Brachiocephalic Ischemia, Brain Tumors, Brain Tumors Benign, Brain Tumors Malignant, Brittle Bone Disease, Bullosa Hereditaria, Bullous CIE, Bullous Congenital Ichthyosiform Erythroderma, Bullous Ichthyosis, Bullous Pemphigoid, Burkitt's Lymphoma, Burkitt's Lymphoma African type, Burkitt's Lymphoma Non-african type, Calcaneal Valgus, Calcaneovalgus, Cavernous Lymphangioma, Cavernous Malformations, Central Form Neurofibromatosis, Cervical Spinal Stenosis, Cervical Vertebral Fusion, Charcot's Disease, Charcot-Marie-Tooth, Charcot-Marie-Tooth Disease, Charcot-Marie-Tooth Disease Variant, Charcot-Marie-Tooth-Roussy-Levy Disease, Childhood Dermatomyositis, Chondrodysplasia Punctata, Chondrodystrophia Calcificans Congenita, Chondrodystrophia Fetalis, Chondrodystrophic Myotonia, Chondrodystrophy, Chondrodystrophy with Clubfeet, Chondrodystrophy Epiphyseal, Chondrodystrophy Hyperplastic Form, Chondroectodermal Dysplasias, Chondrogenesis Imperfecta, Chondrohystrophia, Chondroosteodystrophy, Chronic Adhesive Arachnoiditis, Chronic Idiopathic Polyneuritis (CIP), Chronic Inflammatory Demyelinating Polyneuropathy, Chronic Inflammatory Demyelinating Polyradiculoneuropathy, Cicatricial Pemphigoid, Complex Regional Pain Syndrome, Congenital Cervical Synostosis, Congenital Dysmyelinating Neuropathy, Congenital Hypomyelinating Polyneuropathy, Congenital Hypomyelination Neuropathy, Congenital Hypomyelination, Congenital Hypomyelination (Onion Bulb) Polyneuropathy, Congenital Ichthyosiform Erythroderma, Congenital Tethered Cervical Spinal Cord Syndrome, Cranial Arteritis, Crohn's Disease, Cutaneous Porphyrias, Degenerative Lumbar Spinal Stenosis, Demyelinating Disease, Diabetes Mellitus Diabetes Insulin Dependent, Diabetes Mellitus, Diabetes Mellitus Addison's Disease Myxedema, Discoid Lupus, Discoid Lupus Erythematosus, Disseminated Lupus Erythematosus, Disseminated Neurodermatitis, Disseminated Sclerosis, EDS Kyphoscoliotic, EDS Kyphoscoliosis, EDS Mitis Type, EDS Ocular-Scoliotic, Elastosis Dystrophica Syndrome, Encephalofacial Angiomatosis, Encephalotrigeminal Angiomatosis, Enchondromatosis with Multiple Cavernous Hemangiomas, Endemic Polyneuritis, Endometriosis, Eosinophilic Fasciitis, Epidermolysis Bullosa, Epidermolysis Bullosa Acquisita, Epidermolysis Bullosa Hereditaria, Epidermolysis Bullosa Letalias, Epidermolysis Hereditaria Tarda, Epidermolytic Hyperkeratosis, Epidermolytic Hyperkeratosis (Bullous CIE), Familial Lumbar Stenosis, Familial Lymphedema Praecox, Fibromyalgia, Fibromyalgia-Fibromyositis, Fibromyositis, Fibrositis, Fibrous Ankylosis of Multiple Joints, Fibrous Dysplasia, Fragile X syndrome, Generalized Fibromatosis, Guillain-Barre Syndrome, Hemangiomatosis Chondrodystrophica, Hereditary Sensory and Autonomic Neuropathy Type I, Hereditary Sensory and Autonomic Neuropathy Type II, Hereditary Sensory and Autonomic Neuropathy Type III, Hereditary Sensory Motor Neuropathy, Hereditary Sensory Neuropathy type I, Hereditary Sensory Neuropathy Type I, Hereditary Sensory Neuropathy Type II, Hereditary Sensory Neuropathy Type III, Hereditary Sensory Radicular Neuropathy Type I, Hereditary Sensory Radicular Neuropathy Type I, Hereditary Sensory Radicular Neuropathy Type II, Herpes Zoster, Hodgkin Disease, Hodgkin's Disease, Hodgkin's Lymphoma, Hyperplastic Epidermolysis Bullosa, Hypertrophic Interstitial Neuropathy, Hypertrophic Interstitial Neuritis, Hypertrophic Interstitial Radiculoneuropathy, Hypertrophic Neuropathy of Refsum, Idiopathic Brachial Plexus Neuropathy, Idiopathic Cervical Dystonia, Juvenile (Childhood) Dennatomyositis (JDMS), Juvenile Diabetes, Juvenile Rheumatoid Arthritis, Pes Planus, Leg Ulcer, Lumbar Canal Stenosis, Lumbar Spinal Stenosis, Lumbosacral Spinal Stenosis, Lupus, Lupus, Lupus Erythematosus, Lymphangiomas, Migraine (e.g. classic or common in adults), Mononeuritis Multiplex, Mononeuritis Peripheral, Mononeuropathy Peripheral, Monostotic Fibrous Dysplasia, Multiple Cartilaginous Enchondroses, Multiple Cartilaginous Exostoses, Multiple Enchondromatosis, Multiple Myeloma, Multiple Neuritis of the Shoulder Girdle, Multiple Osteochondromatosis, Multiple Peripheral Neuritis, Multiple Sclerosis, Musculoskeletal Pain Syndrome, Neuropathic Amyloidosis, Neuropathic Beriberi, Neuropathy of Brachialpelxus Syndrome, Neuropathy Hereditary Sensory Type I, Neuropathy Hereditary Sensory Type II, Nieman Pick disease Type A (acute neuronopathic form), Nieman Pick disease Type B, Nieman Pick Disease Type C (chronic neuronopathic form), Non-Scarring Epidermolysis Bullosa, Ochronotic Arthritis, Ocular Herpes, Onion-Bulb Neuropathy, Osteogenesis Imperfect, Osteogenesis Imperfecta, Osteogenesis Imperfecta Congenita, Osteogenesis Imperfecta Tarda, Peripheral Neuritis, Peripheral Neuropathy, Perthes Disease, Polyarteritis Nodosa, Polymyalgia Rheumatica, Polymyositis and Dermatomyositis, Polyneuritis Peripheral, Polyneuropathy Peripheral, Polyneuropathy and Polyradiculoneuropathy, Polyostotic Fibrous Dysplasia, Polyostotic Sclerosing Histiocytosis, Postmyelographic Arachnoiditis, Primary Progressive Multiple Sclerosis, Psoriasis, Radial Nerve Palsy, Radicular Neuropathy Sensory, Radicular Neuropathy Sensory Recessive, Reflex Sympathetic Dystrophy Syndrome, Relapsing-Remitting Multiple Sclerosis, Sensory Neuropathy Hereditary Type I, Sensory Neuropathy Hereditary Type II, Sensory Neuropathy Hereditary Type I, Sensory Radicular Neuropathy, Sensory Radicular Neuropathy Recessive, Sickle Cell Anemia, Sickle Cell Disease, Sickle Cell-Hemoglobin C Disease, Sickle Cell-Hemoglobin D Disease, Sickle Cell-Thalassemia Disease, Sickle Cell Trait, Spina Bifida, Spina Bifida Aperta, Spinal Arachnoiditis, Spinal Arteriovenous Malformation, Spinal Ossifying Arachnoiditis, Spinal Stenosis, Stenosis of the Lumbar Vertebral Canal, Still's Disease, Syringomyelia, Systemic Sclerosis, Talipes Calcaneus, Talipes Equinovarus, Talipes Equinus, Talipes Varus, Talipes Valgus, Tandem Spinal Stenosis, Temporal Arteritis/Giant Cell Arteritis, Temporal Arteritis, Tethered Spinal Cord Syndrome, Tethered Cord Malformation Sequence, Tethered Cord Syndrome, Tethered Cervical Spinal Cord Syndrome, Thalamic Pain Syndrome, Thalamic Hyperesthetic Anesthesia, Trigeminal Neuralgia, Variegate Porphyria, Vertebral Ankylosing Hyperostosis amongst others.
- Subjects to be treated in accordance with the invention include mammalian subjects: humans, primates, livestock animals (including cows, horses, sheep, pigs and goats), companion animals (including dogs, cats, rabbits, guinea pigs), and captive wild animals. Laboratory animals such as rabbits, mice, rats, guinea pigs and hamsters are also contemplated as they may provide a convenient test system. Non-mammalian species such as birds, amphibians and fish may also be contemplated in certain embodiments of the invention. Particularly contemplated subjects are human subjects.
- The compounds of the invention are administered in an amount and in accordance with a regimen effective to achieve the desired outcome (e.g. full or partial inhibition of sodium channel activity). An effective amount is intended to include an amount which, when administered according to the desired dosing regimen, at least partially attains the desired effect. In particular, a treatment effective amount is intended to include an amount which, when administered according to the desired dosing regimen, at least partially attains the desired therapeutic effect, including one or more of: alleviating, eliminating or reducing the frequency one or more symptoms of, preventing or delaying the onset of, inhibiting the progression of, or halting or reversing (partially or altogether) the onset or progression of the particular disorder or condition being treated.
- Suitable dosage amounts and dosing regimens can be determined by the attending physician and may depend on the particular condition being treated, the severity of the condition as well as the general age, health and weight of the subject. Suitable dosage amounts may lie in the range of from 1 μg to 1 g of compound, salt, solvate or prodrug, for example, 1 μg-1 mg, 1 mg-10 mg, 10 mg-50 mg, 50 mg-100 mg, 100 mg-500 mg, 500 mg-750 mg or 750 mg-1000 mg. Dosages may be administered once, or multiple times daily, or one or more times weekly, fortnightly or monthly.
- The active ingredient may be administered in a single dose or a series of doses. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a composition, preferably as a pharmaceutical composition, with one or more pharmaceutically acceptable adjuvants. Thus, the present invention also relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt or prodrug thereof in the manufacture of a medicament for treating a disease or condition in which undesirable sodium channel activity is involve or implicated.
- The formulation of such compositions is well known to those skilled in the art, see for example, Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing, 1990. The composition may contain any suitable additive such as carriers, diluents or excipients. These include all conventional solvents, dispersion media, fillers, solid carriers, coatings, antifungal and antibacterial agents, dermal penetration agents, surfactants, isotonic and absorption agents and the like. It will be understood that the compositions of the invention may also include other supplementary physiologically active agents.
- The carrier must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the composition and not injurious to the subject. Compositions include those suitable for oral, rectal, nasal, topical (including dermal, buccal and sublingual), vaginal or parental (including subcutaneous, intramuscular, intravenous and intradermal) administration. The compositions may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
- Compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
- A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g. inert diluent), preservative disintegrant (e.g. sodium starch glycolate, cross-linked polyvinyl pyrrolidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
- Compositions suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured base, usually sucrose and acacia or tragacanth gum; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia gum; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
- Compositions suitable for topical administration to the skin may comprise the compounds dissolved or suspended in any suitable carrier or base and may be in the form of lotions, gel, creams, pastes, ointments and the like. Suitable carriers include mineral oil, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax, sorbitan monostearate,
polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. Devices for transdermal delivery, such as patches, may also be used to administer the compounds of the invention. - Compositions for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter, glycerin, gelatin or polyethylene glycol.
- Compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
- Compositions suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bactericides and solutes which render the composition isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The compositions may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Preferred unit dosage compositions are those containing a daily dose or unit, daily sub-dose, as herein above described, or an appropriate fraction thereof, of the active ingredient.
- It should be understood that in addition to the active ingredients particularly mentioned above, the compositions of this invention may include other agents conventional in the art having regard to the type of composition in question, for example, those suitable for oral administration may include such further agents as binders, sweeteners, thickeners, flavouring agents disintegrating agents, coating agents, preservatives, lubricants and/or time delay agents. Suitable sweeteners include sucrose, lactose, glucose, aspartame or saccharine. Suitable disintegrating agents include corn starch, methylcellulose, polyvinylpyrrolidone, xanthan gum, bentonite, alginic acid or agar. Suitable flavouring agents include peppermint oil, oil of wintergreen, cherry, orange or raspberry flavouring. Suitable coating agents include polymers or copolymers of acrylic acid and/or methacrylic acid and/or their esters, waxes, fatty alcohols, zein, shellac or gluten. Suitable preservatives include sodium benzoate, vitamin E, alpha-tocopherol, ascorbic acid, methyl paraben, propyl paraben or sodium bisulphite. Suitable lubricants include magnesium stearate, stearic acid, sodium oleate, sodium chloride or talc. Suitable time delay agents include glyceryl monostearate or glyceryl distearate.
- The compounds of the invention may also be presented for use in veterinary compositions. These may be prepared by any suitable means known in the art. Examples of such compositions include those adapted for:
- (a) oral administration, external application (e.g. drenches including aqueous and non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pellets for admixture with feedstuffs, pastes for application to the tongue;
(b) parenteral administration, e.g. subcutaneous, intramuscular or intravenous injection as a sterile solution or suspension;
(c) topical application e.g. creams, ointments, gels, lotions etc. - The invention will now be described with reference to the following examples which are provided for the purpose of illustrating certain embodiments of the invention and are not intended to limit the generality hereinbefore described.
-
- Commercially available mexiletine hydrochloride (2.0 g, 9.24 mmol) was dissolved in dry dichloromethane (25 ml) containing 4A molecular sieves (2 g) and triethylamine (1.28 ml, 9.24 mmol) was added followed by commercially available 3,5-di-t-butyl-4-hydroxybenzaldehyde (3.37 g, 13.86 mmol). The mixture was stirred at room temperature under an atmosphere of nitrogen gas for 18 hours and then refluxed for 5 hours. The reaction mixture was cooled to room temperature and filtered to remove molecular sieves. The solvent was evaporated in a rotary evaporator and the residue was dissolved in methanol (40 ml) and tetrahydrofuran (10 ml) and sodium cyanoborohydride (1.16 g, 18.48 mmol)) was added portion wise and stirring was continued over 18 hours at room temperature under a nitrogen gas atmosphere. The reaction mixture was evaporated to dryness and 100 ml of distilled water was added. This was then extracted with dichloromethane (250 ml) and then dichloromethane layer was washed with a saturated solution of sodium chloride (10 ml). The dichloromethane extract was dried over anhydrous magnesium sulfate powder and the solvent evaporated to give a thick liquid which was chromatographed on a silica gel column and eluted with ethyl acetate/hexane (1:2) to give a light yellow liquid which solidified on storage at 4° C. Mp=61-64° C. Microanalysis for C26H39O2N C 78.54; H 9.89; N 3.52 (calculated), C 78.71; H 9.85; N 3.59 (obtained).
- A mixture of 2,6-dichlorophenol (2.0 g, 12 mmol), N-(3-bromopropyl)phthalimide (3.29 g, mmol) and potassium carbonate (1.69 g, 12 mmol) in anhydrous N,N-dimethylformamide (40 ml) was stirred at 100° C. for 4 hours under an atmosphere of nitrogen. The mixture was then poured into 200 ml of distilled water to give a white precipitate, which was filtered and washed with distilled water. The solid was dried in a vacuum desiccator to yield 4.17 g of N-[3(2,6-dichlorophenoxy)propyl]phthalimide which was dissolved in absolute ethanol (75 ml) and hydrazine hydrate (3 ml, 73 mmol) was added and the mixture refluxed for one hour. After cooling to room temperature, the precipitate was filtered off and the filtrate was concentrated. The residue was chromatographed on silica gel column and eluted with dichloromethane/methanol/ammonium hydroxide (9:2:0.2) to yield 3.2 g of 3-(2,6-dichorophenoxy) propylamine.
- 2,6-Dichlorophenoxy-propylamine (0.5 g, 2.2 mmol) was dissolved in dry dichloromethane and 4 A molecular sieves were added followed by 3,5-di-t-butyl-4-hydroxybenzaldehyde (3.3 mmol). The resulting mixture was stirred under an atmosphere of nitrogen at room temperature for 18 hours and then refluxed for 4 hours. The reaction mixture was cooled to room temperature and filtered to remove molecular sieves and the filtrate concentrated in vacuo and then dissolved in methanol (30 ml). Sodium cyanoborohydride (0.3 g, 4.4 mmol)) was added portion wise and stirring was continued over 18 hours at room temperature under a nitrogen gas atmosphere. The reaction mixture was evaporated to dryness in vacuo and 30 ml of distilled water was added. This was then extracted with dichloromethane (150 ml) and then dichloromethane layer was washed with a saturated solution of sodium chloride (10 ml). The dichloromethane extract was dried over anhydrous magnesium sulfate powder and the solvent evaporated to give a thick orange liquid which was chromatographed on a silica gel column and eluted with dichloromethane/methanol (9:1) to yield a yellow thick liquid (0.21 g) which was then dissolved in methanol and cooled in an ice-bath. Ether-HCl was added and the solution was evaporated in vacuo. More ether was added and the washing procedure was repeated three times to yield a hydrochloride salt (MP=84-86° C.). Acc mass calculated for [M+H]+438.1967, obtained 438.1966.
- C24H34Cl2NO2 Calculated HCl salt C 59.65 H 7.34 Cl 23.47 N 2.89
- Obtained C 60.21 H 7.24 Cl 22.41 N 2.89
- Tartrate salt formation: The free base (102 mg, 0.23 mmol) was dissolved in ethyl acetate (10 ml), tartaric acid (0.034 g, 0.23 mmol)) in absolute ethanol (2 ml) was added and the solution was stirred on rotary evaporator. The solvent was evaporated in vacuo and to the residue was added ethyl acetate and this washing procedure was repeated three times to yield a tartrate salt.
-
Compound 3 was prepared in an analogous manner to Compound 2 using 2,6-dimethoxyphenol (2 g. 12.9 mmol). -
Compound 4 was prepared in an analogous manner to Compound 2 using 2,6-diisopropylphenol (5 g. 28 mmol). -
Compound 5 was prepared in an analogous manner to Compound 2 using 3,5-diisopropyl-4-hydroxy-pyridine. -
Compound 6 was prepared in an analogous manner to Compound 2 using phenol. -
Compound 7 was prepared in an analogous manner to Compound 2 using 4-hydroxy pyridine. - Compound 8 was prepared in an analogous manner to Compound 2 using 2,6-dimethyl phenol (5 g, 4.1 mmol).
- Commercially available 1-hydroxy-benzotriazole (70 mg, 0.5 mmol) in dry dimethylformamide (7 ml) was cooled to 4° C. and then commercially available 4-(3-methyl-5-oxo-2-pyrazolin-1-yl)benzoic acid (100 mg, 0.45 mmol) was added with stirring under an atmosphere of nitrogen. A solution of N,N-dicyclohexylcarbodiimide (103 mg, 0.5 mmol) in dry dimethylformamide (2 ml) was added. After stirring this mixture for one hour at 0° C., mexiletine free base (80 mg, 0.45 mmol) was added in small amounts. The clear solution became progressively cloudy and a precipitate was formed which was stirred for 2 days at room temperature under nitrogen atmosphere. The precipitate was filtered and washed with dichloromethane (1 ml). The filtrate was concentrated in vacuo and the residue was chromatographed on silica gel column and eluted with dichloromethane/methanol (9:1). The residue was triturated with dry hexane to remove dimethylformamide and chromatographed on silica gel column and eluted with ethylacetate/hexane (4:1) to give a yellow liquid which solidified in a freezer. Mp=70-71° C. Acc. mass calculated for [M+H]+380.1974, obtained 380.1974.
- The compound above (100 mg, 0.26 mmol) was dissolved in dry tetrahydrofuran (7 ml) and heated under an atmosphere of nitrogen gas to reflux. Borane-dimethyl sulfide complex (2 Molar in tetrahydrofuran) was added dropwise (0.24 ml, 0.48 mmol, 1.8 equivalents) via a syringe and the reaction was refluxed overnight. The reaction mixture was cooled to room temperature and concentrated hydrochloric acid in absolute ethanol (1 ml of 30% HCl in 10 ml of absolute ethanol) was added until the solution was acidic (˜pH 4). The solution was concentrated and diethyl ether was added. A solid was filtered and washed with ether to yield ˜100 mg of a white solid.
- Acc. Mass calculated for [M+H]+366.2182, obtained 366.4766.
- This method is based on the publication by Catterall et al (1981). Rat brain membranes were prepared from Wistar rats and washed by centrifugation in fresh buffer. Aliquots of membranes were added to tubes and then incubated with 3H-batrachotoxinin (5 nM) in the absence or presence of increasing concentrations of the synthesised compounds. After incubation at 37° C. for 60 minutes, membranes were collected by rapid filtration though filters under vacuum and radioactivity in filters were determined by liquid scintillation counting. Non-specific binding of 3H-batrachotoxinin to membranes was determined by incubating membranes in a high concentration of veratridine (100 uM) and this was subtracted from all other values to determine specific binding. The concentration of each compound that inhibited specific binding of 3H-batrachotoxinin by 50% (IC50) was computed by non-linear regression using the EBDA/LIGAND computer software (McPherson, 1985).
- The chemical structures of the synthesised compounds were drawn using the software package PrologD (CompuDrug Chemistry Ltd, Budapest, Hungary) which also estimates the partition coefficients at a given pH using a published Linear Free Energy Relationship algorithm (Csizmadia, et al, 1997).
- The results are depicted in Table 2.1.
-
TABLE 2.1 Compound IC50 (μM) log P (pH 1) log P (pH 7.4) 1 0.134 3.43 6.43 2 0.105 4.13 6.17 3 0.107 2.63 4.67 4 0.09 5.30 7.35 5 0.38 0.56 5.24 6 0.236 2.70 4.74 7 0.87 −0.92 3.18 8 0.179 2.90 5.89 Comparative A 11 −0.1 2.48 Mexilitene 11 −1.2 0.80 - The formalin paw test provides a model of nociception in which a sub-dermal injection of formalin induces a pain that occurs in time-linked phases. Rats typically respond to the injured tissue in a characteristic way that can be quantitated and statistically evaluated. The early phase is thought to be caused by C-fiber activation due to peripheral sensory stimulation, while the late phase is associated with both an inflammatory component and functional changes in the dorsal horn of the spinal cord.
- The purpose of this study was to investigate the efficacy of
Compound 1 to reduce the pain associated with the rat formalin paw model. In this model, the hind paw dermis of each rat was injected with a solution of formalin or saline and pain behavior was evaluated.Compound 1 and a known sodium channel blocker, Mexiletine were injected intraperitoneally 30 minutes prior to paw injection. Pain behavior was then evaluated at three time points (at 2 to 5, 25 to 30 and 55 to 60 minutes) following paw injection of formalin or saline by counting the number of paw-licking events. - Thirty-four (34) male Sprague-Dawley rats of approximately 200 to 225 grams weight were used in this study. The rats were housed 2 animals per cage and were acclimated for nine (9) days prior to the commencement of experimental procedures. Rats were randomly allocated to treatment groups based on their body weights taken during the acclimation period. Eight (8) animals were allocated to each of four (4) treatment groups.
-
TABLE 3.1 Study Design Group No. Day Paw Injection Treatment Dose 1 −2 saline vehicle 5 mL/ kg 1 5 % formalin vehicle 5 mL/ kg 2 1 5 % formalin Compound 1 24 nmol/ g 3 1 5 % formalin Compound 1 72 nmol/ g 4 1 5% formalin Mexiletine HCl 144 nmol/g - At 30 minutes prior to paw injection of formalin or saline, rats were dosed by intraperitoneal injection of the appropriate drug according to Table 3.1. On Day-2, baseline control rats received a 50 μL injection of saline solution into the dermis of either hind paw at 30 minutes post-dosing with vehicle and immediately prior to behavioral observation. Eight (8) rats received saline injections in the left hind paw. On
Day 1, thirty two (32) rats received a 50 μL injection of 5% formalin solution into the dermis of either hind paw at 30 minutes post dosing and immediately prior to behavioral observation. - Each rat was placed in an individual plexiglas chamber on an elevated glass surface for the duration of testing. Rats were observed at 2 to 5 minutes (phase 1), 25 to 30 minutes (early phase 2), and again at 55 to 60 minutes (late phase 2) post-paw injection. For each observation interval, the number of paw-licking events were determined.
- The results are depicted in
FIGS. 1 and 2 . - The following method is based on the method published by Chaplan et al, 1994. Male Sprague-Dawley rats from one litter were weaned when 19 days old and acclimatized for the next two days in the Animal House where the experiment was to be carried out. From days 21 to 25, rats were tested using a set of Von Frey monofilaments to test the mechanical withdrawal threshold of the hindpaws. The monofilaments were applied in increasing force until the rat withdrew the hind paw being tested. Rats that consistently exhibited a threshold above 10 grams of force were selected for further studies. Rats were anaesthetized with a halothane/oxygen (5:95) gas mixture and a dorsal midline incision was made on the rat's lower back to expose the left lumbar region either side of the hip. Bone was clipped away to expose the L4 and L5 nerves distal to their emergence from the intervertebral foramina. The L5 nerve was then isolated using a glass hook, ligated and cut on the peripheral side of the ligation. The incision was then closed with suture threads and the anaesthetic gas discontinued. The next day rats underwent testing with the graded Von Frey filaments to the hind paws to determine if allodynia was present in the left paw as compared to the right hind paw. Testing was repeated on these rats until they were 28 days old. On that day, rats that displayed allodynia in their left paw only (
17, 18, 19, 20—Table 4.1) were given an intraperitoneal injection of Compound 1 (7 μmol per 100 g body weight dissolved in 5% ethanol in a volume of 1 ml/100 g). Rats were then tested with graded Von Frey filaments at 45 minutes and 90 minutes after injection in order to determine if allodynia had been blocked. It was found that 45 minutes after an intraperitoneal injection of Compound 1 (70 nmol/g) allodynia had been completely eliminated in 3 of the rats (#17, 18, 19) while it was reduced in rat #20 (Table 4.1). At 90 minutes after injection, allodynia had still been eliminated in 2 rats (#18,19) but allodynia had returned to pre-injection levels in rats #17,20 (Table 4.1). When the right hindpaw of the 4 rats was tested with the Von Frey filaments, there was no development of any allodynia after cutting the left L5 nerve nor was there any effect ofRats # Compound 1 on the response to the filaments at 45 or 90 minutes after injection ofCompound 1 showing thatCompound 1 did not cause a generalized anaesthesia (Table 4.2). -
TABLE 4.1 Left Hind Paw - nerve cut on day 3 - grams of force needed to withdraw left limb 45 min post 90 min post Rat Pre-op 1 Pre-op 2 Baseline Compound 1 Compound 1#17 17.8 g 17.8 g 10.46 g 17.8 g 10.9 g # 18 17.8 g 17.8 g 7.95 g 17.8 g 17.8 g #19 17.8 g 17.8 g 3.86 g 17.8 g 17.8 g # 20 17.8 g 17.8 g 5.61 g 11.44 g 3.7 g -
TABLE 4.2 Right Hind Paw - nerve intact - grams of force needed to withdraw right limb 45 min post 90 min post Rat Pre-op 1 Pre-op 2 Baseline Compound 1 Compound 1#17 17.8 g 17.8 g 17.8 g 17.8 g 17.8 g # 18 17.8 g 17.8 g 17.8 g 17.8 g 17.8 g #19 17.8 g 17.8 g 17.8 g 17.8 g 17.8 g # 20 17.8 g 17.8 g 17.8 g 17.8 g 17.8 g - Male Hooded Wistar rats were anesthetized (2% isoflurane/98% oxygen), and laminectomy performed at spinal level T12. An inflatable balloon catheter was inserted rostral, underneath the vertebra, to T10 and inflated for 5 minutes, causing reversible paraplegia (Feldblum, et al., 2000). This model demonstrates a slow, graded return of hindlimb motor function over 15 days. Rats had almost complete functional recovery by 15 d. Compound 1 (15 nmol/g and 60 nmol/g), mexiletine (60 nmol/g) and vehicle (5 ml/kg) were administered i.p, at 3 h after the injury and twice daily thereafter, until killed. Behavioural tests were conducted every 3 days. At 15 d post-injury, rats were anesthetized and transcardially perfused, to fix the spinal cords. Sections were cut and processed to examine the size of the cyst and modulatory effects of treatments or control on lesion formation.
- BBB scale: Effects of
Compound 1 and mexiletine treatment on the time course of functional recovery, following SCI, assessed with the BBB open-field locomotor score. BothCompound 1 and mexiletine significantly increased the rate of recovery following SCI, compared to the vehicle treated controls. Each rat acted as its own control, and results after SCI compared with pre-injury scores (0 h after SCI). The results are presented inFIG. 3 . Data are mean±SEM. ANOVA followed by Bonferroni post-test: [F(24,273)=10.57, P<0.0001], *P<0.05, **P<0.01, ***P<0.001 Compound 1 (60 nmol/g) versus the SCI+saline controls at the same time; †P<0.05 Compound 1 (15 nmol/g) or mexiletine (60 nmol/g) versus SCI+saline controls at the same time. Mexiletine (60 nmol/g) and Compound 1 (15 nmol/g) showed no significant difference from each other at any time. n=6-11 rats in each group. - Ladder test: In the horizontal ladder test, rats are placed onto a beam which is randomly missing rungs, this prevents rats from adapting and compensating for any deficits following SCI. In the ladder test, SCI+saline treated rats showed increased foot misplacements which decreased over the 15 day test period, but remained significantly different from pre-SCI. The results are depicted in
FIG. 4 . Treatment withCompound 1 or mexiletine decreased the number of hind-limb foot misplacements when compared to SCI+saline controls at the same time. Data is expressed as the percentage of foot misplacements made of the total number of steps taken, using a combined score for both hindlimbs. (If rats were found to have significant differences between the hind paws they were excluded from the study). Each rat acted as its own control, and results compared with pre-injury scores (0 h after SCI). ANOVA followed by Bonferroni post-test: [F(24,273)=5.94, P<0.0001], *P<0.05, **P<0.01 Compound 1 (60 nmol/g) versus the SCI+saline controls at the same time; †P<0.05 Compound 1 (15 nmol/g) and mexiletine (60 nmol/g) versus SCI+saline controls at the same time. Mexiletine (60 nmol/g) showed no significant difference from Compound 1(15 or 60 nmol/g) at any time. Data are mean±SEM. n=6-11 rats in each group. - Ledged beam: Effects of
Compound 1 and mexiletine, and SCI+saline controls on recovery of function following spinal cord compression injury as assessed by the number of steps using the support ledge on the ledged beam task. The results are depicted inFIG. 5 . Sham-SCI rats walked the length of the ledged beam with approximately 10% of steps made on the supporting ledge. Saline-treated control rats relied on the support ledge significantly more than shams during the course of recovery. Use of the support ledge was significantly reduced in rats treated with eitherCompound 1 or mexiletine. Data is expressed as ledge use/errors made as a percentage of total steps taken with both hindlimbs after SCI. Each rat acted as its own control, and results compared with pre-injury scores (0 h after SCI). ANOVA followed by Bonferroni post-test: [F(24,273)=5.12, P<0.0001], *P<0.05, **P<0.01, ***P<0.001 Compound 1 (60 nmol/g) versus the SCI+saline controls at the same time; †P<0.05 Compound 1 (15 nmol/g) versus SCI+saline controls at the same time. Mexiletine (60 nmol/g) showed no significant difference from SCI+saline at any time. Data are mean±SEM. n=6-11 rats in each group. - Volume of damage: Effects of treatment were measured first from H & E stained sections. The results are presented in
FIG. 6 . Sham-injury rats showed only minor damage associated with laminectomy and balloon insertion. SCI+saline vehicle controls showed increased damage. Mexiletine andCompound 1 at an equivalent mole dose showed reduced damage compared to SCI+saline. Data are mean±SEM of measurements from n=4 rats per treatment group. Secondly, the sparing of spinal cord tissue byCompound 1 and mexiletine treatment was assessed by more detailed histological staining techniques.Compound 1 and Mexiletine treatment showed better preservation of the cytoarchitecture in both H & E and luxol-fast blue (a myelin stain) stained coronal sections after SCI than saline treatment (Table 5.1). When this was examined in more detail in rostro-caudal serial sections stained both for myelin and grey matter and also by counting neuronal cell bodies (Table 5.2), this showed that treatment withCompound 1 and Mexiletine reduced loss of both white matter and gray matter. Again,Compound 1 was more effective than Mexiletine. -
TABLE 5.1 Thin tissue sections (16 um) were taken at the epicentre of the spinal cord after spinal cord injury (SCI), stained with Haematoxylin and Eosin (H & E) as well as Luxol Fast blue and cresyl violet staining in order to quantitate the percentage of white matter and gray matter that was spared from destruction. Treatment with Compound 1 and Mexiletine significantly increasedthe percentage of tissue that survived SCI. Dose % MEAN ±SE TOTAL TISSUE SCI + saline 53.6 8.04 SCI + Mexiletine 60 nmol/g 70.5* 5.89 SCI + Compound 160 nmol/g 83.9* 5.71 SCI + Compound 115 nmol/g 74.3* 6.25 WHITE MATTER SCI + saline 45.5 7.86 SCI + Mexiletine 60 nmol/g 66.3* 6.43 SCI + Compound 160 nmol/g 81.1* 5.18 SCI + Compound 115 nmol/g 63.6* 6.79 GRAY MATTER SCI + saline 62.5 8.75 SCI + Mexiletine 60 nmol/g 77.9* 5 SCI + Compound 160 nmol/g 88.9* 5.18 SCI + Compound 115 nmol/ g 80* 4.64 *P < 0.05 compared to SCI + saline treatment -
TABLE 5.2 Neuronal cell bodies were counted in thin tissue sections of 16 μm taken at 0.5 mm intervals rostral (−) and caudal (+) to the lesion epicentre (0.0) after spinal cord injury (SCI) using NeuN immunostaining. Dist from epicentre −2.5 mm −2 mm −1.5 mm −1 mm −0.5 mm 0.0 mm No. of motor neurons Per sq mm Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Sham, No 29 2 32 3 31 2 31 3 32 2 30 3 SCI SCI + saline 32 1 27 2 22 1 9 1 4 1 4 2 SCI + mex. 31 1 33 1 26 1 17* 2 11* 2 7* 3 60 nmol/g SCI + Comp 30 2 30 3 26 2 23* 2 17* 2 15* 3 1 60 nmol/g SCI + Comp 27 1 29 2 26 2 18* 2 11* 2 9* 1 1 15 nmol/g Dist from epicentre +0.5 mm +1 mm +1.5 mm +2 mm +2.5 mm No. of motor neurons Mean SE Mean SE Mean SE Mean SE Mean SE Sham, No 32 3 33 3 30 2 33 2 31 2 SCI SCI + saline 3 2 8 2 15 2 31 2 31 2 SCI + mex. 10* 2 17* 2 24* 1 30 1 27 2 60 nmol/g SCI + Comp 16* 2 22* 2 29* 2 28 2 30 2 1 60 nmol/g SCI + Comp 10* 2 14* 2 25* 2 28 1 29 1 1 15 nmol/g *P < 0.05 compared to SCI + saline - Phosphorylated Neurofilament H (pNF-H) is a biomarker of axonal injury and degeneration. It has shown to be readily detectable in the sera of rodents with experimental SCI (Shaw et al, 2005). Previous findings have shown that plasma pNF-H levels and behavioural outcomes can be correlated following EAE. Plasma pNF-H levels were determined in healthy controls (SHAM) and SCI injured animals (saline, mexiletine and
Compound 1 treated rats). The results are depicted inFIG. 7 . -
- Agrawal S. K., Fehlings M. G., The effect of the sodium channel blocker QX-314 on recovery after acute spinal cord injury. J. Neurotrauma 14:81-88, 1997.
- Baron R., Peripheral neuropathic pain: from mechanisms to symptoms. Clin. J. Pain 16 (suppl2):S12-S20, 2000.
- Bechtold et al., Axonal protection mediated by flecainide therapy in experimental inflammatory demyelinating disease. Ann Neurol 55:607-616, 2004.
- Bechtold et al., Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide. Brain 128:18-28, 2005.
- Butera J. A., Current and emerging targets to treat neuropathic pain, J. Med. Chem. 50:2543-2546, 2007
- Catterall et al, Binding of batrachotoxinin A 20-α-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. The Journal of Biological Chemistry 256: 8922-8927, 1981
- Chao T. I., Alzheimer C., Effects of phenytoin on the persistent Na+ current of mammalian CNS neurones. NeuroReport 6:1778-1780, 1995.
- Chaplan, et al, Quantitative assessment of allodynia in the rat paw. Journal of Neuroscience Methods, Vol. 53: pages 55-63, 1994.
- Craner et al., Colocalization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127(Pt 2):294-303, 2004.
- Craner et al., Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. GLIA 49:220-229, 2005.
- Csizmadia, et al Prediction of distribution coefficient from structure. 1. Estimation Method. Journal of Pharmaceutical Sciences 86: 865-871, 1997).
- De Andres and Garcia-Ribas, Neuropathic Pain Treatment: The Challenge. Pain Practice, 3:1-7, 2003
- Devor et al, Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J. Neurosci., 132, 1976-1992, 1993.
- Feldblum, et al, Efficacy of a new neuroprotective agent, gacyclidine, in a model of rat spinal cord injury. Journal of Neurotrauma, 17:1079-1093, 2000
- Fern et al., Pharmacological protection of CNS white matter during anoxia: actions of phenytoin, carbamazepine and diazepam. J. Pharmacol. Exp. Ther. 266:1549-1555, 1993.
- Hains et al., Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI, Experimental Neurology 188:365-377, 2004.
- Hains et al., Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury, J. Neurosci. 24:4832-4839, 2004 b
- Imaizumi et al., Anoxic injury in the rat spinal cord: pharmacological evidence for multiple steps in Ca2+-dependent injury of the dorsal columns. J. Neurotrauma 14:299-311, 1997.
- Kapoor et al., Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174-180, 2003.
- Kobrine et al., Effect of intravenous lidocaine on experimental spinal cord injury. J. Neurosurg. 60:595-601, 1984.
- Kyle & Ilyin, Sodium Channel Blockers, J. Med. Chem. 50:2583-2588, 2007
- Lo et al., Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis. NeuroReport 13:1909-1912, 2002.
- Lo et al., Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J Neurophysiol 90:3566-3571, 2003.
- McPherson, Analysis of radioligand binding experiments: A collection of computer programs for the IBM PC. Journal of Pharmacological Methods 14: 213-228, 1985.
- Mersky and Bogduk, Classifications of Chronic Pain, 2nd edn. Seattle IASP Press: 394, 1994.
- Rosenberg et al., Effects of the sodium channel blocker tetrodotoxin on acute white matter pathology after experimental contusive spinal cord injury. J Neurosci 19:6122-6133, 1999.
- Schwartz G., Fehlings M. G., Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J. Neurosurg. 94:245-256, 2001.
- Segal M. M., Douglas A. F., Late sodium channel openings underlying epileptiform activity are preferentially diminished by the anticonvulsant phenytoin. J. Neurophysiol. 77:3021-3034, 1997.
- Shaw et al, Hyperphosphorylated neurofilament NF—H is a serum biomarker of axonal injury, BioChem Biophys Res Commun, 336(4):1268-77, 2005.
- Stys et al., Tertiary and quaternary local anesthetics protect CNS white matter from anoxic injury at concentrations that do not block excitability. J Neurophysiol 67:236-240, 1992a.
- Stys et al., Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+—Ca2+ exchanger. J Neurosci 12:430-439, 1992b.
- Stys et al., Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proc Natl Acad Sci USA 90:6976-6980, 1993.
- Tanelian, et al, Sodium channel blocking agents: Their use in neuropathic pain conditions. Pain Forum, 4(22), 75-80, 1995
- Teng Y. D., Wrathall J. R., Local blockade of sodium channels by tetrodotoxin ameliorates tissue loss and long-term functional deficits resulting from experimental spinal cord injury. J. Neurosci. 17:4359-4366, 1997.
- Woolf and Mannion, Neuropathic pain: aetiology, symptoms, mechanisms and management. Lancet 353:1959-64, 1999.
Claims (17)
1-17. (canceled)
18. A method of preventing sodium ion influx into a cell by blocking or modulating a sodium channel, said method comprising contacting said sodium channel with a compound of Formula (I):
A-O-L1-NR-L2-B
A-O-L1-NR-L2-B
wherein
A is an optionally substituted cyclopentadi-2,4-en-1-yl or phenyl group, an optionally substituted 5-6-membered monocyclic heteroaryl group, an optionally substituted napthyl group or an optionally substituted 9-10-membered bicyclic heteroaryl group;
L1 is an optionally substituted C1-4 alkylene group, an optionally substituted C2-4 alkenylene group or an optionally substituted C2-C4 alkynylene group;
L2 is an optionally substituted C1-4 alkylene group, an optionally substituted C2-4 alkenylene group or an optionally substituted C2-C4 alkynylene group or a CO2 group;
R is hydrogen or a C1-6alkyl group; and
B is a group of formula (a) below:
19. A method for treating a condition in which excessive or undesirable sodium channel activity is implicated, in a subject in need thereof, comprising administering to said subject a compound of Formula (I):
A-O-L1-NR-L2-B
A-O-L1-NR-L2-B
wherein
A is an optionally substituted cyclopentadi-2,4-en-1-yl or phenyl group, an optionally substituted 5-6-membered monocyclic heteroaryl group, an optionally substituted napthyl group or an optionally substituted 9-10-membered bicyclic heteroaryl group;
L1 is an optionally substituted C1-4 alkylene group, an optionally substituted C2-4 alkenylene group or an optionally substituted C2-C4 alkynylene group;
L2 is an optionally substituted C1-4 alkylene group, an optionally substituted C2-4 alkenylene group or an optionally substituted C2-C4 alkynylene group or a CO2 group;
R is hydrogen or a C1-6alkyl group; and
B is a group of formula (a) below:
20. The method of claim 19 , wherein the condition in which excessive or undesirable sodium channel activity is implicated is neuroinflammatory disease.
21. The method of claim 19 , wherein the condition in which excessive or undesirable sodium channel activity is implicated is neuropathic pain.
22. The method of claim 19 , wherein the condition in which excessive or undesirable sodium channel activity is implicated is spinal cord injury.
23. The method of claim 19 , wherein the condition in which excessive or undesirable sodium channel activity is implicated is axonal loss, degeneration or damage.
24. The method of claim 19 , wherein the condition in which excessive or undesirable sodium channel activity is implicated is a demyelinating disease.
25. The method of claim 19 , wherein condition in which excessive or undesirable sodium channel activity is implicated is a central or peripheral neuropathy.
26. The method of claim 18 or 19 , wherein one of R1 and R2 is hydrogen and the other is C1-6alkyl or C3-6cycloalkyl.
27. The method of claim 18 or 19 , wherein R1 and R2 are independently C1-6alkyl or C3-6cycloalkyl.
28. The method of claim 26 wherein C1-6alkyl is t-butyl.
29. The method of claim 27 wherein C1-6alkyl is t-butyl.
30. The method of claim 18 or 19 , wherein A is substituted or unsubstituted phenyl or substituted or unsubstituted 6-membered heteroaryl.
31. The method of claim 18 or 19 , wherein L1 and L2 are independently selected from substituted or unsubstituted C1-4alkylene.
32. The method of claim 31 wherein L1 and L2 are unsubstituted.
33. The method of claim 32 wherein L1 is unsubstituted ethylene or propylene and L2 is unsubstituted methylene.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/222,854 US20140323527A1 (en) | 2007-11-01 | 2014-03-24 | Aryloxy amine compounds and their use as sodium channel modulators |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US98468107P | 2007-11-01 | 2007-11-01 | |
| PCT/AU2008/001624 WO2009055869A1 (en) | 2007-11-01 | 2008-10-31 | Aryloxy amine compounds and their use as sodium channel modulators |
| US74112410A | 2010-09-29 | 2010-09-29 | |
| US14/222,854 US20140323527A1 (en) | 2007-11-01 | 2014-03-24 | Aryloxy amine compounds and their use as sodium channel modulators |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/741,124 Division US8716528B2 (en) | 2007-11-01 | 2008-10-31 | Aryloxy amine compounds and their use as sodium channel modulators |
| PCT/AU2008/001624 Division WO2009055869A1 (en) | 2007-11-01 | 2008-10-31 | Aryloxy amine compounds and their use as sodium channel modulators |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140323527A1 true US20140323527A1 (en) | 2014-10-30 |
Family
ID=40590461
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/741,124 Expired - Fee Related US8716528B2 (en) | 2007-11-01 | 2008-10-31 | Aryloxy amine compounds and their use as sodium channel modulators |
| US14/222,854 Abandoned US20140323527A1 (en) | 2007-11-01 | 2014-03-24 | Aryloxy amine compounds and their use as sodium channel modulators |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/741,124 Expired - Fee Related US8716528B2 (en) | 2007-11-01 | 2008-10-31 | Aryloxy amine compounds and their use as sodium channel modulators |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US8716528B2 (en) |
| AU (1) | AU2008318293B2 (en) |
| CA (1) | CA2704250A1 (en) |
| NZ (1) | NZ585073A (en) |
| WO (1) | WO2009055869A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016149765A1 (en) * | 2015-03-26 | 2016-09-29 | The Florey Institute Of Neuroscience And Mental Health | Sodium channel modulators |
| CN118251389A (en) * | 2021-09-24 | 2024-06-25 | 泽农医药公司 | Pyridyl derivatives as sodium channel activators |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NO179246C (en) * | 1991-11-20 | 1996-09-04 | Sankyo Co | Aromatic amino-alcohol derivatives and intermediates for their preparation |
| JP2837318B2 (en) * | 1992-08-31 | 1998-12-16 | 明治製菓株式会社 | Angiotensin II antagonistic pyridine derivative |
| US6420354B1 (en) * | 1998-06-08 | 2002-07-16 | Advanced Medicine, Inc. | Sodium channel drugs and uses |
-
2008
- 2008-10-31 US US12/741,124 patent/US8716528B2/en not_active Expired - Fee Related
- 2008-10-31 CA CA2704250A patent/CA2704250A1/en not_active Abandoned
- 2008-10-31 NZ NZ585073A patent/NZ585073A/en not_active IP Right Cessation
- 2008-10-31 WO PCT/AU2008/001624 patent/WO2009055869A1/en not_active Ceased
- 2008-10-31 AU AU2008318293A patent/AU2008318293B2/en not_active Expired - Fee Related
-
2014
- 2014-03-24 US US14/222,854 patent/US20140323527A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| AU2008318293B2 (en) | 2014-07-31 |
| US20110021577A1 (en) | 2011-01-27 |
| AU2008318293A1 (en) | 2009-05-07 |
| US8716528B2 (en) | 2014-05-06 |
| CA2704250A1 (en) | 2009-05-07 |
| NZ585073A (en) | 2012-08-31 |
| WO2009055869A1 (en) | 2009-05-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2009309378B2 (en) | Acrylamido derivatives useful as inhibitors of the mitochondrial permeability transition | |
| DE69332762T2 (en) | CATHECOLDIETHER AS A SELECTIVE PDE IV INHIBITANT | |
| JP2000502352A (en) | 4-position substituted piperidine analogs and their use as subtype-selective NMDA receptor antagonists | |
| CA2919948A1 (en) | Novel quinazolinones as bromodomain inhibitors | |
| DE19837386A1 (en) | New CCR-3 antagonist piperazine derivatives and analogues | |
| JPH03173867A (en) | Cyclic amine compound | |
| JP2007523910A5 (en) | ||
| JP2011522843A (en) | Novel potassium channel blockers and their use | |
| CA2888480A1 (en) | Heteroaryl linked quinolinyl modulators of ror.gamma.t | |
| EP3339304A1 (en) | Quinoline and isoquinoline derivatives for treating pain and pain related conditions | |
| JP5404607B2 (en) | Aniline derivative having anti-RNA virus action | |
| US8716528B2 (en) | Aryloxy amine compounds and their use as sodium channel modulators | |
| CA2830148C (en) | Novel furanone derivatives | |
| Zhang et al. | Small molecule antagonists of NAADP-induced Ca2+ release in T-lymphocytes suggest potential therapeutic agents for autoimmune disease | |
| TW202416971A (en) | Formamide-Substituted Heterotricyclic Derivatives, And Preparation Method And Use Thereof | |
| US20100179118A1 (en) | Cyclic aminoalkylcarboxamide derivative | |
| CA2337795A1 (en) | Pharmaceutical agents | |
| EP0719773B1 (en) | Imidazolidinone derivative, acid-addition salt thereof, and remedy for senile dementia | |
| US20060270632A1 (en) | 4-(2-Furoyl) aminopiperidine compound useful as therapeutic agent for itching | |
| WO1996016942A1 (en) | Pyridine derivatives | |
| DE102005028862A1 (en) | Substituted heterocycles, their use as medicament and pharmaceutical compositions containing them | |
| DE69107874T2 (en) | Imidazole derivatives and these anti-epileptics containing these imidazole derivatives as active ingredients. | |
| WO1995019345A1 (en) | Diazacycloalkanealkylsulfonamide derivative | |
| DD298786A5 (en) | thiophenes | |
| US10577308B2 (en) | Sodium channel modulators |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |