US20140294930A1 - STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM - Google Patents
STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM Download PDFInfo
- Publication number
- US20140294930A1 US20140294930A1 US14/237,120 US201214237120A US2014294930A1 US 20140294930 A1 US20140294930 A1 US 20140294930A1 US 201214237120 A US201214237120 A US 201214237120A US 2014294930 A1 US2014294930 A1 US 2014294930A1
- Authority
- US
- United States
- Prior art keywords
- carbohydrate
- gas
- lacking
- side chain
- mutant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229960005486 vaccine Drugs 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 54
- 150000001720 carbohydrates Chemical class 0.000 title claims description 181
- 241000194017 Streptococcus Species 0.000 title abstract description 8
- 235000014633 carbohydrates Nutrition 0.000 title description 113
- 210000002421 cell wall Anatomy 0.000 title description 41
- 241001505901 Streptococcus sp. 'group A' Species 0.000 claims abstract description 283
- 241001468181 Streptococcus sp. 'group C' Species 0.000 claims abstract description 138
- 239000000203 mixture Substances 0.000 claims abstract description 127
- 238000009472 formulation Methods 0.000 claims abstract description 65
- 238000003556 assay Methods 0.000 claims abstract description 48
- 208000015181 infectious disease Diseases 0.000 claims abstract description 48
- 238000012360 testing method Methods 0.000 claims abstract description 42
- 206010061372 Streptococcal infection Diseases 0.000 claims abstract description 34
- 238000003018 immunoassay Methods 0.000 claims abstract description 32
- 238000002405 diagnostic procedure Methods 0.000 claims abstract description 29
- 230000001717 pathogenic effect Effects 0.000 claims abstract description 12
- 241000194005 Streptococcus sp. 'group G' Species 0.000 claims description 91
- 108091007433 antigens Proteins 0.000 claims description 91
- 102000036639 antigens Human genes 0.000 claims description 91
- 239000000427 antigen Substances 0.000 claims description 88
- 210000002966 serum Anatomy 0.000 claims description 62
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 claims description 35
- 239000008194 pharmaceutical composition Substances 0.000 claims description 34
- 241000193990 Streptococcus sp. 'group B' Species 0.000 claims description 31
- 241000124008 Mammalia Species 0.000 claims description 27
- 150000004676 glycans Chemical group 0.000 claims description 24
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 claims description 21
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 claims description 21
- 230000000521 hyperimmunizing effect Effects 0.000 claims description 21
- 239000004816 latex Substances 0.000 claims description 19
- 229920000126 latex Polymers 0.000 claims description 19
- 238000000018 DNA microarray Methods 0.000 claims description 18
- 206010034839 Pharyngitis streptococcal Diseases 0.000 claims description 18
- 239000011324 bead Substances 0.000 claims description 18
- 239000000017 hydrogel Substances 0.000 claims description 18
- 239000002502 liposome Substances 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 18
- 108090000288 Glycoproteins Proteins 0.000 claims description 17
- 102000003886 Glycoproteins Human genes 0.000 claims description 17
- 206010007882 Cellulitis Diseases 0.000 claims description 16
- 206010040070 Septic Shock Diseases 0.000 claims description 16
- 206010044248 Toxic shock syndrome Diseases 0.000 claims description 16
- 231100000650 Toxic shock syndrome Toxicity 0.000 claims description 16
- 230000002956 necrotizing effect Effects 0.000 claims description 16
- 206010021531 Impetigo Diseases 0.000 claims description 15
- 206010036303 Post streptococcal glomerulonephritis Diseases 0.000 claims description 15
- 201000005638 acute proliferative glomerulonephritis Diseases 0.000 claims description 15
- 239000000499 gel Substances 0.000 claims description 15
- 238000002493 microarray Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- 239000002105 nanoparticle Substances 0.000 claims description 13
- 241000283073 Equus caballus Species 0.000 claims description 11
- 102000002068 Glycopeptides Human genes 0.000 claims description 11
- 108010015899 Glycopeptides Proteins 0.000 claims description 11
- 239000002671 adjuvant Substances 0.000 claims description 11
- 239000006249 magnetic particle Substances 0.000 claims description 11
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 8
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 claims description 7
- 238000009169 immunotherapy Methods 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 230000002265 prevention Effects 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- 239000000443 aerosol Substances 0.000 claims description 4
- 239000000839 emulsion Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000006187 pill Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000003826 tablet Substances 0.000 claims description 4
- 238000007818 agglutination assay Methods 0.000 claims description 3
- 238000013270 controlled release Methods 0.000 claims description 3
- 239000006071 cream Substances 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 3
- 239000006210 lotion Substances 0.000 claims description 3
- 239000008176 lyophilized powder Substances 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 3
- 241000193985 Streptococcus agalactiae Species 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 11
- 108090000623 proteins and genes Proteins 0.000 description 94
- 210000004027 cell Anatomy 0.000 description 29
- 108090000765 processed proteins & peptides Proteins 0.000 description 24
- 101100391712 Dictyostelium discoideum gacI gene Proteins 0.000 description 21
- 239000000047 product Substances 0.000 description 20
- 235000018102 proteins Nutrition 0.000 description 20
- 102000004169 proteins and genes Human genes 0.000 description 20
- 230000002147 killing effect Effects 0.000 description 19
- 102000004196 processed proteins & peptides Human genes 0.000 description 18
- 101710085938 Matrix protein Proteins 0.000 description 15
- 101710127721 Membrane protein Proteins 0.000 description 15
- 230000001580 bacterial effect Effects 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- 210000000440 neutrophil Anatomy 0.000 description 14
- 238000001727 in vivo Methods 0.000 description 13
- 241000283973 Oryctolagus cuniculus Species 0.000 description 12
- 230000027455 binding Effects 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 229920001184 polypeptide Polymers 0.000 description 12
- 235000000346 sugar Nutrition 0.000 description 12
- OVRNDRQMDRJTHS-KEWYIRBNSA-N N-acetyl-D-galactosamine Chemical group CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-KEWYIRBNSA-N 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 230000001018 virulence Effects 0.000 description 11
- 239000013543 active substance Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 201000003068 rheumatic fever Diseases 0.000 description 10
- 101150052250 gacI gene Proteins 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 9
- 230000005291 magnetic effect Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 230000004083 survival effect Effects 0.000 description 9
- 108090001090 Lectins Proteins 0.000 description 8
- 102000004856 Lectins Human genes 0.000 description 8
- 102000004879 Racemases and epimerases Human genes 0.000 description 8
- 108090001066 Racemases and epimerases Proteins 0.000 description 8
- 230000002068 genetic effect Effects 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 239000002523 lectin Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical group C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 7
- 230000001851 biosynthetic effect Effects 0.000 description 7
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- -1 rhamnose sugars Chemical class 0.000 description 7
- 238000012384 transportation and delivery Methods 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 6
- 102100040125 Prokineticin-2 Human genes 0.000 description 6
- 230000004520 agglutination Effects 0.000 description 6
- 239000012491 analyte Substances 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 210000004443 dendritic cell Anatomy 0.000 description 6
- 229920002674 hyaluronan Polymers 0.000 description 6
- 229960003160 hyaluronic acid Drugs 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 108010093708 mamba intestinal toxin 1 Proteins 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 208000004124 rheumatic heart disease Diseases 0.000 description 6
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 5
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 201000007100 Pharyngitis Diseases 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000009650 gentamicin protection assay Methods 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- 235000004252 protein component Nutrition 0.000 description 5
- 208000035473 Communicable disease Diseases 0.000 description 4
- 101000741320 Homo sapiens Cathelicidin antimicrobial peptide Proteins 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000010222 PCR analysis Methods 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000003766 bioinformatics method Methods 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- SDZRWUKZFQQKKV-JHADDHBZSA-N cytochalasin D Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@H]\3[C@]2([C@@H](/C=C/[C@@](C)(O)C(=O)[C@@H](C)C/C=C/3)OC(C)=O)C(=O)N1)=C)C)C1=CC=CC=C1 SDZRWUKZFQQKKV-JHADDHBZSA-N 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 101150109346 gacH gene Proteins 0.000 description 4
- 230000028996 humoral immune response Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 4
- 230000000625 opsonophagocytic effect Effects 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 206010008748 Chorea Diseases 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 239000000562 conjugate Substances 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 244000052637 human pathogen Species 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 238000012092 latex agglutination test Methods 0.000 description 3
- 229940124590 live attenuated vaccine Drugs 0.000 description 3
- 229940023012 live-attenuated vaccine Drugs 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011555 rabbit model Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 2
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000009016 Cholera Toxin Human genes 0.000 description 2
- 108010049048 Cholera Toxin Proteins 0.000 description 2
- 102000018832 Cytochromes Human genes 0.000 description 2
- 108010052832 Cytochromes Proteins 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 208000005119 Necrotizing Pneumonia Diseases 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 108090000794 Streptopain Proteins 0.000 description 2
- 208000027522 Sydenham chorea Diseases 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- FJGXDMQHNYEUHI-GGIAXZSGSA-N alpha-D-GalpNAc-(1->3)-D-GalpNAc Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O[C@@H]1[C@H](NC(C)=O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 FJGXDMQHNYEUHI-GGIAXZSGSA-N 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000010100 anticoagulation Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- 230000000721 bacterilogical effect Effects 0.000 description 2
- 108060001132 cathelicidin Proteins 0.000 description 2
- 102000014509 cathelicidin Human genes 0.000 description 2
- 230000022534 cell killing Effects 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 239000004074 complement inhibitor Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 108091008053 gene clusters Proteins 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 230000008348 humoral response Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 210000004201 immune sera Anatomy 0.000 description 2
- 229940042743 immune sera Drugs 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- OTQCKZUSUGYWBD-BRHMIFOHSA-N lepirudin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)[C@@H](C)O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 OTQCKZUSUGYWBD-BRHMIFOHSA-N 0.000 description 2
- 229960004408 lepirudin Drugs 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- 230000002399 phagocytotic effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000012124 rapid diagnostic test Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 210000000434 stratum corneum Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 239000000304 virulence factor Substances 0.000 description 2
- 230000007923 virulence factor Effects 0.000 description 2
- DRHZYJAUECRAJM-DWSYSWFDSA-N (2s,3s,4s,5r,6r)-6-[[(3s,4s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-[(2s,3r,4s,5r,6r)-3-[(2s,3r,4s,5r,6s)-5-[(2s,3r,4s,5r)-4-[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-3,5-dihydroxyoxan-2-yl]oxy-3,4-dihydroxy-6-methyloxan-2-yl]oxy-5-[(3s,5s, Chemical compound O([C@H]1[C@H](O)[C@H](O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@H]5CC(C)(C)CC[C@@]5([C@@H](C[C@@]4(C)[C@]3(C)CC[C@H]2[C@@]1(C=O)C)O)C(=O)O[C@@H]1O[C@H](C)[C@@H]([C@@H]([C@H]1O[C@H]1[C@@H]([C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@](O)(CO)CO3)O)[C@H](O)CO2)O)[C@H](C)O1)O)O)OC(=O)C[C@@H](O)C[C@H](OC(=O)C[C@@H](O)C[C@@H]([C@@H](C)CC)O[C@H]1[C@@H]([C@@H](O)[C@H](CO)O1)O)[C@@H](C)CC)C(O)=O)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O DRHZYJAUECRAJM-DWSYSWFDSA-N 0.000 description 1
- UGXDVELKRYZPDM-XLXQKPBQSA-N (4r)-4-[[(2s,3r)-2-[[(2r)-2-[(2r,3r,4r,5r)-2-acetamido-4,5,6-trihydroxy-1-oxohexan-3-yl]oxypropanoyl]amino]-3-hydroxybutanoyl]amino]-5-amino-5-oxopentanoic acid Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](C)O[C@@H]([C@H](O)[C@H](O)CO)[C@@H](NC(C)=O)C=O UGXDVELKRYZPDM-XLXQKPBQSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 101150066838 12 gene Proteins 0.000 description 1
- HOMYIYLRRDTKAA-UHFFFAOYSA-N 2-hydroxy-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,8-dien-2-yl]hexadecanamide Chemical compound CCCCCCCCCCCCCCC(O)C(=O)NC(C(O)C=CCCC=CCCCCCCCCC)COC1OC(CO)C(O)C(O)C1O HOMYIYLRRDTKAA-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000220479 Acacia Species 0.000 description 1
- 206010053555 Arthritis bacterial Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000013602 Cardiac Myosins Human genes 0.000 description 1
- 108010051609 Cardiac Myosins Proteins 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 108010078015 Complement C3b Proteins 0.000 description 1
- 108010060123 Conjugate Vaccines Proteins 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 101100391700 Dictyostelium discoideum gacB gene Proteins 0.000 description 1
- 101100391702 Dictyostelium discoideum gacD gene Proteins 0.000 description 1
- 101100391704 Dictyostelium discoideum gacE gene Proteins 0.000 description 1
- 101100391706 Dictyostelium discoideum gacF gene Proteins 0.000 description 1
- 101100391708 Dictyostelium discoideum gacG gene Proteins 0.000 description 1
- 101100391714 Dictyostelium discoideum gacJ gene Proteins 0.000 description 1
- 101100391715 Dictyostelium discoideum gacK gene Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 208000004575 Infectious Arthritis Diseases 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- 206010028885 Necrotising fasciitis Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 102000005937 Tropomyosin Human genes 0.000 description 1
- 108010030743 Tropomyosin Proteins 0.000 description 1
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- GOWLTLODGKPXMN-MWJFIXGVSA-N [(3r)-1-[[(2r,3r,4r,5s,6r)-2-[[(2r,3s,4r,5r,6r)-3,4-dihydroxy-5-[[(3r)-3-hydroxytetradecanoyl]amino]-6-phosphonooxyoxan-2-yl]methoxy]-4-hydroxy-6-(hydroxymethyl)-5-phosphonooxyoxan-3-yl]amino]-1-oxotetradecan-3-yl] dodecanoate Chemical compound O1[C@H](OP(O)(O)=O)[C@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](O)[C@H](O)[C@H]1CO[C@H]1[C@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](CO)O1 GOWLTLODGKPXMN-MWJFIXGVSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000013096 assay test Methods 0.000 description 1
- 229940031567 attenuated vaccine Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 208000012601 choreatic disease Diseases 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 229940031670 conjugate vaccine Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 206010014665 endocarditis Diseases 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 108090000062 ficolin Proteins 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 101150001435 gacA gene Proteins 0.000 description 1
- 101150007264 gacC gene Proteins 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000005182 global health Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- BWHLPLXXIDYSNW-UHFFFAOYSA-N ketorolac tromethamine Chemical compound OCC(N)(CO)CO.OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 BWHLPLXXIDYSNW-UHFFFAOYSA-N 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 239000002102 nanobead Substances 0.000 description 1
- 229940031182 nanoparticles iron oxide Drugs 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 201000007970 necrotizing fasciitis Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 239000000863 peptide conjugate Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003906 phosphoinositides Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000447 polyanionic polymer Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 238000000009 pyrolysis mass spectrometry Methods 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 108700022109 ropocamptide Proteins 0.000 description 1
- 108010038196 saccharide-binding proteins Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- 229960002530 sargramostim Drugs 0.000 description 1
- 201000001223 septic arthritis Diseases 0.000 description 1
- 208000013223 septicemia Diseases 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000004879 turbidimetry Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-O vancomycin(1+) Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C([O-])=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)[NH2+]C)[C@H]1C[C@](C)([NH3+])[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-O 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/09—Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
- A61K39/092—Streptococcus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/646—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/315—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
- C07K16/1267—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
- C07K16/1275—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Streptococcus (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/44—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/36—Adaptation or attenuation of cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5308—Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56911—Bacteria
- G01N33/56938—Staphylococcus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56911—Bacteria
- G01N33/56944—Streptococcus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/52—Bacterial cells; Fungal cells; Protozoal cells
- A61K2039/522—Bacterial cells; Fungal cells; Protozoal cells avirulent or attenuated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/55—Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
- A61K2039/552—Veterinary vaccine
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2400/00—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
- G01N2400/02—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates involving antibodies to sugar part of glycoproteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
Definitions
- the invention generally relates to medicine, vaccines and microbiology.
- the invention provides vaccines, pharmaceutical compounds and formulations for diagnosing, preventing, treating or ameliorating Group A Streptococcus (GAS), Group C Streptococcus (GCS), or related pathogenic streptococcal, infections.
- the invention provides compositions such as diagnostic tests, assays, immunoassays and test strips, and methods, for detecting or diagnosing the presence of a Streptococcal infection, e.g., Group A Streptococcus (GAS), Group C Streptococcus (GCS), or Group A Streptococcus (GGS), infections, or other pathogenic Streptococcus infections.
- a Streptococcal infection e.g., Group A Streptococcus (GAS), Group C Streptococcus (GCS), or Group A Streptococcus (GGS)
- GAS Group A Streptococcus
- S. pyogenes S. pyogenes
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GCS Group C Streptococcus
- GCS can cause epidemic pharyngitis and cellulitis clinically indistinguishable from GAS disease, and can cause septicemia, endocarditis, septic arthritis and necrotizing infections in patients with predisposing conditions such as diabetes, cancer or advanced aged.
- GCS is also the cause of the highly contagious and serious upper respiratory tract infection of horses and other equines known as strangles, which is enzootic in a worldwide distribution.
- GAS is classically defined by expression of a unique carbohydrate structure called the group A carbohydrate (GAC).
- GAC group A carbohydrate
- GAC consists of a rhamnose backbone and an immunodominant N-acetylglucosamine (GlcNAc) side chain.
- GAC is the basis for all contemporary rapid diagnostic testing for GAS pharyngitis.
- GAC has shown potential as a universal GAS vaccine in animal studies, but serious safety concerns were raised since the antibodies against the GlcNAc side chain have been implicated in the immunopathogenesis of rheumatic fever (RF), a poststreptococcal inflammatory disorder of global health importance.
- RF rheumatic fever
- evidence of anti-GlcNAc antibodies have been associated with two cardinal manifestations of RF: rheumatic carditis and Sydenham's chorea.
- GAS Group A Streptococcus
- GAC variant group A carbohydrate
- A-variants have been observed to originate upon serial passage in mice, however the molecular basis for this spontaneous variation has never been documented.
- GAS Group A Streptococcus
- AAC variant group A carbohydrate
- A-variants have been observed to originate upon serial passage in mice, however the molecular basis for this spontaneous variation has never been documented.
- GlcNAc side chain is plays an essential role in human colonization, infection or transmission.
- Human serum contains antibodies against GAC that are predominantly directed against the GlcNAc side chain and promote phagocytosis of GAS.
- anti-GlcNAc antibodies have also been observed to crossreact with human cardiac myosin and lysoganglioside on neuronal cells, associating them to rheumatic carditis and Sydenham chorea, respectively.
- GAC glycosylcholine
- GCS glycosylcholine
- the invention provides isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate compositions or variants and/or mutants: partially lacking, substantially lacking, or completely lacking an immunodominant GlcNac side chain; or, partially lacking, substantially lacking, or completely lacking an autoreactive GlcNAc component; or, having a polyrhamnose backbone rather than an immunodominant GlcNac side chain, or a group A carbohydrate (GAC) antigen.
- GAS Group A Streptococcus
- the invention provides isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate compositions or variants and/or mutants: partially lacking, substantially lacking, or completely lacking an immunodominant GalNAc-GalNAc side chain; or, partially lacking, substantially lacking, or completely lacking an autoreactive GalNAc-GalNAc component; or, having a polyrhamnose backbone rather than an immunodominant GalNAc-GalNAc side chain, or a group C carbohydrate (GCC) antigen.
- GCS Group C Streptococcus
- the invention provides isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate compositions or variants and/or mutants: partially lacking, substantially lacking, or completely lacking an immunodominant glycan side chain; or, partially lacking, substantially lacking, or completely lacking an autoreactive glycan component; or, having a polyrhamnose backbone rather than an immunodominant glycan side chain, or a group G carbohydrate (GGC) antigen.
- GGS Group G Streptococcus
- the invention provides vaccines, formulations, compositions or pharmaceutical compositions, comprising a carbohydrate, glycoconjugate or glycopeptide selected from the group consisting of:
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- an isolated, synthetic or recombinant carbohydrate variant/mutant partially or completely lacking an immunodominant glycan side chain; or, partially or completely lacking an autoreactive glycan component; or having a polyrhamnose backbone rather than an immunodominant glycan side chain, or
- GGS Group G Streptococcus
- carbohydrate, glycoconjugate or glycopeptide comprises, or is the same as or is derived from: a pathogenic streptococci of a group B Streptococcus (GBS), for example, a Streptococcus agalactiae , or a group G Streptococcus (GGS) carbohydrate (GCC) antigen (both of which are known to have polyrhamnose backbones similar to that of GAS/GCS, but with more complex antennary structures);
- GBS group B Streptococcus
- GCS group G Streptococcus
- GCC group G Streptococcus
- the vaccine, formulation, composition or pharmaceutical composition comprises: a polyrhamnose backbone, or a plurality of polyrhamnose backbones derived from a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS.
- the vaccine, formulation, composition or pharmaceutical composition comprises: an isolated, synthetic or recombinant carbohydrate variant/mutant derived from a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS, wherein the carbohydrate variant/mutant partially or completely lacks an autoreactive glycan component.
- the vaccine, formulation, composition or pharmaceutical composition comprises: an isolated, synthetic or recombinant carbohydrate variant/mutant: partially or completely lacking an immunodominant glycan side chain from: a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS.
- the vaccines, formulations, compositions or pharmaceutical compositions further comprise one or more (different or additional) GAS, a GCC and/or a GGC protein antigen, or further comprise an adjuvant and/or a pharmaceutically acceptable excipient.
- the vaccines, formulations, compositions or pharmaceutical compositions of the invention can be manufactured or formulated as a liquid, a powder, a liposone, an aerosol, a nanoparticle or a lyophilized, freeze-dried or cryodessicated preparation, or can be manufactured or formulated as an emulsion, a lyophilized powder, a spray, a cream, a lotion, a controlled release formulation, a tablet, a pill, a gel, a patch, in an implant or in a spray, or is formulated as an aqueous or a non-aqueous isotonic sterile injection solution, or an aqueous or a non-aqueous sterile suspension.
- vaccines, formulations, compositions or pharmaceutical compositions of the invention are:
- aqueous or a non-aqueous isotonic sterile injection solution or an aqueous or a non-aqueous sterile suspension
- strep throat formulated as a vaccine or a pharmaceutical for the prevention, amelioration or treatment of strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- the invention provides isolated, modified or recombinant Group A Streptococcus (GAS) engineered or modified:
- GAS is an allelic replacement knockout of gacI (Spy0610);
- the invention provides a double mutant lacking both GlcNac and M protein; this embodiment provides an added safety advantage in manufacture.
- the invention provides isolated, modified or recombinant Group C Streptococcus (GCS) engineered or modified:
- GCS Group C Streptococcus
- GCS is an allelic replacement knockout of the gene encoding the homologous function to GAS gacI;
- the invention provides isolated, modified or recombinant Group C Streptococcus (GCS) engineered or modified:
- GCS Group C Streptococcus
- GCS mutant is an allelic replacement knockout of this gene
- the invention provides isolated, modified or recombinant Group G Streptococcus (GGS) engineered or modified:
- GGS mutant is an allelic replacement knockout of this gene
- the invention provides attenuated live bacteria comprising: an isolated, modified or recombinant Group A Streptococcus (GAS) of the invention; an isolated, modified or recombinant Group C Streptococcus (GCS) of the invention; or, an isolated, modified or recombinant Group G Streptococcus (GGS) of the invention.
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GGS Group G Streptococcus
- the invention provides vaccines, formulations, compositions or pharmaceutical compositions comprising an attenuated live bacteria of the invention.
- the invention provides vaccines, formulations, compositions or pharmaceutical compositions comprising: an isolated, modified or recombinant Group A Streptococcus (GAS) of the invention; an isolated, modified or recombinant Group G Streptococcus (GGS) of the invention; or, an isolated, modified or recombinant Group C Streptococcus (GCS) of the invention.
- GAS Group A Streptococcus
- GGS Group G Streptococcus
- GCS Group C Streptococcus
- the invention provides methods for screening for a composition that can render a Group A Streptococcus (GAS) susceptible to innate immune clearance or pharmacological antibiotics comprising:
- kits comprising: an antibody of the invention; a vaccine, a formulation, a composition or a pharmaceutical composition of the invention; an isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention; an isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention; and/or, an isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention.
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GCS Group G Streptococcus
- the invention provides isolated or recombinant antibodies, polyclonal or a monoclonal antibodies, or a serum (e.g., a hyperimmune serum or hyperimmune sera), wherein the antibody or serum or sera specifically react(s) against, or specifically binds to, or is specifically derived against:
- a serum e.g., a hyperimmune serum or hyperimmune sera
- the antibody or serum is formulated for active or passive immunotherapy in a mammal, optionally formulated for treating, ameliorating or for preventing a GAS, GGS or GCS infection in a mammal, a human or a horse,
- the immunotherapy is for the prevention, amelioration or treatment of strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- the invention provides vaccines or formulations comprising one or more isolated or recombinant antibodies, a polyclonal or a monoclonal antibodies, or a sera (e.g., a hyperimmune sera) of the invention, wherein the antibodies or sera specifically react against, or specifically bind to, or are specifically derived against one, two or all of:
- the invention provides methods for active or passive immunotherapy in a mammal for preventing a GAS, a GGS or a GCS infection in a mammal, a human or a horse, comprising:
- the immunotherapy is for the prevention, amelioration or treatment of strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- the invention provides diagnostic tests, assays, immunoassays or test strips, or arrays, microarrays, biochips, diagnostic chips or chips, for detecting or diagnosing the presence of a Streptococcal infection, comprising the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- the diagnostic test, assay, immunoassay or test strip detects the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”) in a human,
- the diagnostic test, assay, immunoassay or test strip, or array, microarray, biochip, diagnostic chip or chip detects the presence of or diagnoses a strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis,
- the diagnostic test, assay, immunoassay or test strip detects the presence of or diagnoses a Streptococcal infection
- Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- the diagnostic test, assay, immunoassay or test strip comprises a latex agglutination, enzyme immunoassay or an optical immunoassay.
- the invention provides methods for detecting the presence of or diagnosing a Streptococcal infection, or a Streptococcal pharyngitis (“strep throat”) in a human, comprising use of a diagnostic test, assay, immunoassay or test strip, latex agglutination assay, enzyme immunoassay or optical immunoassay of the invention,
- the infection is or involves a strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- the invention provides a diagnostic test, assay or test strip (e.g., latex agglutination, enzyme immunoassay, or optical immunoassay) for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human.
- a diagnostic test, assay or test strip e.g., latex agglutination, enzyme immunoassay, or optical immunoassay
- the diagnostic test, assay or test strip is rapid and/or has improved sensitivity and/or specificity to as compared to current technologies since it targets a bacterial specific motif (polyrhamnose) rather than a common sugar motif (e.g., a GlcNac or a GlcNac) present on mammalian (e.g., human) cells and mucosal secretions. Since an identical polyrhamnose backbone is shared by GAS and GCS, in alternative embodiments these rapid diagnostic tests and assays have the advantage of identifying both species lacking in current rapid diagnostic methodologies.
- the invention provides diagnostic tests, assays, immunoassays, test strips, beads or latex beads, arrays, microarrays, biochips, diagnostic chips or chips, or gels or hydrogels, or magnetic particles, for detecting or diagnosing the presence of a Streptococcal infection, comprising (or having affixed or attached thereon) the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or serum or hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- the diagnostic tests, assays, immunoassays, test strips, beads or latex beads, arrays, microarrays, biochips, diagnostic chips or chips, or gels or hydrogels, or magnetic particles detect the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis, in a human,
- strep throat Streptococcal pharyngitis
- cellulitis necrotizing fascititis
- toxic shock syndrome or post-streptococcal glomerulonephritis
- Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- the invention provides hydrogels, particles or magnetic particles for detecting or diagnosing the presence of a Streptococcal infection, comprising (or having affixed or attached thereon) the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or serum or hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- hydrogel, particle or magnetic particle detects the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis, in a human,
- strep throat Streptococcal pharyngitis
- impetigo cellulitis
- necrotizing fascititis necrotizing fascititis
- toxic shock syndrome or post-streptococcal glomerulonephritis
- hydrogel, particle or magnetic particle detects the presence of or diagnoses a Streptococcal infection
- Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- the invention provides arrays, microarrays, biochips, diagnostic chips or chips, for detecting or diagnosing the presence of a Streptococcal infection, comprising (or having affixed or attached thereon) the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or serum or hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- biochip, diagnostic chip or chip detects the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis, in a human,
- strep throat Streptococcal pharyngitis
- impetigo cellulitis
- necrotizing fascititis necrotizing fascititis
- toxic shock syndrome or post-streptococcal glomerulonephritis
- the diagnostic test, assay, immunoassay or test strip detects the presence of or diagnoses a Streptococcal infection
- Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- the invention provides uses of: an isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of claim 1 , an isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of claim 2 , or an isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of claim 3 , or an isolated or a recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum of claim 16 or claim 17 , or a vaccine or formulation of claim 18 , for the manufacture of a pharmaceutical or a medicament,
- the isolated, synthetic or recombinant GAS, GCS and/or GGS is used for the manufacture of a pharmaceutical or a medicament to treat, prevent or ameliorate a Streptococcal infection, a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- strep throat Streptococcal pharyngitis
- impetigo impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- the invention provides an isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention, an isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention, or an isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention, or an isolated or a recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum of the invention, or a vaccine or formulation of the invention, for use in a method of treating a Streptococcal infection, a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerul
- FIG. 1A schematically illustrates the genetic operon for assembling the GAC in GAS through bioinformatics analysis, and shows the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen
- FIG. 1B illustrates a PCR analysis shows absence of the gacI gene (incorrectly labeled gacH) in the knockout mutant
- FIG. 1C illustrates a latex agglutination for group A carbohydrate (GlcNac side chain) is no longer reactive in the GAS ⁇ gacI (incorrectly labeled ⁇ gacI) mutant
- FIG. 1D graphically summarizes this data.
- FIG. 2 graphically illustrates a glycoanalysis subsequent to purification of this mutant GAC carbohydrate, the data unambiguously demonstrating the absence of GlcNAc side chain.
- FIG. 3 illustrates information regarding types of mucosal and invasive infections associated with the leading human pathogen GAS, or Group A Streptococcus , including strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, post-streptococcal glomerulonephritis, that can be treated, ameliorated or prevented using compositions of the invention, e.g., vaccine and antibodies or the invention; or that can be diagnosed using compositions, e.g., devices of the invention such as test strips or immunoassays, of the invention.
- compositions of the invention e.g., vaccine and antibodies or the invention
- devices of the invention such as test strips or immunoassays
- FIG. 4 schematically illustrates a representation of the cell wall and surface structures of the leading human pathogen: group A Streptococcus.
- FIG. 5A schematically illustrates the chemical structure of group A streptococcal cell wall carbohydrate antigen (GAC)
- FIG. 5B illustrates an electron microscopic appearance or image of the group A streptococcal cell wall carbohydrate antigen (GAC), with its polyrhamnose backbone and GlcNAc side chain.
- FIG. 6 illustrates an electron microscopic appearance or image of GAS ( FIG. 6A ) and variant GAS ( FIG. 6B ) strains that lose immune reactivity to the GlcNAc side chain (stained with ferritin conjugated Group A antibodies)—so called “A variant strains”, isolated from mice on serial passage.
- FIG. 7 graphically illustrates data from a latex agglutination test on the natural antibody response to the group A carbohydrate and use of the WT GlcNAc-containing carbohydrate as a vaccine antigen.
- FIG. 8 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen, as discussed in Example 1, below.
- GAS group A streptococcal
- FIG. 9A illustrates a gel of a restriction digest of a PCR amplification of the mutant GAC GlcNAc-deficient knockout mutant, the PCR analysis shows absence of the gacI gene in the knockout mutant
- FIG. 9B illustrates an image of a latex agglutination for group A carbohydrate (GlcNac side chain) showing it is no longer reactive in the GAS ⁇ gacI mutant
- FIG. 9C schematically illustrates or diagrams an exemplary method for generation of GAC GlcNAc-deficient knockout mutant through allelic replacement of the gacI gene.
- FIG. 10A graphically illustrates data showing that the wild type (WT) parent M1 GAS strain and the isogenic ⁇ gacI mutant show similar growth kinetics in bacteriologic growth media (Todd-Hewitt Broth);
- FIG. 10B graphically illustrates data showing an analysis of the wild-type GAS strain demonstrating binding of the sWGA lectin probe, specific for terminal GlcNac sugars to the bacterial surface; this binding is lost in the ⁇ gacI mutant, and the results confirms loss of the GlcNac side chain in the mutant.
- FIG. 11A graphically illustrates data from a cytochrome C binding assay indicating that the ⁇ gacI mutant expresses less negative surface charge than the WT parent M1 GAS strain in both stationary and exponential growth phases.
- FIG. 11A graphically illustrates data from a N-hexadecane partition analysis indicating that the ⁇ gacI mutant is more hydrophobic than the WT parent M1 GAS strain.
- FIG. 12 graphically illustrates SpeB activity in supernatant demonstrating that levels of cysteine protease (SpeB) activity are similar in the WT GAS MIT1 parent strain and the isogenic ⁇ gacI mutant.
- FIG. 13 graphically illustrates data of a hyaluronic acid ELISA, showing that the WT parent M1 GAS strain and the isogenic ⁇ gacI mutant express similar levels of hyaluronic acid capsule; animal passage increases hyaluronic acid expression in M GAS (by selection of covS mutants); a similar increase is seen in both the WT parent strain and the isogenic ⁇ gacI mutant.
- FIG. 14 illustrates a microscopic appearance comparing WT ( FIG. 14A ) and ⁇ gacI mutant ( FIG. 14B ) chain length, where the ⁇ gacI mutant ( FIG. 14B ) showing a gross morphology of cell walls is similar, but there is a tendency in the mutation to longer chain length, when compared to the WT parent GAS MIT1 strain ( FIG. 14A ).
- FIG. 15 illustrates a formal glycoanalysis of linkages in the WT M1 GAS carbohydrate showing rhamnose sugars and the ⁇ -1-3-linked GlcNac side chain.
- FIG. 16 illustrates a formal glycoanalysis of linkages in the M1 GAS ⁇ gacI mutant cell wall carbohydrate showing unambiguously the loss of the ⁇ -1-3-linked GlcNac side chain.
- FIG. 17 graphically illustrates data from a mouse infection experiment ( ⁇ gacI mutant compared to the WT parent) showing a trend towards attenuation of virulence of ⁇ gacI mutant compared to the WT parent strain in a mouse model of systemic infection.
- FIG. 18 graphically illustrates data from a whole blood survival test demonstrating that the ⁇ gacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood whether heparin ( FIG. 18A ) or lepirudin ( FIG. 18B ) is used for anticoagulation; the results indicate the GlcNAc side chain contributes to whole blood survival.
- FIG. 19 illustrates data from a cell killing/cell survival assay showing that the ⁇ gacI mutant is more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37 and the murine cathelicidin mCRAMP, which are produced abundantly by neutrophils and epithelial cells and known to be an important effector of bacterial killing; thus, the GlcNac side chain contributes to cathelicidin resistance.
- FIG. 20 graphically illustrates data from a cell killing/cell survival assay showing that the ⁇ gacI mutant is more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37, which is produced abundantly by neutrophils and epithelial cells and known to be an important effector of bacterial killing; thus, the GlcNac side chain contributes to LL-37 resistance.
- FIG. 21 graphically illustrates data from a serum survival assay showing that the ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum ( FIG. 21A ) and 5% baby rabbit serum ( FIG. 21B ), indicating the GlcNac side chain promotes GAS serum resistance, as discussed in Example 1.
- FIG. 22 graphically illustrates data from a C3b complement deposition assay showing that compared to the WT parent GAS MIT1 strain the ⁇ gacI mutant shows less complement deposition via the lectin pathway (in absence of IgG) ( FIG. 22B ), as compared to the classical complement pathway ( FIG. 22A ).
- FIG. 23A schematically illustrates the classical complement pathway and the lectin pathway
- FIGS. 23B and 23C graphically illustrate that data from a serum survival assay showing that C4b (upstream) complement deposition ( FIG. 23B ) and C5B-9 complement deposition ( FIG. 23C ) is reduced in the ⁇ gacI mutant (reduced in the absence of GAC side chain) compared to the WT parent GAS strain.
- FIG. 24 illustrates a test showing the sensitivity of WT ( FIG. 24A ) and ⁇ gacI mutant ( FIG. 24B ) GAS to the antibiotic vancomycin by E-test.
- FIG. 25 is a summary of some phenotypic characteristics and virulence properties that are changed or unaffected when comparing the WT GAS MIT1 strain to the isogenic ⁇ gacI mutant lacking the GlcNAc side chain on its cell wall carbohydrate antigen.
- FIG. 26 schematically illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC), and a description of its association with human and equine infectious diseases, as discussed in Example 1.
- GCC Group C streptococcal cell wall carbohydrate
- FIG. 27 schematically illustrates a comparison of the gene loci encoding the GAS and GCS cell wall carbohydrate antigens and predicted gene annotations.
- FIG. 28 schematically illustrates a comparison of the gene loci encoding the GAS and GCS cell wall carbohydrate antigens and predicted gene annotations and prediction of genes from GCS that could encode the GlcNAc-GlcNAc side chain.
- FIG. 29 schematically illustrates an exemplary scheme by which a knockout of the GCS gccN gene yields a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain that can be studied in virulence and vaccine models analogous to what we have achieved in with the deletion of ⁇ gacI gene in GAS.
- FIG. 30A illustrates the results of a latex bead test showing that knockout of the GCS gccN gene yields a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by loss of reactivity in the latex agglutination test;
- FIG. 30B schematically illustrates a scheme for synthesizing GCC and GAC.
- FIG. 31 illustrates the results of a latex bead test showing that knockout of the GCS gccN gene yields a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by loss of binding to SBA, a lectin recognizing GalNAc.
- FIG. 32 illustrates the results of a formal glycolinkage analysis showing that knockout of the GCS gccN gene yields a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by the glycolinkage analysis.
- FIG. 33 schematically illustrates that cloning of gccL-N genes from GCS into GAS could encode incorporation of a GlcNAc-GlcNAc side chain.
- FIG. 34 illustrates the results of a latex bead test showing that heterologous expression of the gccL-N genes from GCS into GAS causes incorporation of GlcNAc-GlcNAc side chain, as shown by latex agglutination test.
- FIG. 35 graphically illustrates the results of a flow cytometry assay demonstrating incorporation of GCS side chain into GAS upon heterologous expression of the gccL-N genes, as confirmed by lectin binding assay.
- FIG. 36 illustrates the results of a carbohydrate composition analysis demonstrating that heterologous expression of the gccL-N genes from GCS into GAS causes incorporation of GlcNAc-GlcNAc side chain by composition analysis.
- FIG. 37 graphically illustrates the results of a whole blood killing assay demonstrating that heterologous expression of the gccL-N genes from GCS into GAS causes reduced survival in whole blood killing assay.
- FIG. 38 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen, as discussed in Example 1.
- GAS group A streptococcal
- FIG. 39 illustrates targeted knockout of the gacI gene in M1 GAS strain 5448 by allelic exchange mutagenesis
- FIG. 39A illustrates a PCR analysis showing the absence of the gacI gene in the knockout mutant
- FIG. 39B illustrates a latex agglutination for group A carbohydrate (GlcNac side chain) is no longer reactive in the GAS ⁇ gacI mutant
- FIG. 39C schematically illustrates how if a copy of the gacI gene is knocked back into the mutant, the reactivity for the GlcNac is restored.
- FIG. 40A illustrates a flow cytometry analysis of the wild-type GAS strain showing binding of the sWGA lectin probe, specific for terminal GlcNac sugars, to the bacterial surface;
- FIG. 40B graphically illustrates how this binding is lost in the ⁇ gacI mutant and restored in the complemented mutant; the results confirm loss of the GlcNac side chain in the mutant.
- FIG. 41 illustrates a formal glycoanalysis of linkages in the WT M1 GAS carbohydrate, the linkage analysis shows rhamnose sugars and the ⁇ -1-3-linked GlcNac side chain.
- FIG. 42 illustrates a formal glycoanalysis of linkages in the M1 GAS ⁇ gacI mutant cell wall carbohydrate, the linkage analysis shows unambiguously the loss of the ⁇ -1-3-linked GlcNac side chain.
- FIG. 43 graphically illustrates that the WT parent M1 GAS strain and the isogenic ⁇ gacI mutant show similar growth kinetics in bacteriologic growth media (Todd-Hewitt Broth).
- FIG. 44 illustrates a transmission electron microscopy image showing that the WT parent M1 GAS strain and the isogenic ⁇ gacI mutant show ultrastructural appearance under transmission electron microscopy.
- FIG. 45 graphically illustrates that the WT parent M1 GAS strain and the isogenic ⁇ gacI mutant express similar levels of hyaluronic acid capsule, as discussed in Example 1.
- FIGS. 46A and 46B illustrate images showing that the ⁇ gacI mutant tends to express longer chain length than the WT parent M1 GAS strain; and FIG. 46C graphically illustrates these results.
- FIG. 47A graphically illustrates a cytochrome C binding assay that indicates the ⁇ gacI mutant expresses less negative surface charge than the WT parent M1 GAS strain in both stationary and exponential growth phases
- FIG. 47B graphically illustrates an N-hexadecane partition analysis that indicates the ⁇ gacI mutant is more hydrophobic than the WT parent M1 GAS strain.
- FIGS. 48A and 48B graphically illustrate that the ⁇ gacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood, whether heparin ( FIG. 48A ) or lepirudin ( FIG. 48G ) is used for anticoagulation; the results indicate the GlcNAc side chain contributes to whole blood survival.
- FIGS. 49A and 49B graphically illustrate that the ⁇ gacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood, whereas complementation of the mutation restores WT levels of survival, as discussed in Example 1, below.
- FIGS. 50A and 50B graphically illustrate that the ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain in a human neutrophil opsonophagocytic killing assay, whereas complementation of the mutation restores WT levels of survival, as discussed in Example 1, below.
- FIG. 51A graphically illustrates that the ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain in a human neutrophil extracellular trap (NET) killing assay, indicating the GlcNac side chain promotes resistance to extracellular neutrophil killing within NETs; and
- FIG. 50B graphically illustrates that the ⁇ gacI mutant is more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37, which is produced abundantly by neutrophils and known to be an important effector of bacterial killing within NETs; thus the GlcNac side chain contributes to cathelidicin resistance.
- NET human neutrophil extracellular trap
- FIGS. 52A and 52B graphically illustrate that the I ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum ( FIG. 52A ) and 5% baby rabbit serum ( FIG. 52B ), indicating the GlcNac side chain promotes GAS serum resistance, as discussed in Example 1, below.
- FIG. 53 graphically illustrates that the ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain by thrombin activated platelets, indicating the GlcNac side chain promotes GAS resistance to platelet-derived antimicrobial peptides.
- FIG. 54A graphically illustrates that the ⁇ gacI mutant is markedly attenuated for virulence in a rabbit model of GAS necrotizing pneumonia
- FIGS. 54B and 54C illustrate images of gross examination of the lungs in a wild type and a ⁇ gacI mutant, as discussed in Example 1, below.
- FIG. 56 graphically illustrates that a monoclonal antibody derived from a patient with rheumatic heart disease binds to the WT GAS strain better than the ⁇ gacI mutant, as discussed in Example 1.
- FIG. 57 is a summary of phenotypic characteristics and virulence properties that are changed or unaffected when comparing the WT GAS MIT1 strain to the isogenic ⁇ gacI mutant lacking the GlcNAc side chain on its cell wall carbohydrate antigen.
- FIG. 58 summarizes data showing that polyclonal antisera from rabbit immunized with a protein conjugate of the GAC mutant antigen detect WT GAC and WT GAS bacteria, as discussed in Example 1.
- FIG. 59A and FIG. 59B graphically illustrate data from two experiments showing that polyclonal antiserum raised against cell wall carbohydrate purified from the ⁇ gacI mutant (lacking the GlcNAc side chain) promotes killing of M1 GAS in a human neutrophil opsonophagocytosis assay (compared to normal rabbit serum control); this demonstrates utility of vaccines of the invention as a universal vaccine antigen for GAS.
- FIG. 60 graphically illustrates data from an experiment showing that polyclonal antiserum raised against the cell wall carbohydrate purified from the ⁇ gacI mutant (lacking the GlcNAc side chain) promotes killing of M49 GAS in a human neutrophil opsonophagocytosis assay (compared to normal rabbit serum control); this demonstrates utility of vaccines of the invention as a universal vaccine antigen for GAS.
- FIG. 61 graphically illustrates data from an experiment showing that polyclonal antiserum raised against the cell wall carbohydrate purified from the ⁇ gacI mutant (lacking the GlcNAc side chain) promotes opsonophagocytic killing of M1 GAS in human whole blood (compared to normal rabbit serum control); this demonstrates utility of vaccines of the invention as a universal vaccine antigen for GAS.
- FIG. 62 schematically illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC) and provides a description of its association with human and equine infectious diseases, as discussed in Example 1.
- GCC Group C streptococcal cell wall carbohydrate
- FIG. 63A illustrates a slide showing that if genes from the group C streptococcal operon encoding its group carbohydrate are cloned into group A Streptococcus , evidence of some GalNAc side chain incorporation into the GAS antigen can be demonstrated;
- FIG. 63B illustrates GalNAc side chain incorporation into the GAS antigen, as discussed in Example 1.
- FIG. 64 illustrates a comparison of GAS and GCS cell wall carbohydrate operons, illustrating gene loci encoding the GAS and GCS cell wall carbohydrate antigens and predicted gene annotations.
- FIG. 65A schematically illustrates how GCS epimerase gccN is required for GCC side chain formation, where GalE epimerases can convert Glc to Gal, and/or GlcNAc to GalNAc, and that no GalE epimerase gccN is present in GAS; and FIG. 65B and FIG. 65C illustrate data showing that GCS epimerase gccN is required for GCC side chain formation, as discussed in Example 1.
- FIGS. 66A , 66 B and 66 C schematically illustrate that knockout of the GCS gccN gene yields a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by loss of binding to SBA, a lectin recognizing GalNAc;
- FIG. 66A illustrates a latex bead test showing loss of binding by a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain
- FIG. 66C graphically illustrates loss of binding to SBA by a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain.
- the invention provides a Group A Streptococcus (GAS) cell wall carbohydrate (GAC) variant lacking all of its immunodominant GlcNac side chains.
- the invention provides a Group A Streptococcus (GAS) genetically modified such that it cannot express one or more, or all (e.g., cannot express any) of its immunodominant GlcNac side chains on its cell wall group A carbohydrate (GAC) antigens.
- these modified GAS bacteria of the invention lack one or more genes necessary to synthesize and/or assemble one or more, or all of its immunodominant group A GlcNac side chains, or group A carbohydrate (GAC) antigens.
- modified bacteria lack the gacI gene or lack a functional gacI gene or gene product, and therefore express a mutant GAC lacking the GlcNac side chain, also known as an “A-variant GAC”.
- modified bacteria of the invention lack the gacI (or Spy0610) gene or lack a functional gacI (or Spy0610 gene).
- the invention provides Group A Streptococcus (GAS) polypeptide or glycopeptide variants that have a polyrhamnose backbone (an “A-variant GAC”) rather than an immunodominant GlcNac side chain, or a group A carbohydrate (GAC) antigen.
- GAS Group A Streptococcus
- the invention provides a Group A Streptococcus (GAS) genetically modified such that it expresses a Group A Streptococcus (GAS) carbohydrate variant that has a polyrhamnose backbone (an “A-variant GAC”) rather than an immunodominant GlcNac side chain, or a group A carbohydrate (GAC) antigen.
- GAS parent strain 5448 representative of the globally disseminated, highly virulent MIT1 GAS clone that has emerged as the leading cause of both pharyngitis and severe invasive disease for the last 20 to 30 years.
- These genetically modified bacteria of this invention comprise an engineered mutation in the GAC lacking specifically the Glc-Nac side chain; and this bacteria of the invention can be used to purify (can be used as a source of) high-molecular weight, intact polyrhamnose backbone (A-variant GAC) for use as a safe vaccine antigen, e.g., formulated as a protein conjugate.
- polyclonal antisera raised in a rabbit to the mutant GAC shows a high titer against both the mutant GAC and the wild-type GAC (i.e. the antibodies are able to recognize the underlying backbone even in the presence of the native side chain).
- the immune sera recognize equally wild-type group A Streptococcus from the M1 serotype and M49 serotype, showing cross-protection that implies the potential for universal reactivity against all GAS and GCS.
- the immune sera are able to substantially promote opsono-phagocytic killing of both M1 and M49 GAS by human neutrophils and in human whole blood, confirming the utility of the vaccine compositions of the invention and this vaccine strategy in prevention of invasive GAS infection.
- the invention provides bacterial carbohydrates that will allow mammals, including humans, to make antibodies that provide protection against all strains of GAS, GCS and GGS without generation of antibodies to side chain carbohydrates which may cross react with host tissues.
- the Glc-Nac side chain epitope, which carbohydrates and conjugate vaccines of the invention lack, is implicated in the immunopathogenesis of rheumatic carditis/Sydenhanm's chorea—a potential prohibitive safety concern for a vaccine.
- the invention provides a Group A Streptococcus (GAS), variant/mutant carbohydrate that lacks an immunodominant GlcNac side chain, i.e., that lacks the autoreactive GicNAc component; and Streptococcus GGS and/or GCS variant/mutant carbohydrates that lack (GalNAc) 2 or a combination of GalNAc/GlcNAc, respectively (side chains on the GCC and GGC are not GlcNAc but (GalNAc) 2 or probably a combination of GalNAc/GlcNAc, respectively).
- GAS Group A Streptococcus
- variant/mutant carbohydrate that lacks an immunodominant GlcNac side chain, i.e., that lacks the autoreactive GicNAc component
- Streptococcus GGS and/or GCS variant/mutant carbohydrates that lack (GalNAc) 2 or a combination of GalNAc/GlcNAc, respectively (side chains on the G
- the invention provides Streptococcus (GAS) variants/mutants that lack a functional gacI (Spy0610 gene), or cannot express the Spy0610 gene product.
- the invention provides Streptococcus (GAS) variants/mutants that expresses a Group A Streptococcus (GAS) variant/mutant that lacks an immunodominant GlcNac side chain, i.e., that lacks the autoreactive GlcNAc component.
- the GAC rhamnose backbone is shared by the group carbohydrate antigens of other medically important pathogens including groups C and G Streptococcus (GCS, GGS), each of which expresses a different unique sugar side chain. Therefore, the genetic mutant of this invention can serve as a unique tool to purify a mutant GAC lacking the GlcNAc side that could be used as a universal GAS/GCS/GGS vaccine antigen devoid of risk for autoimmune complications.
- the invention provides compositions (e.g., vaccines) and methods for immunizing with an A-variant carbohydrate purified from the gacI (Spy0610) mutant GAS strain of the invention to induce anti-GAC antibodies that are protective against all serotypes of GAS but lack the that autoreactive GlcNAc component.
- this vaccine of the invention protects against GCS infection, which has an identical underlying polyrhamnose backbone, also protects against other streptococcal species such as GBS and GGS, which have similar underlying rhamnose backbone in their group carbohydrate structures.
- an A-variant carbohydrate of the invention is used in combination vaccines with other GAS protein antigens, or standard techniques could be used to knock out the M protein in an exemplary mutant of this invention, creating a potential whole cell or live attenuated vaccine strain lacking both antigens (GAC and M protein) implicated in rheumatic fever pathogenesis.
- the enzyme encoded by gacI (Spy0610) is responsible for the addition of the GlcNac side chain to the GAC, and we have shown the GAC is a virulence factor of the pathogen.
- the GAS ⁇ gacI knockout mutant lacking the GAC side chain is markedly attenuated in both mouse and rabbit models of invasive GAS infection.
- the GAS ⁇ gacI knockout mutant is much more sensitive to killing by human whole blood, human serum, and baby rabbit serum.
- the GAS ⁇ gacI knockout mutant is much more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37 and antimicrobial peptides derived from activated human platelets, a critical element of host innate immunity produced on epithelial cell surfaces and by circulating and tissue-based immune cells including neutrophils, macrophages and mast cells.
- the GAS ⁇ gacI mutant is more susceptible to immune clearance in a wide array of in vitro, tissue culture and in vivo model systems.
- a screen to identify small molecule inhibitors of gacI (Spy0610) could identify novel therapeutics for treatment of serious GAS infections, by rendering the pathogen susceptible host innate immune clearance.
- the invention also provides products of manufacture (e.g., cells, carbohydrates, glycoconjugates), kits and pharmaceuticals (a pharmaceutical composition or a formulation or a vaccine) for practicing the methods of this invention.
- products of manufacture e.g., cells, carbohydrates, glycoconjugates
- kits and pharmaceuticals a pharmaceutical composition or a formulation or a vaccine
- the invention provides products of manufacture, kits and/or pharmaceuticals comprising all the components needed to practice a method of the invention.
- the products of manufacture, kits and/or pharmaceuticals further comprises instructions for practicing the methods of the invention.
- the invention provides vaccines, pharmaceutical formulations and compositions to treat, prevent or ameliorate Group A Streptococcus (GAS), Group C Streptococcus (GCS) and/or Group G Streptococcus (GGS) infections, and other pathogenic streptococci bearing similar polyrhamnose backbones in their cell wall carbohydrate.
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GGS Group G Streptococcus
- GAS Group G Streptococcus
- GCS Group C Streptococcus
- GGS Group G Streptococcus
- the invention provides GAS strains with engineered deletion of gacI, or GCS mutants with an engineered deletion of gccN, alone or in combination with other virulence factor mutations, that can serve as a whole cell or live-attenuated vaccine strain(s) for protection against GAS, GCS and GGS infection.
- the vaccines, solutions, formulations or pharmaceutical compositions of the invention can be administered parenterally, topically, intranasally, intramuscularly, subcutaneously, intradermally, orally or by local administration, such as by aerosol or transdermally.
- the pharmaceutical compositions can be formulated in any way and can be administered in a variety of unit dosage forms depending upon the condition or disease and the degree of illness, the general medical condition of each patient, the resulting preferred method of administration and the like. Details on techniques for formulation and administration are well described in the scientific and patent literature, see, e.g., the latest edition of Remington's Pharmaceutical Sciences , Maack Publishing Co., Easton Pa. (“Remington's”).
- these compositions of the invention are formulated in a buffer, in a saline solution, in a powder, an emulsion, in a vesicle, in a liposome, in a nanoparticle, in a nanolipoparticle and the like.
- the compositions can be formulated in any way and can be applied in a variety of concentrations and forms depending on the desired in vivo, in vitro or ex vivo conditions, a desired in vivo, in vitro or ex vivo method of administration and the like. Details on techniques for in vivo, in vitro or ex vivo formulations and administrations are well described in the scientific and patent literature.
- Formulations and/or carriers used to practice this invention can be in forms such as tablets, pills, powders, capsules, liquids, gels, syrups, slurries, suspensions, etc., suitable for in vivo, in vitro or ex vivo applications.
- the compounds (e.g., vaccines, solutions, formulations or pharmaceutical compositions) of the invention can comprise a solution of compositions (which include GAS, GGS or GCS carbohydrates or glycopeptides of the invention) disposed in or dissolved in a pharmaceutically acceptable carrier, e.g., acceptable vehicles and solvents that can be employed include water and Ringer's solution, an isotonic sodium chloride.
- acceptable vehicles and solvents that can be employed include water and Ringer's solution, an isotonic sodium chloride.
- sterile fixed oils can be employed as a solvent or suspending medium.
- any fixed oil can be employed including synthetic mono- or diglycerides, or fatty acids such as oleic acid.
- solutions and formulations used to practice the invention are sterile and can be manufactured to be generally free of undesirable matter. In one embodiment, these solutions and formulations are sterilized by conventional, well-known sterilization techniques.
- the vaccines, solutions, formulations or pharmaceutical compositions used to practice the invention can comprise auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- concentration of active agent in these formulations can vary widely, and can be selected primarily based on fluid volumes, viscosities and the like, in accordance with the particular mode of in vivo, in vitro or ex vivo administration selected and the desired results.
- the vaccines, solutions, formulations or pharmaceutical compositions of the invention can be delivered by the use of liposomes.
- liposomes particularly where the liposome surface carries ligands specific for target cells (e.g., immune cells for stimulating a humoral response), or are otherwise preferentially directed to a specific tissue or organ type, one can focus the delivery of the active agent into a target cells in an in vivo, in vitro or ex vivo application.
- a vaccine of the invention can be administered with an adjuvant, e.g., the adjuvant can comprise or consist of incomplete Freund's adjuvant (IFA) or MONTANIDE ISA 51®; alum; aluminum phosphate; aluminum hydroxide; squalene; complete Freund's adjuvant (CFA), or levamisole; QS-21TM, or STIMULON® (Antigenics, Lexington, Mass.); or muramyl dipeptide (MDP) or derivatives thereof; monophosphoryl lipid (MPL) or derivatives thereof; or monophosphoryl lipid A (MPLA) or derivatives thereof; or MF59TM or FLUAD® (Novartis, Basel, Switzerland); or as described in U.S. Pat.
- IFA incomplete Freund's adjuvant
- CFA complete Freund's adjuvant
- MDP muramyl dipeptide
- MPL monophosphoryl lipid
- MPLA monophosphoryl lipid A
- coli heat labile toxin (LT1 or LT2) as described in U.S. Pat. No. 7,485,304 (Novartis Vaccines and Diagnostics SRL); or an adjuvant as described in U.S. Pat. No. 7,357,936 (SmithKline Beecham Biologicals, SA); or any combination thereof.
- a vaccine of the invention is administered with a non-specific immuno-stimulator, e.g., the non-specific immuno-stimulator can comprise or consist of a granulocyte-macrophage colony-stimulating factor polypeptide; or sargramostim, or LEUKINIETM (Bayer, Leverkusen, Germany).
- a non-specific immuno-stimulator can comprise or consist of a granulocyte-macrophage colony-stimulating factor polypeptide; or sargramostim, or LEUKINIETM (Bayer, Leverkusen, Germany).
- vaccines of the invention are formulated and delivered via a parenteral route comprising or consisting of a subcutaneous, an intravenous (IV), an intradermal, an intramuscular, an intraperitoneal, an intranasal, a transdermal or a buccal route.
- IV intravenous
- intradermal an intramuscular
- intraperitoneal an intranasal
- transdermal a transdermal or a buccal route.
- vaccines of the invention are delivered intradermally or intra-epidermally using any needle-like structures or device, e.g., as described in U.S. Patent App. Pub. No. 20090012494, describing use of microneedle devices, e.g., with rows of hollow microneedles.
- vaccines of the invention are delivered using micro-cannula, e.g., as described in U.S. Pat. No. 7,473,247.
- vaccine formulations can be directly targeted into an intradermal space; or can be delivered into an intradermal space as a bolus or by infusion.
- intradermal is administration of a vaccine formulation of this invention into the dermis in such a manner that the glycopeptide of the invention therein readily reaches the richly vascularized papillary dermis where it can be rapidly systemically absorbed, or the vaccine can be taken up directly by cells (e.g., dendritic cells) in the skin.
- intradermal includes every layer of the skin, including stratum corneum, epidermis and dermis.
- a drug-delivery patch is used to deliver a vaccine formulation of this invention, e.g., as described in U.S. Patent App. Pub. No. 20090010998.
- the invention provides a drug-delivery patch having at least one dissolvable layer comprising a carbohydrate or protein-conjugated carbohydrate of the invention and an adhesive backing or cover.
- an individual is transdermally vaccinated by ablating an area of the stratum corneum of the individual and applying the patch to that area.
- a carbohydrate or protein-conjugated carbohydrate of the invention is delivered via dendritic cell administration, e.g., as described in U.S. Patent App. Pub. No. 20090010948.
- a carbohydrate or protein-conjugated carbohydrate of the invention is formulated as a dendritic cell (DC)-based tumor vaccine; this modality is a well-known therapeutic approach for generating immune responses and for cancer treatment; see e.g., Schuler (2003) Curr. Opin. Immunol. 15(2):138-47; Dallal (2000) Curr. Opin. Immunol. 12(5):583-8; Steinman (2001) Int J. Cancer. 94(4):459-73.
- DC dendritic cell
- DCs can deliver not only the tumor antigen contained within a carbohydrate or protein-conjugated carbohydrate of this invention, but the DC also can be a natural adjuvant to boost the vaccine's efficiency.
- DCs also can provide critical molecules, cytokines or co-stimulatory signals to the T cells they interact with during activation.
- Methods for determining the efficacy of a vaccine formulation of this invention, or a particular administration of a vaccine formulation of this invention are well known in the art.
- cell-based or humoral responses can be assessed (measured) using in vitro based assays and/or in vivo based assays, including animal based assays.
- Assays for measuring cell-based or humoral immune response are well known in the art, e.g., see, Coligan et al., (eds.), 1997, Current Protocols in Immunology, John Wiley and Sons, Inc.
- Cell-based or humoral immune responses may be detected and/or quantitated using standard methods known in the art including, e.g., an ELISA assay, chromium release assays and the like.
- the humoral immune response may be measured by detecting and/or quantitating the relative amount of an antibody which specifically recognizes an antigenic or immunogenic agent in the sera of a subject who has been treated with a vaccine formulation of this invention relative to the amount of the antibody in an untreated subject.
- ELISA assays can be used to determine total antibody titers in a sample obtained from a subject treated with an agent of the invention.
- the invention provides whole cell or live attenuated vaccines comprising a bacterial cell of the invention, e.g., an isolated, modified or recombinant Group A Streptococcus (GAS), Group C Streptococcus (GCS) or Group G Streptococcus (GGS), e.g., a bacterial cell expressing a modified GAC, GCC and or GGC carbohydrate of the invention.
- a bacterial cell of the invention e.g., an isolated, modified or recombinant Group A Streptococcus (GAS), Group C Streptococcus (GCS) or Group G Streptococcus (GGS), e.g., a bacterial cell expressing a modified GAC, GCC and or GGC carbohydrate of the invention.
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GGS Group G Streptococcus
- the invention provides immunogenic preparations comprising cells with reduced infectivity, e.g., as prepared as described in U.S. Pat. Nos. 7,560,113; 7,919,096, for example, by contacting whole microorganisms with a fluid comprising carbon dioxide at or near its supercritical pressure and temperature conditions such that the infectivity and/or pathogenicity of the whole microorganisms are reduced.
- Chemical additives can also be used, e.g., adding hydrogen peroxide, acetic acid, peracetic acid, trifluoroacetic acid or mixtures thereof.
- the invention provides carbohydrate or protein-conjugated carbohydrate (glycoconjugates), e.g., formulated as vaccines, for generating an immune response, e.g., a humoral immune response, in a mammal to a Group A Streptococcus (GAS), a Group C Streptococcus (GCS), or a Group G Streptococcus (GGS).
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GGS Group G Streptococcus
- a vaccine, formulation, composition or pharmaceutical composition of the invention comprises: a glycoconjugate comprising a polyrhamnose backbone, or a plurality of glycoconjugates comprising polyrhamnose backbones derived from a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS.
- the protein component of the glycoconjugate is endogenous (e.g., a GAS polyrhamnose backbone attached or conjugated to a GAS peptide or protein component), or in alternative embodiment the protein component of the glycoconjugate is exogenous (the origin of the carbohydrate and the protein component do not match). In one embodiment, the protein component of the glycoconjugate is entirely synthetic or has no sequence similarity to a peptide from the same organism as the carbohydrate.
- molecules used to practice the invention comprise a recombinant protein, a synthetic protein, a peptidomimetic, a non-natural peptide, or a combination thereof.
- Peptides and proteins used to practice the invention can be recombinantly expressed in vitro or in vivo.
- the peptides and polypeptides of the invention can be made and isolated using any method known in the art as well as using the methods described herein. Polypeptide and peptides used to practice the invention can also be synthesized, whole or in part, using chemical methods well known in the art.
- peptide synthesis can be performed using various solid-phase techniques (see e.g., Roberge (1995) Science 269:202; Merrifield (1997) Methods Enzymol. 289:3-13) including any automated polypeptide synthesis process known in the art.
- carbohydrate or protein-conjugated carbohydrate of the invention can comprise any “mimetic” and/or “peptidomimetic” form.
- glycopeptides and glyco-polypeptides of the invention comprise synthetic chemical compounds that have substantially the same structural and/or functional characteristics of a natural polypeptide.
- a mimetic used to practice the invention can be either entirely composed of synthetic, non-natural analogues of amino acids, or, is a chimeric molecule of partly natural peptide amino acids and partly non-natural analogs of amino acids.
- a mimetic used to practice the invention can also incorporate any amount of natural or non-natural amino acid conservative substitutions as long as such substitutions also do not substantially alter the mimetic's structure and/or activity.
- the invention also provides nanoparticles, nanolipoparticles, vesicles and liposomal membranes comprising compounds used to practice the compositions and methods of this invention, e.g., use of vaccines, pharmaceutical formulations and compositions to treat, prevent or ameliorate Group A Streptococcus (GAS), Group C Streptococcus (GCS) and/or Group G Streptococcus (GGS) infections.
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GGS Group G Streptococcus
- these compositions are designed to target specific molecules, including biologic molecules, such as polypeptides, including cell surface polypeptides, e.g., for targeting a desired cell type, e.g., a dendritic cell and the like for stimulating an immune response.
- the invention provides multilayered liposomes comprising compounds used to practice this invention, e.g., as described in Park, et al., U.S. Pat. Pub. No. 20070082042.
- the multilayered liposomes can be prepared using a mixture of oil-phase components comprising squalane, sterols, ceramides, neutral lipids or oils, fatty acids and lecithins, to about 200 to 5000 nm in particle size, to entrap a composition used to practice this invention.
- Liposomes can be made using any method, e.g., as described in Park, et al., U.S. Pat. Pub. No. 20070042031, including method of producing a liposome by encapsulating an active agent, the method comprising providing an aqueous solution in a first reservoir; providing an organic lipid solution in a second reservoir, and then mixing the aqueous solution with the organic lipid solution in a first mixing region to produce a liposome solution, where the organic lipid solution mixes with the aqueous solution to substantially instantaneously produce a liposome encapsulating the active agent; and immediately then mixing the liposome solution with a buffer solution to produce a diluted liposome solution.
- liposome compositions used to practice this invention comprise a substituted ammonium and/or polyanions, e.g., for targeted delivery of a compound of the invention, as described e.g., in U.S. Pat. Pub. No. 20070110798.
- the invention also provides nanoparticles comprising compounds used to practice this invention in the form of active agent-containing nanoparticles (e.g., a secondary nanoparticle), as described, e.g., in U.S. Pat. Pub. No. 20070077286.
- the invention provides nanoparticles comprising a fat-soluble active agent of this invention or a fat-solubilized water-soluble active agent to act with a bivalent or trivalent metal salt.
- solid lipid suspensions can be used to formulate and to deliver compositions used to practice this invention to mammalian cells in vivo, in vitro or ex vivo, as described, e.g., in U.S. Pat. Pub. No. 20050136121.
- any delivery vehicle can be used to practice the methods or used to practice this invention, e.g., to deliver compositions of the invention (which include GAS, GGS or GCS carbohydrate or protein-conjugated carbohydrate of the invention) to mammalian cells in vivo, in vitro or ex vivo.
- delivery vehicles comprising polycations, cationic polymers and/or cationic peptides, such as polyethyleneimine derivatives, can be used e.g. as described, e.g., in U.S. Pat. Pub. No. 20060083737.
- a dried polypeptide-surfactant complex is used to formulate a composition used to practice this invention, e.g. as described, e.g., in U.S. Pat. Pub. No. 20040151766.
- a composition used to practice this invention can be applied to cells using vehicles with cell membrane-permeant peptide conjugates, e.g., as described in U.S. Pat. Nos. 7,306,783; 6,589,503.
- the composition to be delivered is conjugated to a cell membrane-permeant peptide.
- the composition to be delivered and/or the delivery vehicle are conjugated to a transport-mediating peptide, e.g., as described in U.S. Pat. No. 5,846,743, describing transport-mediating peptides that are highly basic and bind to poly-phosphoinositides.
- electro-permeabilization is used as a primary or adjunctive means to deliver the composition to a cell, e.g., using any electroporation system as described e.g. in U.S. Pat. Nos. 7,109,034; 6,261,815; 5,874,268.
- compositions are administered to a subject already suffering from a disease, condition, infection or defect in an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of the disease, condition, infection or disease and its complications (a “therapeutically effective amount”).
- pharmaceutical compositions and formulations of the invention are administered to an individual in need thereof in an amount sufficient to treat, prevent, reverse and/or ameliorate an infection, e.g., a GAS, GGS or GCS infection.
- the amount of pharmaceutical composition adequate to accomplish this is defined as a “therapeutically effective dose.”
- the dosage schedule and amounts effective for this use, i.e., the “dosing regimen,” will depend upon a variety of factors, including the stage of the disease or condition, the severity of the disease or condition, the general state of the patient's health, the patient's physical status, age and the like. In calculating the dosage regimen for a patient, the mode of administration also is taken into consideration.
- a vaccine of the invention is administered parentally or orally, or systemically or topically.
- the vaccine can be administered via a parenteral route or via a route comprising or consisting of a subcutaneous, an intramuscular, an intravenous (IV), an intradermal, an intramuscular, an intraperitoneal, an intranasal, an intradermal, a transdermal or a buccal route.
- IV intravenous
- the vaccine can be administered parenterally by bolus injection or by gradual perfusion over time, or the vaccine can be administered by an oral or a topical route.
- a vaccine of the invention is administered using a vaccination regime comprising at least one second (booster) administration, or the vaccine is administered at intervals of 1 week, 2 weeks, 4 weeks (or one month), 6 weeks, 8 weeks (or two months) or one year.
- a vaccine of the invention is administered at a daily dose of carbohydrate or protein-conjugated carbohydrate in a range of about 10 nanograms to 10 milligrams, or about 1 microgram to 10 milligrams.
- the invention provides methods for generating a carbohydrate antigen-specific cytotoxic lymphocyte (CTL) response, and/or a CD8+ T cell response, comprising contacting na ⁇ ve CTL cells or CD8+ T cells with an effective amount of one or more (at least one) carbohydrate or protein-conjugated carbohydrate of the invention; the pharmaceutical or formulation of the invention; the liposome of the invention; or the nanoparticle of the invention.
- CTL cytotoxic lymphocyte
- the invention provides methods for generating an antigen-specific helper T cell response, and/or a CD4+ T cell response, comprising contacting na ⁇ ve helper T cells or CD4+ T cells with an effective amount of one or more (at least one) glycopeptides (glycoconjugates) of the invention; the pharmaceutical or formulation of the invention; the liposome of the invention; or the nanoparticle of the invention.
- the contacting is in vitro or in vivo.
- the contacting is in vivo to (in) a mammal or a human.
- the dosage regimen also takes into consideration pharmacokinetics parameters well known in the art, i.e., the active agents' rate of absorption, bioavailability, metabolism, clearance, and the like (see, e.g., Hidalgo-Aragones (1996) J. Steroid Biochem. Mol. Biol. 58:611-617; Groning (1996) Pharmazie 51:337-341; Fotherby (1996) Contraception 54:59-69; Johnson (1995) J. Pharm. Sci. 84:1144-1146; Rohatagi (1995) Pharmazie 50:610-613; Brophy (1983) Eur. J. Clin. Pharmacol. 24:103-108; the latest Remington's, supra).
- pharmacokinetics parameters well known in the art, i.e., the active agents' rate of absorption, bioavailability, metabolism, clearance, and the like (see, e.g., Hidalgo-Aragones (1996) J. Steroid Biochem. Mol. Biol. 58:611-617
- formulations can be given depending on the dosage and frequency as required and tolerated by the patient.
- the formulations should provide a sufficient quantity of active agent to effectively treat, prevent or ameliorate a conditions, diseases or symptoms as described herein.
- Dosages can be used in topical or oral administration or administering by powders, spray or inhalation. Actual methods for preparing parenterally or non-parenterally administrable formulations will be known or apparent to those skilled in the art and are described in more detail in such publications as Remington's, supra.
- the methods of the invention can further comprise co-administration with other drugs or pharmaceuticals, e.g., compositions for treating any infection, including a GAS, GGS or GCS infection, and the like.
- other drugs or pharmaceuticals e.g., compositions for treating any infection, including a GAS, GGS or GCS infection, and the like.
- the methods and/or compositions and formulations of the invention can be co-formulated with and/or co-administered with, fluids, antibiotics, cytokines, immunoregulatory agents, anti-inflammatory agents, pain alleviating compounds, complement activating agents, such as peptides or proteins comprising collagen-like domains or fibrinogen-like domains (e.g., a ficolin), carbohydrate-binding domains, and the like and combinations thereof.
- the invention provides compositions and methods for diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal.
- the invention provides diagnostic tests, assays or test strips, and the like (e.g., latex agglutination assays, enzyme immunoassays, enzyme-linked immunosorbent assays (ELISAs), optical, liquid or solid phase immunoassays and the like) for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human.
- diagnostic tests, assays or test strips, and the like e.g., latex agglutination assays, enzyme immunoassays, enzyme-linked immunosorbent assays (ELISAs), optical, liquid or solid phase immunoassays and the like
- the diagnostic tests, assays, test strips and the like of the invention can be rapid and/or have improved sensitivity and/or specificity to as compared to current technologies as they target a bacterial specific motif (polyrhamnose) rather than a common sugar motif (e.g., a. GlcNac or a GlcNac) present on mammalian (e.g., human) cells and mucosal secretions. Since an identical polyrhamnose backbone is shared by GAS and GCS, in alternative embodiments these rapid diagnostic tests and assays have the advantage of identifying both species lacking in current rapid diagnostic methodologies.
- polyrhamnose bacterial specific motif
- GlcNac or a GlcNac common sugar motif
- the diagnostic tests, assays, test strips and the like of the invention comprise use of one or more isolated or recombinant antibodies, polyclonal or monoclonal antibodies, or sera (e.g., hyperimmune sera) of the invention.
- the antibodies or sera can specifically react against, or specifically bind to, or are specifically derived against one, two or all of: (a) a mutant GAS, GGS or GCS carbohydrate antigen, engineered to partially lack, substantially lack or completely lack an immuno-crossreactive carbohydrate side chain, (b) a mutant GAS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immuno-crossreactive GlcNac side chain; and/or (c) a mutant GCS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immunodominant GalNac-GalNac side chain.
- compositions or a method of the invention can comprise or comprise use of a sampling device and/or a test strip, or methods, as described in e.g.: U.S. Pat. No. 8,231,549, e.g., where an on-site analyzer such as an optical analyzer and/or an electrochemical analyzer can be mounted in the device for analyzing a body fluid.
- an on-site analyzer such as an optical analyzer and/or an electrochemical analyzer can be mounted in the device for analyzing a body fluid.
- a composition or a method of the invention can comprise or comprise use of an assay device or test strip or a method as described in e.g.: U.S. Pat. No.
- an assay device allowing for the testing for multiple analytes in a liquid sample, as described in U.S. Pat. No. 8,202,487; or an analyte monitor having a sensor, a sensor control unit, and a display unit as described in U.S. Pat. No. 8,177,716; or an electrochemical test strip as described in U.S. Pat. No. 8,172,995; or an evanescent light fluoroimmunoassay, or waveguide immunosensor, as described in U.S. Pat. No. 5,512,492; or a chromatographic specific binding assay strip device for e.g., immuno gold lateral flow assays as described in U.S. Pat. No.
- 20120181190 for correcting the measurement of an analyte in a sample, the system comprising a test strip and a meter programmed to calculate and obtain a corrected analyte concentration; or a lateral flow assay test strip as described in U.S. Pat. App. No. 20120164028; or an immunochromatographic assay as described in U.S. Pat. App. No. 20120135420; or an electronic diagnostic device for detecting the presence of an analyte in a fluid sample assay as described in U.S. Pat. App. No. 20120083044; or a magnetic immunochromatographic test strip as described in U.S. Pat. App. No.
- a variation of the Becton-Dickinson LINK 2 STREP A RAPID TESTTM, a rapid antigen detection test (RADT) for diagnosing streptococcal pharyngitis, using compositions and methods of the invention can be used.
- compositions of the invention e.g., carbohydrate antigens, glycoconjugates, antibodies and the like, and antibody-antibody binding detection for the diagnostic methods of the invention, can be detected and/or quantified by any method known in the art, including, e.g., nuclear magnetic resonance (NMR), spectrophotometry, radiography (protein radiolabeling), electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, various immunological methods, e.g.
- NMR nuclear magnetic resonance
- spectrophotometry radiography
- electrophoresis electrophoresis
- capillary electrophoresis capillary electrophoresis
- HPLC high performance liquid chromatography
- TLC thin layer chromatography
- hyperdiffusion chromatography various immunological methods, e.g.
- immunoprecipitation immunodiffusion, immuuno-electrophoresis, radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), immuno-fluorescent assays, gel electrophoresis (e.g., SDS-PAGE), staining with antibodies, fluorescent activated cell sorter (FACS), pyrolysis mass spectrometry, Fourier-Transform Infrared Spectrometry, Raman spectrometry, GC-MS, and LC-Electrospray and cap-LC-tandem-electrospray mass spectrometries, and the like.
- FACS fluorescent activated cell sorter
- the invention provides magnetic molecules or particles for diagnosing a Sreptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal.
- the invention provides diagnostic tests using magnetic molecules or particles for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human.
- compositions of the invention comprise a plurality of magnetic molecules or particles.
- Any magnetic molecule or particle can be used.
- magnetic molecules or particles used to practice the invention comprise: dextran iron oxide nanoparticles; magnetically-responsive microparticles or nanoparticles as described, e.g., in U.S. Pat. No. 7,989,065, or magnetic microspheres, nanospheres, microbeads or nanobeads, as described, e.g., in U.S. Pat. No. 7,994,592; a superparamagnetic bead or polystyrene beads, as described, e.g., in U.S. Pat. No.
- superparamagnetic particles comprising iron oxide having e.g., between about 0.1 to 10% by weight iron oxide based on the weight of the magnetic particles are used, e.g., as described in U.S. Pat. No. 5,368,933.
- Any device that can separate a magnetic particle or molecule from a sample can be used, e.g., as a magnetic separator as described in U.S. Pat. Nos. 7,985,340; 6,143,577; or 5,770,461.
- the invention provides gels or hydrogels for diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal.
- the invention provides diagnostic tests using gels or hydrogels for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human.
- compositions of the invention comprise a hydrogel, which can be any macromolecular networks that contains a large fraction of solvent within their structure and do not dissolve, or, a colloidal gel in which water is the dispersion medium of the colloid having a mixture with properties between those of a solution and fine suspension (a colloid gel is a colloid in a more solid form than a sol).
- compositions of the invention comprise a “non-responsive” hydrogel, e.g., a simple polymeric network that dramatically swells upon exposure to water, and/or a “responsive” hydrogel, e.g., a gel having added functionality and display changes in solvation in response to certain stimuli such as temperature. Any non-toxic hydrogel can be used.
- compositions of the invention comprise a hydrogel comprising: an acacia, alginic acid, sodium carboxymethylcellulose, microcrystalline cellulose, dextrin, ethylcellulose, gelatin, liquid glucose, polyvinyl pyrrolidone, carboxyvinyl polymer, methylcellulose, hydroxymethyl cellulose, low molecular weight polyethylene oxide polymers, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), gums, acrylate polymers, methacrylate polymers and/or maltodextrin and/or mixtures thereof.
- a hydrogel comprising: an acacia, alginic acid, sodium carboxymethylcellulose, microcrystalline cellulose, dextrin, ethylcellulose, gelatin, liquid glucose, polyvinyl pyrrolidone, carboxyvinyl polymer, methylcellulose, hydroxymethyl cellulose, low molecular weight polyethylene oxide polymers, hydroxyethyl cellulose,
- Polypeptides of the invention can be immobilized to, affixed to, or applied to, an array, microarray, chip, diagnostic chip, biochip and the like to, e.g., identify the presence of, or to diagnose, a Streptococcal infection, e.g., Group A Streptococcus (GAS), Group C Streptococcus (GCS), or Group A Streptococcus (GGS), infections, or other pathogenic Streptococcus infections.
- GAS Group A Streptococcus
- GCS Group C Streptococcus
- GAS Group A Streptococcus
- Any form or variation of a carbohydrate or a polypeptide array, microarray, chip, diagnostic chip, biochip and the like can be used to practice this invention, e.g., as described in U.S. Pat. Nos. 7,622,273; 7,303,924; 7,223,592; 6,506,558; and/or 6,919,211.
- This example describes exemplary methods for making and using compounds of the invention.
- FIG. 1A We have discovered the genetic operon for assembling the GAC in GAS through bioinformatics analysis, as schematically illustrated in FIG. 1A .
- DgacH viable allelic exchange GAS mutant, called DgacH, which expresses a mutated GAC, as illustrated in FIGS. 1B , 1 C and 1 D.
- FIG. 1A schematically illustrates the genetic operon for assembling the GAC in GAS through bioinformatics analysis, and shows the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen. Included are proposed gene designations based on homology, designation within the sequenced GAS M1 5005 genome sequence, and length of the gene. Ultimately, we have designated the genes within the locus as gacA-gacL. Highlighted is gene, then incorrectly called gacH (correctly designated gacI in upcoming figures) because of the role we demonstrate that it plays in adding the GlcNac side chain to the polyrhamnose backbone of the antigen.
- FIG. 1A schematically illustrates the genetic operon for assembling the GAC in GAS through bioinformatics analysis, and shows the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen
- FIG. 1B illustrates a PCR analysis shows absence of the gacI gene (incorrectly labeled gacH) in the knockout mutant.
- FIG. 1C illustrates latex agglutination for group A carbohydrate (GlcNac side chain) is no longer reactive in the GAS ⁇ gacI (incorrectly labeled ⁇ gacI) mutant, and illustrates binding of the sWGA lectin probe, specific for terminal GlcNac sugars, to the bacterial surface. This binding is lost in the ⁇ gacI mutant (incorrectly labeled ⁇ gacI). The results confirm loss of the GlcNac side chain in the mutant.
- FIG. 1D graphically summarizes this data.
- the invention provides carbohydrate or protein-conjugated carbohydrate of this purified mutant GAC as a vaccine against GAS, GCS, GBS and/or GGS, as well as for other pathogenic streptococci bearing a polyrhamnose motifs in their cell wall carbohydrate.
- FIG. 2A illustrates a formal glycoanalysis of linkages in the WT M1 GAS carbohydrate shows rhamnose sugars and the ⁇ -1-3-linked GlcNac side chain
- FIG. 2B illustrates a formal glycoanalysis of linkages in the M1 GAS ⁇ gacI mutant cell wall carbohydrate (incorrectly labeled ⁇ gacH) shows unambiguously the loss of the ⁇ -1-3-linked GlcNac side chain.
- FIG. 8 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen. Included are proposed gene designations based on homology, designation within the sequenced GAS M1 5005 genome sequence, and length of the gene. Ultimately, we have designated the genes within the locus as gacA-gacL. Highlighted is gene designated gacI because of the role we demonstrate that it plays in adding the GlcNac side chain to the polyrhamnose backbone of the antigen.
- GAS group A streptococcal
- FIG. 21 graphically illustrates data from a serum survival assay showing that the ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum ( FIG. 21A ) and 5% baby rabbit serum ( FIG. 21B ), indicating the GlcNac side chain promotes GAS serum resistance. The observed differences remain after heat treatment of the serum to inactivate complement, indicating the differences are not likely to be related to complement. This was confirmed using complement-depleted serum and complement inhibitors.
- FIG. 26 schematically illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC), and a description of its association with human and equine infectious diseases.
- the GCC shares the same core polyrhamnose backbone as the group A streptococcal cell call carbohydrate antigen (GAC), demonstrating that the ⁇ gacI mutant polysaccharide can serve as a universal vaccine target (as with the vaccines of this invention) to prevent both GAS and GCS infection.
- GCC Group C streptococcal cell wall carbohydrate
- FIG. 38 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen. Included are proposed gene designations based on homology, designation within the sequenced GAS M1 5005 genome sequence, and length of the gene. We have designated the genes within the locus as gacA-gacL. Highlighted is gacI because of the role we demonstrate that it plays in adding the GlcNac side chain to the polyrhamnose backbone of the antigen.
- GAS group A streptococcal
- FIG. 45 graphically illustrates that the WT parent M1 GAS strain and the isogenic ⁇ gacI mutant express similar levels of hyaluronic acid capsule.
- covS mutants by selection of covS mutants
- a similar increase is seen in both the WT parent strain and the isogenic ⁇ gacI mutant.
- several other virulence phenotypes of GAS are not affected by the elimination of the GlcNac side chain in the isogenic ⁇ gacI mutant.
- FIGS. 49A and 49B graphically illustrate that the ⁇ gacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood, whereas complementation of the mutation restores WT levels of survival.
- the observed differences between the respective strains are still present when cytochalasin D, an actin microfilament inhibitor is added to block phagocytotic uptake of the bacterial by neutrophils and peripheral blood mononuclear cells.
- the results further confirm the GlcNAc side chain contributes to whole blood survival.
- FIG. 50A and 50B graphically illustrate that the ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain in a human neutrophil opsonophagocytic killing assay, whereas complementation of the mutation restores WT levels of survival.
- the observed differences between the respective strains are still present when cytochalasin D, an actin microfilament inhibitor is added to block phagocytotic uptake of the bacteria by the neutrophils, indicating the GlcNac side chain promotes resistance to both total and extracellular neutrophil killing.
- FIGS. 52A and 52B graphically illustrate that the ⁇ gacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum ( FIG. 52A ) and 5% baby rabbit serum ( FIG. 52B ), indicating the GlcNac side chain promotes GAS serum resistance. The observed differences remain after heat treatment of the serum to inactivate complement, indicating the differences are not likely to be related to complement. This was confirmed using complement-depleted serum and complement inhibitors.
- FIG. 54A graphically illustrates that the ⁇ gacI mutant is markedly attenuated for virulence in a rabbit model of GAS necrotizing pneumonia
- FIGS. 54B and 54C illustrate images of gross examination of the lungs in a wild type and a ⁇ gacI mutant.
- FIGS. 54B and 54C illustrate images of gross examination of the lungs in a wild type and a ⁇ gacI mutant.
- FIG. 55 graphically illustrates that the ⁇ gacI mutant is significantly attenuated for virulence in a mouse intraperitoneal model of systemic M1 GAS infection; this result further confirms that the GlcNac side chain on the group A cell wall carbohydrate antigen contributes strongly to GAS virulence.
- FIG. 56 graphically illustrates that a monoclonal antibody derived from a patient with rheumatic heart disease, a serious immune-mediate sequelae of GAS pharyngitis that causes morbidity and mortality throughout the developing world, binds to the WT GAS strain better than the ⁇ gacI mutant. This result confirms that the GlcNac side chain on the GAS cell wall carbohydrate may be the source of cross-reactive antibodies that contribute to the immunopathogenesis of rheumatic fever.
- FIG. 58 summarizes data showing that polyclonal antisera from rabbit immunized with a protein conjugate of the GAC mutant antigen detect WT GAC and WT GAS bacteria.
- Polyclonal antiserum raised against the cell wall carbohydrate purified from the ⁇ gacI mutant contains high titers of antibodies that are able to recognize both the mutant (GlcNAc-negative) and wild-type cell wall carbohydrate, as well as mutant and WT GAS bacteria, including a WT GAS bacteria of a different serotype (M49 and M1).
- FIG. 62 illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC) and provides a description of its association with human and equine infectious diseases.
- the GCC shares the same core polyrhamnose backbone as the group A streptococcal cell call carbohydrate antigen (GAC), demonstrating that vaccines and antibodies of the invention directed to (that specifically bind to) the ⁇ gacI mutant polysaccharide can serve as a universal vaccine or pharmaceutical to prevent both GAS and GCS infection.
- GCC Group C streptococcal cell wall carbohydrate
- FIG. 63A illustrates a slide showing that if genes from the group C streptococcal operon encoding its group carbohydrate are cloned into group A Streptococcus , evidence of some GalNAc side chain incorporation into the GAS antigen can be demonstrated;
- FIG. 63B illustrates GalNAc side chain incorporation into the GAS antigen.
- FIG. 65A schematically illustrates how GCS epimerase gccN is required for GCC side chain formation, where GalE epimerases can convert Glc to Gal, and/or GlcNAc to GalNAc, and that no GalE epimerase gccN is present in GAS; and FIG. 65B and FIG. 65C illustrate data showing that GCS epimerase gccN is required for GCC side chain formation.
- Knockout of the GCS gccN gene yield a ⁇ gccN mutant lacking the GalNAc-GalNAc side chain that can be studies in virulence and vaccine models analogous to what we have achieved in with the deletion of ⁇ gacI gene in GAS.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Mycology (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
Abstract
Description
- This application claims benefit of priority to U.S. Provisional Patent Application Ser. No. 61/515,287, filed Aug. 4, 2011. The aforementioned application is expressly incorporated herein by reference in its entirety and for all purposes.
- This invention was made with government support under grants A 1077780 and AI060536, awarded by the National Institutes of Health (NIH). The government has certain rights in the invention.
- This invention generally relates to medicine, vaccines and microbiology. In particular, in alternative embodiments, the invention provides vaccines, pharmaceutical compounds and formulations for diagnosing, preventing, treating or ameliorating Group A Streptococcus (GAS), Group C Streptococcus (GCS), or related pathogenic streptococcal, infections. In alternative embodiments, the invention provides compositions such as diagnostic tests, assays, immunoassays and test strips, and methods, for detecting or diagnosing the presence of a Streptococcal infection, e.g., Group A Streptococcus (GAS), Group C Streptococcus (GCS), or Group A Streptococcus (GGS), infections, or other pathogenic Streptococcus infections.
- Group A Streptococcus (GAS), also known as S. pyogenes, is a preeminent human pathogen ranking among the top 10 infection-related causes of mortality worldwide. GAS causes a wide spectrum of disease, ranging from pharyngitis (“strep throat”), to severe invasive infections including necrotizing fasciitis and toxic shock syndrome, to the autoimmune disorder acute rheumatic fever (ARF). No effective GAS vaccine has been developed, a goal made more challenging by the greater than 150 different serotypes produced by the immunovariable surface M protein.
- Group C Streptococcus (GCS), although less extensively studied that GAS, can produce human infections quite similar to those caused by GAS, although these are more often opportunistic infections or nosocomial infections. For example, GCS can cause epidemic pharyngitis and cellulitis clinically indistinguishable from GAS disease, and can cause septicemia, endocarditis, septic arthritis and necrotizing infections in patients with predisposing conditions such as diabetes, cancer or advanced aged. GCS is also the cause of the highly contagious and serious upper respiratory tract infection of horses and other equines known as strangles, which is enzootic in a worldwide distribution.
- GAS is classically defined by expression of a unique carbohydrate structure called the group A carbohydrate (GAC). Comprising approximately 50% of the dry weight of the bacterial cell wall, GAC consists of a rhamnose backbone and an immunodominant N-acetylglucosamine (GlcNAc) side chain. GAC is the basis for all contemporary rapid diagnostic testing for GAS pharyngitis. GAC has shown potential as a universal GAS vaccine in animal studies, but serious safety concerns were raised since the antibodies against the GlcNAc side chain have been implicated in the immunopathogenesis of rheumatic fever (RF), a poststreptococcal inflammatory disorder of global health importance. In particular, evidence of anti-GlcNAc antibodies have been associated with two cardinal manifestations of RF: rheumatic carditis and Sydenham's chorea.
- Group A Streptococcus (GAS) mutants with variant group A carbohydrate (GAC), so-called A-variants, have been observed to originate upon serial passage in mice, however the molecular basis for this spontaneous variation has never been documented. In addition, such variants have never been isolated from humans, possibly indicating the GlcNAc side chain is plays an essential role in human colonization, infection or transmission. Human serum contains antibodies against GAC that are predominantly directed against the GlcNAc side chain and promote phagocytosis of GAS. However, anti-GlcNAc antibodies have also been observed to crossreact with human cardiac myosin and lysoganglioside on neuronal cells, associating them to rheumatic carditis and Sydenham chorea, respectively. Anti-GAC antibodies that recognize the rhamnose backbone have also been described to be present in human serum, however, their protective effect against streptococcal infection is currently unknown. Importantly, the identical GAC rhamnose backbone is shared by the group carbohydrate antigens of other medically important pathogens including GCS. GCS are distinguished immunologically from GAS by the expression of a distinct sugar side chain, i.e. two GalNAc residues in GCS vs. the single GlcNAc residue in GAS.
- There is currently no universal vaccine available for GAS nor GCS. Historically, experimental GAS vaccines have focused on using the major immunologic epitope, the surface-anchored M protein. This approach is hampered by the existence of more than 150 serotypes based on hypervariability of the M protein N-terminal domain, with evidence that individual M protein vaccines offer only serotype specific protection. In addition, M protein can elicit cross reactive antibodies against myosin and tropomyosin that are believed to be central in the pathogenesis of RF, again raising an important safety issue regarding use of M protein or M protein sequences in vaccine formulations.
- In alternative embodiments, the invention provides isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate compositions or variants and/or mutants: partially lacking, substantially lacking, or completely lacking an immunodominant GlcNac side chain; or, partially lacking, substantially lacking, or completely lacking an autoreactive GlcNAc component; or, having a polyrhamnose backbone rather than an immunodominant GlcNac side chain, or a group A carbohydrate (GAC) antigen.
- In alternative embodiments, the invention provides isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate compositions or variants and/or mutants: partially lacking, substantially lacking, or completely lacking an immunodominant GalNAc-GalNAc side chain; or, partially lacking, substantially lacking, or completely lacking an autoreactive GalNAc-GalNAc component; or, having a polyrhamnose backbone rather than an immunodominant GalNAc-GalNAc side chain, or a group C carbohydrate (GCC) antigen.
- In alternative embodiments, the invention provides isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate compositions or variants and/or mutants: partially lacking, substantially lacking, or completely lacking an immunodominant glycan side chain; or, partially lacking, substantially lacking, or completely lacking an autoreactive glycan component; or, having a polyrhamnose backbone rather than an immunodominant glycan side chain, or a group G carbohydrate (GGC) antigen.
- In alternative embodiments, the invention provides vaccines, formulations, compositions or pharmaceutical compositions, comprising a carbohydrate, glycoconjugate or glycopeptide selected from the group consisting of:
- (a) an isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate variant/mutant: partially or completely lacking an immunodominant GlcNac side chain; or, partially or completely lacking an autoreactive GlcNAc component; or having a polyrhamnose backbone rather than an immunodominant GlcNac side chain, or a group A carbohydrate (GAC) antigen;
- (b) an isolated, synthetic or recombinant Group C Streptococcus (GCS) polypeptide or glycopeptide variant/mutant: partially or completely lacking an immunodominant GalNac-GalNac side chain; or, partially or completely lacking a potentially autoreactive GalNac-GalNac component; or having a polyrhamnose backbone rather than an immunodominant GalNac-GalNac side chain, or a group C carbohydrate (GCC) antigen;
- (c) an isolated, synthetic or recombinant carbohydrate variant/mutant: partially or completely lacking an immunodominant glycan side chain; or, partially or completely lacking an autoreactive glycan component; or having a polyrhamnose backbone rather than an immunodominant glycan side chain, or
- an isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate variant/mutant: partially or completely lacking an immunodominant glycan side chain; or, partially or completely lacking an autoreactive glycan component; or having a polyrhamnose backbone rather than an immunodominant glycan side chain, or a group G carbohydrate (GGC) antigen,
- wherein optionally the carbohydrate, glycoconjugate or glycopeptide comprises, or is the same as or is derived from: a pathogenic streptococci of a group B Streptococcus (GBS), for example, a Streptococcus agalactiae, or a group G Streptococcus (GGS) carbohydrate (GCC) antigen (both of which are known to have polyrhamnose backbones similar to that of GAS/GCS, but with more complex antennary structures);
- (d) the isolated, synthetic or recombinant carbohydrate variant/mutant of (a) and (b);
- (e) the isolated, synthetic or recombinant carbohydrate variant/mutant of (a) and (c);
- (f) the isolated, synthetic or recombinant carbohydrate variant/mutant of (b) and (c); and
- (g) the isolated, synthetic or recombinant carbohydrate variant/mutant of (a), (b) and (c).
- In alternative embodiments, the vaccine, formulation, composition or pharmaceutical composition, comprises: a polyrhamnose backbone, or a plurality of polyrhamnose backbones derived from a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS.
- In alternative embodiments, the vaccine, formulation, composition or pharmaceutical composition, comprises: an isolated, synthetic or recombinant carbohydrate variant/mutant derived from a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS, wherein the carbohydrate variant/mutant partially or completely lacks an autoreactive glycan component.
- In alternative embodiments, the vaccine, formulation, composition or pharmaceutical composition, comprises: an isolated, synthetic or recombinant carbohydrate variant/mutant: partially or completely lacking an immunodominant glycan side chain from: a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS.
- In alternative embodiments the vaccines, formulations, compositions or pharmaceutical compositions further comprise one or more (different or additional) GAS, a GCC and/or a GGC protein antigen, or further comprise an adjuvant and/or a pharmaceutically acceptable excipient.
- In alternative embodiments the vaccines, formulations, compositions or pharmaceutical compositions of the invention can be manufactured or formulated as a liquid, a powder, a liposone, an aerosol, a nanoparticle or a lyophilized, freeze-dried or cryodessicated preparation, or can be manufactured or formulated as an emulsion, a lyophilized powder, a spray, a cream, a lotion, a controlled release formulation, a tablet, a pill, a gel, a patch, in an implant or in a spray, or is formulated as an aqueous or a non-aqueous isotonic sterile injection solution, or an aqueous or a non-aqueous sterile suspension.
- In alternative embodiments the vaccines, formulations, compositions or pharmaceutical compositions of the invention are:
- formulated as a liquid, a powder, a liposome, an aerosol, a nanoparticle or a lyophilized, freeze-dried or cryodessicated preparation,
- formulated as an emulsion, a lyophilized powder, a spray, a cream, a lotion, a controlled release formulation, a tablet, a pill, a gel, a patch, in an implant or in a spray, or is formulated as an aqueous or a non-aqueous isotonic sterile injection solution, or an aqueous or a non-aqueous sterile suspension; or
- formulated as a vaccine or a pharmaceutical for the prevention, amelioration or treatment of strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- In alternative embodiments the invention provides isolated, modified or recombinant Group A Streptococcus (GAS) engineered or modified:
- (a) to lack one or more functional genes necessary to synthesize and/or assemble one or more, or all of its immunodominant GlcNac side chains, or group A carbohydrate (GAC) antigens;
- ((b) to lack a functional gacI (Spy0610) gene or gene product, or lack any functional copy of the gacI (Spy0610) gene or gene product,
- wherein optionally the GAS is an allelic replacement knockout of gacI (Spy0610);
- (c) such that it cannot assemble a GlcNac side chain; or
- (d) as in any or all of (a), (b) or (c) and also engineered or modified to lack a functional M protein gene or gene product.
- The M protein, along with the immunodominant GlcNac side chain, has been implicated in the immunopathogenesis of rheumatic fever; thus, in one embodiment, the invention provides a double mutant lacking both GlcNac and M protein; this embodiment provides an added safety advantage in manufacture.
- In alternative embodiments the invention provides isolated, modified or recombinant Group C Streptococcus (GCS) engineered or modified:
-
- (a) to lack one or more functional genes necessary to synthesize and/or assemble one or more, or all of its immunodominant GalNAc-GalNAc side chains, or group G carbohydrate (GCC) antigens;
- (b) to lack a functional gene or gene product providing the homologous function to GAS gacI, or lack any functional copy of the this gene or gene product,
- wherein optionally the GCS is an allelic replacement knockout of the gene encoding the homologous function to GAS gacI;
- (c) such that it cannot assemble a GalNAc-GalNAc side chain; or
- (d) as in any or all of (a), (b) or (c) and also engineered or modified to lack a functional M protein gene or gene product.
- In alternative embodiments the invention provides isolated, modified or recombinant Group C Streptococcus (GCS) engineered or modified:
- (a) to lack one or more functional genes necessary (e.g. gccN) to synthesize and/or assemble one or more, or all of its immunodominant glycan side chains, or group C carbohydrate (GGC) antigens;
- (b) to lack a functional gene or gene product, or lack any functional copy of the gene or gene product providing the homologous function to GAS gacI,
- wherein optionally the GCS mutant is an allelic replacement knockout of this gene; or
- (c) such that it cannot assemble its glycan side chain on the GCC; or
- (d) as in any or all of (a), (b) or (c) and also engineered or modified to lack a functional M protein gene or gene product.
- In alternative embodiments the invention provides isolated, modified or recombinant Group G Streptococcus (GGS) engineered or modified:
- (a) to lack one or more functional genes necessary to synthesize and/or assemble one or more, or all of its immunodominant glycan side chains, or group C carbohydrate (GGC) antigens;
- (b) to lack a functional gene or gene product, or lack any functional copy of the gene or gene product providing the homologous function to GAS sagI,
- wherein optionally the GGS mutant is an allelic replacement knockout of this gene; or
- (c) such that it cannot assemble its glycan side chain on the GGC; or
- (d) as in any or all of (a), (b) or (c) and also engineered or modified to lack a functional M protein gene or gene product.
- In alternative embodiments the invention provides attenuated live bacteria comprising: an isolated, modified or recombinant Group A Streptococcus (GAS) of the invention; an isolated, modified or recombinant Group C Streptococcus (GCS) of the invention; or, an isolated, modified or recombinant Group G Streptococcus (GGS) of the invention.
- In alternative embodiments the invention provides vaccines, formulations, compositions or pharmaceutical compositions comprising an attenuated live bacteria of the invention.
- In alternative embodiments the invention provides vaccines, formulations, compositions or pharmaceutical compositions comprising: an isolated, modified or recombinant Group A Streptococcus (GAS) of the invention; an isolated, modified or recombinant Group G Streptococcus (GGS) of the invention; or, an isolated, modified or recombinant Group C Streptococcus (GCS) of the invention.
- In alternative embodiments the invention provides methods for screening for a composition that can render a Group A Streptococcus (GAS) susceptible to innate immune clearance or pharmacological antibiotics comprising:
- (a) identifying a composition or a small molecule inhibitor of a gacI (Spy0610) gene expression, or a gacI (Spy0610) gene product function; or
- (b) identifying a composition or a small molecule inhibitor of any gene or gene product in any of the carbohydrate gene clusters or operons.
- In alternative embodiments the invention provides kits comprising: an antibody of the invention; a vaccine, a formulation, a composition or a pharmaceutical composition of the invention; an isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention; an isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention; and/or, an isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention.
- In alternative embodiments the invention provides isolated or recombinant antibodies, polyclonal or a monoclonal antibodies, or a serum (e.g., a hyperimmune serum or hyperimmune sera), wherein the antibody or serum or sera specifically react(s) against, or specifically binds to, or is specifically derived against:
- (a) a mutant GAS, GGS or GCS carbohydrate antigen, engineered to partially lack, substantially lack or completely lack an immuno-crossreactive carbohydrate side chain,
- (b) a mutant GAS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immuno-crossreactive GlcNac side chain; or
- (c) a mutant GCS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immunodominant GalNac-GalNac side chain.
- In alternative embodiments, the antibody or serum is formulated for active or passive immunotherapy in a mammal, optionally formulated for treating, ameliorating or for preventing a GAS, GGS or GCS infection in a mammal, a human or a horse,
- wherein optionally the immunotherapy is for the prevention, amelioration or treatment of strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- In alternative embodiments the invention provides vaccines or formulations comprising one or more isolated or recombinant antibodies, a polyclonal or a monoclonal antibodies, or a sera (e.g., a hyperimmune sera) of the invention, wherein the antibodies or sera specifically react against, or specifically bind to, or are specifically derived against one, two or all of:
- (a) a mutant GAS, GGS or GCS carbohydrate antigen, engineered to partially lack, substantially lack or completely lack an immuno-crossreactive carbohydrate side chain,
- (b) a mutant GAS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immuno-crossreactive GlcNac side chain; and/or
- (c) a mutant GCS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immunodominant GalNac-GalNac side chain.
- In alternative embodiments the invention provides methods for active or passive immunotherapy in a mammal for preventing a GAS, a GGS or a GCS infection in a mammal, a human or a horse, comprising:
- (a) providing the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum of the invention, or a vaccine or formulation of the invention; and
- (b) administering a therapeutically or prophylactically effective dose or dosages of the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum, or vaccine or formulation, to the mammal, a human or a horse,
- wherein optionally the immunotherapy is for the prevention, amelioration or treatment of strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- In alternative embodiments the invention provides diagnostic tests, assays, immunoassays or test strips, or arrays, microarrays, biochips, diagnostic chips or chips, for detecting or diagnosing the presence of a Streptococcal infection, comprising the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- wherein optionally the diagnostic test, assay, immunoassay or test strip detects the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”) in a human,
- wherein optionally the diagnostic test, assay, immunoassay or test strip, or array, microarray, biochip, diagnostic chip or chip, detects the presence of or diagnoses a strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis,
- wherein optionally the diagnostic test, assay, immunoassay or test strip detects the presence of or diagnoses a Streptococcal infection,
- wherein optionally the Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- In alternative embodiments, the diagnostic test, assay, immunoassay or test strip comprises a latex agglutination, enzyme immunoassay or an optical immunoassay.
- In alternative embodiments the invention provides methods for detecting the presence of or diagnosing a Streptococcal infection, or a Streptococcal pharyngitis (“strep throat”) in a human, comprising use of a diagnostic test, assay, immunoassay or test strip, latex agglutination assay, enzyme immunoassay or optical immunoassay of the invention,
- wherein optionally the infection is or involves a strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- Thus, in alternative embodiments, the invention provides a diagnostic test, assay or test strip (e.g., latex agglutination, enzyme immunoassay, or optical immunoassay) for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human. In alternative embodiments, the diagnostic test, assay or test strip is rapid and/or has improved sensitivity and/or specificity to as compared to current technologies since it targets a bacterial specific motif (polyrhamnose) rather than a common sugar motif (e.g., a GlcNac or a GlcNac) present on mammalian (e.g., human) cells and mucosal secretions. Since an identical polyrhamnose backbone is shared by GAS and GCS, in alternative embodiments these rapid diagnostic tests and assays have the advantage of identifying both species lacking in current rapid diagnostic methodologies.
- In alternative embodiments the invention provides diagnostic tests, assays, immunoassays, test strips, beads or latex beads, arrays, microarrays, biochips, diagnostic chips or chips, or gels or hydrogels, or magnetic particles, for detecting or diagnosing the presence of a Streptococcal infection, comprising (or having affixed or attached thereon) the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or serum or hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- wherein optionally the diagnostic tests, assays, immunoassays, test strips, beads or latex beads, arrays, microarrays, biochips, diagnostic chips or chips, or gels or hydrogels, or magnetic particles, detect the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis, in a human,
- wherein optionally the diagnostic tests, assays, immunoassays, test strips, beads or latex beads, arrays, microarrays, biochips, diagnostic chips or chips, or gels or hydrogels, or magnetic particles, detect the presence of or diagnoses a Streptococcal infection,
- wherein optionally the Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- In alternative embodiments the invention provides hydrogels, particles or magnetic particles for detecting or diagnosing the presence of a Streptococcal infection, comprising (or having affixed or attached thereon) the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or serum or hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- wherein optionally the hydrogel, particle or magnetic particle detects the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis, in a human,
- wherein optionally the hydrogel, particle or magnetic particle detects the presence of or diagnoses a Streptococcal infection,
- wherein optionally the Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- In alternative embodiments the invention provides arrays, microarrays, biochips, diagnostic chips or chips, for detecting or diagnosing the presence of a Streptococcal infection, comprising (or having affixed or attached thereon) the isolated or recombinant antibody, polyclonal or a monoclonal antibody, or serum or hyperimmune serum of the invention, or a vaccine or formulation of the invention,
- wherein optionally the biochip, diagnostic chip or chip detects the presence of or diagnoses a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis, in a human,
- wherein optionally the diagnostic test, assay, immunoassay or test strip detects the presence of or diagnoses a Streptococcal infection,
- wherein optionally the Streptococcal infection is a GAS, a GGS or a GCS infection in a mammal.
- In alternative embodiments the invention provides uses of: an isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of
claim 1, an isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate variant/mutant ofclaim 2, or an isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate variant/mutant ofclaim 3, or an isolated or a recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum ofclaim 16 orclaim 17, or a vaccine or formulation ofclaim 18, for the manufacture of a pharmaceutical or a medicament, - wherein optionally the isolated, synthetic or recombinant GAS, GCS and/or GGS is used for the manufacture of a pharmaceutical or a medicament to treat, prevent or ameliorate a Streptococcal infection, a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- In alternative embodiments the invention provides an isolated, synthetic or recombinant Group A Streptococcus (GAS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention, an isolated, synthetic or recombinant Group C Streptococcus (GCS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention, or an isolated, synthetic or recombinant Group G Streptococcus (GGS) carbohydrate, glycoprotein or glycoconjugate variant/mutant of the invention, or an isolated or a recombinant antibody, polyclonal or a monoclonal antibody, or a serum or a hyperimmune serum of the invention, or a vaccine or formulation of the invention, for use in a method of treating a Streptococcal infection, a Streptococcal pharyngitis (“strep throat”), impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, or post-streptococcal glomerulonephritis.
- The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
- All publications, patens, patent applications cited herein are hereby expressly incorporated by reference for all purposes.
- The drawings set forth herein are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
-
FIG. 1A schematically illustrates the genetic operon for assembling the GAC in GAS through bioinformatics analysis, and shows the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen;FIG. 1B illustrates a PCR analysis shows absence of the gacI gene (incorrectly labeled gacH) in the knockout mutant;FIG. 1C illustrates a latex agglutination for group A carbohydrate (GlcNac side chain) is no longer reactive in the GAS ΔgacI (incorrectly labeled ΔgacI) mutant;FIG. 1D graphically summarizes this data. -
FIG. 2 graphically illustrates a glycoanalysis subsequent to purification of this mutant GAC carbohydrate, the data unambiguously demonstrating the absence of GlcNAc side chain. -
FIG. 3 illustrates information regarding types of mucosal and invasive infections associated with the leading human pathogen GAS, or Group A Streptococcus, including strep throat, impetigo, cellulitis, necrotizing fascititis, toxic shock syndrome, post-streptococcal glomerulonephritis, that can be treated, ameliorated or prevented using compositions of the invention, e.g., vaccine and antibodies or the invention; or that can be diagnosed using compositions, e.g., devices of the invention such as test strips or immunoassays, of the invention. -
FIG. 4 schematically illustrates a representation of the cell wall and surface structures of the leading human pathogen: group A Streptococcus. -
FIG. 5A schematically illustrates the chemical structure of group A streptococcal cell wall carbohydrate antigen (GAC), andFIG. 5B illustrates an electron microscopic appearance or image of the group A streptococcal cell wall carbohydrate antigen (GAC), with its polyrhamnose backbone and GlcNAc side chain. -
FIG. 6 illustrates an electron microscopic appearance or image of GAS (FIG. 6A ) and variant GAS (FIG. 6B ) strains that lose immune reactivity to the GlcNAc side chain (stained with ferritin conjugated Group A antibodies)—so called “A variant strains”, isolated from mice on serial passage. -
FIG. 7 graphically illustrates data from a latex agglutination test on the natural antibody response to the group A carbohydrate and use of the WT GlcNAc-containing carbohydrate as a vaccine antigen. -
FIG. 8 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen, as discussed in Example 1, below. -
FIG. 9A illustrates a gel of a restriction digest of a PCR amplification of the mutant GAC GlcNAc-deficient knockout mutant, the PCR analysis shows absence of the gacI gene in the knockout mutant;FIG. 9B illustrates an image of a latex agglutination for group A carbohydrate (GlcNac side chain) showing it is no longer reactive in the GAS ΔgacI mutant;FIG. 9C schematically illustrates or diagrams an exemplary method for generation of GAC GlcNAc-deficient knockout mutant through allelic replacement of the gacI gene. -
FIG. 10A graphically illustrates data showing that the wild type (WT) parent M1 GAS strain and the isogenic ΔgacI mutant show similar growth kinetics in bacteriologic growth media (Todd-Hewitt Broth);FIG. 10B graphically illustrates data showing an analysis of the wild-type GAS strain demonstrating binding of the sWGA lectin probe, specific for terminal GlcNac sugars to the bacterial surface; this binding is lost in the ΔgacI mutant, and the results confirms loss of the GlcNac side chain in the mutant. -
FIG. 11A graphically illustrates data from a cytochrome C binding assay indicating that the ΔgacI mutant expresses less negative surface charge than the WT parent M1 GAS strain in both stationary and exponential growth phases.FIG. 11A graphically illustrates data from a N-hexadecane partition analysis indicating that the ΔgacI mutant is more hydrophobic than the WT parent M1 GAS strain. -
FIG. 12 graphically illustrates SpeB activity in supernatant demonstrating that levels of cysteine protease (SpeB) activity are similar in the WT GAS MIT1 parent strain and the isogenic ΔgacI mutant. -
FIG. 13 graphically illustrates data of a hyaluronic acid ELISA, showing that the WT parent M1 GAS strain and the isogenic ΔgacI mutant express similar levels of hyaluronic acid capsule; animal passage increases hyaluronic acid expression in M GAS (by selection of covS mutants); a similar increase is seen in both the WT parent strain and the isogenic ΔgacI mutant. -
FIG. 14 illustrates a microscopic appearance comparing WT (FIG. 14A ) and ΔgacI mutant (FIG. 14B ) chain length, where the ΔgacI mutant (FIG. 14B ) showing a gross morphology of cell walls is similar, but there is a tendency in the mutation to longer chain length, when compared to the WT parent GAS MIT1 strain (FIG. 14A ). -
FIG. 15 illustrates a formal glycoanalysis of linkages in the WT M1 GAS carbohydrate showing rhamnose sugars and the β-1-3-linked GlcNac side chain. -
FIG. 16 illustrates a formal glycoanalysis of linkages in the M1 GAS ΔgacI mutant cell wall carbohydrate showing unambiguously the loss of the β-1-3-linked GlcNac side chain. -
FIG. 17 graphically illustrates data from a mouse infection experiment (ΔgacI mutant compared to the WT parent) showing a trend towards attenuation of virulence of ΔgacI mutant compared to the WT parent strain in a mouse model of systemic infection. -
FIG. 18 graphically illustrates data from a whole blood survival test demonstrating that the ΔgacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood whether heparin (FIG. 18A ) or lepirudin (FIG. 18B ) is used for anticoagulation; the results indicate the GlcNAc side chain contributes to whole blood survival. -
FIG. 19 illustrates data from a cell killing/cell survival assay showing that the ΔgacI mutant is more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37 and the murine cathelicidin mCRAMP, which are produced abundantly by neutrophils and epithelial cells and known to be an important effector of bacterial killing; thus, the GlcNac side chain contributes to cathelicidin resistance. -
FIG. 20 graphically illustrates data from a cell killing/cell survival assay showing that the ΔgacI mutant is more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37, which is produced abundantly by neutrophils and epithelial cells and known to be an important effector of bacterial killing; thus, the GlcNac side chain contributes to LL-37 resistance. -
FIG. 21 graphically illustrates data from a serum survival assay showing that the ΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum (FIG. 21A ) and 5% baby rabbit serum (FIG. 21B ), indicating the GlcNac side chain promotes GAS serum resistance, as discussed in Example 1. -
FIG. 22 graphically illustrates data from a C3b complement deposition assay showing that compared to the WT parent GAS MIT1 strain the ΔgacI mutant shows less complement deposition via the lectin pathway (in absence of IgG) (FIG. 22B ), as compared to the classical complement pathway (FIG. 22A ). -
FIG. 23A schematically illustrates the classical complement pathway and the lectin pathway; andFIGS. 23B and 23C graphically illustrate that data from a serum survival assay showing that C4b (upstream) complement deposition (FIG. 23B ) and C5B-9 complement deposition (FIG. 23C ) is reduced in the ΔgacI mutant (reduced in the absence of GAC side chain) compared to the WT parent GAS strain. -
FIG. 24 illustrates a test showing the sensitivity of WT (FIG. 24A ) and ΔgacI mutant (FIG. 24B ) GAS to the antibiotic vancomycin by E-test. -
FIG. 25 is a summary of some phenotypic characteristics and virulence properties that are changed or unaffected when comparing the WT GAS MIT1 strain to the isogenic ΔgacI mutant lacking the GlcNAc side chain on its cell wall carbohydrate antigen. -
FIG. 26 schematically illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC), and a description of its association with human and equine infectious diseases, as discussed in Example 1. -
FIG. 27 schematically illustrates a comparison of the gene loci encoding the GAS and GCS cell wall carbohydrate antigens and predicted gene annotations. -
FIG. 28 schematically illustrates a comparison of the gene loci encoding the GAS and GCS cell wall carbohydrate antigens and predicted gene annotations and prediction of genes from GCS that could encode the GlcNAc-GlcNAc side chain. -
FIG. 29 schematically illustrates an exemplary scheme by which a knockout of the GCS gccN gene yields a ΔgccN mutant lacking the GalNAc-GalNAc side chain that can be studied in virulence and vaccine models analogous to what we have achieved in with the deletion of ΔgacI gene in GAS. -
FIG. 30A illustrates the results of a latex bead test showing that knockout of the GCS gccN gene yields a ΔgccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by loss of reactivity in the latex agglutination test;FIG. 30B schematically illustrates a scheme for synthesizing GCC and GAC. -
FIG. 31 illustrates the results of a latex bead test showing that knockout of the GCS gccN gene yields a ΔgccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by loss of binding to SBA, a lectin recognizing GalNAc. -
FIG. 32 illustrates the results of a formal glycolinkage analysis showing that knockout of the GCS gccN gene yields a ΔgccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by the glycolinkage analysis. -
FIG. 33 schematically illustrates that cloning of gccL-N genes from GCS into GAS could encode incorporation of a GlcNAc-GlcNAc side chain. -
FIG. 34 illustrates the results of a latex bead test showing that heterologous expression of the gccL-N genes from GCS into GAS causes incorporation of GlcNAc-GlcNAc side chain, as shown by latex agglutination test. -
FIG. 35 graphically illustrates the results of a flow cytometry assay demonstrating incorporation of GCS side chain into GAS upon heterologous expression of the gccL-N genes, as confirmed by lectin binding assay. -
FIG. 36 illustrates the results of a carbohydrate composition analysis demonstrating that heterologous expression of the gccL-N genes from GCS into GAS causes incorporation of GlcNAc-GlcNAc side chain by composition analysis. -
FIG. 37 graphically illustrates the results of a whole blood killing assay demonstrating that heterologous expression of the gccL-N genes from GCS into GAS causes reduced survival in whole blood killing assay. -
FIG. 38 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen, as discussed in Example 1. -
FIG. 39 illustrates targeted knockout of the gacI gene inM1 GAS strain 5448 by allelic exchange mutagenesis;FIG. 39A illustrates a PCR analysis showing the absence of the gacI gene in the knockout mutant;FIG. 39B illustrates a latex agglutination for group A carbohydrate (GlcNac side chain) is no longer reactive in the GAS ΔgacI mutant; andFIG. 39C schematically illustrates how if a copy of the gacI gene is knocked back into the mutant, the reactivity for the GlcNac is restored. -
FIG. 40A illustrates a flow cytometry analysis of the wild-type GAS strain showing binding of the sWGA lectin probe, specific for terminal GlcNac sugars, to the bacterial surface;FIG. 40B graphically illustrates how this binding is lost in the ΔgacI mutant and restored in the complemented mutant; the results confirm loss of the GlcNac side chain in the mutant. -
FIG. 41 illustrates a formal glycoanalysis of linkages in the WT M1 GAS carbohydrate, the linkage analysis shows rhamnose sugars and the β-1-3-linked GlcNac side chain. -
FIG. 42 illustrates a formal glycoanalysis of linkages in the M1 GAS ΔgacI mutant cell wall carbohydrate, the linkage analysis shows unambiguously the loss of the β-1-3-linked GlcNac side chain. -
FIG. 43 graphically illustrates that the WT parent M1 GAS strain and the isogenic ΔgacI mutant show similar growth kinetics in bacteriologic growth media (Todd-Hewitt Broth). -
FIG. 44 illustrates a transmission electron microscopy image showing that the WT parent M1 GAS strain and the isogenic ΔgacI mutant show ultrastructural appearance under transmission electron microscopy. -
FIG. 45 graphically illustrates that the WT parent M1 GAS strain and the isogenic ΔgacI mutant express similar levels of hyaluronic acid capsule, as discussed in Example 1. -
FIGS. 46A and 46B illustrate images showing that the ΔgacI mutant tends to express longer chain length than the WT parent M1 GAS strain; andFIG. 46C graphically illustrates these results. -
FIG. 47A graphically illustrates a cytochrome C binding assay that indicates the ΔgacI mutant expresses less negative surface charge than the WT parent M1 GAS strain in both stationary and exponential growth phases;FIG. 47B graphically illustrates an N-hexadecane partition analysis that indicates the ΔgacI mutant is more hydrophobic than the WT parent M1 GAS strain. -
FIGS. 48A and 48B graphically illustrate that the ΔgacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood, whether heparin (FIG. 48A ) or lepirudin (FIG. 48G ) is used for anticoagulation; the results indicate the GlcNAc side chain contributes to whole blood survival. -
FIGS. 49A and 49B graphically illustrate that the ΔgacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood, whereas complementation of the mutation restores WT levels of survival, as discussed in Example 1, below. -
FIGS. 50A and 50B graphically illustrate that the ΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain in a human neutrophil opsonophagocytic killing assay, whereas complementation of the mutation restores WT levels of survival, as discussed in Example 1, below. -
FIG. 51A graphically illustrates that the ΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain in a human neutrophil extracellular trap (NET) killing assay, indicating the GlcNac side chain promotes resistance to extracellular neutrophil killing within NETs; andFIG. 50B graphically illustrates that the ΔgacI mutant is more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37, which is produced abundantly by neutrophils and known to be an important effector of bacterial killing within NETs; thus the GlcNac side chain contributes to cathelidicin resistance. -
FIGS. 52A and 52B graphically illustrate that the IΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum (FIG. 52A ) and 5% baby rabbit serum (FIG. 52B ), indicating the GlcNac side chain promotes GAS serum resistance, as discussed in Example 1, below. -
FIG. 53 graphically illustrates that the ΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain by thrombin activated platelets, indicating the GlcNac side chain promotes GAS resistance to platelet-derived antimicrobial peptides. -
FIG. 54A graphically illustrates that the ΔgacI mutant is markedly attenuated for virulence in a rabbit model of GAS necrotizing pneumonia;FIGS. 54B and 54C illustrate images of gross examination of the lungs in a wild type and a ΔgacI mutant, as discussed in Example 1, below. -
FIG. 56 graphically illustrates that a monoclonal antibody derived from a patient with rheumatic heart disease binds to the WT GAS strain better than the ΔgacI mutant, as discussed in Example 1. -
FIG. 57 is a summary of phenotypic characteristics and virulence properties that are changed or unaffected when comparing the WT GAS MIT1 strain to the isogenic ΔgacI mutant lacking the GlcNAc side chain on its cell wall carbohydrate antigen. -
FIG. 58 summarizes data showing that polyclonal antisera from rabbit immunized with a protein conjugate of the GAC mutant antigen detect WT GAC and WT GAS bacteria, as discussed in Example 1. -
FIG. 59A andFIG. 59B graphically illustrate data from two experiments showing that polyclonal antiserum raised against cell wall carbohydrate purified from the ΔgacI mutant (lacking the GlcNAc side chain) promotes killing of M1 GAS in a human neutrophil opsonophagocytosis assay (compared to normal rabbit serum control); this demonstrates utility of vaccines of the invention as a universal vaccine antigen for GAS. -
FIG. 60 graphically illustrates data from an experiment showing that polyclonal antiserum raised against the cell wall carbohydrate purified from the ΔgacI mutant (lacking the GlcNAc side chain) promotes killing of M49 GAS in a human neutrophil opsonophagocytosis assay (compared to normal rabbit serum control); this demonstrates utility of vaccines of the invention as a universal vaccine antigen for GAS. -
FIG. 61 graphically illustrates data from an experiment showing that polyclonal antiserum raised against the cell wall carbohydrate purified from the ΔgacI mutant (lacking the GlcNAc side chain) promotes opsonophagocytic killing of M1 GAS in human whole blood (compared to normal rabbit serum control); this demonstrates utility of vaccines of the invention as a universal vaccine antigen for GAS. -
FIG. 62 schematically illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC) and provides a description of its association with human and equine infectious diseases, as discussed in Example 1. -
FIG. 63A illustrates a slide showing that if genes from the group C streptococcal operon encoding its group carbohydrate are cloned into group A Streptococcus, evidence of some GalNAc side chain incorporation into the GAS antigen can be demonstrated;FIG. 63B illustrates GalNAc side chain incorporation into the GAS antigen, as discussed in Example 1. -
FIG. 64 illustrates a comparison of GAS and GCS cell wall carbohydrate operons, illustrating gene loci encoding the GAS and GCS cell wall carbohydrate antigens and predicted gene annotations. -
FIG. 65A schematically illustrates how GCS epimerase gccN is required for GCC side chain formation, where GalE epimerases can convert Glc to Gal, and/or GlcNAc to GalNAc, and that no GalE epimerase gccN is present in GAS; andFIG. 65B andFIG. 65C illustrate data showing that GCS epimerase gccN is required for GCC side chain formation, as discussed in Example 1. -
FIGS. 66A , 66B and 66C schematically illustrate that knockout of the GCS gccN gene yields a ΔgccN mutant lacking the GalNAc-GalNAc side chain, as confirmed by loss of binding to SBA, a lectin recognizing GalNAc; whereFIG. 66A illustrates a latex bead test showing loss of binding by a ΔgccN mutant lacking the GalNAc-GalNAc side chain, andFIG. 66C graphically illustrates loss of binding to SBA by a ΔgccN mutant lacking the GalNAc-GalNAc side chain. - Like reference symbols in the various drawings indicate like elements.
- Reference will now be made in detail to various exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. The following detailed description is provided to give the reader a better understanding of certain details of aspects and embodiments of the invention, and should not be interpreted as a limitation on the scope of the invention.
- In alternative embodiments, the invention provides a Group A Streptococcus (GAS) cell wall carbohydrate (GAC) variant lacking all of its immunodominant GlcNac side chains. In alternative embodiments, the invention provides a Group A Streptococcus (GAS) genetically modified such that it cannot express one or more, or all (e.g., cannot express any) of its immunodominant GlcNac side chains on its cell wall group A carbohydrate (GAC) antigens.
- Genetic information described herein and the unique mutants we have generated in this invention can serve as a tool to purify a mutant GAC lacking the GlcNAc side that could be used as a universal vaccine antigen against all GAS/GCS/GGS strains and at the same time be devoid of the risk for autoimmune complications.
- In alternative embodiments these modified GAS bacteria of the invention lack one or more genes necessary to synthesize and/or assemble one or more, or all of its immunodominant group A GlcNac side chains, or group A carbohydrate (GAC) antigens.
- The 12 genes that we have discovered constitute the GAC biosynthesis gene cluster are hereafter designated gacA-gacI, corresponding to Spy0602 to Spy0613 in the published M5005 GAS genome. The 9th gene of this operon, gacI (Spy0610), encodes the enzymatic function required for addition of the GlcNac side chain to the polyrhamnose backbone of the GAC. Thus in one embodiment, modified bacteria lack the gacI gene or lack a functional gacI gene or gene product, and therefore express a mutant GAC lacking the GlcNac side chain, also known as an “A-variant GAC”. Thus, in one embodiment, modified bacteria of the invention lack the gacI (or Spy0610) gene or lack a functional gacI (or Spy0610 gene).
- In alternative embodiments, the invention provides Group A Streptococcus (GAS) polypeptide or glycopeptide variants that have a polyrhamnose backbone (an “A-variant GAC”) rather than an immunodominant GlcNac side chain, or a group A carbohydrate (GAC) antigen. In alternative embodiments, the invention provides a Group A Streptococcus (GAS) genetically modified such that it expresses a Group A Streptococcus (GAS) carbohydrate variant that has a polyrhamnose backbone (an “A-variant GAC”) rather than an immunodominant GlcNac side chain, or a group A carbohydrate (GAC) antigen.
- We have generated an allelic replacement knockout of gacI (Spy0610) in
GAS parent strain 5448, representative of the globally disseminated, highly virulent MIT1 GAS clone that has emerged as the leading cause of both pharyngitis and severe invasive disease for the last 20 to 30 years. These genetically modified bacteria of this invention comprise an engineered mutation in the GAC lacking specifically the Glc-Nac side chain; and this bacteria of the invention can be used to purify (can be used as a source of) high-molecular weight, intact polyrhamnose backbone (A-variant GAC) for use as a safe vaccine antigen, e.g., formulated as a protein conjugate. - Provided herein is definitive proof of principle of the utility of the modified antigens of the invention as a vaccine. Polyclonal antisera raised in a rabbit to the mutant GAC (isolated from the isogenic ΔgacI mutant) shows a high titer against both the mutant GAC and the wild-type GAC (i.e. the antibodies are able to recognize the underlying backbone even in the presence of the native side chain). Moreover, the immune sera recognize equally wild-type group A Streptococcus from the M1 serotype and M49 serotype, showing cross-protection that implies the potential for universal reactivity against all GAS and GCS. Finally, the immune sera are able to substantially promote opsono-phagocytic killing of both M1 and M49 GAS by human neutrophils and in human whole blood, confirming the utility of the vaccine compositions of the invention and this vaccine strategy in prevention of invasive GAS infection.
- Thus, in alternative embodiments the invention provides bacterial carbohydrates that will allow mammals, including humans, to make antibodies that provide protection against all strains of GAS, GCS and GGS without generation of antibodies to side chain carbohydrates which may cross react with host tissues. The Glc-Nac side chain epitope, which carbohydrates and conjugate vaccines of the invention lack, is implicated in the immunopathogenesis of rheumatic carditis/Sydenhanm's chorea—a potential prohibitive safety concern for a vaccine. Our research confirms the validity of this concern, as we found that a monoclonal antibody derived from the blood of a patient with rheumatic carditis, previously shown to cross-react with both human cardiac tissue and GAS, binds to our wild-type parent GAS strain but not to the isogenic gacI mutant lacking GlcNac.
- Using bioinformatic and molecular genetics approaches, we have discovered the genetic locus responsible for assembling the group A carbohydrate (or GAC) antigen.
- Using bioinformatic and molecular genetic approaches, we have discovered the 12-gene locus (which we have named gacA-gacL) responsible for assembling GAC antigen and the corresponding homologous operons in GCS and GGS. By knocking out a specific gene Spy0610, we generated the first-ever viable Group A Streptococcus (GAS) mutant that expresses a GAC completely devoid of the immunodominant GlcNac side chain, as confirmed by detailed glyco-analysis. Thus, in alternative embodiments, the invention provides a Group A Streptococcus (GAS), variant/mutant carbohydrate that lacks an immunodominant GlcNac side chain, i.e., that lacks the autoreactive GicNAc component; and Streptococcus GGS and/or GCS variant/mutant carbohydrates that lack (GalNAc)2 or a combination of GalNAc/GlcNAc, respectively (side chains on the GCC and GGC are not GlcNAc but (GalNAc)2 or probably a combination of GalNAc/GlcNAc, respectively). In one embodiment, the invention provides Streptococcus (GAS) variants/mutants that lack a functional gacI (Spy0610 gene), or cannot express the Spy0610 gene product. In one embodiment, the invention provides Streptococcus (GAS) variants/mutants that expresses a Group A Streptococcus (GAS) variant/mutant that lacks an immunodominant GlcNac side chain, i.e., that lacks the autoreactive GlcNAc component.
- Interestingly, the GAC rhamnose backbone is shared by the group carbohydrate antigens of other medically important pathogens including groups C and G Streptococcus (GCS, GGS), each of which expresses a different unique sugar side chain. Therefore, the genetic mutant of this invention can serve as a unique tool to purify a mutant GAC lacking the GlcNAc side that could be used as a universal GAS/GCS/GGS vaccine antigen devoid of risk for autoimmune complications.
- In one embodiment, the invention provides compositions (e.g., vaccines) and methods for immunizing with an A-variant carbohydrate purified from the gacI (Spy0610) mutant GAS strain of the invention to induce anti-GAC antibodies that are protective against all serotypes of GAS but lack the that autoreactive GlcNAc component. In alternative embodiments, this vaccine of the invention protects against GCS infection, which has an identical underlying polyrhamnose backbone, also protects against other streptococcal species such as GBS and GGS, which have similar underlying rhamnose backbone in their group carbohydrate structures.
- In one embodiment, an A-variant carbohydrate of the invention is used in combination vaccines with other GAS protein antigens, or standard techniques could be used to knock out the M protein in an exemplary mutant of this invention, creating a potential whole cell or live attenuated vaccine strain lacking both antigens (GAC and M protein) implicated in rheumatic fever pathogenesis.
- Finally, the enzyme encoded by gacI (Spy0610) is responsible for the addition of the GlcNac side chain to the GAC, and we have shown the GAC is a virulence factor of the pathogen. Compared to the wild-type parent strain, the GAS ΔgacI knockout mutant lacking the GAC side chain is markedly attenuated in both mouse and rabbit models of invasive GAS infection. Compared to the wild-type parent strain, the GAS ΔgacI knockout mutant is much more sensitive to killing by human whole blood, human serum, and baby rabbit serum. Compared to the wild-type parent strain, the GAS ΔgacI knockout mutant is much more sensitive to killing by the human cathelicidin antimicrobial peptide LL-37 and antimicrobial peptides derived from activated human platelets, a critical element of host innate immunity produced on epithelial cell surfaces and by circulating and tissue-based immune cells including neutrophils, macrophages and mast cells. Thus the GAS ΔgacI mutant is more susceptible to immune clearance in a wide array of in vitro, tissue culture and in vivo model systems. A screen to identify small molecule inhibitors of gacI (Spy0610) could identify novel therapeutics for treatment of serious GAS infections, by rendering the pathogen susceptible host innate immune clearance.
- Because the GAC compromises 50% of the bacterial cell wall and because our experimental data suggests that targeting many of the other genes in the operon is lethal to the pathogen, we conclude that the GAC polyrhamnose backbone itself is essential for viability of GAS. Thus this invention concludes that screening for small molecule inhibitors for enzymes each of the other candidate enzymes and transport proteinsin the GAC operon (gacA, gacB, gacC, gacD, gacE, gacF, gacG, gacH, gacJ, gacK) or corresponding genes in the GCC operon would identify novel antibiotic agents with bactericidal (lethal) activity against GAS and GCS for direct development as antibiotic agents.
- We have discovered the genetic operon for assembling the GAC in GAS through bioinformatics analysis. We have generated a viable allelic exchange GAS mutant, called ΔgacI, expresses a mutated GAC. Purification of this mutant GAC carbohydrate has been performed and glycoanalysis has unambiguously demonstrated the absence of GlcNAc side chain.
- The invention also provides products of manufacture (e.g., cells, carbohydrates, glycoconjugates), kits and pharmaceuticals (a pharmaceutical composition or a formulation or a vaccine) for practicing the methods of this invention. In alternative embodiments, the invention provides products of manufacture, kits and/or pharmaceuticals comprising all the components needed to practice a method of the invention. In alternative embodiments, the products of manufacture, kits and/or pharmaceuticals further comprises instructions for practicing the methods of the invention.
- In alternative embodiments, the invention provides vaccines, pharmaceutical formulations and compositions to treat, prevent or ameliorate Group A Streptococcus (GAS), Group C Streptococcus (GCS) and/or Group G Streptococcus (GGS) infections, and other pathogenic streptococci bearing similar polyrhamnose backbones in their cell wall carbohydrate. These include the genetically engineered polyrhamnose backbone GAC lacking the GlcNac side chain, for use as a vaccine antigen alone, conjugated to a protein carrier, or as a component of a multiple antigen subunit vaccine. In alternative embodiments, the invention provides GAS strains with engineered deletion of gacI, or GCS mutants with an engineered deletion of gccN, alone or in combination with other virulence factor mutations, that can serve as a whole cell or live-attenuated vaccine strain(s) for protection against GAS, GCS and GGS infection.
- In alternative embodiments, the vaccines, solutions, formulations or pharmaceutical compositions of the invention can be administered parenterally, topically, intranasally, intramuscularly, subcutaneously, intradermally, orally or by local administration, such as by aerosol or transdermally. The pharmaceutical compositions can be formulated in any way and can be administered in a variety of unit dosage forms depending upon the condition or disease and the degree of illness, the general medical condition of each patient, the resulting preferred method of administration and the like. Details on techniques for formulation and administration are well described in the scientific and patent literature, see, e.g., the latest edition of Remington's Pharmaceutical Sciences, Maack Publishing Co., Easton Pa. (“Remington's”). For example, in alternative embodiments, these compositions of the invention are formulated in a buffer, in a saline solution, in a powder, an emulsion, in a vesicle, in a liposome, in a nanoparticle, in a nanolipoparticle and the like. In alternative embodiments, the compositions can be formulated in any way and can be applied in a variety of concentrations and forms depending on the desired in vivo, in vitro or ex vivo conditions, a desired in vivo, in vitro or ex vivo method of administration and the like. Details on techniques for in vivo, in vitro or ex vivo formulations and administrations are well described in the scientific and patent literature. Formulations and/or carriers used to practice this invention can be in forms such as tablets, pills, powders, capsules, liquids, gels, syrups, slurries, suspensions, etc., suitable for in vivo, in vitro or ex vivo applications.
- In practicing this invention, the compounds (e.g., vaccines, solutions, formulations or pharmaceutical compositions) of the invention can comprise a solution of compositions (which include GAS, GGS or GCS carbohydrates or glycopeptides of the invention) disposed in or dissolved in a pharmaceutically acceptable carrier, e.g., acceptable vehicles and solvents that can be employed include water and Ringer's solution, an isotonic sodium chloride. In addition, sterile fixed oils can be employed as a solvent or suspending medium. For this purpose any fixed oil can be employed including synthetic mono- or diglycerides, or fatty acids such as oleic acid. In one embodiment, solutions and formulations used to practice the invention are sterile and can be manufactured to be generally free of undesirable matter. In one embodiment, these solutions and formulations are sterilized by conventional, well-known sterilization techniques.
- The vaccines, solutions, formulations or pharmaceutical compositions used to practice the invention can comprise auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and can be selected primarily based on fluid volumes, viscosities and the like, in accordance with the particular mode of in vivo, in vitro or ex vivo administration selected and the desired results.
- The vaccines, solutions, formulations or pharmaceutical compositions of the invention can be delivered by the use of liposomes. By using liposomes, particularly where the liposome surface carries ligands specific for target cells (e.g., immune cells for stimulating a humoral response), or are otherwise preferentially directed to a specific tissue or organ type, one can focus the delivery of the active agent into a target cells in an in vivo, in vitro or ex vivo application.
- In alternative aspects, a vaccine of the invention can be administered with an adjuvant, e.g., the adjuvant can comprise or consist of incomplete Freund's adjuvant (IFA) or MONTANIDE ISA 51®; alum; aluminum phosphate; aluminum hydroxide; squalene; complete Freund's adjuvant (CFA), or levamisole; QS-21™, or STIMULON® (Antigenics, Lexington, Mass.); or muramyl dipeptide (MDP) or derivatives thereof; monophosphoryl lipid (MPL) or derivatives thereof; or monophosphoryl lipid A (MPLA) or derivatives thereof; or MF59™ or FLUAD® (Novartis, Basel, Switzerland); or as described in U.S. Pat. No. 7,182,962; or a glycosylceramide as described e.g. in U.S. Pat. No. 7,488,491; triacyl lipid A or derivatives thereof or OM-174™ (OM Pharma, Geneva, Switzerland); or SB-AS2™, or an oil in water emulsion comprising monophosphoryl lipid A (MPLA) and QS-21™; or SYNTEX™ adjuvant formulation (SAF) (Laboratorios Syntex SA, Mexico City Mexico), or an adjuvant comprising a muramyl dipeptide derivative (threonyl-MDP) in an oil-in-water (o/w) emulsion vehicle; or pluronic L121 or poloxamer 401; or a mucosal adjuvant comprising a detoxified mutant A subunit of a cholera toxin (CT) or an E. coli heat labile toxin (LT1 or LT2) as described in U.S. Pat. No. 7,485,304 (Novartis Vaccines and Diagnostics SRL); or an adjuvant as described in U.S. Pat. No. 7,357,936 (SmithKline Beecham Biologicals, SA); or any combination thereof.
- In alternative aspects, a vaccine of the invention is administered with a non-specific immuno-stimulator, e.g., the non-specific immuno-stimulator can comprise or consist of a granulocyte-macrophage colony-stimulating factor polypeptide; or sargramostim, or LEUKINIE™ (Bayer, Leverkusen, Germany).
- Methods of delivering the vaccine are also well known in the art. For example, in alternative embodiments vaccines of the invention are formulated and delivered via a parenteral route comprising or consisting of a subcutaneous, an intravenous (IV), an intradermal, an intramuscular, an intraperitoneal, an intranasal, a transdermal or a buccal route.
- In alternative embodiments vaccines of the invention are delivered intradermally or intra-epidermally using any needle-like structures or device, e.g., as described in U.S. Patent App. Pub. No. 20090012494, describing use of microneedle devices, e.g., with rows of hollow microneedles. In alternative embodiments vaccines of the invention are delivered using micro-cannula, e.g., as described in U.S. Pat. No. 7,473,247. When using this or another device or needle to practice this invention, vaccine formulations can be directly targeted into an intradermal space; or can be delivered into an intradermal space as a bolus or by infusion. In alternative embodiments, “intradermal” is administration of a vaccine formulation of this invention into the dermis in such a manner that the glycopeptide of the invention therein readily reaches the richly vascularized papillary dermis where it can be rapidly systemically absorbed, or the vaccine can be taken up directly by cells (e.g., dendritic cells) in the skin. In alternative embodiments, “intradermal” includes every layer of the skin, including stratum corneum, epidermis and dermis.
- In one embodiment, a drug-delivery patch is used to deliver a vaccine formulation of this invention, e.g., as described in U.S. Patent App. Pub. No. 20090010998. In one embodiment, the invention provides a drug-delivery patch having at least one dissolvable layer comprising a carbohydrate or protein-conjugated carbohydrate of the invention and an adhesive backing or cover. In one embodiment, an individual is transdermally vaccinated by ablating an area of the stratum corneum of the individual and applying the patch to that area.
- In one embodiment, a carbohydrate or protein-conjugated carbohydrate of the invention is delivered via dendritic cell administration, e.g., as described in U.S. Patent App. Pub. No. 20090010948. In one embodiment, a carbohydrate or protein-conjugated carbohydrate of the invention is formulated as a dendritic cell (DC)-based tumor vaccine; this modality is a well-known therapeutic approach for generating immune responses and for cancer treatment; see e.g., Schuler (2003) Curr. Opin. Immunol. 15(2):138-47; Dallal (2000) Curr. Opin. Immunol. 12(5):583-8; Steinman (2001) Int J. Cancer. 94(4):459-73. In practicing this embodiment, DCs can deliver not only the tumor antigen contained within a carbohydrate or protein-conjugated carbohydrate of this invention, but the DC also can be a natural adjuvant to boost the vaccine's efficiency. DCs also can provide critical molecules, cytokines or co-stimulatory signals to the T cells they interact with during activation.
- Methods for determining the efficacy of a vaccine formulation of this invention, or a particular administration of a vaccine formulation of this invention, are well known in the art. For example, cell-based or humoral responses can be assessed (measured) using in vitro based assays and/or in vivo based assays, including animal based assays. Assays for measuring cell-based or humoral immune response are well known in the art, e.g., see, Coligan et al., (eds.), 1997, Current Protocols in Immunology, John Wiley and Sons, Inc. Cell-based or humoral immune responses may be detected and/or quantitated using standard methods known in the art including, e.g., an ELISA assay, chromium release assays and the like. The humoral immune response may be measured by detecting and/or quantitating the relative amount of an antibody which specifically recognizes an antigenic or immunogenic agent in the sera of a subject who has been treated with a vaccine formulation of this invention relative to the amount of the antibody in an untreated subject. ELISA assays can be used to determine total antibody titers in a sample obtained from a subject treated with an agent of the invention.
- In alternative embodiments, the invention provides whole cell or live attenuated vaccines comprising a bacterial cell of the invention, e.g., an isolated, modified or recombinant Group A Streptococcus (GAS), Group C Streptococcus (GCS) or Group G Streptococcus (GGS), e.g., a bacterial cell expressing a modified GAC, GCC and or GGC carbohydrate of the invention.
- In one aspect, the invention provides immunogenic preparations comprising cells with reduced infectivity, e.g., as prepared as described in U.S. Pat. Nos. 7,560,113; 7,919,096, for example, by contacting whole microorganisms with a fluid comprising carbon dioxide at or near its supercritical pressure and temperature conditions such that the infectivity and/or pathogenicity of the whole microorganisms are reduced. Chemical additives can also be used, e.g., adding hydrogen peroxide, acetic acid, peracetic acid, trifluoroacetic acid or mixtures thereof.
- In alternative embodiments, the invention provides carbohydrate or protein-conjugated carbohydrate (glycoconjugates), e.g., formulated as vaccines, for generating an immune response, e.g., a humoral immune response, in a mammal to a Group A Streptococcus (GAS), a Group C Streptococcus (GCS), or a Group G Streptococcus (GGS). In alternative embodiments, a vaccine, formulation, composition or pharmaceutical composition of the invention, comprises: a glycoconjugate comprising a polyrhamnose backbone, or a plurality of glycoconjugates comprising polyrhamnose backbones derived from a GAS; GCS; a GBS; a GGS; a GAS and a GCS; a GAS and a GBS; a GAS and a GGS; a GCS and a GBS; a GCS and a GGS; a GBS and a GGS; or a GAS, a GCS, a GBS and a GGS. In one embodiment, the protein component of the glycoconjugate is endogenous (e.g., a GAS polyrhamnose backbone attached or conjugated to a GAS peptide or protein component), or in alternative embodiment the protein component of the glycoconjugate is exogenous (the origin of the carbohydrate and the protein component do not match). In one embodiment, the protein component of the glycoconjugate is entirely synthetic or has no sequence similarity to a peptide from the same organism as the carbohydrate.
- In alternative embodiments, molecules used to practice the invention (e.g., a carbohydrate or protein-conjugated carbohydrate of the invention) comprise a recombinant protein, a synthetic protein, a peptidomimetic, a non-natural peptide, or a combination thereof. Peptides and proteins used to practice the invention can be recombinantly expressed in vitro or in vivo. The peptides and polypeptides of the invention can be made and isolated using any method known in the art as well as using the methods described herein. Polypeptide and peptides used to practice the invention can also be synthesized, whole or in part, using chemical methods well known in the art. See e.g., Caruthers (1980) Nucleic Acids Res. Symp. Ser. 215-223; Horn (1980) Nucleic Acids Res. Syrup. Ser. 225-232; Banga, A. K., Therapeutic Peptides and Proteins, Formulation, Processing and Delivery Systems (1995) Technomic Publishing Co., Lancaster, Pa. For example, peptide synthesis can be performed using various solid-phase techniques (see e.g., Roberge (1995) Science 269:202; Merrifield (1997) Methods Enzymol. 289:3-13) including any automated polypeptide synthesis process known in the art.
- In alternative embodiments, carbohydrate or protein-conjugated carbohydrate of the invention can comprise any “mimetic” and/or “peptidomimetic” form. In alternative embodiments, glycopeptides and glyco-polypeptides of the invention comprise synthetic chemical compounds that have substantially the same structural and/or functional characteristics of a natural polypeptide. A mimetic used to practice the invention can be either entirely composed of synthetic, non-natural analogues of amino acids, or, is a chimeric molecule of partly natural peptide amino acids and partly non-natural analogs of amino acids. A mimetic used to practice the invention can also incorporate any amount of natural or non-natural amino acid conservative substitutions as long as such substitutions also do not substantially alter the mimetic's structure and/or activity.
- The invention also provides nanoparticles, nanolipoparticles, vesicles and liposomal membranes comprising compounds used to practice the compositions and methods of this invention, e.g., use of vaccines, pharmaceutical formulations and compositions to treat, prevent or ameliorate Group A Streptococcus (GAS), Group C Streptococcus (GCS) and/or Group G Streptococcus (GGS) infections. In alternative embodiments, these compositions are designed to target specific molecules, including biologic molecules, such as polypeptides, including cell surface polypeptides, e.g., for targeting a desired cell type, e.g., a dendritic cell and the like for stimulating an immune response.
- The invention provides multilayered liposomes comprising compounds used to practice this invention, e.g., as described in Park, et al., U.S. Pat. Pub. No. 20070082042. The multilayered liposomes can be prepared using a mixture of oil-phase components comprising squalane, sterols, ceramides, neutral lipids or oils, fatty acids and lecithins, to about 200 to 5000 nm in particle size, to entrap a composition used to practice this invention.
- Liposomes can be made using any method, e.g., as described in Park, et al., U.S. Pat. Pub. No. 20070042031, including method of producing a liposome by encapsulating an active agent, the method comprising providing an aqueous solution in a first reservoir; providing an organic lipid solution in a second reservoir, and then mixing the aqueous solution with the organic lipid solution in a first mixing region to produce a liposome solution, where the organic lipid solution mixes with the aqueous solution to substantially instantaneously produce a liposome encapsulating the active agent; and immediately then mixing the liposome solution with a buffer solution to produce a diluted liposome solution.
- In one embodiment, liposome compositions used to practice this invention comprise a substituted ammonium and/or polyanions, e.g., for targeted delivery of a compound of the invention, as described e.g., in U.S. Pat. Pub. No. 20070110798.
- The invention also provides nanoparticles comprising compounds used to practice this invention in the form of active agent-containing nanoparticles (e.g., a secondary nanoparticle), as described, e.g., in U.S. Pat. Pub. No. 20070077286. In one embodiment, the invention provides nanoparticles comprising a fat-soluble active agent of this invention or a fat-solubilized water-soluble active agent to act with a bivalent or trivalent metal salt.
- In one embodiment, solid lipid suspensions can be used to formulate and to deliver compositions used to practice this invention to mammalian cells in vivo, in vitro or ex vivo, as described, e.g., in U.S. Pat. Pub. No. 20050136121.
- In alternative embodiments, any delivery vehicle can be used to practice the methods or used to practice this invention, e.g., to deliver compositions of the invention (which include GAS, GGS or GCS carbohydrate or protein-conjugated carbohydrate of the invention) to mammalian cells in vivo, in vitro or ex vivo. For example, delivery vehicles comprising polycations, cationic polymers and/or cationic peptides, such as polyethyleneimine derivatives, can be used e.g. as described, e.g., in U.S. Pat. Pub. No. 20060083737.
- In one embodiment, a dried polypeptide-surfactant complex is used to formulate a composition used to practice this invention, e.g. as described, e.g., in U.S. Pat. Pub. No. 20040151766.
- In one embodiment, a composition used to practice this invention can be applied to cells using vehicles with cell membrane-permeant peptide conjugates, e.g., as described in U.S. Pat. Nos. 7,306,783; 6,589,503. In one aspect, the composition to be delivered is conjugated to a cell membrane-permeant peptide. In one embodiment, the composition to be delivered and/or the delivery vehicle are conjugated to a transport-mediating peptide, e.g., as described in U.S. Pat. No. 5,846,743, describing transport-mediating peptides that are highly basic and bind to poly-phosphoinositides.
- In one embodiment, electro-permeabilization is used as a primary or adjunctive means to deliver the composition to a cell, e.g., using any electroporation system as described e.g. in U.S. Pat. Nos. 7,109,034; 6,261,815; 5,874,268.
- The vaccines, formulations, pharmaceutical compositions and formulations of the invention can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, compositions are administered to a subject already suffering from a disease, condition, infection or defect in an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of the disease, condition, infection or disease and its complications (a “therapeutically effective amount”). For example, in alternative embodiments, pharmaceutical compositions and formulations of the invention are administered to an individual in need thereof in an amount sufficient to treat, prevent, reverse and/or ameliorate an infection, e.g., a GAS, GGS or GCS infection.
- The amount of pharmaceutical composition adequate to accomplish this is defined as a “therapeutically effective dose.” The dosage schedule and amounts effective for this use, i.e., the “dosing regimen,” will depend upon a variety of factors, including the stage of the disease or condition, the severity of the disease or condition, the general state of the patient's health, the patient's physical status, age and the like. In calculating the dosage regimen for a patient, the mode of administration also is taken into consideration.
- In alternative embodiments of the methods, a vaccine of the invention is administered parentally or orally, or systemically or topically. The vaccine can be administered via a parenteral route or via a route comprising or consisting of a subcutaneous, an intramuscular, an intravenous (IV), an intradermal, an intramuscular, an intraperitoneal, an intranasal, an intradermal, a transdermal or a buccal route. The vaccine can be administered parenterally by bolus injection or by gradual perfusion over time, or the vaccine can be administered by an oral or a topical route.
- In alternative embodiments, a vaccine of the invention is administered using a vaccination regime comprising at least one second (booster) administration, or the vaccine is administered at intervals of 1 week, 2 weeks, 4 weeks (or one month), 6 weeks, 8 weeks (or two months) or one year.
- In alternative embodiments, a vaccine of the invention is administered at a daily dose of carbohydrate or protein-conjugated carbohydrate in a range of about 10 nanograms to 10 milligrams, or about 1 microgram to 10 milligrams.
- In alternative embodiments, the invention provides methods for generating a carbohydrate antigen-specific cytotoxic lymphocyte (CTL) response, and/or a CD8+ T cell response, comprising contacting naïve CTL cells or CD8+ T cells with an effective amount of one or more (at least one) carbohydrate or protein-conjugated carbohydrate of the invention; the pharmaceutical or formulation of the invention; the liposome of the invention; or the nanoparticle of the invention. In alternative embodiments, the invention provides methods for generating an antigen-specific helper T cell response, and/or a CD4+ T cell response, comprising contacting naïve helper T cells or CD4+ T cells with an effective amount of one or more (at least one) glycopeptides (glycoconjugates) of the invention; the pharmaceutical or formulation of the invention; the liposome of the invention; or the nanoparticle of the invention. In alternative embodiments, the contacting is in vitro or in vivo. In alternative embodiments, the contacting is in vivo to (in) a mammal or a human.
- The dosage regimen also takes into consideration pharmacokinetics parameters well known in the art, i.e., the active agents' rate of absorption, bioavailability, metabolism, clearance, and the like (see, e.g., Hidalgo-Aragones (1996) J. Steroid Biochem. Mol. Biol. 58:611-617; Groning (1996) Pharmazie 51:337-341; Fotherby (1996) Contraception 54:59-69; Johnson (1995) J. Pharm. Sci. 84:1144-1146; Rohatagi (1995) Pharmazie 50:610-613; Brophy (1983) Eur. J. Clin. Pharmacol. 24:103-108; the latest Remington's, supra). The state of the art allows the clinician to determine the dosage regimen for each individual patient, active agent and disease or condition treated. Guidelines provided for similar compositions used as pharmaceuticals can be used as guidance to determine the dosage regiment, i.e., dose schedule and dosage levels, administered practicing the methods of the invention are correct and appropriate.
- Single or multiple administrations of formulations can be given depending on the dosage and frequency as required and tolerated by the patient. The formulations should provide a sufficient quantity of active agent to effectively treat, prevent or ameliorate a conditions, diseases or symptoms as described herein. Dosages can be used in topical or oral administration or administering by powders, spray or inhalation. Actual methods for preparing parenterally or non-parenterally administrable formulations will be known or apparent to those skilled in the art and are described in more detail in such publications as Remington's, supra.
- The methods of the invention can further comprise co-administration with other drugs or pharmaceuticals, e.g., compositions for treating any infection, including a GAS, GGS or GCS infection, and the like. For example, the methods and/or compositions and formulations of the invention can be co-formulated with and/or co-administered with, fluids, antibiotics, cytokines, immunoregulatory agents, anti-inflammatory agents, pain alleviating compounds, complement activating agents, such as peptides or proteins comprising collagen-like domains or fibrinogen-like domains (e.g., a ficolin), carbohydrate-binding domains, and the like and combinations thereof.
- The invention provides compositions and methods for diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal. In alternative embodiments, the invention provides diagnostic tests, assays or test strips, and the like (e.g., latex agglutination assays, enzyme immunoassays, enzyme-linked immunosorbent assays (ELISAs), optical, liquid or solid phase immunoassays and the like) for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human. In alternative embodiments, the diagnostic tests, assays, test strips and the like of the invention can be rapid and/or have improved sensitivity and/or specificity to as compared to current technologies as they target a bacterial specific motif (polyrhamnose) rather than a common sugar motif (e.g., a. GlcNac or a GlcNac) present on mammalian (e.g., human) cells and mucosal secretions. Since an identical polyrhamnose backbone is shared by GAS and GCS, in alternative embodiments these rapid diagnostic tests and assays have the advantage of identifying both species lacking in current rapid diagnostic methodologies.
- In alternative embodiments, the diagnostic tests, assays, test strips and the like of the invention comprise use of one or more isolated or recombinant antibodies, polyclonal or monoclonal antibodies, or sera (e.g., hyperimmune sera) of the invention. In alternative embodiments, the antibodies or sera can specifically react against, or specifically bind to, or are specifically derived against one, two or all of: (a) a mutant GAS, GGS or GCS carbohydrate antigen, engineered to partially lack, substantially lack or completely lack an immuno-crossreactive carbohydrate side chain, (b) a mutant GAS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immuno-crossreactive GlcNac side chain; and/or (c) a mutant GCS carbohydrate antigen engineered to partially lack, substantially lack or completely lack an immunodominant GalNac-GalNac side chain.
- Any form or variation of diagnostic tests, assays, immunoassays or test strips and the like utilizing antibodies (including antigen-binding antibody fragments) or sera can be used to practice this invention. For example, a composition or a method of the invention can comprise or comprise use of a sampling device and/or a test strip, or methods, as described in e.g.: U.S. Pat. No. 8,231,549, e.g., where an on-site analyzer such as an optical analyzer and/or an electrochemical analyzer can be mounted in the device for analyzing a body fluid. For example, a composition or a method of the invention can comprise or comprise use of an assay device or test strip or a method as described in e.g.: U.S. Pat. No. 8,206,661; or an assay device allowing for the testing for multiple analytes in a liquid sample, as described in U.S. Pat. No. 8,202,487; or an analyte monitor having a sensor, a sensor control unit, and a display unit as described in U.S. Pat. No. 8,177,716; or an electrochemical test strip as described in U.S. Pat. No. 8,172,995; or an evanescent light fluoroimmunoassay, or waveguide immunosensor, as described in U.S. Pat. No. 5,512,492; or a chromatographic specific binding assay strip device for e.g., immuno gold lateral flow assays as described in U.S. Pat. No. 8,153,444; or an immunological latex turbidimetry method as described in U.S. Pat. No. 7,759,074 or 7,560,238; or an assay device as described in U.S. Pat. App. No. 20120193228; or an analyte testing device having a casing and a test strip positioner as described in U.S. Pat. App. No. 20120183442; or, a system as described in U.S. Pat. App. No. 20120181190, for correcting the measurement of an analyte in a sample, the system comprising a test strip and a meter programmed to calculate and obtain a corrected analyte concentration; or a lateral flow assay test strip as described in U.S. Pat. App. No. 20120164028; or an immunochromatographic assay as described in U.S. Pat. App. No. 20120135420; or an electronic diagnostic device for detecting the presence of an analyte in a fluid sample assay as described in U.S. Pat. App. No. 20120083044; or a magnetic immunochromatographic test strip as described in U.S. Pat. App. No. 20110117672; or an apparatus for the rapid determination of analyte in a liquid sample using immunoassays incorporating magnetic capture of beads as described in U.S. Pat. App. No. 20120034624 or 20120031773; or devices and methods for detecting analytes using chemiluminescent compounds as described in U.S. Pat. App. No. 20110318747; or apparatus and methods for assaying analytes using photoelectrochemical molecules as labels as described in U.S. Pat. App. No. 20060148102. In alternative embodiments, a variation of the Becton-
Dickinson LINK 2 STREP A RAPID TEST™, a rapid antigen detection test (RADT) for diagnosing streptococcal pharyngitis, using compositions and methods of the invention can be used. - Compositions of the invention, e.g., carbohydrate antigens, glycoconjugates, antibodies and the like, and antibody-antibody binding detection for the diagnostic methods of the invention, can be detected and/or quantified by any method known in the art, including, e.g., nuclear magnetic resonance (NMR), spectrophotometry, radiography (protein radiolabeling), electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, various immunological methods, e.g. immunoprecipitation, immunodiffusion, immuuno-electrophoresis, radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), immuno-fluorescent assays, gel electrophoresis (e.g., SDS-PAGE), staining with antibodies, fluorescent activated cell sorter (FACS), pyrolysis mass spectrometry, Fourier-Transform Infrared Spectrometry, Raman spectrometry, GC-MS, and LC-Electrospray and cap-LC-tandem-electrospray mass spectrometries, and the like.
- The invention provides magnetic molecules or particles for diagnosing a Sreptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal. In alternative embodiments, the invention provides diagnostic tests using magnetic molecules or particles for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human.
- In alternative embodiments, compositions of the invention (including vaccines and antibodies of the invention) comprise a plurality of magnetic molecules or particles. Any magnetic molecule or particle can be used. For example, in alternative embodiments, magnetic molecules or particles used to practice the invention comprise: dextran iron oxide nanoparticles; magnetically-responsive microparticles or nanoparticles as described, e.g., in U.S. Pat. No. 7,989,065, or magnetic microspheres, nanospheres, microbeads or nanobeads, as described, e.g., in U.S. Pat. No. 7,994,592; a superparamagnetic bead or polystyrene beads, as described, e.g., in U.S. Pat. No. 7,989,614, e.g., DYNABEADS™, Dynal AS (Oslo, Norway); or, superparamagnetic fine particles, as described, e.g., in U.S. Pat. Nos. 7,981,512; 7,713,627, or 7,399,523, describing spinel ferrimagnetic particles. In one embodiment, superparamagnetic particles comprising iron oxide having e.g., between about 0.1 to 10% by weight iron oxide based on the weight of the magnetic particles are used, e.g., as described in U.S. Pat. No. 5,368,933. Any device that can separate a magnetic particle or molecule from a sample can be used, e.g., as a magnetic separator as described in U.S. Pat. Nos. 7,985,340; 6,143,577; or 5,770,461.
- The invention provides gels or hydrogels for diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal. In alternative embodiments, the invention provides diagnostic tests using gels or hydrogels for detecting the presence of or diagnosing a Streptococcal infection, or a streptococcal pharyngitis (“strep throat”) in a mammal, e.g., a human.
- Any gel or hydrogel can be used; for example, in alternative embodiments, compositions of the invention comprise a hydrogel, which can be any macromolecular networks that contains a large fraction of solvent within their structure and do not dissolve, or, a colloidal gel in which water is the dispersion medium of the colloid having a mixture with properties between those of a solution and fine suspension (a colloid gel is a colloid in a more solid form than a sol). In alternative embodiments, compositions of the invention comprise a “non-responsive” hydrogel, e.g., a simple polymeric network that dramatically swells upon exposure to water, and/or a “responsive” hydrogel, e.g., a gel having added functionality and display changes in solvation in response to certain stimuli such as temperature. Any non-toxic hydrogel can be used.
- For example, in alternative embodiments, compositions of the invention comprise a hydrogel comprising: an acacia, alginic acid, sodium carboxymethylcellulose, microcrystalline cellulose, dextrin, ethylcellulose, gelatin, liquid glucose, polyvinyl pyrrolidone, carboxyvinyl polymer, methylcellulose, hydroxymethyl cellulose, low molecular weight polyethylene oxide polymers, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), gums, acrylate polymers, methacrylate polymers and/or maltodextrin and/or mixtures thereof.
- Polypeptides of the invention, including antibodies and serum, e.g., vaccine serum, and/or carbohydrates of the invention, can be immobilized to, affixed to, or applied to, an array, microarray, chip, diagnostic chip, biochip and the like to, e.g., identify the presence of, or to diagnose, a Streptococcal infection, e.g., Group A Streptococcus (GAS), Group C Streptococcus (GCS), or Group A Streptococcus (GGS), infections, or other pathogenic Streptococcus infections.
- Any form or variation of a carbohydrate or a polypeptide array, microarray, chip, diagnostic chip, biochip and the like can be used to practice this invention, e.g., as described in U.S. Pat. Nos. 7,622,273; 7,303,924; 7,223,592; 6,506,558; and/or 6,919,211.
- The invention will be further described with reference to the examples described herein; however, it is to be understood that the invention is not limited to such examples.
- This example describes exemplary methods for making and using compounds of the invention.
- We have discovered the genetic operon for assembling the GAC in GAS through bioinformatics analysis, as schematically illustrated in
FIG. 1A . We have generated a viable allelic exchange GAS mutant, called DgacH, which expresses a mutated GAC, as illustrated inFIGS. 1B , 1C and 1D. -
FIG. 1A schematically illustrates the genetic operon for assembling the GAC in GAS through bioinformatics analysis, and shows the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen. Included are proposed gene designations based on homology, designation within the sequenced GAS M1 5005 genome sequence, and length of the gene. Ultimately, we have designated the genes within the locus as gacA-gacL. Highlighted is gene, then incorrectly called gacH (correctly designated gacI in upcoming figures) because of the role we demonstrate that it plays in adding the GlcNac side chain to the polyrhamnose backbone of the antigen.FIG. 1B illustrates a PCR analysis shows absence of the gacI gene (incorrectly labeled gacH) in the knockout mutant.FIG. 1C illustrates latex agglutination for group A carbohydrate (GlcNac side chain) is no longer reactive in the GAS ΔgacI (incorrectly labeled ΔgacI) mutant, and illustrates binding of the sWGA lectin probe, specific for terminal GlcNac sugars, to the bacterial surface. This binding is lost in the ΔgacI mutant (incorrectly labeled ΔgacI). The results confirm loss of the GlcNac side chain in the mutant.FIG. 1D graphically summarizes this data. - Purification of this mutant GAC carbohydrate has been performed and glycoanalysis has unambiguously demonstrates the absence of GlcNAc side chain, as graphically illustrated in
FIG. 2 . The invention provides carbohydrate or protein-conjugated carbohydrate of this purified mutant GAC as a vaccine against GAS, GCS, GBS and/or GGS, as well as for other pathogenic streptococci bearing a polyrhamnose motifs in their cell wall carbohydrate. -
FIG. 2A illustrates a formal glycoanalysis of linkages in the WT M1 GAS carbohydrate shows rhamnose sugars and the β-1-3-linked GlcNac side chain;FIG. 2B illustrates a formal glycoanalysis of linkages in the M1 GAS ΔgacI mutant cell wall carbohydrate (incorrectly labeled ΔgacH) shows unambiguously the loss of the β-1-3-linked GlcNac side chain. -
FIG. 8 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen. Included are proposed gene designations based on homology, designation within the sequenced GAS M1 5005 genome sequence, and length of the gene. Ultimately, we have designated the genes within the locus as gacA-gacL. Highlighted is gene designated gacI because of the role we demonstrate that it plays in adding the GlcNac side chain to the polyrhamnose backbone of the antigen. -
FIG. 21 graphically illustrates data from a serum survival assay showing that the ΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum (FIG. 21A ) and 5% baby rabbit serum (FIG. 21B ), indicating the GlcNac side chain promotes GAS serum resistance. The observed differences remain after heat treatment of the serum to inactivate complement, indicating the differences are not likely to be related to complement. This was confirmed using complement-depleted serum and complement inhibitors. -
FIG. 26 schematically illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC), and a description of its association with human and equine infectious diseases. The GCC shares the same core polyrhamnose backbone as the group A streptococcal cell call carbohydrate antigen (GAC), demonstrating that the ΔgacI mutant polysaccharide can serve as a universal vaccine target (as with the vaccines of this invention) to prevent both GAS and GCS infection. -
FIG. 38 schematically illustrates the twelve-gene locus encoding the biosynthetic machinery for the group A streptococcal (GAS) cell wall carbohydrate antigen. Included are proposed gene designations based on homology, designation within the sequenced GAS M1 5005 genome sequence, and length of the gene. We have designated the genes within the locus as gacA-gacL. Highlighted is gacI because of the role we demonstrate that it plays in adding the GlcNac side chain to the polyrhamnose backbone of the antigen. -
FIG. 45 graphically illustrates that the WT parent M1 GAS strain and the isogenic ΔgacI mutant express similar levels of hyaluronic acid capsule. Animal passage increases hyaluronic acid expression in M1 GAS (by selection of covS mutants); a similar increase is seen in both the WT parent strain and the isogenic ΔgacI mutant. As listed, several other virulence phenotypes of GAS are not affected by the elimination of the GlcNac side chain in the isogenic ΔgacI mutant. -
FIGS. 49A and 49B graphically illustrate that the ΔgacI mutant survives less well than the WT parent M1 GAS strain in freshly isolated human whole blood, whereas complementation of the mutation restores WT levels of survival. The observed differences between the respective strains are still present when cytochalasin D, an actin microfilament inhibitor is added to block phagocytotic uptake of the bacterial by neutrophils and peripheral blood mononuclear cells. The results further confirm the GlcNAc side chain contributes to whole blood survival. -
FIG. 50A and 50B graphically illustrate that the ΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain in a human neutrophil opsonophagocytic killing assay, whereas complementation of the mutation restores WT levels of survival. The observed differences between the respective strains are still present when cytochalasin D, an actin microfilament inhibitor is added to block phagocytotic uptake of the bacteria by the neutrophils, indicating the GlcNac side chain promotes resistance to both total and extracellular neutrophil killing. -
FIGS. 52A and 52B graphically illustrate that the ΔgacI mutant is more rapidly killed than the WT parent M1 GAS strain in 5% normal human serum (FIG. 52A ) and 5% baby rabbit serum (FIG. 52B ), indicating the GlcNac side chain promotes GAS serum resistance. The observed differences remain after heat treatment of the serum to inactivate complement, indicating the differences are not likely to be related to complement. This was confirmed using complement-depleted serum and complement inhibitors. -
FIG. 54A graphically illustrates that the ΔgacI mutant is markedly attenuated for virulence in a rabbit model of GAS necrotizing pneumonia;FIGS. 54B and 54C illustrate images of gross examination of the lungs in a wild type and a ΔgacI mutant. Whereas 8 of 9 rabbits infected with the WT M1 GAS strain died within 1 week of infection, all animals challenged with an equivalent dose of the ΔgacI mutant survived. Gross examination of the lungs shows massive hemorrhage upon WT GAS infection which is markedly reduced in the ΔgacI mutant-infected animals upon sacrifice atday # 7. Thus, the GlcNac side chain on the group A cell wall carbohydrate antigen contributes strongly to GAS virulence. -
FIG. 55 graphically illustrates that the ΔgacI mutant is significantly attenuated for virulence in a mouse intraperitoneal model of systemic M1 GAS infection; this result further confirms that the GlcNac side chain on the group A cell wall carbohydrate antigen contributes strongly to GAS virulence. -
FIG. 56 graphically illustrates that a monoclonal antibody derived from a patient with rheumatic heart disease, a serious immune-mediate sequelae of GAS pharyngitis that causes morbidity and mortality throughout the developing world, binds to the WT GAS strain better than the ΔgacI mutant. This result confirms that the GlcNac side chain on the GAS cell wall carbohydrate may be the source of cross-reactive antibodies that contribute to the immunopathogenesis of rheumatic fever. This raises serious concerns about using the WT GAS cell wall carbohydrate as a vaccine antigen, whereas the ΔgacI mutant cell wall carbohydrate, lacking the GlcNac side-chain and containing only the non-mammalian sugar rhamnose, should have a favorable profile, and that antibodies and vaccines of the invention having specificity for only the non-mammalian sugar rhamnose also have a favorable profile, e.g., will not be cross-reactive antibodies that contribute to the immunopathogenesis of rheumatic fever. -
FIG. 58 summarizes data showing that polyclonal antisera from rabbit immunized with a protein conjugate of the GAC mutant antigen detect WT GAC and WT GAS bacteria. Polyclonal antiserum raised against the cell wall carbohydrate purified from the ΔgacI mutant (lacking the GlcNAc side chain) contains high titers of antibodies that are able to recognize both the mutant (GlcNAc-negative) and wild-type cell wall carbohydrate, as well as mutant and WT GAS bacteria, including a WT GAS bacteria of a different serotype (M49 and M1). -
FIG. 62 illustrates the structure of the Group C streptococcal cell wall carbohydrate (GCC) and provides a description of its association with human and equine infectious diseases. The GCC shares the same core polyrhamnose backbone as the group A streptococcal cell call carbohydrate antigen (GAC), demonstrating that vaccines and antibodies of the invention directed to (that specifically bind to) the ΔgacI mutant polysaccharide can serve as a universal vaccine or pharmaceutical to prevent both GAS and GCS infection. -
FIG. 63A illustrates a slide showing that if genes from the group C streptococcal operon encoding its group carbohydrate are cloned into group A Streptococcus, evidence of some GalNAc side chain incorporation into the GAS antigen can be demonstrated;FIG. 63B illustrates GalNAc side chain incorporation into the GAS antigen. These data confirm that we are examining and genetically manipulating the biosynthetic loci for both cell wall carbohydrate antigens. -
FIG. 65A schematically illustrates how GCS epimerase gccN is required for GCC side chain formation, where GalE epimerases can convert Glc to Gal, and/or GlcNAc to GalNAc, and that no GalE epimerase gccN is present in GAS; andFIG. 65B andFIG. 65C illustrate data showing that GCS epimerase gccN is required for GCC side chain formation. Knockout of the GCS gccN gene yield a ΔgccN mutant lacking the GalNAc-GalNAc side chain that can be studies in virulence and vaccine models analogous to what we have achieved in with the deletion of ΔgacI gene in GAS. - A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
Claims (22)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/237,120 US20140294930A1 (en) | 2011-08-04 | 2012-08-03 | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161515287P | 2011-08-04 | 2011-08-04 | |
| US14/237,120 US20140294930A1 (en) | 2011-08-04 | 2012-08-03 | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
| PCT/US2012/049604 WO2013020090A2 (en) | 2011-08-04 | 2012-08-03 | STREPTOCOCCAL GLcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/049604 A-371-Of-International WO2013020090A2 (en) | 2011-08-04 | 2012-08-03 | STREPTOCOCCAL GLcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/265,800 Division US10780155B2 (en) | 2011-08-04 | 2016-09-14 | Streptococcal GlcNac-lacking gylcopolypeptides, cell wall carbohydrates, Streptococcus vaccines, and methods for making and using them |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140294930A1 true US20140294930A1 (en) | 2014-10-02 |
Family
ID=47629938
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/237,120 Abandoned US20140294930A1 (en) | 2011-08-04 | 2012-08-03 | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
| US15/265,800 Active 2032-12-26 US10780155B2 (en) | 2011-08-04 | 2016-09-14 | Streptococcal GlcNac-lacking gylcopolypeptides, cell wall carbohydrates, Streptococcus vaccines, and methods for making and using them |
| US17/002,337 Active 2032-08-14 US11771751B2 (en) | 2011-08-04 | 2020-08-25 | Streptococcal GlcNAc-lacking glycopolypeptides, cell wall carbohydrates, streptococcus vaccines, and methods for making and using them |
| US18/234,742 Pending US20230398198A1 (en) | 2011-08-04 | 2023-08-16 | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/265,800 Active 2032-12-26 US10780155B2 (en) | 2011-08-04 | 2016-09-14 | Streptococcal GlcNac-lacking gylcopolypeptides, cell wall carbohydrates, Streptococcus vaccines, and methods for making and using them |
| US17/002,337 Active 2032-08-14 US11771751B2 (en) | 2011-08-04 | 2020-08-25 | Streptococcal GlcNAc-lacking glycopolypeptides, cell wall carbohydrates, streptococcus vaccines, and methods for making and using them |
| US18/234,742 Pending US20230398198A1 (en) | 2011-08-04 | 2023-08-16 | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
Country Status (2)
| Country | Link |
|---|---|
| US (4) | US20140294930A1 (en) |
| WO (1) | WO2013020090A2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200049703A1 (en) * | 2017-03-14 | 2020-02-13 | Denka Seiken Co., Ltd. | Immunochromatographic test piece for extracting and measuring sugar chain antigen, which is capable of preventing non-specific reaction |
| WO2021092417A1 (en) * | 2019-11-08 | 2021-05-14 | Marshall University Research Corporation | Vaccines and related methods for treatment of pseudomonas bacterial infections |
| US11787844B2 (en) * | 2012-02-09 | 2023-10-17 | Var2 Pharmaceuticals Aps | Targeting of chondroitin sulfate glycans |
| US12467923B2 (en) | 2019-10-04 | 2025-11-11 | Denka Company Limited | Immunochromatographic device for extracting and measuring sugar chain antigen |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140294930A1 (en) * | 2011-08-04 | 2014-10-02 | The Regents Of The University Of California | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
| CN106606775A (en) * | 2015-10-27 | 2017-05-03 | 格里菲斯大学 | liposomal group A streptococcal vaccine |
| KR20190103256A (en) | 2016-12-30 | 2019-09-04 | 수트로박스, 인코포레이티드 | Polypeptide-antigen conjugates with unnatural amino acids |
| US11951165B2 (en) | 2016-12-30 | 2024-04-09 | Vaxcyte, Inc. | Conjugated vaccine carrier proteins |
| IL280880B2 (en) | 2018-08-27 | 2025-04-01 | Regeneron Pharma | Use of raman spectroscopy in downstream purification |
| MX2021012120A (en) | 2019-04-02 | 2021-11-03 | Vaxcyte Inc | Optimized cell-free synthesis of invasion plasmid antigen b and related compositions and methods of use. |
| WO2021167996A1 (en) | 2020-02-18 | 2021-08-26 | Vaxcyte, Inc. | Group a strep immunogenic compositions with polysaccharide-protein conjugates |
| WO2021252810A1 (en) | 2020-06-10 | 2021-12-16 | Checkable Medical Incorporated | In vitro diagnostic device |
| AU2021329889A1 (en) | 2020-08-19 | 2023-04-20 | Vaxcyte, Inc. | Carrier-protein polysaccharide conjugation methods |
| KR20230146620A (en) * | 2021-02-17 | 2023-10-19 | 박사이트, 인코포레이티드 | Methods for purifying polysaccharides and polypeptide conjugates thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5866135A (en) * | 1994-04-21 | 1999-02-02 | North American Vaccine, Inc. | Group A streptococcal polysaccharide immunogenic compositions and methods |
| US20070207454A1 (en) * | 2001-12-06 | 2007-09-06 | Rockefeller University, The | Novel method to identify targets for antibiotic development |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU714435B2 (en) * | 1994-09-14 | 2000-01-06 | Baylor College Of Medicine | Methods and compositions for identifying streptococcus containing a cysteine protease or fragment thereof |
| US5866134A (en) * | 1995-03-24 | 1999-02-02 | Schering Corporation | Method for enhancing the antibody response to specific antigens with Interleukin-10 |
| JP2001510031A (en) * | 1997-07-21 | 2001-07-31 | ノース・アメリカン・ヴァクシン・インコーポレーテッド | Modified immunogenic pneumolysin compositions as vaccines |
| US6248329B1 (en) * | 1998-06-01 | 2001-06-19 | Ramaswamy Chandrashekar | Parasitic helminth cuticlin nucleic acid molecules and uses thereof |
| US20140294930A1 (en) * | 2011-08-04 | 2014-10-02 | The Regents Of The University Of California | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM |
-
2012
- 2012-08-03 US US14/237,120 patent/US20140294930A1/en not_active Abandoned
- 2012-08-03 WO PCT/US2012/049604 patent/WO2013020090A2/en not_active Ceased
-
2016
- 2016-09-14 US US15/265,800 patent/US10780155B2/en active Active
-
2020
- 2020-08-25 US US17/002,337 patent/US11771751B2/en active Active
-
2023
- 2023-08-16 US US18/234,742 patent/US20230398198A1/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5866135A (en) * | 1994-04-21 | 1999-02-02 | North American Vaccine, Inc. | Group A streptococcal polysaccharide immunogenic compositions and methods |
| US20070207454A1 (en) * | 2001-12-06 | 2007-09-06 | Rockefeller University, The | Novel method to identify targets for antibiotic development |
Non-Patent Citations (6)
| Title |
|---|
| Ayoub et al , The Journal of Experimental Medicine, 138:117-129, 1973 * |
| Coligan et al (J. Immunol, 114:1654-1658, 1975) * |
| McCarty (Journal of Experimental Medicine, pages 62-643, Published November 1, 1956 * |
| McNeil et al (Clinical Infectious Diseases 41:1114-22, 2005) * |
| Osterland et al (J. Exp. Med., 123(4):599-614, 1966) * |
| Salvadori et al (The Journal of Infectious Diseases, 171:593-600, 1995) * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11787844B2 (en) * | 2012-02-09 | 2023-10-17 | Var2 Pharmaceuticals Aps | Targeting of chondroitin sulfate glycans |
| US20200049703A1 (en) * | 2017-03-14 | 2020-02-13 | Denka Seiken Co., Ltd. | Immunochromatographic test piece for extracting and measuring sugar chain antigen, which is capable of preventing non-specific reaction |
| US12013394B2 (en) * | 2017-03-14 | 2024-06-18 | Denka Company Limited | Immunochromatographic test piece for extracting and measuring sugar chain antigen, which is capable of preventing non-specific reaction |
| US12467923B2 (en) | 2019-10-04 | 2025-11-11 | Denka Company Limited | Immunochromatographic device for extracting and measuring sugar chain antigen |
| WO2021092417A1 (en) * | 2019-11-08 | 2021-05-14 | Marshall University Research Corporation | Vaccines and related methods for treatment of pseudomonas bacterial infections |
Also Published As
| Publication number | Publication date |
|---|---|
| US10780155B2 (en) | 2020-09-22 |
| US20230398198A1 (en) | 2023-12-14 |
| WO2013020090A3 (en) | 2013-07-11 |
| WO2013020090A2 (en) | 2013-02-07 |
| US20210170012A1 (en) | 2021-06-10 |
| US20170196962A1 (en) | 2017-07-13 |
| US11771751B2 (en) | 2023-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230398198A1 (en) | STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM | |
| EP2448592B1 (en) | Vaccines and compositions against streptococcus pneumoniae | |
| Emmadi et al. | A Streptococcus pneumoniae type 2 oligosaccharide glycoconjugate elicits opsonic antibodies and is protective in an animal model of invasive pneumococcal disease | |
| EP2665490B1 (en) | Vaccines and compositions against streptococcus pneumoniae | |
| van der Put et al. | The first-in-human synthetic glycan-based conjugate vaccine candidate against Shigella | |
| Wang et al. | Vaccines in the treatment of invasive candidiasis | |
| JP2019506412A (en) | Novel anti-LAM and anti-PIM6 / LAM monoclonal antibodies for diagnosis and treatment of Mycobacterium tuberculosis infection | |
| Bundle et al. | Design of a Candida albicans disaccharide conjugate vaccine by reverse engineering a protective monoclonal antibody | |
| KR20220011796A (en) | Neisseria meningitidis compositions and methods thereof | |
| Khatun et al. | Immunogenicity assessment of cell wall carbohydrates of Group A Streptococcus via self-adjuvanted glyco-lipopeptides | |
| KR101795524B1 (en) | Vaccine for mycoplasma infection | |
| US20090162369A1 (en) | Synthetic chimeric peptides | |
| US20140341895A1 (en) | PSEUDOMONAS AERUGINOSA OprM EPITOPES FOR USE IN DIAGNOSTICS AND THERAPEUTICS | |
| WO2011112983A2 (en) | Psrp is a protective antigen against pneumococcal infection | |
| Kassab | Development of lipid nanoparticles (LNP)-RNA vaccine against Streptococcus pneumoniae gene cluster facilitating the synthesis of the capsular polysaccharide in Egypt. | |
| EP1791967B1 (en) | Methods and compositions relating to mannuronic acid specific binding peptides | |
| RU2780425C2 (en) | Neisseria meningitidis compositions and methods | |
| WO2023192997A2 (en) | Immunogenic compositions for b-cell recall response to a polysaccharide antigen | |
| EA014065B1 (en) | Agent exhibiting properties to form the cellular immunity against mycobacterium tuberculosis h37 rv, method for the production thereof (variants), a recombinant strain and an agent for tuberculosis diagnosis | |
| HK1172254A (en) | Vaccines and compositions against streptococcus pneumoniae | |
| BR122024023874A2 (en) | COMPOSITIONS OF NEISSERIA MENINGITIDIS AND METHODS THEREOF | |
| BR112016019341B1 (en) | COMPOSITION, USE OF THE COMPOSITION, PROKARYOTIC HOST CELL RECOMBINANTLY MODIFIED BY GENETIC ENGINEERING, AND METHOD FOR PRODUCING AN N-GLYCOSYLATED CARRIER PROTEIN |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF CALIFORNIA SAN DIEGO;REEL/FRAME:032365/0373 Effective date: 20140304 |
|
| AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIZET, VICTOR;VAN SORGE, NINA;REEL/FRAME:036293/0655 Effective date: 20110824 Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIZET, VICTOR;VAN SORGE, NINA;REEL/FRAME:036293/0661 Effective date: 20110824 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |