US20140286934A1 - Humanized antibodies that bind to cd19 and their uses - Google Patents
Humanized antibodies that bind to cd19 and their uses Download PDFInfo
- Publication number
- US20140286934A1 US20140286934A1 US14/168,927 US201414168927A US2014286934A1 US 20140286934 A1 US20140286934 A1 US 20140286934A1 US 201414168927 A US201414168927 A US 201414168927A US 2014286934 A1 US2014286934 A1 US 2014286934A1
- Authority
- US
- United States
- Prior art keywords
- seq
- amino acid
- antibody
- human
- acid sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 259
- 239000012634 fragment Substances 0.000 claims abstract description 183
- 101100383038 Homo sapiens CD19 gene Proteins 0.000 claims abstract description 134
- 241000282414 Homo sapiens Species 0.000 claims description 262
- 210000004027 cell Anatomy 0.000 claims description 251
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 88
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 73
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 72
- 238000000034 method Methods 0.000 claims description 66
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 56
- 210000004881 tumor cell Anatomy 0.000 claims description 55
- 150000007523 nucleic acids Chemical class 0.000 claims description 53
- 206010028980 Neoplasm Diseases 0.000 claims description 44
- 239000013598 vector Substances 0.000 claims description 43
- 102000039446 nucleic acids Human genes 0.000 claims description 41
- 108020004707 nucleic acids Proteins 0.000 claims description 41
- 230000001404 mediated effect Effects 0.000 claims description 40
- 208000035475 disorder Diseases 0.000 claims description 31
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 17
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 17
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 16
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 16
- 201000011510 cancer Diseases 0.000 claims description 14
- 208000003950 B-cell lymphoma Diseases 0.000 claims description 13
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 13
- 244000005700 microbiome Species 0.000 claims description 12
- 208000011691 Burkitt lymphomas Diseases 0.000 claims description 10
- 206010025323 Lymphomas Diseases 0.000 claims description 9
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 9
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 8
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 7
- 201000009277 hairy cell leukemia Diseases 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 7
- 201000000596 systemic lupus erythematosus Diseases 0.000 claims description 7
- 208000009746 Adult T-Cell Leukemia-Lymphoma Diseases 0.000 claims description 6
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 claims description 6
- 208000002971 Immunoblastic Lymphadenopathy Diseases 0.000 claims description 6
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 claims description 6
- 208000034578 Multiple myelomas Diseases 0.000 claims description 6
- 206010042971 T-cell lymphoma Diseases 0.000 claims description 6
- 206010002449 angioimmunoblastic T-cell lymphoma Diseases 0.000 claims description 6
- 230000004614 tumor growth Effects 0.000 claims description 6
- 208000023275 Autoimmune disease Diseases 0.000 claims description 5
- 208000004736 B-Cell Leukemia Diseases 0.000 claims description 5
- 230000000779 depleting effect Effects 0.000 claims description 5
- 208000032839 leukemia Diseases 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 4
- 201000009030 Carcinoma Diseases 0.000 claims description 3
- 208000005024 Castleman disease Diseases 0.000 claims description 3
- 201000009051 Embryonal Carcinoma Diseases 0.000 claims description 3
- 206010053574 Immunoblastic lymphoma Diseases 0.000 claims description 3
- 208000007766 Kaposi sarcoma Diseases 0.000 claims description 3
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 claims description 3
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 claims description 3
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 claims description 3
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 claims description 3
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 claims description 3
- 201000011176 T-cell adult acute lymphocytic leukemia Diseases 0.000 claims description 3
- 208000000389 T-cell leukemia Diseases 0.000 claims description 3
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 claims description 3
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 claims description 3
- 206010042987 T-cell type acute leukaemia Diseases 0.000 claims description 3
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 claims description 3
- 201000006966 adult T-cell leukemia Diseases 0.000 claims description 3
- 201000003444 follicular lymphoma Diseases 0.000 claims description 3
- 230000012010 growth Effects 0.000 claims description 3
- 208000014761 nasopharyngeal type undifferentiated carcinoma Diseases 0.000 claims description 3
- 210000001989 nasopharynx Anatomy 0.000 claims description 3
- 230000000381 tumorigenic effect Effects 0.000 claims description 3
- 231100000588 tumorigenic Toxicity 0.000 claims description 2
- 102220472894 Receptor-type tyrosine-protein phosphatase beta_R94K_mutation Human genes 0.000 description 150
- 235000001014 amino acid Nutrition 0.000 description 142
- 102220465450 Angiogenin_N92A_mutation Human genes 0.000 description 135
- 102200151426 rs5196 Human genes 0.000 description 128
- 102220580964 Induced myeloid leukemia cell differentiation protein Mcl-1_P44Y_mutation Human genes 0.000 description 126
- 230000027455 binding Effects 0.000 description 99
- 108090000623 proteins and genes Proteins 0.000 description 90
- 229940024606 amino acid Drugs 0.000 description 71
- 150000001413 amino acids Chemical class 0.000 description 70
- 238000006467 substitution reaction Methods 0.000 description 64
- 230000004048 modification Effects 0.000 description 60
- 238000012986 modification Methods 0.000 description 60
- 230000002441 reversible effect Effects 0.000 description 54
- 210000004602 germ cell Anatomy 0.000 description 47
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 description 45
- 241001529936 Murinae Species 0.000 description 44
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 43
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 39
- 239000000203 mixture Substances 0.000 description 38
- 238000011282 treatment Methods 0.000 description 38
- 108060003951 Immunoglobulin Proteins 0.000 description 34
- 102000018358 immunoglobulin Human genes 0.000 description 34
- 239000013604 expression vector Substances 0.000 description 33
- 230000014509 gene expression Effects 0.000 description 33
- 239000000047 product Substances 0.000 description 30
- 102000004169 proteins and genes Human genes 0.000 description 30
- 239000000370 acceptor Substances 0.000 description 29
- 239000003814 drug Substances 0.000 description 28
- 239000012636 effector Substances 0.000 description 28
- 102220490832 Mannosyl-oligosaccharide glucosidase_Y32F_mutation Human genes 0.000 description 27
- 210000004369 blood Anatomy 0.000 description 27
- 239000008280 blood Substances 0.000 description 27
- 238000010186 staining Methods 0.000 description 27
- 230000035772 mutation Effects 0.000 description 26
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 25
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 25
- 201000010099 disease Diseases 0.000 description 25
- 235000018102 proteins Nutrition 0.000 description 25
- 108020004414 DNA Proteins 0.000 description 24
- 239000000427 antigen Substances 0.000 description 24
- 108091007433 antigens Proteins 0.000 description 24
- 102000036639 antigens Human genes 0.000 description 24
- 238000003556 assay Methods 0.000 description 24
- 241000699670 Mus sp. Species 0.000 description 22
- 239000012091 fetal bovine serum Substances 0.000 description 22
- 230000006870 function Effects 0.000 description 22
- 108020004635 Complementary DNA Proteins 0.000 description 21
- 230000009089 cytolysis Effects 0.000 description 21
- 230000000295 complement effect Effects 0.000 description 20
- 238000001890 transfection Methods 0.000 description 20
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 19
- 230000000694 effects Effects 0.000 description 19
- 238000010804 cDNA synthesis Methods 0.000 description 18
- 239000002299 complementary DNA Substances 0.000 description 18
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 18
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 17
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 17
- 238000000684 flow cytometry Methods 0.000 description 17
- 239000002609 medium Substances 0.000 description 17
- 125000000539 amino acid group Chemical group 0.000 description 16
- 229940127121 immunoconjugate Drugs 0.000 description 15
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 15
- 108090000765 processed proteins & peptides Proteins 0.000 description 15
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 14
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 14
- -1 amino amino Chemical group 0.000 description 14
- 150000001720 carbohydrates Chemical group 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 14
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 14
- 239000001963 growth medium Substances 0.000 description 14
- 230000001976 improved effect Effects 0.000 description 14
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 14
- 230000010474 transient expression Effects 0.000 description 14
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 13
- 239000012980 RPMI-1640 medium Substances 0.000 description 13
- 210000000952 spleen Anatomy 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- 108090000672 Annexin A5 Proteins 0.000 description 12
- 102000004121 Annexin A5 Human genes 0.000 description 12
- 102220641319 Leukotriene C4 synthase_Y97F_mutation Human genes 0.000 description 12
- 238000013459 approach Methods 0.000 description 12
- 229940079593 drug Drugs 0.000 description 12
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 12
- 229920001184 polypeptide Polymers 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 231100000599 cytotoxic agent Toxicity 0.000 description 11
- 230000004927 fusion Effects 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- 229940124597 therapeutic agent Drugs 0.000 description 11
- 230000001052 transient effect Effects 0.000 description 11
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 10
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 10
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 10
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 230000002269 spontaneous effect Effects 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 229930182555 Penicillin Natural products 0.000 description 9
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 9
- 229920002873 Polyethylenimine Polymers 0.000 description 9
- 108091027967 Small hairpin RNA Proteins 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 229940049954 penicillin Drugs 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 229960005322 streptomycin Drugs 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 241000124008 Mammalia Species 0.000 description 8
- 238000011579 SCID mouse model Methods 0.000 description 8
- 230000003013 cytotoxicity Effects 0.000 description 8
- 231100000135 cytotoxicity Toxicity 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 230000003211 malignant effect Effects 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 7
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 7
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 230000006907 apoptotic process Effects 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 230000004663 cell proliferation Effects 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 239000002619 cytotoxin Substances 0.000 description 7
- 229940022353 herceptin Drugs 0.000 description 7
- 238000000099 in vitro assay Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229950010131 puromycin Drugs 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 102220580972 Induced myeloid leukemia cell differentiation protein Mcl-1_P44V_mutation Human genes 0.000 description 6
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 239000012148 binding buffer Substances 0.000 description 6
- 230000006240 deamidation Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 230000001900 immune effect Effects 0.000 description 6
- 230000005847 immunogenicity Effects 0.000 description 6
- 230000006882 induction of apoptosis Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 150000002482 oligosaccharides Chemical class 0.000 description 6
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 6
- 102200090720 rs137852501 Human genes 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 102000003886 Glycoproteins Human genes 0.000 description 5
- 108090000288 Glycoproteins Proteins 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- 230000001640 apoptogenic effect Effects 0.000 description 5
- 239000006143 cell culture medium Substances 0.000 description 5
- 230000030833 cell death Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 229940072221 immunoglobulins Drugs 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 229920001542 oligosaccharide Polymers 0.000 description 5
- 238000000159 protein binding assay Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 108010062427 GDP-mannose 4,6-dehydratase Proteins 0.000 description 4
- 102000002312 GDPmannose 4,6-dehydratase Human genes 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 4
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 108010084592 Saporins Proteins 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 235000009582 asparagine Nutrition 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 102200026575 c.124G>A Human genes 0.000 description 4
- 102220367300 c.201C>G Human genes 0.000 description 4
- 102220349284 c.287A>T Human genes 0.000 description 4
- 102220417854 c.293A>T Human genes 0.000 description 4
- 239000002254 cytotoxic agent Substances 0.000 description 4
- 238000002784 cytotoxicity assay Methods 0.000 description 4
- 231100000263 cytotoxicity test Toxicity 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 4
- 230000033581 fucosylation Effects 0.000 description 4
- 101150023212 fut8 gene Proteins 0.000 description 4
- 238000003197 gene knockdown Methods 0.000 description 4
- 238000009169 immunotherapy Methods 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 229960000310 isoleucine Drugs 0.000 description 4
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 238000011275 oncology therapy Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 102200101935 rs72554344 Human genes 0.000 description 4
- 102200067034 rs80356913 Human genes 0.000 description 4
- 239000012679 serum free medium Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 239000004474 valine Substances 0.000 description 4
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 3
- 206010069754 Acquired gene mutation Diseases 0.000 description 3
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 241000208199 Buxus sempervirens Species 0.000 description 3
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 3
- 101710112752 Cytotoxin Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 108010092160 Dactinomycin Proteins 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010087819 Fc receptors Proteins 0.000 description 3
- 102000009109 Fc receptors Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 3
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 3
- 239000012124 Opti-MEM Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102220583361 Protein fem-1 homolog B_Y87F_mutation Human genes 0.000 description 3
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 3
- 241000219061 Rheum Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 206010003246 arthritis Diseases 0.000 description 3
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 108010006025 bovine growth hormone Proteins 0.000 description 3
- 238000000423 cell based assay Methods 0.000 description 3
- 230000005889 cellular cytotoxicity Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 102000004419 dihydrofolate reductase Human genes 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000012997 ficoll-paque Substances 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 208000024908 graft versus host disease Diseases 0.000 description 3
- 239000003018 immunosuppressive agent Substances 0.000 description 3
- 230000002637 immunotoxin Effects 0.000 description 3
- 229940051026 immunotoxin Drugs 0.000 description 3
- 239000002596 immunotoxin Substances 0.000 description 3
- 231100000608 immunotoxin Toxicity 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 239000012139 lysis buffer Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 239000011325 microbead Substances 0.000 description 3
- 238000001823 molecular biology technique Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 210000004180 plasmocyte Anatomy 0.000 description 3
- 229920001983 poloxamer Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 229940051022 radioimmunoconjugate Drugs 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000013207 serial dilution Methods 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 230000037439 somatic mutation Effects 0.000 description 3
- 238000012409 standard PCR amplification Methods 0.000 description 3
- 238000012289 standard assay Methods 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 238000002689 xenotransplantation Methods 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000037914 B-cell disorder Diseases 0.000 description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 102000005600 Cathepsins Human genes 0.000 description 2
- 108010084457 Cathepsins Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 231100000491 EC50 Toxicity 0.000 description 2
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 201000003542 Factor VIII deficiency Diseases 0.000 description 2
- 208000001640 Fibromyalgia Diseases 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 102100036263 Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 2
- 101000920667 Homo sapiens Epithelial cell adhesion molecule Proteins 0.000 description 2
- 101001001786 Homo sapiens Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Proteins 0.000 description 2
- 101001037138 Homo sapiens Immunoglobulin heavy variable 3-11 Proteins 0.000 description 2
- 101001037139 Homo sapiens Immunoglobulin heavy variable 3-30 Proteins 0.000 description 2
- 101001037143 Homo sapiens Immunoglobulin heavy variable 3-33 Proteins 0.000 description 2
- 101000839662 Homo sapiens Immunoglobulin heavy variable 3-48 Proteins 0.000 description 2
- 101001138128 Homo sapiens Immunoglobulin kappa variable 1-12 Proteins 0.000 description 2
- 101001138123 Homo sapiens Immunoglobulin kappa variable 1-27 Proteins 0.000 description 2
- 101001138089 Homo sapiens Immunoglobulin kappa variable 1-39 Proteins 0.000 description 2
- 101001138133 Homo sapiens Immunoglobulin kappa variable 1-5 Proteins 0.000 description 2
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 2
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 2
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 2
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 102100040222 Immunoglobulin heavy variable 3-11 Human genes 0.000 description 2
- 102100040219 Immunoglobulin heavy variable 3-30 Human genes 0.000 description 2
- 102100040236 Immunoglobulin heavy variable 3-33 Human genes 0.000 description 2
- 102100028320 Immunoglobulin heavy variable 3-48 Human genes 0.000 description 2
- 102100020773 Immunoglobulin kappa variable 1-12 Human genes 0.000 description 2
- 102100020902 Immunoglobulin kappa variable 1-27 Human genes 0.000 description 2
- 102100020910 Immunoglobulin kappa variable 1-39 Human genes 0.000 description 2
- 102100020769 Immunoglobulin kappa variable 1-5 Human genes 0.000 description 2
- 102000000589 Interleukin-1 Human genes 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 102220641311 Leukotriene C4 synthase_Y59F_mutation Human genes 0.000 description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 206010034277 Pemphigoid Diseases 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010039491 Ricin Proteins 0.000 description 2
- 241000607720 Serratia Species 0.000 description 2
- 241000256251 Spodoptera frugiperda Species 0.000 description 2
- 102220615724 Superoxide dismutase [Mn], mitochondrial_Y58F_mutation Human genes 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 2
- VGQOVCHZGQWAOI-UHFFFAOYSA-N UNPD55612 Natural products N1C(O)C2CC(C=CC(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-UHFFFAOYSA-N 0.000 description 2
- 206010047115 Vasculitis Diseases 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 101150063416 add gene Proteins 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 101150073130 ampR gene Proteins 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- VGQOVCHZGQWAOI-HYUHUPJXSA-N anthramycin Chemical compound N1[C@@H](O)[C@@H]2CC(\C=C\C(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-HYUHUPJXSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 230000005888 antibody-dependent cellular phagocytosis Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 2
- 239000008228 bacteriostatic water for injection Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229930195731 calicheamicin Natural products 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000009643 clonogenic assay Methods 0.000 description 2
- 231100000096 clonogenic assay Toxicity 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000011443 conventional therapy Methods 0.000 description 2
- 201000003278 cryoglobulinemia Diseases 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 2
- 201000001981 dermatomyositis Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 229960001484 edetic acid Drugs 0.000 description 2
- 230000000547 effect on apoptosis Effects 0.000 description 2
- 239000012893 effector ligand Substances 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 2
- 229960003444 immunosuppressant agent Drugs 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 206010025135 lupus erythematosus Diseases 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000003519 mature b lymphocyte Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 229950006780 n-acetylglucosamine Drugs 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 208000033808 peripheral neuropathy Diseases 0.000 description 2
- 230000008782 phagocytosis Effects 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 231100000336 radiotoxic Toxicity 0.000 description 2
- 230000001690 radiotoxic effect Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229960004641 rituximab Drugs 0.000 description 2
- 102200155793 rs121918037 Human genes 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000013391 scatchard analysis Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000003146 transient transfection Methods 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- KAWIOCMUARENDQ-UHFFFAOYSA-N 2-(4-chlorophenyl)sulfanyl-n-(4-pyridin-2-yl-1,3-thiazol-2-yl)acetamide Chemical compound C1=CC(Cl)=CC=C1SCC(=O)NC1=NC(C=2N=CC=CC=2)=CS1 KAWIOCMUARENDQ-UHFFFAOYSA-N 0.000 description 1
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 241000256111 Aedes <genus> Species 0.000 description 1
- 241000256173 Aedes albopictus Species 0.000 description 1
- 108010011170 Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000032671 Allergic granulomatous angiitis Diseases 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 206010064539 Autoimmune myocarditis Diseases 0.000 description 1
- 206010055128 Autoimmune neutropenia Diseases 0.000 description 1
- 206010050245 Autoimmune thrombocytopenia Diseases 0.000 description 1
- 208000025324 B-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 102100025218 B-cell differentiation antigen CD72 Human genes 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000409811 Bombyx mori nucleopolyhedrovirus Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 229940124292 CD20 monoclonal antibody Drugs 0.000 description 1
- 102100027221 CD81 antigen Human genes 0.000 description 1
- 102100027217 CD82 antigen Human genes 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 201000002829 CREST Syndrome Diseases 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 description 1
- 208000006344 Churg-Strauss Syndrome Diseases 0.000 description 1
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000011038 Cold agglutinin disease Diseases 0.000 description 1
- 206010009868 Cold type haemolytic anaemia Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 102100032768 Complement receptor type 2 Human genes 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 208000019707 Cryoglobulinemic vasculitis Diseases 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 206010012468 Dermatitis herpetiformis Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- MBYXEBXZARTUSS-QLWBXOBMSA-N Emetamine Natural products O(C)c1c(OC)cc2c(c(C[C@@H]3[C@H](CC)CN4[C@H](c5c(cc(OC)c(OC)c5)CC4)C3)ncc2)c1 MBYXEBXZARTUSS-QLWBXOBMSA-N 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 208000018428 Eosinophilic granulomatosis with polyangiitis Diseases 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010040476 FITC-annexin A5 Proteins 0.000 description 1
- 108010039471 Fas Ligand Protein Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 101150074355 GS gene Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000007465 Giant cell arteritis Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 208000024869 Goodpasture syndrome Diseases 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 102100030595 HLA class II histocompatibility antigen gamma chain Human genes 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 101000934359 Homo sapiens B-cell differentiation antigen CD72 Proteins 0.000 description 1
- 101000914479 Homo sapiens CD81 antigen Proteins 0.000 description 1
- 101000914469 Homo sapiens CD82 antigen Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101000941929 Homo sapiens Complement receptor type 2 Proteins 0.000 description 1
- 101001082627 Homo sapiens HLA class II histocompatibility antigen gamma chain Proteins 0.000 description 1
- 101000840258 Homo sapiens Immunoglobulin J chain Proteins 0.000 description 1
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 1
- 101000984196 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 5 Proteins 0.000 description 1
- 101000984190 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 1 Proteins 0.000 description 1
- 101000980823 Homo sapiens Leukocyte surface antigen CD53 Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000904196 Homo sapiens Pancreatic secretory granule membrane major glycoprotein GP2 Proteins 0.000 description 1
- 101000633778 Homo sapiens SLAM family member 5 Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 1
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 1
- 102000009490 IgG Receptors Human genes 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- 208000028622 Immune thrombocytopenia Diseases 0.000 description 1
- 102100029571 Immunoglobulin J chain Human genes 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- 208000011200 Kawasaki disease Diseases 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 244000285963 Kluyveromyces fragilis Species 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000282838 Lama Species 0.000 description 1
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 1
- 102100025584 Leukocyte immunoglobulin-like receptor subfamily B member 1 Human genes 0.000 description 1
- 102100024221 Leukocyte surface antigen CD53 Human genes 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 208000027530 Meniere disease Diseases 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010053854 Opsoclonus myoclonus Diseases 0.000 description 1
- 208000005225 Opsoclonus-Myoclonus Syndrome Diseases 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 102100024019 Pancreatic secretory granule membrane major glycoprotein GP2 Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 201000011152 Pemphigus Diseases 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 231100000742 Plant toxin Toxicity 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 101100384800 Prunus dulcis Cgamma1 gene Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 101001052085 Rattus norvegicus Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 208000033464 Reiter syndrome Diseases 0.000 description 1
- 108090000829 Ribosome Inactivating Proteins Proteins 0.000 description 1
- AUVVAXYIELKVAI-UHFFFAOYSA-N SJ000285215 Natural products N1CCC2=CC(OC)=C(OC)C=C2C1CC1CC2C3=CC(OC)=C(OC)C=C3CCN2CC1CC AUVVAXYIELKVAI-UHFFFAOYSA-N 0.000 description 1
- 102100029216 SLAM family member 5 Human genes 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000311088 Schwanniomyces Species 0.000 description 1
- 241001123650 Schwanniomyces occidentalis Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 201000004283 Shwachman-Diamond syndrome Diseases 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 206010072148 Stiff-Person syndrome Diseases 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 208000001106 Takayasu Arteritis Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 206010043561 Thrombocytopenic purpura Diseases 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010047112 Vasculitides Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000003349 alamar blue assay Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 102000012086 alpha-L-Fucosidase Human genes 0.000 description 1
- 108010061314 alpha-L-Fucosidase Proteins 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000003388 anti-hormonal effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000011091 antibody purification Methods 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 230000009925 apoptotic mechanism Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000007845 assembly PCR Methods 0.000 description 1
- 208000006424 autoimmune oophoritis Diseases 0.000 description 1
- 208000036923 autoimmune primary adrenal insufficiency Diseases 0.000 description 1
- 208000029407 autoimmune urticaria Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 238000005460 biophysical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- RSIHSRDYCUFFLA-DYKIIFRCSA-N boldenone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 RSIHSRDYCUFFLA-DYKIIFRCSA-N 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 208000000594 bullous pemphigoid Diseases 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000012410 cDNA cloning technique Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- NDAYQJDHGXTBJL-MWWSRJDJSA-N chembl557217 Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 NDAYQJDHGXTBJL-MWWSRJDJSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 201000005795 chronic inflammatory demyelinating polyneuritis Diseases 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000024376 chronic urticaria Diseases 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- 238000007822 cytometric assay Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- RSIHSRDYCUFFLA-UHFFFAOYSA-N dehydrotestosterone Natural products O=C1C=CC2(C)C3CCC(C)(C(CC4)O)C4C3CCC2=C1 RSIHSRDYCUFFLA-UHFFFAOYSA-N 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000012137 double-staining Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229930184221 duocarmycin Natural products 0.000 description 1
- 229960005501 duocarmycin Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- AUVVAXYIELKVAI-CKBKHPSWSA-N emetine Chemical compound N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@@H]1CC AUVVAXYIELKVAI-CKBKHPSWSA-N 0.000 description 1
- 229960002694 emetine Drugs 0.000 description 1
- AUVVAXYIELKVAI-UWBTVBNJSA-N emetine Natural products N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@H]1CC AUVVAXYIELKVAI-UWBTVBNJSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 1
- 210000003297 immature b lymphocyte Anatomy 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 201000008350 membranous glomerulonephritis Diseases 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002625 monoclonal antibody therapy Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 230000021766 negative regulation of B cell proliferation Effects 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 208000008795 neuromyelitis optica Diseases 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 201000005737 orchitis Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 201000001976 pemphigus vulgaris Diseases 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000003123 plant toxin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007420 radioactive assay Methods 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 231100001258 radiotoxin Toxicity 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940100996 sodium bisulfate Drugs 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000012414 sterilization procedure Methods 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 206010043207 temporal arteritis Diseases 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229960005267 tositumomab Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229960001005 tuberculin Drugs 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 238000013060 ultrafiltration and diafiltration Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3061—Blood cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/40—Immunoglobulins specific features characterized by post-translational modification
- C07K2317/41—Glycosylation, sialylation, or fucosylation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/72—Increased effector function due to an Fc-modification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/734—Complement-dependent cytotoxicity [CDC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/77—Internalization into the cell
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates to humanized antibodies or fragments thereof that bind to human CD19. More specifically, the present invention relates to a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- B cell surface markers have been generally suggested as targets for the treatment of B cell disorders or diseases, autoimmune disease, and transplantation rejection.
- B cell surface markers include CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD53, CD72, CD74, CD75, CD77, CD79a, CD79b, CD80, CD81, CD82, CD83, CD84, CD85, and CD86 leukocyte surface markers.
- Antibodies that specifically bind certain of these markers have been developed, and some have been tested for the treatment of diseases and disorders.
- chimeric or radiolabeled monoclonal antibody (mAb)-based therapies directed against the CD20 cell surface molecule specific for mature B cells and their malignant counterparts have been shown to be an effective in vivo treatment for non-Hodgkin's lymphoma (Tedder et al, Immunol. Today 15:450-454 (1994); Press et al, Hematology, 221-240 (2001); Kaminski et al, N. Engl. J. Med., 329:459-465 (1993); Weiner, Semin.
- Anti-CD20 monoclonal antibody therapy has also been found to ameliorate the manifestations of rheumatoid arthritis, systemic lupus erythematosus, idiopathic thrombocytopenic purpura and hemolytic anemia, as well as other immune-mediated diseases (Silverman et al, Arthritis Rheum., 48:1484-1492 (2002); Edwards et al, Rheumatology, 40:1-7 (2001); De Vita et al, Arthritis Rheumatism, 46:2029-2033 (2002); Leandro et al, Ann. Rheum.
- the anti-CD22 monoclonal antibody LL-2 was shown to be effective in treating aggressive and relapsed lymphoma patients undergoing chemotherapeutic treatment (Goldenberg U.S. Pat. Nos. 6,134,982 and 6,306,393).
- the anti-CD20 (IgG1) antibody, RITUXANTM has successfully been used in the treatment of certain diseases such as adult immune thrombocytopenic purpura, rheumatoid arthritis, and autoimmune hemolytic anemia (Cured et al, WO 00/67796).
- ALL acute lymphoblastic leukemias
- B cell malignancies typically do not express CD20, express CD20 at low levels, or have lost CD20 expression following CD20 immunotherapy (Smith et al, Oncogene, 22:7359-7368 (2003)).
- CD20 is not predictive of response to anti-CD20 therapy as only half of non-Hodgkin's lymphoma patients respond to CD20-directed immunotherapy.
- the human CD 19 molecule is a structurally distinct cell surface receptor expressed on the surface of human B cells, including, but not limited to, pre-B cells, B cells in early development ⁇ i.e., immature B cells), mature B cells through terminal differentiation into plasma cells, and malignant B cells.
- CD19 is expressed by most pre-B acute lymphoblastic leukemias (ALL), non-Hodgkin's lymphomas, B cell chronic lymphocytic leukemias (CLL), pro-lymphocytic leukemias, hairy cell leukemias, common acute lymphocytic leukemias, and some Null-acute lymphoblastic leukemias (Nadler et al, J.
- CD19 on plasma cells further suggests it may be expressed on differentiated B cell tumors such as multiple myeloma, plasmacytomas, Waldenstrom's tumors (Grossbard et al., Br. J. Haematol, 102:509-15 (1998); Treon et al, Semin. Oncol, 30:248-52 (2003)).
- the CD 19 antigen has also been one of the many proposed targets for immunotherapy.
- the CLB-CD 19 antibody anti-CD 19 murine IgG2a mAb
- the CLB-CD 19 antibody was shown to inhibit growth of human tumors implanted in athymic mice (Hooijberg et al, Cancer Research, 55:840-846 (1995)).
- the monoclonal murine antibody FMC63 (IgG2a) was chimerized using a human IgG1 Fc region (Zola et al, Immunol Cell Biol 69:411-22 (1991)).
- This antibody did not induce complement-mediated cytotoxicity or ADCC in vitro and administration to SCID mice bearing a human B cell lymphoma (xenotransplantation model) resulted in moderate but unspecified killing of the transplanted tumor cells (Pietersz et al, Cancer Immunol. Immunother., 41:53-60 (1995)).
- anti-CD 19 antibody-based immunotoxins produced equally discouraging results.
- the B4 anti-CD 19 antibody murine IgG1 mAb
- anti-CD 19 antibodies that are more effective to treat CD19 mediated disorders, e.g. anti-CD 19 antibodies that are able to efficiently induce tumor cell death, by triggering apoptosis and blockade of B cell proliferation, and by mediating killing through ADCC.
- the present disclosure relates generally to humanized antibodies or fragments thereof that bind to human CD19, methods for their preparation and use, including methods for treating CD19 mediated disorders.
- the humanized antibodies or fragments thereof that bind to human CD19 of the present invention exhibit numerous desirable properties including e.g. ADCC activity, induction of apoptosis and inhibition of B cell proliferation.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 19, 20, 21, 22, and 42.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14).
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6).
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising
- the present invention provides humanized antibodies or fragments thereof that bind to human CD19 comprising human heavy and/or light constant regions, wherein the human heavy constant region comprises an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3.
- the present invention provides humanized antibodies or fragments thereof that bind to human CD19 comprising a variant human IgG Fc region which comprises at least one amino acid modification relative to the human IgG Fc region of the parent antibody, whereas the antibody comprising the variant human IgG Fc region exhibits altered effector function compared to the parent antibody.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19, wherein the antibody comprises a variant human IgG Fc region which comprises amino acid substitution S324N replacing serine at amino acid position 324 of the parent antibody with asparagine, whereas the antibody comprising the variant human IgG Fc region exhibits improved complement dependent cytotoxicity (CDC) compared to the parent antibody.
- CDC complement dependent cytotoxicity
- the present invention provides humanized antibodies or fragment thereof that bind to human CD19 which have various desirable properties such as binding to Raji tumor cells, binding to human CD19 with an affinity (Kd) of 50 nM or less, retaining at least 20% of the CD19 binding affinity (K d ) of the corresponding chimeric antibody, competing for binding to Raji tumor cells with an affinity (Ki) of 50 nM or less, induction of apoptosis in Raji tumor cells, ADCC activity in Raji tumor cells, inhibition of proliferation of malignant B-cells, inhibition of clonogenicity of Raji tumor cells, causing B-cell depletion in blood, internalization in Raji tumor cells and a FAB fragment thermostability temperature greater than 65° C.
- the present disclosure also provides isolated nucleic acids encoding humanized antibodies and fragments thereof that bind to human CD19, vectors and host cells comprising the nucleic acid or the vector.
- Compositions comprising the humanized antibody or fragment thereof and a pharmaceutically acceptable carrier and immunoconjugates comprising the humanized antibody or fragment thereof linked to a therapeutic agent are also provided.
- the present disclosure also provides methods for treating of CD19 mediated disorders, methods of inhibiting growth of tumor cells expressing CD 19 and methods of depleting B cells in a subject in need of such treatment.
- kits and articles of manufacturing comprising the humanized antibody or fragment thereof, the composition or the immunoconjugate for the treatment of a CD 19 mediated disorder.
- FIGS. 1A and 1B show flow cytometry analysis to determine binding activity of FMC63-CDRs grafted to human acceptor antibody frameworks on Raji tumor cells.
- FIGS. 2A and 2B show alignment of the light chain (A) or heavy chain (B) variable region of FMC63 with selected germline frameworks from VBASE2 and CDR-grafted donor-amplified frameworks.
- the Kabat numbering is used and shown below the numbering row.
- FIG. 3 shows binding activity of humanized antibodies on SU-DHL-6 human B cell lymphoma cells as determined by flow cytometry.
- FIGS. 4A and 4B show Scatchard analysis curves of humanized anti-CD19 antibodies. Analysis was performed on Raji tumor cells using europium-labeled antibodies.
- FIGS. 5A and 5B show ADCC activity of humanized anti-CD19 antibodies on Raji tumor cells.
- FIG. 6 shows induction of apoptosis by humanized anti-CD19 antibodies on Raji tumor cells.
- FIG. 7A shows inhibition of SU-DHL-6 human B cell lymphoma cell proliferation by humanized anti-CD19 antibodies.
- FIG. 7B shows clonogenicicity of Raji tumor cells after treatment with humanized anti-CD19 antibodies.
- FIG. 8 shows internalization of anti-CD19 antibodies in Raji tumor cells. The internalization is monitored by the cytotoxicity of a saporin-conjugated secondary antibody (Hum-ZAP).
- FIG. 9 shows complement dependent cytotoxicity (CDC) of anti-CD19 antibody mutants at position S324, compared to wild type VH16 R94K-VL43 V3Q/T7S/P44I/N92A: (1) IgG1 control antibody; (2) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (3) VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/S324G-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/S324A-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/S324V-VL43 3Q/T7S/P44I/N92A; (7) VH16 R94K/S324L-VL43 V3Q/T7S/P44I/N92A;
- FIG. 10 shows CDC assay of anti-CD19 antibody variants with substitution at positions E269, S298 and S324: (1) negative control—no antibody; (2) IgG1 control antibody; (3) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/S298A/S324N-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/E269D/S298A/S324N-VL43 V3Q/T7S/P44I/N92A.
- FIG. 11 shows cell-based ADCC assay of selected anti-CD19 antibody variants: (1) negative control—no antibody; (2) IgG1 control antibody; (3) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/S298A-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/E269D/S298A-VL43 V3Q/T7S/P44I/N92A.
- FIG. 12 shows cell-based CDC assay of selected anti-CD19 antibody variants: (1) IgG1 control antibody: (2) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (3) VH16 R94K (1133)-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/K274Q-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/N276K-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/K334R-VL43 V3Q/T7S/P44I/N92A; (7) VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A; (8) VH16 R94K/K274Q/N276K-VL43 V3Q/T7S/P44I/N92
- FIG. 13 shows cell-based ADCC assay of defucosylated anti-CD19 antibody variants: (1) negative control—no antibody; (2) IgG1 control antibody; (3) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K (shRNA)-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K (GNTIII)-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/E269D/S298A (shRNA)-VL43 V3Q/T7S/P44I/N92A; (7) VH16 R94K/E269D/S298A (GNTIII)-VL43 V3Q/T7S/P44I/N92A.
- FIG. 14 shows B cell depletion (ACN of total B cells) by anti-CD19 antibody variants detected in the spleens of SCID mice: (1) negative control—no human PBMC; (2) human PBMC—Herceptin®; (3) human PBMC—Mabthera®; (4) human PBMC-VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (5) human PBMC-VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A.
- FIG. 15 shows B cell depletion (percentage of total B cells) by anti-CD19 antibody variants detected in the spleens of SCID mice: (1) negative control—no human PBMC; (2) human PBMC—Herceptin®; (3) human PBMC—Mabthera®; (4) human PBMC-VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (5) human PBMC-VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A.
- the present disclosure relates to humanized antibodies and fragments thereof that bind human CD 19.
- human CD19 as used herein includes variants, isoforms, and species homologs of human CD19. Accordingly, humanized antibodies of this disclosure may, in certain cases, cross-react with CD19 from species other than human. In certain embodiments, the antibodies may be completely specific for one or more human CD19 proteins and may not exhibit species or other types of non-human cross-reactivity.
- the complete amino acid sequence of an exemplary human CD19 has SwissProt accession number P 15391 (SEQ ID NO: 125). CD19 is also known as B-cell surface antigen B4, B-cell antigen CD19, CD19 antigen, and Leu-12. Human CD19 is designated GeneID: 930 by Entrez Gene, and HGNC: 1633 by HGNC.
- CD19 can be encoded by the gene designated CD19.
- the use of “human CD19” herein encompasses all known or as yet undiscovered alleles and polymorphic forms of human CD19.
- the term “CD19” as used herein refers to “human CD19” if not otherwise specifically indicated.
- antibody that bind to human CD19 includes antibodies, preferably IgG antibodies, that bind to human CD19 e.g. human CD19 as expressed on the surface of Raji tumor cells like Raji tumor cells DSMZ ACC319 with an affinity (Kd) of 500 nM or less, preferably 100 nM or less, more preferably 50 nM or less.
- Kd affinity
- B cell or “B lymphocyte” as used herein is meant a type of lymphocyte developed in bone marrow that circulates in the blood and lymph, and provides humoral immunity.
- B cells recognize free antigen molecules and differentiate or mature into plasma cells that secrete immunoglobulin (antibodies) that inactivate the antigens. Memory cells are also generated that make the specific Immunoglobulin (antibody) on subsequent encounters with such antigen.
- B cells are also known as “Beta cells” in the islet of Langerhans.
- antibody as referred to herein includes whole antibodies and any antigen binding fragment or single chains thereof.
- An “antibody” refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen binding fragment thereof.
- Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.
- the heavy chain constant region is comprised of three domains, CH1, CH2 and CH3.
- Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region.
- the light chain constant region is comprised of one domain, CL.
- VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR or FW).
- CDR complementarity determining regions
- FR or FW framework regions
- Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
- the constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the First component (CIq) of the classical complement system.
- chimeric antibody as used herein includes antibodies in which the variable region sequences are derived from one species and the constant region sequences are derived from another species, such as an antibody in which the variable region sequences are derived from a mouse antibody and the constant region sequences are derived from a human antibody.
- humanized antibody as used herein includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences. Additional framework region modifications may be made within the human framework sequences as well as within the CDR sequences derived from the germline of another mammalian species.
- human antibody as used herein includes antibodies having variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. Furthermore, if the antibody contains a constant region, the constant region also is derived from human germline immunoglobulin sequences.
- the human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g. mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo).
- the term “human antibody”, as used herein is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- a humanized antibody comprises heavy or light chain variable framework regions that are “the product of” or “derived from” a particular human germline sequence (human gene) if the variable framework regions of the antibody are obtained from a system that uses human germline immunoglobulin genes.
- Such systems include immunizing a transgenic mouse carrying human immunoglobulin genes with the antigen of interest or screening a human immunoglobulin gene library displayed on phage with the antigen of interest.
- a humanized antibody which comprises a heavy or light chain variable framework region that is “the product of” or “derived from” a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the heavy or light chain variable framework region of the humanized antibody to the amino acid sequences of the heavy or light chain variable framework region of human germline immunoglobulins.
- a humanized antibody that comprises a heavy or light chain variable framework region that is “the product of” a particular human germline immunoglobulin sequence has a heavy or light chain variable framework region which is 100% identical in amino acid sequence to the heavy or light chain variable framework region of the particular human germline immunoglobulin sequence.
- a humanized antibody that comprises a heavy or light chain variable framework region that is “derived from” a particular human germline immunoglobulin sequence may contain amino acid differences as compared to the heavy or light chain variable framework region of the particular germline sequence, due to, for example, naturally-occurring somatic mutations or intentional introduction of site-directed mutation.
- a selected humanized antibody typically is at least 90% identical in amino acid sequence of the heavy or light chain variable framework region to an amino acid sequence encoded by the heavy or light chain variable framework region of a human germline immunoglobulin gene and contains amino acid residues that identify the humanized antibody as being derived from human when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences).
- a humanized antibody may be preferably at least 95%, more preferably at least 96%, most preferably at least 97%, in particular at least 98%, most particular at least 99%, identical in amino acid sequence of the heavy or light chain variable framework region to the amino acid sequence of the heavy or light chain variable framework region encoded by the germline immunoglobulin gene.
- the heavy or light chain variable framework region of a humanized antibody derived from a particular human germline sequence will display no more than 10 amino acid, preferably no more than 5, or even more preferably no more than 4, 3, 2, or 1 differences from the amino acid sequence of the heavy or light chain variable framework region encoded by the human germline immunoglobulin gene.
- Fab or “Fab region” as used herein includes the polypeptides that comprise the VH, CH1, VL, and CL immunoglobulin domains. Fab may refer to this region in isolation, or this region in the context of a full length antibody or antibody fragment.
- Fc or “Fc region”, as used herein includes the polypeptide comprising the constant region of an antibody excluding the first constant region immunoglobulin domain.
- Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM, and the flexible hinge N-terminal to these domains.
- Fc may include the J chain.
- Fc comprises immunoglobulin domains Cgamma2 and Cgamma3 (C[gamma]2 and C[gamma]3) and the hinge between Cgamma1 (C[gamma]1) and Cgamma2 (C[gamma]2).
- the human IgG heavy chain Fc region is usually defined to comprise residues C226 or P230 to its carboxyl-terminus, wherein the numbering is according to the EU index as in Kabat.
- the Fc region is herein defined to comprise residue P232 to its carboxyl-terminus, wherein the numbering is according to the EU index as in Kabat.
- Fc may refer to this region in isolation, or this region in the context of an Fc polypeptide, for example an antibody.
- the term “hinge” or “hinge region” or “antibody hinge region” herein includes the flexible polypeptide comprising the amino acids between the first and second constant domains of an antibody. Structurally, the IgG CH1 domain ends at EU position 220, and the IgG CH2 domain begins at residue EU position 237.
- the antibody hinge is herein defined to include positions 221 (D221 in IgGI) to 231 (A231 in IgGI), wherein the numbering is according to the EU index as in Kabat.
- parent antibody or “parent immunoglobulin” as used herein includes an unmodified antibody that is subsequently modified to generate a variant.
- Said parent antibody may be a naturally occurring antibody, or a variant or engineered version of a naturally occurring antibody.
- Parent antibody may refer to the antibody itself, compositions that comprise the parent antibody, or the amino acid sequence that encodes it.
- parent anti-CD 19 antibody as used herein is meant an antibody or immunoglobulin that binds human CD 19 and is modified to generate a variant.
- parental antibody or “parental immunoglobulin” as used herein includes a murine or chimeric antibody that is subsequently modified to generate a humanized antibody.
- variant antibody or “antibody variant” as used herein includes an antibody sequence that differs from that of a parent antibody sequence by virtue of at least one amino acid modification compared to the parent.
- the variant antibody sequence herein will preferably possess at least about 80%, most preferably at least about 90%, more preferably at least about 95% amino acid sequence identity with a parent antibody sequence.
- Antibody variant may refer to the antibody itself, compositions comprising the antibody variant, or the amino acid sequence that encodes it.
- amino acid modification herein includes an amino acid substitution, insertion, and/or deletion in a polypeptide sequence.
- amino acid substitution or “substitution” herein is meant the replacement of an amino acid at a particular position in a parent polypeptide sequence with another amino acid.
- substitution R94K refers to a variant polypeptide, in this case a heavy chain variable framework region variant, in which the arginine at position 94 is replaced with a lysine.
- 94K indicates the substitution of position 94 with a lysine.
- multiple substitutions are typically separated by a slash.
- R94K/L78V refers to a double variant comprising the substitutions R94K and L78V.
- amino acid insertion or “insertion” as used herein is meant the addition of an amino acid at a particular position in a parent polypeptide sequence.
- insert ⁇ 94 designates an insertion at position 94.
- amino acid deletion or “deletion” as used herein is meant the removal of an amino acid at a particular position in a parent polypeptide sequence.
- R94 ⁇ designates the deletion of arginine at position 94.
- conservative modifications or “conservative sequence modifications” is intended to refer to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid sequence. Such conservative modifications include amino acid substitutions, insertions and deletions. Modifications can be introduced into an antibody of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine.
- one or more amino acid residues within the CDR regions or within the framework regions of an antibody of the invention can be replaced with other amino acid residues from the same side chain family and the altered antibody (variant antibody) can be tested
- EU index refers to the residue numbering of the human IgG1 EU antibody, as described in Edelman et al., 1969, Biochemistry 63:78-85.
- full length antibody as used herein includes the structure that constitutes the natural biological form of an antibody, including variable and constant regions.
- the full length antibody of the IgG class is a tetramer and consists of two identical pairs of two immunoglobulin chains, each pair having one light and one heavy chain, each light chain comprising immunoglobulin domains VL and CL, and each heavy chain comprising immunoglobulin domains VH, CH1 (C[gamma]1), CH2 (C[gamma]2), and CH3 (C[gamma]3).
- IgG antibodies may consist of only two heavy chains, each heavy chain comprising a variable domain attached to the Fc region.
- Antibody fragments include, but are not limited to, (i) the Fab fragment consisting of VL, VH, CL and CH1 domains, including Fab′ and Fab′-SH, (ii) the Fd fragment consisting of the VH and CH1 domains, (iii) the Fv fragment consisting of the VL and VH domains of a single antibody; (iv) the dAb fragment (Ward et al., 1989, Nature 341:544-546) which consists of a single variable, (v) F(ab′)2 fragments, a bivalent fragment comprising two linked Fab fragments (vi) single chain Fv molecules (scFv), wherein a VH domain and a VL domain are linked by a peptide linker which allows the two domains to associate to form an antigen binding site (Bird et al., 1988, Science 242:423-426, Huston et al., 1988, Proc.
- scFv single chain Fv molecules
- Antibodies are grouped into classes, also referred to as isotypes, as determined genetically by the constant region.
- Human constant light chains are classified as kappa (CK) and lambda (C[lambda]) light chains.
- Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively.
- the IgG class is the most commonly used for therapeutic purposes. In humans this class comprises subclasses IgG1, IgG2, IgG3, and IgG4. In mice this class comprises subclasses IgG1, IgG2a, IgG2b, IgG3.
- IgM has subclasses, including, but not limited to, IgM1 and IgM2.
- IgA has several subclasses, including but not limited to IgA1 and IgA2.
- isotype as used herein is meant any of the classes or subclasses of immunoglobulins defined by the chemical and antigenic characteristics of their constant regions.
- the known human immunoglobulin isotypes are IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgM1, IgM2, IgD, and IgE.
- ADCC antibody dependent cell-mediated cytotoxicity
- the enhanced ADCC effector function can mean enhanced potency or enhanced efficacy.
- potency as used in the experimental context is meant the concentration of antibody when a particular therapeutic effect is observed EC50 (half maximal effective concentration).
- effcacy as used in the experimental context is meant the maximal possible effector function at saturating levels of antibody.
- ADCP antibody dependent cell-mediated phagocytosis as used herein includes the cell-mediated reaction wherein nonspecific cytotoxic cells that express Fc[gamma]Rs recognize bound antibody on a target cell and subsequently cause phagocytosis of the target cell.
- CDC complement dependent cytotoxicity
- complement protein components recognize bound antibody on a target cell and subsequently cause lysis of the target cell.
- effector function includes a biochemical event that results from the interaction of an antibody Fc region with an Fc receptor or ligand. Effector functions include Fc[gamma]R-mediated effector functions such as ADCC and ADCP, and complement-mediated effector functions such as CDC.
- the term “subject” includes any human or nonhuman animal.
- nonhuman animal includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc.
- the subject is human.
- isotypic variant includes an amino acid modification that converts at least one amino acid of one isotype, preferably at least one amino acid of the heavy chain constant region of one isotype, to the corresponding amino acid in a different, aligned isotype.
- the amino acid modification may comprise conversion of a whole constant region immunoglobulin domain or, preferably, of an Fc region of one isotype in a different isotype, e.g. the conversion of the Fc region of the human IgG1 heavy constant region to an Fc region from human IgG3 resulting in an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3.
- isotypic modification includes an amino acid modification that converts one amino acid of one isotype to the corresponding amino amino acid in a different, aligned isotype. For example, because IgG1 has a tyrosine and IgG2 a phenylalanine at Kabat position 296, a F296Y substitution in IgG2 is considered an isotypic modification.
- mature core carbohydrate structure includes a processed core carbohydrate structure attached to an Fc region which generally consists of the carbohydrate structure GlcNAc (Fucose)-GlcNAc-Man-(Man-GlcNAc) 2 typical of biantennary oligosaccharides represented schematically below:
- This term specifically includes G-1 forms of the core mature carbohydrate structure lacking a ⁇ 1,2 GlcNAc residue. Preferably, however, the core carbohydrate structure includes both ⁇ 1,2 GlcNAc residues.
- the mature core carbohydrate structure herein generally is not hypermannosylated.
- the mature core carbohydrate structure is attached to the Fc region of the glycoprotein, generally via N-linkage to Asn297 of a CH2 domain of the Fc region.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29 and/or a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the CDR3 domain independently from the CDR1 and/or CDR2 domain(s), alone can determine the binding specificity of an antibody for a cognate antigen and that multiple antibodies can predictably be generated having the same binding specificity based on a common CDR3 sequence. See, for example, Klimka et al, British J. of Cancer 83[pound]2):252-260 (2000) (describing the production of a humanized anti-CD30 antibody using only the heavy chain variable domain CDR3 of murine anti-CD30 antibody Ki-4); Beiboer et al, J. MoI. Biol.
- the present invention provides humanized antibodies and fragments thereof that bind to human CD19 comprising one or more heavy and/or light chain CDR3 domains from an antibody of a non-human animal e.g from a murine antibody like FMC63, in particular comprising heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29 and/or light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32, wherein the antibody is capable of binding to CD 19.
- a non-human animal e.g from a murine antibody like FMC63, in particular comprising heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29 and/or light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32, wherein the antibody is capable of binding to CD 19.
- inventive antibodies comprising one or more heavy and/or light chain CDR3 domain from a non-human antibody (a) are capable of competing for binding with; (b) retain the functional characteristics; (c) bind to the same epitope; and/or (d) have a similar binding affinity as the corresponding parental non-human e.g. murine antibody.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 19, 20, 21, 22 and 42, preferably a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 21, 22 and 42, more preferably a heavy chain variable region sequence comprising SEQ ID NO: 21.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41, preferably a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 25 and 41, more preferably a light chain variable region sequence comprising SEQ ID NO: 41.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 19, 20, 21, 22, and 42 and a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41, preferably a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 21, 22 and 42 and a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41, more preferably a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 21, 22 and 42 and a light chain variable region sequence selected from the group consisting of SEQ ID NOs: 25 and 41, most preferably a heavy chain variable region sequence comprising SEQ ID NO: 21 and a light chain variable region sequence comprising SEQ ID NO: 41.
- the heavy and light chain variable region sequences can bind to human CD19
- the heavy and light chain variable region sequences can be “mixed and matched” to create anti-CD19 binding molecules of the invention.
- CD 19 binding of such “mixed and matched” antibodies can be tested using the binding assays described e.g. in the Examples.
- the present invention provides variants of a humanized antibody or fragment thereof that binds to human CD19.
- the present invention provides humanized antibodies or fragments thereof that have an amino acid sequence of the heavy and/or light chain variable framework region which is at least 80% identical (having at least 80% amino acid sequence identity) to the amino acid sequence of the heavy and/or light chain variable framework region of the parent humanized antibody of either the heavy or the light chain e.g. of either the heavy and light variable region sequences as in SEQ ID NO: 21 or SEQ ID NO: 41, respectively.
- amino acid sequence identity of the heavy and/or light chain variable framework region is at least 85%, more preferably at least 90%, and most preferably at least 95%, in particular 96%, more particular 97%, even more particular 98%, most particular 99%, including for example, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100%.
- Identity or homology with respect to an amino acid sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the humanized antibody or fragment thereof that binds to human CD19, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity.
- sequence identity can be determined by standard methods that are commonly used to compare the similarity in position of the amino acids of two polypeptides. Using a computer program such as BLAST or FASTA, two polypeptides are aligned for optimal matching of their respective amino acids (either along the full length of one or both sequences, or along a pre-determined portion of one or both sequences).
- the programs provide a default opening penalty and a default gap penalty, and a scoring matrix such as PAM250 (a standard scoring matrix; see Dayhoff et al., in Atlas of Protein Sequence and Structure, vol 5, supp. 3 (1978)) can be used in conjunction with the computer program.
- a scoring matrix such as PAM250 (a standard scoring matrix; see Dayhoff et al., in Atlas of Protein Sequence and Structure, vol 5, supp. 3 (1978)
- PAM250 a standard scoring matrix; see Dayhoff et al., in Atlas of Protein Sequence and Structure, vol 5, supp. 3 (1978)
- the percent identity can be calculated as: the total number of identical matches multiplied by 100 and then divided by the sum of the length of the longer sequence within the matched span and the number of gaps introduced into the longer sequences in order to align the two sequences.
- the present disclosure thus provides a humanized antibody or fragment thereof that binds to human CD19, wherein the humanized antibody or fragment thereof comprises a heavy chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NOS: 19, 20, 21, 22 or 42 and/or a light chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NOS: 23, 24, 25, 26 and 41.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein the humanized antibody or fragment thereof comprises a heavy chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 21, 22 or 42 and/or a light chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 25 or 41.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein the humanized antibody or fragment thereof comprises a heavy chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 21 and/or a light chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 41.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising the heavy and or light chain CDRs as described supra and further comprising a heavy chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14), preferably a heavy chain variable framework region that is the product of or derived from human gene V3-30*-18 (SEQ ID NO: 13) or V3-48*01 (SEQ ID NO: 14), more preferably a heavy chain variable framework region that is the product of or derived from human gene V3-30*-18 (SEQ ID NO: 13).
- the heavy chain variable framework region may comprise one or more (e.g., one, two, three and/or four) heavy chain framework region sequences (e.g., framework 1 (FW1), framework 2 (FW2), framework 3 (FW3) and/or framework 4 (FW4)) present in the product of or derived from those human genes.
- the heavy chain variable region framework comprises FW1, FW2 and/or FW3, more preferably FW1, FW2 and FW3 present in the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14).
- Heavy chain framework region sequences as used herein include FW1 (position 1 to position 25), FW2 (position 36 to position 49), FW3 (position 66 to position 94) and FW4 (position 103 to position 113), wherein the amino acid position is indicated utilizing the numbering system set forth in Kabat.
- the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6), preferably a light chain variable framework region that is the product of or derived from human gene V1-39*-01 (SEQ ID NO: 5).
- the light chain variable region framework region may comprise one or more (e.g., one, two, three and/or four) light chain framework region sequences (e.g., framework 1 (FW1), framework 2 (FW2), framework 3 (FW3) and/or framework 4 (FW4)) present in the product of or derived from those human genes.
- the light chain variable region framework comprises FW1, FW2 and/or FW3, more preferably FW1, FW2 and FW3 present in the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6).
- Light chain framework region sequences as used herein include FW1 (position 1 to position 23), FW2 (position 35 to position 49), FW3 (position 57 to position 88) and FW4 (position 98 to position 108), wherein the amino acid position is indicated utilizing the numbering system set forth in Kabat.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14) and a light chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6), preferably a heavy chain variable framework region that is the product of or derived from human gene V3-30*-18 (SEQ ID NO: 13) or V3-48*01 (SEQ ID NO: 14), and a light chain variable framework region that is the product of or derived from human gene V1-39*-01
- FW1 and FW2 present in the product of or derived from V3-30*-18 SEQ ID NO: 13
- FW3 present in the product of or derived from V3-48*01 SEQ ID NO: 14
- FW1 and FW2 present in the product of or derived from V1-39*-01 SEQ ID NO: 5
- FW3 present in the product of or derived from V1-12*01 SEQ ID NO: 6
- Germline DNA sequences for human heavy and light chain variable region genes can be found in Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; Tomlinson, I. M., et al. (1992) “The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops” J. MoI. Biol. 227:776-798; and Cox, J. P. L. et al. (1994) “A Directory of Human Germline VH Segments Reveals a Strong Bias in their Usage” Eur. J. Immunol. 24:827-836.
- the germline DNA sequences for human heavy and light chain variable region genes can be found in the Genbank database.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19, wherein at least one of the heavy chain CDRs and/or at least one of the light chain CDRs comprises at least one amino acid modification.
- Site-directed mutagenesis or PCR-mediated mutagenesis can be performed to introduce the modification(s) and the effect on antibody binding, or other functional property of interest, can be evaluated in in vitro or in vivo assays as described herein and provided in the Examples.
- Preferably conservative modifications are introduced.
- the modification(s) may be amino acid substitutions, additions or deletions, but are preferably substitutions.
- no more than five, preferably no more than four, more preferably no more than three, even more preferably no more than two, most preferably no more than one amino acid modifications are performed within a CDR region.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19, comprising an amino acid modification comprising amino acid substitution Y32F within heavy chain CDR1, and/or comprising an amino acid modification comprising amino acid substitution Y58F or Y59F within heavy chain CDR2 and/or comprising an amino acid modification comprising one or more amino acid substitutions selected from the group consisting of Y96F, Y97F, Y98F and Y100 B F within heavy chain CDR3.
- Preferred amino acid modifications of the humanized antibody or fragment thereof is amino acid substitution Y32F within heavy chain CDR1 and amino acid substitutions selected from the group consisting of Y96F, Y97F, Y98F and Y100 B F within heavy chain CDR3. More preferred amino acid modifications of the humanized antibody or fragment thereof are amino acid substitution Y32F within heavy chain CDR1 and/or amino acid substitution Y100 B F within heavy chain CDR3.
- the present disclosure also provides a humanized antibody or fragment thereof, comprising an amino acid modification comprising amino acid substitution Y32F within light chain CDR1 and/or comprising an amino acid modification comprising an amino acid substitution selected from the group consisting of N92A, T93A and T93V within light chain CDR3.
- Preferred amino acid modifications of the humanized antibody or fragment thereof are amino acid substitution Y32F within light chain CDR1 and/or amino acid substitution N92A within light chain CDR3.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, comprising an amino acid modification comprising amino acid substitution Y32F within heavy chain CDR1, and/or comprising an amino acid modification comprising amino acid substitution Y58F or Y59F within heavy chain CDR2 and/or comprising an amino acid modification comprising one or more amino acid substitutions selected from the group consisting of Y96F, Y97F, Y98F and Y100 B F within heavy chain CDR3 and comprising an amino acid modification comprising amino acid substitution Y32F within light chain CDR1 and/or comprising an amino acid modification comprising an amino acid substitution selected from the group consisting of N92A, T93A and T93V within light chain CDR3.
- framework sequences can be used to engineer variable regions to produce variant antibodies.
- Variant antibodies of the invention include those in which modifications have been made to framework residues within VH and/or VK, e.g. to improve the properties of the antibody.
- framework modifications are made to decrease the immunogenicity of the antibody.
- one approach is to “backmutate” one or more framework residues to the corresponding murine sequence or to “backmutate” one or more framework residues to a corresponding germline sequence.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein at least one of the framework regions of the heavy chain variable region of the humanized antibody or fragment thereof comprises at least one amino acid modification from the corresponding framework region of the heavy chain variable region of the corresponding murine antibody.
- the amino acid modification is an amino acid substitution.
- no more than five, preferably no more than four, more preferably no more than three, even more preferably no more than two, most preferably no more than one amino acid modifications are performed within a framework region.
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein the amino acid modification of the framework regions of the heavy chain variable region comprise an amino acid substitution at amino acid position selected from the group consisting of 37, 42, 48, 49, 67, 71, 78 and 94.
- Preferred amino acid substitution of the framework regions of the heavy chain variable region are at amino acid positions selected from the group consisting of 42, 67, 71, 78 and 94.
- More preferred amino acid substitutions of the framework regions of the heavy chain variable region are selected from the group consisting of G42R, F67L, R71K, L78V and R94K, with the proviso that if the amino acid modification is R94K the heavy chain variable region sequence is not SEQ ID NO: 19 or SEQ ID NO: 20, whereas R94K is the most preferred amino acid substitution of the framework regions of the heavy chain variable region.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19, wherein at least one of the framework regions of the light chain variable region of the humanized antibody or fragment thereof comprises at least one amino acid modification from the corresponding framework region of the light chain variable region of the corresponding murine antibody.
- the amino acid modification is an amino acid substitution.
- no more than five, preferably no more than four, more preferably no more than three, even more preferably no more than two, most preferably no more than one amino acid modifications are performed within a framework region.
- the present disclosure provides a humanized antibody or fragment thereof, wherein the amino acid modification of the framework regions of the light chain variable region sequence comprises an amino acid substitution at amino acid position selected from the group consisting of 44, 71 and 87. More preferred amino acid substitutions of the framework regions of the light chain variable region sequence are selected from the group consisting of P44V, P44I, P44L, F71Y, F71H, F71S, F71T and Y87F. Most preferred amino acid substitutions of the framework regions of the light chain variable region sequence are selected from the group consisting of P44V, P44I, F71Y, and Y87F, whereas P44I is particular preferred.
- humanized antibody or fragment thereof of the present invention may comprise amino acid modifications of the framework regions of the heavy chain variable region sequence as set out supra and amino acid modifications of the framework regions of the light chain variable region sequence as set out supra.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 that comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55, preferably selected from the group consisting of SEQ ID NOS: 37, 43 and 47, more preferably selected from the group consisting of SEQ ID NOS: 37 and 47.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 that comprises a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63, preferably selected from the group consisting of SEQ ID NOS: 25, 59 and 60, more preferably selected from the group consisting of SEQ ID NOS: 59 and 60.
- a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63, preferably selected from the group consisting of SEQ ID NOS: 25, 59 and 60, more preferably selected from the group consisting of SEQ ID NOS: 59 and 60.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55, and a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 37, 43 and 47, and a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 59 and 60.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 37 and 47, and a light chain variable region selected from the group consisting of SEQ ID NOS: 59 and 60.
- a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 37, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 59
- a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 47, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 60
- a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 37, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 25
- the heavy and light chain variable region sequences can bind to human CD19
- the heavy and light chain variable region sequences can be “mixed and matched” to create anti-CD19 binding molecules of the invention.
- CD 19 binding of such “mixed and matched” antibodies can be tested using the binding assays described e.g. in the Examples.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 64, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 67.
- the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which further comprises a human heavy and/or light constant domain.
- Human heavy constant regions may be selected from the group of human immunoglobulins consisting of IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgM1, IgM2, IgD, and IgE, whereas the human heavy constant region IgG, in particular IgG1 is preferred.
- Human light constant region may be selected from the group of human immunoglobulins consisting of kappa or lambda constant regions, whereas human kappa constant region is preferred.
- the humanized antibody or fragment thereof comprises a human IgG1 heavy constant domain and a human light kappa constant domain.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 comprising human heavy and/or light constant regions, wherein the human heavy constant region comprises an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3.
- the humanized antibody comprising the isotypic variant is a full length antibody.
- a particular preferred humanized antibody or fragment thereof that binds to human CD19 comprising an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 124 and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65.
- the isotypic variant exhibits improved complement dependent cytotoxicity (CDC) as compared to a humanized antibody or fragment thereof that binds to human CD19 which comprises a human heavy constant region from human IgG1 (which is usually a native human IgG1), i.e. as compared to a humanized antibody or fragment thereof that binds to human CD19 that only differs from the isotypic variant with regard to the modified heavy constant region.
- CDC complement dependent cytotoxicity
- the present disclosure also provides a fragment of a humanized antibody that binds to human CD19 selected from the group consisting of Fab, Fab′, Fab′-SH, Fd, Fv, dAb, F(ab′)2, scFv, bispecific single chain Fv dimers, diabodies, triabodies and scFv genetically fused to the same or a different antibody.
- Preferred fragments are scFv, bispecific single chain Fv dimers and diabodies.
- the present disclosure also provides a full length humanized antibody that binds to human CD19.
- antibodies of the invention may be engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity.
- an antibody of the invention may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation. Each of these embodiments is described in further detail below. Modifications within the Fc region as outlined below are according to the numbering of residues in the Fc region of the EU index of Kabat.
- the hinge region of CH1 is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased.
- the number of cysteine residues in the hinge region of CH1 is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody.
- the Fc hinge region of an antibody is mutated to decrease the biological half life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcyl protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Pat. No. 6,165,745 by Ward et al.
- the antibody is modified to increase its biological half life. Various approaches are possible.
- the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Pat. Nos. 5,869,046 and 6,121,022 by Presta et al.
- Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector function(s) of the antibody.
- one or more amino acids selected from amino acid residues 234, 235, 236, 237, 297, 318, 320 and 322 can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody.
- the effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260, both by Winter et al.
- one or more amino acids selected from amino acid residues 329, 331 and 322 can be replaced with a different amino acid residue such that the antibody has altered CIq binding and/or reduced or abolished complement dependent cytotoxicity (CDC).
- CDC complement dependent cytotoxicity
- This approach is described in further detail in U.S. Pat. No. 6,194,551 by Idusogie et al.
- one or more amino acid residues within amino acid positions 231 to 238 in the N-terminal region of the CH2 domain are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al.
- the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the affinity of the antibody for an Fc[gamma] receptor by modifying one or more amino acids at the following positions: 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439.
- ADCC antibody dependent cellular cytotoxicity
- the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, which comprises a variant human IgG Fc region which comprises at least one amino acid modification relative to the human IgG Fc region of the parent antibody, whereas the antibody comprising the variant human IgG Fc region exhibits altered effector function compared to the parent antibody.
- the antibody comprises a variant human IgG1 Fc region. More preferred is a full length antibody comprising a variant human IgG1 Fc region.
- the parent antibody is a humanized antibody or fragment thereof that binds to human CD19 and is identical to the humanized antibody that binds to human CD19 which comprises a variant human IgG Fc region, except for the amino acid modification in the human IgG Fc region and is usually an antibody with a native human IgG Fc region.
- the amino acid modification is preferably not isotopic.
- the effector function altered is usually complement dependent cytotoxicity (CDC) and/or CIq binding and/or antibody dependent cell mediated cytotoxicity (ADCC) and/or binding affinity of the antibody for an Fc[gamma] receptor, preferably complement dependent cytotoxicity (CDC) and/or antibody dependent cell mediated cytotoxicity (ADCC).
- CDC, CIq binding, ADCC, and binding affinity of the antibody for an Fc[gamma] receptor are measured by standard in vitro assays, which are known in the art and commercially available.
- ADCC is measured by the lactate dehydrogenase (LDH)-releasing assay as described e.g. in Example 4 of the present application and CDC is measure by the cell-based assay described e.g. in Example 10 of the present application.
- LDH lactate dehydrogenase
- the amino acid modification which alters the effector function compared to the parent antibody comprises an amino acid substitution at amino acid position selected from the group consisting of 269, 274, 276, 298, 324 and 334, preferably selected from the group consisting of 269, 298 and 324, more preferably 298 and/or 324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- the amino acid modification which alters the effector function compared to the parent antibody comprises an amino acid substitution selected from the group consisting of E269D, K274Q, N276K, S298A, S324N, and K334R, preferably selected from the group consisting of E269D, S298A and S324N, more preferably S298A and/or S324N, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- the amino acid modification which alters the effector function compared to the parent antibody comprises a combination of amino acid substitutions at amino acid position selected from the group consisting of 269/274, 269/276, 269/298, 269/324, 269/334, 274/276, 274/298, 274/324, 274/334, 276/298, 276/324, 276/334, 298/324, 298/334, 324/334, 269/274/276, 269/274/298, 269/274/324, 269/274/334, 269/276/298, 269/276/324, 269/276/334, 269/298/324, 269/298/334, 274/276/298, 274/276/298, 274/276/324, 274/276/334, 274/298/324, 276/298/324, and 276/298/334, preferably selected from the group consisting of 274/276, 269/298, 298/324, 2
- the amino acid modification which alters the effector function compared to the parent antibody comprises a combination of amino acid substitutions selected from the group consisting of E269D/K274Q, E269D/N276K, E269D/S298A, E269D/S324N, E269D/K334R, K274Q/N276K, K274Q/S298A, K274Q/S324N, K274Q/K334R, N276K/S298A, N276K/S324N, N276K/K334R, S298A/S324N, S298A/K334R, S324N/K334R, E269D/K274Q/N276K, E269D/K274Q/S298A, E269D/K274Q/S324N, E269D/K274Q/S324N, E269D/K274Q/S
- the humanized anti-CD-19 antibody of the present disclosure comprising the variant human IgG Fc region exhibits improved CDC in an in vitro assay as described above compared to the parent antibody.
- Exhibition of improved CDC as used herein includes a) exhibition of enhanced CDC compared to the parent antibody, i.e. the parent antibody already exhibits CDC which is enhanced by the amino acid modification of the human IgG Fc region and b) de novo exhibition of CDC compared to the parent antibody, i.e. the parent antibody does not exhibit CDC, thus CDC has been introduced de novo by the amino acid modification of the human IgG Fc region.
- variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved CDC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid positions selected from the group consisting of 324, 334, 274/276, 298/324, 274/276/334, and 269/298/324, preferably selected from the group consisting of 324, 334, 298/324, 274/276/334, and 269/298/324, more preferably selected from the group consisting of 324, 298/324, and 269/298/324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved CDC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid positions selected from the group consisting of S324N, K334R, K274Q/N276K, S298A/S324N, K274Q/N276K/K334R, and E269D/S298A/S324N, preferably selected from the group consisting of S324N, K334R, S298A/S324N, K274Q/N276K/K334R, and E269D/S298A/S324N, more preferably selected from the group consisting of S324N, S298A/S324N, and E269D/S298A/S324N, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth
- variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved ADCC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid position selected from the group consisting of 269, 298, 269/298, 269/324, 298/324, and 269/298/324, preferably selected from the group consisting of 298, 269/298, 269/298/324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved ADCC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid position selected from the group consisting of E269D, S298A, E269D/S298A, E269D/S324N, S298A/S324N, and E269D/S298A/S324N, preferably selected from the group consisting of S298A, E269D/S298A, and E269D/S298A/S324N, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- the present disclosure further provides a humanized antibody or fragment thereof that binds to human CD19, wherein the antibody comprises a variant human IgG Fc region which comprises amino acid substitution S324N replacing serine at amino acid position 324 of the parent antibody with asparagine, whereas the antibody comprising the variant human IgG Fc region exhibits improved complement dependent cytotoxicity (CDC) compared to the parent antibody.
- the antibody comprises a variant human IgG1 Fc region. More preferred is a full length antibody comprising a variant human IgG1 Fc region.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which comprises a human IgG Fc region, wherein the mature core carbohydrate structure attached to the human IgG Fc region lacks fucose.
- the antibody comprises a human IgG1 Fc region, wherein the mature core carbohydrate structure attached to the human IgG1 Fc region lacks fucose.
- More preferred is a full length antibody comprising a human IgG1 Fc region, wherein the mature core carbohydrate structure attached to the human IgG1 Fc region lacks fucose. It is known from WO 2003/035835 that lack of fucose in the mature core carbohydrate structure attached to the human IgG Fc region may enhance ADCC.
- the humanized antibody or fragment thereof of the present disclosure comprises a human IgG Fc region, wherein the mature core carbohydrate structure attached to the human IgG Fc region lacks fucose, whereas the antibody lacking fucose exhibits enhanced ADCC compared to the parent humanized antibody or fragment thereof not lacking fucose.
- a preferred antibody or fragment thereof that binds to human CD19 comprising a human IgG Fc region, wherein the mature core carbohydrate structure attached to the human IgG Fc region lacks fucose, whereas the antibody lacking fucose exhibits enhanced ADCC compared to the parent humanized antibody or fragment thereof not lacking fucose is the antibody comprising a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 64, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65.
- Methods to generate antibodies which lack fucose are, for example, (a) use of an engineered or mutant host cell that is deficient in fucose metabolism such that it has a reduced ability (or is unable to) fucosylate proteins expressed therein; (b) culturing cells under conditions which prevent or reduce fucosylation; (c) post-translational removal of fucose (e.g. with a fucosidase enzyme); (d) post-translational addition of the desired carbohydrate, e.g. after recombinant expression of a non-glycosylated glycoprotein; or (e) purification of the glycoprotein so as to select for product which is not fucosylated.
- Preferably used are methods described in Example 14, e,g. methods described in Longmore et al. (1982), Carbohydr. Res. 365-92, or in Imai-Nishiya et al. (2007), BMC Biotechnol. 7, 84.
- Standard assays to evaluate the binding ability of the antibodies toward e.g. human CD19 are known in the art, including for example, ELISAs, Western blots, R1As, and flow cytometry analysis. Suitable assays are described in detail in the Examples.
- the binding kinetics (e.g., binding affinity like K d ) of the antibodies also can be assessed by standard assays known in the art, such as by Scatchard or Biacore® system analysis and can be performed and calculated e.g. as described in Example 3.
- the relative binding affinity K i can be assessed by standard competion assay known in the art and can be performed and calculated e.g. as described in Example 3.
- Raji tumor cells human Burkitt lymphoma, DSMZ ACC319), NALM-6 (human B cell precursor leukemia, DSMZ AC128) or SU-DHL-6 (human B cell lymphoma, DSMZ ACC572)
- Raji tumor cells such as human Burkitt lymphoma, DSMZ ACC319 or SU-DHL-6 (human B cell lymphoma, DSMZ ACC572)
- Raji tumor cells such as human Burkitt lymphoma, DSMZ ACC319 or SU-DHL-6 (human B cell lymphoma, DSMZ ACC572)
- Raji tumor cells such as human Burkitt lymphoma, DSMZ ACC319 are used.
- Those cells can be obtained from publicly available sources, such as the Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Braunschweig, Germany, and can be used in standard assays, such as flow cytometric analysis.
- the corresponding chimeric antibody which can be used in the assays of the present invention is usually a chimeric version of murine antibody FMC63 which consists of the FMC63 murine heavy variable domain fused to human IgG1 heavy constant domains and the murine light variable domain fused to kappa constant domain.
- the corresponding chimeric antibody which is preferably used in the assays of the present invention is a chimeric version of antibody FMC63 comprising a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 68 and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 69.
- the parental non-humanized antibody or corresponding parental non-humanized antibody which can be used in the assays of the present invention is usually a murine antibody, in particular murine antibody FMC63.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to Raji tumor cells with Mid-Point Fluorescence (MPF) of at least 10% relative to the binding of the corresponding chimeric antibody.
- Raji tumor cells do express CD19 on their surface to which the humanized antibody or fragment thereof can bind.
- Values for Mid-Point Fluorescence can be obtained from measurements of Mean Fluorescent Intensity (MFI) of cell staining using flow cytometry versus antibody concentration.
- MFI Mean Fluorescent Intensity
- the humanized antibody or fragment thereof binds to Raji tumor cells with MPF of at least 30%, more preferably of at least 50%, most preferably of at least 70%, in particular of at least 80%, more particular of at least 90%, most particular of at least 95% relative to the binding of the corresponding chimeric antibody.
- Raji tumor cells as described supra can be used for assessing binding to CD19.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 with an affinity (K d ) of 50 nM or less, in particular 40 nM or less, more particular 30 nM or less, even more particular 20 nM or less, most particular 15 nM or less.
- Raji tumor cells as described supra can be used for assessing binding to human CD19.
- the present disclosure also provides a humanized antibody or fragment thereof that retains at least 20% of the CD19 binding affinity (K d ) of the corresponding chimeric antibody.
- the humanized antibody or fragment thereof retains at least 40%, more preferably at least 60%, most preferably at least 80%, in particular at least 90%, more particular at least 95% of the CD19 binding affinity (K d ) of the corresponding chimeric antibody.
- Raji tumor cells or SU-DHL-6 cells as described supra can be used for assessing binding to human CD19.
- the present disclosure also provides a humanized antibody or fragment that binds to human CD19 and competes for binding to Raji tumor cells with an affinity (K i ) of 50 nM or less, preferably 20 nM or less, more preferably 10 nM or less, most preferably 5 nM or less, in particular 4 nM or less, more particular 3 nM or less, most particular at least about 1.5 nM to about 5.0 nM (e.g. 1.9; 1.6 or 2.9 to about 2.6 or 4.9 nM). Binding competition is usually measured against the corresponding chimeric antibody, whereas Raji tumor cells as described supra can be used for assessing K.
- K i affinity
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and induces apoptosis in Raji tumor cells.
- Induction of apoptosis in Raji tumor cells can be measured by annexin-V and propidium iodine staining (Vermes et al., 1995, J. Immunol. Methods. 184: 39-51).
- the induction of apoptosis is a very surprising property displayed by the humanized antibodies of the present invention in view of the fact that the corresponding chimeric antibody has no effect on apoptosis.
- Raji tumor cells as described supra can be used for assessing apoptosis.
- the present disclosure also provides a humanized antibody or fragment thereof wherein apoptosis is induced in at least 10%, preferably in at least 15%, more preferably in at least 20%, most preferably in at least 25% of Raji tumor cells.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and induces ADCC activity in Raji tumor cells.
- ADCC related specific lysis of target cells such as Raji tumor cells as described supra can be assessed using e.g. a lactate dehydrogenase release assay (CytoTox 96 Non radioactive assay, Promega, Madison, USA).
- the humanized antibody or fragment thereof that binds to human CD19 induces ADCC activity in Raji tumor cells equivalent or even greater to induction of ADCC activity of the corresponding chimeric antibody.
- the humanized antibody or binding fragment thereof that binds CD19 has at least 80%, more preferably at least 100%, most preferably at least 120% of the ADCC activity of the corresponding chimeric antibody.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that inhibits proliferation of malignant B-cells.
- the humanized antibody or fragment thereof retains at least 60%, more preferably at least 80%, most preferably at least 90%, in particular 95%, more particular 100% of the inhibition of the proliferation of malignant B-cells of the corresponding chimeric antibody.
- Raji tumor cells or SU-DHL-6 cells as described supra can be used for assessing proliferation of malignant B-cells.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that inhibits clonogenicity of Raji tumor cells.
- the inhibition of clonogenicity is measured by counting the number of clones after treatment with the antibody and can be carried out according to e.g. Nahimana et al., 2009, Blood. 0: blood-2008-08-173369v1” (Blood, 2009, Vol. 113, No. 14, pp. 3276-3286).
- Raji tumor cells as described supra can be used for assessing clonogenicity.
- the number of clones counted after treatment with the humanized antibodies of the invention is at least 30%, preferably at least 40%, more preferably at least 50%, most preferably at least 60% less than the number of clones counted after treatment with the corresponding chimeric antibody.
- the inhibition of clonogenicity of Raji tumor cells confirms the strong inhibitory function of the humanized antibodies of the invention on B cell proliferation.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that causes B-cell depletion in blood.
- the B cell depletion caused is at least identical, preferably at least 1.5 times, more preferably at least 2 times greater than the B cell depletion caused by the corresponding chimeric antibody.
- B cell depletion can be assessed by determining the % positive B cells in whole blood after incubation with antibody as described in the Examples.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that internalizes in Raji tumor cells.
- the humanized antibody or fragment of the present invention internalizes at a degree comparable to the degree of internalization of the corresponding chimeric antibody.
- the internalization degree of the humanized antibody of the invention used at 0.01 ⁇ g/ml is between 50% and 150%, more preferably between 60% and 140%, most preferably between 70% and 130% of the internalization degree of the corresponding chimeric antibody.
- Antibody internalization can be assessed on Raji tumor cells as described supra using e.g. a secondary anti-human antibody conjugated to the toxin saporin (Hum-Zap, Advanced Targeting Systems, San Diego, Calif., USA).
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which has a FAB fragment thermostability temperature greater than 65° C., preferably greater than 70° C., more preferably greater than 75° C., most preferably greater than 80° C.
- FAB fragment thermostability temperature greater than 65° C., preferably greater than 70° C., more preferably greater than 75° C., most preferably greater than 80° C.
- the humanized antibody of the present invention has a FAB fragment thermostability temperature equivalent to the corresponding chimeric antibody.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which has a FAB fragment thermostability temperature equivalent to the FAB fragment thermostability temperature of the corresponding chimeric antibody.
- the present disclosure also provides isolated nucleic acids encoding the humanized antibodies and fragments thereof that bind to human CD19, vectors and host cells comprising the nucleic acid or the vector.
- the nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form.
- a nucleic acid is “isolated” or “rendered substantially pure” when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art, see e.g. F. Ausubel, et al, ed.
- a nucleic acid of the invention can be, for example, DNA or RNA and may or may not contain intronic sequences.
- the nucleic acid is a cDNA molecule.
- Nucleic acids of the invention can be obtained using standard molecular biology techniques e.g. cDNAs encoding the light and heavy chains of the antibody or encoding VH and VL segments can be obtained by standard PCR amplification or cDNA cloning techniques.
- cDNAs encoding the light and heavy chains of the antibody or encoding VH and VL segments can be obtained by standard PCR amplification or cDNA cloning techniques.
- an immunoglobulin gene library e.g., using phage display techniques
- one or more nucleic acids encoding the antibody can be recovered from the library.
- the methods of introducing exogenous nucleic acid into host cells are well known in the art, and will vary with the host cell used.
- transfection may be either transient or stable.
- Preferred nucleic acids molecules of the invention are those encoding the light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63 and/or the heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55.
- nucleic acids molecules encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 64, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 67; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 114, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 115, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 116, and a light chain chain
- the present disclosure also provides an isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23302.
- the heavy chain encoded by the deposited nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 comprises a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29.
- the present disclosure also provides an isolated nucleic acid comprising the light chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23303.
- the light chain encoded by the deposited nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 comprises a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 encoded by the isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23302 and the isolated nucleic acid comprising the light chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23303.
- the humanized antibody or fragment thereof that binds to human CD19 encoded by the isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No.
- DSM 23302 comprises a variant human IgG Fc region, preferably a variant human IgG1 Fc region, which comprises an amino acid substitution at amino acid position selected from the group consisting of 269, 274, 276, 298, 324 and 334, preferably selected from the group consisting of 269, 298 and 324, more preferably 298 and/or 324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- VH and VL segments are obtained, these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, or to fragments genes corresponding to the fragments described supra like Fab fragment genes or to a scFv gene.
- a VL- or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker.
- the term “operatively linked”, as used in this context, is intended to mean that the two DNA fragments are joined such that the amino acid sequences encoded by the two DNA fragments remain in-frame.
- the isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3).
- heavy chain constant regions CH1, CH2 and CH3
- the sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
- the heavy chain constant region can be an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but most preferably is an IgG1 constant region.
- the V[pi]-encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region.
- the isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL.
- the sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E.
- the light chain constant region can be a kappa or lambda constant region, preferably a kappa constant region.
- the VH- and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (GIy4-Ser) 3 , such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al. (1988) Science 242:423-426; Huston et al. (1988) Proc. Natl. Acad. ScL USA 85:5879-5883; McCafferty et al, (1990) Nature 348:552-554).
- a flexible linker e.g., encoding the amino acid sequence (GIy4-Ser) 3
- F(ab′)2 fragments can be isolated directly from recombinant host cell culture.
- the antibody of choice is a single-chain Fv fragment (scFv), see e.g. WO 1993/16185; U.S. Pat. No. 5,571,894; and U.S. Pat. No. 5,587,458.
- the antibody fragment may also be a “linear antibody”, e.g., as described in U.S. Pat. No. 5,641,870, for example.
- the nucleic acids that encode the antibodies of the present invention may be incorporated into an expression vector in order to express the protein.
- a variety of expression vectors may be utilized for protein expression.
- Expression vectors may comprise self-replicating extra-chromosomal vectors or vectors which integrate into a host genome. Expression vectors are constructed to be compatible with the host cell type.
- expression vectors which find use in the present invention include but are not limited to those which enable protein expression in mammalian cells, bacteria, insect cells, yeast, and in in vitro systems.
- a variety of expression vectors are available, commercially or otherwise, that may find use in the present invention for expressing antibodies.
- Expression vectors typically comprise a protein operably linked with control or regulatory sequences, selectable markers, any fusion partners, and/or additional elements.
- operably linked herein is meant that the nucleic acid is placed into a functional relationship with another nucleic acid sequence.
- regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes. Such regulatory sequences are described, for example, in Goeddel (Gene Expression Technology, Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990)).
- these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the antibody, and are typically appropriate to the host cell used to express the protein.
- the transcriptional and translational regulatory sequences may include promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences.
- expression vectors typically contain a selection gene or marker to allow the selection of transformed host cells containing the expression vector. Selection genes are well known in the art and will vary with the host cell used.
- the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced.
- Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr ⁇ host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
- DHFR dihydrofolate reductase
- Suitable host cells for cloning or expressing the DNA in the vectors herein are prokaryote, yeast, or higher eukaryote cells.
- Suitable prokaryotes for this purpose include eubacteria, including gram-negative or gram-positive organisms, for example, Enterobacteriaceae such as Escherichia , e.g., E. coli, Enterobacter, Klebsiella, Proteus, Salmonella , e.g., Salmonella typhimurium, Serratia , e.g., Serratia marcescans , and Shigella , as well as Bacilli such as B. subtilis and B.
- E. coli cloning hosts include E. coli 294 (ATCC 31,446), E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325).
- eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts.
- Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
- Kluyveromyces hosts including K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. WaItH (AJCC 56,500), K. drosopmarum (ATCC 36,906), K.
- thermotolerans or K. marxianusyarrowia (EP 402226); Pichia pastoris (EP 183,070); Candida; Trichoderma reesia (EP 244234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis ; and filamentous fungi including Neurospora, Penicillium, Tolypocladium , or Aspergillus hosts such as A. nidulans or A. niger.
- Suitable host cells for the expression of the humanized antibodies of the invention are derived from multicellular organisms.
- invertebrate cells include plaril and insect cells.
- Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes augypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified.
- a variety of viral strains for transfection are publicly available, for example, the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
- Host cells for expressing the recombinant antibodies of the invention are preferably mammalian host cells which include Chinese Hamster Ovary (CHO cells) (including dhfr ⁇ -> CHO cells, described in Urlaub and Chasin, (1980) Proc. Natl. Acad. ScL USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in R. J. Kaufman and P. A. Sharp (1982) J. MoI. Biol 159:601-621), NSO myeloma cells, COS cells and SP2 cells.
- Chinese Hamster Ovary CHO cells
- dhfr ⁇ -> CHO cells described in Urlaub and Chasin, (1980) Proc. Natl. Acad. ScL USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in R. J. Kaufman and P. A. Sharp (1982) J. MoI. Biol 159:601-6
- another preferred expression system is the GS gene expression system disclosed in WO 87/04462 (to Wilson), WO 89/01036 (to Bebbington) and EP 338841 (to Bebbington).
- the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more preferably, for secretion of the antibody into the culture medium in which the host cells are grown.
- Host cells useful for producing antibodies that bind to human CD19 may be cultured in a variety of media.
- DMEM Dulbecco's Modified Eagle's Medium
- Antibodies may be operably linked to a fusion partner to enable targeting of the expressed protein, purification, screening, display, and the like. Fusion partners may be linked to the antibody sequence via a linker sequences.
- the linker sequence will generally comprise a small number of amino acids, typically less than ten, although longer linkers may also be used. Typically, linker sequences are selected to be flexible and resistant to degradation. As will be appreciated by those skilled in the art, any of a wide variety of sequences may be used as linkers.
- a common linker sequence comprises the amino acid sequence GGGGS (SEQ ID NO: 126).
- a fusion partner may be a targeting or signal sequence that directs antibody and any associated fusion partners to a desired cellular location or to the extracellular media.
- certain signaling sequences may target a protein to be either secreted into the growth media, or into the periplasmic space, located between the inner and outer membrane of the cell.
- a fusion partner may also be a sequence that encodes a peptide or protein that enables purification and/or screening.
- Such fusion partners include but are not limited to polyhistidine tags (His-tags) (for example H6 and H10 or other tags for use with Immobilized Metal Affinity Chromatography (IMAC) systems (e.g.
- tags which are targeted by antibodies (for example c-myc tags, flag-tags, and the like). As will be appreciated by those skilled in the art, such tags may be useful for purification, for screening, or both.
- Antibodies can be produced by recombinant DNA techniques known to the skilled person. In additional antibodies can be produced by enzymatic or chemical cleavage of naturally occurring antibodies.
- Humanized antibodies of the present invention may be constructed by transferring one or more CDRs or portions thereof from VH and/or VL regions from a non-human animal (e.g., mouse) to one or more framework regions from human VH and/or VL regions.
- a non-human animal e.g., mouse
- human framework residues thus present in the VH and/or VL regions may be replaced by corresponding non-human (e.g., mouse) residues when needed or desired for decreasing immunogenicity of the antibody and/or maintaining binding affinity.
- non-human amino acid residues present in the CDRs may be replaced with human residues.
- Chimeric or humanized antibodies of the present invention can be prepared based on the sequence of a non-human monoclonal antibody prepared as described above.
- DNA encoding the heavy and light chain immunoglobulins can be obtained from the non-human hybridoma of interest and engineered to contain non-murine (e.g., human) immunoglobulin sequences using standard molecular biology techniques.
- murine variable regions can be linked to human constant regions using methods known in the art (see e.g., U.S. Pat. No. 4,816,567 to Cabilly et al).
- murine CDR regions can be inserted into a human framework using methods known in the art (see e.g., U.S. Pat. No. 5,225,539 to Winter, and U.S. Pat. Nos. 5,530,101; 5,585,089; 5,693,762 and 6,180,370 to Queen et al).
- Humanized antibodies of the present invention may be constructed wherein the human acceptor molecule for the heavy chain variable region is selected based on homology considerations between potential acceptor molecule variable regions and the heavy chain variable region of the murine antibody. Germline candidate human acceptor molecules are preferred to reduce potential immunogenicity. Germline databases are made up of antibody sequences that read through the end of the heavy chain FW3 region and partially into the CDR3 sequence. For selection of a FW4 region, databases of mature antibody sequences which have been derived from the selected germline molecule can be searched or antibody sequences which have been derived from the selected germline molecule from a human donor can be used.
- Human acceptor molecules are preferably selected from the same heavy chain class as the murine donor molecule, and of the same canonical structural class of the variable region of the murine donor molecule. Secondary considerations for selection of the human acceptor molecule for the heavy chain variable region elude homology in CDR length between the murine donor molecule and the human acceptor molecule. Human acceptor antibody molecules are preferably selected by homology search to the V-BASE database, although other databases such as the Kabat and the public NCBI databases may be used as well.
- Humanized antibodies of the present invention may be constructed wherein the human acceptor molecule for the light chain variable region is selected based on homology considerations between potential acceptor molecule variable regions and with the light chain variable region of the murine antibody. Germline candidate human acceptor molecules are preferred to reduce potential immunogenicity. Germline databases are made up of antibody sequences that read through the end of the heavy chain FW3 region and partially into the CDR3 sequence. For selection of a FW4 region, databases of mature antibody sequences which have been derived from the selected germline molecule can be searched or antibody sequences which have been derived from the selected germline molecule from a human donor can be used.
- Human acceptor molecules are preferably selected from the same light chain class as the murine donor molecule, and of the same canonical structural class of the variable region of the murine donor molecule. Secondary considerations for selection of the human acceptor molecule for the light chain variable region include homology in CDR length between the murine donor molecule and the human acceptor molecule. Human acceptor antibody molecules are preferably selected by homology searches to the V-BASE database, and other databases such as the Kabat and the public NCBI databases may be used as well.
- the present invention provides a method of producing a humanized antibody or fragment thereof that binds to human CD19 comprising culturing a host cell comprising an isolated nucleic acid encoding the humanized antibody or fragment thereof that binds to human CD19 or a vector comprising an isolated nucleic acid encoding the humanized antibody or fragment thereof that binds to human CD19 so that the nucleic acid is expressed and the antibody produced.
- the antibody is isolated.
- nucleic acids and vectors As host cells, nucleic acids and vectors, the ones described supra can be used. Expression of the nucleic acids can be obtained by, for example, a combination of recombinant DNA techniques and gene transfection methods as is well known in the art (e.g., Morrison, S. (1985) Science 229:1202) and as further outlined supra.
- DNAs encoding partial or full-length light and heavy chains can be obtained by standard molecular biology techniques (e.g., PCR amplification or cDNA cloning using a hybridoma that expresses the antibody of interest) and the DNAs can be inserted into vectors such as expression vectors.
- the expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
- the antibody light chain gene and the antibody heavy chain gene can be inserted into separate vector or, more typically, both genes are inserted into the same expression vector.
- the antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present).
- the light and heavy chain variable regions of the antibodies described herein can be used to create full-length antibody genes of any antibody isotype by inserting them into expression vectors already encoding heavy chain constant and light chain constant regions of the desired isotype such that the VH segment is operatively linked to the CH segment(s) within the vector and the VK segment is operatively linked to the CL segment within the vector.
- Antibodies of the invention can be tested for binding to human CD19 by, for example, standard ELISA or by binding to Raji tumor cells.
- Antibodies of the present invention may be isolated or purified in a variety of ways known to those skilled in the art. Standard purification methods include chromatographic techniques, including ion exchange, hydrophobic interaction, affinity, sizing or gel filtration, and reversed-phase, carried out at atmospheric pressure or at high pressure using systems such as FPLC and HPLC. Purification methods also include electrophoretic, immunological, precipitation, dialysis, and chromatofocusing techniques. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful.
- selected host cells can be grown in e.g spinner-flasks for monoclonal antibody purification.
- Supernatants can be filtered and concentrated before affinity chromatography with protein A-sepharose (Pharmacia, Piscataway, N.J.).
- Eluted IgG can be checked by gel electrophoresis and high performance liquid chromatography to ensure purity.
- the present invention provides a humanized anti-CD19 antibody or a fragment thereof that binds to human CD19, linked to a therapeutic agent, such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin.
- a therapeutic agent such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin.
- conjugates are referred to herein as “immunoconjugates”
- Immunoconjugates that include one or more cytotoxins are referred to as “immunotoxins.”
- a cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells.
- Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
- Therapeutic agents also include, for example, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vin
- An example of a calicheamicin antibody conjugate is commercially available (Mylotarg®; American Home Products).
- Cytotoxins can be linked to antibodies of the invention using linker technology available in the art. Examples of linker types that have been used to conjugate a cytotoxin to an antibody include, but are not limited to, hydrazones, thioethers, esters, disulfides and peptide-containing linkers.
- a linker can be chosen that is, for example, susceptible to cleavage by low pH within the lysosomal compartment or susceptible to cleavage by proteases, such as proteases preferentially expressed in tumor tissue such as cathepsins (e.g., cathepsins B, C, D).
- proteases such as proteases preferentially expressed in tumor tissue such as cathepsins (e.g., cathepsins B, C, D).
- Antibodies of the present invention also can be linked to a radioactive isotope to generate cytotoxic radiopharmaceuticals, also referred to as radioimmunoconjugates.
- radioactive isotopes that can be conjugated to antibodies for use diagnostically or therapeutically include, but are not limited to, iodine ⁇ 131>, indium ⁇ 111>, yttrium ⁇ 90> and lutetium ⁇ 177>.
- radioimmunoconjugates Methods for preparing radioimmunconjugates are established in the art. Examples of radioimmunoconjugates are commercially available, including Zevalin® (EDEC Pharmaceuticals) and Bexxar® (Corixa Pharmaceuticals), and similar methods can be used to prepare radioimmunoconjugates using the antibodies of the invention.
- the antibody immunoconjugates of the invention can be used to modify a given biological response, and the drug moiety is not to be construed as limited to classical chemical therapeutic agents.
- the drug moiety may be a protein or polypeptide possessing a desired biological activity.
- Such proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon-[gamma]; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
- IL-1 interleukin-1
- IL-2 interleukin-2
- IL-6 interleukin-6
- GM-CSF granulocyte macrophage colony stimulating factor
- G-CSF granulocyte colony stimulating factor
- the present invention provides a composition, e.g., a pharmaceutical composition, comprising the humanized antibody or fragment thereof, of the present invention, and a pharmaceutically acceptable carrier.
- a composition may include one or a combination of (e.g., two or more different) antibodies or immunoconjugates of the invention.
- a pharmaceutical composition of the invention can comprise a combination of antibodies (or immunoconjugates) that bind to different epitopes on the target antigen or that have complementary activities.
- Pharmaceutical compositions of the invention also can be administered in combination therapy, i.e., combined with other agents.
- the combination therapy can include an anti-CD19 antibody of the present invention combined with at least one other anti-inflammatory or immunosuppressant agent.
- “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
- the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
- the active compound i.e., antibody or immunoconjugate
- the active compound may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
- Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- the use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- the present invention provides a composition comprising an immunoconjugate comprising the humanized antibody or fragment thereof that binds to human CD19 linked to a therapeutic agent and a pharmaceutically acceptable carrier.
- Immunoconjugates and therapeutic agents which can be used are as described supra.
- a pharmaceutical composition of the invention may also include a pharmaceutically acceptable antioxidant.
- pharmaceutically acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic-acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
- water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
- oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxy
- aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
- Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- the humanized antibodies of the present invention have numerous in vitro and in vivo diagnostic and therapeutic utilities involving the diagnosis and treatment of CD19 mediated disorders.
- these molecules can be administered to cells in culture, in vitro or ex vivo, or to human subjects, e.g., in vivo, to treat, prevent and to diagnose a variety of CD19-mediated disorders.
- Preferred subjects are human and include patients having disorders mediated by CD19 activity (CD19 mediated disorders).
- the methods are particularly suitable for treating human patients having a CD19-mediated disorder associated with aberrant B cell populations.
- a “patient” for the purposes of the present invention includes both humans and other animals, preferably mammals and most preferably humans.
- the antibodies of the present invention have both human therapy and veterinary applications.
- treatment or “treating” in the present invention is meant to include therapeutic treatment, as well as prophylactic, or suppressive measures for a disease or disorder.
- successful administration of an antibody prior to onset of the disease results in treatment of the disease.
- successful administration of an antibody after clinical manifestation of the disease to combat the symptoms of the disease comprises treatment of the disease.
- Treatment also encompasses administration of an antibody after the appearance of the disease in order to eradicate the disease.
- Successful administration of an antibody after onset and after clinical symptoms have developed, with possible abatement of clinical symptoms and perhaps amelioration of the disease, comprises treatment of the disease.
- Those “in need of treatment” include mammals already having the disease or disorder, as well as those prone to having the disease or disorder, including those in which the disease or disorder is to be prevented.
- the humanized antibodies are used in vivo to treat, prevent or diagnose a variety of CD19-mediated diseases.
- the invention provides a method for treating a CD19 mediated disorder in a subject, the method comprising administering to the subject a therapeutically effective amount of the humanized antibody or fragment thereof.
- Exemplary CD19 mediated disorders include autoimmune disorder including rheumatoid arthritis, cancer, non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia, Burkitt's lymphoma, anaplastic large-cell lymphomas (ALCL), cutaneous T-cell lymphomas, nodular small cleaved-cell lymphomas, peripheral T-cell lymphomas, Lennert's lymphomas, immunoblastic lymphomas, T-cell leukemia/lymphomas (ATLL), adult T-cell leukemia (T-ALL), entroblastic/centrocytic (cb/cc) follicular lymphomas cancers, diffuse large cell lymphomas of B lineage, angioimmunoblastic lymphadenopathy (AILD)-like T cell lymphoma, HIV associated body cavity based lymphomas, Embryonal Carcinomas, undifferentiated carcinoma
- Anti-CD20 antibody resistant B-cell cancers are e.g. rituximab (Rituxan®) resistant B-cell cancers, which is the preferred anti-CD20 antibody resistant B-cell cancer.
- Preferred cancers are hematologic cancers, especially cancers relating to lymphomas and leukemias expressing CD19, in particular non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and hairy cell leukemia.
- Preferred CD19 mediated disorders to be treated with the antibody of the invention are selected from the group consisting of non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia, rheumatoid arthritis, systemic lupus erythematosus (SLE), and anti-CD20 antibody resistant B-cell cancers. More preferred CD19 mediated disorders to be treated with the antibody of the invention are rheumatoid arthritis, non-Hodgkin's lymphoma or anti-CD20 antibody resistant B-cell cancers.
- “Autoimmune disorders” include allogenic islet graft rejection, alopecia areata, ankylosing spondylitis, antiphospholipid syndrome, autoimmune Addison's disease, antineutrophil cytoplasmic autoantibodies (ANCA), autoimmune diseases of the adrenal gland, autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune myocarditis, autoimmune neutropenia, autoimmune oophoritis and orchitis, autoimmune thrombocytopenia, autoimmune urticaria, Behcet's disease, bullous pemphigoid, cardiomyopathy, Castleman's syndrome, celiac spruce-dermatitis, chronic fatigue immune disfunction syndrome, chronic inflammatory demyelinating polyneuropathy, Churg-Strauss syndrome, cicatrical pemphigoid, CREST syndrome, cold agglutinin disease, Crohn's disease, dermatomyositis, discoid lupus, essential mixed cry
- cryoglobulinemia IgM mediated neuropathy, neuromyelitis optica, idiopathic membranous nephropathy, opsoclonus myoclonus, and Wegner's granulomatosis.
- the CD19 mediated disease is preferably a tumorigenic disorder like cancer, e.g., a disorder characterized by the presence of tumor cells expressing CD19 including, for example, non-Hodgkin's lymphoma (NHL), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia Burkitt's lymphoma, anaplastic large-cell lymphomas (ALCL), multiple myeloma, cutaneous T-cell lymphomas, nodular small cleaved-cell lymphomas, lymphocytic lymphomas, peripheral T-cell lymphomas, Lennert's lympho mas, immunoblastic lymphomas, T-cell leukemia/lymphomas (ATLL), adult T-cell leukemia (T-ALL),
- NHL non-Hodgkin's lymphoma
- ALL acute lymphocytic leukemia
- CLL chronic lymphocytic leukemia
- ACL ana
- the present invention provides a method of inhibiting growth of tumor cells expressing CD19, comprising contacting the cells with the humanized antibody or fragment thereof of the invention, in an amount effective to inhibit growth of tumor cells.
- Tumor cells are typically selected from human Burkitt lymphoma cells, human B cell precursor leukemia cells, human B cell leukemia cells or human B-cell lymphoma cells, preferably human Burkitt lymphoma cells or human B-cell lymphoma cells.
- the present invention further provides a method of depleting B cells in a subject comprising administering to the subject the humanized antibody or fragment thereof of the invention in an amount effective to deplete B cells from the subject.
- the antibodies of the invention can be used to detect levels of CD19, or levels of cells which contain CD19 on their membrane surface, which levels can then be linked to certain disease symptoms.
- the antibodies can be used to inhibit or block CD19 function which, in turn, can be linked to the prevention or amelioration of certain disease symptoms, thereby implicating CD19 as a mediator of the disease. This can be achieved by contacting a sample and a control sample with the anti-CD19 antibody under conditions that allow for the formation of a complex between the antibody and CD19. Any complexes formed between the antibody and CD19 are detected and compared in the sample and the control.
- the antibodies of the invention can be used to specifically detect CD19 expression on the surface of cells and, moreover, can be used to purify CD19 via immunoaffinity purification.
- the antibodies of the invention can be initially tested for binding activity associated with therapeutic or diagnostic use in vitro.
- compositions of the invention can be tested using the flow cytometric assays described in the Examples below.
- the present disclosure further provides the use of a humanized antibody or fragment thereof as a medicament and the use of a humanized antibody or fragment thereof in the preparation of a medicament for the treatment of a CD19 mediated disorder.
- the present disclosure provides the humanized antibody or fragment thereof for use as a medicament.
- the humanized antibody or fragment thereof for use in a method for treating a CD19 mediated disorder are the ones as described supra.
- human anti-CD19 antibodies of the invention can be co-administered with one or other more therapeutic agents, e.g., a cytotoxic agent, a radiotoxic agent or an immunosuppressive agent.
- the antibody can be linked to the agent (as an immunocomplex) or can be administered separate from the agent. In the latter case (separate administration), the antibody can be administered before, after or concurrently with the agent or can be co-administered with other known therapies, e.g., an anti-cancer therapy, e.g., radiation.
- the dosage ranges from about 0.0001 to 100 mg/kg, and more usually 0.01 to 10 mg/kg, of the host body weight.
- An exemplary treatment regime entails administration once per week, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months.
- the antibody is usually administered on multiple occasions. Intervals between single dosages can be, for example, weekly, monthly, every three months or yearly. Intervals can also be irregular as indicated by measuring blood levels of antibody to the target antigen in the patient. In some methods, dosage is adjusted to achieve a plasma antibody concentration of about 1-1000 ⁇ g/ml and in some methods about 25-300 ⁇ g/ml. Alternatively, antibody can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated.
- Actual dosage levels of the active ingredients i.e. the antibody in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, the rate of excretion of the particular antibody being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- a “therapeutically effective amount” of an anti-CD19 antibody of the invention preferably results in a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, and/or a prevention of impairment or disability due to the disease affliction.
- a “therapeutically effective amount” preferably inhibits cell growth or tumor growth by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects.
- the ability of a compound to inhibit tumor growth can be evaluated in an animal model system predictive of efficacy in human tumors.
- this property of a composition can be evaluated by examining the ability of the compound to inhibit cell growth, such inhibition can be measured in vitro by assays known to the skilled practitioner.
- a therapeutically effective amount of a therapeutic compound can decrease tumor size, or otherwise ameliorate symptoms in a subject.
- One of ordinary skill in the art would be able to determine such amounts based on such factors as the subject's size, the severity of the subject's symptoms, and the particular composition or route of administration selected.
- the antibody or the composition of the present invention can be administered via one or more routes of administration using one or more of a variety of methods known in the art.
- routes of administration include intravenous, intramuscular, intradermal, intraperitoneal, subcutaneous, spinal or other parenteral routes of administration, for example by injection or infusion. More preferred routes of administration are intravenous or subcutaneous.
- parenteral administration means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
- an antibody of the invention can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
- an article of manufacture comprising the humanized antibody or fragment thereof, the composition or the immunoconjugate of the invention for the treatment of a CD19 mediated disorder.
- the article of manufacture may comprise a container and a label or package insert on or associated with the container.
- Suitable containers include, for example, bottles, vials or syringes.
- the containers may be formed from a variety of materials such as glass or plastic.
- the container holds a composition that may be effective for treating the condition and may have a sterile access port (e.g., the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- At least one active agent in the composition may be the humanized antibody described herein.
- the label or package insert may indicate that the composition may be used for treating the condition of choice, such as cancer. In one embodiment, the label or package insert may indicate that the composition comprising the humanized antibody may be used to treat a CD19-mediated disorder.
- the article of manufacture may comprise (a) a first container with a composition contained therein, wherein the composition comprises the humanized antibody herein, and (b) a second container with a composition contained therein, wherein the composition comprises a therapeutic agent other than the humanized antibody.
- the article of manufacture in this embodiment of the disclosure may further comprise a package insert indicating that the first and second compositions can be used in combination to treat a CD19 mediated disease or disorder.
- Such therapeutic agent may be any of the adjunct therapies described in the preceding section (e.g., a thrombolytic agent, an anti-platelet agent, a chemotherapeutic agent, an anti-angiogenic agent, an anti-hormonal compound, a cardioprotectant, and/or a regulator of immune function in a mammal, including a cytokine).
- a thrombolytic agent e.g., a thrombolytic agent, an anti-platelet agent, a chemotherapeutic agent, an anti-angiogenic agent, an anti-hormonal compound, a cardioprotectant, and/or a regulator of immune function in a mammal, including a cytokine.
- the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
- BWFI bacteriostatic water for injection
- phosphate-buffered saline such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution.
- BWFI bacteriostatic water for injection
- phosphate-buffered saline such as phosphate-buffered saline, Ringer's solution and dextrose solution.
- dextrose solution such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution
- kits comprising the antibody, the compositions or the immunoconjugates of the invention and instructions for use.
- the kit can further contain one ore more additional reagents, such as an immunosuppressive reagent, a cytotoxic agent or a radiotoxic agent, or one or more additional humanized antibodies of the invention (e.g., a humanized antibody having a complementary activity which binds to an epitope in the CD 19 antigen distinct from the first humanized antibody).
- Humanizing the anti-human CD19 murine antibody FMC63 including selection of human acceptor frameworks, back mutations, and mutations that substantially retain and/or improve the binding properties of human CDR-grafted acceptor frameworks is described herein.
- FMC63 is a murine IgG2a, kappa antibody isolated from mice immunized with the human prolymphocytic leukaemia cell line JVM3 (Zola H. et al (1991), Immunol Cell Biol., 69:411-22.), and for which variable regions are known and publicly available (Heavy chain NCBI accession number, CAA74659 (SEQ ID NO: 1); Light chain NCBI accession number, CAA74660 (SEQ ID NO: 2)).
- Methods for assaying antigen-binding affinity are well known in the art and include half-maximal binding assays, competition assays, and Scatchard plot analysis.
- Human acceptor frameworks Homology matching was used to choose human acceptor frameworks to graft FMC63 CDRs.
- Databases e.g. a database of germline variable genes from the immunoglobulin loci of human and mouse, VBASE2 (Retter I. et al, 2005, Nucleic Acids Res., 33, Database issue D671-D674), or the Kabat database (Johnson G.
- VH and VL sequences within these subfamilies to be used as acceptor may be based upon sequence homology and/or a match of structure of the CDR1 and CDR2 regions to help preserve the appropriate relative presentation of the six CDRs after grafting.
- VBASE2 database indicates that the kappa light chain of FMC63 is of the kappa one subfamily given that good homology was identified between the FMC63 VL framework and the members of the human kappa subfamily I.
- the highest homology and identity of both CDRs and framework sequences is observed for four germline sequences: IGKV1-5*03 (VBASE2 ID humIGKV087) (SEQ ID NO:3), IGKV1-27*01 (VBASE2 ID humIGKV106) (SEQ ID NO:4), IGKV1-39*01 (VBASE2 ID humIGKV115) (SEQ ID NO:5), and IGKV1-12*01 (VBASE2 ID humIGKV094) (SEQ ID NO:6); which have a sequence identity of 70.4%, 75%, 76.1%, and 72.7% respectively for the whole sequence up to CDR3 and a sequence identity of 74.3%, 78.6%, 78.6%, and
- VBASE2 indicates that the VH sequence of FMC63 through to framework three falls in the human VH subfamily III.
- FMC63 shows the highest sequence homology with IGHV3-33*01 (VBASE2-ID: humIGHV199) (SEQ ID NO: 11), IGHV3-11*01 (VBASE2-ID: humIGHV175) (SEQ ID NO: 12), IGHV3-30*18 (VBASE2-ID: humIGHV195) (SEQ ID NO: 13), and IGHV3-48*01 (VBASE2-ID: humIGHV031) (SEQ ID NO: 14), which exhibit sequence homology above 70.4% for framework and CDR regions.
- a source to identify compatible JH segments is cDNAs prepared from healthy donor B-cell mRNA amplified with degenerate primers and IgM heavy chain first constant domain (Table 2).
- VH2 Human VH and VL fragments prepared above were used to initiate humanization process.
- cDNAs were used as templates for CDR grafting using overlap PCR assembly to provide first humanized candidates based on the following heavy and light chains: VH2 (SEQ ID NO: 19), VH5 (SEQ ID NO: 20), VH16 (SEQ ID NO: 21), VH20 (SEQ ID NO: 22), VL39 (SEQ ID NO: 23), VL40 (SEQ ID NO: 24), VL43 (SEQ ID NO: 25), and VL44 (SEQ ID NO: 26), in which original CDRs have been replaced with FMC63 CDRs as shown in Table 3.
- VH2, VH5, VH16 and VH20 heavy chains were based on cDNA encoding SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, and SEQ ID NO: 18, respectively, with CDRs exchanged for FMC63 CDRs using a four-fragment assembly PCR strategy as described in Tables 4, and 5.
- a similar strategy was used for VL39, VL40, VL43, and VL44 as shown in Tables 6, and 7.
- Engineered heavy and light chains coding DNA sequences were ligated in independent vectors that are based on a modified pREP4 (Invitrogen, CA, USA) vector carrying CMV promoter and Bovine Growth Hormone poly-adenylation signal.
- Light chain specific vector allows expression of Kappa isotype light chains by ligating variable Kappa light chain cDNA fragments in front of Kappa light chain constant domain cDNA using BamHI and BsiWI restriction sites; while heavy chain specific vector was engineered to ligate variable heavy chain cDNA fragments in front of a cDNA encoding the ⁇ 1, hinge, ⁇ 2, and ⁇ 3 constant domains using BamHI and SalI restriction sites.
- HEK-EBNA cells For transient expression of immunoglobulin candidates, equal quantities of heavy and light chains vectors were co-transfected into suspension-adapted HEK-EBNA cells (ATCC-CRL-10852) using Polyethyleneimine (PEI). Typically, 100 ml of cells in suspension at a density of 0.8-1.2 million cells per ml is transfected with a DNA-PEI mixture containing 50 ⁇ g of expression vector encoding the heavy chain and 50 ⁇ g expression vector encoding the light chain.
- PEI Polyethyleneimine
- antibodies are produced by further culturing the cells for a period of 4 to 5 days to allow for secretion into the culture medium (EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland), supplemented with 0.1% pluronic acid, 4 mM glutamine, and 0.25 ⁇ g/ml geneticin). Antibodies were then purified from cell-free supernatant using recombinant protein-A streamline media (GE, Switzerland), and buffered exchanged into phosphate buffer saline prior to assays.
- the culture medium EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland
- Antibodies were then purified from cell-free supernatant using recombinant protein-A streamline media (GE, Switzerland), and buffered exchanged into phosphate buffer saline prior to assays.
- the antibody consisting of VH16 heavy chain paired to light VL43 had superior level of expression in transient transfections as well as superior melting temperature of its FAB fragment and consequently was selected for further back-mutations and rational engineering as shown in Table 8.
- Germline frameworks are typically better than individual mature antibody framework as acceptor frameworks for humanized antibodies because their lack of somatic mutations may lower the degree of immunogenicity.
- VH16 is derived from healthy donor B-cell mRNA using degenerate primers designed according to germline sequences from VBASE2, and this procedure provides antibodies that have not yet encountered any antigens. However, since the frequency of truly na ⁇ ve antibodies depend heavily on the source of B cells, mutations can also be observed with the above procedure (Klein U. et al, 1997, Blood 89, p 1288-1298). Both VH16 and VL 43 had a low contain of non-germline residues that were mutated back to germline, these changes were VH16-Q6E, VL43-V3Q, and VL43-T7S as shown in Table 13.
- VH16-VL43 antibody All germline changes were found to have no impact on VH16-VL43 antibody, whether on its affinity nor on its FAB stability and only transient level of expression was significantly increased. Subsequently, VH16-VL43 variants with germline residues at position VL43-V3Q, and VL43-T7S were used for affinity improvement through rational design (below).
- FMC63 CDRs have high tyrosine content: heavy chain CDR1 (position 32), heavy chain CDR2 (positions 58, and 59), heavy chain CDR3 (positions 96, 97, 98, and 100b), light chain CDR1 (position 32), and light chain CDR3 (position 96).
- heavy chain CDR3 Y96, Y97, Y98, and Y100b
- two other tyrosine residues found in heavy chain CDR1 and light chain CDR1, both at position 32 are the four tyrosine residues in heavy chain CDR3 (Y96, Y97, Y98, and Y100b), and the two other tyrosine residues found in heavy chain CDR1 and light chain CDR1, both at position 32.
- Phenylalanine mutants measurements in the context of the heavy chain R94K mutations show that heavy chain mutant 32, 97, 98 as well as light chain mutant 32 are superior to parental molecule VH16-R94K/VL43, with heavy chain mutant Y97F having 72.8% of chimeric FMC63 affinity as shown in Table 14.
- Light chain P44 is located at the bottom of the interface between heavy and light chain, a location that could explain the great affinity improvement when back mutated to valine.
- Two other hydrophobic amino-acids were investigated at position 44 to possibly tune (or better adjust) the interface between light and heavy chain: isoleucine and leucine variants were constructed in the context of the VH16-R94K variants as shown in Table 15. Affinity and stability measurements revealed that isoleucine was superior to the valine back-mutation at position 44, while change for a leucine only provided a mild improvement despite being a more logical choice.
- Deamidation is a major route of antibody degradation. Deamidation of Asn to Asp is highly sequence-dependent and occurs in regions of the protein which are known or predicted to be flexible as in CDR regions (Bischoff and Kolbe (Journal of Chromatography B, 662 (1994), 261-278); this usually involves Asn residues located in CDRs. A high probability for deamidation of its asparagine was identified in CDR3 of the FMC63 light chain at position 91 to 93 (GNT). Hence to prevent putative deamidation, the following changes were investigated in the context of the VH16-R94K heavy chain: VL43-N92A, VL43-T93V and VL-43-T93A as shown in Table 16. It was found that both N92A and T93A maintain binding affinity. N92A variant was also found to have improved FAB stability.
- VL43 human acceptor has been carried out at position F71. Binding activity to Raji of VH16 R94K VL43 F71H (SEQ ID NO: 61), VH16 R94K VL43 F71S (SEQ ID NO: 62), and VH16 R94K VL43 F71T (SEQ ID NO: 63) was similar to binding activity of VH16 R94K VL43.
- a chimeric FMC63 i.e. an antibody which consists of the FMC63 murine heavy variable domain fused to human IgG1 heavy constant domains as shown in SEQ ID NO: 68 and the murine light variable domain fused to kappa constant domain as shown in SEQ ID NO: 69, was used as standard.
- Results for binding to Raji or NALM-6 are shown in Table 11, 13-17, and binding to the SU-DHL-6 cell line are shown in FIG. 3 . All results in FIG. 3 were measures of the mean fluorescent intensity (MFI) of cell staining.
- MFI mean fluorescent intensity
- MPF Mid-Point Fluorescence
- FIG. 3 shows the dramatic improvement in affinity for SU-DHL-6 cells along the different humanization steps from VH16/VL43 antibody to VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A antibody.
- the latter reaches strong affinity to B cells similar to the FMC63 chimera.
- the affinity improvements of the FMC63 humanized antibodies to cells are a direct result of mutations that substantially retain and/or improve the binding properties of human CDR-grafted acceptor frameworks as described above.
- the constant binding affinity of an antibody to its target can be determined with a saturation binding curve. At equilibrium, the amounts of bound and free antibody to its binding site are indicative of the dissociation binding constant Kd. Usually, for one single binding site, the ratio bound/free versus bound antibody has a linear correlation, where the slope corresponds to the inverse of the binding constant Kd.
- Eu 3+ offers the possibility to quantify the amount of bound antibody molecules to cells as well as free antibody molecules. Saturation of binding to Raji cells by selected humanized candidates was followed via Eu 3+ using time resolved fluorescence. To demonstrate the binding specificity of Eu 3+ -labelled candidates without unspecific behaviour of the Eu 3+ dye to the cell surface, a negative isotype human IgG1 was also labelled with Eu 3+ .
- Raji cells as described in Example 2 were grown in RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland). The cells were washed with the same culture medium and adjusted to a final concentration of 1 ⁇ 10 6 cells/ml. A 100 ⁇ l volume of Raji cells was seeded in U-bottomed 96-well plate.
- the amount of free Eu 3+ -labelled antibodies were measured by transferring aliquots of cell-free supernatant (volumes were empirically adjusted depending on antibody concentration; cells were spun at 1300 RPM for 2 min) into a fresh plate containing 100 ⁇ l of Delfia solution (PerkinElmer, MA, USA; an enhancer of Eu 3+ fluorescence). To ensure complete removal of the supernatant, cells were spin down once more at 1300 RPM for 2 minutes. After the second centrifugation, the supernatant was discarded, and cells were washed twice with 200 ⁇ l of cold binding buffer (PBS-2.5% FBS-0.05% NaN 3 ). Cell pellets were resuspended into 100 ⁇ l of Delfia solution.
- PBS-2.5% FBS-0.05% NaN 3 cold binding buffer
- Another way to evaluate the binding affinity of each humanized antibodies is to measure binding competition against the parental chimeric FMC63 antibody on Raji cells.
- Eu 3+ -FMC63 europium-labelled chimeric FMC63
- increasing concentrations of unlabelled antibody were added together with a constant amount of Eu 3+ -FMC63.
- Serial dilutions of the competitor antibodies were prepared into a separate 96-well plate into PBS-2.5% FBS-0.05% NaN 3 and subsequently mixed with a constant amount of Eu 3+ -FMC63.
- the antibody dilutions were cooled down to 4° C. before 100 n1 was taken and added on the Raji cells.
- Final dilutions of unlabelled humanized antibodies ranged from 100 nM up to 4.2 pM, while the concentration of Eu 3+ -FMC63 was maintained at 0.2 nM.
- Cells were incubated with the antibodies for 15 minutes on ice. After reaching equilibrium, the cells were centrifuged at 1300 RPM for 2 minutes and supernatant was discarded.
- the framework VH16VL43 which does not include mutations, displays little affinity for Raji cells (72.8 nM) while humanized variant VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A exhibits a very high affinity, equivalent to FMC63 chimera (1.9 nM versus 1.4 nM). Results with standard deviation have been determined at least 3 times.
- Antibody Ki FMC63 Chimera 1.4 ⁇ 0.32 Isotype control IgG1 No Competition VH16/VL43 72.8 VH16-R94K/VL43 7.6 VH16-R94K/VL43-V3Q-T7S-P44I-N92A 3.9 ⁇ 1.02 VH16-R94K-Y100 B F/VL43-V3Q-T7S-Y32F-P44I- 2.1 ⁇ 0.5 N92A VH16-R94K-Y100 B F/VL43-V3Q-T7S-P44I-N92A 1.9 VH16-Y32F-R94K-Y97F/VL43-V3Q-T7S-N92A 49.9
- ADCC Antibody-Dependent Cellular Cytotoxicity
- ADCC activities of humanized anti-CD19 antibodies were measured by lactate deshydrogenase (LDH)-releasing assay using the CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, Madison, USA).
- Human peripheral blood mononuclear cells (PBMC) were purified from citrated whole blood by standard Ficoll-paque separation, resuspended in complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland)), and 100 U/ml of human IL-2 (Sigma, Missouri, USA)) and incubated overnight at 37° C.
- RPMI-1640 medium Chemie Brunschwig AG, PAA, Basel,
- PBMC peripheral blood mononuclear cells
- the CD19 + cell line Raji as described in Example 2 was used as target cells. Raji cells were washed twice and resuspended in complete medium at a density of 0.2 ⁇ 10 6 cells/ml.
- Fifty microliters of antibody diluted at 1.5 ng/ml (final concentration was 0.5 ng/ml) were mixed with 50 ⁇ l of target cells, and added to an equivalent volume of PBMC into a U-bottomed 96-well plate.
- a target to effector ratio of 1:40 was used throughout the experiments.
- FIG. 5A and FIG. 5B show little specific Raji lysis due to IgG1 control.
- Raji cells as described in Example 2 were prepared at 1 ⁇ 10 6 cells/ml in RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland)), and 100 ⁇ l per well in a 96-well plate or 1 ml in a 24-well plate were seeded.
- RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Base
- FIG. 6 shows Annexin-V and PI staining of Raji cells incubated with 1 ⁇ g/ml antibody for 2.5 h.
- VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A and VH16-R94K/VL43-V3Q-T7S-P44I-N92A humanized anti-CD19 antibodies induced strong annexin-V staining and cell death
- the parental chimeric FMC63 had no effect on apoptosis.
- the slight increase of annexin-V staining after chimeric FMC63 treatment observed on FIG. 6 was not reproducible and not significant.
- cells (Raji or SU-DHL-6 as described in Example 2) were seeded at a density of 2 ⁇ 10 5 cells per ml, with 100 ⁇ l per well.
- Cells are incubated with 100 ⁇ l of antibodies previously sterilized and diluted in RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland) to reach final concentrations of 0.0016 to 1 ⁇ g/ml (0.01 ⁇ M to 6.6 ⁇ M).
- RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2
- FIG. 7A shows level of proliferation of SU-DHL-6 after 72 h incubation with antibodies.
- An irrelevant IgG1 and an anti-HLA-DR antibody which strongly binds SU-DHL-6 were used as negative and positive control, respectively.
- Humanized antibodies VH16-R94K-Y100BF/VL43-V3Q-T7S-Y32F-P44I-N92A, VH16-R94K/VL43-V3Q-T7S-P44I-N92A and VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A (not shown) have strong inhibitory function on cell proliferation even at concentration as low as 0.01 ⁇ g/ml. Therefore, in addition to the early induction of apoptosis, anti-CD19 antibodies block B cell proliferation within 72 h.
- Clonogenic assay is another method to assess tumor cell death by humanized anti-CD19 antibodies. The method is regularly used to evaluate the anti-proliferative function of antibodies (Chan H T C, Cancer Research 2003). We performed clonogenic assay using the colony-forming cell assay and complete MethoCult medium (StemCell Technologies, Grenoble, France). Raji cells (as described in Example 2) were prepared at 1 ⁇ 10 6 cells/ml and seeded at 100 ⁇ l/well in 96-well plates.
- RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland), antibody concentration was 0.2 ⁇ g/ml) for 90 minutes.
- Raji cells plus antibodies were then diluted in Iscove's medium to reach a count of 500 cells in 100 ⁇ l, and finally mixed with 1.1 ml of MethoCult medium.
- Humanized anti-CD19 antibodies strongly decreased the number of Raji clones either by inducing apoptosis and killing during the first 90 min of incubation or by inhibiting cell division or both. This experiment is representative of several experiments and was performed in duplicate. The results confirm the effect of humanized anti-CD19 antibodies on B cell killing and inhibition of proliferation.
- Raji cells as described in Example 2 were seeded at 1 ⁇ 10 5 cells/ml, 100 ⁇ l per well in RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland).
- Antibodies were diluted in Hum-Zap previously prepared at 100 ng/10 ⁇ l in RPMI-1640 complete cell medium (above). Ten ⁇ l of the mixture antibody plus Hum-Zap were added on Raji cells.
- the final concentrations of the antibodies ranged from 0.5 to 0.005 ⁇ g/ml.
- Cells with antibodies were then incubated for 48 h before measurement of cytotoxicity using alamarBlue.
- the percentage of cell proliferation was calculated as followed: Fluorescence (emission 590 nm) of antibody-treated cells/fluorescence (emission 590 nm) of control cells (Hum-Zap only) ⁇ 100.
- Controls with antibodies and without Hum-Zap were also performed and did not show any significant effects on cell proliferation after 48 h.
- We observed internalization of the humanized anti-CD19 antibodies FIG. 8 ).
- Calorimetric measurements were carried out on a VP-DSC differential scanning microcalorimeter (MicroCal, Northampton, UK). The cell volume was 0.128 ml, the heating rate was 1° C./min, and the excess pressure was kept at 64 p.s.i. All protein fragments were used at a concentration of 1-0.5 mg/ml in PBS (pH 7.4). The molar heat capacity of each protein was estimated by comparison with duplicate samples containing identical buffer from which the protein had been omitted. The partial molar heat capacities and melting curves were analyzed using standard procedures. Thermograms were baseline corrected and concentration normalized before being further analyzed using a Non-Two State model in the software Origin v7.0.
- Peripheral blood was obtained by venipuncture and was diluted by 2 in RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland).
- CD19 + or CD20 + or CD22 + B cells represented 9 to 10% of the leukocyte population when incubated with the control IgG1.
- a cDNA coding the VH16 R94K heavy chain (SEQ ID NO: 64) cDNA was converted to heavy chains VH16 R94K/324(NNK), VH16 R94K/S298A (SEQ ID NO: 114), VH16 R94K/E269D/S298A (SEQ ID NO: 115), VH16 R94K/S298A/S324N (SEQ ID NO: 116), VH16 R94K/E269D/S298A/S324N (SEQ ID NO: 117), by standard mutagenesis.
- NNK at position 324 describes the substitution of the wild-type serine encoding codon with a NNK codon which provides substitution with all 20 amino acids (hard randomization).
- variant coding DNA sequences were ligated in a vector that is based on a modified pREP4 (Invitrogen, CA, USA) vector carrying CMV promoter and Bovine Growth Hormone poly-adenylation signal.
- pREP4 Invitrogen, CA, USA
- secretion was driven by the murine VJ2C leader peptide.
- each heavy chain and light chain vectors was co-transfected into suspension-adapted HEK-EBNA cells (ATCC-CRL-10852) using Polyethyleneimine (PEI).
- PEI Polyethyleneimine
- 100 ml of cells in suspension at a density of 0.8-1.2 million cells per ml is transfected with a DNA-PEI mixture containing 50 ng of expression vector encoding the variant heavy chain and 50 ng expression vector encoding the VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) light chain.
- the construct is produced by further culturing the cells for a period of 4 to 5 days to allow for secretion into the culture medium (EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland), supplemented with 0.1% pluronic acid, 4 mM glutamine, and 0.25 ng/ml geneticin.
- the construct was then purified from cell-free supernatant using recombinant Streamline rProtein A media (GE, Switzerland), and used for further analysis.
- a cell-based assay was used to measure the capacity of the variants to mediate CDC.
- Lysis was measured using release of lactate dehydrogenase (LDH) to monitor lysis of variant-opsonized Raji cells by baby rabbit complement (Harlan Laboratories, C-0099F, AN VENRAY, The Netherlands).
- Target cells were washed 2 times with complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland) and 1% Ultraglutamine (Lonza, Verviers, Belgium)) by centrifugation and resuspension.
- FBS fetal bovine serum
- EUG Ultraglutamine
- Baby rabbit serum was diluted to 7.5% with complete medium and added to antibody-opsonized target cells. Plates were incubated for 3 hours at 37° C. Cell cytotoxicity was measured using the Cyto Tox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, Madison, USA).
- FIG. 9 and FIG. 10 show little specific lysis due to IgG1 control antibody (Herceptin®, Roche Pharma A.G., Reinach, Switzerland); however, complement-induced lysis was increased at least 1.6 fold ( FIG. 9 ) to a maximum of 5.5 fold ( FIG.
- VH16 R94K/S324N SEQ ID NO: 118
- VL43 V3Q/T7S/P44I/N92A SEQ ID NO: 65
- both VH16 R94K/S298A/S324N SEQ ID NO: 116)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody
- VH16 R94K/E269D/S298A/S324N SEQ ID NO: 117
- VL43 V3Q/T7S/P44I/N92A SEQ ID NO: 65
- FIGS. 9 and 10 show results in triplicate ⁇ standard deviation.
- ADCC activities of antibodies were measured by lactate dehydrogenase (LDH)-releasing assay using the CytoTox 96 Non-Radoactive Cytotoxicity Assay kit (Promega, Madison, USA).
- Human peripheral blood mononuclear cells (PBMC) were purified from citrated whole blood by standard Ficoll-paque separation, resuspended in complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland)), and 100 U/ml of human IL-2 (Sigma, Missouri, USA)) and incubated overnight at 37° C.
- RPMI-1640 medium Chemie Brunschwig AG, PAA, Basel, Switzerland
- PBMC peripheral blood mononuclear cells
- the CD19 + cell line Raji as described in Example 2 was used as target cells. Raji cells were washed twice and resuspended in complete medium at a density of 0.2 ⁇ 10 6 cells/ml.
- Fifty microliters of antibody diluted at 1.5 ⁇ g/ml (final concentration was 0.5 ⁇ g/ml) were mixed with 50 ⁇ l of target cells, and added to an equivalent volume of PBMC into a U-bottomed 96-well plate.
- a target to effector ratio of 1:40 was used throughout the experiments.
- FIG. 11 show no specific Raji lysis due to IgG control antibody (Herceptin®, Roche Pharma A.G., Reinach, Switzerland), and some cytotoxicity for the parental antibody; data shown are the mean cytotoxicity percentage ⁇ SD of triplicate wells using PBMC isolated from one donor.
- antibody-induced lysis was increased at least 5 fold for the VH16-R94K/S298A (SEQ ID NO: 114)-VL43-V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody and at least 6.8 fold for the VH16-R94K/E269D/S298A (SEQ ID NO: 115)-VL43-V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody.
- This data demonstrates that selected the anti-CD19 antibody variants have enhanced cellular cytotoxicity towards CD 19 + expressing cells.
- Human IgG3 antibodies have generally enhanced CDC to human IgG1 antibodies, this due in part because IgG3 Fc has higher C1q-binding affinity than IgG1 Fc (Schumaker V N et al., Biochemistry, 1976, 15:5175-81.)
- Amino acid modifications in the Fc region of VH16 R94K were undertaken based on the differences in sequence between the human—IgG3 and human IgG1 Fc portions.
- a shuffling of the human IgG1 hinge and constant domains with the hinge and constant domains of the human IgG3 was performed to generate a chimeric isotype of anti CD19 antibody with enhanced CDC.
- a cDNA coding the VH16 R94K heavy chain (SEQ ID NO: 64) cDNA was converted to heavy chains VH16 R94K/K274Q (SEQ ID NO: 119), VH16 R94K/N276K (SEQ ID NO: 120), VH16 R94K/K334R (SEQ ID NO: 121), VH16 R94K/K274Q/N276K (SEQ ID NO: 122), and VH16 R94K/K274Q/N276K/K334R (SEQ ID NO: 123) by standard mutagenesis techniques.
- variant coding DNA sequences were ligated in a vector that is based on a modified pREP4 (Invitrogen, CA, USA) vector carrying CMV promoter and Bovine Growth Hormone poly-adenylation signal.
- pREP4 Invitrogen, CA, USA
- secretion was driven by the murine VJ2C leader peptide.
- each heavy chain and light chain vectors was co-transfected into suspension-adapted HEK-EBNA cells (ATCC-CRL-10852) using Polyethyleneimine (PEI).
- PEI Polyethyleneimine
- 100 ml of cells in suspension at a density of 0.8-1.2 million cells per ml is transfected with a DNA-PEI mixture containing 50 ⁇ g of expression vector encoding the variant heavy chain and 50 ⁇ g expression vector encoding the VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) light chain.
- the construct is produced by further culturing the cells for a period of 4 to 5 days to allow for secretion into the culture medium (EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland), supplemented with 0.1% pluronic acid, 4 mM glutamine, and 0.25 ⁇ g/ml geneticin). The construct was then purified from cell-free supernatant using recombinant Streamline rProtein A media (GE, Switzerland), and used for further analysis.
- the culture medium EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland
- the construct was then purified from cell-free supernatant using recombinant Streamline rProtein A media (GE, Switzerland), and used for further analysis.
- a cell-based assay was used to measure the capacity of the variants to mediate CDC according to example 10. Lysis was measured using release of lactate dehydrogenase (LDH) to monitor lysis of variant-opsonized Raji cells by baby rabbit complement (Harlan Laboratories, C-0099F, AN VENRAY, The Netherlands). Target cells were washed 2 times with complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland) and 1% Ultraglutamine (Lonza, Verviers, Belgium) by centrifugation and resuspension. Variant-antibodies were added at the indicated final concentration of 1 ⁇ g/ml. Baby rabbit serum was diluted to 5% with complete medium and added to antibody-opsonized target cells. Plates were incubated for 3 hours at 37° C.
- LDH lactate dehydrogenase
- FIG. 12 shows little specific lysis due to IgG1 control. when compared to the parental antibody, Complement-induced lysis was increased at least 1.7 fold for the VH16 R94K/K274Q/N276K (SEQ ID NO: 122)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody, 2 fold for the VH16 R94K/K274Q/N276K/K334R (SEQ ID NO: 123)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody and 2.2 fold for VH16 R94K(1133) (SEQ ID NO: 124)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody.
- FIG. 12 shows results performed in triplicate ⁇ standard deviation.
- a high yielding, mammalian protein expression system was developed.
- the system is based on a well documented CHO cell line (CHO-S, Invitrogen, Basel, Switzerland) that was adapted to suspension growth in a chemically defined serum-free medium, a highly efficient transfection method and a screening strategy for identification of clonal populations of high-producer cell lines.
- This mammalian protein expression system was used for the stable expression of humanized variants of the anti CD19 antibody.
- the plasmid carrying the cDNA sequence for the VL43 V3Q/T7S/P44I/N92A light chain (SEQ ID NO: 65) and the plasmid pAE18_VH16_R94K carrying the cDNA sequence for VH16 R94K heavy chain (SEQ ID NO: 64) used in Example 1 were both digested with XbaI and HindIII to release the light and heavy chain inserts.
- inserts were isolated by gel electrophoresis, gel-extracted, purified and further cloned into the multiple cloning site of an expression vector based on pGL3 from Promega (Madison, Wis., USA), that was previously digested with the same restriction enzymes and prepared using the same gel electrophoresis and purification methods.
- the vector pSV2neo, expressing the geneticin resistance gene neo was purchased from Clontech (Mountain View, Calif., USA) and the puromycin resistance vector pSV-Puro was obtained by cloning the SV40 promoter and the puromycin resistance gene (pac) from pBABE-Puro (Addgene, Camebridge, Mass., USA) into the pGL3 vector from Promega. These four plasmids were linearized using a single restriction site in the ampicillin resistance gene (ampR) and purified from remaining salts by ethanolic precipitation.
- ampR ampicillin resistance gene
- expression vectors for further humanization variants (VH16 R94K/Y100 B F (SEQ ID NO: 66)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) and VH16 R94K/Y100 B F (SEQ ID NO: 66)-VL43 V3Q/T7S/Y32F/P44I/N92A(SEQ ID NO: 67)) were cut out using the same restriction enzymes as described above and cloned into the pGL41 backbone.
- CHO-S For stable integration into the host cell line CHO-S (Invitrogen), cells are seeded in 10 ml at a density of 1 ⁇ 10 6 cells per ml in a 50 ml bioreactor filter tube (TPP, Trasadingen, Switzerland) and cultured overnight. Prior to transfection, the chemically defined cell culture medium (PowerCHO2, Lonza, Basel, Switzerland) was replaced with the transfection medium (Opti-MEM, Invitrogen).
- TPP Bioreactor filter tube
- Cells were transfected with 12.5 ⁇ g of the linearized vector cocktail containing the mix of heavy and light chain expression plasmids, pSV-Puro and pSV2neo using the polykationic transfection agent JetPEI (Polyplus-transfections, Illkirch, France) according to manufacturer's instructions. 4-5 hours after transfection, cells were diluted with 1 volume of growth medium. The following day cells were diluted in a ratio of 1 to 10, 1 to 20 or 1 to 30 in growth medium containing 5.0 ⁇ g/ml of puromycin and 500 ug/ml geneticin and distributed in 96 well plates.
- JetPEI Polyplus-transfections, Illkirch, France
- best producing clones yielded titers in the range of 400 to 600 mg/L for the VH16 R94K-VL43 V3Q/T7S/P44I/N92A antibody and 200-300 mg/L for the VH16 R94K/Y100 B F-VL43 V3Q/T7S/P44I/N92A and VH16 R94K/Y100 B F-VL43 V3Q/T7S/Y32F/P44I/N92A antibodies in a 12 day shaken-batch assay using the PowerCHO2 cell culture medium supplemented with glutamine.
- GNTIII beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase
- Such modification turns the antibody's Fc oligosaccharide into an inaccessible substrate for the enzyme Fut8 which transfers a fucose residue to the reducing N-Acetylglucosamine of glycan tree (Longmore and Schachter, 1982, Carbohydr Res 365-92), thereby inhibiting fucosylation.
- the rat gntIII gene was ordered from Imagenes (Berlin, Germany) and amplified using specific primers.
- the amplicon was then digested using the enzymes BamHI and HindIII, gel purified and cloned into the BamHI, HindIII opened multiple cloning site of the expressing vector pGLEX33; a mammalian expression vector based on the pcDNA3.1 plasmid from Invitrogen (Basel, Switzerland) under control of the mouse CMV promoter.
- the resulting vector was called pGNTIII.
- the puromycin resistance vector pSV-Puro was obtained by cloning the SV40 promoter and the puromycin resistance gene (pac) from pBABE-Puro (Addgene, Camebridge, Mass., USA) into the pGL3 vector from Promega (Madison, Wis., USA.
- the two plasmids were linearized using a single restriction site in the ampicillin resistance gene (ampR) and purified from remaining salts by ethanolic precipitation.
- CHO-S For stable integration into the host cell line CHO-S (Invitrogen), cells are seeded in 10 ml at a density of 1 ⁇ 10 6 cells per ml in a 50 ml bioreactor filter tube (TPP, Trasadingen, Switzerland) and cultured overnight. Prior to transfection, the chemically defined cell culture medium (PowerCHO2, Lonza, Basel, Switzerland) was replaced with the transfection medium (Opti-MEM, Invitrogen). Cells were transfected with 12.5 ⁇ g of the linearized vector cocktail containing the mix of pGNTIII and pSV-Puro using the polykationic transfection agent JetPEI (Polyplus-transfections, Illkirch, France) according to manufacturer's instructions.
- JetPEI Polyplus-transfections, Illkirch, France
- cells were diluted with 1 volume of growth medium. The following day cells were diluted in a ratio of 1 to 10, 1 to 20 or 1 to 30 in growth medium containing 5.0 ⁇ g/ml of puromycin and distributed in 96 well plates. After 14 days of selection, drug resistant colonies expressing the rat GNTIII gene were isolated.
- a second stable cell line was prepared using the CHO-S cell line from Invitrogen.
- the cells were transfected with a vector expressing two small hairpin RNAs (shRNA) that knock down the enzymes Fut8 ( ⁇ 1,6-fucosyltransferase) and GMD (GDP-mannose 4,6-dehydratase) using the shRNA sequences described previously (Imai-Nishiya et al. 2007, BMC Biotechnol., 7:84) under control of the human U6 promoter and the tRNA val promoter.
- shRNA small hairpin RNAs
- the tRNA val promoter controls the expression of the Fut8 specific shRNA and the U6 promoter controls the expression of the GMD specific shRNA.
- the construct was flanked by NheI and NruI sites, and these restriction sites were used to clone the digested and gel purified fragment into the vector backbone of pGLEX1 (a modified version of pcDNA3.1 (Invitrogen) previously digested with the same enzymes.
- siRNA vector was linearized using a single restriction site in the ampicillin resistance.
- the cells were co-transfected with a selection plasmid and selected as described above for the
- the two cell lines were transiently transfected with plasmids encoding both the VH16 R94K (SEQ ID NO: 64)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody and the VH16 R94K/E269D/S298A (SEQ ID NO: 115)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody as described in Example 1 and 11, respectively.
- transient transfection cells were seeded in 200 ml at a density of 1 ⁇ 10 6 cells per ml in a 1000 ml round Schott bottle and cultured overnight. Prior to transfection, the chemically defined cell culture medium (PowerCHO2, Lonza) was replaced with 100 ml of the transfection medium (Opti-MEM, Invitrogen). Cells were transfected with 250 ⁇ g of the vector cocktail containing a mix of 50% heavy chain and 50% light chain DNA using the polykationic transfection agent JetPEI (Polyplus-transfections) according to manufacturer's instructions. 4-5 hours after transfection, cells were diluted with 1 volume of growth medium. The medium was harvested on day 5.
- PowerCHO2 chemically defined cell culture medium
- Opti-MEM Invitrogen
- FIG. 13 shows that defucosylated variants have increased ADCC over their fucosylated parental antibody by at least 2 fold.
- mice This study was designed to assess the in vivo effect of anti-CD19 treatment of huPBL SCID mice.
- SCID severe combined immunodeficiency mice
- 5-6 weeks-old mice 5-6 weeks-old and weighing 16-20 g were randomized based on body weight into one group of 2 animals and 4 groups of 7 animals. The mean body weight of each group was comparable and not statistically different from the other groups (analysis of variance). All mice were then submitted to whole body irradiation using a ⁇ -source (1.8 Gy, 60Co, NRA BRETENIERE, Dijon, France) at D0.
- mice received a single SC injection of NK-cell depleting Ab (mCD122 antigen, Rat IgG2b isotype, TM-Beta 1, BioXCell, USA) at 20 mg/kg.
- NK-cell depleting Ab mCD122 antigen, Rat IgG2b isotype, TM-Beta 1, BioXCell, USA
- mice peripheral blood mononuclear cells (PBMCs) were purified using gradient centrifugation according to the Ficoll-Paque® plus procedure (Ref 07907, StemCell Technologies) within 48 h after total blood collection. The viability of PBMCs was assessed by 0.25% trypan blue exclusion before in vivo injection. At D3, mice were IP injected with 3 ⁇ 10 7 hPBMCs (500 ⁇ L in PBS by IP route) from donors #1, #2 and #3 (Groups 2 to 5, 2-3 mice per donor) or with PBS (Group 1).
- PBMCs peripheral blood mononuclear cells
- mice from groups 2, 3, 4 and 5 received a single IV injection of Herceptin® (negative control, 21.0 mg/ml, Batch No B1492), Mabthera® (positive control, 10.0 mg/ml, Batch No B2136), anti-CD 19 antibody variant VH16 R94K (SEQ ID NO: 64)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) or anti-CD 19 antibody variant VH16 R94K/S324N (SEQ ID NO: 118)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) at 10 mg/kg/inj, respectively.
- the treatment schedule is summarized in the table 24 below:
- the human B lymphocytes in the spleens were detected by 4-color flow cytometry analysis.
- the human B lymphocytes cells were quantified using cell surface expression of hCD45(+), mCD45( ⁇ ), hCD20(+) and hCD19(+) and PKH26 reference microbeads (Ref P7458, Sigma). Antibodies described in table 25 below were used.
- the red blood cells were lysed using the “Fix and Lyse” procedure.
- “Fix and Lyse” buffer was prepared by adding 25 ⁇ L of IOTest 3 10 ⁇ Fixative Solution (Ref A07800, Beckman Coulter) to 1 mL of VersaLyse (Ref A09777, Beckman Coulter) and 1 ml of the mixture was added to the stained cells. After being vortexed and incubated for 10 min in the dark at room temperature, cells were centrifuged and washed once with 3 mL of staining buffer and resuspended in 0.5 mL of reference microbeads solution (PKH26, Ref P7458, Sigma, 1 ⁇ 2 diluted in staining buffer).
- PSH26 reference microbeads solution
- the samples were stored on ice protected from light exposure until FACS analysis.
- the stained cells were analyzed with a CyFlow® space flow cytometer (Partec S.A.R.L.) using a 488 nm wavelength laser excitation.
- the acquisition was stopped after a total of 10,000 hCD45(+) (if achievable) were collected for each sample. All the events were saved during the acquisition.
- FACS results were represented by dot plot showing FSC versus SSC parameters (forward and side scatter detectors) in order to visualize cells size and complexity, and by dot plots showing the hCD45 (FITC) fluorescence intensities.
- a ⁇ ⁇ C ⁇ ⁇ N C ⁇ ⁇ N B ⁇ ⁇ N ⁇ beads ⁇ ⁇ concentration 2 ⁇ V f ⁇ 1 V i
- ACN was the absolute cell number per ⁇ L
- CN was the cell number.
- BN was the bead number.
- the beads concentration was specified at a latter date as depending on the batch provided by the manufacturer.
- Vf (expressed in mL) was the volume of microbeads solution used to resuspended the cell pellet.
- Vi (expressed in ⁇ L) was the initial volume of blood used for FACS analysis.
- the individual ACN of total B cells in the spleens of engrafted SCID mice at D18 are presented in FIG. 14 .
- the individual percentage of total B cells in spleens of engrafted SCID mice at D18 are presented in FIG. 15 .
- mice except one mouse from group hPBMC & anti-CD 19 variant V18 (mouse No 3817), were successfully engrafted with hPBMCs, resulting in detection of circulating human CD45+ leucocytes in mouse blood.
- the level of human CD45+ leucocytes was over to 15% of blood cells in most of the mice transplanted with hPBMC.
- high levels of human cell reconstitution (reaching 31-73% hCD45+ leucocytes in blood cells) was observed in 52% of engrafted mice.
- Levels of hCD45+ leucocytes were unchanged or increased during the course of the experiment, reflecting the engraftment efficiency of SCID mice transplanted with human PBMC.
- Human CD45+ leucocytes were also detected in spleens 18 days after transplantation and the average engraftment level was approximately 45% hCD45+ cell in spleen cells.
- the human B cell populations in the spleens were analyzed when mice were killed 4 days after dosing; that is to say 18 days after transplantation. In all engrafted mice from the negative control group, the spleens contained 5 to 11% B cells in hCD45+ leucocytes. Human B cells in the spleens constituted of either hCD19+ or hCD20+ single-positive cells as well as hCD19+ hCD20+ double-positive B cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Rheumatology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physics & Mathematics (AREA)
- Diabetes (AREA)
- Plant Pathology (AREA)
- Physical Education & Sports Medicine (AREA)
- Oncology (AREA)
- Pain & Pain Management (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention relates to humanized antibodies or fragments thereof that bind to human CD19. More specifically, the present invention relates to a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
Description
- This application is a divisional application of U.S. application Ser. No. 12/710,442, filed Feb. 23, 2010, which claims the benefit of U.S. Provisional Application No. 61/154,524, filed Feb. 23, 2009, each of which is incorporated by reference herein in their entirety.
- The content of the electronically submitted sequence listing (Name: 3305—0010002_SequenceListing_ascii.txt; Size: 143,187 bytes; and Date of Creation: Jan. 24, 2014) is herein incorporated by reference in its entirety.
- The present invention relates to humanized antibodies or fragments thereof that bind to human CD19. More specifically, the present invention relates to a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- B cell surface markers have been generally suggested as targets for the treatment of B cell disorders or diseases, autoimmune disease, and transplantation rejection. Examples of B cell surface markers include CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD53, CD72, CD74, CD75, CD77, CD79a, CD79b, CD80, CD81, CD82, CD83, CD84, CD85, and CD86 leukocyte surface markers. Antibodies that specifically bind certain of these markers have been developed, and some have been tested for the treatment of diseases and disorders.
- For example, chimeric or radiolabeled monoclonal antibody (mAb)-based therapies directed against the CD20 cell surface molecule specific for mature B cells and their malignant counterparts have been shown to be an effective in vivo treatment for non-Hodgkin's lymphoma (Tedder et al, Immunol. Today 15:450-454 (1994); Press et al, Hematology, 221-240 (2001); Kaminski et al, N. Engl. J. Med., 329:459-465 (1993); Weiner, Semin. Oncol, 26:43-51 (1999); Onrust et al, Drugs, 58:79-88 (1999); McLaughlin et al, Oncology, 12:1763-1769 (1998); Reff et al, Blood, 83:435-445 (1994); Maloney et al, Blood, 90:2188-2195 (1997); Maloney et al, J. Clin. Oncol, 15:3266-3274 (1997); Anderson et al, Biochem. Soc. Transac, 25:705-708 (1997)). Anti-CD20 monoclonal antibody therapy has also been found to ameliorate the manifestations of rheumatoid arthritis, systemic lupus erythematosus, idiopathic thrombocytopenic purpura and hemolytic anemia, as well as other immune-mediated diseases (Silverman et al, Arthritis Rheum., 48:1484-1492 (2002); Edwards et al, Rheumatology, 40:1-7 (2001); De Vita et al, Arthritis Rheumatism, 46:2029-2033 (2002); Leandro et al, Ann. Rheum. Dis., 61:883-888 (2002); Leandro et al, Arthritis Rheum., 46:2673-2677 (2001)). The anti-CD22 monoclonal antibody LL-2 was shown to be effective in treating aggressive and relapsed lymphoma patients undergoing chemotherapeutic treatment (Goldenberg U.S. Pat. Nos. 6,134,982 and 6,306,393). The anti-CD20 (IgG1) antibody, RITUXAN™, has successfully been used in the treatment of certain diseases such as adult immune thrombocytopenic purpura, rheumatoid arthritis, and autoimmune hemolytic anemia (Cured et al, WO 00/67796). Despite the effectiveness of this therapy, most acute lymphoblastic leukemias (ALL) and many other B cell malignancies either do not express CD20, express CD20 at low levels, or have lost CD20 expression following CD20 immunotherapy (Smith et al, Oncogene, 22:7359-7368 (2003)). Moreover, the expression of CD20 is not predictive of response to anti-CD20 therapy as only half of non-Hodgkin's lymphoma patients respond to CD20-directed immunotherapy.
- The
human CD 19 molecule is a structurally distinct cell surface receptor expressed on the surface of human B cells, including, but not limited to, pre-B cells, B cells in early development {i.e., immature B cells), mature B cells through terminal differentiation into plasma cells, and malignant B cells. CD19 is expressed by most pre-B acute lymphoblastic leukemias (ALL), non-Hodgkin's lymphomas, B cell chronic lymphocytic leukemias (CLL), pro-lymphocytic leukemias, hairy cell leukemias, common acute lymphocytic leukemias, and some Null-acute lymphoblastic leukemias (Nadler et al, J. Immunol., 131:244-250 (1983), Loken et al, Blood, 70:1316-1324 (1987), Uckun et al, Blood, 71:13-29 (1988), Anderson et al, 1984. Blood, 63:1424-1433 (1984), Scheuermann, Leuk. Lymphoma, 18:385-397 (1995)). The expression of CD19 on plasma cells further suggests it may be expressed on differentiated B cell tumors such as multiple myeloma, plasmacytomas, Waldenstrom's tumors (Grossbard et al., Br. J. Haematol, 102:509-15 (1998); Treon et al, Semin. Oncol, 30:248-52 (2003)). - The
CD 19 antigen has also been one of the many proposed targets for immunotherapy. The CLB-CD 19 antibody (anti-CD 19 murine IgG2a mAb) was shown to inhibit growth of human tumors implanted in athymic mice (Hooijberg et al, Cancer Research, 55:840-846 (1995)). In another study, the monoclonal murine antibody FMC63 (IgG2a) was chimerized using a human IgG1 Fc region (Zola et al, Immunol Cell Biol 69:411-22 (1991)). This antibody did not induce complement-mediated cytotoxicity or ADCC in vitro and administration to SCID mice bearing a human B cell lymphoma (xenotransplantation model) resulted in moderate but unspecified killing of the transplanted tumor cells (Pietersz et al, Cancer Immunol. Immunother., 41:53-60 (1995)). - The results obtained using xenotransplantation mouse models of tumor implantation led to studies using murine anti-CD 19 antibodies in human patients. The murine CLB-
CD 19 antibody was administered to six patients diagnosed with a progressive non-Hodgkin's lymphoma who had failed previous conventional therapy (chemotherapy or radiotherapy). These patients were given total antibody doses ranging from 225 to 1,000 mg (Hekman et al, Cancer Immunol. Immunotherapy, 32:364-372 (1991)). Although circulating tumor cells were temporarily reduced in two patients after antibody infusion, only one patient achieved partial remission after two periods of antibody treatment. No conclusions regarding therapeutic efficacy could be drawn from this small group of refractory patients. - Subsequently, these investigators showed that the anti-tumor effects of unconjugated CD20 mAbs are far superior to those of
CD 19 mAbs in transplantation models (Hooijberg et al, Cancer Res., 55:840-846 (1995); and Hooijberg et al, Cancer Res., 55:2627-2634 (1995)). Moreover, they did not observe additive or synergistic effects on tumor incidence when usingCD 19 and CD20 mAbs in combination (Hooijberg et al, Cancer Res., 55:840-846 (1995)). Although the xenotransplantation animal models were recognized to be poor prognostic indicators for efficacy in human subjects, the negative results achieved in these animal studies discouraged interest in therapy with naked anti-CD 19 antibodies. - The use of anti-CD 19 antibody-based immunotoxins produced equally discouraging results. In early clinical trials, the B4 anti-CD 19 antibody (murine IgG1 mAb) was conjugated to the plant toxin ricin and administered to human patients having multiple myeloma who had failed previous conventional therapy (Grossbard et al., British Journal of Haematology, 102:509-515 (1998)), advanced non-Hodgkin's lymphoma (Grossbard et al, Clinical Cancer Research, 5:2392-2398 (1999)), and refractory B cell malignancies (Grossbard et al, Blood, 79:576-585 (1992)). These trials generally demonstrated the safety of administering the B4-ricin conjugate to humans; however, results were mixed and response rates were discouraging in comparison to clinical trials with RITUXAN™ (Grossbard et al, Clinical Cancer Research, 5:2392-2398 (1999)). In addition, a significant portion of the patients developed a human anti-mouse antibody (HAMA) response or a human anti-ricin antibody (HARA) response.
- Given the fact that current therapies using naked anti-CD 19 antibodies or anti-CD 19 antibody-based immunotoxins produce equally discouraging results, there exists a need to develop anti-CD 19 antibodies that are more effective to treat CD19 mediated disorders, e.g. anti-CD 19 antibodies that are able to efficiently induce tumor cell death, by triggering apoptosis and blockade of B cell proliferation, and by mediating killing through ADCC.
- The present disclosure relates generally to humanized antibodies or fragments thereof that bind to human CD19, methods for their preparation and use, including methods for treating CD19 mediated disorders. The humanized antibodies or fragments thereof that bind to human CD19 of the present invention exhibit numerous desirable properties including e.g. ADCC activity, induction of apoptosis and inhibition of B cell proliferation.
- In one aspect, the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29. In another aspect, the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- In another aspect, the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 19, 20, 21, 22, and 42.
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14).
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41.
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6).
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55.
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63.
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising
- (a) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 64; and
(b) a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65. - In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising
- (a) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66; and
(b) a light chain sequence comprising the amino acid sequence of SEQ ID NO: 67. - In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising
- (a) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66; and
(b) a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65. - In a further aspect the present invention provides humanized antibodies or fragments thereof that bind to human CD19 comprising human heavy and/or light constant regions, wherein the human heavy constant region comprises an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3.
- In a further aspect the present invention provides humanized antibodies or fragments thereof that bind to human CD19 comprising a variant human IgG Fc region which comprises at least one amino acid modification relative to the human IgG Fc region of the parent antibody, whereas the antibody comprising the variant human IgG Fc region exhibits altered effector function compared to the parent antibody.
- In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19, wherein the antibody comprises a variant human IgG Fc region which comprises amino acid substitution S324N replacing serine at amino acid position 324 of the parent antibody with asparagine, whereas the antibody comprising the variant human IgG Fc region exhibits improved complement dependent cytotoxicity (CDC) compared to the parent antibody.
- In a further aspect the present invention provides humanized antibodies or fragment thereof that bind to human CD19 which have various desirable properties such as binding to Raji tumor cells, binding to human CD19 with an affinity (Kd) of 50 nM or less, retaining at least 20% of the CD19 binding affinity (Kd) of the corresponding chimeric antibody, competing for binding to Raji tumor cells with an affinity (Ki) of 50 nM or less, induction of apoptosis in Raji tumor cells, ADCC activity in Raji tumor cells, inhibition of proliferation of malignant B-cells, inhibition of clonogenicity of Raji tumor cells, causing B-cell depletion in blood, internalization in Raji tumor cells and a FAB fragment thermostability temperature greater than 65° C.
- The present disclosure also provides isolated nucleic acids encoding humanized antibodies and fragments thereof that bind to human CD19, vectors and host cells comprising the nucleic acid or the vector. Compositions comprising the humanized antibody or fragment thereof and a pharmaceutically acceptable carrier and immunoconjugates comprising the humanized antibody or fragment thereof linked to a therapeutic agent are also provided.
- The present disclosure also provides methods for treating of CD19 mediated disorders, methods of inhibiting growth of tumor
cells expressing CD 19 and methods of depleting B cells in a subject in need of such treatment. - The present disclosure also provides kits and articles of manufacturing comprising the humanized antibody or fragment thereof, the composition or the immunoconjugate for the treatment of a
CD 19 mediated disorder. -
FIGS. 1A and 1B show flow cytometry analysis to determine binding activity of FMC63-CDRs grafted to human acceptor antibody frameworks on Raji tumor cells. -
FIGS. 2A and 2B show alignment of the light chain (A) or heavy chain (B) variable region of FMC63 with selected germline frameworks from VBASE2 and CDR-grafted donor-amplified frameworks. The Kabat numbering is used and shown below the numbering row. -
FIG. 3 shows binding activity of humanized antibodies on SU-DHL-6 human B cell lymphoma cells as determined by flow cytometry. -
FIGS. 4A and 4B show Scatchard analysis curves of humanized anti-CD19 antibodies. Analysis was performed on Raji tumor cells using europium-labeled antibodies. -
FIGS. 5A and 5B show ADCC activity of humanized anti-CD19 antibodies on Raji tumor cells. -
FIG. 6 shows induction of apoptosis by humanized anti-CD19 antibodies on Raji tumor cells. -
FIG. 7A shows inhibition of SU-DHL-6 human B cell lymphoma cell proliferation by humanized anti-CD19 antibodies.FIG. 7B shows clonogenicicity of Raji tumor cells after treatment with humanized anti-CD19 antibodies. -
FIG. 8 shows internalization of anti-CD19 antibodies in Raji tumor cells. The internalization is monitored by the cytotoxicity of a saporin-conjugated secondary antibody (Hum-ZAP). -
FIG. 9 shows complement dependent cytotoxicity (CDC) of anti-CD19 antibody mutants at position S324, compared to wild type VH16 R94K-VL43 V3Q/T7S/P44I/N92A: (1) IgG1 control antibody; (2) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (3) VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/S324G-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/S324A-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/S324V-VL43 3Q/T7S/P44I/N92A; (7) VH16 R94K/S324L-VL43 V3Q/T7S/P44I/N92A; (8) VH16 R94K/S324I-VL43 V3Q/T7S/P44I/N92A; (9) VH16 R94K/S324P-VL43 V3Q/T7S/P44I/N92A; (10) VH16 R94K/S324T-VL43 V3Q/T7S/P44I/N92A; (11) VH16 R94K/S324C-VL43 V3Q/T7S/P44I/N92A; (12) VH16 R94K/S324M-VL43 V3Q/T7S/P44I/N92A; (13) VH16 R94K/S324Q-VL43 V3Q/T7S/P44I/N92A; (14) VH16 R94K/S324F-VL43 V3Q/T7S/P44I/N92A; (15) VH16 R94K/S324Y-VL43 V3Q/T7S/P44I/N92A; (16) VH16 R94K/S324W-VL43 V3Q/T7S/P44I/N92A; (17) VH16 R94K/S324R-VL43 V3Q/T7S/P44I/N92A; (18) VH16 R94K/S324D-VL43 V3Q/T7S/P44I/N92A; (19) serum only. -
FIG. 10 shows CDC assay of anti-CD19 antibody variants with substitution at positions E269, S298 and S324: (1) negative control—no antibody; (2) IgG1 control antibody; (3) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/S298A/S324N-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/E269D/S298A/S324N-VL43 V3Q/T7S/P44I/N92A. -
FIG. 11 shows cell-based ADCC assay of selected anti-CD19 antibody variants: (1) negative control—no antibody; (2) IgG1 control antibody; (3) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/S298A-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/E269D/S298A-VL43 V3Q/T7S/P44I/N92A. -
FIG. 12 shows cell-based CDC assay of selected anti-CD19 antibody variants: (1) IgG1 control antibody: (2) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (3) VH16 R94K (1133)-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K/K274Q-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K/N276K-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/K334R-VL43 V3Q/T7S/P44I/N92A; (7) VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A; (8) VH16 R94K/K274Q/N276K-VL43 V3Q/T7S/P44I/N92A; (9) VH16 R94K/K274Q/N276K/K334R-VL43 V3Q/T7S/P44I/N92A; (10) negative control—no antibody—no serum; (11) negative control—serum only. -
FIG. 13 shows cell-based ADCC assay of defucosylated anti-CD19 antibody variants: (1) negative control—no antibody; (2) IgG1 control antibody; (3) VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (4) VH16 R94K (shRNA)-VL43 V3Q/T7S/P44I/N92A; (5) VH16 R94K (GNTIII)-VL43 V3Q/T7S/P44I/N92A; (6) VH16 R94K/E269D/S298A (shRNA)-VL43 V3Q/T7S/P44I/N92A; (7) VH16 R94K/E269D/S298A (GNTIII)-VL43 V3Q/T7S/P44I/N92A. -
FIG. 14 shows B cell depletion (ACN of total B cells) by anti-CD19 antibody variants detected in the spleens of SCID mice: (1) negative control—no human PBMC; (2) human PBMC—Herceptin®; (3) human PBMC—Mabthera®; (4) human PBMC-VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (5) human PBMC-VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A. -
FIG. 15 shows B cell depletion (percentage of total B cells) by anti-CD19 antibody variants detected in the spleens of SCID mice: (1) negative control—no human PBMC; (2) human PBMC—Herceptin®; (3) human PBMC—Mabthera®; (4) human PBMC-VH16 R94K-VL43 V3Q/T7S/P44I/N92A; (5) human PBMC-VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A. - Co-assigned PCT application entitled “Humanized antibodies that bind to CD19 and their uses,” filed on Feb. 23, 2010, is incorporated herein by reference in its entirety.
- The present disclosure relates to humanized antibodies and fragments thereof that bind
human CD 19. - The term “human CD19” as used herein includes variants, isoforms, and species homologs of human CD19. Accordingly, humanized antibodies of this disclosure may, in certain cases, cross-react with CD19 from species other than human. In certain embodiments, the antibodies may be completely specific for one or more human CD19 proteins and may not exhibit species or other types of non-human cross-reactivity. The complete amino acid sequence of an exemplary human CD19 has SwissProt accession number P 15391 (SEQ ID NO: 125). CD19 is also known as B-cell surface antigen B4, B-cell antigen CD19, CD19 antigen, and Leu-12. Human CD19 is designated GeneID: 930 by Entrez Gene, and HGNC: 1633 by HGNC. CD19 can be encoded by the gene designated CD19. The use of “human CD19” herein encompasses all known or as yet undiscovered alleles and polymorphic forms of human CD19. The term “CD19” as used herein refers to “human CD19” if not otherwise specifically indicated.
- The term “antibody that bind to human CD19” as used herein includes antibodies, preferably IgG antibodies, that bind to human CD19 e.g. human CD19 as expressed on the surface of Raji tumor cells like Raji tumor cells DSMZ ACC319 with an affinity (Kd) of 500 nM or less, preferably 100 nM or less, more preferably 50 nM or less.
- By “B cell” or “B lymphocyte” as used herein is meant a type of lymphocyte developed in bone marrow that circulates in the blood and lymph, and provides humoral immunity. B cells recognize free antigen molecules and differentiate or mature into plasma cells that secrete immunoglobulin (antibodies) that inactivate the antigens. Memory cells are also generated that make the specific Immunoglobulin (antibody) on subsequent encounters with such antigen. B cells are also known as “Beta cells” in the islet of Langerhans.
- The term “antibody” as referred to herein includes whole antibodies and any antigen binding fragment or single chains thereof. An “antibody” refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen binding fragment thereof. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR or FW). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the First component (CIq) of the classical complement system.
- The term “chimeric antibody” as used herein includes antibodies in which the variable region sequences are derived from one species and the constant region sequences are derived from another species, such as an antibody in which the variable region sequences are derived from a mouse antibody and the constant region sequences are derived from a human antibody.
- The term “humanized antibody” as used herein includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences. Additional framework region modifications may be made within the human framework sequences as well as within the CDR sequences derived from the germline of another mammalian species.
- The term “human antibody” as used herein includes antibodies having variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. Furthermore, if the antibody contains a constant region, the constant region also is derived from human germline immunoglobulin sequences. The human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g. mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). However, the term “human antibody”, as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- As used herein, a humanized antibody comprises heavy or light chain variable framework regions that are “the product of” or “derived from” a particular human germline sequence (human gene) if the variable framework regions of the antibody are obtained from a system that uses human germline immunoglobulin genes. Such systems include immunizing a transgenic mouse carrying human immunoglobulin genes with the antigen of interest or screening a human immunoglobulin gene library displayed on phage with the antigen of interest. A humanized antibody which comprises a heavy or light chain variable framework region that is “the product of” or “derived from” a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the heavy or light chain variable framework region of the humanized antibody to the amino acid sequences of the heavy or light chain variable framework region of human germline immunoglobulins. A humanized antibody that comprises a heavy or light chain variable framework region that is “the product of” a particular human germline immunoglobulin sequence has a heavy or light chain variable framework region which is 100% identical in amino acid sequence to the heavy or light chain variable framework region of the particular human germline immunoglobulin sequence. A humanized antibody that comprises a heavy or light chain variable framework region that is “derived from” a particular human germline immunoglobulin sequence may contain amino acid differences as compared to the heavy or light chain variable framework region of the particular germline sequence, due to, for example, naturally-occurring somatic mutations or intentional introduction of site-directed mutation. However, a selected humanized antibody typically is at least 90% identical in amino acid sequence of the heavy or light chain variable framework region to an amino acid sequence encoded by the heavy or light chain variable framework region of a human germline immunoglobulin gene and contains amino acid residues that identify the humanized antibody as being derived from human when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences). In certain cases, a humanized antibody may be preferably at least 95%, more preferably at least 96%, most preferably at least 97%, in particular at least 98%, most particular at least 99%, identical in amino acid sequence of the heavy or light chain variable framework region to the amino acid sequence of the heavy or light chain variable framework region encoded by the germline immunoglobulin gene. Typically, the heavy or light chain variable framework region of a humanized antibody derived from a particular human germline sequence will display no more than 10 amino acid, preferably no more than 5, or even more preferably no more than 4, 3, 2, or 1 differences from the amino acid sequence of the heavy or light chain variable framework region encoded by the human germline immunoglobulin gene.
- The term “Fab” or “Fab region” as used herein includes the polypeptides that comprise the VH, CH1, VL, and CL immunoglobulin domains. Fab may refer to this region in isolation, or this region in the context of a full length antibody or antibody fragment.
- The term “Fc” or “Fc region”, as used herein includes the polypeptide comprising the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM, and the flexible hinge N-terminal to these domains. For IgA and IgM, Fc may include the J chain. For IgG, Fc comprises immunoglobulin domains Cgamma2 and Cgamma3 (C[gamma]2 and C[gamma]3) and the hinge between Cgamma1 (C[gamma]1) and Cgamma2 (C[gamma]2). Although the boundaries of the Fc region may vary, the human IgG heavy chain Fc region is usually defined to comprise residues C226 or P230 to its carboxyl-terminus, wherein the numbering is according to the EU index as in Kabat. For human IgG1 the Fc region is herein defined to comprise residue P232 to its carboxyl-terminus, wherein the numbering is according to the EU index as in Kabat. Fc may refer to this region in isolation, or this region in the context of an Fc polypeptide, for example an antibody.
- The term “hinge” or “hinge region” or “antibody hinge region” herein includes the flexible polypeptide comprising the amino acids between the first and second constant domains of an antibody. Structurally, the IgG CH1 domain ends at EU position 220, and the IgG CH2 domain begins at residue EU position 237. Thus for IgG the antibody hinge is herein defined to include positions 221 (D221 in IgGI) to 231 (A231 in IgGI), wherein the numbering is according to the EU index as in Kabat.
- The term “parent antibody” or “parent immunoglobulin” as used herein includes an unmodified antibody that is subsequently modified to generate a variant. Said parent antibody may be a naturally occurring antibody, or a variant or engineered version of a naturally occurring antibody. Parent antibody may refer to the antibody itself, compositions that comprise the parent antibody, or the amino acid sequence that encodes it. By “
parent anti-CD 19 antibody” as used herein is meant an antibody or immunoglobulin that bindshuman CD 19 and is modified to generate a variant. - The term “parental antibody” or “parental immunoglobulin” as used herein includes a murine or chimeric antibody that is subsequently modified to generate a humanized antibody.
- The term “variant antibody” or “antibody variant” as used herein includes an antibody sequence that differs from that of a parent antibody sequence by virtue of at least one amino acid modification compared to the parent. The variant antibody sequence herein will preferably possess at least about 80%, most preferably at least about 90%, more preferably at least about 95% amino acid sequence identity with a parent antibody sequence. Antibody variant may refer to the antibody itself, compositions comprising the antibody variant, or the amino acid sequence that encodes it.
- The term “amino acid modification” herein includes an amino acid substitution, insertion, and/or deletion in a polypeptide sequence. By “amino acid substitution” or “substitution” herein is meant the replacement of an amino acid at a particular position in a parent polypeptide sequence with another amino acid. For example, the substitution R94K refers to a variant polypeptide, in this case a heavy chain variable framework region variant, in which the arginine at position 94 is replaced with a lysine. For the preceding example, 94K indicates the substitution of position 94 with a lysine. For the purposes herein, multiple substitutions are typically separated by a slash. For example, R94K/L78V refers to a double variant comprising the substitutions R94K and L78V. By “amino acid insertion” or “insertion” as used herein is meant the addition of an amino acid at a particular position in a parent polypeptide sequence. For example, insert −94 designates an insertion at position 94. By “amino acid deletion” or “deletion” as used herein is meant the removal of an amino acid at a particular position in a parent polypeptide sequence. For example, R94− designates the deletion of arginine at position 94.
- As used herein, the term “conservative modifications” or “conservative sequence modifications” is intended to refer to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid sequence. Such conservative modifications include amino acid substitutions, insertions and deletions. Modifications can be introduced into an antibody of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, one or more amino acid residues within the CDR regions or within the framework regions of an antibody of the invention can be replaced with other amino acid residues from the same side chain family and the altered antibody (variant antibody) can be tested for retained function.
- For all immunoglobulin heavy chain constant region positions discussed in the present invention, numbering is according to the EU index as in Kabat (Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th Ed., United States Public Health Service, National Institutes of Health, Bethesda, incorporated entirely by reference). The “EU index as in Kabat” refers to the residue numbering of the human IgG1 EU antibody, as described in Edelman et al., 1969, Biochemistry 63:78-85.
- The term “full length antibody” as used herein includes the structure that constitutes the natural biological form of an antibody, including variable and constant regions. For example, in most mammals, including humans and mice, the full length antibody of the IgG class is a tetramer and consists of two identical pairs of two immunoglobulin chains, each pair having one light and one heavy chain, each light chain comprising immunoglobulin domains VL and CL, and each heavy chain comprising immunoglobulin domains VH, CH1 (C[gamma]1), CH2 (C[gamma]2), and CH3 (C[gamma]3). In some mammals, for example in camels and llamas, IgG antibodies may consist of only two heavy chains, each heavy chain comprising a variable domain attached to the Fc region.
- Antibody fragments include, but are not limited to, (i) the Fab fragment consisting of VL, VH, CL and CH1 domains, including Fab′ and Fab′-SH, (ii) the Fd fragment consisting of the VH and CH1 domains, (iii) the Fv fragment consisting of the VL and VH domains of a single antibody; (iv) the dAb fragment (Ward et al., 1989, Nature 341:544-546) which consists of a single variable, (v) F(ab′)2 fragments, a bivalent fragment comprising two linked Fab fragments (vi) single chain Fv molecules (scFv), wherein a VH domain and a VL domain are linked by a peptide linker which allows the two domains to associate to form an antigen binding site (Bird et al., 1988, Science 242:423-426, Huston et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:5879-5883), (vii) bispecific single chain Fv dimers (PCT/US92/09965), (viii) “diabodies” or “triabodies”, multivalent or multispecific fragments constructed by gene fusion (Tomlinson et. al., 2000, Methods Enzymol. 326:461-479; WO94/13804; Holliger et al., 1993, Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448) and (ix) scFv genetically fused to the same or a different antibody (Coloma & Morrison, 1997,
Nature Biotechnology 15, 159-163). - Antibodies are grouped into classes, also referred to as isotypes, as determined genetically by the constant region. Human constant light chains are classified as kappa (CK) and lambda (C[lambda]) light chains. Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. The IgG class is the most commonly used for therapeutic purposes. In humans this class comprises subclasses IgG1, IgG2, IgG3, and IgG4. In mice this class comprises subclasses IgG1, IgG2a, IgG2b, IgG3. IgM has subclasses, including, but not limited to, IgM1 and IgM2. IgA has several subclasses, including but not limited to IgA1 and IgA2. Thus, “isotype” as used herein is meant any of the classes or subclasses of immunoglobulins defined by the chemical and antigenic characteristics of their constant regions. The known human immunoglobulin isotypes are IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgM1, IgM2, IgD, and IgE.
- The term “ADCC” or “antibody dependent cell-mediated cytotoxicity” as used herein includes the cell-mediated reaction wherein nonspecific cytotoxic cells that express Fc[gamma]Rs recognize bound antibody on a target cell and subsequently cause lysis of the target cell. In various aspects, the enhanced ADCC effector function can mean enhanced potency or enhanced efficacy. By “potency” as used in the experimental context is meant the concentration of antibody when a particular therapeutic effect is observed EC50 (half maximal effective concentration). By “efficacy” as used in the experimental context is meant the maximal possible effector function at saturating levels of antibody.
- The term “ADCP” or antibody dependent cell-mediated phagocytosis as used herein includes the cell-mediated reaction wherein nonspecific cytotoxic cells that express Fc[gamma]Rs recognize bound antibody on a target cell and subsequently cause phagocytosis of the target cell.
- The term “CDC” or “complement dependent cytotoxicity” as used herein includes the reaction wherein one or more complement protein components recognize bound antibody on a target cell and subsequently cause lysis of the target cell.
- The term “effector function” as used herein includes a biochemical event that results from the interaction of an antibody Fc region with an Fc receptor or ligand. Effector functions include Fc[gamma]R-mediated effector functions such as ADCC and ADCP, and complement-mediated effector functions such as CDC.
- As used herein, the term “subject” includes any human or nonhuman animal. The term “nonhuman animal” includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc. Preferably the subject is human.
- The term “isotypic variant” as used herein includes an amino acid modification that converts at least one amino acid of one isotype, preferably at least one amino acid of the heavy chain constant region of one isotype, to the corresponding amino acid in a different, aligned isotype. The amino acid modification may comprise conversion of a whole constant region immunoglobulin domain or, preferably, of an Fc region of one isotype in a different isotype, e.g. the conversion of the Fc region of the human IgG1 heavy constant region to an Fc region from human IgG3 resulting in an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3.
- The term “isotypic modification” as used herein includes an amino acid modification that converts one amino acid of one isotype to the corresponding amino amino acid in a different, aligned isotype. For example, because IgG1 has a tyrosine and IgG2 a phenylalanine at Kabat position 296, a F296Y substitution in IgG2 is considered an isotypic modification.
- The term “mature core carbohydrate structure” as used herein includes a processed core carbohydrate structure attached to an Fc region which generally consists of the carbohydrate structure GlcNAc (Fucose)-GlcNAc-Man-(Man-GlcNAc)2 typical of biantennary oligosaccharides represented schematically below:
- This term specifically includes G-1 forms of the core mature carbohydrate structure lacking a β1,2 GlcNAc residue. Preferably, however, the core carbohydrate structure includes both β1,2 GlcNAc residues. The mature core carbohydrate structure herein generally is not hypermannosylated. The mature core carbohydrate structure is attached to the Fc region of the glycoprotein, generally via N-linkage to Asn297 of a CH2 domain of the Fc region.
- In a first aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29. In another aspect, the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- In another aspect, the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- Preferably the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29 and/or a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32. More preferably the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- It is well known in the art that the CDR3 domain, independently from the CDR1 and/or CDR2 domain(s), alone can determine the binding specificity of an antibody for a cognate antigen and that multiple antibodies can predictably be generated having the same binding specificity based on a common CDR3 sequence. See, for example, Klimka et al, British J. of Cancer 83[pound]2):252-260 (2000) (describing the production of a humanized anti-CD30 antibody using only the heavy chain variable domain CDR3 of murine anti-CD30 antibody Ki-4); Beiboer et al, J. MoI. Biol. 296:833-849 (2000) (describing recombinant epithelial glycoprotein-2 (EGP-2) antibodies using only the heavy chain CDR3 sequence of the parental murine MOC-31 anti-EGP-2 antibody); Rader et al, Proc. Natl. Acad. ScL U.S.A. 95:8910-8915 (1998) (describing a panel of humanized anti-integrin [alpha]v[beta]3 antibodies using a heavy and light chain variable CDR3 domain of a murine anti-integrin [alpha]v[beta]3 antibody LM609 wherein each member antibody comprises a distinct sequence outside the CDR3 domain and capable of binding the same epitope as the parental murine antibody with affinities as high or higher than the parental murine antibody); Barbas et al, J. Am. Chem. Soc. 116:2161-2162 (1994) (disclosing that the CDR3 domain provides the most significant contribution to antigen binding).
- Accordingly, the present invention provides humanized antibodies and fragments thereof that bind to human CD19 comprising one or more heavy and/or light chain CDR3 domains from an antibody of a non-human animal e.g from a murine antibody like FMC63, in particular comprising heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29 and/or light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32, wherein the antibody is capable of binding to
CD 19. Within some embodiments, such inventive antibodies comprising one or more heavy and/or light chain CDR3 domain from a non-human antibody (a) are capable of competing for binding with; (b) retain the functional characteristics; (c) bind to the same epitope; and/or (d) have a similar binding affinity as the corresponding parental non-human e.g. murine antibody. - In a further aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 19, 20, 21, 22 and 42, preferably a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 21, 22 and 42, more preferably a heavy chain variable region sequence comprising SEQ ID NO: 21.
- In another aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41, preferably a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 25 and 41, more preferably a light chain variable region sequence comprising SEQ ID NO: 41.
- In some embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 19, 20, 21, 22, and 42 and a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41, preferably a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 21, 22 and 42 and a light chain variable region sequence selected from the group consisting of SEQ ID NOS: 23, 24, 25, 26 and 41, more preferably a heavy chain variable region sequence selected from the group consisting of SEQ ID NOS: 21, 22 and 42 and a light chain variable region sequence selected from the group consisting of SEQ ID NOs: 25 and 41, most preferably a heavy chain variable region sequence comprising SEQ ID NO: 21 and a light chain variable region sequence comprising SEQ ID NO: 41.
- Given that each of these heavy and light chain variable region sequences can bind to human CD19, the heavy and light chain variable region sequences can be “mixed and matched” to create anti-CD19 binding molecules of the invention.
CD 19 binding of such “mixed and matched” antibodies can be tested using the binding assays described e.g. in the Examples. - In another aspect the present invention provides variants of a humanized antibody or fragment thereof that binds to human CD19. Thus the present invention provides humanized antibodies or fragments thereof that have an amino acid sequence of the heavy and/or light chain variable framework region which is at least 80% identical (having at least 80% amino acid sequence identity) to the amino acid sequence of the heavy and/or light chain variable framework region of the parent humanized antibody of either the heavy or the light chain e.g. of either the heavy and light variable region sequences as in SEQ ID NO: 21 or SEQ ID NO: 41, respectively. Preferably the amino acid sequence identity of the heavy and/or light chain variable framework region is at least 85%, more preferably at least 90%, and most preferably at least 95%, in particular 96%, more particular 97%, even more particular 98%, most particular 99%, including for example, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100%. Identity or homology with respect to an amino acid sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the humanized antibody or fragment thereof that binds to human CD19, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Thus sequence identity can be determined by standard methods that are commonly used to compare the similarity in position of the amino acids of two polypeptides. Using a computer program such as BLAST or FASTA, two polypeptides are aligned for optimal matching of their respective amino acids (either along the full length of one or both sequences, or along a pre-determined portion of one or both sequences). The programs provide a default opening penalty and a default gap penalty, and a scoring matrix such as PAM250 (a standard scoring matrix; see Dayhoff et al., in Atlas of Protein Sequence and Structure,
vol 5, supp. 3 (1978)) can be used in conjunction with the computer program. For example, the percent identity can be calculated as: the total number of identical matches multiplied by 100 and then divided by the sum of the length of the longer sequence within the matched span and the number of gaps introduced into the longer sequences in order to align the two sequences. - In some embodiments the present disclosure thus provides a humanized antibody or fragment thereof that binds to human CD19, wherein the humanized antibody or fragment thereof comprises a heavy chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NOS: 19, 20, 21, 22 or 42 and/or a light chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NOS: 23, 24, 25, 26 and 41.
- In some embodiments the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein the humanized antibody or fragment thereof comprises a heavy chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 21, 22 or 42 and/or a light chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 25 or 41. In some embodiments the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein the humanized antibody or fragment thereof comprises a heavy chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 21 and/or a light chain variable framework region sequence which is at least 80% identical to the framework region sequence of SEQ ID NO: 41.
- In another aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising the heavy and or light chain CDRs as described supra and further comprising a heavy chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14), preferably a heavy chain variable framework region that is the product of or derived from human gene V3-30*-18 (SEQ ID NO: 13) or V3-48*01 (SEQ ID NO: 14), more preferably a heavy chain variable framework region that is the product of or derived from human gene V3-30*-18 (SEQ ID NO: 13). The heavy chain variable framework region may comprise one or more (e.g., one, two, three and/or four) heavy chain framework region sequences (e.g., framework 1 (FW1), framework 2 (FW2), framework 3 (FW3) and/or framework 4 (FW4)) present in the product of or derived from those human genes. Preferably the heavy chain variable region framework comprises FW1, FW2 and/or FW3, more preferably FW1, FW2 and FW3 present in the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14). Heavy chain framework region sequences as used herein include FW1 (
position 1 to position 25), FW2 (position 36 to position 49), FW3 (position 66 to position 94) and FW4 (position 103 to position 113), wherein the amino acid position is indicated utilizing the numbering system set forth in Kabat. - In another aspect the present invention provides a humanized antibody or fragment thereof that binds to human CD19 comprising a light chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6), preferably a light chain variable framework region that is the product of or derived from human gene V1-39*-01 (SEQ ID NO: 5). The light chain variable region framework region may comprise one or more (e.g., one, two, three and/or four) light chain framework region sequences (e.g., framework 1 (FW1), framework 2 (FW2), framework 3 (FW3) and/or framework 4 (FW4)) present in the product of or derived from those human genes. Preferably the light chain variable region framework comprises FW1, FW2 and/or FW3, more preferably FW1, FW2 and FW3 present in the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6). Light chain framework region sequences as used herein include FW1 (
position 1 to position 23), FW2 (position 35 to position 49), FW3 (position 57 to position 88) and FW4 (position 98 to position 108), wherein the amino acid position is indicated utilizing the numbering system set forth in Kabat. - In some embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V3-33*01 (SEQ ID NO: 11), V3-11*01 (SEQ ID NO: 12), V3-30*-18 (SEQ ID NO: 13) and V3-48*01 (SEQ ID NO: 14) and a light chain variable framework region that is the product of or derived from a human gene selected from the group consisting of V1-5*03 (SEQ ID NO: 3), V1-27*01 (SEQ ID NO:4), V1-39*-01 (SEQ ID NO: 5) and V1-12*01 (SEQ ID NO: 6), preferably a heavy chain variable framework region that is the product of or derived from human gene V3-30*-18 (SEQ ID NO: 13) or V3-48*01 (SEQ ID NO: 14), and a light chain variable framework region that is the product of or derived from human gene V1-39*-01 (SEQ ID NO: 5), more preferably a heavy chain variable framework region that is the product of or derived from human gene V3-30*-18 (SEQ ID NO: 13) and a light chain variable framework region that is the product of or derived from human gene V1-39*-01 (SEQ ID NO: 5).
- As well combinations of heavy chain variable region framework regions which are present in the product of or derived from different human genes and/or of light chain variable region framework regions which are present in the product of or derived from different human genes are encompassed by the present invention, e.g. FW1 and FW2 present in the product of or derived from V3-30*-18 (SEQ ID NO: 13) combined with FW3 present in the product of or derived from V3-48*01 (SEQ ID NO: 14) and/or FW1 and FW2 present in the product of or derived from V1-39*-01 (SEQ ID NO: 5) combined with FW3 present in the product of or derived from V1-12*01 (SEQ ID NO: 6).
- Germline DNA sequences for human heavy and light chain variable region genes can be found in Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; Tomlinson, I. M., et al. (1992) “The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops” J. MoI. Biol. 227:776-798; and Cox, J. P. L. et al. (1994) “A Directory of Human Germline VH Segments Reveals a Strong Bias in their Usage” Eur. J. Immunol. 24:827-836. As another example, the germline DNA sequences for human heavy and light chain variable region genes can be found in the Genbank database.
- In another aspect, the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19, wherein at least one of the heavy chain CDRs and/or at least one of the light chain CDRs comprises at least one amino acid modification. Site-directed mutagenesis or PCR-mediated mutagenesis can be performed to introduce the modification(s) and the effect on antibody binding, or other functional property of interest, can be evaluated in in vitro or in vivo assays as described herein and provided in the Examples. Preferably conservative modifications are introduced. The modification(s) may be amino acid substitutions, additions or deletions, but are preferably substitutions. Typically, no more than five, preferably no more than four, more preferably no more than three, even more preferably no more than two, most preferably no more than one amino acid modifications are performed within a CDR region.
- Thus the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19, comprising an amino acid modification comprising amino acid substitution Y32F within heavy chain CDR1, and/or comprising an amino acid modification comprising amino acid substitution Y58F or Y59F within heavy chain CDR2 and/or comprising an amino acid modification comprising one or more amino acid substitutions selected from the group consisting of Y96F, Y97F, Y98F and Y100BF within heavy chain CDR3. Preferred amino acid modifications of the humanized antibody or fragment thereof is amino acid substitution Y32F within heavy chain CDR1 and amino acid substitutions selected from the group consisting of Y96F, Y97F, Y98F and Y100BF within heavy chain CDR3. More preferred amino acid modifications of the humanized antibody or fragment thereof are amino acid substitution Y32F within heavy chain CDR1 and/or amino acid substitution Y100BF within heavy chain CDR3.
- The present disclosure also provides a humanized antibody or fragment thereof, comprising an amino acid modification comprising amino acid substitution Y32F within light chain CDR1 and/or comprising an amino acid modification comprising an amino acid substitution selected from the group consisting of N92A, T93A and T93V within light chain CDR3. Preferred amino acid modifications of the humanized antibody or fragment thereof are amino acid substitution Y32F within light chain CDR1 and/or amino acid substitution N92A within light chain CDR3.
- In some embodiments the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, comprising an amino acid modification comprising amino acid substitution Y32F within heavy chain CDR1, and/or comprising an amino acid modification comprising amino acid substitution Y58F or Y59F within heavy chain CDR2 and/or comprising an amino acid modification comprising one or more amino acid substitutions selected from the group consisting of Y96F, Y97F, Y98F and Y100BF within heavy chain CDR3 and comprising an amino acid modification comprising amino acid substitution Y32F within light chain CDR1 and/or comprising an amino acid modification comprising an amino acid substitution selected from the group consisting of N92A, T93A and T93V within light chain CDR3.
- In certain embodiments, framework sequences can be used to engineer variable regions to produce variant antibodies. Variant antibodies of the invention include those in which modifications have been made to framework residues within VH and/or VK, e.g. to improve the properties of the antibody. Typically such framework modifications are made to decrease the immunogenicity of the antibody. For example, one approach is to “backmutate” one or more framework residues to the corresponding murine sequence or to “backmutate” one or more framework residues to a corresponding germline sequence.
- Thus in a further aspect the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein at least one of the framework regions of the heavy chain variable region of the humanized antibody or fragment thereof comprises at least one amino acid modification from the corresponding framework region of the heavy chain variable region of the corresponding murine antibody. Preferably the amino acid modification is an amino acid substitution. Typically, no more than five, preferably no more than four, more preferably no more than three, even more preferably no more than two, most preferably no more than one amino acid modifications are performed within a framework region.
- In some embodiments the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, wherein the amino acid modification of the framework regions of the heavy chain variable region comprise an amino acid substitution at amino acid position selected from the group consisting of 37, 42, 48, 49, 67, 71, 78 and 94. Preferred amino acid substitution of the framework regions of the heavy chain variable region are at amino acid positions selected from the group consisting of 42, 67, 71, 78 and 94. More preferred amino acid substitutions of the framework regions of the heavy chain variable region are selected from the group consisting of G42R, F67L, R71K, L78V and R94K, with the proviso that if the amino acid modification is R94K the heavy chain variable region sequence is not SEQ ID NO: 19 or SEQ ID NO: 20, whereas R94K is the most preferred amino acid substitution of the framework regions of the heavy chain variable region.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19, wherein at least one of the framework regions of the light chain variable region of the humanized antibody or fragment thereof comprises at least one amino acid modification from the corresponding framework region of the light chain variable region of the corresponding murine antibody. Preferably the amino acid modification is an amino acid substitution. Typically, no more than five, preferably no more than four, more preferably no more than three, even more preferably no more than two, most preferably no more than one amino acid modifications are performed within a framework region. In some embodiments the present disclosure provides a humanized antibody or fragment thereof, wherein the amino acid modification of the framework regions of the light chain variable region sequence comprises an amino acid substitution at amino acid position selected from the group consisting of 44, 71 and 87. More preferred amino acid substitutions of the framework regions of the light chain variable region sequence are selected from the group consisting of P44V, P44I, P44L, F71Y, F71H, F71S, F71T and Y87F. Most preferred amino acid substitutions of the framework regions of the light chain variable region sequence are selected from the group consisting of P44V, P44I, F71Y, and Y87F, whereas P44I is particular preferred.
- In some embodiments the humanized antibody or fragment thereof of the present invention may comprise amino acid modifications of the framework regions of the heavy chain variable region sequence as set out supra and amino acid modifications of the framework regions of the light chain variable region sequence as set out supra.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 that comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55, preferably selected from the group consisting of SEQ ID NOS: 37, 43 and 47, more preferably selected from the group consisting of SEQ ID NOS: 37 and 47.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 that comprises a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63, preferably selected from the group consisting of SEQ ID NOS: 25, 59 and 60, more preferably selected from the group consisting of SEQ ID NOS: 59 and 60.
- In some embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55, and a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63.
- In some embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 37, 43 and 47, and a light chain variable region selected from the group consisting of SEQ ID NOS: 25, 59 and 60. In more preferred embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain variable region selected from the group consisting of SEQ ID NOS: 37 and 47, and a light chain variable region selected from the group consisting of SEQ ID NOS: 59 and 60. Most preferred is a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 37, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 59, a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 47, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 60, a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 47, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 59, a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 37, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 25, a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 37, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 49, a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 47, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 49 or a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 43, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 59, in particular a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 37, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 59, a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 47, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 60, a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 47, and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 59.
- Given that each of these heavy and light chain variable region sequences can bind to human CD19, the heavy and light chain variable region sequences can be “mixed and matched” to create anti-CD19 binding molecules of the invention.
CD 19 binding of such “mixed and matched” antibodies can be tested using the binding assays described e.g. in the Examples. - In some embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 64, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65.
- In some embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 67.
- In some embodiments the humanized antibody or fragment thereof that binds to human CD19 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which further comprises a human heavy and/or light constant domain. Human heavy constant regions may be selected from the group of human immunoglobulins consisting of IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgM1, IgM2, IgD, and IgE, whereas the human heavy constant region IgG, in particular IgG1 is preferred. Human light constant region may be selected from the group of human immunoglobulins consisting of kappa or lambda constant regions, whereas human kappa constant region is preferred. In some preferred embodiments the humanized antibody or fragment thereof comprises a human IgG1 heavy constant domain and a human light kappa constant domain. The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 comprising human heavy and/or light constant regions, wherein the human heavy constant region comprises an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3. Preferably the humanized antibody comprising the isotypic variant is a full length antibody. A particular preferred humanized antibody or fragment thereof that binds to human CD19 comprising an isotypic variant comprising the CH1 from human IgG1, the hinge from human IgG1 and the Fc region from human IgG3 comprises a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 124 and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65. It has been found that the isotypic variant exhibits improved complement dependent cytotoxicity (CDC) as compared to a humanized antibody or fragment thereof that binds to human CD19 which comprises a human heavy constant region from human IgG1 (which is usually a native human IgG1), i.e. as compared to a humanized antibody or fragment thereof that binds to human CD19 that only differs from the isotypic variant with regard to the modified heavy constant region.
- The present disclosure also provides a fragment of a humanized antibody that binds to human CD19 selected from the group consisting of Fab, Fab′, Fab′-SH, Fd, Fv, dAb, F(ab′)2, scFv, bispecific single chain Fv dimers, diabodies, triabodies and scFv genetically fused to the same or a different antibody. Preferred fragments are scFv, bispecific single chain Fv dimers and diabodies. The present disclosure also provides a full length humanized antibody that binds to human CD19.
- In addition or alternative to modifications made within the framework regions or CDR regions, antibodies of the invention may be engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity. Furthermore, an antibody of the invention may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation. Each of these embodiments is described in further detail below. Modifications within the Fc region as outlined below are according to the numbering of residues in the Fc region of the EU index of Kabat. In one embodiment, the hinge region of CH1 is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased. This approach is described further in U.S. Pat. No. 5,677,425 by Bodmer et al.
- The number of cysteine residues in the hinge region of CH1 is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody. In another embodiment, the Fc hinge region of an antibody is mutated to decrease the biological half life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcyl protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Pat. No. 6,165,745 by Ward et al. In another embodiment, the antibody is modified to increase its biological half life. Various approaches are possible. For example, one or more of the following mutations can be introduced: T252L, T254S, T256F, as described in U.S. Pat. No. 6,277,375 to Ward. Alternatively, to increase the biological half life, the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Pat. Nos. 5,869,046 and 6,121,022 by Presta et al. In a further embodiment Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector function(s) of the antibody. For example, one or more amino acids selected from amino acid residues 234, 235, 236, 237, 297, 318, 320 and 322 can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260, both by Winter et al. In another example, one or more amino acids selected from amino acid residues 329, 331 and 322 can be replaced with a different amino acid residue such that the antibody has altered CIq binding and/or reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Pat. No. 6,194,551 by Idusogie et al. In another example, one or more amino acid residues within amino acid positions 231 to 238 in the N-terminal region of the CH2 domain are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al. In yet another example, the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the affinity of the antibody for an Fc[gamma] receptor by modifying one or more amino acids at the following positions: 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439. This approach is described further in PCT Publication WO 00/42072 by Presta.
- Thus in a preferred embodiment the present disclosure provides a humanized antibody or fragment thereof that binds to human CD19, which comprises a variant human IgG Fc region which comprises at least one amino acid modification relative to the human IgG Fc region of the parent antibody, whereas the antibody comprising the variant human IgG Fc region exhibits altered effector function compared to the parent antibody. Preferably the antibody comprises a variant human IgG1 Fc region. More preferred is a full length antibody comprising a variant human IgG1 Fc region. The parent antibody is a humanized antibody or fragment thereof that binds to human CD19 and is identical to the humanized antibody that binds to human CD19 which comprises a variant human IgG Fc region, except for the amino acid modification in the human IgG Fc region and is usually an antibody with a native human IgG Fc region. The amino acid modification is preferably not isotopic.
- The effector function altered is usually complement dependent cytotoxicity (CDC) and/or CIq binding and/or antibody dependent cell mediated cytotoxicity (ADCC) and/or binding affinity of the antibody for an Fc[gamma] receptor, preferably complement dependent cytotoxicity (CDC) and/or antibody dependent cell mediated cytotoxicity (ADCC). CDC, CIq binding, ADCC, and binding affinity of the antibody for an Fc[gamma] receptor are measured by standard in vitro assays, which are known in the art and commercially available. Usually ADCC is measured by the lactate dehydrogenase (LDH)-releasing assay as described e.g. in Example 4 of the present application and CDC is measure by the cell-based assay described e.g. in Example 10 of the present application.
- In one embodiment the amino acid modification which alters the effector function compared to the parent antibody comprises an amino acid substitution at amino acid position selected from the group consisting of 269, 274, 276, 298, 324 and 334, preferably selected from the group consisting of 269, 298 and 324, more preferably 298 and/or 324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- In a further embodiment the amino acid modification which alters the effector function compared to the parent antibody comprises an amino acid substitution selected from the group consisting of E269D, K274Q, N276K, S298A, S324N, and K334R, preferably selected from the group consisting of E269D, S298A and S324N, more preferably S298A and/or S324N, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- In a further embodiment the amino acid modification which alters the effector function compared to the parent antibody comprises a combination of amino acid substitutions at amino acid position selected from the group consisting of 269/274, 269/276, 269/298, 269/324, 269/334, 274/276, 274/298, 274/324, 274/334, 276/298, 276/324, 276/334, 298/324, 298/334, 324/334, 269/274/276, 269/274/298, 269/274/324, 269/274/334, 269/276/298, 269/276/324, 269/276/334, 269/298/324, 269/298/334, 274/276/298, 274/276/324, 274/276/334, 274/298/324, 274/298/334, 276/298/324, and 276/298/334, preferably selected from the group consisting of 274/276, 269/298, 298/324, 274/276/334, and 269/298/324, more preferably selected from the group consisting of 298/324 and 269/298/324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- In a further embodiment the amino acid modification which alters the effector function compared to the parent antibody comprises a combination of amino acid substitutions selected from the group consisting of E269D/K274Q, E269D/N276K, E269D/S298A, E269D/S324N, E269D/K334R, K274Q/N276K, K274Q/S298A, K274Q/S324N, K274Q/K334R, N276K/S298A, N276K/S324N, N276K/K334R, S298A/S324N, S298A/K334R, S324N/K334R, E269D/K274Q/N276K, E269D/K274Q/S298A, E269D/K274Q/S324N, E269D/K274Q/K334R, E269D/N276K/S298A, E269D/N276K/S324N, E269D/N276K/K334R, E269D/S298A/S324N, E269D/S298A/K334R, K274Q/N276K/S298A, K274Q/N276K/S324N, K274Q/N276K/K334R, K274Q/S298A/S324N, K274Q/S298A/K334R, N276K/S298A/S324N, and N276K/S298A/K334R, preferably selected from the group consisting of K274Q/N276K, E269D/S298A, S298A/S324N, K274Q/N276K/K334R, and E269D/S298A/S324N, more preferably selected from the group consisting of S298A/S324N and E269D/S298A/S324N, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- Preferably the humanized anti-CD-19 antibody of the present disclosure comprising the variant human IgG Fc region exhibits improved CDC in an in vitro assay as described above compared to the parent antibody. Exhibition of improved CDC as used herein includes a) exhibition of enhanced CDC compared to the parent antibody, i.e. the parent antibody already exhibits CDC which is enhanced by the amino acid modification of the human IgG Fc region and b) de novo exhibition of CDC compared to the parent antibody, i.e. the parent antibody does not exhibit CDC, thus CDC has been introduced de novo by the amino acid modification of the human IgG Fc region.
- In a further embodiment, variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved CDC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid positions selected from the group consisting of 324, 334, 274/276, 298/324, 274/276/334, and 269/298/324, preferably selected from the group consisting of 324, 334, 298/324, 274/276/334, and 269/298/324, more preferably selected from the group consisting of 324, 298/324, and 269/298/324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- In a further embodiment, variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved CDC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid positions selected from the group consisting of S324N, K334R, K274Q/N276K, S298A/S324N, K274Q/N276K/K334R, and E269D/S298A/S324N, preferably selected from the group consisting of S324N, K334R, S298A/S324N, K274Q/N276K/K334R, and E269D/S298A/S324N, more preferably selected from the group consisting of S324N, S298A/S324N, and E269D/S298A/S324N, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- In a further embodiment, variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved ADCC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid position selected from the group consisting of 269, 298, 269/298, 269/324, 298/324, and 269/298/324, preferably selected from the group consisting of 298, 269/298, 269/298/324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- In a further embodiment, variants of the human IgG Fc region of the humanized anti-CD-19 antibody of the present invention which exhibit improved ADCC in an in vitro assay compared to the parent antibody comprise an amino acid substitution or a combination of amino acid substitutions at amino acid position selected from the group consisting of E269D, S298A, E269D/S298A, E269D/S324N, S298A/S324N, and E269D/S298A/S324N, preferably selected from the group consisting of S298A, E269D/S298A, and E269D/S298A/S324N, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- Thus particular preferred humanized antibodies or fragments thereof that binds to human CD19 and exhibit altered effector function compared to the parent humanized antibody provided by the present disclosure are humanized antibodies or fragments thereof comprising a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 114 (VH16 R94K/S298A) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 115 (VH16 R94K/E269D/S298A) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 116 (VH16 R94K/S298A/S324N) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 117 (VH16 R94K/E269D/S298A/S324N) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 118 (VH16 R94K/S324N) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 119 (VH16 R94K/K274Q) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 120 (VH16 R94K/N276K) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 121 (VH16 R94K/K334R) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A) a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 122 (VH16 R94K/K274Q/N276K) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A); or a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 123 (VH16 R94K/K274Q/N276K/K334R) and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65 (VL43 V3Q/T7S/P44I/N92A).
- The present disclosure further provides a humanized antibody or fragment thereof that binds to human CD19, wherein the antibody comprises a variant human IgG Fc region which comprises amino acid substitution S324N replacing serine at amino acid position 324 of the parent antibody with asparagine, whereas the antibody comprising the variant human IgG Fc region exhibits improved complement dependent cytotoxicity (CDC) compared to the parent antibody. Preferably the antibody comprises a variant human IgG1 Fc region. More preferred is a full length antibody comprising a variant human IgG1 Fc region. It has surprisingly found that among 16 different amino acid substitutions at amino acid position 324 the substitution S324N significantly improves CDC compared to the parent antibody whereas the other substitutions do not improve CDC compared to the parent antibody as described in Example 10. Without being bound by theory, this unexpected selective effect on CDC of the S324N substitution seems to be due to an enhanced binding to human complement component C1q.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which comprises a human IgG Fc region, wherein the mature core carbohydrate structure attached to the human IgG Fc region lacks fucose. Preferably the antibody comprises a human IgG1 Fc region, wherein the mature core carbohydrate structure attached to the human IgG1 Fc region lacks fucose. More preferred is a full length antibody comprising a human IgG1 Fc region, wherein the mature core carbohydrate structure attached to the human IgG1 Fc region lacks fucose. It is known from WO 2003/035835 that lack of fucose in the mature core carbohydrate structure attached to the human IgG Fc region may enhance ADCC. Thus in a further embodiment the humanized antibody or fragment thereof of the present disclosure comprises a human IgG Fc region, wherein the mature core carbohydrate structure attached to the human IgG Fc region lacks fucose, whereas the antibody lacking fucose exhibits enhanced ADCC compared to the parent humanized antibody or fragment thereof not lacking fucose. A preferred antibody or fragment thereof that binds to human CD19 comprising a human IgG Fc region, wherein the mature core carbohydrate structure attached to the human IgG Fc region lacks fucose, whereas the antibody lacking fucose exhibits enhanced ADCC compared to the parent humanized antibody or fragment thereof not lacking fucose is the antibody comprising a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 64, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65. Methods to generate antibodies which lack fucose are, for example, (a) use of an engineered or mutant host cell that is deficient in fucose metabolism such that it has a reduced ability (or is unable to) fucosylate proteins expressed therein; (b) culturing cells under conditions which prevent or reduce fucosylation; (c) post-translational removal of fucose (e.g. with a fucosidase enzyme); (d) post-translational addition of the desired carbohydrate, e.g. after recombinant expression of a non-glycosylated glycoprotein; or (e) purification of the glycoprotein so as to select for product which is not fucosylated. Preferably used are methods described in Example 14, e,g. methods described in Longmore et al. (1982), Carbohydr. Res. 365-92, or in Imai-Nishiya et al. (2007), BMC Biotechnol. 7, 84.
- Standard assays to evaluate the binding ability of the antibodies toward e.g. human CD19 are known in the art, including for example, ELISAs, Western blots, R1As, and flow cytometry analysis. Suitable assays are described in detail in the Examples. The binding kinetics (e.g., binding affinity like Kd) of the antibodies also can be assessed by standard assays known in the art, such as by Scatchard or Biacore® system analysis and can be performed and calculated e.g. as described in Example 3. The relative binding affinity Ki can be assessed by standard competion assay known in the art and can be performed and calculated e.g. as described in Example 3. To assess binding, Raji tumor cells (human Burkitt lymphoma, DSMZ ACC319), NALM-6 (human B cell precursor leukemia, DSMZ AC128) or SU-DHL-6 (human B cell lymphoma, DSMZ ACC572) can be used, preferably Raji tumor cells such as human Burkitt lymphoma, DSMZ ACC319 or SU-DHL-6 (human B cell lymphoma, DSMZ ACC572), more preferably Raji tumor cells such as human Burkitt lymphoma, DSMZ ACC319 are used. Those cells can be obtained from publicly available sources, such as the Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Braunschweig, Germany, and can be used in standard assays, such as flow cytometric analysis. The corresponding chimeric antibody which can be used in the assays of the present invention is usually a chimeric version of murine antibody FMC63 which consists of the FMC63 murine heavy variable domain fused to human IgG1 heavy constant domains and the murine light variable domain fused to kappa constant domain. The corresponding chimeric antibody which is preferably used in the assays of the present invention is a chimeric version of antibody FMC63 comprising a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 68 and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 69. The parental non-humanized antibody or corresponding parental non-humanized antibody which can be used in the assays of the present invention is usually a murine antibody, in particular murine antibody FMC63.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to Raji tumor cells with Mid-Point Fluorescence (MPF) of at least 10% relative to the binding of the corresponding chimeric antibody. Raji tumor cells do express CD19 on their surface to which the humanized antibody or fragment thereof can bind. Values for Mid-Point Fluorescence can be obtained from measurements of Mean Fluorescent Intensity (MFI) of cell staining using flow cytometry versus antibody concentration. Preferably the humanized antibody or fragment thereof binds to Raji tumor cells with MPF of at least 30%, more preferably of at least 50%, most preferably of at least 70%, in particular of at least 80%, more particular of at least 90%, most particular of at least 95% relative to the binding of the corresponding chimeric antibody. Raji tumor cells as described supra can be used for assessing binding to CD19.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 with an affinity (Kd) of 50 nM or less, in particular 40 nM or less, more particular 30 nM or less, even more particular 20 nM or less, most particular 15 nM or less. Raji tumor cells as described supra can be used for assessing binding to human CD19.
- The present disclosure also provides a humanized antibody or fragment thereof that retains at least 20% of the CD19 binding affinity (Kd) of the corresponding chimeric antibody. Preferably the humanized antibody or fragment thereof retains at least 40%, more preferably at least 60%, most preferably at least 80%, in particular at least 90%, more particular at least 95% of the CD19 binding affinity (Kd) of the corresponding chimeric antibody. Raji tumor cells or SU-DHL-6 cells as described supra can be used for assessing binding to human CD19.
- The present disclosure also provides a humanized antibody or fragment that binds to human CD19 and competes for binding to Raji tumor cells with an affinity (Ki) of 50 nM or less, preferably 20 nM or less, more preferably 10 nM or less, most preferably 5 nM or less, in particular 4 nM or less, more particular 3 nM or less, most particular at least about 1.5 nM to about 5.0 nM (e.g. 1.9; 1.6 or 2.9 to about 2.6 or 4.9 nM). Binding competition is usually measured against the corresponding chimeric antibody, whereas Raji tumor cells as described supra can be used for assessing K.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and induces apoptosis in Raji tumor cells. Induction of apoptosis in Raji tumor cells can be measured by annexin-V and propidium iodine staining (Vermes et al., 1995, J. Immunol. Methods. 184: 39-51). The induction of apoptosis is a very surprising property displayed by the humanized antibodies of the present invention in view of the fact that the corresponding chimeric antibody has no effect on apoptosis. Raji tumor cells as described supra can be used for assessing apoptosis. Thus the present disclosure also provides a humanized antibody or fragment thereof wherein apoptosis is induced in at least 10%, preferably in at least 15%, more preferably in at least 20%, most preferably in at least 25% of Raji tumor cells.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and induces ADCC activity in Raji tumor cells. ADCC related specific lysis of target cells such as Raji tumor cells as described supra can be assessed using e.g. a lactate dehydrogenase release assay (CytoTox 96 Non radioactive assay, Promega, Madison, USA). Surprisingly the humanized antibody or fragment thereof that binds to human CD19 induces ADCC activity in Raji tumor cells equivalent or even greater to induction of ADCC activity of the corresponding chimeric antibody. Preferably the humanized antibody or binding fragment thereof that binds CD19 has at least 80%, more preferably at least 100%, most preferably at least 120% of the ADCC activity of the corresponding chimeric antibody.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that inhibits proliferation of malignant B-cells. Preferably, the humanized antibody or fragment thereof retains at least 60%, more preferably at least 80%, most preferably at least 90%, in particular 95%, more particular 100% of the inhibition of the proliferation of malignant B-cells of the corresponding chimeric antibody. To measure inhibition of cell proliferation by antibodies, Raji tumor cells or SU-DHL-6 cells as described supra can be used for assessing proliferation of malignant B-cells.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that inhibits clonogenicity of Raji tumor cells. The inhibition of clonogenicity is measured by counting the number of clones after treatment with the antibody and can be carried out according to e.g. Nahimana et al., 2009, Blood. 0: blood-2008-08-173369v1” (Blood, 2009, Vol. 113, No. 14, pp. 3276-3286). Raji tumor cells as described supra can be used for assessing clonogenicity. The number of clones counted after treatment with the humanized antibodies of the invention is at least 30%, preferably at least 40%, more preferably at least 50%, most preferably at least 60% less than the number of clones counted after treatment with the corresponding chimeric antibody. The inhibition of clonogenicity of Raji tumor cells confirms the strong inhibitory function of the humanized antibodies of the invention on B cell proliferation.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that causes B-cell depletion in blood. Preferably, the B cell depletion caused is at least identical, preferably at least 1.5 times, more preferably at least 2 times greater than the B cell depletion caused by the corresponding chimeric antibody. B cell depletion can be assessed by determining the % positive B cells in whole blood after incubation with antibody as described in the Examples.
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 and that internalizes in Raji tumor cells. The humanized antibody or fragment of the present invention internalizes at a degree comparable to the degree of internalization of the corresponding chimeric antibody. Preferably, the internalization degree of the humanized antibody of the invention used at 0.01 μg/ml is between 50% and 150%, more preferably between 60% and 140%, most preferably between 70% and 130% of the internalization degree of the corresponding chimeric antibody. Antibody internalization can be assessed on Raji tumor cells as described supra using e.g. a secondary anti-human antibody conjugated to the toxin saporin (Hum-Zap, Advanced Targeting Systems, San Diego, Calif., USA).
- The present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which has a FAB fragment thermostability temperature greater than 65° C., preferably greater than 70° C., more preferably greater than 75° C., most preferably greater than 80° C. For analysis of FAB fragment thermostability differential scanning calorimetry measurements are used, whereas a mid-point melting temperature of the FAB fragment in context of a full-length IgG is identified. These kind of calorimetric measurements are known to the skilled person and can be carried out according to e.g. Garber and Demarest (2007), BBRC 355:751-7. Surprisingly, it has been found that the humanized antibody of the present invention has a FAB fragment thermostability temperature equivalent to the corresponding chimeric antibody. Thus the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 which has a FAB fragment thermostability temperature equivalent to the FAB fragment thermostability temperature of the corresponding chimeric antibody.
- Nucleic Acids, Vectors and Host Cells
- The present disclosure also provides isolated nucleic acids encoding the humanized antibodies and fragments thereof that bind to human CD19, vectors and host cells comprising the nucleic acid or the vector. The nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form. A nucleic acid is “isolated” or “rendered substantially pure” when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art, see e.g. F. Ausubel, et al, ed. (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York. A nucleic acid of the invention can be, for example, DNA or RNA and may or may not contain intronic sequences. In a preferred embodiment, the nucleic acid is a cDNA molecule.
- Nucleic acids of the invention can be obtained using standard molecular biology techniques e.g. cDNAs encoding the light and heavy chains of the antibody or encoding VH and VL segments can be obtained by standard PCR amplification or cDNA cloning techniques. For antibodies obtained from an immunoglobulin gene library (e.g., using phage display techniques), one or more nucleic acids encoding the antibody can be recovered from the library. The methods of introducing exogenous nucleic acid into host cells are well known in the art, and will vary with the host cell used. Techniques include but are not limited to dextran-mediated transfection, calcium phosphate precipitation, calcium chloride treatment, polybrene mediated transfection, protoplast fusion, electroporation, viral or phage infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei. In the case of mammalian cells, transfection may be either transient or stable.
- Preferred nucleic acids molecules of the invention are those encoding the light chain variable region selected from the group consisting of SEQ ID NOS: 25, 38, 39, 40, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62 and 63 and/or the heavy chain variable region selected from the group consisting of SEQ ID NOS: 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 54 and 55. More preferred are nucleic acids molecules encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 64, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 67; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 66, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 114, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 115, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 116, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 117, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 118, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 119, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 120, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 121, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 122, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 123, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65; or encoding a heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 124, and a light chain sequence comprising the amino acid sequence of SEQ ID NO: 65.
- The present disclosure also provides an isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23302. The heavy chain encoded by the deposited nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 comprises a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29.
- The present disclosure also provides an isolated nucleic acid comprising the light chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23303. The light chain encoded by the deposited nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 comprises a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- Thus the present disclosure also provides a humanized antibody or fragment thereof that binds to human CD19 encoded by the isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23302 and the isolated nucleic acid comprising the light chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23303.
- In one embodiment the humanized antibody or fragment thereof that binds to human CD19 encoded by the isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ on Feb. 5, 2010, having accession No. DSM 23302 comprises a variant human IgG Fc region, preferably a variant human IgG1 Fc region, which comprises an amino acid substitution at amino acid position selected from the group consisting of 269, 274, 276, 298, 324 and 334, preferably selected from the group consisting of 269, 298 and 324, more preferably 298 and/or 324, wherein the amino acid position of each group member is indicated utilizing the numbering system set forth in Kabat.
- Once DNA fragments encoding VH and VL segments are obtained, these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, or to fragments genes corresponding to the fragments described supra like Fab fragment genes or to a scFv gene. In these manipulations, a VL- or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker. The term “operatively linked”, as used in this context, is intended to mean that the two DNA fragments are joined such that the amino acid sequences encoded by the two DNA fragments remain in-frame. The isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3). The sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. The heavy chain constant region can be an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region, but most preferably is an IgG1 constant region. For a Fab fragment heavy chain gene, the V[pi]-encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region. The isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL. The sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. In preferred embodiments, the light chain constant region can be a kappa or lambda constant region, preferably a kappa constant region. To create a scFv gene, the VH- and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (GIy4-Ser)3, such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al. (1988) Science 242:423-426; Huston et al. (1988) Proc. Natl. Acad. ScL USA 85:5879-5883; McCafferty et al, (1990) Nature 348:552-554). Various techniques have been developed for the production of antibody fragments of humanized antibodies. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods, 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, the antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab′-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab′)2 fragments (Carter et al., Bio/Technology, 10: 163-167 (1992)). According to another approach, F(ab′)2 fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single-chain Fv fragment (scFv), see e.g. WO 1993/16185; U.S. Pat. No. 5,571,894; and U.S. Pat. No. 5,587,458. The antibody fragment may also be a “linear antibody”, e.g., as described in U.S. Pat. No. 5,641,870, for example.
- The nucleic acids that encode the antibodies of the present invention may be incorporated into an expression vector in order to express the protein. A variety of expression vectors may be utilized for protein expression. Expression vectors may comprise self-replicating extra-chromosomal vectors or vectors which integrate into a host genome. Expression vectors are constructed to be compatible with the host cell type. Thus expression vectors which find use in the present invention include but are not limited to those which enable protein expression in mammalian cells, bacteria, insect cells, yeast, and in in vitro systems. As is known in the art, a variety of expression vectors are available, commercially or otherwise, that may find use in the present invention for expressing antibodies.
- Expression vectors typically comprise a protein operably linked with control or regulatory sequences, selectable markers, any fusion partners, and/or additional elements. By “operably linked” herein is meant that the nucleic acid is placed into a functional relationship with another nucleic acid sequence. The term “regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes. Such regulatory sequences are described, for example, in Goeddel (Gene Expression Technology, Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990)). Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the antibody, and are typically appropriate to the host cell used to express the protein. In general, the transcriptional and translational regulatory sequences may include promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. As is also known in the art, expression vectors typically contain a selection gene or marker to allow the selection of transformed host cells containing the expression vector. Selection genes are well known in the art and will vary with the host cell used. For example, typically the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced. Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr−host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
- Suitable host cells for cloning or expressing the DNA in the vectors herein are prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes for this purpose include eubacteria, including gram-negative or gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis, Pseudomonas such as P. aeruginosa, and Streptomyces. Suitable E. coli cloning hosts include E. coli 294 (ATCC 31,446), E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325).
- In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful, such as Schizosaccharoriyces pombe; Kluyveromyces hosts including K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. WaItH (AJCC 56,500), K. drosopmarum (ATCC 36,906), K. thermotolerans, or K. marxianusyarrowia (EP 402226); Pichia pastoris (EP 183,070); Candida; Trichoderma reesia (EP 244234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi including Neurospora, Penicillium, Tolypocladium, or Aspergillus hosts such as A. nidulans or A. niger.
- Suitable host cells for the expression of the humanized antibodies of the invention are derived from multicellular organisms. Examples of invertebrate cells include plaril and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes augypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, for example, the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
- Host cells for expressing the recombinant antibodies of the invention are preferably mammalian host cells which include Chinese Hamster Ovary (CHO cells) (including dhfr<-> CHO cells, described in Urlaub and Chasin, (1980) Proc. Natl. Acad. ScL USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in R. J. Kaufman and P. A. Sharp (1982) J. MoI. Biol 159:601-621), NSO myeloma cells, COS cells and SP2 cells. In particular, for use with NSO myeloma cells, another preferred expression system is the GS gene expression system disclosed in WO 87/04462 (to Wilson), WO 89/01036 (to Bebbington) and EP 338841 (to Bebbington). When recombinant antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more preferably, for secretion of the antibody into the culture medium in which the host cells are grown. Host cells useful for producing antibodies that bind to human CD19 may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma or Chemie Brunschwig AG, PAA, Basel, Switzerland), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. Antibodies can be recovered from the culture medium using standard protein purification methods.
- Antibodies may be operably linked to a fusion partner to enable targeting of the expressed protein, purification, screening, display, and the like. Fusion partners may be linked to the antibody sequence via a linker sequences. The linker sequence will generally comprise a small number of amino acids, typically less than ten, although longer linkers may also be used. Typically, linker sequences are selected to be flexible and resistant to degradation. As will be appreciated by those skilled in the art, any of a wide variety of sequences may be used as linkers. For example, a common linker sequence comprises the amino acid sequence GGGGS (SEQ ID NO: 126).
- A fusion partner may be a targeting or signal sequence that directs antibody and any associated fusion partners to a desired cellular location or to the extracellular media. As is known in the art, certain signaling sequences may target a protein to be either secreted into the growth media, or into the periplasmic space, located between the inner and outer membrane of the cell. A fusion partner may also be a sequence that encodes a peptide or protein that enables purification and/or screening. Such fusion partners include but are not limited to polyhistidine tags (His-tags) (for example H6 and H10 or other tags for use with Immobilized Metal Affinity Chromatography (IMAC) systems (e.g. Ni<+2> affinity columns)), GST fusions, MBP fusions, Strep-tag, the BSP biotinylation target sequence of the bacterial enzyme BirA, and epitope tags which are targeted by antibodies (for example c-myc tags, flag-tags, and the like). As will be appreciated by those skilled in the art, such tags may be useful for purification, for screening, or both.
- Antibodies can be produced by recombinant DNA techniques known to the skilled person. In additional antibodies can be produced by enzymatic or chemical cleavage of naturally occurring antibodies. Humanized antibodies of the present invention may be constructed by transferring one or more CDRs or portions thereof from VH and/or VL regions from a non-human animal (e.g., mouse) to one or more framework regions from human VH and/or VL regions. Optionally, human framework residues thus present in the VH and/or VL regions may be replaced by corresponding non-human (e.g., mouse) residues when needed or desired for decreasing immunogenicity of the antibody and/or maintaining binding affinity.
- Optionally, non-human amino acid residues present in the CDRs may be replaced with human residues. Chimeric or humanized antibodies of the present invention can be prepared based on the sequence of a non-human monoclonal antibody prepared as described above. DNA encoding the heavy and light chain immunoglobulins can be obtained from the non-human hybridoma of interest and engineered to contain non-murine (e.g., human) immunoglobulin sequences using standard molecular biology techniques. For example, to create a chimeric antibody, murine variable regions can be linked to human constant regions using methods known in the art (see e.g., U.S. Pat. No. 4,816,567 to Cabilly et al). To create a humanized antibody, murine CDR regions can be inserted into a human framework using methods known in the art (see e.g., U.S. Pat. No. 5,225,539 to Winter, and U.S. Pat. Nos. 5,530,101; 5,585,089; 5,693,762 and 6,180,370 to Queen et al).
- Humanized antibodies of the present invention may be constructed wherein the human acceptor molecule for the heavy chain variable region is selected based on homology considerations between potential acceptor molecule variable regions and the heavy chain variable region of the murine antibody. Germline candidate human acceptor molecules are preferred to reduce potential immunogenicity. Germline databases are made up of antibody sequences that read through the end of the heavy chain FW3 region and partially into the CDR3 sequence. For selection of a FW4 region, databases of mature antibody sequences which have been derived from the selected germline molecule can be searched or antibody sequences which have been derived from the selected germline molecule from a human donor can be used. Human acceptor molecules are preferably selected from the same heavy chain class as the murine donor molecule, and of the same canonical structural class of the variable region of the murine donor molecule. Secondary considerations for selection of the human acceptor molecule for the heavy chain variable region elude homology in CDR length between the murine donor molecule and the human acceptor molecule. Human acceptor antibody molecules are preferably selected by homology search to the V-BASE database, although other databases such as the Kabat and the public NCBI databases may be used as well.
- Humanized antibodies of the present invention may be constructed wherein the human acceptor molecule for the light chain variable region is selected based on homology considerations between potential acceptor molecule variable regions and with the light chain variable region of the murine antibody. Germline candidate human acceptor molecules are preferred to reduce potential immunogenicity. Germline databases are made up of antibody sequences that read through the end of the heavy chain FW3 region and partially into the CDR3 sequence. For selection of a FW4 region, databases of mature antibody sequences which have been derived from the selected germline molecule can be searched or antibody sequences which have been derived from the selected germline molecule from a human donor can be used. Human acceptor molecules are preferably selected from the same light chain class as the murine donor molecule, and of the same canonical structural class of the variable region of the murine donor molecule. Secondary considerations for selection of the human acceptor molecule for the light chain variable region include homology in CDR length between the murine donor molecule and the human acceptor molecule. Human acceptor antibody molecules are preferably selected by homology searches to the V-BASE database, and other databases such as the Kabat and the public NCBI databases may be used as well.
- Methods for humanizing a nonhuman antibody are described herein, including in the Examples below.
- The present invention provides a method of producing a humanized antibody or fragment thereof that binds to human CD19 comprising culturing a host cell comprising an isolated nucleic acid encoding the humanized antibody or fragment thereof that binds to human CD19 or a vector comprising an isolated nucleic acid encoding the humanized antibody or fragment thereof that binds to human CD19 so that the nucleic acid is expressed and the antibody produced. Preferably the antibody is isolated.
- As host cells, nucleic acids and vectors, the ones described supra can be used. Expression of the nucleic acids can be obtained by, for example, a combination of recombinant DNA techniques and gene transfection methods as is well known in the art (e.g., Morrison, S. (1985) Science 229:1202) and as further outlined supra. For example, to express the antibodies, or antibody fragments thereof, DNAs encoding partial or full-length light and heavy chains, can be obtained by standard molecular biology techniques (e.g., PCR amplification or cDNA cloning using a hybridoma that expresses the antibody of interest) and the DNAs can be inserted into vectors such as expression vectors. The expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
- The antibody light chain gene and the antibody heavy chain gene can be inserted into separate vector or, more typically, both genes are inserted into the same expression vector. The antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present). The light and heavy chain variable regions of the antibodies described herein can be used to create full-length antibody genes of any antibody isotype by inserting them into expression vectors already encoding heavy chain constant and light chain constant regions of the desired isotype such that the VH segment is operatively linked to the CH segment(s) within the vector and the VK segment is operatively linked to the CL segment within the vector.
- Antibodies of the invention can be tested for binding to human CD19 by, for example, standard ELISA or by binding to Raji tumor cells. Antibodies of the present invention may be isolated or purified in a variety of ways known to those skilled in the art. Standard purification methods include chromatographic techniques, including ion exchange, hydrophobic interaction, affinity, sizing or gel filtration, and reversed-phase, carried out at atmospheric pressure or at high pressure using systems such as FPLC and HPLC. Purification methods also include electrophoretic, immunological, precipitation, dialysis, and chromatofocusing techniques. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. To purify anti-CD19 antibodies, selected host cells can be grown in e.g spinner-flasks for monoclonal antibody purification. Supernatants can be filtered and concentrated before affinity chromatography with protein A-sepharose (Pharmacia, Piscataway, N.J.). Eluted IgG can be checked by gel electrophoresis and high performance liquid chromatography to ensure purity.
- In another aspect, the present invention provides a humanized anti-CD19 antibody or a fragment thereof that binds to human CD19, linked to a therapeutic agent, such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin. Such conjugates are referred to herein as “immunoconjugates” Immunoconjugates that include one or more cytotoxins are referred to as “immunotoxins.” A cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents also include, for example, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine). Other examples of therapeutic cytotoxins that can be linked to an antibody of the invention include duocarmycins, calicheamicins, maytansines and auristatins, and derivatives thereof. An example of a calicheamicin antibody conjugate is commercially available (Mylotarg®; American Home Products). Cytotoxins can be linked to antibodies of the invention using linker technology available in the art. Examples of linker types that have been used to conjugate a cytotoxin to an antibody include, but are not limited to, hydrazones, thioethers, esters, disulfides and peptide-containing linkers. A linker can be chosen that is, for example, susceptible to cleavage by low pH within the lysosomal compartment or susceptible to cleavage by proteases, such as proteases preferentially expressed in tumor tissue such as cathepsins (e.g., cathepsins B, C, D). For further discussion of types of cytotoxins, linkers and methods for conjugating therapeutic agents to antibodies, see also Saito, G. et al. (2003) Adv. Drug Deliv. Rev. 55: 199-215; Trail, P. A. et al. (2003) Cancer Immunol. Immunother. 52: 328-337; Payne, G. (2003) Cancer Cell 3:207-212; Allen, T. M. (2002) Nat. Rev. Cancer 2:750-763; Pastan, I. and Kreitman, R. J. (2002) Curr. Opin. Investig. Drugs 3: 1089-1091; Senter, P. D. and Springer, C J. (2001) Adv. Drug Deliv. Rev. 53: 247-264. Antibodies of the present invention also can be linked to a radioactive isotope to generate cytotoxic radiopharmaceuticals, also referred to as radioimmunoconjugates. Examples of radioactive isotopes that can be conjugated to antibodies for use diagnostically or therapeutically include, but are not limited to, iodine<131>, indium<111>, yttrium<90> and lutetium<177>. Methods for preparing radioimmunconjugates are established in the art. Examples of radioimmunoconjugates are commercially available, including Zevalin® (EDEC Pharmaceuticals) and Bexxar® (Corixa Pharmaceuticals), and similar methods can be used to prepare radioimmunoconjugates using the antibodies of the invention. The antibody immunoconjugates of the invention can be used to modify a given biological response, and the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon-[gamma]; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
- Techniques for linking such therapeutic agents to antibodies are well known, see, e.g., Arnon et al, “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al, “Antibodies For Drug Delivery”, in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review”, in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); “Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy”, in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al, Immunol. Rev., 62: 119-58 (1982).
- In another aspect, the present invention provides a composition, e.g., a pharmaceutical composition, comprising the humanized antibody or fragment thereof, of the present invention, and a pharmaceutically acceptable carrier. Such compositions may include one or a combination of (e.g., two or more different) antibodies or immunoconjugates of the invention. For example, a pharmaceutical composition of the invention can comprise a combination of antibodies (or immunoconjugates) that bind to different epitopes on the target antigen or that have complementary activities. Pharmaceutical compositions of the invention also can be administered in combination therapy, i.e., combined with other agents. For example, the combination therapy can include an anti-CD19 antibody of the present invention combined with at least one other anti-inflammatory or immunosuppressant agent.
- As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Preferably, the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound, i.e., antibody or immunoconjugate, may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound. Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- In another aspect, the present invention provides a composition comprising an immunoconjugate comprising the humanized antibody or fragment thereof that binds to human CD19 linked to a therapeutic agent and a pharmaceutically acceptable carrier. Immunoconjugates and therapeutic agents which can be used are as described supra.
- A pharmaceutical composition of the invention may also include a pharmaceutically acceptable antioxidant. Examples of pharmaceutically acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic-acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like. Examples of suitable aqueous and nonaqueous carriers that may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- The humanized antibodies of the present invention have numerous in vitro and in vivo diagnostic and therapeutic utilities involving the diagnosis and treatment of CD19 mediated disorders. For example, these molecules can be administered to cells in culture, in vitro or ex vivo, or to human subjects, e.g., in vivo, to treat, prevent and to diagnose a variety of CD19-mediated disorders. Preferred subjects are human and include patients having disorders mediated by CD19 activity (CD19 mediated disorders). The methods are particularly suitable for treating human patients having a CD19-mediated disorder associated with aberrant B cell populations.
- A “patient” for the purposes of the present invention includes both humans and other animals, preferably mammals and most preferably humans. Thus the antibodies of the present invention have both human therapy and veterinary applications. The term “treatment” or “treating” in the present invention is meant to include therapeutic treatment, as well as prophylactic, or suppressive measures for a disease or disorder. Thus, for example, successful administration of an antibody prior to onset of the disease results in treatment of the disease.
- As another example, successful administration of an antibody after clinical manifestation of the disease to combat the symptoms of the disease comprises treatment of the disease. “Treatment” and “treating” also encompasses administration of an antibody after the appearance of the disease in order to eradicate the disease. Successful administration of an antibody after onset and after clinical symptoms have developed, with possible abatement of clinical symptoms and perhaps amelioration of the disease, comprises treatment of the disease.
- Those “in need of treatment” include mammals already having the disease or disorder, as well as those prone to having the disease or disorder, including those in which the disease or disorder is to be prevented.
- In a particular embodiment, the humanized antibodies are used in vivo to treat, prevent or diagnose a variety of CD19-mediated diseases. Thus the invention provides a method for treating a CD19 mediated disorder in a subject, the method comprising administering to the subject a therapeutically effective amount of the humanized antibody or fragment thereof. Exemplary CD19 mediated disorders include autoimmune disorder including rheumatoid arthritis, cancer, non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia, Burkitt's lymphoma, anaplastic large-cell lymphomas (ALCL), cutaneous T-cell lymphomas, nodular small cleaved-cell lymphomas, peripheral T-cell lymphomas, Lennert's lymphomas, immunoblastic lymphomas, T-cell leukemia/lymphomas (ATLL), adult T-cell leukemia (T-ALL), entroblastic/centrocytic (cb/cc) follicular lymphomas cancers, diffuse large cell lymphomas of B lineage, angioimmunoblastic lymphadenopathy (AILD)-like T cell lymphoma, HIV associated body cavity based lymphomas, Embryonal Carcinomas, undifferentiated carcinomas of the rhino-pharynx (e.g., Schmincke's tumor), Castleman's disease, Kaposi's Sarcoma, Multiple Myeloma, Waldenstrom's macroglobulinemia, anti-CD20 antibody resistant B-cell cancers and other B-cell lymphomas and leukemias. Anti-CD20 antibody resistant B-cell cancers are e.g. rituximab (Rituxan®) resistant B-cell cancers, which is the preferred anti-CD20 antibody resistant B-cell cancer. Preferred cancers are hematologic cancers, especially cancers relating to lymphomas and leukemias expressing CD19, in particular non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and hairy cell leukemia. Preferred CD19 mediated disorders to be treated with the antibody of the invention are selected from the group consisting of non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia, rheumatoid arthritis, systemic lupus erythematosus (SLE), and anti-CD20 antibody resistant B-cell cancers. More preferred CD19 mediated disorders to be treated with the antibody of the invention are rheumatoid arthritis, non-Hodgkin's lymphoma or anti-CD20 antibody resistant B-cell cancers.
- “Autoimmune disorders” include allogenic islet graft rejection, alopecia areata, ankylosing spondylitis, antiphospholipid syndrome, autoimmune Addison's disease, antineutrophil cytoplasmic autoantibodies (ANCA), autoimmune diseases of the adrenal gland, autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune myocarditis, autoimmune neutropenia, autoimmune oophoritis and orchitis, autoimmune thrombocytopenia, autoimmune urticaria, Behcet's disease, bullous pemphigoid, cardiomyopathy, Castleman's syndrome, celiac spruce-dermatitis, chronic fatigue immune disfunction syndrome, chronic inflammatory demyelinating polyneuropathy, Churg-Strauss syndrome, cicatrical pemphigoid, CREST syndrome, cold agglutinin disease, Crohn's disease, dermatomyositis, discoid lupus, essential mixed cryoglobulinemia, factor VIII deficiency, fibromyalgia-fibromyositis, glomerulonephritis, Grave's disease, Guillain-Barre, Goodpasture's syndrome, graft-versus-host disease (GVHD), Hashimoto's thyroiditis, hemophilia A, idiopathic pulmonary fibrosis, idiopathic thrombocytopenia purpura (ITP), IgA neuropathy, IgM polyneuropathies, immune mediated thrombocytopenia, juvenile arthritis, Kawasaki's disease, lichen planrus, lupus erthematosis, Meniere's disease, mixed connective tissue disease, multiple sclerosis (MS), type 1 diabetes mellitus, myasthenia gravis, pemphigus vulgaris, pernicious anemia, polyarteritis nodosa, polychondritis, polyglandular syndromes, polymyalgia rheumatica, polymyositis and dermatomyositis, primary agammaglobinulinemia, primary biliary cirrhosis, psoriasis, psoriatic arthritis, Reynauld's phenomenon, Reiter's syndrome, rheumatoid arthritis (RA), sarcoidosis, scleroderma, Sjogren's syndrome, solid organ transplant rejection, stiff-man syndrome, systemic lupus erythematosus (SLE), takayasu arteritis, temporal arteristis/giant cell arteritis, thrombotic thrombocytopenia purpura, ulcerative colitis, uveitis, vasculitides such as dermatitis herpetiformis vasculitis, vitiligo, anti-neutrophil cytoplasmic antibody associated vasculitis, graft vs. host disease, cryoglobulinemia, IgM mediated neuropathy, neuromyelitis optica, idiopathic membranous nephropathy, opsoclonus myoclonus, and Wegner's granulomatosis.
- Furthermore, given the expression of CD19 on various tumor cells and given the fact that the humanized antibody or fragment thereof of the present invention inhibits proliferation of malignant B-cells expressing CD19 as mentioned supra, the CD19 mediated disease is preferably a tumorigenic disorder like cancer, e.g., a disorder characterized by the presence of tumor cells expressing CD19 including, for example, non-Hodgkin's lymphoma (NHL), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia Burkitt's lymphoma, anaplastic large-cell lymphomas (ALCL), multiple myeloma, cutaneous T-cell lymphomas, nodular small cleaved-cell lymphomas, lymphocytic lymphomas, peripheral T-cell lymphomas, Lennert's lympho mas, immunoblastic lymphomas, T-cell leukemia/lymphomas (ATLL), adult T-cell leukemia (T-ALL), entroblastic/centrocytic (cb/cc) follicular lymphomas cancers, diffuse large cell lymphomas of B lineage, angioimmunoblastic lymphadenopathy (AILD)-like T cell lymphoma, HIV associated body cavity based lymphomas, Embryonal Carcinomas, undifferentiated carcinomas of the rhino-pharynx (e.g., Schmincke's tumor), Castleman's disease, Kaposi's Sarcoma, Multiple Myeloma, Waldenstrom's macroglobulinemia, anti-CD20 antibody resistant B-cell cancers and other B-cell lymphomas and leukemias.
- Thus in a further aspect the present invention provides a method of inhibiting growth of tumor cells expressing CD19, comprising contacting the cells with the humanized antibody or fragment thereof of the invention, in an amount effective to inhibit growth of tumor cells. Tumor cells are typically selected from human Burkitt lymphoma cells, human B cell precursor leukemia cells, human B cell leukemia cells or human B-cell lymphoma cells, preferably human Burkitt lymphoma cells or human B-cell lymphoma cells.
- Given the fact that the humanized antibody or fragment thereof of the present invention causes B-cell depletion in blood, the present invention further provides a method of depleting B cells in a subject comprising administering to the subject the humanized antibody or fragment thereof of the invention in an amount effective to deplete B cells from the subject.
- In one embodiment, the antibodies of the invention can be used to detect levels of CD19, or levels of cells which contain CD19 on their membrane surface, which levels can then be linked to certain disease symptoms. Alternatively, the antibodies can be used to inhibit or block CD19 function which, in turn, can be linked to the prevention or amelioration of certain disease symptoms, thereby implicating CD19 as a mediator of the disease. This can be achieved by contacting a sample and a control sample with the anti-CD19 antibody under conditions that allow for the formation of a complex between the antibody and CD19. Any complexes formed between the antibody and CD19 are detected and compared in the sample and the control. In light of the specific binding of the antibodies of the invention for CD19, the antibodies of the invention can be used to specifically detect CD19 expression on the surface of cells and, moreover, can be used to purify CD19 via immunoaffinity purification.
- In another embodiment, the antibodies of the invention can be initially tested for binding activity associated with therapeutic or diagnostic use in vitro. For example, compositions of the invention can be tested using the flow cytometric assays described in the Examples below.
- The present disclosure further provides the use of a humanized antibody or fragment thereof as a medicament and the use of a humanized antibody or fragment thereof in the preparation of a medicament for the treatment of a CD19 mediated disorder. In a further embodiment the present disclosure provides the humanized antibody or fragment thereof for use as a medicament. Also provided by the present disclosure is the humanized antibody or fragment thereof for use in a method for treating a CD19 mediated disorder. CD19 mediated disorders are the ones as described supra.
- As previously described, human anti-CD19 antibodies of the invention can be co-administered with one or other more therapeutic agents, e.g., a cytotoxic agent, a radiotoxic agent or an immunosuppressive agent. The antibody can be linked to the agent (as an immunocomplex) or can be administered separate from the agent. In the latter case (separate administration), the antibody can be administered before, after or concurrently with the agent or can be co-administered with other known therapies, e.g., an anti-cancer therapy, e.g., radiation.
- For administration of the antibody, the dosage ranges from about 0.0001 to 100 mg/kg, and more usually 0.01 to 10 mg/kg, of the host body weight. An exemplary treatment regime entails administration once per week, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months.
- The antibody is usually administered on multiple occasions. Intervals between single dosages can be, for example, weekly, monthly, every three months or yearly. Intervals can also be irregular as indicated by measuring blood levels of antibody to the target antigen in the patient. In some methods, dosage is adjusted to achieve a plasma antibody concentration of about 1-1000 μg/ml and in some methods about 25-300 μg/ml. Alternatively, antibody can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated.
- Actual dosage levels of the active ingredients, i.e. the antibody in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- The selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, the rate of excretion of the particular antibody being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- A “therapeutically effective amount” of an anti-CD19 antibody of the invention preferably results in a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, and/or a prevention of impairment or disability due to the disease affliction. For example, for the treatment of a tumorogenic disorder (CD19<+> tumors), a “therapeutically effective amount” preferably inhibits cell growth or tumor growth by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects. The ability of a compound to inhibit tumor growth can be evaluated in an animal model system predictive of efficacy in human tumors. Alternatively, this property of a composition can be evaluated by examining the ability of the compound to inhibit cell growth, such inhibition can be measured in vitro by assays known to the skilled practitioner. A therapeutically effective amount of a therapeutic compound can decrease tumor size, or otherwise ameliorate symptoms in a subject. One of ordinary skill in the art would be able to determine such amounts based on such factors as the subject's size, the severity of the subject's symptoms, and the particular composition or route of administration selected.
- The antibody or the composition of the present invention can be administered via one or more routes of administration using one or more of a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. Preferred routes of administration include intravenous, intramuscular, intradermal, intraperitoneal, subcutaneous, spinal or other parenteral routes of administration, for example by injection or infusion. More preferred routes of administration are intravenous or subcutaneous. The phrase “parenteral administration” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion. Alternatively, an antibody of the invention can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
- In another embodiment of the disclosure, an article of manufacture comprising the humanized antibody or fragment thereof, the composition or the immunoconjugate of the invention for the treatment of a CD19 mediated disorder is provided. The article of manufacture may comprise a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials or syringes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition that may be effective for treating the condition and may have a sterile access port (e.g., the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition may be the humanized antibody described herein. The label or package insert may indicate that the composition may be used for treating the condition of choice, such as cancer. In one embodiment, the label or package insert may indicate that the composition comprising the humanized antibody may be used to treat a CD19-mediated disorder.
- Moreover, the article of manufacture may comprise (a) a first container with a composition contained therein, wherein the composition comprises the humanized antibody herein, and (b) a second container with a composition contained therein, wherein the composition comprises a therapeutic agent other than the humanized antibody. The article of manufacture in this embodiment of the disclosure may further comprise a package insert indicating that the first and second compositions can be used in combination to treat a CD19 mediated disease or disorder. Such therapeutic agent may be any of the adjunct therapies described in the preceding section (e.g., a thrombolytic agent, an anti-platelet agent, a chemotherapeutic agent, an anti-angiogenic agent, an anti-hormonal compound, a cardioprotectant, and/or a regulator of immune function in a mammal, including a cytokine).
- Alternatively, or additionally, the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
- Also within the scope of the present invention are kits comprising the antibody, the compositions or the immunoconjugates of the invention and instructions for use. The kit can further contain one ore more additional reagents, such as an immunosuppressive reagent, a cytotoxic agent or a radiotoxic agent, or one or more additional humanized antibodies of the invention (e.g., a humanized antibody having a complementary activity which binds to an epitope in the
CD 19 antigen distinct from the first humanized antibody). - The following materials have been deposited with the Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSMZ), Inhoffenstr. 7 B, 38124 Braunschweig, Germany:
- Microorganism (E. coli) deposited with DSMZ on Feb. 5, 2010, having accession No. DSM 23303, comprising isolated nucleic acid comprising the light chain encoding nucleic acid sequence of humanized FMC63 variant that binds to human CD19 as described in Example 1. Microorganism (E. coli) deposited with DSMZ on Feb. 5, 2010, having accession No. DSM 23302, which comprises isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of humanized FMC63 variant that binds to human CD19 as described in Example 1. These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty).
- Without further description, it is believed that one of ordinary skill in the art may, using the preceding description and the following illustrative examples, make and utilize the agents of the present disclosure and practice the claimed methods. The following working examples are provided to facilitate the practice of the present disclosure, and are not to be construed as limiting in any way the remainder of the disclosure.
- Humanizing the anti-human CD19 murine antibody FMC63 including selection of human acceptor frameworks, back mutations, and mutations that substantially retain and/or improve the binding properties of human CDR-grafted acceptor frameworks is described herein.
- FMC63 is a murine IgG2a, kappa antibody isolated from mice immunized with the human prolymphocytic leukaemia cell line JVM3 (Zola H. et al (1991), Immunol Cell Biol., 69:411-22.), and for which variable regions are known and publicly available (Heavy chain NCBI accession number, CAA74659 (SEQ ID NO: 1); Light chain NCBI accession number, CAA74660 (SEQ ID NO: 2)). Methods for assaying antigen-binding affinity are well known in the art and include half-maximal binding assays, competition assays, and Scatchard plot analysis.
- Selection of human acceptor frameworks: Homology matching was used to choose human acceptor frameworks to graft FMC63 CDRs. Databases (e.g. a database of germline variable genes from the immunoglobulin loci of human and mouse, VBASE2 (Retter I. et al, 2005, Nucleic Acids Res., 33, Database issue D671-D674), or the Kabat database (Johnson G. et al, 2000, Nucleic Acids Res., 28, p 214-218)) or publications (e.g., Kabat et al, Sequences of Proteins of Immunological Interest, 1992) may be used to identify the human subfamilies to which the murine heavy and light chain V regions belong and determine the best-fit human germline framework to use as the acceptor molecule. Selection of VH and VL sequences within these subfamilies to be used as acceptor may be based upon sequence homology and/or a match of structure of the CDR1 and CDR2 regions to help preserve the appropriate relative presentation of the six CDRs after grafting.
- For example, use of the VBASE2 database indicates that the kappa light chain of FMC63 is of the kappa one subfamily given that good homology was identified between the FMC63 VL framework and the members of the human kappa subfamily I. The highest homology and identity of both CDRs and framework sequences is observed for four germline sequences: IGKV1-5*03 (VBASE2 ID humIGKV087) (SEQ ID NO:3), IGKV1-27*01 (VBASE2 ID humIGKV106) (SEQ ID NO:4), IGKV1-39*01 (VBASE2 ID humIGKV115) (SEQ ID NO:5), and IGKV1-12*01 (VBASE2 ID humIGKV094) (SEQ ID NO:6); which have a sequence identity of 70.4%, 75%, 76.1%, and 72.7% respectively for the whole sequence up to CDR3 and a sequence identity of 74.3%, 78.6%, 78.6%, and 77.1% respectively for frameworks regions. Since complete LCDR3 and
framework 4 regions are not included in VBASE2, best matching JK segment sequences to human acceptor framework were identified by analysis of complementary DNA (cDNA) prepared from healthy donor B-cell mRNA, which were subsequently amplified using a degenerate primer and immunoglobulin light chain first constant domain from kappa isotype as shown in Table 1. Using this approach, best matching sequences from amplifications were: SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 10 for IGKV1-5*03 (SEQ ID NO: 3), IGKV1-27*01 (SEQ ID NO: 4), IGKV1-39*01 (SEQ ID NO: 5), and IGKV1-12*01 (SEQ ID NO: 6) respectively. -
TABLE 1 Forward Primer Sequence Reverse Primer Sequence (5′→3′) (5′→3′) GATCGGATCCACTGGTGATATTGTGAT GATCGCGGCCGCACACTCTCCCCTGTT GACYCAGWCTCC GAAGCTCTT (SEQ ID NO: 70) (SEQ ID NO: 71) Germline Amplified variable region Primers variable region Hum IGHV 199 SEQ ID NO: 72 pAE18 VH-3a clone#2 (SEQ ID NO: 11) SEQ ID NO: 73 (SEQ ID NO: 15) Hum IGHV 175 SEQ ID NO: 72 pAE18 VH-3a clone#5 (SEQ ID NO: 12) SEQ ID NO: 73 (SEQ ID NO: 16) Hum IGHV 195 SEQ ID NO: 113 pAE18 VH-1b clone#16 (SEQ ID NO: 13) SEQ ID NO: 73 (SEQ ID NO: 17) Hum IGHV 031 SEQ ID NO: 113 pAE18 VH-1b clone#20 (SEQ ID NO: 14) SEQ ID NO: 73 (SEQ ID NO: 18) - Similarly, use of VBASE2 indicates that the VH sequence of FMC63 through to framework three falls in the human VH subfamily III. Within the human VH subfamily III, FMC63 shows the highest sequence homology with IGHV3-33*01 (VBASE2-ID: humIGHV199) (SEQ ID NO: 11), IGHV3-11*01 (VBASE2-ID: humIGHV175) (SEQ ID NO: 12), IGHV3-30*18 (VBASE2-ID: humIGHV195) (SEQ ID NO: 13), and IGHV3-48*01 (VBASE2-ID: humIGHV031) (SEQ ID NO: 14), which exhibit sequence homology above 70.4% for framework and CDR regions. As for the light chain, a source to identify compatible JH segments is cDNAs prepared from healthy donor B-cell mRNA amplified with degenerate primers and IgM heavy chain first constant domain (Table 2). The following sequences: SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, and SEQ ID NO: 18 were closest to IGHV3-33*01 (VBASE2-ID: humIGHV199) (SEQ ID NO: 11), IGHV3-11*01 (VBASE2-ID: humIGHV175) (SEQ ID NO: 12), IGHV3-30*03 (VBASE2-ID: humIGHV195) (SEQ ID NO: 13), and IGHV3-48*01 (VBASE2-ID: humIGHV031) (SEQ ID NO: 14) respectively.
-
TABLE 2 Forward Primer Sequence Reverse Sequence (5′→3′) (5′→3′) GATCGGATCCACTGGTGAGGTGCAGCTGGT GATCGCGGCCGCTGGAAGAGGCACGTT GGAGTC CTTTTCTTT (SEQ ID NO: 72) (SEQ ID NO: 73) GATCGGATCCACTGGTCAGGTYCAGCTKGT GCAGTCTGG (SEQ ID NO: 113) Germline Amplified variable region Primers variable region Hum IGHV 199 SEQ ID NO: 72 pAE18 VH-3a clone#2 (SEQ ID NO: 11) SEQ ID NO: 73 (SEQ ID NO: 15) Hum IGHV 175 SEQ ID NO: 72 pAE18 VH-3a clone#5 (SEQ ID NO: 12) SEQ ID NO: 73 (SEQ ID NO: 16) Hum IGHV 195 SEQ ID NO: 113 pAE18 VH-1b clone#16 (SEQ ID NO: 13) SEQ ID NO: 73 (SEQ ID NO: 17) Hum IGHV 031 SEQ ID NO: 113 pAE18 VH-1b clone#20 (SEQ ID NO: 14) SEQ ID NO: 73 (SEQ ID NO: 18) - Human VH and VL fragments prepared above were used to initiate humanization process. cDNAs were used as templates for CDR grafting using overlap PCR assembly to provide first humanized candidates based on the following heavy and light chains: VH2 (SEQ ID NO: 19), VH5 (SEQ ID NO: 20), VH16 (SEQ ID NO: 21), VH20 (SEQ ID NO: 22), VL39 (SEQ ID NO: 23), VL40 (SEQ ID NO: 24), VL43 (SEQ ID NO: 25), and VL44 (SEQ ID NO: 26), in which original CDRs have been replaced with FMC63 CDRs as shown in Table 3.
-
TABLE 3 FMC63 CDR regions. Heavy chain Light chain SEQ SEQ Amino-acid ID Amino-acid ID sequence NO: sequence NO: CDR1 GVSLPDYGVS 27 RASQDISKYLN 30 CDR2 VIWGSETTYYNSALKS 28 HTSRLHS 31 CDR3 HYYYGGSYAMDY 29 QQGNTLPYT 32 - VH2, VH5, VH16 and VH20 heavy chains were based on cDNA encoding SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, and SEQ ID NO: 18, respectively, with CDRs exchanged for FMC63 CDRs using a four-fragment assembly PCR strategy as described in Tables 4, and 5. A similar strategy was used for VL39, VL40, VL43, and VL44 as shown in Tables 6, and 7.
- For heavy chains, products of PCR-amplifications described in Table 4, were subcloned by running a secondary PCR using adaptor primers (sense primer, HindIII VJ2C (SEQ ID NO: 93); and anti-sense primer, SalI adaptor (SEQ ID NO: 92)) to append a SalI site at the 3′ end of the variable domain cDNA (see below). Amplifications described in Table 6 allow direct Kappa chains cloning into a mammalian cell expression vector (described below). In this instance, products contained variable as well as full-length constant kappa domain and were cloned in a mammalian cell expression vector using a BamHI and NotI site strategy.
-
TABLE 4 Summary of templates and primers used to construct 1st CDR-grafted heavy chain variable regions. Fragment 1 Fragment 2 Fragment 3 Fragment 4 Construct Template PCR primers PCR primers PCR primers PCR primers VH2/FMC63 pAE18 VH-3a CMV-IE VH2 mCDR1 VH2 mCDR2 VH2 mCDR3 grafted clone#2 Forward linker Forward linker Forward linker Forward (SEQ ID (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: NO: 19) 15) 74) 77) 79) 81) and and and and VH2 mCDR1 VH2 mCDR2 VH2 mCDR3 BGH linker Reverse linker Reverse linker Reverse Reverse (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 76) 78) 80) 75) VH5/FMC63 pAE18 VH-3a CMV-IE VH5 mCDR1 VH5 mCDR2 VH5 mCDR3 grafted clone#5 Forward linker Forward linker Forward linker Forward (SEQ ID (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: NO: 20) 16) 74) 83) 84) 86) and and and and VH5 mCDR1 VH20 mCDR2 VH5 mCDR3 BGH linker Reverse linker Reverse linker Reverse Reverse (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 82) 89) 85) 75) VH16/FMC63 pAE18 VH-1b CMV-IE VH2 mCDR1 VH2 mCDR2 VH2 mCDR3 grafted clone#16 Forward linker Forward linker Forward linker Forward (SEQ ID (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: NO: 21) 17) 74) 77) 79) 81) and and and and VH5 mCDR1 VH2 mCDR2 VH16 mCDR3 BGH Reverse linker Reverse linker Reverse linker (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: Reverse 75) 82) 78) (SEQ ID NO: 87) VH20/FMC63 pAE18 VH-1b CMV-IE VH2 mCDR1 VH20 mCDR2 VH2 mCDR3 grafted clone#20 Forward linker Forward linker linker (SEQ ID (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: Forward Forward NO: 22) 18) 74) 77) (SEQ ID NO: (SEQ ID NO: and and 90) 81) VH20 mCDR1 VH20 mCDR2 and and linker linker VH20 mCDR3 BGH Reverse Reverse linker Reverse (SEQ ID NO: (SEQ ID NO: Reverse (SEQ ID NO: 88) 89) (SEQ ID NO: 75) 91) -
TABLE 5 Sequences of primers used to construct selected human heavy chain 1st CDR-grafted variable regions. Primer Sequence (5′→3′) CMV-IE CGC AAA TGG GCG GTA GGC GTG Forward (SEQ ID NO: 74) BGH TAG AAG GCA CAG TCG AGG Reverse (SEQ ID NO: 75) VH2 mCDR1 linker GCT CAC GCC GTA GTC GGG CAG GCT CAC GCC AGA CGC TGC ACA Reverse GGA GAG TCT C (SEQ ID NO: 76) VH2 mCDR1 linker GGC GTG AGC CTG CCC GAC TAC GGC GTG AGC TGG GTC CGC CAG GCT Forward CCA GG (SEQ ID NO: 77) VH2 mCDR2 linker GGC GCT GTT GTA GTA GGT TGT CTC GGA GCC CCA GAT CAC TGC CAC Reverse CCA CTC CAG CCC CTT G (SEQ ID NO: 78) VH2 mCDR2 linker GGC TCC GAG ACA ACC TAC TAC AAC AGC GCC CTG AAG AGC CGA Forward TTC ACC ATC TCC AGA GAC AAT TCC (SEQ ID NO: 79) VH2 mCDR3 linker CAT GGC GTA GCT GCC GCC GTA GTA GTA GTG TGT GGT ACA GTA Reverse ATA CAC GGC (SEQ ID NO: 80) VH2 mCDR3 linker CAC TAC TAC TAC GGC GGC AGC TAC GCC ATG GAC TAC TGG GGC Forward CAG GGA ACC CTG (SEQ ID NO: 81) VH5 mCDR1 linker GCT CAC GCC GTA GTC GGG CAG GCT CAC GCC AGA GGC TGC ACA Reverse GGA GAG TCT C′ (SEQ ID NO: 82) VH5 mCDR1 linker GGC GTG AGC CTG CCC GAC TAC GGC GTG AGC TGG ATC CGC CAG GCT Forward CCA GGG (SEQ ID NO: 83) VH5 mCDR2 linker GGC TCC GAG ACA ACC TAC TAC AAC AGC GCC CTG AAG AGC CGA Forward TTC ACC ATC TCC AGG GAC AAC GCC (SEQ ID NO: 84) VH5 mCDR3 linker GTA GTC CAT GGC GTA GCT GCC GCC GTA GTA GTA GTG CCC CGC Reverse ACA GTA ATA AAC GGC (SEQ ID NO: 85) VH5 mCDR3 linker CAC TAC TAC TAC GGC GGC AGC TAC GCC ATG GAC TAC TGG GGC CAG Forward GGA ACC CTG GTC ACC (SEQ ID NO: 86) VH16 mCDR3 linker CAT GGC GTA GCT GCC GCC GTA GTA GTA GTG TCT CGC ACA GTA ATA Reverse CAC GGC (SEQ ID NO: 87) VH20 mCDR1 linker GCT CAC GCC GTA GTC GGG CAG GCT CAC GCC AGA GGC TAC ACA Reverse GGA GAG TCT C (SEQ ID NO: 88) VH20 mCDR2 linker GGC GCT GTT GTA GTA GGT TGT CTC GGA GCC CCA GAT CAC TGA Reverse AAC CCA CTC CAG CCC CTT C (SEQ ID NO: 89) VH20 mCDR2 linker GGC TCC GAG ACA ACC TAC TAC AAC AGC GCC CTG AAG AGC CGA Forward TTC ACC ATC TCC AGA GAC AAC GCC (SEQ ID NO: 90) VH20 mCDR3 linker CAT GGC GTA GCT GCC GCC GTA GTA GTA GTG TCT CGC ACA GTA Reverse ATA CAC AGC (SEQ ID NO: 91) SalI adaptor GATC GTCGAC GC TGA GGA GAC GGT GAC CAG GG (SEQ ID NO: 92) HindIII VJ2C GATCAAGCTTGCCGCCACCATGGAGACAGACACACTC Forward (SEQ ID NO: 93) -
TABLE 6 Summary of templates and primers used to construct 1st CDR-grafted light chain variable regions. Fragment 1 Fragment 2 Fragment 3 Fragment 4 Construct Template PCR primers PCR primers PCR primers PCR primers VL39/FMC63 pAE18 VL-2a CMV-IE VL43 mCDR1 VL39 mCDR2 VL39 mCDR3 grafted clone#39 (SEQ ID NO: linker linker Forward linker (SEQ ID NO: (SEQ ID NO: 74) Forward (SEQ ID NO: Forward 23) 7) and (SEQ ID NO: 94) (SEQ ID NO: VL43 mCDR1 102) and 96) linker Reverse and VL39 mCDR3 and (SEQ ID NO: VL43 mCDR2 linker Reverse NotI Kappa 101) linker (SEQ ID NO: Reverse Reverse 95) (SEQ ID NO: (SEQ ID NO: 112) 103) VL40/FMC63 pAE18 VL-2a CMV-IE VL43 mCDR1 VL40 mCDR2 VL40 mCDR3 grafted clone#40 (SEQ ID NO: linker Forward linker Forward linker Forward (SEQ ID NO: (SEQ ID NO: 74) (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 24) 8) and 102) 98) 100) VL43 mCDR1 and and and linker Reverse VL40 mCDR2 VL40 mCDR3 NotI Kappa (SEQ ID NO: linker Reverse linker Reverse Reverse 101) (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 97) 99) 112) VL43/FMC63 pAE18 VL-2a CMV-IE VL43 mCDR1 VL43 mCDR2 VL43 mCDR3 grafted clone#43 (SEQ ID NO: linker Forward linker Forward linker Forward (SEQ ID NO: (SEQ ID NO: 74) (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 25) 9) and 102) 104) 106) VL43 mCDR1 and and and linker Reverse VL43 mCDR2 VL43 mCDR3 NotI Kappa (SEQ ID NO: linker Reverse linker Reverse Reverse 101) (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 103) 105) 112) VL44/FMC63 pAE18 VL-2a CMV-IE VL43 mCDR1 VL44 mCDR2 VL44 mCDR3 grafted clone#44 (SEQ ID NO: linker Forward linker Forward linker Forward (SEQ ID NO: (SEQ ID NO: 74) (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 26) 10) and 102) 109) 111) VL44 mCDR1 and and and linker Reverse VL44 mCDR2 VL44 mCDR3 NotI Kappa (SEQ ID NO: linker Reverse linker Reverse Reverse 107) (SEQ ID NO: (SEQ ID NO: (SEQ ID NO: 108) 110) 112) -
TABLE 7 Sequences of primers used to construct selected human light chain 1st CDR - grafted variable regions. Primer Sequence (5′→3′) VL39 mCDR2 linker CAC ACC AGC CGG CTG CAC AGC GGG GTC CCA TCA AGG TTC AGC GGC Forward (SEQ ID NO: 94) VL39 mCDR3 linker GGT GTA GGG CAG TGT GTT GCC TTG CTG GCA GTA ATA AGT TGC AAA Reverse ATC ATC (SEQ ID NO: 95) VL39 mCDR3 linker CAG CAA GGC AAC ACA CTG CCC TAC ACC TTC GGC CAA GGG ACC AAG Forward GTG G (SEQ ID NO: 96) VL40 mCDR2 linker GCT GTG CAG CCG GCT GGT GTG ATA GAT CAG GAG GTT AGG AAC Reverse (SEQ ID NO: 97) VL40 mCDR2 linker CAC ACC AGC CGG CTG CAC AGC GGG GTC CCA TCT CGG TTC AGC GGC Forward (SEQ ID NO: 98) VL40 mCDR3 linker GGT GTA GGG CAG TGT GTT GCC TTG CTG ACA GTA ATA AGT TGC AAA Reverse ATC TTC (SEQ ID NO: 99) VL40 mCDR3 linker CAG CAA GGC AAC ACA CTG CCC TAC ACC TTC GGC GGA GGG ACC AAG Forward GTG (SEQ ID NO: 100) VL43 mCDR1 linker GTT CAG GTA CTT GCT GAT GTC CTG GCT GGC CCG GCA AGT GAT GGT Reverse GAC TCT GTC TCC (SEQ ID NO: 101) VL43 mCDR1 linker CGG GCC AGC CAG GAC ATC AGC AAG TAC CTG AAC TGG TAT CAG CAG Forward AAA CCA GGG (SEQ ID NO: 102) VL43 mCDR2 linker GCT GTG CAG CCG GCT GGT GTG ATA GAT CAG GAG CTT AGG GGC Reverse (SEQ ID NO: 103) VL43 mCDR2 linker CAC ACC AGC CGG CTG CAC AGC GGG GTC CCA TCA AGG TTC AGT GGC Forward (SEQ ID NO: 104) VL43 mCDR3 linker GGT GTA GGG CAG TGT GTT GCC TTG CTG ACA GTA GTA AGT TGC AAA Reverse ATC TTC (SEQ ID NO: 105) VL43 mCDR3 linker CAG CAA GGC AAC ACA CTG CCC TAC ACC TTC GGC CCT GGG ACC AAA Forward GTG G (SEQ ID NO: 106) VL44 mCDR1 linker GTT CAG GTA CTT GCT GAT GTC CTG GCT GGC CCG ACA AGT GAT GGT Reverse GAC TCT GTC TCC (SEQ ID NO: 107) VL44 mCDR2 linker GCT GTG CAG CCG GCT GGT GTG ATA GAT CAG GAG GTT AGG GGC Reverse (SEQ ID NO: 108) VL44 mCDR2 linker CAC ACC AGC CGG CTG CAC AGC GGG GTC CCA TCA AGG TTC AGC GGC Forward (SEQ ID NO: 109) VL44 mCDR3 linker GGT GTA GGG CAG TGT GTT GCC TTG CTG ACA ATA ATA AGT TGC AAA Reverse ATC TTC (SEQ ID NO: 110) VL44 mCDR3 linker CAG CAA GGC AAC ACA CTG CCC TAC ACC TTT GGC CAG GGG ACC AAG Forward TTG G (SEQ ID NO: 111) NotI Kappa GATC GCGGCCGC TTA TCA ACA CTC TCC CCT GTT GAA GC Reverse (SEQ ID NO: 112) - Engineered heavy and light chains coding DNA sequences were ligated in independent vectors that are based on a modified pREP4 (Invitrogen, CA, USA) vector carrying CMV promoter and Bovine Growth Hormone poly-adenylation signal. Light chain specific vector allows expression of Kappa isotype light chains by ligating variable Kappa light chain cDNA fragments in front of Kappa light chain constant domain cDNA using BamHI and BsiWI restriction sites; while heavy chain specific vector was engineered to ligate variable heavy chain cDNA fragments in front of a cDNA encoding the γ1, hinge, γ2, and γ3 constant domains using BamHI and SalI restriction sites. In both heavy and light chain expression vectors, secretion was driven by the murine VJ2C leader peptide containing the BamHI site. Note that BsiWI site is located in the Kappa constant domain; while SalI site is situated in the Cγ1 domain.
- For transient expression of immunoglobulin candidates, equal quantities of heavy and light chains vectors were co-transfected into suspension-adapted HEK-EBNA cells (ATCC-CRL-10852) using Polyethyleneimine (PEI). Typically, 100 ml of cells in suspension at a density of 0.8-1.2 million cells per ml is transfected with a DNA-PEI mixture containing 50 μg of expression vector encoding the heavy chain and 50 μg expression vector encoding the light chain. When recombinant expression vectors encoding antibody genes are introduced into the host cells, antibodies are produced by further culturing the cells for a period of 4 to 5 days to allow for secretion into the culture medium (EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland), supplemented with 0.1% pluronic acid, 4 mM glutamine, and 0.25 μg/ml geneticin). Antibodies were then purified from cell-free supernatant using recombinant protein-A streamline media (GE, Switzerland), and buffered exchanged into phosphate buffer saline prior to assays.
- Humanization strategy was based on the initial four grafted heavy and light chains (above), which were combined in a pair-wise fashion to derive 16 initial full-length immunoglobulin candidates. These immunoglobulins were assessed for antigen-binding affinity by half-maximal binding assays on B-cell lymphoma cell-lines (FACS) and compared to a chimeric version of FMC63 (this was to standardized level of staining from the anti-human Fc PE-labeled detection-antibody, as described in Example 2). From this initial work, immunoglobulin candidates that contained VH16 (SEQ ID NO: 21) or VH20 (SEQ ID NO: 22) showed best binding to Raji cells in FACS experiments, as seen in
FIGS. 1A and 1B . The antibody consisting of VH16 heavy chain paired to light VL43 had superior level of expression in transient transfections as well as superior melting temperature of its FAB fragment and consequently was selected for further back-mutations and rational engineering as shown in Table 8. -
TABLE 8 IgG transient expression level and FAB stability of the 1st CDR-grafted antibodies. Antibody Expression (mg/L) Tm Fab (° C.) Chimeric FMC63 48 84.27 VH2/ VL39 11 78.78 VH2/ VL40 23 76.55 VH2/ VL43 13 73.17 VH2/ VL44 21 78.27 VH5/ VL39 5 76.08 VH5/ VL40 9 ND VH5/ VL43 19 76.76 VH5/ VL44 12 74.81 VH16/ VL39 8 71.67 VH16/ VL40 11 71.81 VH16/ VL43 20 83.54 VH16/ VL44 7 85.16 VH20/ VL39 11 82.41 VH20/ VL40 24 79.46 VH20/VL43 37 79.67 VH20/ VL44 26 82.00 - Since straight grafting of CDRs from FMC63 mouse antibody led to human acceptors with low binding properties, it was desirable to mutate certain residues in the frameworks back to murine residues at some positions. This process called back-mutation is the most unpredictable procedure in the humanization of monoclonal antibodies, and necessitate the identification of critical framework residues from the parent antibody that need to be retained in order to substantially retain the binding properties of the parent antibody while at the same time minimizing the potential immunogenicity of the resultant antibody. Tables 9 and 10 and
FIGS. 2A and 2B show residues (Kabat numbering) that may affect the conformations of CDRs and which were selected as potential candidates for back mutations to murine residues. -
TABLE 9 Comparison of FMC63 and human acceptor light chain frameworks. VH Kabat position FMC63 VH16 VH20 37 I V V 42 R G G 48 L V V 49 G A S 67 L F F 71 K R R 78 V L L 94 K R R -
TABLE 10 Comparison of FMC63 and human acceptor heavy chain frameworks. VL Kabat VL39, VL40, position FMC63 VL43, VL44 44 V P, P, P, P 71 Y F, F, F, F 87 F Y, Y, Y, Y - Among the eight possible back mutations for the heavy chain, changes at position 37, 48, and 49 were discarded because of their conservative nature. Hence four reshaped versions of VH16 were made, and combined in a pair-wise fashion with all three back mutants of VL 43. In addition reshaped variants were paired to parental VH16 and VL43 to investigate the impact of each individual back mutation. A total of 24 full-length immunoglobulin candidates were investigated. The five heavy chain variants had the following single point mutation compared to VH16 sequence: G42R, F67L, R71K, L78V, and R94K; while, the three light chain variants had P44V, F71Y, and Y87F, compared to VL43.
- From FACS experiments (as described in example 2), transient expression levels and FAB stability measurements it was found that back-mutations heavy chain R94K and/or light chain P44V dramatically increase binding to Raji cells or NALM-6 cells while improving expression level and maintaining good FAB stability as shown in Table 11, and 12. These two positions alone restored about half of the binding of parental FMC63 antibody.
-
TABLE 11 FACS staining of humanized back-mutated anti-CD19 antibodies on Raji and NALM-6 tumour cell-lines. Values (indicated as Raji, and NALM-6 for measurements on Raji and NALM-6 cells, respectively) correspond to antibodies mid-point fluorescence (MPF) measure by flow-cytometry expressed as percentage to that observed for the FMC63 chimeric antibody. VL43 VL43-P44V VL43-F71Y VL43-Y87F Raji NALM-6 Raji NALM-6 Raji NALM-6 Raji NALM-6 VH16 7.42 3.29 9.72 6.05 11.29 NA 10 NA VH16- NA 3.48 8.33 NA NA 3.97 8.43 3.65 G42R VH16- NA 2.40 NA 2.37 6.54 NA 4.35 NA F67L VH16- 4.43 NA 6.93 NA NA 2.67 4.19 NA R71K VH16- 10.77 NA 25.93 10.95 12.28 NA 17.95 NA L78V VH16- 27.06 14.38 52.87 32.86 41.82 23.47 31.82 NA R94K -
TABLE 12 IgG transient expression level and FAB stability of the humanized back-mutated anti-CD19 antibodies. VL43 VL43-P44V VL43-F71Y VL43-Y87F FAB Transient FAB Transient FAB Transient FAB Transient Tm exp. level Tm exp. level Tm exp. level Tm exp. level (° C.) (mg/l) (° C.) (mg/l) (° C.) (mg/l) (° C.) (mg/l) VH16 83.54 20 81.04 29 83.9 25 82.97 24 VH16- 82.59 48 79.84 20 83.08 48 82.51 34 G42R VH16- 82.92 46 79.92 23 83.34 29 82.22 22 F67L VH16- 83.92 45 80.9 52 83.67 48 83.34 39 R71K VH16- 87.87 36 85.87 42 87.87 44 86.68 42 L78V VH16- 82.75 63 80.10 42 82.88 50 82.22 38 R94K - Germline frameworks are typically better than individual mature antibody framework as acceptor frameworks for humanized antibodies because their lack of somatic mutations may lower the degree of immunogenicity. VH16 is derived from healthy donor B-cell mRNA using degenerate primers designed according to germline sequences from VBASE2, and this procedure provides antibodies that have not yet encountered any antigens. However, since the frequency of truly naïve antibodies depend heavily on the source of B cells, mutations can also be observed with the above procedure (Klein U. et al, 1997, Blood 89, p 1288-1298). Both VH16 and VL 43 had a low contain of non-germline residues that were mutated back to germline, these changes were VH16-Q6E, VL43-V3Q, and VL43-T7S as shown in Table 13.
-
TABLE 13 FACS staining of humanized back-mutated/germlined anti-CD19 antibodies on Raji tumour cell-lines. Values (indicated as Raji) correspond to antibodies mid-point fluorescence (MPF) measure by flow-cytometry expressed as percentage to that observed for the FMC63 chimeric antibody. IgG transient expression level and FAB stability of the humanized back-mutated/germlined anti-CD19 antibodies are also indicated. VL43 VL43-V3Q/T7S Transient FAB Transient FAB exp. level Tm exp. level Tm Raji (mg/L) (° C.) Raji (mg/L) (° C.) VH16 7.14 20 83.54 4.93 28 83.51 VH16- R94K 26.79 60 82.75 27.78 13.5 82.36 VH16- Q6E ND 30 83.12 5.68 36 83.46 - All germline changes were found to have no impact on VH16-VL43 antibody, whether on its affinity nor on its FAB stability and only transient level of expression was significantly increased. Subsequently, VH16-VL43 variants with germline residues at position VL43-V3Q, and VL43-T7S were used for affinity improvement through rational design (below).
- Tyrosine Mutants.
- FMC63 CDRs have high tyrosine content: heavy chain CDR1 (position 32), heavy chain CDR2 (positions 58, and 59), heavy chain CDR3 (positions 96, 97, 98, and 100b), light chain CDR1 (position 32), and light chain CDR3 (position 96). Of particular are the four tyrosine residues in heavy chain CDR3 (Y96, Y97, Y98, and Y100b), and the two other tyrosine residues found in heavy chain CDR1 and light chain CDR1, both at position 32. These residues, may define the putative interaction binding site for human CD19 molecule, since in addition to their hydrophobic nature and the fact that most of them are part of heavy chain CDR3, usually the most important CDR as it often determine specificity, they also notably protrude outside of the antibody binding-site plan in VH16-R94K/VL43 3D-model. Taken together these observations allow the identification of heavy chain CDR3 residues 96, 97, 98, 100b and light chain CDR1 residue 32 as candidates for rational affinity improvement. Tyrosine residues are unique because they have a dual hydrophobic and polar nature by virtue of their aromatic ring and hydroxyl group respectively. Hence, the above residues were mutated for phenylalanine to increase hydrophobicity and probe the importance of a polar versus hydrophobic content at these positions. Phenylalanine mutants measurements in the context of the heavy chain R94K mutations show that heavy chain mutant 32, 97, 98 as well as light chain mutant 32 are superior to parental molecule VH16-R94K/VL43, with heavy chain mutant Y97F having 72.8% of chimeric FMC63 affinity as shown in Table 14.
-
TABLE 14 FACS staining of humanized back-mutated/affinity matured anti-CD19 antibodies on Raji tumour cell-lines. Values (indicated as Raji) correspond to antibodies mid-point fluorescence (MPF) measure by flow-cytometry expressed as percentage to that observed for the FMC63 chimeric antibody. IgG transient expression level and FAB stability of the humanized back-mutated/affinity matured anti-CD19 antibodies are also indicated. Relative Raji Transient exp. FAB Tm Antibody FACS staining (mg/L) (° C.) VH16 R94K Y32F VL43 62.5 17 82.51 VH16 R94K Y96F VL43 5.36 14 83.53 VH16 R94K Y97F VL43 72.82 17 81.53 VH16 R94K Y98F VL43 34.09 10 81.91 VH16 R94K Y100bF VL43 27.78 24 82.92 VH16 R94K VL43 Y32F 39.47 25 82.56 - Light Chain-Pro 44 Mutants.
- Light chain P44 is located at the bottom of the interface between heavy and light chain, a location that could explain the great affinity improvement when back mutated to valine. Two other hydrophobic amino-acids were investigated at position 44 to possibly tune (or better adjust) the interface between light and heavy chain: isoleucine and leucine variants were constructed in the context of the VH16-R94K variants as shown in Table 15. Affinity and stability measurements revealed that isoleucine was superior to the valine back-mutation at position 44, while change for a leucine only provided a mild improvement despite being a more logical choice.
-
TABLE 15 FACS staining of humanized back-mutated/affinity matured anti-CD19 antibodies on Raji tumour cell-lines. Values (indicated as Raji) correspond to antibodies mid-point fluorescence (MPF) measure by flow-cytometry expressed as percentage to that observed for the FMC63 chimeric antibody. IgG transient expression level and FAB stability of the humanized back-mutated/affinity matured anti-CD19 antibodies are also indicated. Relative Raji Transient exp. FAB Tm Antibody FACS staining (mg/L) (° C.) VH16 R94K VL43 P44I 69.44 17 81.37 VH16 R94K VL43 P44L 37.50 18 80.10 - Removal of a Potential Deamidation Site.
- Deamidation is a major route of antibody degradation. Deamidation of Asn to Asp is highly sequence-dependent and occurs in regions of the protein which are known or predicted to be flexible as in CDR regions (Bischoff and Kolbe (Journal of Chromatography B, 662 (1994), 261-278); this usually involves Asn residues located in CDRs. A high probability for deamidation of its asparagine was identified in CDR3 of the FMC63 light chain at position 91 to 93 (GNT). Hence to prevent putative deamidation, the following changes were investigated in the context of the VH16-R94K heavy chain: VL43-N92A, VL43-T93V and VL-43-T93A as shown in Table 16. It was found that both N92A and T93A maintain binding affinity. N92A variant was also found to have improved FAB stability.
-
TABLE 16 FACS staining of humanized back-mutated/deamidation site removed anti-CD19 antibodies on Raji tumour cell-lines. Values (indicated as Raji) correspond to antibodies mid-point fluorescence (MPF) measure by flow-cytometry expressed as percentage to that observed for the FMC63 chimeric antibody. IgG transient expression level and FAB stability of the humanized back-mutated/deamidation-site-removed anti-CD19 antibodies are also indicated. Relative Raji Transient exp. Antibody FACS staining (mg/L) FAB Tm (° C.) VH16 VL43 7.14 20 83.54 VH16 R94K VL43 26.79 60 82.36 VH16 R94K VL43 25.86 33 84.09 N92A VK16 R94K VL43 17.44 34 82.43 T93V VH16 R94K VL43 34.09 35 82.81 T93A - Other improvements of VL43 human acceptor have been carried out at position F71. Binding activity to Raji of VH16 R94K VL43 F71H (SEQ ID NO: 61), VH16 R94K VL43 F71S (SEQ ID NO: 62), and VH16 R94K VL43 F71T (SEQ ID NO: 63) was similar to binding activity of VH16 R94K VL43.
- To further increase binding to Raji cells, back mutations and rationally design mutations were combined in a systematic approach in which a limited number of combination were tested. Most improved mutations identified from tyrosine switch to phenylalanine in heavy and light chains (above) were combined with light chain changes P44I, and N92A, as well as germline changes V3Q, and T7S.
- Although CDR changes have often an additive effect in terms of affinity, when these CDR changes are combined with mutations that affect framework, the outcome is not predictable. Table 17 shows the relative FACS staining for VH16/VL43 variants combining germline, framework, back and CDR mutations. It was found that combining heavy chain CDR changes Y32F, and Y97F with back mutations R94K result in loss of binding, whereas Y32F combined with heavy chain back mutation R94K and light chain change P44I and N92A greatly improved binding, which by our mean of measurements resulted in a relative mid-titration of staining superior to FMC63 chimera. Another favorable combination is both heavy chain CDR mutation Y100BF and Y32F in the context of heavy chain back mutation R94K, and light chain changes V3Q, T7S, Y32F, P44I and N92A.
-
TABLE 17 FACS staining of humanized back-mutated/germlined/affinity matured/ deamidation-site-removed anti-CD19 antibodies on Raji tumour cell-lines. Values (indicated as Raji) correspond to antibodies mid-point fluorescence (MPF) measure by flow-cytometry expressed as percentage to that observed for the FMC63 chimeric antibody. VL43 V3Q/T7S/ V3Q/T7S/ V3Q/T7S/ V3Q/T7S/ VH16 N92A Y32F/N92A P44I/N92A Y32F/P44I/N92A R94K 18.18 Low Saturation 83.33 111.11 Y32F/R94K 58.82 Low Saturation 133.33 Low Saturation R94K/Y97F Low Saturation No Binding NA Low Saturation R94K/Y100BF NA NA 101.01 144.93 Y32F/R94K/Y97F 16.95 No Binding Low Saturation 6.67 - Combinations which display high binding activity also retain high transient expression level (Table 18) as well as high FAB fragment thermostability (Table 19).
-
TABLE 18 IgG transient expression level of the humanized back-mutated/ germlined/affinity matured/deamidation-site-removed anti-CD19 antibodies. VL43 V3Q/T7S/ V3Q/T7S/ V3Q/T7S/ Y32F/ V3Q/T7S/ Y32F/ VH16 N92A N92A P44I/N92A P44I/ N92A R94K 15 45 47 34 Y32F/R94K 6.5 25 26 18 R94K/ Y97F 23 31 25 22 R94K/Y100BF NA NA NA 32 Y32F/ R94K/Y97F 20 32 26 24 -
TABLE 19 FAB stability (° C.) of the humanized back-mutated/germlined/affinity matured/deamidation-site-removed anti-CD19 antibodies. VL43 V3Q/T7S/ V3Q/T7S/ V3Q/T7S/ Y32F/ V3Q/T7S/ Y32F/ VH16 N92A N92A P44I/N92A P44I/N92A R94K 84.29 84.34 83.13 83.31 Y32F/R94K 84.45 84.31 83.21 83.39 R94K/Y97F 83.92 83.96 82.9 83.04 R94K/Y100BF NA NA NA 83.42 Y32F/R94K/Y97F 83.93 83.96 82.77 83.01 - Binding of the CD19 humanized monoclonal antibodies by flow cytometry to Raji tumor cells (human Burkitt lymphoma, DSMZ ACC319), NALM-6 (human B cell precursor leukemia, DSMZ ACC128) and SU-DHL-6 (human B cell lymphoma, DSMZ ACC572) (all cell lines from DSMZ Braunschweig, Deutschland) was assessed. Cells were incubated with serial dilutions of each humanized monoclonal antibody. An irrelevant human IgG1 was used as a negative control. The cells were washed and detected by a phycoerythrin-labeled (PE) anti-human secondary antibody (eBioscience, CA, USA) and analyzed by flow cytometry. To ensure comparable levels of staining between humanized candidates and parental murine antibody, a chimeric FMC63, i.e. an antibody which consists of the FMC63 murine heavy variable domain fused to human IgG1 heavy constant domains as shown in SEQ ID NO: 68 and the murine light variable domain fused to kappa constant domain as shown in SEQ ID NO: 69, was used as standard. Results for binding to Raji or NALM-6 are shown in Table 11, 13-17, and binding to the SU-DHL-6 cell line are shown in
FIG. 3 . All results inFIG. 3 were measures of the mean fluorescent intensity (MFI) of cell staining. From MFI versus antibody concentration curves, Mid-Point Fluorescence (MPF) value for each anti-CD19 humanized antibody was calculated using the software GraphPad Prism 5 (CA, USA). MPF of a dose response curve represents the concentration of antibody (μg/ml) where 50% of its maximal staining is observed. Thus, antibodies with better binding activity on cells have lower MPF (μg/ml). In Tables 11, 13-17, values represent relative MPF between the chimeric FMC63 and anti-CD19 humanized variants, and were calculated as follow: [1/(MPF chimeric FMC63/MPF anti-CD19 humanized antibody)]×100. Higher is the percentage; better is the binding activity of the antibody. -
FIG. 3 shows the dramatic improvement in affinity for SU-DHL-6 cells along the different humanization steps from VH16/VL43 antibody to VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A antibody. The latter reaches strong affinity to B cells similar to the FMC63 chimera. The affinity improvements of the FMC63 humanized antibodies to cells are a direct result of mutations that substantially retain and/or improve the binding properties of human CDR-grafted acceptor frameworks as described above. - The constant binding affinity of an antibody to its target can be determined with a saturation binding curve. At equilibrium, the amounts of bound and free antibody to its binding site are indicative of the dissociation binding constant Kd. Usually, for one single binding site, the ratio bound/free versus bound antibody has a linear correlation, where the slope corresponds to the inverse of the binding constant Kd.
- Tested antibodies were labelled with the fluorescent dye europium (Eu3+) (PerkinElmer, MA, USA). Eu3+ offers the possibility to quantify the amount of bound antibody molecules to cells as well as free antibody molecules. Saturation of binding to Raji cells by selected humanized candidates was followed via Eu3+ using time resolved fluorescence. To demonstrate the binding specificity of Eu3+-labelled candidates without unspecific behaviour of the Eu3+ dye to the cell surface, a negative isotype human IgG1 was also labelled with Eu3+.
- Raji cells as described in Example 2 were grown in RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland). The cells were washed with the same culture medium and adjusted to a final concentration of 1×106 cells/ml. A 100 μl volume of Raji cells was seeded in U-bottomed 96-well plate. Serial dilutions of Eu3+-labelled antibodies were prepared into PBS-2.5% FBS-0.05% sodium azide (NaN3) into a separate 96 well plate and cooled down to 4°
C. A 100 μl volume of each Eu3+-labelled antibody dilution was then transferred on the Raji cells, corresponding to a final dilution range for the Eu3+-labelled antibodies of 13.3 nM to 6.5 pM. Cells were incubated with Eu3+-antibody for 15 minutes on ice to reach equilibrium. The amount of free Eu3+-labelled antibodies were measured by transferring aliquots of cell-free supernatant (volumes were empirically adjusted depending on antibody concentration; cells were spun at 1300 RPM for 2 min) into a fresh plate containing 100 μl of Delfia solution (PerkinElmer, MA, USA; an enhancer of Eu3+ fluorescence). To ensure complete removal of the supernatant, cells were spin down once more at 1300 RPM for 2 minutes. After the second centrifugation, the supernatant was discarded, and cells were washed twice with 200 μl of cold binding buffer (PBS-2.5% FBS-0.05% NaN3). Cell pellets were resuspended into 100 μl of Delfia solution. Time resolved fluorescence was measured for both plates (free or bound Eu3+-antibody) with a spectrophotometer (Bio-Tek, synergy2, VT, USA; excitation wavelength was 340 nm, emission wavelength was 615 nm, with time delay of 400 μs and an acquisition time of 1000 μs). The dissociation constant Kd was determined by Scatchard analysis, where the slope of the linear representation of bound versus bound/free represent 1/Kd. Kd were determined in duplicate for each antibody and each fluorescence measurements were performed in triplicate. In accordance with the binding assay above,FIGS. 4A and 4B show striking Kd improvement along the different mutation stages from antibody VH16-R94K/VL43 (Kd=47 nM) to antibody VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A (Kd=10.9 nM). The latter antibody has improved Kd to the parental chimeric FMC63 (11.8 nM). - Another way to evaluate the binding affinity of each humanized antibodies is to measure binding competition against the parental chimeric FMC63 antibody on Raji cells. To inhibit the binding of europium-labelled chimeric FMC63 (Eu3+-FMC63) to the CD19 antigen expressed on Raji cells, increasing concentrations of unlabelled antibody were added together with a constant amount of Eu3+-FMC63. To that aim, 100 μl volumes of Raji cells in RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland), prepared at concentration of 1×106 cells/ml were seeded in a U-bottomed 96-well plate. Serial dilutions of the competitor antibodies were prepared into a separate 96-well plate into PBS-2.5% FBS-0.05% NaN3 and subsequently mixed with a constant amount of Eu3+-FMC63. The antibody dilutions were cooled down to 4° C. before 100 n1 was taken and added on the Raji cells. Final dilutions of unlabelled humanized antibodies ranged from 100 nM up to 4.2 pM, while the concentration of Eu3+-FMC63 was maintained at 0.2 nM. Cells were incubated with the antibodies for 15 minutes on ice. After reaching equilibrium, the cells were centrifuged at 1300 RPM for 2 minutes and supernatant was discarded. Cell pellets were washed twice with 200 μl of cold binding buffer PBS-2.5% FBS-0.05% NaN3, and resuspended into 100 μl of Delfia solution. Cell bound Eu3+-FMC63 was measured with time resolved fluorescence as described above. The amount of Eu3+-FMC63 (fmole) per well was determined and plotted versus the total amount of unlabelled antibody. The inhibition binding curve of Eu3+-FMC63 was further analysed with the
GraphPad Prism 5 software (CA, USA) using one-site competition model, and total ligand fix concentration of 0.2 nM; inhibition binding constants were in the nanomolar range. As shown in Table 20 and according to experiments presented above, the framework VH16VL43 which does not include mutations, displays little affinity for Raji cells (72.8 nM) while humanized variant VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A exhibits a very high affinity, equivalent to FMC63 chimera (1.9 nM versus 1.4 nM). Results with standard deviation have been determined at least 3 times. -
TABLE 20 Ki determination of humanized anti-CD19 antibodies. Antibody Ki (nM) FMC63 Chimera 1.4 ± 0.32 Isotype control IgG1 No Competition VH16/VL43 72.8 VH16-R94K/VL43 7.6 VH16-R94K/VL43-V3Q-T7S-P44I-N92A 3.9 ± 1.02 VH16-R94K-Y100BF/VL43-V3Q-T7S-Y32F-P44I- 2.1 ± 0.5 N92A VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A 1.9 VH16-Y32F-R94K-Y97F/VL43-V3Q-T7S-N92A 49.9 - ADCC activities of humanized anti-CD19 antibodies were measured by lactate deshydrogenase (LDH)-releasing assay using the CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, Madison, USA). Human peripheral blood mononuclear cells (PBMC) were purified from citrated whole blood by standard Ficoll-paque separation, resuspended in complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland)), and 100 U/ml of human IL-2 (Sigma, Missouri, USA)) and incubated overnight at 37° C. The following day, PBMC were collected by centrifugation, washed twice and resuspended in culture medium at a density of 8×106 cells/ml. The CD19+ cell line Raji as described in Example 2 was used as target cells. Raji cells were washed twice and resuspended in complete medium at a density of 0.2×106 cells/ml. Fifty microliters of antibody diluted at 1.5 ng/ml (final concentration was 0.5 ng/ml) were mixed with 50 μl of target cells, and added to an equivalent volume of PBMC into a U-bottomed 96-well plate. A target to effector ratio of 1:40 was used throughout the experiments. After 4 hours incubation at 37° C., cells were centrifuged and 50 μl samples of cell-free supernatant were collected, transferred to a flat-bottomed 96-well plate, and assayed. Percentage of lysis was calculated as follows: (Sample release−Target spontaneous release−Effector spontaneous release)/(Maximum release−Target spontaneous release)*100; where Target spontaneous release is the fluorescence from wells which only contained target cells, Effector spontaneous release is the fluorescence from wells which only contained effector cells, and Maximum release is the fluorescence from wells containing target cells which have been treated with lysis buffer. Background percentage of lysis obtained in absence of antibody (Target+Effector cells) was subtracted from percentage of lysis of sample.
-
FIG. 5A andFIG. 5B show little specific Raji lysis due to IgG1 control. - However, humanized antibody-induced lysis was increased at least three fold for the VH16-R94K-Y100BF/VL43-V3Q-T7S-Y32F-P44I-N92A antibody or VH16-R94K/VL43-V3Q-T7S-P44I-N92A antibody or VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A or chimeric FMC63 (
FIG. 5A shows average of 3 different donors ±standard deviation,FIG. 5B shows results from 1 donor performed in triplicate ±standard deviation). This data demonstrates that selected humanized anti-CD19 antibodies lead to cellular cytotoxicity of CD19+ expressing cells that is similar to the parental chimeric FMC63. - To measure antibody-induced cell death, Raji cells as described in Example 2 were prepared at 1×106 cells/ml in RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland)), and 100 μl per well in a 96-well plate or 1 ml in a 24-well plate were seeded. Cells were incubated at 37° C., 5% CO2 for 15 min to 24 h with antibody concentration ranging from 0.0016 to 1 μg/ml (0.01 μM to 6.6 μM). After incubation, cells were centrifuged in a U-bottom plate at 1300 RPM for 3 min and washed with 200 μl of PBS. One hundred μl of 1× binding buffer (BD Pharmingen, Allschwil, Switzerland) was added in each well, followed by 2.5 μl of annexin V-FITC and 2.5 μl propidium iodine (PI, BD Pharmingen, Allschwil, Switzerland). Cells were incubated with annexin-V and PI at room temperature before flow cytometry analysis. Double staining with annexin-V and PI characterized the dead-cell population while living cells are stained neither by annexin-V nor PI.
-
FIG. 6 shows Annexin-V and PI staining of Raji cells incubated with 1 μg/ml antibody for 2.5 h. Surprisingly enough, while VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A and VH16-R94K/VL43-V3Q-T7S-P44I-N92A humanized anti-CD19 antibodies induced strong annexin-V staining and cell death, the parental chimeric FMC63 had no effect on apoptosis. On note, the slight increase of annexin-V staining after chimeric FMC63 treatment observed onFIG. 6 was not reproducible and not significant. Strikingly, cells stained with annexin-V as early as 15 min after addition of humanized anti-CD19 antibodies, and both staining (Annexin-V plus PI) reached a plateau after 4 h incubation with humanized anti-CD19 antibodies (not shown). The apoptotic mechanism due to anti-CD19 antibodies is different from anti-FasL-induced apoptosis on Raji cells. Indeed, FasL did not induce Annexin-V staining on Raji cells (not shown). This result proves that humanization gave new characteristics to the anti-CD19 antibody. The new apoptotic characteristic given to humanized anti-CD19 antibodies in addition to their ability to trigger homotypic cell adhesion (not shown) compared to the parental chimeric FMC63 was unexpected and of extreme importance with regard to studies on anti-CD20 antibodies. Indeed, Beers et al. have shown that anti-CD20 antibodies with strong apoptotic and homotypic adhesion properties had better B cell depletion ability in animal (Beers S. A. et al, 2008, Blood 112, p 4170-4177). In addition, Raji cells stained with annexin-V as early as 15 min after adding anti-CD19 antibodies. The staining reached a plateau after 4 h incubation. This fast apoptotic event is superior to anti-CD20 antibodies, which apoptotic effects are generally observed after 24 h (Chan H. T. C. et al., Cancer Research, 63:5480-5489). - Proliferation—alamarBlue
- To measure inhibition of cell proliferation by antibodies, cells (Raji or SU-DHL-6 as described in Example 2) were seeded at a density of 2×105 cells per ml, with 100 μl per well. Cells are incubated with 100 μl of antibodies previously sterilized and diluted in RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland) to reach final concentrations of 0.0016 to 1 μg/ml (0.01 μM to 6.6 μM). Plates were incubated at 37° C., 5% CO2 for 72 hours. 20 μl of alamarBlue (AbD Serotec, Dusseldorf, Germany) was then added to cells for 4 to 8 h. Growing cells cause a chemical reduction in fluorescence of alamarBlue which is monitored by excitation at 540 nm and emission at 620 nm. Percentage differences between treated and untreated cells (vehicle only) were calculated from experiments performed in triplicate.
FIG. 7A shows level of proliferation of SU-DHL-6 after 72 h incubation with antibodies. An irrelevant IgG1 and an anti-HLA-DR antibody which strongly binds SU-DHL-6 were used as negative and positive control, respectively. Humanized antibodies VH16-R94K-Y100BF/VL43-V3Q-T7S-Y32F-P44I-N92A, VH16-R94K/VL43-V3Q-T7S-P44I-N92A and VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A (not shown) have strong inhibitory function on cell proliferation even at concentration as low as 0.01 μg/ml. Therefore, in addition to the early induction of apoptosis, anti-CD19 antibodies block B cell proliferation within 72 h. - Clonogenic assay is another method to assess tumor cell death by humanized anti-CD19 antibodies. The method is regularly used to evaluate the anti-proliferative function of antibodies (Chan H T C, Cancer Research 2003). We performed clonogenic assay using the colony-forming cell assay and complete MethoCult medium (StemCell Technologies, Grenoble, France). Raji cells (as described in Example 2) were prepared at 1×106 cells/ml and seeded at 100 μl/well in 96-well plates. Cells were then incubated with 100 μl of antibodies previously sterilized and diluted in RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland), antibody concentration was 0.2 μg/ml) for 90 minutes. Raji cells plus antibodies were then diluted in Iscove's medium to reach a count of 500 cells in 100 μl, and finally mixed with 1.1 ml of MethoCult medium. 0.8 ml of this preparation was dispensed in a 35 mm×10 mm dish using a tuberculin syringe. Cells were incubated for 9 days at 37° C. (5% CO2) and colonies were counted with a microscope (50× magnification). The results shown in
FIG. 7B correlate with humanized antibodies having surprising apoptotic properties (annexin-V plus PI staining) previously observed in Example 5, here, similarly, humanized antibodies show surprisingly good anti-proliferative properties while the parental chimeric FMC63 had very little or no effect on clonogenicity. Humanized anti-CD19 antibodies strongly decreased the number of Raji clones either by inducing apoptosis and killing during the first 90 min of incubation or by inhibiting cell division or both. This experiment is representative of several experiments and was performed in duplicate. The results confirm the effect of humanized anti-CD19 antibodies on B cell killing and inhibition of proliferation. - To evaluate antibody internalization, a secondary anti-human antibody conjugated to the toxin saporin (Hum-Zap, Advanced Targeting Systems, San Diego, Calif., USA) was used. When internalized saporin, a ribosome-inactivating protein, induces cell death, which can be subsequently monitored using alamarBlue assays. Raji cells as described in Example 2 were seeded at 1×105 cells/ml, 100 μl per well in RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland). Antibodies were diluted in Hum-Zap previously prepared at 100 ng/10 μl in RPMI-1640 complete cell medium (above). Ten μl of the mixture antibody plus Hum-Zap were added on Raji cells. The final concentrations of the antibodies ranged from 0.5 to 0.005 μg/ml. Cells with antibodies were then incubated for 48 h before measurement of cytotoxicity using alamarBlue. The percentage of cell proliferation was calculated as followed: Fluorescence (emission 590 nm) of antibody-treated cells/fluorescence (emission 590 nm) of control cells (Hum-Zap only)×100. Controls with antibodies and without Hum-Zap were also performed and did not show any significant effects on cell proliferation after 48 h. We observed internalization of the humanized anti-CD19 antibodies (
FIG. 8 ). The internalization of CD19 subsequently to the interaction with antibodies has already been described in previous studies but remained not significant after 6 h and little after 24 h in Raji cells and in fresh B cells from peripheral blood as well (Ingle G. S. et al, BJH, 2007, 140, p 46-58). Using Hum-Zap, the humanized anti-CD19 VH16-R94K/VL43-V3Q-T7S-P44I-N92A antibody internalizes very similarly to the parental chimeric FMC63. However the antibody VH16-R94K-Y100BF/VL43-V3Q-T7S-Y32F-P44I-N92A displays much less internalization, with no internalization at 10 ng/ml. A high level of internalization is only desirable when designing therapeutic antibodies to be used as conjugate with a cytotoxic-payload or toxin. - The thermal stability of the humanized anti-CD19 monoclonal antibodies and chimeric FMC63 were compared using calorimetric measurements as shown in Tables 8, 12-16, and 19. Monoclonal antibodies melting profiles are characteristic of their isotypes (Garber and Demarest (2007), BBRC 355:751-7), however the mid-point melting temperature of the FAB fragment can be easily identified even in the context of a full-length IgG. Such mid-point melting of FAB portion was used to monitor monoclonal stability of humanized candidates.
- Calorimetric measurements were carried out on a VP-DSC differential scanning microcalorimeter (MicroCal, Northampton, UK). The cell volume was 0.128 ml, the heating rate was 1° C./min, and the excess pressure was kept at 64 p.s.i. All protein fragments were used at a concentration of 1-0.5 mg/ml in PBS (pH 7.4). The molar heat capacity of each protein was estimated by comparison with duplicate samples containing identical buffer from which the protein had been omitted. The partial molar heat capacities and melting curves were analyzed using standard procedures. Thermograms were baseline corrected and concentration normalized before being further analyzed using a Non-Two State model in the software Origin v7.0.
- To assess the ability of humanized anti-CD19 antibodies to deplete B cells in human whole blood, B cell depletion assays were performed. Peripheral blood was obtained by venipuncture and was diluted by 2 in RPMI-1640 medium ((Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland). Diluted whole blood was seeded in a 24 well-plate (1-2 mL per well), 10 μg/ml of antibody or PBS (untreated) were added and plates were incubated for 24 h at 37° C., 5% CO2. The blood was lysed twice with RBC lysis buffer (eBiosciences, THP Medical Products, Vienna, Austria) for 5 min at room temperature and centrifuged at 1100 RPM for 3 min. The cell pellet was washed with 2 ml of binding buffer (PBS, 2.5% FCS, 100 mg/l MgCl2, 0.5 mM CaCl2, 0.05% NaN3 and 10% Versene (v/v)). Cells were then resuspended in 0.5 ml of binding buffer and stained with either anti-CD19-PE-Cy5 or anti-CD20-PE, or anti-CD22-FITC antibodies. After 20 minutes incubation on ice, cells were washed once with binding buffer and analyzed by flow cytometry. The percentage of B-cells was determined and the percent change was calculated as followed: (% of B-cells in the untreated (PBS) cells−% of B-cells in the antibody-treated cells)/(% of B-cells in the untreated (PBS) cells)×100.
- 10 μg/ml of the antibody was used on four blood donors as shown in Table 21 and B cell depletion in whole blood was observed after treatment with humanized anti-CD19 antibodies while. No change in B cell number was observed after a control IgG1 treatment. Typically, CD19+ or CD20+ or CD22+ B cells represented 9 to 10% of the leukocyte population when incubated with the control IgG1. The antibody VH16-R94K-Y100BF/VL43-V3Q-T7S-P44I-N92A had the highest impact on B cell depletion (average=15.25%) while the parental chimeric FMC63 was the least efficient (average=7.25%).
-
TABLE 21 B-cell depletion from whole blood. % Change Antibody (10 ug/ml) Donor 1Donor 2Donor 3Donor 4Average No Ab (PBS) 0 0 0 0 0 Control IgG1 0 0 0 0 0 VH16-R94K/VL43- 5 4 22 19 12.5 ± 8.0 V3Q-T7S-P44I- N92A VH16-R94K- 15 20 10 16 15.25 ± 3.5 Y100BF/VL43- V3Q-T7S-P44I- N92A Chimeric FMC63 0 10 12 7 7.25 ± 4.54 - A number of variants were designed with the goal of enhancing complement dependant cytotoxicity (CDC). In the same way that Fc interactions with Fcγ receptors binding mediates ADCC, Fc interactions with the complement component C1q mediates CDC. Although there is currently no structure available for the Fc/C1q complex, several studies have mapped the binding site on human IgG for C1q to a region centred on residues D270, K322, P329 and P331 (Idusogie et al., The Journal of Immunology, 2000, 164:4178-4184). Amino acid modifications were designed in the D269-K334 region of the CH2 domain to explore variants that may mediate enhanced CDC for VH16 R94K-VL43 V3Q/T7S/P44I/N92A.
- The study shows that substitution of residues at position E269, S298 and S324 resulted in variants with at least about 1.6 fold (
FIG. 9 ) to a maximum of 5.5 fold (FIG. 10 ) increase in CDC. - To create these variant cDNA coding sequences, a cDNA coding the VH16 R94K heavy chain (SEQ ID NO: 64) cDNA was converted to heavy chains VH16 R94K/324(NNK), VH16 R94K/S298A (SEQ ID NO: 114), VH16 R94K/E269D/S298A (SEQ ID NO: 115), VH16 R94K/S298A/S324N (SEQ ID NO: 116), VH16 R94K/E269D/S298A/S324N (SEQ ID NO: 117), by standard mutagenesis. NNK at position 324 describes the substitution of the wild-type serine encoding codon with a NNK codon which provides substitution with all 20 amino acids (hard randomization).
- These variant coding DNA sequences were ligated in a vector that is based on a modified pREP4 (Invitrogen, CA, USA) vector carrying CMV promoter and Bovine Growth Hormone poly-adenylation signal. In this expression-vector, secretion was driven by the murine VJ2C leader peptide.
- For transient expression, equal quantities of each heavy chain and light chain vectors was co-transfected into suspension-adapted HEK-EBNA cells (ATCC-CRL-10852) using Polyethyleneimine (PEI). Typically, 100 ml of cells in suspension at a density of 0.8-1.2 million cells per ml is transfected with a DNA-PEI mixture containing 50 ng of expression vector encoding the variant heavy chain and 50 ng expression vector encoding the VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) light chain. When recombinant expression vectors encoding each engineered chain genes are introduced into the host cells, the construct is produced by further culturing the cells for a period of 4 to 5 days to allow for secretion into the culture medium (EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland), supplemented with 0.1% pluronic acid, 4 mM glutamine, and 0.25 ng/ml geneticin. The construct was then purified from cell-free supernatant using recombinant Streamline rProtein A media (GE, Switzerland), and used for further analysis.
- The expression levels of these variants are listed in Table 22.
-
TABLE 22 IgG transient expression level of VH16 R94K/VL43 V3Q-T7S-P44I-N92A heavy chain variants. Expression Antibody (mg/L) VH16 R94K-VL43 V3Q/T7S/P44I/N92A 38 VH16 R94K/S324A-VL43 V3Q/T7S/P44I/N92A 48 VH16 R94K/S324V-VL43 V3Q/T7S/P44I/N92A 1.5 VH16 R94K/S324L-VL43 V3Q/T7S/P44I/N92A 20 VH16 R94K/S324I-VL43 V3Q/T7S/P44I/N92A 24 VH16 R94K/S324P-VL43 V3Q/T7S/P44I/N92A 15 VH16 R94K/S324T-VL43 V3Q/T7S/P44I/N92A 0.5 VH16 R94K/S324C-VL43 V3Q/T7S/P44I/N92A 10 VH16 R94K/S324M-VL43 V3Q/T7S/P44I/N92A 24 VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A 54 VH16 R94K/S324Q-VL43 V3Q/T7S/P44I/N92A 44 VH16 R94K/S324F-VL43 V3Q/T7S/P44I/N92A 48 VH16 R94K/S324Y-VL43 V3Q/T7S/P44I/N92A 61 VH16 R94K/S324W-VL43 V3Q/T7S/P44I/N92A 62 VH16 R94K/S324R-VL43 V3Q/T7S/P44I/N92A 35 VH16 R94K/S324D-VL43 V3Q/T7S/P44I/N92A 42 VH16 R94K/S324G-VL43 V3Q/T7S/P44I/N92A 27 VH16 R94K/S324K-VL43 V3Q/T7S/P44I/N92A 7 VH16 R94K/S324E-VL43 V3Q/T7S/P44I/N92A 26 VH16 R94K/S324H-VL43 V3Q/T7S/P44I/N92A — VH16 R94K/S298A-VL43 V3Q/T7S/P44I/N92A 54 VH16 R94K/E269D/S298A-VL43 V3Q/T7S/P44I/N92A 12 VH16 R94K/S298AS324N-VL43 V3Q/T7S/P44I/N92A 30 VH16 R94K/E269D/S298AS324N-VL43 11 V3Q/T7S/P44I/N92A - A cell-based assay was used to measure the capacity of the variants to mediate CDC.
- Lysis was measured using release of lactate dehydrogenase (LDH) to monitor lysis of variant-opsonized Raji cells by baby rabbit complement (Harlan Laboratories, C-0099F, AN VENRAY, The Netherlands). Target cells were washed 2 times with complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland) and 1% Ultraglutamine (Lonza, Verviers, Belgium)) by centrifugation and resuspension. Variant-antibodies were added at the indicated final concentrations of 1 μg/ml. Baby rabbit serum was diluted to 7.5% with complete medium and added to antibody-opsonized target cells. Plates were incubated for 3 hours at 37° C. Cell cytotoxicity was measured using the Cyto Tox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, Madison, USA).
- Representative data from this assay are shown in
FIG. 9 andFIG. 10 . -
FIG. 9 andFIG. 10 show little specific lysis due to IgG1 control antibody (Herceptin®, Roche Pharma A.G., Reinach, Switzerland); however, complement-induced lysis was increased at least 1.6 fold (FIG. 9 ) to a maximum of 5.5 fold (FIG. 10 ) for the VH16 R94K/S324N (SEQ ID NO: 118)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody depending on the variability of the assay which is due to the variation in raji cells viability; both VH16 R94K/S298A/S324N (SEQ ID NO: 116)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody and VH16 R94K/E269D/S298A/S324N (SEQ ID NO: 117)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody also exhibited improved CDC (at least 4.4 fold) over the parental antibody.FIGS. 9 and 10 show results in triplicate ±standard deviation. - Anti-CD19 antibody variants investigated in the study described in Example 10 with substitution of residues at position E269, S298 were assessed for their ability to elicit ADCC.
- ADCC activities of antibodies were measured by lactate dehydrogenase (LDH)-releasing assay using the CytoTox 96 Non-Radoactive Cytotoxicity Assay kit (Promega, Madison, USA). Human peripheral blood mononuclear cells (PBMC) were purified from citrated whole blood by standard Ficoll-paque separation, resuspended in complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland), 2 mM ultraglutamine 1 (Lonza, Verviers, Belgium) and 1% penicillin/streptomycin (Chemie Brunschwig AG, PAA, Basel, Switzerland)), and 100 U/ml of human IL-2 (Sigma, Missouri, USA)) and incubated overnight at 37° C. The following day, PBMC were collected by centrifugation, washed twice and resuspended in culture medium at a density of 8×106 cells/ml. The CD19+ cell line Raji as described in Example 2 was used as target cells. Raji cells were washed twice and resuspended in complete medium at a density of 0.2×106 cells/ml. Fifty microliters of antibody diluted at 1.5 μg/ml (final concentration was 0.5 μg/ml) were mixed with 50 μl of target cells, and added to an equivalent volume of PBMC into a U-bottomed 96-well plate. A target to effector ratio of 1:40 was used throughout the experiments. After 4 hours incubation at 37° C., cells were centrifuged and 50 μl samples of cell-free supernatant were collected, transferred to a flat-bottomed 96-well plate, and assayed. Percentage of lysis was calculated as follows: (Sample release−Target spontaneous release−Effector spontaneous release)/(Maximum release−Target spontaneous release)*100; where Target spontaneous release is the fluorescence from wells which only contained target cells, Effector spontaneous release is the fluorescence from wells which only contained effector cells, and Maximum release is the fluorescence from wells containing target cells which have been treated with lysis buffer. Background percentage of lysis obtained in absence of antibody (Target+Effector cells) was subtracted from percentage of lysis of sample.
-
FIG. 11 show no specific Raji lysis due to IgG control antibody (Herceptin®, Roche Pharma A.G., Reinach, Switzerland), and some cytotoxicity for the parental antibody; data shown are the mean cytotoxicity percentage ±SD of triplicate wells using PBMC isolated from one donor. However, antibody-induced lysis was increased at least 5 fold for the VH16-R94K/S298A (SEQ ID NO: 114)-VL43-V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody and at least 6.8 fold for the VH16-R94K/E269D/S298A (SEQ ID NO: 115)-VL43-V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody. This data demonstrates that selected the anti-CD19 antibody variants have enhanced cellular cytotoxicity towardsCD 19+ expressing cells. - Human IgG3 antibodies have generally enhanced CDC to human IgG1 antibodies, this due in part because IgG3 Fc has higher C1q-binding affinity than IgG1 Fc (Schumaker V N et al., Biochemistry, 1976, 15:5175-81.)
- Amino acid modifications in the Fc region of VH16 R94K were undertaken based on the differences in sequence between the human—IgG3 and human IgG1 Fc portions. In a complementary approach, a shuffling of the human IgG1 hinge and constant domains with the hinge and constant domains of the human IgG3 was performed to generate a chimeric isotype of anti CD19 antibody with enhanced CDC.
- The study shows that substitution of residues at position K274 and N276 and a chimeric variant consisting of the CH1 and the hinge each from IgG1 and the Fc from IgG3 (designated by the 1133 suffix) resulted in an increase of 1.7 and 2.2 fold in CDC, respectively.
- To create a variant cDNA coding sequence with substitution of residues at position K274 and N276, a cDNA coding the VH16 R94K heavy chain (SEQ ID NO: 64) cDNA was converted to heavy chains VH16 R94K/K274Q (SEQ ID NO: 119), VH16 R94K/N276K (SEQ ID NO: 120), VH16 R94K/K334R (SEQ ID NO: 121), VH16 R94K/K274Q/N276K (SEQ ID NO: 122), and VH16 R94K/K274Q/N276K/K334R (SEQ ID NO: 123) by standard mutagenesis techniques.
- Furthermore by substituting a part of heavy chain gene (encoding Kabat residues 231 to its carboxyl terminus) in the expression vector for VH16 R94K-VL43 V3Q/T7S/P44I/N92A IgG1 with the corresponding part of a human IgG3 heavy chain gene (NCBI GenBank accession no. X03604.1, residues 161 to 377) a human anti CD19 VH16 R94K(1133) (SEQ ID NO: 124)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) chimeric isotype was generated.
- These variant coding DNA sequences were ligated in a vector that is based on a modified pREP4 (Invitrogen, CA, USA) vector carrying CMV promoter and Bovine Growth Hormone poly-adenylation signal. In the expression-vector, secretion was driven by the murine VJ2C leader peptide.
- For transient expression of these variants, equal quantities of each heavy chain and light chain vectors was co-transfected into suspension-adapted HEK-EBNA cells (ATCC-CRL-10852) using Polyethyleneimine (PEI). Typically, 100 ml of cells in suspension at a density of 0.8-1.2 million cells per ml is transfected with a DNA-PEI mixture containing 50 μg of expression vector encoding the variant heavy chain and 50 μg expression vector encoding the VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) light chain. When recombinant expression vectors encoding each engineered chain genes are introduced into the host cells, the construct is produced by further culturing the cells for a period of 4 to 5 days to allow for secretion into the culture medium (EX-CELL 293, HEK293-serum-free medium, Sigma, Buchs, Switzerland), supplemented with 0.1% pluronic acid, 4 mM glutamine, and 0.25 μg/ml geneticin). The construct was then purified from cell-free supernatant using recombinant Streamline rProtein A media (GE, Switzerland), and used for further analysis.
- The expression levels of these variants are listed in Table 23.
-
TABLE 23 IgG transient expression level of VH16 R94K/VL43 V3Q-T7S-P44I-N92A heavy chain variants. Expression Antibody (mg/L) VH16 R94K/K274Q/N276K-VL43 V3Q/T7S/P44I/ N92A 12 VH16 R94K (1133)-VL43 V3Q/T7S/P44I/ N92A 21 - A cell-based assay was used to measure the capacity of the variants to mediate CDC according to example 10. Lysis was measured using release of lactate dehydrogenase (LDH) to monitor lysis of variant-opsonized Raji cells by baby rabbit complement (Harlan Laboratories, C-0099F, AN VENRAY, The Netherlands). Target cells were washed 2 times with complete medium (RPMI-1640 medium (Chemie Brunschwig AG, PAA, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS, Chemie Brunschwig AG, PAA, Basel, Switzerland) and 1% Ultraglutamine (Lonza, Verviers, Belgium) by centrifugation and resuspension. Variant-antibodies were added at the indicated final concentration of 1 μg/ml. Baby rabbit serum was diluted to 5% with complete medium and added to antibody-opsonized target cells. Plates were incubated for 3 hours at 37° C.
- Cell cytotoxicity was measured using the Cyto Tox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, Madison, USA). Representative data from this assay is shown in
FIG. 12 . -
FIG. 12 shows little specific lysis due to IgG1 control. when compared to the parental antibody, Complement-induced lysis was increased at least 1.7 fold for the VH16 R94K/K274Q/N276K (SEQ ID NO: 122)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody, 2 fold for the VH16 R94K/K274Q/N276K/K334R (SEQ ID NO: 123)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody and 2.2 fold for VH16 R94K(1133) (SEQ ID NO: 124)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody.FIG. 12 shows results performed in triplicate ±standard deviation. - A high yielding, mammalian protein expression system was developed. The system is based on a well documented CHO cell line (CHO-S, Invitrogen, Basel, Switzerland) that was adapted to suspension growth in a chemically defined serum-free medium, a highly efficient transfection method and a screening strategy for identification of clonal populations of high-producer cell lines. This mammalian protein expression system was used for the stable expression of humanized variants of the anti CD19 antibody.
- The plasmid carrying the cDNA sequence for the VL43 V3Q/T7S/P44I/N92A light chain (SEQ ID NO: 65) and the plasmid pAE18_VH16_R94K carrying the cDNA sequence for VH16 R94K heavy chain (SEQ ID NO: 64) used in Example 1 were both digested with XbaI and HindIII to release the light and heavy chain inserts. These inserts were isolated by gel electrophoresis, gel-extracted, purified and further cloned into the multiple cloning site of an expression vector based on pGL3 from Promega (Madison, Wis., USA), that was previously digested with the same restriction enzymes and prepared using the same gel electrophoresis and purification methods. This yields two expression plasmids: the pGL41[18_HC] plasmid and the pGL41[18_LC] plasmid respectively carrying the heavy chain and the light chain of the VH16 R94K-VL43 V3Q/T7S/P44I/N92A anti CD19 antibody.
- The vector pSV2neo, expressing the geneticin resistance gene neo was purchased from Clontech (Mountain View, Calif., USA) and the puromycin resistance vector pSV-Puro was obtained by cloning the SV40 promoter and the puromycin resistance gene (pac) from pBABE-Puro (Addgene, Camebridge, Mass., USA) into the pGL3 vector from Promega. These four plasmids were linearized using a single restriction site in the ampicillin resistance gene (ampR) and purified from remaining salts by ethanolic precipitation. Similarly, expression vectors for further humanization variants (VH16 R94K/Y100BF (SEQ ID NO: 66)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) and VH16 R94K/Y100BF (SEQ ID NO: 66)-VL43 V3Q/T7S/Y32F/P44I/N92A(SEQ ID NO: 67)) were cut out using the same restriction enzymes as described above and cloned into the pGL41 backbone.
- For stable integration into the host cell line CHO-S (Invitrogen), cells are seeded in 10 ml at a density of 1×106 cells per ml in a 50 ml bioreactor filter tube (TPP, Trasadingen, Switzerland) and cultured overnight. Prior to transfection, the chemically defined cell culture medium (PowerCHO2, Lonza, Basel, Switzerland) was replaced with the transfection medium (Opti-MEM, Invitrogen). Cells were transfected with 12.5 μg of the linearized vector cocktail containing the mix of heavy and light chain expression plasmids, pSV-Puro and pSV2neo using the polykationic transfection agent JetPEI (Polyplus-transfections, Illkirch, France) according to manufacturer's instructions. 4-5 hours after transfection, cells were diluted with 1 volume of growth medium. The following day cells were diluted in a ratio of 1 to 10, 1 to 20 or 1 to 30 in growth medium containing 5.0 μg/ml of puromycin and 500 ug/ml geneticin and distributed in 96 well plates. After 14 days of selection, drug resistant colonies were assayed using an antibody specific-ELISA and positive individual clones were amplified for antibody production analysis. The best performing clones were diluted at the
1, 10 and 100 cells/ml in cell culture medium (PowerCHO2, Lonza) in order to obtain clonal populations. Finally, best producing clones yielded titers in the range of 400 to 600 mg/L for the VH16 R94K-VL43 V3Q/T7S/P44I/N92A antibody and 200-300 mg/L for the VH16 R94K/Y100BF-VL43 V3Q/T7S/P44I/N92A and VH16 R94K/Y100BF-VL43 V3Q/T7S/Y32F/P44I/N92A antibodies in a 12 day shaken-batch assay using the PowerCHO2 cell culture medium supplemented with glutamine.concentrations - In mammals, fucose residues are attached to innermost GlcNAc residue of almost all complex-type Asn-linked oligosaccharides via an α1,6 linkage. A stable cell line expressing the rat beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase (GNTIII) enzyme was prepared. This enzyme introduces a bisecting N-Acetylglucosamine in the N-linked oligosaccharides of glycoproteins like for example antibodies. Such modification turns the antibody's Fc oligosaccharide into an inaccessible substrate for the enzyme Fut8 which transfers a fucose residue to the reducing N-Acetylglucosamine of glycan tree (Longmore and Schachter, 1982, Carbohydr Res 365-92), thereby inhibiting fucosylation. The rat gntIII gene was ordered from Imagenes (Berlin, Germany) and amplified using specific primers. The amplicon was then digested using the enzymes BamHI and HindIII, gel purified and cloned into the BamHI, HindIII opened multiple cloning site of the expressing vector pGLEX33; a mammalian expression vector based on the pcDNA3.1 plasmid from Invitrogen (Basel, Switzerland) under control of the mouse CMV promoter. The resulting vector was called pGNTIII.
- The puromycin resistance vector pSV-Puro was obtained by cloning the SV40 promoter and the puromycin resistance gene (pac) from pBABE-Puro (Addgene, Camebridge, Mass., USA) into the pGL3 vector from Promega (Madison, Wis., USA. The two plasmids were linearized using a single restriction site in the ampicillin resistance gene (ampR) and purified from remaining salts by ethanolic precipitation.
- For stable integration into the host cell line CHO-S (Invitrogen), cells are seeded in 10 ml at a density of 1×106 cells per ml in a 50 ml bioreactor filter tube (TPP, Trasadingen, Switzerland) and cultured overnight. Prior to transfection, the chemically defined cell culture medium (PowerCHO2, Lonza, Basel, Switzerland) was replaced with the transfection medium (Opti-MEM, Invitrogen). Cells were transfected with 12.5 μg of the linearized vector cocktail containing the mix of pGNTIII and pSV-Puro using the polykationic transfection agent JetPEI (Polyplus-transfections, Illkirch, France) according to manufacturer's instructions. 4-5 hours after transfection, cells were diluted with 1 volume of growth medium. The following day cells were diluted in a ratio of 1 to 10, 1 to 20 or 1 to 30 in growth medium containing 5.0 μg/ml of puromycin and distributed in 96 well plates. After 14 days of selection, drug resistant colonies expressing the rat GNTIII gene were isolated.
- A second stable cell line was prepared using the CHO-S cell line from Invitrogen. The cells were transfected with a vector expressing two small hairpin RNAs (shRNA) that knock down the enzymes Fut8 (α1,6-fucosyltransferase) and GMD (GDP-
mannose 4,6-dehydratase) using the shRNA sequences described previously (Imai-Nishiya et al. 2007, BMC Biotechnol., 7:84) under control of the human U6 promoter and the tRNAval promoter. The construct was ordered from GeneArt A.G. (Regensburg, Germany). In detail, the tRNAval promoter controls the expression of the Fut8 specific shRNA and the U6 promoter controls the expression of the GMD specific shRNA. The construct was flanked by NheI and NruI sites, and these restriction sites were used to clone the digested and gel purified fragment into the vector backbone of pGLEX1 (a modified version of pcDNA3.1 (Invitrogen) previously digested with the same enzymes. - The combined knockdown of these two enzymes of the de-novo pathway has been shown to have synergistic effects in promoting the absence of fucose in the N-linked oligosaccharide structure of IgG1 (Imai-Nishiya et al. 2007, BMC Biotechnol. 7:84), if the cells were cultured in the absence of fucose. In presence of fucose the reduction of the fucosylation would rely only on the knockdown of the Fut8 enzyme as the GMD enzyme is not part of the salvage pathway. The cells transfected with the double knockdown expression cassettes were previously shown to have lost 90-98% of the fucosylation in the N-linked oligosaccharides (Imai-Nishiya et al. 2007, BMC Biotechnol., 7:84). For stable integration into the host cell line CHO-S (Invitrogen), the siRNA vector was linearized using a single restriction site in the ampicillin resistance. The cells were co-transfected with a selection plasmid and selected as described above for the
- The two cell lines were transiently transfected with plasmids encoding both the VH16 R94K (SEQ ID NO: 64)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody and the VH16 R94K/E269D/S298A (SEQ ID NO: 115)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) antibody as described in Example 1 and 11, respectively.
- For the transient transfection, cells were seeded in 200 ml at a density of 1×106 cells per ml in a 1000 ml round Schott bottle and cultured overnight. Prior to transfection, the chemically defined cell culture medium (PowerCHO2, Lonza) was replaced with 100 ml of the transfection medium (Opti-MEM, Invitrogen). Cells were transfected with 250 μg of the vector cocktail containing a mix of 50% heavy chain and 50% light chain DNA using the polykationic transfection agent JetPEI (Polyplus-transfections) according to manufacturer's instructions. 4-5 hours after transfection, cells were diluted with 1 volume of growth medium. The medium was harvested on
day 5. After centrifugation, the supernatant was filtered (0.2 μm) and purified by protein-A affinity chromatography (Hitrap, GE healthcare, Zurich, Switzerland) on an Akta purifier system (GE healthcare). The ADCC assays were performed as described in example 11. - Antibody variants produced in the shRNA and the GNTIII cell lines described above are respectively designated by the shRNA or GNTIII suffix.
FIG. 13 shows that defucosylated variants have increased ADCC over their fucosylated parental antibody by at least 2 fold. - This study was designed to assess the in vivo effect of anti-CD19 treatment of huPBL SCID mice. Before the start of treatment, 30 healthy female severe combined immunodeficiency (SCID, HARLAN) mice, 5-6 weeks-old and weighing 16-20 g were randomized based on body weight into one group of 2 animals and 4 groups of 7 animals. The mean body weight of each group was comparable and not statistically different from the other groups (analysis of variance). All mice were then submitted to whole body irradiation using a γ-source (1.8 Gy, 60Co, NRA BRETENIERE, Dijon, France) at D0. At D1 and D8, mice received a single SC injection of NK-cell depleting Ab (mCD122 antigen, Rat IgG2b isotype, TM-
Beta 1, BioXCell, USA) at 20 mg/kg. - Four freshly collected buffy coat samples from healthy volunteer donors were obtained and the peripheral blood mononuclear cells (PBMCs) were purified using gradient centrifugation according to the Ficoll-Paque® plus procedure (Ref 07907, StemCell Technologies) within 48 h after total blood collection. The viability of PBMCs was assessed by 0.25% trypan blue exclusion before in vivo injection. At D3, mice were IP injected with 3×107 hPBMCs (500 μL in PBS by IP route) from donors #1, #2 and #3 (
Groups 2 to 5, 2-3 mice per donor) or with PBS (Group 1). At D14, mice from 2, 3, 4 and 5 received a single IV injection of Herceptin® (negative control, 21.0 mg/ml, Batch No B1492), Mabthera® (positive control, 10.0 mg/ml, Batch No B2136), anti-CD 19 antibody variant VH16 R94K (SEQ ID NO: 64)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) or anti-CD 19 antibody variant VH16 R94K/S324N (SEQ ID NO: 118)-VL43 V3Q/T7S/P44I/N92A (SEQ ID NO: 65) at 10 mg/kg/inj, respectively. The treatment schedule is summarized in the table 24 below:groups -
TABLE 24 Treatment schedule NK-cell depleting No. AB Treatment Group mice Irradiation (D1, D8) HPBMC (D3) (D14, Q1Dx1) 1 2 Yes Yes No (PBS) No 2 7 Yes Yes 3 donors Herceptin ® (10 mg/kg, IV) 2-3 mice/ donor 3 7 Yes Yes 3 donors Mabthera ® (10 mg/kg, IV) 2-3 mice/ donor 4 7 Yes Yes 3 donors VH16 R94K-VL43 2-3 mice/donor V3Q/T7S/P44I/N92A (10 mg/kg, IV) 5 7 Yes Yes 3 donors VH16 R94K/S324N-VL43 2-3 mice/donor V3Q/T7S/P44I/N92A (10 mg/kg, IV) - The human B lymphocytes in the spleens were detected by 4-color flow cytometry analysis. For each sample, the human B lymphocytes cells were quantified using cell surface expression of hCD45(+), mCD45(−), hCD20(+) and hCD19(+) and PKH26 reference microbeads (Ref P7458, Sigma). Antibodies described in table 25 below were used.
-
TABLE 25 Antibodies for detection of human B lymphocytes cells Antigens Clone Isotype Fluorochrome Ref hCD19 4G7 Mouse IgG1, κ PerCP BDa 345778 hCD45 H130 APC BD 555485 hCD20 L27 FITC BD 345792 mCD45 30-F11 Rat IgG2b, κ APC-Cy7 BD 557659 mIgG1 MOPC-21 Mouse IgG1 FITC BD 555748 mIgG1 X40 PerCP BD 345817 mIgG1 MOPC-21 APC BD 555751 rIgG2b A95-1 Rat IgG2b, κ APC-Cy7 BD 552773 aBD: Becton Dickinson Biosciences, Le Pont de Claix. France - For the CD marker expression analyses, 100 000 cells from spleens in 200 μL staining buffer [PBS (Ref 17-516F, Lonza), 0.2% BSA (Ref A7030, Sigma) 0.02% NaN3 (Ref S2002, Sigma)] were incubated in the dark for 20 min at room temperature with either a mixed solution of hCD19 PerCP, hCD20 FITC, hCD45 APC and mCD45 APC-Cy7 antibodies or a mixed solution of mIgG 1-FITC, rIgG2b-APC-Cy7, mIgG 1-APC and mIgG1-PerCP antibodies. Isotype control antibodies were used in each case as negative controls.
- The red blood cells were lysed using the “Fix and Lyse” procedure. Briefly, “Fix and Lyse” buffer was prepared by adding 25 μL of
IOTest 3 10× Fixative Solution (Ref A07800, Beckman Coulter) to 1 mL of VersaLyse (Ref A09777, Beckman Coulter) and 1 ml of the mixture was added to the stained cells. After being vortexed and incubated for 10 min in the dark at room temperature, cells were centrifuged and washed once with 3 mL of staining buffer and resuspended in 0.5 mL of reference microbeads solution (PKH26, Ref P7458, Sigma, ½ diluted in staining buffer). The samples were stored on ice protected from light exposure until FACS analysis. The stained cells were analyzed with a CyFlow® space flow cytometer (Partec S.A.R.L.) using a 488 nm wavelength laser excitation. The acquisition was stopped after a total of 10,000 hCD45(+) (if achievable) were collected for each sample. All the events were saved during the acquisition. - FACS results were represented by dot plot showing FSC versus SSC parameters (forward and side scatter detectors) in order to visualize cells size and complexity, and by dot plots showing the hCD45 (FITC) fluorescence intensities.
- Calculation of absolute cell counts was achieved by using the following formula:
-
- ACN was the absolute cell number per μL
- CN was the cell number.
- BN was the bead number.
- The beads concentration was specified at a latter date as depending on the batch provided by the manufacturer.
- Vf (expressed in mL) was the volume of microbeads solution used to resuspended the cell pellet.
- Vi (expressed in μL) was the initial volume of blood used for FACS analysis.
- The individual ACN of total B cells in the spleens of engrafted SCID mice at D18 are presented in
FIG. 14 . The individual percentage of total B cells in spleens of engrafted SCID mice at D18 are presented inFIG. 15 . - All mice, except one mouse from group hPBMC & anti-CD 19 variant V18 (mouse No 3817), were successfully engrafted with hPBMCs, resulting in detection of circulating human CD45+ leucocytes in mouse blood. The level of human CD45+ leucocytes was over to 15% of blood cells in most of the mice transplanted with hPBMC. Moreover, high levels of human cell reconstitution (reaching 31-73% hCD45+ leucocytes in blood cells) was observed in 52% of engrafted mice. Levels of hCD45+ leucocytes were unchanged or increased during the course of the experiment, reflecting the engraftment efficiency of SCID mice transplanted with human PBMC. Human CD45+ leucocytes were also detected in
spleens 18 days after transplantation and the average engraftment level was approximately 45% hCD45+ cell in spleen cells. - The human B cell populations in the spleens were analyzed when mice were killed 4 days after dosing; that is to say 18 days after transplantation. In all engrafted mice from the negative control group, the spleens contained 5 to 11% B cells in hCD45+ leucocytes. Human B cells in the spleens constituted of either hCD19+ or hCD20+ single-positive cells as well as hCD19+ hCD20+ double-positive B cells. Only low levels (<3%) of human B cells were detected in the spleens from mice treated with Mabthera®, anti-CD 19 antibody variant VH16 R94K-VL43 V3Q/T7S/P44I/N92A or anti-CD 19 antibody variant VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A and the decrease of the human B cell population was statistically significant in comparison with the Herceptin® group. On the other hand, no statistical difference was observed in the B cell depletion in the spleens between anti-CD 19 variant antibody VH16 R94K-VL43 V3Q/T7S/P44I/N92A or anti-CD 19 antibody variant VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A and Mabthera® treatment.
- Results demonstrated that a single IV injection of anti-CD 19 antibody variant VH16 R94K-VL43 V3Q/T7S/P44I/N92A or anti-CD 19 antibody variant VH16 R94K/S324N-VL43 V3Q/T7S/P44I/N92A at 10 mg/kg resulted in a B cell depletion in the spleens of treated mice and the response to the GBR antibodies was equivalent in intensity to that of Mabthera®.
Claims (19)
1-87. (canceled)
88. An isolated nucleic acid encoding a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
89. An isolated nucleic acid comprising the heavy chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ having accession No. DSM 23302.
90. An isolated nucleic acid comprising the light chain encoding nucleic acid sequence of a humanized FMC63 variant that binds to human CD19 as deposited in a microorganism with DSMZ having accession No. DSM 23303.
91. A vector comprising the isolated nucleic acid of claim 88 .
92. A host cell comprising the isolated nucleic acid of claim 88 .
93. A method of producing a humanized antibody or fragment thereof that binds to human CD19, said method comprising culturing the host cell of claim 92 so that the nucleic acid is expressed and the antibody produced.
94-97. (canceled)
98. A method of inhibiting growth of tumor cells expressing CD19, comprising contacting the cells with a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32 in an amount effective to inhibit growth of the tumor cells.
99. The method of claim 98 , wherein said tumor cells are selected from the group consisting of human Burkitt lymphoma cells, human B cell precursor leukemia cells, human B cell leukemia cells or human B-cell lymphoma cells.
100. A method of depleting B cells in a subject comprising administering to the subject a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32 in an amount effective to deplete B cells from the subject.
101. A method for treating a CD19 mediated disorder in a subject, the method comprising administering to the subject a therapeutically effective amount of a humanized antibody or fragment thereof that binds to human CD19 comprising a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 27, and/or a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and/or a heavy chain CDR3 comprising the amino acid sequence of SEQ NO: 29; and/or comprising a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 30, and/or a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 31 and/or a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
102. The method of claim 101 , wherein the CD19 mediated disorder is selected from the group consisting of autoimmune disorders including rheumatoid arthritis, cancer, non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia, Burkitt's lymphoma, anaplastic large-cell lymphomas (ALCL), cutaneous T-cell lymphomas, nodular small cleaved-cell lymphomas, peripheral T-cell lymphomas, Lennert's lymphomas, immunoblastic lymphomas, T-cell leukemia/lymphomas (ATLL), adult T-cell leukemia (T-ALL), entroblastic/centrocytic (cb/cc) follicular lymphomas cancers, diffuse large cell lymphomas of B lineage, angioimmunoblastic lymphadenopathy (AILD)-like T cell lymphoma, HIV associated body cavity based lymphomas, Embryonal Carcinomas, undifferentiated carcinomas of the rhino-pharynx (e.g., Schmincke's tumor), Castleman's disease, Kaposi's Sarcoma, Multiple Myeloma, Waldenstrom's macroglobulinemia, anti-CD20 antibody resistant B-cell cancers and other B-cell lymphomas and leukemias.
103. The method of claim 101 , wherein the CD19 mediated disorder is selected from the group consisting of non-Hodgkin's lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia, rheumatoid arthritis, systemic lupus erythematosus (SLE), and anti-CD20 antibody resistant B-cell cancers.
104. The method of claim 101 , wherein the CD19 mediated disorder is a tumorigenic disorder.
105-108. (canceled)
109. A vector comprising the isolated nucleic acid of claim 89 or 90 .
110. A host cell comprising the isolated nucleic acid of claim 89 or 90 .
111. A host cell comprising the vector of claim 91 .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/168,927 US20140286934A1 (en) | 2009-02-23 | 2014-01-30 | Humanized antibodies that bind to cd19 and their uses |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15452409P | 2009-02-23 | 2009-02-23 | |
| US12/710,442 US8679492B2 (en) | 2009-02-23 | 2010-02-23 | Humanized antibodies that bind to CD19 and their uses |
| US14/168,927 US20140286934A1 (en) | 2009-02-23 | 2014-01-30 | Humanized antibodies that bind to cd19 and their uses |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/710,442 Division US8679492B2 (en) | 2009-02-23 | 2010-02-23 | Humanized antibodies that bind to CD19 and their uses |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140286934A1 true US20140286934A1 (en) | 2014-09-25 |
Family
ID=42115917
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/710,442 Expired - Fee Related US8679492B2 (en) | 2009-02-23 | 2010-02-23 | Humanized antibodies that bind to CD19 and their uses |
| US14/168,927 Abandoned US20140286934A1 (en) | 2009-02-23 | 2014-01-30 | Humanized antibodies that bind to cd19 and their uses |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/710,442 Expired - Fee Related US8679492B2 (en) | 2009-02-23 | 2010-02-23 | Humanized antibodies that bind to CD19 and their uses |
Country Status (17)
| Country | Link |
|---|---|
| US (2) | US8679492B2 (en) |
| EP (1) | EP2398829A2 (en) |
| JP (1) | JP2012518404A (en) |
| KR (1) | KR20110122859A (en) |
| CN (1) | CN102421800A (en) |
| AP (1) | AP2011005859A0 (en) |
| AU (1) | AU2010215239A1 (en) |
| BR (1) | BRPI1005984A2 (en) |
| CA (1) | CA2753158A1 (en) |
| CL (1) | CL2011002039A1 (en) |
| CO (1) | CO6430469A2 (en) |
| EA (1) | EA201190132A1 (en) |
| IL (1) | IL214725A0 (en) |
| MX (1) | MX2011008843A (en) |
| SG (1) | SG173654A1 (en) |
| WO (1) | WO2010095031A2 (en) |
| ZA (1) | ZA201106369B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016061368A1 (en) * | 2014-10-15 | 2016-04-21 | The Children's Hospital Of Philadelphia | Compositions and methods for treating b-lymphoid malignancies |
| US10253086B2 (en) | 2015-04-08 | 2019-04-09 | Novartis Ag | CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell |
| WO2020180882A1 (en) * | 2019-03-05 | 2020-09-10 | Nkarta, Inc. | Cd19-directed chimeric antigen receptors and uses thereof in immunotherapy |
| EP3747472A1 (en) | 2015-09-15 | 2020-12-09 | Acerta Pharma B.V. | Therapeutic combinations of a cd19 inhibitor and a btk inhibitor |
| WO2022155375A3 (en) * | 2021-01-13 | 2022-08-25 | Washington University | MHC-INDEPENDENT TCRs AND METHODS OF MAKING AND USING SAME |
| US11634488B2 (en) | 2017-07-10 | 2023-04-25 | International—Drug—Development—Biotech | Treatment of B cell malignancies using afucosylated pro-apoptotic anti-CD19 antibodies in combination with anti CD20 antibodies or chemotherapeutics |
| US11793834B2 (en) | 2018-12-12 | 2023-10-24 | Kite Pharma, Inc. | Chimeric antigen and T cell receptors and methods of use |
| US12473363B2 (en) | 2022-01-12 | 2025-11-18 | Biomolecular Holdings Llc | NK/monocyte engagers |
Families Citing this family (107)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2539370B1 (en) * | 2010-02-23 | 2019-05-15 | Sanofi | Anti-alpha2 integrin antibodies and their uses |
| TWI560199B (en) | 2010-08-31 | 2016-12-01 | Sanofi Sa | Peptide or peptide complex binding to α2 integrin and methods and uses involving the same |
| PH12013501201A1 (en) * | 2010-12-09 | 2013-07-29 | Univ Pennsylvania | Use of chimeric antigen receptor-modified t cells to treat cancer |
| US9605320B2 (en) * | 2011-01-13 | 2017-03-28 | The Board Of Trustees Of The Leland Stanford Junior University | Method of predicting responsiveness of B cell lineage malignancies to active immunotherapy |
| MX358752B (en) | 2011-03-25 | 2018-08-31 | Glenmark Pharmaceuticals Sa | Hetero-dimeric immunoglobulins. |
| TR201807040T4 (en) | 2011-07-11 | 2018-06-21 | Glenmark Pharmaceuticals Sa | Antibodies that bind to Ox40 and their use. |
| KR102115203B1 (en) | 2011-08-16 | 2020-05-28 | 모르포시스 아게 | Combination therapy with an anti-cd19 antibody and a nitrogen mustard |
| KR20140071368A (en) | 2011-08-16 | 2014-06-11 | 모르포시스 아게 | Combination therapy with an anti-cd19 antibody and a purine analog |
| AU2013322710A1 (en) | 2012-09-25 | 2015-04-16 | Glenmark Pharmaceuticals S.A. | Purification of hetero-dimeric immunoglobulins |
| EP2766048B1 (en) | 2012-10-12 | 2014-12-10 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| BR112015008174B1 (en) * | 2012-10-12 | 2022-12-27 | Medimmune Limited | PYROLOBENZODIAZEPINE-ANTIBOD CONJUGATES, PHARMACEUTICAL COMPOSITION COMPRISING SAID CONJUGATES AND USES THEREOF TO TREAT PROLIFERATIVE DISEASE AND CANCER |
| HUE039329T2 (en) | 2012-10-12 | 2018-12-28 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| AU2013204922B2 (en) | 2012-12-20 | 2015-05-14 | Celgene Corporation | Chimeric antigen receptors |
| PE20151289A1 (en) | 2013-01-02 | 2015-10-05 | Glenmark Pharmaceuticals Sa | ANTIBODIES THAT JOIN THE TL1A AND ITS USES |
| JP6493692B2 (en) | 2013-03-15 | 2019-04-10 | セルジーン コーポレイション | Modified T lymphocytes |
| TWI654206B (en) * | 2013-03-16 | 2019-03-21 | 諾華公司 | Treatment of cancer with a humanized anti-CD19 chimeric antigen receptor |
| WO2014210209A2 (en) * | 2013-06-27 | 2014-12-31 | Abbvie Biotherapeutics Inc. | Fc variants with improved complement activation |
| US9950078B2 (en) | 2013-10-11 | 2018-04-24 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| BR112016009898A2 (en) * | 2013-10-31 | 2017-12-05 | Hutchinson Fred Cancer Res | unmodified hematopoietic and effector stem cells / progenitors and their uses |
| SG11201603244VA (en) | 2013-11-04 | 2016-05-30 | Glenmark Pharmaceuticals Sa | Production of t cell retargeting hetero-dimeric immunoglobulins |
| EP3083964B1 (en) | 2013-12-19 | 2022-01-26 | Novartis AG | Human mesothelin chimeric antigen receptors and uses thereof |
| EP3129470B1 (en) | 2014-04-07 | 2021-04-07 | Novartis Ag | Treatment of cancer using anti-cd19 chimeric antigen receptor |
| CN106535925A (en) | 2014-05-23 | 2017-03-22 | 佛罗里达大学研究基金会有限公司 | CAR based immunotherapy |
| WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
| TWI805109B (en) * | 2014-08-28 | 2023-06-11 | 美商奇諾治療有限公司 | Antibodies and chimeric antigen receptors specific for cd19 |
| ES2688035T3 (en) | 2014-08-29 | 2018-10-30 | Gemoab Monoclonals Gmbh | Universal antigen receptor that expresses immune cells for addressing multiple multiple antigens, procedure for manufacturing it and using it for the treatment of cancer, infections and autoimmune diseases |
| GB201416112D0 (en) | 2014-09-12 | 2014-10-29 | Medimmune Ltd | Pyrrolobenzodiazepines and conjugates thereof |
| MA41480A (en) | 2014-10-17 | 2017-12-19 | Glenmark Pharmaceuticals Sa | ANTIBODIES BOUND TO CCR6 AND THEIR USES |
| US11773166B2 (en) | 2014-11-04 | 2023-10-03 | Ichnos Sciences SA | CD3/CD38 T cell retargeting hetero-dimeric immunoglobulins and methods of their production |
| ES2987087T3 (en) | 2014-12-03 | 2024-11-13 | Juno Therapeutics Inc | Methods and compositions for adoptive cell therapy |
| US12428483B2 (en) * | 2014-12-22 | 2025-09-30 | Systimmune, Inc. | Bispecific tetravalent antibodies and methods of making and using thereof |
| EP3259352A4 (en) * | 2015-02-19 | 2018-12-05 | University of Florida Research Foundation, Inc. | Chimeric antigen receptors and uses thereof |
| GB201503742D0 (en) | 2015-03-05 | 2015-04-22 | Ucl Business Plc | Chimeric antigen receptor |
| WO2016168766A1 (en) * | 2015-04-15 | 2016-10-20 | The California Institute For Biomedical Research | Optimized chimeric receptor t cell switches and uses thereof |
| US20180355318A1 (en) * | 2015-04-29 | 2018-12-13 | Fred Hutchinson Cancer Research Center | Modified hematopoietic stem/progenitor and non-t effector cells, and uses thereof |
| CA2986254A1 (en) | 2015-05-18 | 2016-11-24 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
| PL3302550T3 (en) | 2015-05-26 | 2020-02-28 | Morphosys Ag | Combination of an anti-cd19 antibody and a bruton's tyrosine kinase inhibitor and uses thereof |
| US10493139B2 (en) | 2015-07-24 | 2019-12-03 | Innovative Cellular Therapeutics CO., LTD. | Humanized anti-CD19 antibody and use thereof with chimeric antigen receptor |
| WO2017015783A1 (en) * | 2015-07-24 | 2017-02-02 | Shanghai Sidansai Biotechnology Co., Ltd | Humanized anti-cd19 antibody and use thereof |
| PL3337506T3 (en) | 2015-08-21 | 2022-01-03 | Morphosys Ag | COMBINATIONS AND THEIR APPLICATIONS |
| AR106188A1 (en) | 2015-10-01 | 2017-12-20 | Hoffmann La Roche | ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE |
| EP3913000A1 (en) * | 2015-10-02 | 2021-11-24 | F. Hoffmann-La Roche AG | Bispecific anti-cd19xcd3 t cell activating antigen binding molecules |
| EP4212166A1 (en) * | 2015-12-03 | 2023-07-19 | Juno Therapeutics, Inc. | Compositions and methods for reducing immune responses against cell therapies |
| CA3007262A1 (en) | 2015-12-03 | 2017-06-08 | Lucas James Thompson | Modified chimeric receptors and related compositions and methods |
| GB201601431D0 (en) | 2016-01-26 | 2016-03-09 | Medimmune Ltd | Pyrrolobenzodiazepines |
| GB201602359D0 (en) | 2016-02-10 | 2016-03-23 | Medimmune Ltd | Pyrrolobenzodiazepine Conjugates |
| GB201602356D0 (en) | 2016-02-10 | 2016-03-23 | Medimmune Ltd | Pyrrolobenzodiazepine Conjugates |
| GB201607478D0 (en) | 2016-04-29 | 2016-06-15 | Medimmune Ltd | Pyrrolobenzodiazepine Conjugates |
| LT3916392T (en) | 2016-05-30 | 2024-08-26 | Incyte Corporation | Methods for predicting therapeutic benefit of anti-cd19 therapy in patients |
| DK3475303T3 (en) | 2016-06-27 | 2021-05-31 | Morphosys Ag | ANTI-CD19 ANTIBODY FORMULATIONS |
| JP7467117B2 (en) | 2016-10-07 | 2024-04-15 | ノバルティス アーゲー | Chimeric antigen receptors for the treatment of cancer - Patents.com |
| GB201617466D0 (en) | 2016-10-14 | 2016-11-30 | Medimmune Ltd | Pyrrolobenzodiazepine conjugates |
| US11331380B2 (en) | 2016-10-20 | 2022-05-17 | Celgene Corporation | Cereblon-based heterodimerizable chimeric antigen receptors |
| ES2871574T3 (en) | 2016-10-28 | 2021-10-29 | Morphosys Ag | Combination of anti-CD19 antibody with a BCL-2 inhibitor and its uses |
| CN110177803A (en) | 2016-11-22 | 2019-08-27 | T细胞受体治疗公司 | For using fusion protein to carry out the composition and method that TCR is reprogramed |
| CN110352068A (en) | 2016-12-02 | 2019-10-18 | 南加利福尼亚大学 | The immunity receptor and its application method of synthesis |
| EP4032550A3 (en) * | 2017-01-05 | 2022-10-19 | Innovative Cellular Therapeutics Holdings, Ltd. | Humanized anti-cd19 antibody and use thereof with chimeric antigen receptor |
| RS61795B1 (en) | 2017-02-08 | 2021-06-30 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| GB201702031D0 (en) | 2017-02-08 | 2017-03-22 | Medlmmune Ltd | Pyrrolobenzodiazepine-antibody conjugates |
| CN106967171B (en) * | 2017-02-23 | 2021-04-27 | 郑州大学 | A kind of fully human recombinant CD40L monoclonal antibody Fab fragment and preparation method thereof |
| LT3612537T (en) | 2017-04-18 | 2022-10-10 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| KR20190142775A (en) | 2017-04-19 | 2019-12-27 | 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 | Immune Cells Expressing Engineered Antigen Receptors |
| JOP20180042A1 (en) * | 2017-04-24 | 2019-01-30 | Kite Pharma Inc | Humanized Antigen-Binding Domains and Methods of Use |
| CA3063051A1 (en) | 2017-05-10 | 2018-11-15 | The Wistar Institute Of Anatomy And Biology | Optimized nucleic acid antibody constructs |
| MX2019014330A (en) | 2017-05-31 | 2020-02-05 | Morphosys Ag | TREATMENT PARADIGM FOR A COMBINATION TREATMENT OF ANTI-CD19 ANTIBODY AND VENETOCLAX. |
| KR102442736B1 (en) | 2017-06-14 | 2022-09-16 | 에이디씨 테라퓨틱스 에스에이 | Dosage regime for administration of anti-CD19 ADCs |
| EP3655437A1 (en) * | 2017-07-20 | 2020-05-27 | NBE-Therapeutics AG | Human antibodies binding to ror2 |
| WO2019034764A1 (en) | 2017-08-18 | 2019-02-21 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| EP3684820A4 (en) * | 2017-09-21 | 2021-05-26 | Wuxi Biologics (Cayman) Inc. | Novel anti-cd19 antibodies |
| WO2019089478A1 (en) | 2017-10-30 | 2019-05-09 | Neuropore Therapies, Inc. | Substituted phenyl sulfonyl phenyl triazole thiones and uses thereof |
| EP3722313A4 (en) * | 2017-12-06 | 2021-02-24 | AbClon Inc. | Antibody or antigen binding fragment thereof for specifically recognizing b cell malignancy, chimeric antigen receptor comprising same, and use thereof |
| CN109053899B (en) | 2017-12-22 | 2021-11-16 | 湖南远泰生物技术有限公司 | Chimeric antigen receptor containing human transferrin antigen epitope sequence |
| JP7080514B2 (en) * | 2017-12-22 | 2022-06-06 | アブクロン・インコーポレイテッド | Antibodies that specifically recognize malignant B cells or antigen-binding fragments thereof, chimeric antigen receptors containing them and their uses |
| CN108047332B (en) * | 2018-01-15 | 2021-08-24 | 阿思科力(苏州)生物科技有限公司 | Specific antibodies targeting CD19, CAR-NK cells and their preparation and application |
| US12473336B2 (en) | 2018-02-21 | 2025-11-18 | Board Of Regents, The University Of Texas System | Methods for activation and expansion of natural killer cells and uses thereof |
| GB201803342D0 (en) | 2018-03-01 | 2018-04-18 | Medimmune Ltd | Methods |
| GB201806022D0 (en) | 2018-04-12 | 2018-05-30 | Medimmune Ltd | Pyrrolobenzodiazepines and conjugates thereof |
| WO2019241426A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
| CN109293774B (en) * | 2018-10-16 | 2021-05-28 | 南京医科大学 | Fully humanized antibody that specifically binds to CD19 and its application |
| AU2019383976B2 (en) | 2018-11-19 | 2025-07-03 | Bt Bidco, Inc. | Methods and devices for treating a disease with biotherapeutics |
| JP7090780B2 (en) * | 2018-12-21 | 2022-06-24 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Antibodies that bind to CD3 |
| CN118271445A (en) | 2018-12-21 | 2024-07-02 | 豪夫迈·罗氏有限公司 | Antibodies that bind to CD3 |
| ES2967878T3 (en) | 2019-03-15 | 2024-05-06 | Medimmune Ltd | Azetidobenzodiazepine dimers and conjugates comprising them for use in the treatment of cancer |
| CN114341176A (en) * | 2019-04-08 | 2022-04-12 | 纪念斯隆凯特琳癌症中心 | CD19 antibodies and methods of use thereof |
| PH12021552963A1 (en) * | 2019-04-30 | 2022-07-25 | Crispr Therapeutics Ag | Allogeneic cell therapy of b cell malignancies using genetically engineered t cells targeting cd19 |
| EA202193024A1 (en) | 2019-05-03 | 2022-02-09 | МорфоСис АГ | ANTI-CD19 THERAPY IN PATIENTS WITH A LIMITED NUMBER OF NATURAL KILLER CELLS |
| JP2022538836A (en) * | 2019-06-27 | 2022-09-06 | クリスパー セラピューティクス アクチェンゲゼルシャフト | Use of chimeric antigen receptor T cells and NK cell inhibitors to treat cancer |
| KR20220029710A (en) | 2019-07-09 | 2022-03-08 | 스테이드슨 (베이징) 바이오팔마슈티칼스 캄퍼니 리미티드 | Antibodies specifically recognizing Pseudomonas PCRV and uses thereof |
| CN110396129B (en) * | 2019-07-10 | 2020-11-24 | 武汉思安医疗技术有限公司 | Humanized CD19 antigen-binding single-chain antibody and its chimeric antigen receptor, immune cells and applications |
| JP2022550435A (en) | 2019-10-04 | 2022-12-01 | ウルトラジェニックス ファーマシューティカル インコーポレイテッド | Methods for improved therapeutic use of recombinant AAV |
| MX2022005033A (en) | 2019-10-31 | 2022-09-09 | Morphosys Ag | COMBINED ANTITUMORAL THERAPY THAT COMPRISES AN ANTI-GROUP OF DIFFERENTIATION 19 (CD19) ANTIBODY AND GAMMA DELTA T LYMPHOCYTES. |
| MX2022005031A (en) | 2019-10-31 | 2022-07-27 | Morphosys Ag | Anti-cd19 therapy in combination with lenalidomide for the treatment of leukemia or lymphoma. |
| MX2022006391A (en) | 2019-11-26 | 2022-06-24 | Novartis Ag | CHIMERIC ANTIGEN RECEPTORS THAT BIND BCMA AND CD19 AND USES THEREOF. |
| WO2021119482A1 (en) | 2019-12-13 | 2021-06-17 | Progenity, Inc. | Ingestible device for delivery of therapeutic agent to the gastrointestinal tract |
| JP2023513282A (en) * | 2020-02-11 | 2023-03-30 | クリスパー セラピューティクス アクチェンゲゼルシャフト | Anti-idiotypic antibody targeting anti-CD19 chimeric antigen receptor |
| EP4168447A1 (en) | 2020-06-19 | 2023-04-26 | F. Hoffmann-La Roche AG | Antibodies binding to cd3 and cd19 |
| TW202216193A (en) | 2020-06-22 | 2022-05-01 | 德商莫菲西斯公司 | Anti-tumor combination therapy comprising anti-cd19 antibody and polypeptides blocking the sirpα-cd47 innate immune checkpoint |
| IL301865A (en) | 2020-10-06 | 2023-06-01 | Xencor Inc | Biomarkers, methods and preparations for the treatment of autoimmune disease, including systemic lupus erythematosus (SLE) |
| WO2022105811A1 (en) * | 2020-11-20 | 2022-05-27 | 江苏先声药业有限公司 | Humanized cd19 antibody and use thereof |
| MX2023006538A (en) | 2020-12-04 | 2023-08-08 | Morphosys Ag | Anti-cd19 combination therapy. |
| CN112679612B (en) * | 2021-01-29 | 2022-07-01 | 武汉华美生物工程有限公司 | Anti-CD19 humanized antibody and preparation method and application thereof |
| MX2023012703A (en) * | 2021-05-07 | 2023-11-21 | Viela Bio Inc | Use of an anti-cd19 antibody to treat myasthenia gravis. |
| WO2023073645A1 (en) | 2021-10-29 | 2023-05-04 | Takeda Pharmaceutical Company Limited | Therapy comprising anti-cd19 antibody and sumo-activating enzyme inhibitor |
| WO2024038115A1 (en) | 2022-08-17 | 2024-02-22 | Morphosys Ag | Therapy comprising anti-cd19 antibody and ezh2 modulators |
| WO2024222859A1 (en) * | 2023-04-28 | 2024-10-31 | 深圳深信生物科技有限公司 | Modified delivery vector and use thereof |
| WO2024251263A1 (en) | 2023-06-09 | 2024-12-12 | Jw Therapeutics R & D (Shanghai) Co., Ltd. | Fusion protein and medical use thereof |
| US20250197501A1 (en) * | 2023-12-19 | 2025-06-19 | Development Center For Biotechnology | Recombinant antibody, immunoconjugate comprising the same, and uses thereof in treating cancers |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060233791A1 (en) * | 2005-02-15 | 2006-10-19 | Duke University | Anti-CD19 antibodies and uses in oncology |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU600575B2 (en) * | 1987-03-18 | 1990-08-16 | Sb2, Inc. | Altered antibodies |
| US5677425A (en) * | 1987-09-04 | 1997-10-14 | Celltech Therapeutics Limited | Recombinant antibody |
| US5571894A (en) * | 1991-02-05 | 1996-11-05 | Ciba-Geigy Corporation | Recombinant antibodies specific for a growth factor receptor |
| FI941572L (en) * | 1991-10-07 | 1994-05-27 | Oncologix Inc | Combination and method of use of anti-erbB-2 monoclonal antibodies |
| DE69334255D1 (en) | 1992-02-06 | 2009-02-12 | Novartis Vaccines & Diagnostic | Marker for cancer and biosynthetic binding protein for it |
| AU4116793A (en) * | 1992-04-24 | 1993-11-29 | Board Of Regents, The University Of Texas System | Recombinant production of immunoglobulin-like domains in prokaryotic cells |
| CA2150262C (en) | 1992-12-04 | 2008-07-08 | Kaspar-Philipp Holliger | Multivalent and multispecific binding proteins, their manufacture and use |
| EP0714409A1 (en) | 1993-06-16 | 1996-06-05 | Celltech Therapeutics Limited | Antibodies |
| US5641870A (en) * | 1995-04-20 | 1997-06-24 | Genentech, Inc. | Low pH hydrophobic interaction chromatography for antibody purification |
| US6121022A (en) * | 1995-04-14 | 2000-09-19 | Genentech, Inc. | Altered polypeptides with increased half-life |
| US5869046A (en) * | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
| US6277375B1 (en) * | 1997-03-03 | 2001-08-21 | Board Of Regents, The University Of Texas System | Immunoglobulin-like domains with increased half-lives |
| US6194551B1 (en) * | 1998-04-02 | 2001-02-27 | Genentech, Inc. | Polypeptide variants |
| CN1763097B (en) | 1999-01-15 | 2011-04-13 | 杰南技术公司 | Polypeptide variants with altered effector function |
| JP5312721B2 (en) * | 2000-11-07 | 2013-10-09 | シティ・オブ・ホープ | CD19-specific redirecting immune cells |
| WO2002097395A2 (en) * | 2001-05-31 | 2002-12-05 | Chiron Corporation | P-cadherin as a target for anti-cancer therapy |
| DK1443961T3 (en) * | 2001-10-25 | 2009-08-24 | Genentech Inc | Glycoprotein compositions |
| US20040002587A1 (en) * | 2002-02-20 | 2004-01-01 | Watkins Jeffry D. | Fc region variants |
| ES2387985T3 (en) * | 2002-11-26 | 2012-10-05 | Abbott Biotherapeutics Corp. | Chimeric and humanized alpha 5 beta 1 integrin antibodies that modulate angiogenesis |
| CA2534639C (en) * | 2003-07-31 | 2013-07-30 | Immunomedics, Inc. | Anti-cd19 antibodies |
| AR046833A1 (en) * | 2003-11-10 | 2005-12-28 | Schering Corp | ANTI-INTERLEUQUINA ANTIBODIES-10 |
| US20060263357A1 (en) * | 2005-05-05 | 2006-11-23 | Tedder Thomas F | Anti-CD19 antibody therapy for autoimmune disease |
| WO2007002223A2 (en) * | 2005-06-20 | 2007-01-04 | Medarex, Inc. | Cd19 antibodies and their uses |
| AR064464A1 (en) * | 2006-12-22 | 2009-04-01 | Genentech Inc | ANTIBODIES ANTI - INSULINAL GROWTH FACTOR RECEIVER |
-
2010
- 2010-02-23 BR BRPI1005984A patent/BRPI1005984A2/en not_active IP Right Cessation
- 2010-02-23 AP AP2011005859A patent/AP2011005859A0/en unknown
- 2010-02-23 WO PCT/IB2010/000353 patent/WO2010095031A2/en not_active Ceased
- 2010-02-23 EA EA201190132A patent/EA201190132A1/en unknown
- 2010-02-23 EP EP10706363A patent/EP2398829A2/en not_active Withdrawn
- 2010-02-23 KR KR1020117022435A patent/KR20110122859A/en not_active Withdrawn
- 2010-02-23 CA CA2753158A patent/CA2753158A1/en not_active Abandoned
- 2010-02-23 SG SG2011058013A patent/SG173654A1/en unknown
- 2010-02-23 JP JP2011550666A patent/JP2012518404A/en active Pending
- 2010-02-23 CN CN2010800177548A patent/CN102421800A/en active Pending
- 2010-02-23 MX MX2011008843A patent/MX2011008843A/en not_active Application Discontinuation
- 2010-02-23 AU AU2010215239A patent/AU2010215239A1/en not_active Abandoned
- 2010-02-23 US US12/710,442 patent/US8679492B2/en not_active Expired - Fee Related
-
2011
- 2011-08-18 IL IL214725A patent/IL214725A0/en unknown
- 2011-08-22 CL CL2011002039A patent/CL2011002039A1/en unknown
- 2011-08-31 ZA ZA2011/06369A patent/ZA201106369B/en unknown
- 2011-09-23 CO CO11124710A patent/CO6430469A2/en not_active Application Discontinuation
-
2014
- 2014-01-30 US US14/168,927 patent/US20140286934A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060233791A1 (en) * | 2005-02-15 | 2006-10-19 | Duke University | Anti-CD19 antibodies and uses in oncology |
Non-Patent Citations (7)
| Title |
|---|
| Colman P. M. (Research in Immunology, 145:33-36, 1994) * |
| Harris (Biotechnology, Vol. 11, Pg. 1293-1297, 1993) * |
| Houdebine et Al., Journal of Biotechnology, Vol. 34, Pg. 269- 287, 1994 * |
| Kappell et Al., Current Opinions in Biotechnology, Vol. 3, Pg. 548-553, 1992 * |
| Paul, Fundamental Immunology, 3rd Edition, 1993, pp. 292-295 * |
| Rudikoff et al. (Proceedings of the National Academy of Sciences USA, Vol., 79, Pg. 1979-1983, 1982) * |
| Wall et Al., Theriogenology, Vol. 45, Pg. 57-68, 1996 * |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016061368A1 (en) * | 2014-10-15 | 2016-04-21 | The Children's Hospital Of Philadelphia | Compositions and methods for treating b-lymphoid malignancies |
| US11149076B2 (en) | 2015-04-08 | 2021-10-19 | Novartis Ag | CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell |
| US10253086B2 (en) | 2015-04-08 | 2019-04-09 | Novartis Ag | CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell |
| US12344657B2 (en) | 2015-04-08 | 2025-07-01 | Novartis Ag | CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell |
| EP3747472A1 (en) | 2015-09-15 | 2020-12-09 | Acerta Pharma B.V. | Therapeutic combinations of a cd19 inhibitor and a btk inhibitor |
| US11634488B2 (en) | 2017-07-10 | 2023-04-25 | International—Drug—Development—Biotech | Treatment of B cell malignancies using afucosylated pro-apoptotic anti-CD19 antibodies in combination with anti CD20 antibodies or chemotherapeutics |
| US11793834B2 (en) | 2018-12-12 | 2023-10-24 | Kite Pharma, Inc. | Chimeric antigen and T cell receptors and methods of use |
| US11154575B2 (en) | 2019-03-05 | 2021-10-26 | Nkarta, Inc. | Cancer immunotherapy using CD19-directed chimeric antigen receptors |
| US11253547B2 (en) | 2019-03-05 | 2022-02-22 | Nkarta, Inc. | CD19-directed chimeric antigen receptors and uses thereof in immunotherapy |
| US11141436B2 (en) | 2019-03-05 | 2021-10-12 | Nkarta, Inc. | Immune cells engineered to express CD19-directed chimeric antigen receptors and uses thereof in immunotherapy |
| WO2020180882A1 (en) * | 2019-03-05 | 2020-09-10 | Nkarta, Inc. | Cd19-directed chimeric antigen receptors and uses thereof in immunotherapy |
| US12398187B2 (en) | 2019-03-05 | 2025-08-26 | Nkarta, Inc. | CD19-directed chimeric antigen receptors and uses thereof in immunotherapy |
| WO2022155375A3 (en) * | 2021-01-13 | 2022-08-25 | Washington University | MHC-INDEPENDENT TCRs AND METHODS OF MAKING AND USING SAME |
| US12473363B2 (en) | 2022-01-12 | 2025-11-18 | Biomolecular Holdings Llc | NK/monocyte engagers |
Also Published As
| Publication number | Publication date |
|---|---|
| US8679492B2 (en) | 2014-03-25 |
| ZA201106369B (en) | 2012-05-30 |
| US20100215651A1 (en) | 2010-08-26 |
| CO6430469A2 (en) | 2012-04-30 |
| WO2010095031A3 (en) | 2010-11-04 |
| EA201190132A1 (en) | 2013-01-30 |
| KR20110122859A (en) | 2011-11-11 |
| CA2753158A1 (en) | 2010-08-26 |
| JP2012518404A (en) | 2012-08-16 |
| IL214725A0 (en) | 2011-11-30 |
| EP2398829A2 (en) | 2011-12-28 |
| CL2011002039A1 (en) | 2012-03-30 |
| CN102421800A (en) | 2012-04-18 |
| SG173654A1 (en) | 2011-09-29 |
| AP2011005859A0 (en) | 2011-10-31 |
| BRPI1005984A2 (en) | 2016-10-04 |
| MX2011008843A (en) | 2011-12-14 |
| AU2010215239A1 (en) | 2011-09-15 |
| WO2010095031A2 (en) | 2010-08-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8679492B2 (en) | Humanized antibodies that bind to CD19 and their uses | |
| KR102119840B1 (en) | Antibodies that bind to OX40 and their uses | |
| EP1848745B1 (en) | Monoclonal antibodies against cd30 lacking in fucosyl residues | |
| EP2941302B1 (en) | Antibodies that bind to tl1a and their uses | |
| EP1572744B1 (en) | Immunoglobulin variants and uses thereof | |
| CN102918063B (en) | Anti-CD 40 antibodies | |
| JP4810431B2 (en) | Method for treating cancer associated with B cells | |
| US20130183306A1 (en) | Anti-cd19 antibody having adcc function with improved glycosylation profile | |
| NO20150245L (en) | Immunoglobulin variants and uses thereof | |
| US10640564B2 (en) | Antibodies that bind to CCR6 and their uses | |
| CA3143087A1 (en) | Antibodies and methods of use | |
| HK1156047A (en) | Immunoglobulin variants and uses thereof | |
| HK1217426B (en) | Antibodies that bind to tl1a and their uses |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |