US20140305176A1 - Universal roller swaging machine with tool wear monitor - Google Patents
Universal roller swaging machine with tool wear monitor Download PDFInfo
- Publication number
- US20140305176A1 US20140305176A1 US13/861,872 US201313861872A US2014305176A1 US 20140305176 A1 US20140305176 A1 US 20140305176A1 US 201313861872 A US201313861872 A US 201313861872A US 2014305176 A1 US2014305176 A1 US 2014305176A1
- Authority
- US
- United States
- Prior art keywords
- psid
- work piece
- swaging machine
- tapered mandrel
- axial movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims description 20
- 238000012544 monitoring process Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000004033 diameter control Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/08—Tube expanders
- B21D39/10—Tube expanders with rollers for expanding only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/08—Tube expanders
- B21D39/20—Tube expanders with mandrels, e.g. expandable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D41/00—Application of procedures in order to alter the diameter of tube ends
- B21D41/02—Enlarging
- B21D41/026—Enlarging by means of mandrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D41/00—Application of procedures in order to alter the diameter of tube ends
- B21D41/02—Enlarging
- B21D41/026—Enlarging by means of mandrels
- B21D41/028—Enlarging by means of mandrels expandable mandrels
Definitions
- the present disclosure relates to roller swaging machines, including a roller swaging machine that is configured to calculate a target post swage inner diameter (PSID), swage work pieces to the target PSID, and monitor expander tooling wear.
- PSID target post swage inner diameter
- Roller swaging machines are commonly used to secure an end fitting onto a tube using a mechanical connection.
- the end fitting is loosely placed over an end of the tube, and an expander tool is inserted within the end of the tube.
- the expander tool includes a plurality of rollers that are supported around a tapered mandrel.
- the tapered mandrel is rotated and advanced along its axis relative to the rollers. Advancement of the tapered mandrel causes the rollers to radially expand and engage an inner circumference of the tube. As a result, the rollers force the tube to radially expand into contact with the end fitting, thereby forming a mechanically sealed connection between the tube and the end fitting.
- a roller swaging machine for swaging first and second work pieces together.
- the roller swaging machine may include a base, a work piece support assembly, a tool carriage assembly, a spline feed assembly, and a linear sensor.
- a tool carriage assembly may be configured to support an expander tool having a tapered mandrel
- the spline feed assembly may be configured to be coupled to the tapered mandrel of the expander tool
- the linear sensor may be configured to measure axial movement of the tapered mandrel.
- FIG. 1 is a perspective view of an embodiment of a roller swaging machine in accordance with aspects of the present disclosure.
- FIG. 2 is an enlarged perspective view of an embodiment of a work piece support assembly that may be used with a roller swaging machine such as generally illustrated in FIG. 1 .
- FIG. 3 is an enlarged perspective view of an embodiment of an expander tool carriage assembly that may be used with a roller swaging machine such as generally illustrated in FIG. 1 .
- FIG. 4 is an enlarged perspective view of an embodiment of a spline feed assembly that may be used with a roller swaging machine such as generally illustrated in FIG. 1 .
- FIG. 5A is a block representation generally illustrating an embodiment of an expander tool wear monitoring system that may be used with a roller swaging machine such as generally illustrated in FIG. 1 , wherein the expander tool is shown in a first position.
- FIG. 5B is a block representation generally illustrating the expander tool wear monitoring system as generally illustrated in FIG. 5A , wherein the expander tool is shown in a second position.
- FIG. 6 is a flow chart generally illustrating an embodiment of a method for swaging work pieces to a desired post swage inner diameter (PSID) that may employ a roller swaging machine such as generally illustrated in FIG. 1 .
- PSID post swage inner diameter
- FIG. 7 is a flow chart generally illustrating an embodiment of a method for calculating a target PSID that may employ a roller swaging machine such as generally illustrated in FIG. 1 .
- FIG. 8 is a flow chart generally illustrating an embodiment of a method for monitoring expander tooling wear that may employ a roller swaging machine such as generally illustrated in FIG. 1 .
- FIG. 1 illustrates an embodiment of a roller swaging machine 10 including aspects of the present disclosure.
- the roller swaging machine 10 can be used to swage a first work piece to a second work piece, thereby forming a mechanically sealed connection between the two work pieces.
- the first work piece may comprise a tube or the like
- the second work piece may comprise a sleeve, union, bulkhead fitting, flange, or other fitting.
- the swaged work piece may be suitable, for example and without limitation, in aircraft, space-craft, marine, industrial, and other high reliability applications.
- an embodiment of a roller swaging machine 10 may include a base 12 .
- the base 12 can be a suitable support surface, such as a table top, bench, cart, or the like, and may be supported on a plurality of wheels if desired.
- the base 12 may include a set of guide rails 14 , and the set of guide rails 14 may extend, for at least some distance, generally parallel with one another along a top surface of the base 12 , a purpose of which will be explained below.
- the roller swaging machine 10 may further include a work piece support assembly 20 , a tool carriage assembly 30 , and a spline feed assembly 40 .
- the roller swaging machine 10 may also include a programmable logic controller (PLC) and a graphical user interface (GUI) 50 .
- PLC programmable logic controller
- GUI graphical user interface
- the work piece support assembly 20 may be rigidly secured to the base 12 .
- the work piece support assembly 20 can include, among other components, a set of jaws 22 (or similarly functioning components) that are configured to interchangeably support a work piece adaptor 24 .
- the jaws 22 may be actuated (i.e., opened and closed) by an automated system, which may include, for example, a hydraulic or pneumatic actuator.
- the jaws 22 may also be secured in a closed position by a suitable locking device, such as locking mechanism 26 .
- the work piece adaptor 24 may, in turn, be configured to securely support first and second work pieces (which may be collectively referred to as “the work pieces”) during the swaging process.
- the jaws 22 can be configured to support a variety of customized work piece adaptors 24 that, in turn, may be configured or designed for specific work pieces.
- the ability of the work piece support assembly 20 to support a variety of work piece adaptors 24 is a feature that can enable embodiments of a roller swaging machine 10 to be more universal.
- the roller swaging machine 10 can be used to swage work pieces having a variety of sizes and intended applications such as, for example and without limitation, fuel line fittings on the one hand and hydraulic tube fittings on the other.
- a tool carriage assembly 30 can be supported for linear movement along one or more guide rails 14 (collectively referred to as “guide rails”) on the top surface of the base 12 .
- the tool carriage assembly 30 can be selectively fixed in any position along the guide rails 14 by a locking mechanism including, but not limited to, a clamp 32 (see, e.g., FIG. 1 ).
- a locking mechanism including, but not limited to, a clamp 32 (see, e.g., FIG. 1 ).
- embodiments of the tool carriage assembly 30 may include a base 34 that can be configured to interchangeably support a tooling adaptor 36 .
- the base 34 may comprise a generally U-shaped fixture; although, the base 34 may comprise other suitable support fixtures.
- the tooling adaptor 36 can be configured to securely support an expander tool.
- an expander tool may include a tapered mandrel that is supported for rotational and axial movement relative to a plurality rollers.
- the tooling adaptor 36 may comprise a collar-style fixture; however, the adaptor may comprise other forms of suitable support fixtures.
- the tooling adaptor 36 may be removably secured to the base 34 in any suitable manner.
- the base 34 can be configured to support a variety of customized tooling adaptors 36 that may be designed for specific expander tools.
- the ability of the tool carriage assembly 30 to be moved along the guide rails 14 relative to the work piece support assembly 20 and the ability to support a variety of tooling adaptors 36 are features that, among other things, can help enable the roller swaging machine 10 to be more adaptable or universal in nature.
- the spline feed assembly 40 can be supported for linear movement along guide rails 14 providing on an upper or top surface of the base 12 .
- the spline feed assembly 40 can be selectively fixed in almost any position along the guide rails 14 by a locking mechanism, which may include, but is not limited to, a clamp 42 .
- a locking mechanism which may include, but is not limited to, a clamp 42 .
- an embodiment of a spline feed assembly 40 may include a motor 43 , a gear box 44 , a rotatable spline 45 , and a spline coupler 46 .
- the motor 44 can be configured to selectively rotate the spline 45 via the gear box 44 , which in turn can rotate the spline coupler 46 .
- the spline coupler 46 is configured to be connected to an end of the tapered mandrel on the expander tool for selective rotation and axial movement of the tapered mandrel.
- the spline feed assembly 40 may also be configured to move the spline coupler 46 in an axial direction, such as with a mechanical actuator.
- the ability of the spline feed assembly 40 to be moved along the guide rails 14 relative to the tool carriage assembly 30 is a feature that can enable embodiments of the roller swaging machine 10 to be more adaptable or universal.
- the spline feed assembly 40 may also include a linear sensor 48 .
- the linear sensor 48 can be configured to detect and measure the axial movement (e.g., a stroke length) of the tapered mandrel on the expander tool as it is advanced relative to the rollers, such as described further below.
- the linear sensor 48 may comprise a linear variable differential transducer (LVDT).
- LVDT linear variable differential transducer
- the linear sensor 48 can, instead of or additionally, comprise another sensing or detection device that is capable of measuring the axial movement of the tapered mandrel.
- the roller swaging machine 10 may also include a programmable logic controller (PLC) or other type of on-board computer.
- PLC programmable logic controller
- the PLC can include a computing system that is capable of receiving inputs, performing computing functions, and providing outputs.
- the PLC may also include memory that is capable of storing information or data.
- a user interface such as a graphical user interface (GUI) 50 , may also be provided to, among other things, display information to an operator and/or to provide a means for an operator to input information into the PLC.
- the GUI 50 may comprise a touch screen interface or other suitable user interface. It should be fully appreciated that the roller swaging machine 10 may include various other electrical and/or computing components associated with a desired function or application.
- the illustrated expander tool 60 includes a tapered mandrel 62 and a plurality of rollers 64 .
- the tapered mandrel 62 may be supported for axial movement relative to the rollers 64 .
- the rollers 64 may be supported around an outer surface of the tapered mandrel 62 for rotational and radial movement relative to the tapered mandrel 62 .
- the rollers 64 gradually expand outwardly in the radial direction due to (in conformance with) the tapered outer surface of the mandrel 62 .
- a desired outer diameter of the expander tool 60 can be achieved by controlling the axial movement of the tapered mandrel 62 .
- the radial expansion of the rollers 64 may be directly related or proportional to the axial movement of the tapered mandrel 62 .
- the radial expansion of the rollers 64 can be determined from, or based upon, axial movement of the mandrel 62 .
- a linear sensor 48 may be configured to detect and/or measure axial movement of the tapered mandrel 61 .
- the linear sensor 48 therefore, can be configured or calibrated to help determine a direct relationship between axial movement of the tapered mandrel 62 and radial expansion of the rollers 64 .
- the linear sensor 48 can be calibrated by supporting a first ring gage 66 having a known first diameter on the work piece support assembly 20 (see, e.g., FIG. 1 ).
- the expander tool 60 may be inserted within the first ring gage 66 as if to perform a swaging process.
- the tapered mandrel 62 may be advanced until the rollers 64 radially expand and initially come into contact with an inner diameter of the first ring gage 66 .
- the axial movement of the tapered mandrel 62 that is measured by the linear sensor 48 and the diameter of the first ring gage 66 may be stored, for example, in a PLC.
- a second ring gage having a known second diameter may be supported on the work piece support assembly 20 .
- the expander tool 60 may be inserted into the second ring gage as if to perform a swaging process.
- the tapered mandrel 62 may be advanced until the rollers 64 radially expand and initially come into contact with an inner diameter of the second ring gage.
- the axial movement of the tapered mandrel 62 that is measured by the linear sensor 48 and the diameter of the second ring gage may be stored, for example, in a PLC.
- the PLC may then use the gathered data to determine a direct relationship between the axial movement of the tapered mandrel 62 and the outer diameter of the rollers 64 .
- an instantaneous outer diameter of the rollers 64 can be determined from, or based upon, an axial movement of the tapered mandrel 62 , which may be measured in connection with a linear sensor 48 .
- a method of swaging first and second work pieces to a desired post swage inner diameter (PSID) using a roller swaging machine of the type disclosed herein will be explained.
- desired external tooling can be mounted on the roller swaging machine 10 .
- a GUI 50 may prompt the operator to select a mode of swaging.
- the roller swaging machine 10 may be configured to swage in a “diameter control mode” or a “torque control mode.”
- a diameter control mode the operator may enter a desired post swage inner diameter (PSID) and the roller swaging machine 10 may swage the work pieces until the desired PSID is reached or obtained.
- a torque control mode the operator may enter a desired torque and the roller swaging machine 10 may swage the work pieces until a desired torque on the spline 45 is reached or obtained.
- the other (non-selected) mode can be monitored by the PLC as a backup monitoring system or safety factor to protect the tooling and the swage limits.
- a PLC may be configured to continue to monitor the torque on the spline 45 to ensure that the torque does not exceed a pre-determined threshold.
- a linear sensor 48 may then be calibrated at step 72 , such as generally described above.
- a spring back correction factor may be set.
- the spring back correction factor may, for example, comprise the difference in a target PSID calculated by the roller swaging machine 10 (such as described below) and an actual PSID that may be measured (such as by an operator). Spring back may be a result of the resiliency in the material of the work pieces and can occur after the swaging process has been performed. In other words, if spring back is present, then the actual PSID may be less than the target PSID.
- the operator may enter a target PSID into the system (e.g., into a GUI) and swage the work pieces.
- An operator can then measure or obtain an actual PSID and enter that into the system (e.g., into a GUI).
- the difference between the target PSID and the actual PSID can provide a relevant spring back correction factor.
- a GUI may prompt an operator to input preliminary swage information.
- Such information may include, but is not limited to, a desired PSID, an actual outer diameter of a first work piece (e.g., tube), an actual wall thickness of a first work piece (e.g., tube), and/or an actual inner diameter of a second work piece (e.g., end fitting).
- a PLC can be configured to calculate a target PSID at step 74 , such as will be generally explained below.
- the roller swaging machine 10 may then swage the work pieces to the target PSID, at step 76 , by sensing and utilizing a stroke length of the tapered mandrel 62 . Swaging the work pieces to the target PSID can ultimately achieve the desired PSID.
- the system may prompt an operator to measure the actual PSID of the swaged work pieces and enter the dimension into the system.
- the system can display the acceptable range for the target PSID and enable the operator to accept, reject, or re-swage the work pieces.
- a PLC may also be configured to store the swaging data for any or all swage operations that are performed. These steps can be repeated any number of times for additional swages.
- the system may prompt an operator to input preliminary swage information.
- a GUI 50 can prompt an input of a desired PSID at step 80 .
- the system may then prompt an input of the actual dimensions of the work pieces at step 82 .
- Such dimensions can include the outer diameter of the first work piece, the wall thickness of the first work piece, the inner diameter of the second work piece, and/or a spring back factor.
- a corrected PSID may then be calculated by the PLC at step 84 .
- the corrected PSID is the desired PSID entered at step 80 , which may then be corrected based on the actual dimensions that influence groove fill entered at step 82 . If other than nominal values are entered for the actual dimensions at step 82 , then the desired PSID may be adjusted accordingly.
- the desired PSID is adjusted by the amount above or below nominal in order to achieve a swaged connection that would be equivalent to a swaged connection using work pieces having nominal dimensions. For example, if the outer diameter or the wall thickness of the first work piece (e.g., tube) is larger than nominal, the then desired PSID will be reduced by the amount above nominal to obtain the corrected PSID.
- the desired PSID will be increased by the amount above nominal to obtain the corrected PSID. Conversely, if the inner diameter of the second work piece (e.g., end fitting) is smaller than nominal, then the desired PSID will be decreased by the amount below nominal to obtain the corrected PSID.
- the target PSID may then be calculated by the PLC at step 86 .
- the corrected PSID may be adjusted by a spring back correction factor. For example, when a value is entered for a spring back correction factor, the corrected PSID can be increased by that amount to compensate for spring back. As described above, swaging the work pieces to the target PSID ultimately achieves a desired PSID.
- the linear sensor 48 may be calibrated to determine a direct relationship between axial movement of the tapered mandrel 62 and radial expansion of the rollers 64 , such as previously described.
- a PLC may then calculate a target PSID at step 92 , for example, as explained above.
- the work pieces can then be swaged to a target PSID based on the mandrel stroke, which can be measured by the linear sensor 48 .
- the system e.g., GUI 50
- the actual PSID of the swaged work piece may then be compared to the target PSID at step 96 . If the target PSID exceeds the actual PSID by a pre-determined threshold, then the PLC may be configured to provide an alert and/or notify the operator at step 98 to inspect the expander tool 60 for potential tooling wear 68 , such as is generally illustrated in FIGS. 5A and 5B .
- the tool monitoring features enables a maximum number of swages while eliminating or substantially reducing the potential that work pieces are swaged with a damaged or worn expander tool 60 .
- a relationship between the torque and the mandrel stroke may also be established for creating upper and lower limits that differentiates an acceptable swage from an unacceptable (or “bad”) swage.
- This relationship can be also be used to alter the operator of other failure modes such as, for example, if the jaws 22 are not securely locked (i.e., if the PSID is achieved but the torque is below a predetermined limit, an error notification may be provided to the operator describing such a failure).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
Abstract
A roller swaging machine is provided for swaging first and second work pieces together. The roller swaging machine may include a base, a work piece support assembly, a tool carriage assembly, a spline feed assembly, and a linear sensor. In an embodiment, a tool carriage assembly may be configured to support an expander tool having a tapered mandrel, the spline feed assembly may be configured to be coupled to the tapered mandrel of the expander tool, and the linear sensor may be configured to measure axial movement of the tapered mandrel.
Description
- The present disclosure relates to roller swaging machines, including a roller swaging machine that is configured to calculate a target post swage inner diameter (PSID), swage work pieces to the target PSID, and monitor expander tooling wear.
- Roller swaging machines are commonly used to secure an end fitting onto a tube using a mechanical connection. For example, the end fitting is loosely placed over an end of the tube, and an expander tool is inserted within the end of the tube. The expander tool includes a plurality of rollers that are supported around a tapered mandrel. The tapered mandrel is rotated and advanced along its axis relative to the rollers. Advancement of the tapered mandrel causes the rollers to radially expand and engage an inner circumference of the tube. As a result, the rollers force the tube to radially expand into contact with the end fitting, thereby forming a mechanically sealed connection between the tube and the end fitting.
- However, consistent quality of swaged connections can be somewhat difficult to achieve as a result of varying dimensions of work pieces (i.e., tolerances) and tooling wear of the tapered mandrel and rollers. As such, it would desirable to provide a roller swaging machine that is configured to calculate a target post swage inner diameter (PSID) based on the actual dimensions of the work pieces, swage the work pieces to the target PSID, and monitor expander tooling wear.
- A roller swaging machine is provided for swaging first and second work pieces together. The roller swaging machine may include a base, a work piece support assembly, a tool carriage assembly, a spline feed assembly, and a linear sensor. In an embodiment, a tool carriage assembly may be configured to support an expander tool having a tapered mandrel, the spline feed assembly may be configured to be coupled to the tapered mandrel of the expander tool, and the linear sensor may be configured to measure axial movement of the tapered mandrel.
- Various aspects of the present disclosure will become apparent to those skilled in the art from the following detailed description of the various embodiments, when read in light of the accompanying drawings.
-
FIG. 1 is a perspective view of an embodiment of a roller swaging machine in accordance with aspects of the present disclosure. -
FIG. 2 is an enlarged perspective view of an embodiment of a work piece support assembly that may be used with a roller swaging machine such as generally illustrated inFIG. 1 . -
FIG. 3 is an enlarged perspective view of an embodiment of an expander tool carriage assembly that may be used with a roller swaging machine such as generally illustrated inFIG. 1 . -
FIG. 4 is an enlarged perspective view of an embodiment of a spline feed assembly that may be used with a roller swaging machine such as generally illustrated inFIG. 1 . -
FIG. 5A is a block representation generally illustrating an embodiment of an expander tool wear monitoring system that may be used with a roller swaging machine such as generally illustrated inFIG. 1 , wherein the expander tool is shown in a first position. -
FIG. 5B is a block representation generally illustrating the expander tool wear monitoring system as generally illustrated inFIG. 5A , wherein the expander tool is shown in a second position. -
FIG. 6 is a flow chart generally illustrating an embodiment of a method for swaging work pieces to a desired post swage inner diameter (PSID) that may employ a roller swaging machine such as generally illustrated inFIG. 1 . -
FIG. 7 is a flow chart generally illustrating an embodiment of a method for calculating a target PSID that may employ a roller swaging machine such as generally illustrated inFIG. 1 . -
FIG. 8 is a flow chart generally illustrating an embodiment of a method for monitoring expander tooling wear that may employ a roller swaging machine such as generally illustrated inFIG. 1 . - Reference will now be made in detail to embodiments of the present disclosure, examples of which are described herein and illustrated in the accompanying drawings. While the invention will be described in conjunction with embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
- Referring now to the drawings,
FIG. 1 illustrates an embodiment of aroller swaging machine 10 including aspects of the present disclosure. Theroller swaging machine 10 can be used to swage a first work piece to a second work piece, thereby forming a mechanically sealed connection between the two work pieces. For example and without limitation, the first work piece may comprise a tube or the like, and the second work piece may comprise a sleeve, union, bulkhead fitting, flange, or other fitting. The swaged work piece may be suitable, for example and without limitation, in aircraft, space-craft, marine, industrial, and other high reliability applications. - As generally illustrated in
FIG. 1 , an embodiment of aroller swaging machine 10 may include abase 12. Thebase 12 can be a suitable support surface, such as a table top, bench, cart, or the like, and may be supported on a plurality of wheels if desired. Thebase 12 may include a set ofguide rails 14, and the set ofguide rails 14 may extend, for at least some distance, generally parallel with one another along a top surface of thebase 12, a purpose of which will be explained below. - The
roller swaging machine 10 may further include a workpiece support assembly 20, atool carriage assembly 30, and aspline feed assembly 40. In embodiments, theroller swaging machine 10 may also include a programmable logic controller (PLC) and a graphical user interface (GUI) 50. Aspects and features of the foregoing components are described further below. It should be fully appreciated, however, that the roller swaging machine is not limited to the illustrated embodiment, but may include any other components and/or configurations of components suitable for swaging work pieces together. - Referring now to
FIGS. 1 and 2 , the workpiece support assembly 20 may be rigidly secured to thebase 12. As more clearly shown inFIG. 2 , the workpiece support assembly 20 can include, among other components, a set of jaws 22 (or similarly functioning components) that are configured to interchangeably support awork piece adaptor 24. Thejaws 22 may be actuated (i.e., opened and closed) by an automated system, which may include, for example, a hydraulic or pneumatic actuator. Thejaws 22 may also be secured in a closed position by a suitable locking device, such aslocking mechanism 26. Thework piece adaptor 24 may, in turn, be configured to securely support first and second work pieces (which may be collectively referred to as “the work pieces”) during the swaging process. Thejaws 22 can be configured to support a variety of customizedwork piece adaptors 24 that, in turn, may be configured or designed for specific work pieces. The ability of the workpiece support assembly 20 to support a variety ofwork piece adaptors 24 is a feature that can enable embodiments of aroller swaging machine 10 to be more universal. In other words, theroller swaging machine 10 can be used to swage work pieces having a variety of sizes and intended applications such as, for example and without limitation, fuel line fittings on the one hand and hydraulic tube fittings on the other. - Referring now to the embodiments illustrated in
FIGS. 1 and 3 , atool carriage assembly 30 can be supported for linear movement along one or more guide rails 14 (collectively referred to as “guide rails”) on the top surface of thebase 12. Thetool carriage assembly 30 can be selectively fixed in any position along theguide rails 14 by a locking mechanism including, but not limited to, a clamp 32 (see, e.g.,FIG. 1 ). As more clearly illustrated inFIG. 3 , embodiments of thetool carriage assembly 30 may include abase 34 that can be configured to interchangeably support atooling adaptor 36. For example and without limitation, thebase 34 may comprise a generally U-shaped fixture; although, thebase 34 may comprise other suitable support fixtures. Thetooling adaptor 36, in turn, can be configured to securely support an expander tool. As explained in further detail below, embodiments of an expander tool may include a tapered mandrel that is supported for rotational and axial movement relative to a plurality rollers. In an embodiment, thetooling adaptor 36 may comprise a collar-style fixture; however, the adaptor may comprise other forms of suitable support fixtures. In embodiments, thetooling adaptor 36 may be removably secured to thebase 34 in any suitable manner. Thebase 34 can be configured to support a variety of customizedtooling adaptors 36 that may be designed for specific expander tools. The ability of thetool carriage assembly 30 to be moved along theguide rails 14 relative to the workpiece support assembly 20 and the ability to support a variety oftooling adaptors 36 are features that, among other things, can help enable theroller swaging machine 10 to be more adaptable or universal in nature. - Referring now to
FIGS. 1 and 4 , thespline feed assembly 40 can be supported for linear movement alongguide rails 14 providing on an upper or top surface of thebase 12. Thespline feed assembly 40 can be selectively fixed in almost any position along theguide rails 14 by a locking mechanism, which may include, but is not limited to, aclamp 42. As generally illustrated inFIG. 4 , an embodiment of aspline feed assembly 40 may include amotor 43, agear box 44, arotatable spline 45, and aspline coupler 46. Themotor 44 can be configured to selectively rotate thespline 45 via thegear box 44, which in turn can rotate thespline coupler 46. Thespline coupler 46 is configured to be connected to an end of the tapered mandrel on the expander tool for selective rotation and axial movement of the tapered mandrel. Thespline feed assembly 40 may also be configured to move thespline coupler 46 in an axial direction, such as with a mechanical actuator. The ability of thespline feed assembly 40 to be moved along the guide rails 14 relative to thetool carriage assembly 30 is a feature that can enable embodiments of theroller swaging machine 10 to be more adaptable or universal. - The
spline feed assembly 40 may also include alinear sensor 48. Thelinear sensor 48 can be configured to detect and measure the axial movement (e.g., a stroke length) of the tapered mandrel on the expander tool as it is advanced relative to the rollers, such as described further below. In an embodiment, thelinear sensor 48 may comprise a linear variable differential transducer (LVDT). It should be appreciated, however, that thelinear sensor 48 can, instead of or additionally, comprise another sensing or detection device that is capable of measuring the axial movement of the tapered mandrel. Some potential features or purposes of a linear sensor are discussed further below. - The
roller swaging machine 10 may also include a programmable logic controller (PLC) or other type of on-board computer. In embodiments, the PLC can include a computing system that is capable of receiving inputs, performing computing functions, and providing outputs. The PLC may also include memory that is capable of storing information or data. A user interface, such as a graphical user interface (GUI) 50, may also be provided to, among other things, display information to an operator and/or to provide a means for an operator to input information into the PLC. TheGUI 50 may comprise a touch screen interface or other suitable user interface. It should be fully appreciated that theroller swaging machine 10 may include various other electrical and/or computing components associated with a desired function or application. - Referring now to
FIG. 5A , a block representation of an embodiment of anexpander tool 60 is generally illustrated. The illustratedexpander tool 60 includes a taperedmandrel 62 and a plurality ofrollers 64. The taperedmandrel 62 may be supported for axial movement relative to therollers 64. Therollers 64 may be supported around an outer surface of the taperedmandrel 62 for rotational and radial movement relative to the taperedmandrel 62. In an embodiment, as the taperedmandrel 62 is advanced in an axial direction towards therollers 64, therollers 64 gradually expand outwardly in the radial direction due to (in conformance with) the tapered outer surface of themandrel 62. As a result, a desired outer diameter of theexpander tool 60 can be achieved by controlling the axial movement of the taperedmandrel 62. It should be appreciated that the radial expansion of therollers 64 may be directly related or proportional to the axial movement of the taperedmandrel 62. Thus, the radial expansion of therollers 64 can be determined from, or based upon, axial movement of themandrel 62. - As briefly described above, a
linear sensor 48 may be configured to detect and/or measure axial movement of the tapered mandrel 61. Thelinear sensor 48, therefore, can be configured or calibrated to help determine a direct relationship between axial movement of the taperedmandrel 62 and radial expansion of therollers 64. In an embodiment, thelinear sensor 48 can be calibrated by supporting afirst ring gage 66 having a known first diameter on the work piece support assembly 20 (see, e.g.,FIG. 1 ). Theexpander tool 60 may be inserted within thefirst ring gage 66 as if to perform a swaging process. The taperedmandrel 62 may be advanced until therollers 64 radially expand and initially come into contact with an inner diameter of thefirst ring gage 66. The axial movement of the taperedmandrel 62 that is measured by thelinear sensor 48 and the diameter of thefirst ring gage 66 may be stored, for example, in a PLC. Next, a second ring gage having a known second diameter may be supported on the workpiece support assembly 20. Again, theexpander tool 60 may be inserted into the second ring gage as if to perform a swaging process. The taperedmandrel 62 may be advanced until therollers 64 radially expand and initially come into contact with an inner diameter of the second ring gage. The axial movement of the taperedmandrel 62 that is measured by thelinear sensor 48 and the diameter of the second ring gage may be stored, for example, in a PLC. The PLC may then use the gathered data to determine a direct relationship between the axial movement of the taperedmandrel 62 and the outer diameter of therollers 64. As a result, an instantaneous outer diameter of therollers 64 can be determined from, or based upon, an axial movement of the taperedmandrel 62, which may be measured in connection with alinear sensor 48. - Referring now to
FIG. 6 , an embodiment of a method of swaging first and second work pieces to a desired post swage inner diameter (PSID) using a roller swaging machine of the type disclosed herein will be explained. In aninitial step 70, desired external tooling can be mounted on theroller swaging machine 10. After the desired tooling is installed on theroller swaging machine 10, aGUI 50 may prompt the operator to select a mode of swaging. In an embodiment, theroller swaging machine 10 may be configured to swage in a “diameter control mode” or a “torque control mode.” In a diameter control mode, the operator may enter a desired post swage inner diameter (PSID) and theroller swaging machine 10 may swage the work pieces until the desired PSID is reached or obtained. In a torque control mode, the operator may enter a desired torque and theroller swaging machine 10 may swage the work pieces until a desired torque on thespline 45 is reached or obtained. When a desired mode is selected, if desired, the other (non-selected) mode can be monitored by the PLC as a backup monitoring system or safety factor to protect the tooling and the swage limits. For example, if the diameter control mode is selected, a PLC may be configured to continue to monitor the torque on thespline 45 to ensure that the torque does not exceed a pre-determined threshold. - If the diameter control mode is selected, then a
linear sensor 48 may then be calibrated atstep 72, such as generally described above. After thelinear sensor 48 is calibrated, a spring back correction factor may be set. The spring back correction factor may, for example, comprise the difference in a target PSID calculated by the roller swaging machine 10 (such as described below) and an actual PSID that may be measured (such as by an operator). Spring back may be a result of the resiliency in the material of the work pieces and can occur after the swaging process has been performed. In other words, if spring back is present, then the actual PSID may be less than the target PSID. To set the spring back correction factor, the operator may enter a target PSID into the system (e.g., into a GUI) and swage the work pieces. An operator can then measure or obtain an actual PSID and enter that into the system (e.g., into a GUI). The difference between the target PSID and the actual PSID can provide a relevant spring back correction factor. - After the set up and calibration steps are complete, a GUI (such as GUI 50) may prompt an operator to input preliminary swage information. Such information may include, but is not limited to, a desired PSID, an actual outer diameter of a first work piece (e.g., tube), an actual wall thickness of a first work piece (e.g., tube), and/or an actual inner diameter of a second work piece (e.g., end fitting). Based on the information that is inputted into the system, a PLC can be configured to calculate a target PSID at
step 74, such as will be generally explained below. Theroller swaging machine 10 may then swage the work pieces to the target PSID, atstep 76, by sensing and utilizing a stroke length of the taperedmandrel 62. Swaging the work pieces to the target PSID can ultimately achieve the desired PSID. - After the work pieces have been swaged, in embodiments, the system may prompt an operator to measure the actual PSID of the swaged work pieces and enter the dimension into the system. The system can display the acceptable range for the target PSID and enable the operator to accept, reject, or re-swage the work pieces. A PLC may also be configured to store the swaging data for any or all swage operations that are performed. These steps can be repeated any number of times for additional swages.
- Referring now to
FIG. 7 , an embodiment of a method of calculating a target PSID will be described. As noted above, the system (e.g., a GUI) may prompt an operator to input preliminary swage information. For example, aGUI 50 can prompt an input of a desired PSID atstep 80. The system may then prompt an input of the actual dimensions of the work pieces atstep 82. Such dimensions can include the outer diameter of the first work piece, the wall thickness of the first work piece, the inner diameter of the second work piece, and/or a spring back factor. - A corrected PSID may then be calculated by the PLC at
step 84. The corrected PSID is the desired PSID entered atstep 80, which may then be corrected based on the actual dimensions that influence groove fill entered atstep 82. If other than nominal values are entered for the actual dimensions atstep 82, then the desired PSID may be adjusted accordingly. The desired PSID is adjusted by the amount above or below nominal in order to achieve a swaged connection that would be equivalent to a swaged connection using work pieces having nominal dimensions. For example, if the outer diameter or the wall thickness of the first work piece (e.g., tube) is larger than nominal, the then desired PSID will be reduced by the amount above nominal to obtain the corrected PSID. If the inner diameter of the second work piece (e.g., end fitting) is larger than nominal, then the desired PSID will be increased by the amount above nominal to obtain the corrected PSID. Conversely, if the inner diameter of the second work piece (e.g., end fitting) is smaller than nominal, then the desired PSID will be decreased by the amount below nominal to obtain the corrected PSID. - The target PSID may then be calculated by the PLC at
step 86. To calculate the target PSID, the corrected PSID may be adjusted by a spring back correction factor. For example, when a value is entered for a spring back correction factor, the corrected PSID can be increased by that amount to compensate for spring back. As described above, swaging the work pieces to the target PSID ultimately achieves a desired PSID. - Referring now to
FIG. 8 , an embodiment of a method of monitoring expander tooling wear will be generally explained. Atstep 90, thelinear sensor 48 may be calibrated to determine a direct relationship between axial movement of the taperedmandrel 62 and radial expansion of therollers 64, such as previously described. A PLC may then calculate a target PSID atstep 92, for example, as explained above. Atstep 94, the work pieces can then be swaged to a target PSID based on the mandrel stroke, which can be measured by thelinear sensor 48. The system (e.g., GUI 50) may prompt a measurement by the operator of the actual PSID of the swaged work pieces and enter or intake the dimension. The actual PSID of the swaged work piece may then be compared to the target PSID atstep 96. If the target PSID exceeds the actual PSID by a pre-determined threshold, then the PLC may be configured to provide an alert and/or notify the operator atstep 98 to inspect theexpander tool 60 forpotential tooling wear 68, such as is generally illustrated inFIGS. 5A and 5B . The tool monitoring features enables a maximum number of swages while eliminating or substantially reducing the potential that work pieces are swaged with a damaged orworn expander tool 60. A relationship between the torque and the mandrel stroke may also be established for creating upper and lower limits that differentiates an acceptable swage from an unacceptable (or “bad”) swage. This relationship can be also be used to alter the operator of other failure modes such as, for example, if thejaws 22 are not securely locked (i.e., if the PSID is achieved but the torque is below a predetermined limit, an error notification may be provided to the operator describing such a failure). - The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and various modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to explain the principles of the invention and its practical application, to thereby enable others skilled in the art to utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.
Claims (20)
1. A roller swaging machine comprising:
a base;
a work piece support assembly supported on or above the base;
a tool carriage assembly supported on or above the base, the tool carriage assembly configured to support an expander tool having a tapered mandrel;
a spline feed assembly supported on or above the base, the spline feed assembly configured for connection to the tapered mandrel of the expander tool; and
a linear sensor configured to measure axial movement of the tapered mandrel.
2. The roller swaging machine of claim 1 , wherein the work piece support assembly interchangeably supports a work piece adaptor configured to secure a first work piece relative to a second work piece.
3. The roller swaging machine of claim 1 , wherein the tool carriage assembly is supported for movement along the base.
4. The roller swaging machine of claim 2 , wherein the tool carriage assembly includes a locking mechanism configured to secure the tool carriage assembly in a selectable position relative to the base.
5. The roller swaging machine of claim 1 , wherein the tool carriage assembly interchangeably supports a tooling adaptor configured to support the expander tool.
6. The roller swaging machine of claim 1 , wherein the spline feed assembly is supported for movement along the base.
7. The roller swaging machine of claim 6 , wherein the spline feed assembly includes a locking mechanism configured to secure the spline feed assembly in a selectable position relative to the base.
8. The roller swaging machine of claim 1 , wherein the linear sensor is a linear variable differential transducer.
9. The roller swaging machine of claim 1 , including an on-board computer or processor configured to control axial movement of the tapered mandrel based on an input from the linear sensor.
10. The roller swaging machine of claim 9 , wherein the on-board computer or processor is configured to control radial expansion of the rollers based on the axial movement of the tapered mandrel measured in connection with the linear sensor.
11. A method for swaging work pieces together comprising:
installing an expander tool on a tool carriage assembly of a roller swaging machine, the expander tool including a tapered mandrel supported for axial movement relative to a plurality of rollers;
coupling a spline feed assembly provided on the roller swaging machine to the tapered mandrel of the expander tool;
installing a first work piece relative to a second work piece on a work piece support assembly provided on the roller swaging machine;
calibrating a linear sensor provided on the roller swaging machine to determine a relationship between axial movement of the tapered mandrel and an instantaneous outer diameter of the rollers; and
swaging the first and second work pieces to a post swage inner diameter (PSID) based on the axial movement of the tapered mandrel.
12. The method of claim 11 , including calculating a target PSID by adjusting a desired PSID of the first and second work pieces, and swaging the first and second work pieces to the target PSID.
13. The method of claim 12 , wherein the calculating the target PSID includes:
providing a desired PSID;
providing at least one actual dimension of the first or second work piece;
adjusting the desired PSID based on the actual dimension of the first or second work piece to achieve a corrected PSID; and
adjusting the corrected PSID based on a set or pre-determined spring back correction factor of the first and second work pieces.
14. The method of claim 13 , wherein the actual dimension of the first or second work piece can be at least one of a wall thickness of the first work piece, an outer diameter of the first work piece, and an inner diameter of the second work piece.
15. The method of claim 13 , wherein the desired PSID is adjusted by an amount that the actual dimension varies from a pre-determined nominal dimension of the first or second work piece.
16. The method of claim 13 , wherein the spring back correction factor can be determined by initially swaging the first and second work pieces to the target PSID, measuring the actual PSID, and calculating a difference between the target PSID and the actual PSID.
17. The method of claim 11 , wherein the calibrating the linear sensor includes:
installing a first ring gage with a first diameter on the work piece support assembly;
measuring the axial movement of the tapered mandrel that is required for the rollers to achieve the first diameter;
installing a second ring gage with a second diameter on the work piece support assembly;
measuring the axial movement of the tapered mandrel that is required for the rollers to achieve the second diameter; and
determining a relationship between the axial movement of the tapered mandrel and the outer diameter of the rollers.
18. The method of claim 11 , including monitoring an actual PSID of the swaged work pieces to determine potential tooling wear on the expander tool.
19. The method of claim 17 , wherein the monitoring for potential tooling wear on the expander tool includes:
measuring an actual PSID of the swaged work pieces;
comparing the target PSID with the actual PSID of the swaged work pieces; and
notifying an operator if the target PSID exceeds the actual PSID by a pre-determined threshold.
20. The method of claim 11 , including monitoring a torque being applied to the tapered mandrel to ensure that the torque is within a pre-determined threshold to ensure a quality swage and detect failure modes.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/861,872 US20140305176A1 (en) | 2013-04-12 | 2013-04-12 | Universal roller swaging machine with tool wear monitor |
| PCT/US2014/032973 WO2014168827A1 (en) | 2013-04-12 | 2014-04-04 | Universal roller swaging machine with tool wear monitor and method for swaging work pieces together |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/861,872 US20140305176A1 (en) | 2013-04-12 | 2013-04-12 | Universal roller swaging machine with tool wear monitor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140305176A1 true US20140305176A1 (en) | 2014-10-16 |
Family
ID=50678324
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/861,872 Abandoned US20140305176A1 (en) | 2013-04-12 | 2013-04-12 | Universal roller swaging machine with tool wear monitor |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20140305176A1 (en) |
| WO (1) | WO2014168827A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107900241A (en) * | 2017-12-25 | 2018-04-13 | 广东富华机械装备制造有限公司 | The local bulging device of pipe fitting |
| CN108941342A (en) * | 2018-08-28 | 2018-12-07 | 航珍航空技术(上海)有限公司 | A kind of inward turning single lead screw ex truding briquetting machine |
| WO2021102805A1 (en) * | 2019-11-28 | 2021-06-03 | 乐国强 | Flaring conveying mechanism for plastic pipe body, and automatic flaring machine |
| RU2760376C1 (en) * | 2020-11-06 | 2021-11-24 | Общество с ограниченной ответственностью «ТЕХНОВАЦИНК» | Installation for flaring of liner |
| CN113953395A (en) * | 2020-07-21 | 2022-01-21 | 杉野机械股份有限公司 | Automatic pipe expanding device |
| CN114951464A (en) * | 2022-05-27 | 2022-08-30 | 珠海格力智能装备有限公司 | Flaring mechanism |
| US20230402198A1 (en) * | 2022-06-09 | 2023-12-14 | Ge-Hitachi Nuclear Energy Americas Llc | Process and tools to perform reactor pressure vessel nozzle expansion mitigating primary coolant leakage |
| EP4323131B1 (en) * | 2021-04-14 | 2025-03-12 | OP S.r.l. | Machine for deformation machining of a tube and/or of a component on the tube |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105290252A (en) * | 2015-11-03 | 2016-02-03 | 无锡双友石化机械有限公司 | Diameter-expanding steel pipe clamping vehicle |
| JP7174649B2 (en) * | 2019-02-27 | 2022-11-17 | 株式会社スギノマシン | Automatic tube expansion device, automatic tube expansion method and expander exchange method |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2639511A (en) * | 1949-06-13 | 1953-05-26 | Benton A Whiteman | Taper gauge |
| US4139947A (en) * | 1976-07-28 | 1979-02-20 | Finike Italiana Marposs, S.P.A. | Apparatus for checking taper |
| US4589214A (en) * | 1984-03-30 | 1986-05-20 | Ming-Sheng Juan | Taper micrometer |
| US4658616A (en) * | 1984-10-15 | 1987-04-21 | Sierracin Corporation | Automatic roller swage machine |
| US4793167A (en) * | 1987-06-02 | 1988-12-27 | Beiley Mark J | Roller swaging machine |
| US5040396A (en) * | 1990-01-19 | 1991-08-20 | Sierracin Corporation | Portable internal roller swager |
| US5392623A (en) * | 1993-04-02 | 1995-02-28 | General Electric Company | System for monitoring a pilger wall |
| US20020133268A1 (en) * | 1992-02-14 | 2002-09-19 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for feedback-adjusting working condition for improving dimensional accuracy of processed workpieces |
| US20070204666A1 (en) * | 2006-03-01 | 2007-09-06 | Sugino Machine Limited | Tube expanding device |
| US7575502B2 (en) * | 2004-09-07 | 2009-08-18 | Sunnen Products Company | Method of operating honing feed system having full control of feed force, rate, and position |
| US7673549B2 (en) * | 2003-12-03 | 2010-03-09 | H&S Tool, Inc. | Friction linear guide rail assembly for boiler tube cutting apparatus |
| US20120079864A1 (en) * | 2010-09-30 | 2012-04-05 | Sun Doo Kim | Pilger die and pilger mandrel for manufacturing dashpot tube for nuclear fuel assembly, method of manufacturing the pilger die and the pilger mandrel, and dashpot tube for nuclear fuel assembly |
| US20130192331A1 (en) * | 2012-01-30 | 2013-08-01 | Fatigue Technology, Inc. | Installation/processing systems, methods, and components |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03207537A (en) * | 1990-01-08 | 1991-09-10 | Hitachi Ltd | Tube expansion evaluation method |
| DE102005029680B4 (en) * | 2005-06-23 | 2013-02-07 | Universität Dortmund | Apparatus and method for joining non-rotationally symmetrical hollow profiles by rolling |
| US8683839B2 (en) * | 2010-12-30 | 2014-04-01 | Eaton Corporation | Internal roller swaging device and method |
-
2013
- 2013-04-12 US US13/861,872 patent/US20140305176A1/en not_active Abandoned
-
2014
- 2014-04-04 WO PCT/US2014/032973 patent/WO2014168827A1/en not_active Ceased
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2639511A (en) * | 1949-06-13 | 1953-05-26 | Benton A Whiteman | Taper gauge |
| US4139947A (en) * | 1976-07-28 | 1979-02-20 | Finike Italiana Marposs, S.P.A. | Apparatus for checking taper |
| US4589214A (en) * | 1984-03-30 | 1986-05-20 | Ming-Sheng Juan | Taper micrometer |
| US4658616A (en) * | 1984-10-15 | 1987-04-21 | Sierracin Corporation | Automatic roller swage machine |
| US4793167A (en) * | 1987-06-02 | 1988-12-27 | Beiley Mark J | Roller swaging machine |
| US5040396A (en) * | 1990-01-19 | 1991-08-20 | Sierracin Corporation | Portable internal roller swager |
| US20020133268A1 (en) * | 1992-02-14 | 2002-09-19 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for feedback-adjusting working condition for improving dimensional accuracy of processed workpieces |
| US5392623A (en) * | 1993-04-02 | 1995-02-28 | General Electric Company | System for monitoring a pilger wall |
| US7673549B2 (en) * | 2003-12-03 | 2010-03-09 | H&S Tool, Inc. | Friction linear guide rail assembly for boiler tube cutting apparatus |
| US7575502B2 (en) * | 2004-09-07 | 2009-08-18 | Sunnen Products Company | Method of operating honing feed system having full control of feed force, rate, and position |
| US20070204666A1 (en) * | 2006-03-01 | 2007-09-06 | Sugino Machine Limited | Tube expanding device |
| US20120079864A1 (en) * | 2010-09-30 | 2012-04-05 | Sun Doo Kim | Pilger die and pilger mandrel for manufacturing dashpot tube for nuclear fuel assembly, method of manufacturing the pilger die and the pilger mandrel, and dashpot tube for nuclear fuel assembly |
| US20130192331A1 (en) * | 2012-01-30 | 2013-08-01 | Fatigue Technology, Inc. | Installation/processing systems, methods, and components |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107900241A (en) * | 2017-12-25 | 2018-04-13 | 广东富华机械装备制造有限公司 | The local bulging device of pipe fitting |
| CN108941342A (en) * | 2018-08-28 | 2018-12-07 | 航珍航空技术(上海)有限公司 | A kind of inward turning single lead screw ex truding briquetting machine |
| WO2021102805A1 (en) * | 2019-11-28 | 2021-06-03 | 乐国强 | Flaring conveying mechanism for plastic pipe body, and automatic flaring machine |
| CN113953395A (en) * | 2020-07-21 | 2022-01-21 | 杉野机械股份有限公司 | Automatic pipe expanding device |
| JP2022021162A (en) * | 2020-07-21 | 2022-02-02 | 株式会社スギノマシン | Automatic pipe expansion device |
| JP7312731B2 (en) | 2020-07-21 | 2023-07-21 | 株式会社スギノマシン | Automatic tube expansion device |
| RU2760376C1 (en) * | 2020-11-06 | 2021-11-24 | Общество с ограниченной ответственностью «ТЕХНОВАЦИНК» | Installation for flaring of liner |
| WO2022098265A1 (en) * | 2020-11-06 | 2022-05-12 | Общество с ограниченной ответственностью "ТЕХНОВАЦИНК" | Liner expansion apparatus |
| EP4323131B1 (en) * | 2021-04-14 | 2025-03-12 | OP S.r.l. | Machine for deformation machining of a tube and/or of a component on the tube |
| CN114951464A (en) * | 2022-05-27 | 2022-08-30 | 珠海格力智能装备有限公司 | Flaring mechanism |
| US20230402198A1 (en) * | 2022-06-09 | 2023-12-14 | Ge-Hitachi Nuclear Energy Americas Llc | Process and tools to perform reactor pressure vessel nozzle expansion mitigating primary coolant leakage |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2014168827A1 (en) | 2014-10-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20140305176A1 (en) | Universal roller swaging machine with tool wear monitor | |
| KR102056694B1 (en) | Method and device for forming grooves in pipe elements | |
| CN104368632B (en) | A kind of tubular detecting system of bend pipe and detection method thereof | |
| US9808899B2 (en) | Method for mutually positioning tubes | |
| US8683839B2 (en) | Internal roller swaging device and method | |
| JP6925324B2 (en) | Automated systems and methods for measuring and machining the ends of tubular members | |
| US20180021881A1 (en) | Apparatus and method for mobile friction stir welding of two tubular structures | |
| JP2024026734A (en) | System for flange attachment for cylindrical structures and method for attaching flanges to cylindrical parts | |
| EA027164B1 (en) | Device for measuring an internal or external profile of a tubular component | |
| CN105921876B (en) | The agitating friction soldering set of compression distance and torque feedback | |
| JP2012139776A (en) | Work quality determination system and quality determination method | |
| WO2020232041A1 (en) | On-machine thread inspection apparatus and method | |
| US20080127751A1 (en) | Apparatus and Method for Measuring Loads on a Friction Stir Welding Tool | |
| CN105928431A (en) | Tool for inspecting automotive engine room assembly hole | |
| EP1909987B1 (en) | System and process for crimping a fitting to a fluid conduit | |
| US20100175445A1 (en) | Apparatus for restoring the centering of tire rims | |
| US9841334B1 (en) | Electrode torque measurement device | |
| JP4732349B2 (en) | Internal / external shape automatic measuring device at pipe end | |
| CN102193039A (en) | Linear tester and test method for potentiometers | |
| US20160114437A1 (en) | A method of joining workpieces | |
| US9682413B2 (en) | Internal roller swaging device and method | |
| JP6996874B2 (en) | Recognition of pipe end | |
| JP2016028227A (en) | Inspection system for inspecting object by utilizing force sensor | |
| JP4452476B2 (en) | Method and apparatus for measuring shape of tubular body | |
| US20170124696A1 (en) | Valve Gap Measuring Device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: EATON CORPORATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARAVINDAN, ANAND;NAGPURE, SAMEER SURESHRAO;SPINK, KENNETH MAYNARD;AND OTHERS;SIGNING DATES FROM 20130513 TO 20130711;REEL/FRAME:030797/0859 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |