US20140308474A1 - Concrete product cage spacer - Google Patents
Concrete product cage spacer Download PDFInfo
- Publication number
- US20140308474A1 US20140308474A1 US14/252,881 US201414252881A US2014308474A1 US 20140308474 A1 US20140308474 A1 US 20140308474A1 US 201414252881 A US201414252881 A US 201414252881A US 2014308474 A1 US2014308474 A1 US 2014308474A1
- Authority
- US
- United States
- Prior art keywords
- spacer
- cage
- concrete
- shaped
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 125000006850 spacer group Chemical group 0.000 title claims abstract description 81
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 13
- 229920000876 geopolymer Polymers 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims abstract description 3
- 238000009434 installation Methods 0.000 abstract description 4
- 238000005266 casting Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/16—Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
- E04C5/168—Spacers connecting parts for reinforcements and spacing the reinforcements from the form
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/16—Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
- E04C5/162—Connectors or means for connecting parts for reinforcements
- E04C5/163—Connectors or means for connecting parts for reinforcements the reinforcements running in one single direction
Definitions
- a reinforcing wire cage is provided as reinforcement to produce a product of the required strength.
- the reinforcing cage In order to produce a quality concrete product, the reinforcing cage must be positioned within the concrete forms used to produce the product so that the cage will be a predetermined distance from the inside and outside walls of the finished product. Since the cage will be subjected to various forces during the manufacturing process, it is important that the cage be properly positioned from the walls of the forms and that the required distance from the forms be maintained throughout the casting process. In order to accomplish the proper spacing, there are commonly provided spacing elements, called spacers, which can be fastened to the cage to space it from and maintain it the proper distance from the form walls.
- spacers must also be designed so as to resist the forces that occur during the casting process, which can create voids in the finished product, resulting in the finished product not meeting specifications that require resistance to hydrostatic pressure.
- the two commonly used methods of producing concrete products create different forces on a reinforcing cage and thus upon the spacers used in connection with the cage.
- an annular space is provided by an inner core and an outer jacket which comprise the form set.
- One of the common casting methods involves lowering the jacket over the core after the cage is in place. Unless the spacers used are capable of resisting the downward axial forces applied as the jacket is lowered in place, the spacers can be dislodged or distorted.
- Another commonly used method of producing concrete products is the packer head process. In this process, the spacers for the reinforcing cage must be capable of resisting not only the axial forces that occur, but also the forces upon the spacers as the cage tends to twist during rotation of the packer head.
- spacers which have been designed in an attempt to resist all of the forces exerted upon the spacers during the casting process.
- Many spacers are formed from spring steel with an open hook at each end to provide for attaching the spacer to the reinforcing cage. Between the attaching hooks there is typically formed a spacing nose.
- These steel spacers work well in most instances but they require special tools to install them on the cage, and occasionally some of the spacers can become dislodged from the cage. Also, because of the forces applied to them during the casting process, these spacers can move causing improper spacing of the cage from the concrete forms.
- the spacer of the invention provides a unique element formed of concrete or a geopolymer mateial.
- the spacer has a pair of spaced-apart notches, one elongated T-shaped notch and one L-shaped notch that provide for simple, quick installation on adjacent horizontal wires of the reinforcing cage.
- T-shaped notch the spacer is hooked onto a horizontal wire and then rotated upwardly until the L-shaped notch is aligned with the next horizontal wire.
- the spacer is then further rotated until the wire is in the L-shaped notch after which the spacer is pushed downwardly and released to positively lock the spacer onto the cage.
- the shape of the spacer provides the desired cover, which is the distance between the cage and surface of the outside form or jacket. The amount of cover depends upon the size of the spacer when formed.
- FIG. 1 is a perspective view of a portion of a reinforcing cage and showing a spacer of the invention inserted between a pair of wires of the cage
- FIG. 2 is a perspective view of a portion of a reinforcing cage and showing the spacer positioned so that a wire can be inserted into the T-shaped notch of the spacer;
- FIG. 3 a perspective view of the spacer being rotated vertically so that the L-shaped notch is in alignment with the adjacent wire of the cage;
- FIG. 4 is a perspective view showing the wire positioned in the L-shaped notch of the spacer.
- FIG. 5 is a perspective view showing the spacer in place on the reinforcing cage.
- the drawings show a representative form of a portion of a reinforcing mesh cage 10 that consists of a plurality of relatively uniformly spaced wires 12 and 14 that are typically welded at their intersections to provide a unitary product.
- the nominal spacing between the wires is 2′′ or 3′′ although it may be more or less.
- the cage 10 will be positioned in the concrete form with some wires 12 oriented horizontally, while the other wires 14 are oriented vertically.
- the spacer of the invention indicated generally by the reference numeral 18 , is formed from concrete, a geo-polymer or other suitable material.
- the spacer 16 has a main body 18 that is generally rectangular in shape with a front edge 20 , a back edge 22 and rounded ends 24 and 26 . Near the end 24 there is formed in the back edge 22 a T-shaped notch 28 . Similarly, near the end 26 there is formed in the back edge 26 an L-shaped notch 30 .
- the spacing between the notches 28 and 30 is such that the spacer 16 can be installed on both 2′′ and mesh cages and would provide 1′′ of cover, which is the distance between the cage and surface of the outside form or jacket.
- the exact dimensions of the spacer and the notches will depend upon the size and spacing of the wires of the cage, but with the design of the spacer of the invention, a spacer of one size will fit cages having different wire spacing.
- the spacer 16 is shown as it would be positioned by the installer between a pair of adjacent horizontal wires 12 , with the end 24 extending inside the cage 10 and the T-shaped notch 28 adjacent and just beneath a wire 12 , The ⁇ spacer 16 is then rotated horizontally (as shown by the arrow in FIG. 1 ) and then lifted so that the wire 12 is inside the T-shaped notch 28 as shown in FIG. 2 . With the wire 12 fully engaged in the notch 28 , the installer then swings the spacer 16 upwardly as shown by the arrow in FIG. 3 until the L-shaped notch 30 is adjacent the next upper wire 12 .
- FIG. 1 the spacer 16 is shown as it would be positioned by the installer between a pair of adjacent horizontal wires 12 , with the end 24 extending inside the cage 10 and the T-shaped notch 28 adjacent and just beneath a wire 12 .
- the ⁇ spacer 16 is then rotated horizontally (as shown by the arrow in FIG. 1 ) and then lifted so that the wire 12 is
- FIG. 4 shows the spacer 16 positioned with the wire 12 inside the L-shaped notch 30 at which time the installer can release or push the spacer 16 down to lock it place on the two adjacent wires 12 as shown in FIG. 5 .
- spacers 16 are installed on the cage 10 at selected intervals before the cage is inserted into the concrete forms. It will be evident from the above description that the spacers 16 can be quickly and early installed without any tools. The quick installation will save considerable time and thus labor cost.
- the spacer 16 When locked in place as described above, the spacer 16 is trapped so that it will not fall off the cage 10 .
- the spacer 16 may move slightly during the casting process, the degree of movement is limited by the size and shape of the notches 28 and 30 . Such small movement is not sufficient to cause the spacer 16 to fall off the cage 10 and will not alter the amount of cover or the spacing effect.
- the spacer 16 has no sharp edges, and the rounded ends 24 and 26 provide for a “shoe horn” effect when the outer-form or jacket is slipped down over the cage 10 preliminary to the casting process. Once locked into place, the spacer 16 can withstand the considerable amount of all forces exerted during the entire casting process.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
Abstract
Description
- This application claims priority under 35 USC 119 to Provisional Patent Application Ser. No. 61/812,503 filed on Apr. 16, 2013, the contents of which are hereby incorporated by reference.
- It is well known in the art of manufacturing concrete pipe and other structures, such as manholes, box sections, catch basins, septic tanks and the like (hereinafter simply “product” or “products”), that a reinforcing wire cage is provided as reinforcement to produce a product of the required strength. In order to produce a quality concrete product, the reinforcing cage must be positioned within the concrete forms used to produce the product so that the cage will be a predetermined distance from the inside and outside walls of the finished product. Since the cage will be subjected to various forces during the manufacturing process, it is important that the cage be properly positioned from the walls of the forms and that the required distance from the forms be maintained throughout the casting process. In order to accomplish the proper spacing, there are commonly provided spacing elements, called spacers, which can be fastened to the cage to space it from and maintain it the proper distance from the form walls.
- These spacers must also be designed so as to resist the forces that occur during the casting process, which can create voids in the finished product, resulting in the finished product not meeting specifications that require resistance to hydrostatic pressure. The two commonly used methods of producing concrete products create different forces on a reinforcing cage and thus upon the spacers used in connection with the cage. In one such method of casting concrete products, an annular space is provided by an inner core and an outer jacket which comprise the form set. One of the common casting methods involves lowering the jacket over the core after the cage is in place. Unless the spacers used are capable of resisting the downward axial forces applied as the jacket is lowered in place, the spacers can be dislodged or distorted. Another commonly used method of producing concrete products is the packer head process. In this process, the spacers for the reinforcing cage must be capable of resisting not only the axial forces that occur, but also the forces upon the spacers as the cage tends to twist during rotation of the packer head.
- There are known a number of different spacers which have been designed in an attempt to resist all of the forces exerted upon the spacers during the casting process. Many spacers are formed from spring steel with an open hook at each end to provide for attaching the spacer to the reinforcing cage. Between the attaching hooks there is typically formed a spacing nose. These steel spacers work well in most instances but they require special tools to install them on the cage, and occasionally some of the spacers can become dislodged from the cage. Also, because of the forces applied to them during the casting process, these spacers can move causing improper spacing of the cage from the concrete forms.
- Some attempts have been made to improve the design of the steel spacers by forming them from concrete. However, all know spacers of this type must have a means of attaching the spacer to the cage. Therefore, these concrete spacers have cast into them an attachment wire or plastic tie that can be used to secure the spacer to the cage. Compared to the steel spacers, these concrete spacers require a relatively longer time to attach to the cage, and if not properly secured, the spacing function is lost. Also, casting these attachment wires or ties into the spacer adds to the cost of the spacer, and since the spacers cannot be reused, even a minor cost increase is significant.
- There is therefore a need for an improved spacer useable in any of the known casting processes and designed so as to be capable of resisting forces in all directions so that the spacer will not become dislodged, bent or stressed during the casting process resulting in voids or other defects in the finished product. There is a further need for a spacer that will permit easy and quick installation, preferably without the use of any special tools. Such an improved spacer should also be inexpensive since large quantities are necessarily used during the production of each concrete product.
- The spacer of the invention provides a unique element formed of concrete or a geopolymer mateial. The spacer has a pair of spaced-apart notches, one elongated T-shaped notch and one L-shaped notch that provide for simple, quick installation on adjacent horizontal wires of the reinforcing cage. Using the T-shaped notch, the spacer is hooked onto a horizontal wire and then rotated upwardly until the L-shaped notch is aligned with the next horizontal wire. The spacer is then further rotated until the wire is in the L-shaped notch after which the spacer is pushed downwardly and released to positively lock the spacer onto the cage. When locked into place, the shape of the spacer provides the desired cover, which is the distance between the cage and surface of the outside form or jacket. The amount of cover depends upon the size of the spacer when formed.
-
FIG. 1 is a perspective view of a portion of a reinforcing cage and showing a spacer of the invention inserted between a pair of wires of the cage -
FIG. 2 is a perspective view of a portion of a reinforcing cage and showing the spacer positioned so that a wire can be inserted into the T-shaped notch of the spacer; -
FIG. 3 a perspective view of the spacer being rotated vertically so that the L-shaped notch is in alignment with the adjacent wire of the cage; -
FIG. 4 is a perspective view showing the wire positioned in the L-shaped notch of the spacer; and -
FIG. 5 is a perspective view showing the spacer in place on the reinforcing cage. - The drawings show a representative form of a portion of a reinforcing
mesh cage 10 that consists of a plurality of relatively uniformly spaced 12 and 14 that are typically welded at their intersections to provide a unitary product. In a typical cage, the nominal spacing between the wires is 2″ or 3″ although it may be more or less. As is well known to those skilled in the art, during the process of producing a concrete product, thewires cage 10 will be positioned in the concrete form with somewires 12 oriented horizontally, while theother wires 14 are oriented vertically. The spacer of the invention, indicated generally by thereference numeral 18, is formed from concrete, a geo-polymer or other suitable material. Thespacer 16 has amain body 18 that is generally rectangular in shape with afront edge 20, aback edge 22 and 24 and 26. Near therounded ends end 24 there is formed in the back edge 22 a T-shaped notch 28. Similarly, near theend 26 there is formed in theback edge 26 an L-shaped notch 30. In the illustrated embodiment of the invention, the spacing between the 28 and 30 is such that thenotches spacer 16 can be installed on both 2″ and mesh cages and would provide 1″ of cover, which is the distance between the cage and surface of the outside form or jacket. Obviously, the exact dimensions of the spacer and the notches will depend upon the size and spacing of the wires of the cage, but with the design of the spacer of the invention, a spacer of one size will fit cages having different wire spacing. - In
FIG. 1 , thespacer 16 is shown as it would be positioned by the installer between a pair of adjacenthorizontal wires 12, with theend 24 extending inside thecage 10 and the T-shaped notch 28 adjacent and just beneath awire 12, The <spacer 16 is then rotated horizontally (as shown by the arrow inFIG. 1 ) and then lifted so that thewire 12 is inside the T-shaped notch 28 as shown inFIG. 2 . With thewire 12 fully engaged in thenotch 28, the installer then swings thespacer 16 upwardly as shown by the arrow inFIG. 3 until the L-shaped notch 30 is adjacent the nextupper wire 12.FIG. 4 shows thespacer 16 positioned with thewire 12 inside the L-shaped notch 30 at which time the installer can release or push thespacer 16 down to lock it place on the twoadjacent wires 12 as shown inFIG. 5 . Once thespacer 16 is locked in place and after thecage 10 is placed in the form set, thespacer 16 is trapped between thecage 10 and the jacket of the form. Therefore, during the casting process, it is practically impossible for thespacer 16 to become dislodged from thecage 10, and the slight movement of thespacer 16 that may occur as thewires 12 move in the 28 and 30 will not alter the spacing effect provided by thenotches spacers 16. - It will be understood by those skilled in the art that a considerable number of
spacers 16 are installed on thecage 10 at selected intervals before the cage is inserted into the concrete forms. It will be evident from the above description that thespacers 16 can be quickly and early installed without any tools. The quick installation will save considerable time and thus labor cost. When locked in place as described above, thespacer 16 is trapped so that it will not fall off thecage 10. Although thespacer 16 may move slightly during the casting process, the degree of movement is limited by the size and shape of the 28 and 30. Such small movement is not sufficient to cause thenotches spacer 16 to fall off thecage 10 and will not alter the amount of cover or the spacing effect. Thespacer 16 has no sharp edges, and the 24 and 26 provide for a “shoe horn” effect when the outer-form or jacket is slipped down over therounded ends cage 10 preliminary to the casting process. Once locked into place, thespacer 16 can withstand the considerable amount of all forces exerted during the entire casting process. - Having thus described the invention, it will be evident to those skilled in the art, that various other revisions and modifications can be made to the invention disclosed herein without departing from the spirit and scope of the invention. It is my intention however, that all such revisions and modifications that are obvious to those skilled in the art will be included within the scope of the invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/252,881 US20140308474A1 (en) | 2013-04-16 | 2014-04-15 | Concrete product cage spacer |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361812503P | 2013-04-16 | 2013-04-16 | |
| US14/252,881 US20140308474A1 (en) | 2013-04-16 | 2014-04-15 | Concrete product cage spacer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140308474A1 true US20140308474A1 (en) | 2014-10-16 |
Family
ID=51686987
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/252,881 Abandoned US20140308474A1 (en) | 2013-04-16 | 2014-04-15 | Concrete product cage spacer |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20140308474A1 (en) |
| WO (1) | WO2014172367A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10017942B2 (en) * | 2016-12-13 | 2018-07-10 | Christopher McCarthy | Rebar wall set-up bar |
| US11274447B2 (en) * | 2020-02-18 | 2022-03-15 | Hawkeyepedershaab Concrete Technologies, Inc | Lift hole forming device for concrete products |
| US20230175261A1 (en) * | 2021-12-02 | 2023-06-08 | Disney Enterprises, Inc. | Structural support system for rockwork with mechanical fastening of adjacent chip assemblies |
| US12084863B1 (en) * | 2024-04-09 | 2024-09-10 | T. J. Harris Company | Coupler for concrete reinforcing members |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1495659A (en) * | 1922-08-15 | 1924-05-27 | Wilbur W Williamson | Chair for reenforcing steel |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US871210A (en) * | 1906-07-25 | 1907-11-19 | Robert A Cummings | Connecting and spacing clip. |
| DE3829084A1 (en) * | 1988-08-27 | 1990-03-15 | Siegfried Dreizler | CONCRETEABLE SPACER |
| DE10310715A1 (en) * | 2003-03-10 | 2004-10-07 | Fachhochschule Gießen-Friedberg | Invention relating to components as reinforcement elements and concrete parts made therefrom |
| US6899310B1 (en) * | 2003-04-17 | 2005-05-31 | Julian P. Trangsrud | Cage spacer |
| US20110219721A1 (en) * | 2010-03-11 | 2011-09-15 | Rocky Mountain Prestress, LLC | Mesh spacer for reinforced concrete |
-
2014
- 2014-04-15 WO PCT/US2014/034192 patent/WO2014172367A1/en not_active Ceased
- 2014-04-15 US US14/252,881 patent/US20140308474A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1495659A (en) * | 1922-08-15 | 1924-05-27 | Wilbur W Williamson | Chair for reenforcing steel |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10017942B2 (en) * | 2016-12-13 | 2018-07-10 | Christopher McCarthy | Rebar wall set-up bar |
| US11274447B2 (en) * | 2020-02-18 | 2022-03-15 | Hawkeyepedershaab Concrete Technologies, Inc | Lift hole forming device for concrete products |
| US20230175261A1 (en) * | 2021-12-02 | 2023-06-08 | Disney Enterprises, Inc. | Structural support system for rockwork with mechanical fastening of adjacent chip assemblies |
| US11987982B2 (en) * | 2021-12-02 | 2024-05-21 | Disney Enterprises, Inc. | Structural support system for rockwork with mechanical fastening of adjacent chip assemblies |
| US12442189B2 (en) | 2021-12-02 | 2025-10-14 | Disney Enterprises, Inc. | Structural support system for rockwork with mechanical fastening of adjacent chip assemblies |
| US12084863B1 (en) * | 2024-04-09 | 2024-09-10 | T. J. Harris Company | Coupler for concrete reinforcing members |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2014172367A1 (en) | 2014-10-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4989388A (en) | Spacer for spacing reinforcing mesh wire from the form in the manufacture of concrete pipe and the like | |
| US4999965A (en) | Spacer for double cage reinforcement wire mesh for concrete products | |
| US20140308474A1 (en) | Concrete product cage spacer | |
| US9745752B2 (en) | Concrete products locking cage spacer | |
| CN208088285U (en) | A kind of escapement carrying out circumferential decile for fabrication of reinforcing cage control main reinforcement | |
| US10287786B2 (en) | Fall arrest anchor | |
| KR101198711B1 (en) | The Spacer For Reinforcing Concrete Block Form And The Construction Method By This | |
| US9822498B2 (en) | Precast concrete bridge unit and headwall assembly and method of production | |
| KR100870865B1 (en) | the apparatus for head reinforcement of PHC pile | |
| US20160376756A1 (en) | Precast concrete bridge unit and headwall assembly and method of production | |
| KR20190012801A (en) | Formwork for tunnel lining and forming method for precast concrete bracket for supporting airpit slab | |
| KR101127765B1 (en) | Wier Ankar | |
| KR20100012111A (en) | The apparatus for head reinforcement of steel pipepile | |
| JP2019100092A (en) | Device for forming/reinforcing opening in floor slab | |
| KR101072738B1 (en) | the apparatus for head reinforcement of PHC pile | |
| US10975573B1 (en) | Spacer for multiple cage reinforcement wire mesh for concrete products | |
| EP3199719A1 (en) | A device, system and method for fastening a mesh to a building structure, and a construction element | |
| JP6473668B2 (en) | Void holding member and void fixing device for concrete structure | |
| JP4524581B2 (en) | Concrete structure | |
| KR101030782B1 (en) | Fixed hook | |
| JP4048326B2 (en) | Pile head processing method | |
| CN109386009A (en) | Equipment anchor bolt buries the construction tool and method of reserving hole | |
| CN209211649U (en) | A pre-embedded hoop casing | |
| JP2018141321A (en) | Method of inducing cracks in concrete members and crack inducing structure of concrete members | |
| JP6769666B2 (en) | Reinforcing bar connection structure and box culvert reinforcement method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HAWKEYE CONCRETE PRODUCTS CO., IOWA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUBACCHI, CLAUDIO;REEL/FRAME:032673/0498 Effective date: 20130416 |
|
| AS | Assignment |
Owner name: MADISON CAPITAL FUNDING LLC, AS ADMINISTRATIVE AGE Free format text: SECURITY INTEREST;ASSIGNOR:HAWKEYE CONCRETE PRODUCTS CO.;REEL/FRAME:035533/0867 Effective date: 20150430 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: HAWKEYE CONCRETE PRODUCTS CO., MISSOURI Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (PREVIOUSLY RECORDED APRIL 30, 2015, REEL/FRAME 035533/0867);ASSIGNOR:MADISON CAPITAL FUNDING LLC, AS AGENT;REEL/FRAME:040084/0925 Effective date: 20160916 |