[go: up one dir, main page]

US20140322373A1 - Forming spherical semiconductive nanoparticles - Google Patents

Forming spherical semiconductive nanoparticles Download PDF

Info

Publication number
US20140322373A1
US20140322373A1 US14/330,242 US201414330242A US2014322373A1 US 20140322373 A1 US20140322373 A1 US 20140322373A1 US 201414330242 A US201414330242 A US 201414330242A US 2014322373 A1 US2014322373 A1 US 2014322373A1
Authority
US
United States
Prior art keywords
nanoparticles
vacuum chamber
vapor phase
heating element
phase condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/330,242
Inventor
Kalin Spariosu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Priority to US14/330,242 priority Critical patent/US20140322373A1/en
Assigned to RAYTHEON COMPANY reassignment RAYTHEON COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPARIOSU, KALIN
Publication of US20140322373A1 publication Critical patent/US20140322373A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/815Group III-V based compounds, e.g. AlaGabIncNxPyAsz
    • Y10S977/821Mixed group V compounds, e.g. III-NxPy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Definitions

  • This invention relates generally to the field of particle formation and more specifically to forming spherical semiconductive nanoparticles.
  • Quantum dots are a semiconductor with excitons that are confined in all three spatial dimensions. Quantum dots have properties that are between those of bulk semiconductors and those of discrete molecules. Known methods of forming quantum dots may not be satisfactory in certain situations.
  • a material comprising one or more semiconductive substances is vaporized to generate a vapor phase condensate.
  • the vapor phase condensate is allowed to form nanoparticles.
  • the nanoparticles are annealed to yield substantially spherical nanoparticles.
  • Certain embodiments of the invention may provide one or more technical advantages.
  • a technical advantage of one embodiment may be that material comprising one or more semiconductive substances may be vaporized to generate a vapor phase condensate that yields nanoparticles.
  • Another technical advantage of one embodiment may be that the nanoparticles formed from the vapor phase condensate may be annealed to yield substantially spherical nanoparticles.
  • FIG. 1 illustrates an example of a system that may be used to form substantially spherical semiconductive nanoparticles
  • FIG. 2 illustrates an example of a method that may be used to form substantially spherical semiconductive nanoparticles.
  • FIGS. 1 and 2 of the drawings like numerals being used for like and corresponding parts of the various drawings.
  • FIG. 1 illustrates an example of a system 10 that may be used to form substantially spherical semiconductive nanoparticles.
  • system 10 may vaporize material comprising one or more semiconductive substances to generate a vapor phase condensate that forms nanoparticles.
  • the nanoparticles may be annealed to yield substantially spherical nanoparticles, or “quantum dots”.
  • quantum dots are semiconductors with conducting characteristics that are closely related to the size and shape of the crystals of the dots.
  • the energy spectrum of a quantum dot can be engineered by controlling the size, shape, and strength of the confinement potential.
  • system 10 includes a vacuum chamber 20 , a heating element 24 , a power supply 30 , a material hopper 32 , an inert gas supplier 36 , a quenchant gas supplier 38 , a particle collector 42 , and a controller 50 , which may be coupled as shown. Examples of certain components and certain operations of system 10 are described U.S. Pat. No. 7,282,167, of Carpenter, which is incorporated herein by reference.
  • Material hopper 32 provides material that may be used to form nanoparticles, and may direct the material to heating element 24 .
  • Any suitable material comprising one or more semiconductive substances may be used. Examples of such material include Indian Antimony (InSb) and mercury cadmium telluride (HgCdTe).
  • the material may be in any suitable form, for example, powder, pellet, sheet, bar, rod, wire, and/or other suitable shape.
  • the material may also have any suitable proportion of substances and any suitable absorption edge, for example, an absorption edge with a value between 0.5 to 5, 5 to 10, 10 to 15, or greater than 15 microns.
  • suitable absorption edge for example, an absorption edge with a value between 0.5 to 5, 5 to 10, 10 to 15, or greater than 15 microns.
  • Examples of material include a composition of 35 atomic percentage mercury/65 atomic percentage cadmium telluride with an absorption edge of about 1.5 microns; pure cadmium telluride with an absorption edge of 0.8 microns; and a composition of 90 atomic percentage mercury/10 atomic percentage cadmium telluride with an absorption edge of approximately 13 microns.
  • Vacuum chamber 20 provides an near vacuum volume in which nanoparticles may be formed. Vacuum chamber 20 may have vacuum pumps that control the chamber pressure. In certain embodiments, vacuum chamber 20 may comprise a vessel, or container, which may completely or partially enclose a space. Vacuum chamber 20 may partially enclose a space if gas curtain or other confining means forms a wall of the chamber.
  • Heating element 24 raises the temperature of the material, causing the material to vaporize and emanate from heating element 24 in a smooth flow away from heating element 24 .
  • the heating element can be operated in such a manner that the vaporized material can rise from the element under substantially free convention and/or in a substantially laminar manner.
  • a vaporized material may thermally communicate with a cooling fluid, such as a quenchant gas.
  • Heating element may be disposed within or adjacent to vacuum chamber 20 and may be stationary or non-stationary.
  • Examples of heating element 24 include a titanium-diboride heater bar, an electrical resistance element heater, and/or hollow tube or slot furnace.
  • Power supply 30 supplies power to heating element 24 , and may receive instructions from controller 50 in order to control the temperature of the material.
  • Inert gas supplier 36 supplies an inert gas, such as argon, to vacuum chamber 20 prior to heating the material.
  • the inert gas may yield an inert atmosphere in chamber 20 .
  • Quenchant gas supplier 38 supplies a quenchant gas to vacuum chamber 20 .
  • a quenchant gas may be a gas that is used to cool, or lower the temperature of, a material and may induce a phase change in the material. Examples of quenchant gas include helium, hydrogen, nitrogen, argon, and a combination of any of the preceding.
  • Quenchant gas supplier 38 may comprise one or more diffusers that introduce gas into vacuum chamber 20 . In certain embodiments, quenchant gas supplier 38 may direct the flow of cooling fluid generally parallel to and at the same speed as the vaporized material, which may allow the cooling fluid to be in thermal communication with and thermally interact with the flow of vaporized material with reduced turbulence.
  • Particle collector 42 collects particles from vacuum chamber 20 and may comprise a chamber coupled to vacuum chamber 20 .
  • Particle collector 42 may collect particles in any suitable manner.
  • Particle collector 42 may harvest particles from chamber 20 using a continuous flow of a gas, for example, argon, and may be weighed and bottled using the gas.
  • the particles may have of any suitable size, for example, a size in the nanometer range, such as 30 to 50, to 100, greater than 100 nanometers.
  • the particles of a particular batch manufactured at the same time may be substantially spherical and substantially uniformly sized.
  • the sizes of particles of a particle batch may vary with a range of less than 5 nanometers.
  • the particles may be substantially spherical.
  • substantially spherical may refer to spheres that have deviations from a perfect sphere of less than 5%.
  • the particles of a particular batch may have a size of approximately 50 nanometers and an elemental composition by weight of approximately 26% mercury, 27% cadmium, and 47% tellurium.
  • Controller 50 controls the operation of system 10 , and may communicate with components of system 10 (such as vacuum chamber 20 , raw material hopper 32 , inert gas supplier 36 , power supply 30 , quenchant gas supplier 38 , and/or powder collector 42 ) to instruct the components to perform operations. Controller 50 may be used to adjust vacuum parameters. Vacuum parameters may include, for example, chamber pressure, temperature, and/or gas flow parameters.
  • the size of the nanoparticles may be determined by, for example, the heat capacity of the quenchant gas, chamber pressure, the rate of generation of the material vapor, and the flow rate of the quenchant gas.
  • Quantum dots may be used in any suitable application.
  • quantum dots may be used in active and/or passive electro optical (EO) devices such as detectors and lasers.
  • Quantum dots may be fabricated in the visible, near infrared, mid-wavelength infrared (MWIR), long wave infrared (LWIR) spectral ranges.
  • FIG. 2 illustrates an example of a method that may be used to form substantially spherical semiconductive nanoparticles. The method may be performed by system 10 of FIG. 1 .
  • Material is vaporized at step 110 to generate a vapor phase condensate.
  • the material comprises one or more semiconductor substances.
  • the material may be placed on heating element 24 .
  • Inert gas supplier 36 may flush vacuum chamber 20 with an inert gas to yield an inert atmosphere.
  • the material may be vaporized by heating the material to a temperature greater than the boiling point of the material. The material may be heated until it is evaporated.
  • the vapor phase condensate may be allowed to form nanoparticles at step 114 .
  • individual atoms of the vapor may begin to cool and coalesce into droplets and/or particles.
  • Nano-sized clusters of molecules undergo change of phase from gas to solid. The phase change may occur through reverse sublimation or phase condensation.
  • quenchant gas supplier 38 may introduce a quenchant gas into vacuum chamber 20 to cool the vapor.
  • the nanoparticles are annealed at step 118 to yield substantially spherical nanoparticles.
  • Annealing may involve heating the nanoparticles with heating element 24 to a temperature greater than or equal to a re-crystallization temperature, maintaining the temperature, and then cooling the nanoparticles.
  • annealing may comprise heating the material to a temperature in a range of 200 to 300, 300 to 500, 500 to 700, or greater than 700° C., maintaining the temperature, and then cooling the material to a room temperature in a range of 20 to 30° C.
  • a component (such as controller 50 ) of the systems and apparatuses disclosed herein may include an interface, logic, memory, and/or other suitable element.
  • An interface receives input, sends output, processes the input and/or output, and/or performs other suitable operation.
  • An interface may comprise hardware and/or software.
  • Logic performs the operations of the component, for example, executes instructions to generate output from input.
  • Logic may include hardware, software, and/or other logic.
  • Logic may be encoded in one or more tangible media and may perform operations when executed by a computer.
  • Certain logic, such as a processor, may manage the operation of a component. Examples of a processor include one or more computers, one or more microprocessors, one or more applications, and/or other logic.
  • the operations of the embodiments may be performed by one or more computer readable media encoded with a computer program, software, computer executable instructions, and/or instructions capable of being executed by a computer.
  • the operations of the embodiments may be performed by one or more computer readable media storing, embodied with, and/or encoded with a computer program and/or having a stored and/or an encoded computer program.
  • a memory stores information.
  • a memory may comprise one or more non-transitory, tangible, computer-readable, and/or computer-executable storage medium. Examples of memory include computer memory (for example, Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (for example, a hard disk), removable storage media (for example, a Compact Disk (CD) or a Digital Video Disk (DVD)), database and/or network storage (for example, a server), and/or other computer-readable medium.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • mass storage media for example, a hard disk
  • removable storage media for example, a Compact Disk (CD) or a Digital Video Disk (DVD)
  • database and/or network storage for example, a server
  • network storage for example, a server

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

In certain embodiments, a material comprising one or more semiconductive substances is vaporized to generate a vapor phase condensate. The vapor phase condensate is allowed to form nanoparticles. The nanoparticles are annealed to yield substantially spherical nanoparticles.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 12/941,409 filed on Nov. 8, 2010.
  • TECHNICAL FIELD
  • This invention relates generally to the field of particle formation and more specifically to forming spherical semiconductive nanoparticles.
  • BACKGROUND
  • A quantum dot is a semiconductor with excitons that are confined in all three spatial dimensions. Quantum dots have properties that are between those of bulk semiconductors and those of discrete molecules. Known methods of forming quantum dots may not be satisfactory in certain situations.
  • SUMMARY OF THE DISCLOSURE
  • In accordance with the present invention, disadvantages and problems associated with previous techniques for forming nanoparticles may be reduced or eliminated.
  • In certain embodiments, a material comprising one or more semiconductive substances is vaporized to generate a vapor phase condensate. The vapor phase condensate is allowed to form nanoparticles. The nanoparticles are annealed to yield substantially spherical nanoparticles.
  • Certain embodiments of the invention may provide one or more technical advantages. A technical advantage of one embodiment may be that material comprising one or more semiconductive substances may be vaporized to generate a vapor phase condensate that yields nanoparticles. Another technical advantage of one embodiment may be that the nanoparticles formed from the vapor phase condensate may be annealed to yield substantially spherical nanoparticles.
  • Certain embodiments of the invention may include none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art from the figures, descriptions, and claims included herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 illustrates an example of a system that may be used to form substantially spherical semiconductive nanoparticles; and
  • FIG. 2 illustrates an example of a method that may be used to form substantially spherical semiconductive nanoparticles.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present invention and its advantages are best understood by referring to FIGS. 1 and 2 of the drawings, like numerals being used for like and corresponding parts of the various drawings.
  • FIG. 1 illustrates an example of a system 10 that may be used to form substantially spherical semiconductive nanoparticles. In certain embodiments, system 10 may vaporize material comprising one or more semiconductive substances to generate a vapor phase condensate that forms nanoparticles. The nanoparticles may be annealed to yield substantially spherical nanoparticles, or “quantum dots”.
  • In certain embodiments, quantum dots are semiconductors with conducting characteristics that are closely related to the size and shape of the crystals of the dots. In general, the smaller the crystal, the larger the band gap, the greater the difference in energy between the highest valance bond and the lowest conduction band becomes, and thus more energy is needed to excite the crystal and more energy is released when the crystal returns to its resting state. The energy spectrum of a quantum dot can be engineered by controlling the size, shape, and strength of the confinement potential.
  • In the illustrated embodiment, system 10 includes a vacuum chamber 20, a heating element 24, a power supply 30, a material hopper 32, an inert gas supplier 36, a quenchant gas supplier 38, a particle collector 42, and a controller 50, which may be coupled as shown. Examples of certain components and certain operations of system 10 are described U.S. Pat. No. 7,282,167, of Carpenter, which is incorporated herein by reference.
  • Material hopper 32 provides material that may be used to form nanoparticles, and may direct the material to heating element 24. Any suitable material comprising one or more semiconductive substances may be used. Examples of such material include Indian Antimony (InSb) and mercury cadmium telluride (HgCdTe). The material may be in any suitable form, for example, powder, pellet, sheet, bar, rod, wire, and/or other suitable shape.
  • The material may also have any suitable proportion of substances and any suitable absorption edge, for example, an absorption edge with a value between 0.5 to 5, 5 to 10, 10 to 15, or greater than 15 microns. Examples of material include a composition of 35 atomic percentage mercury/65 atomic percentage cadmium telluride with an absorption edge of about 1.5 microns; pure cadmium telluride with an absorption edge of 0.8 microns; and a composition of 90 atomic percentage mercury/10 atomic percentage cadmium telluride with an absorption edge of approximately 13 microns.
  • Vacuum chamber 20 provides an near vacuum volume in which nanoparticles may be formed. Vacuum chamber 20 may have vacuum pumps that control the chamber pressure. In certain embodiments, vacuum chamber 20 may comprise a vessel, or container, which may completely or partially enclose a space. Vacuum chamber 20 may partially enclose a space if gas curtain or other confining means forms a wall of the chamber.
  • Heating element 24 raises the temperature of the material, causing the material to vaporize and emanate from heating element 24 in a smooth flow away from heating element 24. The heating element can be operated in such a manner that the vaporized material can rise from the element under substantially free convention and/or in a substantially laminar manner. A vaporized material may thermally communicate with a cooling fluid, such as a quenchant gas.
  • Heating element may be disposed within or adjacent to vacuum chamber 20 and may be stationary or non-stationary. Examples of heating element 24 include a titanium-diboride heater bar, an electrical resistance element heater, and/or hollow tube or slot furnace. Power supply 30 supplies power to heating element 24, and may receive instructions from controller 50 in order to control the temperature of the material.
  • Inert gas supplier 36 supplies an inert gas, such as argon, to vacuum chamber 20 prior to heating the material. The inert gas may yield an inert atmosphere in chamber 20.
  • Quenchant gas supplier 38 supplies a quenchant gas to vacuum chamber 20. A quenchant gas may be a gas that is used to cool, or lower the temperature of, a material and may induce a phase change in the material. Examples of quenchant gas include helium, hydrogen, nitrogen, argon, and a combination of any of the preceding. Quenchant gas supplier 38 may comprise one or more diffusers that introduce gas into vacuum chamber 20. In certain embodiments, quenchant gas supplier 38 may direct the flow of cooling fluid generally parallel to and at the same speed as the vaporized material, which may allow the cooling fluid to be in thermal communication with and thermally interact with the flow of vaporized material with reduced turbulence.
  • Particle collector 42 collects particles from vacuum chamber 20 and may comprise a chamber coupled to vacuum chamber 20. Particle collector 42 may collect particles in any suitable manner. Particle collector 42 may harvest particles from chamber 20 using a continuous flow of a gas, for example, argon, and may be weighed and bottled using the gas.
  • The particles may have of any suitable size, for example, a size in the nanometer range, such as 30 to 50, to 100, greater than 100 nanometers. In certain embodiments, the particles of a particular batch manufactured at the same time may be substantially spherical and substantially uniformly sized. For example, the sizes of particles of a particle batch may vary with a range of less than 5 nanometers. The particles may be substantially spherical. In certain examples, substantially spherical may refer to spheres that have deviations from a perfect sphere of less than 5%.
  • In certain embodiments, the particles of a particular batch may have a size of approximately 50 nanometers and an elemental composition by weight of approximately 26% mercury, 27% cadmium, and 47% tellurium.
  • Controller 50 controls the operation of system 10, and may communicate with components of system 10 (such as vacuum chamber 20, raw material hopper 32, inert gas supplier 36, power supply 30, quenchant gas supplier 38, and/or powder collector 42) to instruct the components to perform operations. Controller 50 may be used to adjust vacuum parameters. Vacuum parameters may include, for example, chamber pressure, temperature, and/or gas flow parameters.
  • The size of the nanoparticles may be determined by, for example, the heat capacity of the quenchant gas, chamber pressure, the rate of generation of the material vapor, and the flow rate of the quenchant gas.
  • Quantum dots may be used in any suitable application. In certain embodiments, quantum dots may be used in active and/or passive electro optical (EO) devices such as detectors and lasers. Quantum dots may be fabricated in the visible, near infrared, mid-wavelength infrared (MWIR), long wave infrared (LWIR) spectral ranges.
  • FIG. 2 illustrates an example of a method that may be used to form substantially spherical semiconductive nanoparticles. The method may be performed by system 10 of FIG. 1.
  • Material is vaporized at step 110 to generate a vapor phase condensate. In certain embodiments, the material comprises one or more semiconductor substances. The material may be placed on heating element 24. Inert gas supplier 36 may flush vacuum chamber 20 with an inert gas to yield an inert atmosphere. The material may be vaporized by heating the material to a temperature greater than the boiling point of the material. The material may be heated until it is evaporated.
  • The vapor phase condensate may be allowed to form nanoparticles at step 114. As the vaporized material flows away from heating element 24, individual atoms of the vapor may begin to cool and coalesce into droplets and/or particles. Nano-sized clusters of molecules undergo change of phase from gas to solid. The phase change may occur through reverse sublimation or phase condensation. In certain embodiments, quenchant gas supplier 38 may introduce a quenchant gas into vacuum chamber 20 to cool the vapor.
  • The nanoparticles are annealed at step 118 to yield substantially spherical nanoparticles. Annealing may involve heating the nanoparticles with heating element 24 to a temperature greater than or equal to a re-crystallization temperature, maintaining the temperature, and then cooling the nanoparticles. For example, annealing may comprise heating the material to a temperature in a range of 200 to 300, 300 to 500, 500 to 700, or greater than 700° C., maintaining the temperature, and then cooling the material to a room temperature in a range of 20 to 30° C.
  • Modifications, additions, or omissions may be made to the systems and apparatuses disclosed herein without departing from the scope of the invention. The components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses may be performed by more, fewer, or other components. Additionally, operations of the systems and apparatuses may be performed using any suitable logic comprising software, hardware, and/or other logic. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
  • Modifications, additions, or omissions may be made to the methods disclosed herein without departing from the scope of the invention. The method may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order.
  • A component (such as controller 50) of the systems and apparatuses disclosed herein may include an interface, logic, memory, and/or other suitable element. An interface receives input, sends output, processes the input and/or output, and/or performs other suitable operation. An interface may comprise hardware and/or software.
  • Logic performs the operations of the component, for example, executes instructions to generate output from input. Logic may include hardware, software, and/or other logic. Logic may be encoded in one or more tangible media and may perform operations when executed by a computer. Certain logic, such as a processor, may manage the operation of a component. Examples of a processor include one or more computers, one or more microprocessors, one or more applications, and/or other logic.
  • In particular embodiments, the operations of the embodiments may be performed by one or more computer readable media encoded with a computer program, software, computer executable instructions, and/or instructions capable of being executed by a computer. In particular embodiments, the operations of the embodiments may be performed by one or more computer readable media storing, embodied with, and/or encoded with a computer program and/or having a stored and/or an encoded computer program.
  • A memory stores information. A memory may comprise one or more non-transitory, tangible, computer-readable, and/or computer-executable storage medium. Examples of memory include computer memory (for example, Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (for example, a hard disk), removable storage media (for example, a Compact Disk (CD) or a Digital Video Disk (DVD)), database and/or network storage (for example, a server), and/or other computer-readable medium.
  • Although this disclosure has been described in terms of certain embodiments, alterations and permutations of the embodiments will be apparent to those skilled in the art. Accordingly, the above description of the embodiments does not constrain this disclosure. Other changes, substitutions, and alterations are possible without departing from the spirit and scope of this disclosure, as defined by the following claims.

Claims (13)

1. A system comprising:
a vacuum chamber;
a material hopper coupled to the vacuum chamber;
a heating element disposed within the vacuum chamber; and
a quenchant gas supplier disposed within the vacuum chamber;
the vacuum chamber configured to provide an near vacuum volume;
the material hopper configured to direct material to the heating element, the material comprising one or more semiconductive substances;
the heating element configured to raise the temperature of the material to vaporize the material to generate a vapor phase condensate;
the quenchant gas supplier configured to introduce a quenchant gas into the vacuum chamber to cool the vapor phase condensate to form a plurality of nanoparticles; and
the heating element configured to raise the temperature of the nanoparticles to anneal the nanoparticles to yield substantially spherical nanoparticles.
2. The system of claim 1, the one or more semiconductor substances selected from the group consisting of mercury telluride, cadmium telluride, indium, and gallium.
3. The system of claim 1, the material having an absorption edge greater than 0.5 microns.
4. The system of claim 1, the quenchant gas supplier configured to introduce the quenchant gas generally parallel to and at the same speed as the vapor phase condensate.
5. The system of claim 1, further comprising:
an inert gas supplier configured to flush the vacuum chamber with an inert gas to yield an inert atmosphere prior to the vaporization.
6. The system of claim 1, the heating element configured to raise the temperature of the nanoparticles to anneal the nanoparticles by:
heating the nanoparticles to a temperature greater than 200° C.; and
cooling the nanoparticles to a room temperature.
7. The system of claim 1, further comprising:
a particle collector configured to collect the substantially spherical nanoparticles.
8. One or more non-transitory computer readable media storing logic configured to provide instructions to:
vaporize material to generate a vapor phase condensate, the material comprising one or more semiconductive substances;
allow the vapor phase condensate to form a plurality of nanoparticles; and
anneal the nanoparticles to yield a plurality of substantially spherical nanoparticles.
9. The media of claim 8, the one or more semiconductor substances selected from the group consisting of mercury telluride, cadmium telluride, indium, and gallium.
10. The media of claim 8, the material having an absorption edge greater than 0.5 microns.
11. The media of claim 8, the allowing the vapor phase condensate further comprising:
allowing the vapor phase condensate to flow into thermal communication with a cooling fluid.
12. The media of claim 8, the logic configured to provide instructions to:
flush a vacuum chamber in which the material is located with an inert gas to yield an inert atmosphere prior to the vaporization.
13. The media of claim 8, the annealing the nanoparticles further comprising:
heating the nanoparticles to a temperature greater than 200° C.; and
cooling the nanoparticles to a room temperature.
US14/330,242 2010-11-08 2014-07-14 Forming spherical semiconductive nanoparticles Abandoned US20140322373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/330,242 US20140322373A1 (en) 2010-11-08 2014-07-14 Forming spherical semiconductive nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/941,409 US8790440B2 (en) 2010-11-08 2010-11-08 Forming spherical semiconductive nanoparticles
US14/330,242 US20140322373A1 (en) 2010-11-08 2014-07-14 Forming spherical semiconductive nanoparticles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/941,409 Division US8790440B2 (en) 2010-11-08 2010-11-08 Forming spherical semiconductive nanoparticles

Publications (1)

Publication Number Publication Date
US20140322373A1 true US20140322373A1 (en) 2014-10-30

Family

ID=46018379

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/941,409 Active 2032-04-08 US8790440B2 (en) 2010-11-08 2010-11-08 Forming spherical semiconductive nanoparticles
US14/330,242 Abandoned US20140322373A1 (en) 2010-11-08 2014-07-14 Forming spherical semiconductive nanoparticles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/941,409 Active 2032-04-08 US8790440B2 (en) 2010-11-08 2010-11-08 Forming spherical semiconductive nanoparticles

Country Status (1)

Country Link
US (2) US8790440B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059966A1 (en) * 2017-09-21 2019-03-28 Raytheon Company Process for producing quantum dots having broadened optical emission
CN109759708A (en) * 2019-01-25 2019-05-17 大连理工大学 Continuous production method of metal/carbon nano-powder evaporated by thermal arc and laser composite heat source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764722B (en) * 2015-03-16 2017-05-03 北京化工大学 Photo-polymerization method for preparing hydrophilic fluorescent nano spheres and application thereof in detection of 2,4,6-trinitrotuluene explosive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505761A (en) * 1992-05-29 1996-04-09 Mitsui Mining & Smelting Co., Ltd. Process for preparing metallic cadmium powder
US20050028642A1 (en) * 2003-08-08 2005-02-10 Frank Mooney Method and apparatus for manufacturing fine powders

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695617A (en) * 1995-11-22 1997-12-09 Dow Corning Corporation Silicon nanoparticles
JP3735686B2 (en) * 2001-10-30 2006-01-18 独立行政法人理化学研究所 Method for producing metal oxide ferroelectric particle crystal
KR100470533B1 (en) * 2001-12-07 2005-03-08 이주현 A method for preparaing ZnO nanopowder
US20040065170A1 (en) * 2002-10-07 2004-04-08 L. W. Wu Method for producing nano-structured materials
US7282167B2 (en) 2003-12-15 2007-10-16 Quantumsphere, Inc. Method and apparatus for forming nano-particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505761A (en) * 1992-05-29 1996-04-09 Mitsui Mining & Smelting Co., Ltd. Process for preparing metallic cadmium powder
US20050028642A1 (en) * 2003-08-08 2005-02-10 Frank Mooney Method and apparatus for manufacturing fine powders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059966A1 (en) * 2017-09-21 2019-03-28 Raytheon Company Process for producing quantum dots having broadened optical emission
US10711188B2 (en) 2017-09-21 2020-07-14 Raytheon Company Process for producing quantum dots having broadened optical emission
CN109759708A (en) * 2019-01-25 2019-05-17 大连理工大学 Continuous production method of metal/carbon nano-powder evaporated by thermal arc and laser composite heat source

Also Published As

Publication number Publication date
US8790440B2 (en) 2014-07-29
US20120111148A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
Zheng et al. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance
Zhang et al. Extraordinary thermoelectric performance realized in n‐type PbTe through multiphase nanostructure engineering
Tan et al. High thermoelectric performance SnTe–In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering
Sachdev Holographic metals and the fractionalized Fermi liquid
TWI474348B (en) Method for ordering the magnetic alloy
Wang et al. Ga-doping-induced carrier tuning and multiphase engineering in n-type PbTe with enhanced thermoelectric performance
US20140322373A1 (en) Forming spherical semiconductive nanoparticles
Govatsi et al. The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures
Chumlyakov et al. The shape-memory effect and superelasticity in single-crystal ferromagnetic alloy FeNiCoAlTi
Zhang et al. Dependence of photothermal conversion characteristics on different nanoparticle dispersions
Robson et al. Conditions for high yield of selective-area epitaxy InAs nanowires on SiOx/Si (111) substrates
Yoshioka et al. Generation of ultracold paraexcitons in cuprous oxide: A path toward a stable Bose-Einstein condensate
TWI656667B (en) Thermoelectric materials and their manufacturing method
Kim-Hak et al. Microwave sintering and thermoelectric properties of p-type (Bi0. 2Sb0. 8) 2Te3 powder
Gromov et al. Specific features of the formation of arrays of silver clusters from a thin film on a SiO2 surface
Tachibana et al. Kinetic condensation and evaporation of metallic iron and implications for metallic iron dust formation
Gracia-Pinilla et al. Size-selected Ag nanoparticles with five-fold symmetry
Li et al. Systematic control of self-assembled Au nanoparticles and nanostructures through the variation of deposition amount, annealing duration, and temperature on Si (111)
Kamantsev et al. Magnetocaloric Effect in La (Fe, Mn, Si) 13H x Based Composites: Experiment and Theory
Suriwong et al. Thermoelectric properties of Bi2Te3 disk fabricated from rice kernel‐like Bi2Te3 powder
Wergen et al. Aerosol synthesis of germanium nanoparticles supported by external seeding: Theoretical and experimental analysis
Ho et al. Universal cooling scheme for quantum simulation
CN104885240B (en) Thermoelectric material
Liao et al. Parametric optimum design of a near-field electroluminescent refrigerator
Noh Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAYTHEON COMPANY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPARIOSU, KALIN;REEL/FRAME:033306/0050

Effective date: 20140709

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION